├── .gitignore ├── LICENSE ├── README.md ├── checkpoints └── model.ckpt ├── dataloader ├── datalist │ ├── dtu │ │ ├── test.txt │ │ ├── train.txt │ │ └── val.txt │ └── tanks │ │ ├── logs │ │ ├── Family.log │ │ ├── Francis.log │ │ ├── Horse.log │ │ ├── Lighthouse.log │ │ ├── M60.log │ │ ├── Panther.log │ │ ├── Playground.log │ │ └── Train.log │ │ └── test.txt └── mvs_dataset.py ├── depthfusion.py ├── networks ├── submodules.py └── ucsnet.py ├── requirements.txt ├── results └── dtu.png ├── scripts ├── fuse_dtu.sh ├── fuse_tanks.sh ├── test_on_dtu.sh ├── test_on_tanks.sh └── train.sh ├── test.py ├── train.py └── utils ├── collect_pointclouds.py └── utils.py /.gitignore: -------------------------------------------------------------------------------- 1 | .idea 2 | .DS_* 3 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2019 成硕 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # UCSNet 2 | ### Deep Stereo using Adaptive Thin Volume Representation with Uncertainty Awareness, CVPR 2020. (Oral Presentation) 3 | ## Introduction 4 | [UCSNet](https://arxiv.org/abs/1911.12012) is a learning-based framework for multi-view stereo (MVS). If you find this project useful for your research, please cite: 5 | 6 | 15 | 16 | 17 | ``` 18 | @inproceedings{cheng2020deep, 19 | title={Deep stereo using adaptive thin volume representation with uncertainty awareness}, 20 | author={Cheng, Shuo and Xu, Zexiang and Zhu, Shilin and Li, Zhuwen and Li, Li Erran and Ramamoorthi, Ravi and Su, Hao}, 21 | booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, 22 | pages={2524--2534}, 23 | year={2020} 24 | } 25 | ``` 26 | 27 | reconstruction results on DTU dataset: 28 | 29 | ![dtu](results/dtu.png) 30 | 31 | ## How to Use 32 | 33 | ### Environment 34 | * python 3.6 (Anaconda) 35 | * ``pip install -r requirements.txt`` 36 | 37 | ### Reproducing Results 38 | 39 | #### Compute Depth: 40 | * Download pre-processed testset: [Tanks and Temples](https://drive.google.com/file/d/1-6v88UcdKBSb8_c1FLH5kpwWQkHuQqaW/view?usp=sharing) and [DTU](https://drive.google.com/file/d/1SpyJSnj16XFhKXPHu8VcYwyQMCGc75bZ/view?usp=sharing). Each dataset should be organized as the following: 41 | 42 | ``` 43 | root_directory 44 | ├──scan1 (scene_name1) 45 | ├──scan2 (scene_name2) 46 | ├── images 47 | │ ├── 00000000.jpg 48 | │ ├── 00000001.jpg 49 | │ └── ... 50 | ├── cams 51 | │ ├── 00000000_cam.txt 52 | │ ├── 00000001_cam.txt 53 | │ └── ... 54 | └── pair.txt 55 | ``` 56 | 57 | * In ``scripts/test_on_dtu.sh`` or ``scripts/test_on_tanks.sh``, set `root_path` to dataset root directory, set `save_path` to your directory 58 | * Test on GPU by running ``bash scripts/test_on_dtu.sh`` or ``bash scripts/test_on_tanks.sh`` 59 | * For testing your own data, please organize your dataset in the same way, and generate the data list for the scenes you want to test. View selection is very crutial for multi-view stereo. For each scene, you may also need to implement the view selection in ``pair.txt``: 60 | 61 | ``` 62 | TOTAL_IMAGE_NUM 63 | IMAGE_ID0 # index of reference image 0 64 | 10 ID0 SCORE0 ID1 SCORE1 ... # 10 best source images for reference image 0 65 | IMAGE_ID1 # index of reference image 1 66 | 10 ID0 SCORE0 ID1 SCORE1 ... # 10 best source images for reference image 1 67 | ... 68 | ``` 69 | #### Depth Fusion: 70 | * Download the modified [fusibile](https://github.com/kysucix/fusibile): `git clone https://github.com/YoYo000/fusibile` 71 | * Install by `cmake .` and `make` 72 | * In ``scripts/fuse_dtu.sh`` or ``bash scripts/fuse_tanks.sh``, set ``exe_path`` to executable fusibile path, set ``root_path`` to the directory that contain the test results, set ``target_path`` to where you want to save the point clouds. 73 | * Fusing by running ``bash scripts/fuse_dtu.sh`` or ``bash scripts/fuse_tanks.sh`` 74 | 75 | 76 | Note: For DTU results, the fusion is performed on an NVIDIA GTX 1080Ti. For Tanks and Temple results, the fusion is performed on an NVIDIA P6000, as fusibile requires to read in the depth maps all in once, you may need a GPU with memory around 20GB. 77 | You can decrease the depth resolution in previous computing step or try [our implementation](https://github.com/touristCheng/DepthFusion) for depth fusion 78 | 79 | #### DTU Evaluation: 80 | 81 | * Download the offical evaluation tool from [DTU benchmark](http://roboimagedata.compute.dtu.dk/?page_id=36) 82 | * Put the ground-truth point clouds and the predicted point clouds in the ``MVS Data/Points`` folder 83 | * In ``GetUsedSets.m``, modify the ``UsedSets`` to be ``[1 4 9 10 11 12 13 15 23 24 29 32 33 34 48 49 62 75 77 110 114 118]`` as that are the test objects used in the literatures, then calculate the scores using ``BaseEvalMain_web.m`` and ``ComputeStat_web.m`` 84 | * The accuracy of each object is stored in ``BaseStat.MeanData``, and the completeness of each object is stored in ``BaseStat.MeanStl``, use the average number as the final accuracy and completeness 85 | * We also provide our pre-computed [point clouds](https://drive.google.com/file/d/18bk-153cdPs5ehi_JjOHx9h1N9zhrPkW/view?usp=sharing) for your convenience, the evaluation results are: 86 | 87 | | Accuracy | Completeness | Overall | 88 | |------------|---------------|---------| 89 | | 0.3388 | 0.3456 | 0.3422 | 90 | 91 | 92 | 93 | ### Training 94 | * Install NVIDIA [apex](https://github.com/NVIDIA/apex) for using Synchronized Batch Normalization 95 | * Download pre-processed DTU [training data](https://drive.google.com/file/d/1ssnznSXyTCDgdXLr4497dQsSSREC8vVj/view?usp=sharing) from MVSNet, and download our rendered full resolution [ground-truth](https://drive.google.com/file/d/1KYP9XfEjzyzkKMxC-nyTvAdsNNU64UQM/view?usp=sharing). Place the ground-truth in root directory, the train set need to be organized as: 96 | 97 | ``` 98 | root_directory 99 | ├──Cameras 100 | ├──Rectified 101 | ├──Depths_4 102 | └──Depths 103 | ``` 104 | * In ``scripts/train.sh``, set ``root_path`` to root directory, set ``num_gpus`` to the number of GPU on a machine (We use 8 1080Ti in our experiments). 105 | * Training: ``bash scripts/train.sh`` 106 | 107 | 108 | ## Acknowledgements 109 | [UCSNet](https://arxiv.org/abs/1911.12012) takes the [MVSNet](https://arxiv.org/abs/1804.02505) as its backbone. Thanks to Yao Yao for opening source of his excellent work, thanks to Xiaoyang Guo for his PyTorch implementation [MVSNet_pytorch](https://github.com/xy-guo/MVSNet_pytorch). 110 | -------------------------------------------------------------------------------- /checkpoints/model.ckpt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/touristCheng/UCSNet/a1361810f47b420941a1e7b32e24f37c305f0953/checkpoints/model.ckpt -------------------------------------------------------------------------------- /dataloader/datalist/dtu/test.txt: -------------------------------------------------------------------------------- 1 | scan1 2 | scan4 3 | scan9 4 | scan10 5 | scan11 6 | scan12 7 | scan13 8 | scan15 9 | scan23 10 | scan24 11 | scan29 12 | scan32 13 | scan33 14 | scan34 15 | scan48 16 | scan49 17 | scan62 18 | scan75 19 | scan77 20 | scan110 21 | scan114 22 | scan118 -------------------------------------------------------------------------------- /dataloader/datalist/dtu/train.txt: -------------------------------------------------------------------------------- 1 | scan2 2 | scan6 3 | scan7 4 | scan8 5 | scan14 6 | scan16 7 | scan18 8 | scan19 9 | scan20 10 | scan22 11 | scan30 12 | scan31 13 | scan36 14 | scan39 15 | scan41 16 | scan42 17 | scan44 18 | scan45 19 | scan46 20 | scan47 21 | scan50 22 | scan51 23 | scan52 24 | scan53 25 | scan55 26 | scan57 27 | scan58 28 | scan60 29 | scan61 30 | scan63 31 | scan64 32 | scan65 33 | scan68 34 | scan69 35 | scan70 36 | scan71 37 | scan72 38 | scan74 39 | scan76 40 | scan83 41 | scan84 42 | scan85 43 | scan87 44 | scan88 45 | scan89 46 | scan90 47 | scan91 48 | scan92 49 | scan93 50 | scan94 51 | scan95 52 | scan96 53 | scan97 54 | scan98 55 | scan99 56 | scan100 57 | scan101 58 | scan102 59 | scan103 60 | scan104 61 | scan105 62 | scan107 63 | scan108 64 | scan109 65 | scan111 66 | scan112 67 | scan113 68 | scan115 69 | scan116 70 | scan119 71 | scan120 72 | scan121 73 | scan122 74 | scan123 75 | scan124 76 | scan125 77 | scan126 78 | scan127 79 | scan128 -------------------------------------------------------------------------------- /dataloader/datalist/dtu/val.txt: -------------------------------------------------------------------------------- 1 | scan3 2 | scan5 3 | scan17 4 | scan21 5 | scan28 6 | scan35 7 | scan37 8 | scan38 9 | scan40 10 | scan43 11 | scan56 12 | scan59 13 | scan66 14 | scan67 15 | scan82 16 | scan86 17 | scan106 18 | scan117 -------------------------------------------------------------------------------- /dataloader/datalist/tanks/logs/Family.log: -------------------------------------------------------------------------------- 1 | 0 0 0 2 | 0.999914 6.96597e-06 0.0130972 0.0297143 3 | -0.000314413 0.999724 0.0234724 0.114098 4 | -0.0130934 -0.0234745 0.999639 -0.573847 5 | -0 -0 0 1 6 | 1 1 0 7 | 0.999994 0.00073458 0.00344365 0.0454525 8 | -0.000829393 0.999618 0.0276124 0.0466132 9 | -0.00342205 -0.0276151 0.999613 -0.542059 10 | -0 -0 0 1 11 | 2 2 0 12 | 0.999817 0.00184825 -0.0190252 0.0565189 13 | -0.00102378 0.999064 0.0432548 0.0226157 14 | 0.0190873 -0.0432274 0.998883 -0.547897 15 | -0 -0 0 1 16 | 3 3 0 17 | 0.99851 0.00615892 -0.0542213 0.0592199 18 | -0.00323696 0.998546 0.0538133 0.0206174 19 | 0.0544739 -0.0535576 0.997078 -0.544579 20 | -0 -0 0 1 21 | 4 4 0 22 | 0.999054 0.00806457 -0.0427258 0.0663682 23 | -0.00572169 0.998488 0.0546765 0.0215152 24 | 0.0431021 -0.0543804 0.99759 -0.543858 25 | -0 -0 0 1 26 | 5 5 0 27 | 0.987934 0.0174106 -0.153894 0.0855601 28 | -0.00451777 0.996478 0.083733 0.00583505 29 | 0.15481 -0.0820275 0.984533 -0.531965 30 | -0 -0 0 1 31 | 6 6 0 32 | 0.972213 0.0335106 -0.231689 0.103133 33 | -0.00748165 0.993644 0.112322 0.00617607 34 | 0.23398 -0.107468 0.966284 -0.512829 35 | -0 -0 0 1 36 | 7 7 0 37 | 0.972177 0.0413708 -0.230564 0.127597 38 | -0.0132987 0.992441 0.122003 0.005449 39 | 0.233868 -0.115542 0.965379 -0.485124 40 | -0 -0 0 1 41 | 8 8 0 42 | 0.96336 0.0523021 -0.263062 0.171705 43 | -0.0153997 0.989971 0.140431 0.00685975 44 | 0.267769 -0.131234 0.954504 -0.486677 45 | -0 -0 0 1 46 | 9 9 0 47 | 0.935261 0.0748351 -0.345958 0.205926 48 | -0.0160381 0.98535 0.169787 0.0125106 49 | 0.353595 -0.153246 0.92276 -0.478084 50 | -0 -0 0 1 51 | 10 10 0 52 | 0.907896 0.0959119 -0.408075 0.228115 53 | -0.0196454 0.982139 0.187129 0.0115549 54 | 0.418735 -0.161877 0.893564 -0.448821 55 | -0 -0 0 1 56 | 11 11 0 57 | 0.864118 0.116186 -0.489695 0.277274 58 | -0.020336 0.980254 0.196692 0.0128925 59 | 0.502879 -0.160006 0.849418 -0.436417 60 | -0 -0 0 1 61 | 12 12 0 62 | 0.819289 0.138052 -0.556514 0.309309 63 | -0.0241633 0.978033 0.207044 0.0152671 64 | 0.572872 -0.156182 0.804627 -0.410445 65 | -0 -0 0 1 66 | 13 13 0 67 | 0.78466 0.152437 -0.600892 0.332562 68 | -0.0272055 0.97683 0.212281 0.01474 69 | 0.619329 -0.150221 0.770627 -0.37791 70 | -0 -0 0 1 71 | 14 14 0 72 | 0.693182 0.172752 -0.699754 0.379661 73 | -0.019113 0.974916 0.22175 0.00965293 74 | 0.720509 -0.140339 0.679096 -0.347091 75 | -0 -0 0 1 76 | 15 15 0 77 | 0.642926 0.184902 -0.743275 0.412192 78 | -0.0234519 0.974721 0.222192 0.00522956 79 | 0.765569 -0.125422 0.63101 -0.3026 80 | -0 -0 0 1 81 | 16 16 0 82 | 0.599101 0.184808 -0.779053 0.458166 83 | -0.0219553 0.976423 0.214745 0.00325108 84 | 0.800372 -0.11155 0.589034 -0.262541 85 | -0 -0 0 1 86 | 17 17 0 87 | 0.493026 0.193253 -0.84828 0.503564 88 | -0.0134534 0.976595 0.214666 0.00301187 89 | 0.869911 -0.0944239 0.484087 -0.220543 90 | -0 -0 0 1 91 | 18 18 0 92 | 0.362116 0.196206 -0.911249 0.549551 93 | -0.00447567 0.977951 0.208789 0.00203334 94 | 0.932122 -0.0715274 0.35501 -0.164529 95 | -0 -0 0 1 96 | 19 19 0 97 | 0.235109 0.196449 -0.951909 0.581388 98 | -0.0020643 0.979461 0.201625 0.00358686 99 | 0.971967 -0.0454389 0.230686 -0.105406 100 | -0 -0 0 1 101 | 20 20 0 102 | 0.153786 0.184995 -0.970632 0.587738 103 | -0.00205638 0.982375 0.186908 0.00372407 104 | 0.988102 -0.0267478 0.151456 -0.0484664 105 | -0 -0 0 1 106 | 21 21 0 107 | 0.0430398 0.174811 -0.983661 0.605077 108 | 0.00171092 0.984559 0.175046 0.00449917 109 | 0.999072 -0.0092169 0.0420761 0.00851314 110 | -0 -0 0 1 111 | 22 22 0 112 | -0.0357061 0.16535 -0.985588 0.588685 113 | 0.00344953 0.986232 0.165333 0.00538191 114 | 0.999356 0.00250358 -0.0357849 0.0657637 115 | -0 -0 0 1 116 | 23 23 0 117 | -0.156668 0.154931 -0.975424 0.599491 118 | 0.00900499 0.987803 0.155451 0.00727325 119 | 0.98761 0.0155705 -0.156152 0.133321 120 | -0 -0 0 1 121 | 24 24 0 122 | -0.256104 0.147591 -0.955315 0.591478 123 | 0.00974105 0.988619 0.150125 0.0124647 124 | 0.9666 0.0291419 -0.254627 0.192733 125 | -0 -0 0 1 126 | 25 25 0 127 | -0.345373 0.139359 -0.928061 0.566522 128 | 0.0120903 0.989492 0.144084 0.0139908 129 | 0.938388 0.0385424 -0.343429 0.260484 130 | -0 -0 0 1 131 | 26 26 0 132 | -0.441664 0.131534 -0.887486 0.545151 133 | 0.0111386 0.989922 0.141173 0.0190685 134 | 0.897111 0.0524655 -0.438678 0.319565 135 | -0 -0 0 1 136 | 27 27 0 137 | -0.464943 0.123619 -0.876667 0.514401 138 | 0.00771227 0.990732 0.135613 0.0181351 139 | 0.885307 0.0562914 -0.461588 0.367407 140 | -0 -0 0 1 141 | 28 28 0 142 | -0.535776 0.115598 -0.83641 0.491997 143 | 0.0108968 0.991448 0.130045 0.0200495 144 | 0.84429 0.0605608 -0.532454 0.436535 145 | -0 -0 0 1 146 | 29 29 0 147 | -0.575657 0.11082 -0.810147 0.452982 148 | 0.00926686 0.991594 0.129055 0.0221048 149 | 0.817639 0.0667841 -0.571845 0.483323 150 | -0 -0 0 1 151 | 30 30 0 152 | -0.64492 0.10405 -0.757134 0.42065 153 | 0.00938653 0.991692 0.128289 0.0249256 154 | 0.764193 0.0756293 -0.640539 0.531402 155 | -0 -0 0 1 156 | 31 31 0 157 | -0.752352 0.0970081 -0.65158 0.378495 158 | 0.00950895 0.990594 0.136501 0.0299292 159 | 0.658693 0.0965012 -0.746198 0.563862 160 | -0 -0 0 1 161 | 32 32 0 162 | -0.814061 0.0840564 -0.574664 0.322845 163 | 0.00246134 0.989962 0.141316 0.0293939 164 | 0.580774 0.113625 -0.806096 0.588326 165 | -0 -0 0 1 166 | 33 33 0 167 | -0.881416 0.0675669 -0.467483 0.269682 168 | -0.0016676 0.989265 0.146126 0.0316337 169 | 0.472337 0.129577 -0.871841 0.626678 170 | -0 -0 0 1 171 | 34 34 0 172 | -0.916354 0.0507233 -0.397142 0.209836 173 | -0.0104154 0.988586 0.150295 0.0308044 174 | 0.400233 0.14186 -0.905367 0.636481 175 | -0 -0 0 1 176 | 35 35 0 177 | -0.933539 0.0399966 -0.356236 0.14496 178 | -0.0144229 0.988761 0.14881 0.0299171 179 | 0.358184 0.144058 -0.92247 0.658973 180 | -0 -0 0 1 181 | 36 36 0 182 | -0.958555 0.026446 -0.283676 0.0929634 183 | -0.0172498 0.988469 0.150439 0.0339616 184 | 0.284383 0.149098 -0.947046 0.668648 185 | -0 -0 0 1 186 | 37 37 0 187 | -0.979991 0.01143 -0.198712 0.0448141 188 | -0.0196719 0.9879 0.153841 0.0323462 189 | 0.198066 0.154672 -0.967908 0.667116 190 | -0 -0 0 1 191 | 38 38 0 192 | -0.998601 -0.0138655 -0.0510225 -0.0163671 193 | -0.0218158 0.987081 0.158732 0.0312569 194 | 0.0481624 0.159624 -0.986002 0.674226 195 | -0 -0 0 1 196 | 39 39 0 197 | -0.998677 -0.0356676 0.0370445 -0.068935 198 | -0.0292626 0.986525 0.160971 0.0282673 199 | -0.0422868 0.159674 -0.986264 0.650587 200 | -0 -0 0 1 201 | 40 40 0 202 | -0.991224 -0.0533435 0.120956 -0.131886 203 | -0.0335447 0.986518 0.160175 0.0256987 204 | -0.12787 0.154712 -0.97965 0.630536 205 | -0 -0 0 1 206 | 41 41 0 207 | -0.976927 -0.0712624 0.201334 -0.177172 208 | -0.0388684 0.986272 0.160492 0.0241323 209 | -0.210007 0.148964 -0.966285 0.600845 210 | -0 -0 0 1 211 | 42 42 0 212 | -0.970044 -0.0794891 0.229554 -0.214048 213 | -0.0440051 0.986815 0.155754 0.0239364 214 | -0.238908 0.140987 -0.960753 0.558923 215 | -0 -0 0 1 216 | 43 43 0 217 | -0.940335 -0.09178 0.327637 -0.259246 218 | -0.0408591 0.986424 0.159056 0.0180233 219 | -0.337787 0.136179 -0.931319 0.510862 220 | -0 -0 0 1 221 | 44 44 0 222 | -0.903917 -0.106407 0.414261 -0.291073 223 | -0.0433721 0.98637 0.158721 0.0173309 224 | -0.425504 0.125503 -0.896212 0.473449 225 | -0 -0 0 1 226 | 45 45 0 227 | -0.8486 -0.1242 0.514249 -0.346993 228 | -0.0450816 0.985493 0.163621 0.0149353 229 | -0.527111 0.115666 -0.841888 0.444543 230 | -0 -0 0 1 231 | 46 46 0 232 | -0.801704 -0.139567 0.581198 -0.383429 233 | -0.0494557 0.984512 0.168199 0.0138135 234 | -0.595671 0.106102 -0.79619 0.405353 235 | -0 -0 0 1 236 | 47 47 0 237 | -0.749764 -0.153364 0.643687 -0.42831 238 | -0.0527912 0.983534 0.172844 0.00691511 239 | -0.659596 0.095611 -0.745514 0.360192 240 | -0 -0 0 1 241 | 48 48 0 242 | -0.708481 -0.158444 0.687713 -0.456566 243 | -0.0555132 0.983964 0.169508 -0.00131238 244 | -0.703543 0.0819161 -0.705916 0.308082 245 | -0 -0 0 1 246 | 49 49 0 247 | -0.598623 -0.167064 0.783415 -0.493431 248 | -0.0503528 0.983923 0.171347 -0.00144639 249 | -0.799447 0.0631253 -0.597411 0.258808 250 | -0 -0 0 1 251 | 50 50 0 252 | -0.488502 -0.17455 0.854926 -0.504741 253 | -0.0537023 0.983944 0.170207 -0.00354963 254 | -0.870909 0.0372348 -0.490032 0.206026 255 | -0 -0 0 1 256 | 51 51 0 257 | -0.349225 -0.182543 0.919086 -0.530394 258 | -0.0538048 0.983129 0.174819 -0.00487158 259 | -0.935493 0.0115999 -0.353155 0.147359 260 | -0 -0 0 1 261 | 52 52 0 262 | -0.265031 -0.184191 0.946484 -0.53958 263 | -0.0593222 0.982841 0.174655 -0.00518474 264 | -0.962413 -0.00985862 -0.27141 0.0836334 265 | -0 -0 0 1 266 | 53 53 0 267 | -0.148903 -0.186318 0.97114 -0.570295 268 | -0.0571807 0.982068 0.179647 -0.00910858 269 | -0.987197 -0.0287805 -0.156887 0.0205745 270 | -0 -0 0 1 271 | 54 54 0 272 | -0.0832297 -0.181729 0.97982 -0.554604 273 | -0.059159 0.982399 0.177182 -0.0127675 274 | -0.994773 -0.0432184 -0.0925156 -0.0432164 275 | -0 -0 0 1 276 | 55 55 0 277 | -0.00432292 -0.179557 0.983738 -0.544293 278 | -0.0568258 0.982202 0.179026 -0.0135261 279 | -0.998375 -0.0551278 -0.0144494 -0.117141 280 | -0 -0 0 1 281 | 56 56 0 282 | 0.101596 -0.174866 0.979337 -0.53888 283 | -0.0521776 0.982139 0.180779 -0.0160711 284 | -0.993456 -0.0694659 0.0906573 -0.176608 285 | -0 -0 0 1 286 | 57 57 0 287 | 0.254237 -0.164121 0.953115 -0.590849 288 | -0.0490361 0.982041 0.182182 -0.0163064 289 | -0.965898 -0.0930544 0.241624 -0.197099 290 | -0 -0 0 1 291 | 58 58 0 292 | 0.292945 -0.156703 0.943201 -0.626467 293 | -0.054752 0.98211 0.180173 -0.0159245 294 | -0.95456 -0.104423 0.279124 -0.234758 295 | -0 -0 0 1 296 | 59 59 0 297 | 0.300865 -0.154115 0.941132 -0.635999 298 | -0.0573256 0.982149 0.179158 -0.0139061 299 | -0.951942 -0.107853 0.28666 -0.277162 300 | -0 -0 0 1 301 | 60 60 0 302 | 0.194148 -0.16309 0.96732 -0.622227 303 | -0.064948 0.981782 0.178564 -0.00765345 304 | -0.97882 -0.0974934 0.180019 -0.282266 305 | -0 -0 0 1 306 | 61 61 0 307 | 0.103083 -0.185189 0.977281 -0.582666 308 | -0.0570913 0.979794 0.191687 -0.00737261 309 | -0.993033 -0.0755539 0.090427 -0.301006 310 | -0 -0 0 1 311 | 62 62 0 312 | 0.0670877 -0.189979 0.979493 -0.537185 313 | -0.0468365 0.980023 0.19329 -0.00880144 314 | -0.996647 -0.0588434 0.0568496 -0.296081 315 | -0 -0 0 1 316 | 63 63 0 317 | 0.154154 -0.192504 0.969112 -0.488955 318 | -0.028045 0.979589 0.199046 -0.0116269 319 | -0.987649 -0.0578624 0.145609 -0.307361 320 | -0 -0 0 1 321 | 64 64 0 322 | 0.373477 -0.179218 0.910162 -0.438992 323 | -0.0462802 0.976338 0.211239 -0.0123629 324 | -0.926484 -0.121015 0.356346 -0.328489 325 | -0 -0 0 1 326 | 65 65 0 327 | 0.490523 -0.162332 0.856175 -0.409471 328 | -0.0514375 0.975389 0.214405 -0.015345 329 | -0.869909 -0.14921 0.470101 -0.372568 330 | -0 -0 0 1 331 | 66 66 0 332 | 0.610027 -0.142504 0.779461 -0.372378 333 | -0.0522632 0.974317 0.219031 -0.0158724 334 | -0.790655 -0.174352 0.586912 -0.423435 335 | -0 -0 0 1 336 | 67 67 0 337 | 0.662487 -0.12674 0.738274 -0.327215 338 | -0.0586866 0.973771 0.21983 -0.0172458 339 | -0.746771 -0.188961 0.637673 -0.450778 340 | -0 -0 0 1 341 | 68 68 0 342 | 0.734213 -0.110526 0.669862 -0.287379 343 | -0.0546257 0.973843 0.220556 -0.0171869 344 | -0.676718 -0.198527 0.708971 -0.515142 345 | -0 -0 0 1 346 | 69 69 0 347 | 0.784332 -0.0977651 0.612589 -0.246823 348 | -0.0539266 0.973019 0.224333 -0.0173394 349 | -0.617993 -0.208986 0.757898 -0.567953 350 | -0 -0 0 1 351 | 70 70 0 352 | 0.866768 -0.0783466 0.492518 -0.241237 353 | -0.0445314 0.971479 0.232906 -0.0260773 354 | -0.496719 -0.223808 0.838559 -0.619507 355 | -0 -0 0 1 356 | 71 71 0 357 | 0.897469 -0.0576853 0.43729 -0.259109 358 | -0.0492396 0.972111 0.229293 -0.0338957 359 | -0.438321 -0.227315 0.869599 -0.631604 360 | -0 -0 0 1 361 | 72 72 0 362 | 0.950609 -0.0261237 0.309289 -0.235658 363 | -0.0377737 0.979309 0.198814 -0.0376228 364 | -0.308084 -0.200678 0.929953 -0.634463 365 | -0 -0 0 1 366 | 73 73 0 367 | 0.978729 -0.00448881 0.205109 -0.196253 368 | -0.0345384 0.981886 0.186297 -0.0427111 369 | -0.20223 -0.189418 0.960845 -0.589647 370 | -0 -0 0 1 371 | 74 74 0 372 | 0.975333 0.0030234 0.220717 -0.135706 373 | -0.0363429 0.98846 0.147057 -0.0485553 374 | -0.217725 -0.151451 0.964188 -0.533527 375 | -0 -0 0 1 376 | 75 75 0 377 | 0.976715 0.00426256 0.2145 -0.0927815 378 | -0.0258896 0.994838 0.0981174 -0.0447152 379 | -0.212975 -0.101386 0.971783 -0.483426 380 | -0 -0 0 1 381 | 76 76 0 382 | 0.988483 -0.00316178 0.151299 -0.0346959 383 | -0.00948763 0.99652 0.0828102 -0.0390764 384 | -0.151035 -0.083292 0.985013 -0.461979 385 | -0 -0 0 1 386 | 77 77 0 387 | 0.999979 -0.00524783 0.00391092 0.0329406 388 | 0.00493983 0.997172 0.0749874 -0.032644 389 | -0.00429338 -0.0749665 0.997177 -0.452897 390 | -0 -0 0 1 391 | 78 78 0 392 | 0.98397 -0.00529841 -0.178256 0.111785 393 | 0.0181529 0.997342 0.0705592 -0.0307768 394 | 0.177409 -0.072664 0.981451 -0.432739 395 | -0 -0 0 1 396 | 79 79 0 397 | 0.938647 -0.00132351 -0.344878 0.167169 398 | 0.027019 0.997201 0.0697101 -0.0252786 399 | 0.34382 -0.0747514 0.936055 -0.402515 400 | -0 -0 0 1 401 | 80 80 0 402 | 0.890631 -0.00133729 -0.454724 0.223881 403 | 0.0346473 0.997288 0.0649281 -0.0243749 404 | 0.453404 -0.073582 0.888263 -0.358855 405 | -0 -0 0 1 406 | 81 81 0 407 | 0.806894 0.000924523 -0.590695 0.261639 408 | 0.0421693 0.997357 0.0591646 -0.015155 409 | 0.589189 -0.0726488 0.804723 -0.318696 410 | -0 -0 0 1 411 | 82 82 0 412 | 0.688401 0.00438603 -0.725317 0.271368 413 | 0.0484104 0.997474 0.0519783 -0.0112016 414 | 0.723713 -0.0708948 0.68645 -0.278863 415 | -0 -0 0 1 416 | 83 83 0 417 | 0.583834 0.0331182 -0.811197 0.302179 418 | 0.0059808 0.998965 0.0450886 -0.00893461 419 | 0.811851 -0.0311758 0.583032 -0.254483 420 | -0 -0 0 1 421 | 84 84 0 422 | 0.541058 0.0309662 -0.840415 0.324447 423 | 0.00824311 0.999079 0.0421192 -0.0040326 424 | 0.840945 -0.0297166 0.540304 -0.216565 425 | -0 -0 0 1 426 | 85 85 0 427 | 0.503113 0.0295982 -0.863713 0.354606 428 | 0.00817978 0.999205 0.039006 -0.00229145 429 | 0.864182 -0.0266894 0.502472 -0.164286 430 | -0 -0 0 1 431 | 86 86 0 432 | 0.407393 0.0305004 -0.912743 0.379778 433 | 0.0114968 0.999192 0.0385207 -0.000526797 434 | 0.91318 -0.0261867 0.406713 -0.117736 435 | -0 -0 0 1 436 | 87 87 0 437 | 0.317686 0.0319286 -0.947658 0.365254 438 | 0.0141229 0.999163 0.0383984 -0.00106844 439 | 0.948091 -0.0255823 0.31697 -0.0675036 440 | -0 -0 0 1 441 | 88 88 0 442 | 0.160113 0.03134 -0.986601 0.368647 443 | 0.0162206 0.999277 0.034375 0.000377915 444 | 0.986965 -0.0215071 0.159489 -0.0165193 445 | -0 -0 0 1 446 | 89 89 0 447 | 0.0308629 0.0354099 -0.998896 0.35673 448 | 0.0145263 0.999251 0.0358713 0.00420728 449 | 0.999418 -0.0156173 0.0303254 0.0266604 450 | -0 -0 0 1 451 | 90 90 0 452 | -0.0841862 0.0354138 -0.995821 0.359261 453 | 0.0128252 0.999324 0.0344542 0.00958368 454 | 0.996368 -0.00987103 -0.0845835 0.0759798 455 | -0 -0 0 1 456 | 91 91 0 457 | -0.195315 0.0287438 -0.980319 0.401907 458 | 0.00954579 0.999579 0.0274066 0.015771 459 | 0.980694 -0.004005 -0.195507 0.116242 460 | -0 -0 0 1 461 | 92 92 0 462 | -0.275049 0.0288139 -0.960998 0.455225 463 | 0.00685633 0.999584 0.0280085 0.0186893 464 | 0.961406 0.00111481 -0.275133 0.168267 465 | -0 -0 0 1 466 | 93 93 0 467 | -0.33178 0.0546815 -0.941771 0.516489 468 | 0.00415244 0.998394 0.0565063 0.023954 469 | 0.943348 0.014837 -0.331474 0.204934 470 | -0 -0 0 1 471 | 94 94 0 472 | -0.348776 0.0885444 -0.933014 0.569871 473 | 0.00310173 0.995631 0.0933274 0.0202385 474 | 0.937201 0.0296564 -0.347527 0.261792 475 | -0 -0 0 1 476 | 95 95 0 477 | -0.370178 0.100079 -0.923554 0.622301 478 | -0.000639077 0.994152 0.107985 0.0281804 479 | 0.928961 0.0405641 -0.367949 0.282388 480 | -0 -0 0 1 481 | 96 96 0 482 | -0.347128 0.148584 -0.925973 0.617837 483 | -0.000448963 0.987343 0.1586 0.0321321 484 | 0.937818 0.05547 -0.342667 0.321841 485 | -0 -0 0 1 486 | 97 97 0 487 | -0.394702 0.165051 -0.903863 0.567766 488 | -0.00249537 0.983537 0.180689 0.030952 489 | 0.918806 0.0735739 -0.387792 0.343341 490 | -0 -0 0 1 491 | 98 98 0 492 | -0.44473 0.163504 -0.880615 0.503086 493 | -0.00886723 0.982345 0.18687 0.0246608 494 | 0.895621 0.0909154 -0.435428 0.34265 495 | -0 -0 0 1 496 | 99 99 0 497 | -0.535873 0.149637 -0.830932 0.431845 498 | -0.012735 0.982624 0.185167 0.0195334 499 | 0.844202 0.109808 -0.524657 0.347246 500 | -0 -0 0 1 501 | 100 100 0 502 | -0.605403 0.129698 -0.785281 0.368657 503 | -0.0251244 0.983028 0.181728 0.0110968 504 | 0.795523 0.129748 -0.591869 0.327242 505 | -0 -0 0 1 506 | 101 101 0 507 | -0.665633 0.101088 -0.739401 0.308855 508 | -0.0318454 0.986033 0.163475 -0.00508713 509 | 0.7456 0.132361 -0.653117 0.345174 510 | -0 -0 0 1 511 | 102 102 0 512 | -0.729166 0.0660954 -0.681138 0.245685 513 | -0.0384281 0.9898 0.137185 -0.00738133 514 | 0.683257 0.126205 -0.719188 0.36172 515 | -0 -0 0 1 516 | 103 103 0 517 | -0.795857 0.0293219 -0.604775 0.188497 518 | -0.0411639 0.993896 0.102358 -0.00650684 519 | 0.604084 0.106357 -0.789791 0.378133 520 | -0 -0 0 1 521 | 104 104 0 522 | -0.901225 -0.0120028 -0.433185 0.121623 523 | -0.0449246 0.996818 0.0658439 -0.000920891 524 | 0.431016 0.0788008 -0.898897 0.382388 525 | -0 -0 0 1 526 | 105 105 0 527 | -0.962004 -0.0323082 -0.271119 0.0478844 528 | -0.0502705 0.996958 0.0595697 -0.00537124 529 | 0.268369 0.0709355 -0.960701 0.380155 530 | -0 -0 0 1 531 | 106 106 0 532 | -0.993119 -0.0466861 -0.107405 -0.0185201 533 | -0.052825 0.997086 0.0550381 -0.0040807 534 | 0.104523 0.060333 -0.992691 0.386608 535 | -0 -0 0 1 536 | 107 107 0 537 | -0.998471 -0.0548308 0.00704779 -0.0816128 538 | -0.0544199 0.997307 0.0491659 -0.00846789 539 | -0.00972462 0.0487072 -0.998766 0.36171 540 | -0 -0 0 1 541 | 108 108 0 542 | -0.991554 -0.0567941 0.116596 -0.147809 543 | -0.0521685 0.99774 0.04235 -0.0130009 544 | -0.118737 0.0359097 -0.992276 0.340824 545 | -0 -0 0 1 546 | 109 109 0 547 | -0.963057 -0.0602854 0.262465 -0.191638 548 | -0.0516736 0.997879 0.0395975 -0.015748 549 | -0.264295 0.0245722 -0.964129 0.30521 550 | -0 -0 0 1 551 | 110 110 0 552 | -0.912156 -0.060107 0.405412 -0.242264 553 | -0.0515508 0.998158 0.0320018 -0.0184003 554 | -0.406588 0.00829139 -0.913574 0.280671 555 | -0 -0 0 1 556 | 111 111 0 557 | -0.834045 -0.058595 0.548575 -0.279401 558 | -0.0524011 0.998262 0.0269575 -0.0157163 559 | -0.549202 -0.00626219 -0.835666 0.247726 560 | -0 -0 0 1 561 | 112 112 0 562 | -0.746935 -0.0511709 0.662926 -0.309283 563 | -0.0524538 0.998462 0.0179697 -0.0143244 564 | -0.662825 -0.0213508 -0.74847 0.212817 565 | -0 -0 0 1 566 | 113 113 0 567 | -0.634209 -0.0384214 0.772206 -0.348074 568 | -0.0496588 0.998727 0.00890743 -0.0122161 569 | -0.771565 -0.0326976 -0.63531 0.203315 570 | -0 -0 0 1 571 | 114 114 0 572 | -0.613537 -0.0295903 0.789111 -0.379356 573 | -0.0480077 0.998847 0.000128853 -8.85837e-05 574 | -0.788205 -0.0378044 -0.61425 0.228658 575 | -0 -0 0 1 576 | 115 115 0 577 | -0.644251 -0.0226368 0.764479 -0.429542 578 | -0.0396631 0.999206 -0.00383815 0.00876347 579 | -0.763785 -0.0327944 -0.644638 0.226211 580 | -0 -0 0 1 581 | 116 116 0 582 | -0.675327 -0.0222119 0.737184 -0.457203 583 | -0.0320919 0.999485 0.000716072 0.0168224 584 | -0.73682 -0.0231741 -0.675692 0.240197 585 | -0 -0 0 1 586 | 117 117 0 587 | -0.695387 -0.0486381 0.716988 -0.507555 588 | -0.0268934 0.998769 0.0416701 0.0206916 589 | -0.718132 0.00969456 -0.695839 0.23965 590 | -0 -0 0 1 591 | 118 118 0 592 | -0.651933 -0.102825 0.751273 -0.544945 593 | -0.030329 0.993506 0.109661 0.0250205 594 | -0.75767 0.0487062 -0.650818 0.268833 595 | -0 -0 0 1 596 | 119 119 0 597 | -0.654525 -0.162257 0.738424 -0.571439 598 | -0.0392047 0.982669 0.181176 0.0334175 599 | -0.755023 0.0896342 -0.649543 0.291802 600 | -0 -0 0 1 601 | 120 120 0 602 | -0.654902 -0.194122 0.730357 -0.596605 603 | -0.0481124 0.975195 0.216056 0.0175102 604 | -0.754181 0.106356 -0.647996 0.294909 605 | -0 -0 0 1 606 | 121 121 0 607 | -0.672557 -0.195848 0.71366 -0.600447 608 | -0.0575041 0.975261 0.213446 -0.00616033 609 | -0.737808 0.102516 -0.667181 0.300745 610 | -0 -0 0 1 611 | 122 122 0 612 | -0.698388 -0.177974 0.693238 -0.596645 613 | -0.0634161 0.980168 0.187749 -0.0246475 614 | -0.712904 0.0871594 -0.695824 0.297946 615 | -0 -0 0 1 616 | 123 123 0 617 | -0.695643 -0.141407 0.704333 -0.571275 618 | -0.0617387 0.988576 0.137496 -0.0197177 619 | -0.71573 0.0521638 -0.696426 0.270146 620 | -0 -0 0 1 621 | 124 124 0 622 | -0.624099 -0.128485 0.770709 -0.551402 623 | -0.0586891 0.991309 0.117736 -0.0154718 624 | -0.779138 0.028247 -0.626216 0.21653 625 | -0 -0 0 1 626 | 125 125 0 627 | -0.534516 -0.12456 0.835929 -0.509238 628 | -0.0646828 0.992208 0.106487 -0.0143688 629 | -0.842679 0.00284877 -0.538408 0.160243 630 | -0 -0 0 1 631 | 126 126 0 632 | -0.443917 -0.124197 0.887419 -0.490306 633 | -0.0694681 0.992138 0.104102 -0.013743 634 | -0.893371 -0.0154345 -0.449055 0.091086 635 | -0 -0 0 1 636 | 127 127 0 637 | -0.335472 -0.122463 0.934057 -0.452254 638 | -0.075811 0.991808 0.102807 -0.0157562 639 | -0.938995 -0.0363231 -0.342008 0.0318695 640 | -0 -0 0 1 641 | 128 128 0 642 | -0.190614 -0.117568 0.974599 -0.443339 643 | -0.0791182 0.991413 0.104122 -0.0171657 644 | -0.978472 -0.0572614 -0.198279 -0.0337307 645 | -0 -0 0 1 646 | 129 129 0 647 | -0.0495327 -0.114053 0.992239 -0.400748 648 | -0.0837374 0.990435 0.109665 -0.0210336 649 | -0.995256 -0.0776555 -0.0586094 -0.0793901 650 | -0 -0 0 1 651 | 130 130 0 652 | 0.112793 -0.101906 0.988379 -0.357611 653 | -0.0835145 0.990235 0.111628 -0.0286304 654 | -0.990103 -0.0951348 0.103181 -0.130804 655 | -0 -0 0 1 656 | 131 131 0 657 | 0.330452 -0.0851921 0.93997 -0.310483 658 | -0.0809177 0.989694 0.118146 -0.0342644 659 | -0.940348 -0.115102 0.320153 -0.163209 660 | -0 -0 0 1 661 | 132 132 0 662 | 0.492057 -0.0351996 0.869851 -0.261969 663 | -0.0778148 0.993404 0.0842176 -0.042981 664 | -0.867078 -0.109127 0.486072 -0.198415 665 | -0 -0 0 1 666 | 133 133 0 667 | 0.658491 -0.0107569 0.752511 -0.208474 668 | -0.0724493 0.994348 0.0776113 -0.041021 669 | -0.749093 -0.105625 0.65399 -0.232691 670 | -0 -0 0 1 671 | 134 134 0 672 | 0.760802 0.00239978 0.64898 -0.151804 673 | -0.0652007 0.995216 0.0727549 -0.0405488 674 | -0.645701 -0.097666 0.757319 -0.25048 675 | -0 -0 0 1 676 | 135 135 0 677 | 0.89511 0.0151186 0.445589 -0.100542 678 | -0.0508304 0.996369 0.0683032 -0.0371443 679 | -0.442938 -0.0837883 0.892628 -0.286928 680 | -0 -0 0 1 681 | 136 136 0 682 | 0.95372 0.0196573 0.300053 -0.0488513 683 | -0.0394095 0.997425 0.0599192 -0.0352066 684 | -0.298103 -0.0689711 0.952039 -0.292864 685 | -0 -0 0 1 686 | 137 137 0 687 | 0.995264 0.0191888 0.0952993 0.0216773 688 | -0.0243167 0.998302 0.0529412 -0.0314365 689 | -0.0941216 -0.0550078 0.99404 -0.303335 690 | -0 -0 0 1 691 | 138 138 0 692 | 0.998377 0.0172698 -0.0542653 0.0745075 693 | -0.0147745 0.99883 0.046052 -0.0279398 694 | 0.0549971 -0.0451755 0.997464 -0.287043 695 | -0 -0 0 1 696 | 139 139 0 697 | 0.968151 0.0103704 -0.250153 0.135518 698 | -0.00123037 0.999327 0.0366664 -0.027058 699 | 0.250365 -0.0351908 0.967512 -0.281028 700 | -0 -0 0 1 701 | 140 140 0 702 | 0.888133 0.00606977 -0.459546 0.170381 703 | 0.00877091 0.999507 0.0301526 -0.0210421 704 | 0.459503 -0.0308101 0.887642 -0.249644 705 | -0 -0 0 1 706 | 141 141 0 707 | 0.798775 0.000486114 -0.60163 0.208275 708 | 0.0164801 0.999607 0.022688 -0.0256519 709 | 0.601405 -0.0280375 0.798452 -0.214936 710 | -0 -0 0 1 711 | 142 142 0 712 | 0.708453 0.000291603 -0.705757 0.242178 713 | 0.0225103 0.999482 0.0230093 -0.0246125 714 | 0.705398 -0.0321878 0.70808 -0.184985 715 | -0 -0 0 1 716 | 143 143 0 717 | 0.566891 0.000687775 -0.823792 0.258711 718 | 0.0264967 0.999467 0.0190681 -0.0226867 719 | 0.823366 -0.0326373 0.566571 -0.134291 720 | -0 -0 0 1 721 | 144 144 0 722 | 0.369868 -0.00100563 -0.929084 0.291142 723 | 0.0283861 0.999545 0.0102186 -0.0181585 724 | 0.928651 -0.0301526 0.369728 -0.0825559 725 | -0 -0 0 1 726 | 145 145 0 727 | 0.245314 -0.00308832 -0.969439 0.28095 728 | 0.0297544 0.999548 0.00434503 -0.0138651 729 | 0.968987 -0.0299109 0.245295 -0.0360677 730 | -0 -0 0 1 731 | 146 146 0 732 | 0.151077 -0.00740054 -0.988494 0.265361 733 | 0.0288086 0.99958 -0.00308057 0.00614944 734 | 0.988102 -0.0280117 0.151227 0.00761854 735 | -0 -0 0 1 736 | 147 147 0 737 | 0.160657 -0.0153276 -0.986891 0.26233 738 | 0.0294398 0.999509 -0.010731 0.0233297 739 | 0.986571 -0.0273299 0.161029 0.0158146 740 | -0 -0 0 1 741 | 148 148 0 742 | 0.132414 -0.0374414 -0.990487 0.274651 743 | 0.0299112 0.998982 -0.0337638 0.0264828 744 | 0.990743 -0.0251558 0.133399 0.00834242 745 | -0 -0 0 1 746 | 149 149 0 747 | -0.0107134 -0.0782171 -0.996879 0.275545 748 | 0.0251847 0.996599 -0.0784658 0.0290319 749 | 0.999625 -0.0259467 -0.0087071 3.21164e-05 750 | -0 -0 0 1 751 | 150 150 0 752 | -0.116103 -0.0841527 -0.989666 0.27694 753 | 0.0251532 0.995836 -0.0876282 0.0285862 754 | 0.992919 -0.0350672 -0.113503 1.206e-05 755 | -0 -0 0 1 756 | 151 151 0 757 | -0.105165 -0.0903112 -0.990346 0.276802 758 | 0.0336308 0.994975 -0.0943046 0.0287369 759 | 0.993886 -0.0432236 -0.101599 0.00214624 760 | -0 -0 0 1 761 | -------------------------------------------------------------------------------- /dataloader/datalist/tanks/logs/Francis.log: -------------------------------------------------------------------------------- 1 | 0 0 0 2 | 0.191178 -0.0561232 0.97995 -0.943293 3 | 0.0133187 -0.998124 -0.0597624 0.00807854 4 | 0.981465 0.0244769 -0.190072 0.135622 5 | -0 -0 0 1 6 | 1 1 0 7 | 0.149047 -0.0526273 0.987429 -0.944199 8 | 0.00992047 -0.998453 -0.0547123 0.00923427 9 | 0.98878 0.0179505 -0.148294 0.14194 10 | -0 -0 0 1 11 | 2 2 0 12 | 0.0906118 -0.0455649 0.994843 -0.940913 13 | 0.00757324 -0.998892 -0.0464401 0.00846398 14 | 0.995857 0.0117422 -0.0901664 0.144116 15 | -0 -0 0 1 16 | 3 3 0 17 | 0.0408542 -0.0410856 0.99832 -0.93848 18 | 0.00394314 -0.99914 -0.0412807 0.0099872 19 | 0.999157 0.00562301 -0.0406571 0.14672 20 | -0 -0 0 1 21 | 4 4 0 22 | -0.0127557 -0.0338025 0.999347 -0.938356 23 | 0.00122605 -0.999428 -0.0337896 0.00679604 24 | 0.999918 0.00079424 0.0127898 0.137318 25 | -0 -0 0 1 26 | 5 5 0 27 | -0.0741007 -0.0286721 0.996839 -0.915337 28 | -0.00188123 -0.999581 -0.0288908 0.0124374 29 | 0.997249 -0.00401612 0.0740157 0.124355 30 | -0 -0 0 1 31 | 6 6 0 32 | -0.12799 0.00534905 0.991761 -0.896237 33 | -0.00221533 -0.999985 0.00510751 0.0145139 34 | 0.991773 -0.00154337 0.128 0.103721 35 | -0 -0 0 1 36 | 7 7 0 37 | -0.180362 0.0518434 0.982233 -0.876587 38 | -0.00438836 -0.998642 0.0519036 0.0140702 39 | 0.98359 0.00505106 0.180345 0.0710926 40 | -0 -0 0 1 41 | 8 8 0 42 | -0.229118 0.0631899 0.971345 -0.853675 43 | -0.0088712 -0.997985 0.0628304 0.016258 44 | 0.973358 0.0057786 0.229217 0.0404156 45 | -0 -0 0 1 46 | 9 9 0 47 | -0.269577 0.0715093 0.96032 -0.851708 48 | -0.0132457 -0.99742 0.0705537 0.0170033 49 | 0.962888 0.0062995 0.269829 -0.00589197 50 | -0 -0 0 1 51 | 10 10 0 52 | -0.278511 0.0707681 0.957822 -0.835001 53 | -0.0168455 -0.997488 0.0688006 0.0155951 54 | 0.960285 0.00302675 0.279004 -0.0479874 55 | -0 -0 0 1 56 | 11 11 0 57 | -0.327317 0.0762421 0.941834 -0.821293 58 | -0.020809 -0.997079 0.0734825 0.0140159 59 | 0.944686 0.00445342 0.327947 -0.0920915 60 | -0 -0 0 1 61 | 12 12 0 62 | -0.379453 0.0750719 0.92216 -0.788978 63 | -0.0241132 -0.997167 0.0712559 0.0125189 64 | 0.924897 0.00480204 0.380188 -0.134089 65 | -0 -0 0 1 66 | 13 13 0 67 | -0.430163 0.0815242 0.899062 -0.768314 68 | -0.0269141 -0.996629 0.0774941 0.0140308 69 | 0.90235 0.00913767 0.430908 -0.181706 70 | -0 -0 0 1 71 | 14 14 0 72 | -0.475683 0.131051 0.8698 -0.752466 73 | -0.0297286 -0.990669 0.133004 0.023507 74 | 0.879114 0.03741 0.47514 -0.21235 75 | -0 -0 0 1 76 | 15 15 0 77 | -0.520631 0.235889 0.820549 -0.743136 78 | -0.0318565 -0.965773 0.257425 0.0304671 79 | 0.853188 0.107883 0.510326 -0.238669 80 | -0 -0 0 1 81 | 16 16 0 82 | -0.562658 0.276912 0.778933 -0.739149 83 | -0.0374749 -0.949806 0.310588 0.0321755 84 | 0.82584 0.145564 0.544793 -0.279417 85 | -0 -0 0 1 86 | 17 17 0 87 | -0.601064 0.30617 0.738229 -0.724569 88 | -0.044404 -0.935076 0.351655 0.0318729 89 | 0.797966 0.178587 0.575636 -0.313335 90 | -0 -0 0 1 91 | 18 18 0 92 | -0.622127 0.316928 0.715901 -0.710896 93 | -0.05121 -0.928918 0.366728 0.0245754 94 | 0.78124 0.19149 0.594135 -0.356588 95 | -0 -0 0 1 96 | 19 19 0 97 | -0.643358 0.313899 0.698254 -0.686377 98 | -0.0618298 -0.930401 0.361291 0.0179621 99 | 0.763065 0.189266 0.617989 -0.39602 100 | -0 -0 0 1 101 | 20 20 0 102 | -0.668561 0.298708 0.681028 -0.659081 103 | -0.0741453 -0.937994 0.338629 0.00964436 104 | 0.739952 0.175899 0.649254 -0.435859 105 | -0 -0 0 1 106 | 21 21 0 107 | -0.702535 0.269105 0.658808 -0.622436 108 | -0.0853739 -0.950931 0.29739 0.00617094 109 | 0.70651 0.152682 0.691037 -0.471634 110 | -0 -0 0 1 111 | 22 22 0 112 | -0.735307 0.240758 0.633529 -0.602375 113 | -0.09271 -0.96172 0.257875 -2.35923e-05 114 | 0.671363 0.130883 0.72948 -0.505426 115 | -0 -0 0 1 116 | 23 23 0 117 | -0.768401 0.198052 0.608552 -0.568868 118 | -0.0932654 -0.975412 0.199682 -0.00264379 119 | 0.633136 0.0966789 0.767979 -0.543517 120 | -0 -0 0 1 121 | 24 24 0 122 | -0.797583 0.180395 0.575603 -0.526836 123 | -0.0855744 -0.978422 0.188064 -0.00528746 124 | 0.597108 0.100739 0.79581 -0.581031 125 | -0 -0 0 1 126 | 25 25 0 127 | -0.825955 0.126319 0.549401 -0.489172 128 | -0.0792253 -0.99091 0.108725 -0.0105464 129 | 0.558141 0.0462759 0.828455 -0.614201 130 | -0 -0 0 1 131 | 26 26 0 132 | -0.853529 0.0829808 0.514396 -0.449466 133 | -0.0676357 -0.996529 0.0485303 -0.00742861 134 | 0.516637 0.00663047 0.856179 -0.643268 135 | -0 -0 0 1 136 | 27 27 0 137 | -0.869614 0.0621654 0.489802 -0.404434 138 | -0.054991 -0.998064 0.0290404 0.0216228 139 | 0.49066 -0.00168077 0.87135 -0.6561 140 | -0 -0 0 1 141 | 28 28 0 142 | -0.881851 0.036884 0.470084 -0.35256 143 | -0.0419967 -0.999118 -0.000390031 0.0270352 144 | 0.469655 -0.0200859 0.882622 -0.676858 145 | -0 -0 0 1 146 | 29 29 0 147 | -0.890615 0.011231 0.45462 -0.305864 148 | -0.0317532 -0.998791 -0.0375312 0.0386737 149 | 0.453648 -0.0478615 0.889895 -0.686711 150 | -0 -0 0 1 151 | 30 30 0 152 | -0.909088 0.00267123 0.416595 -0.250424 153 | -0.0201917 -0.999087 -0.0376559 0.039832 154 | 0.416114 -0.0426443 0.908312 -0.716191 155 | -0 -0 0 1 156 | 31 31 0 157 | -0.928378 -0.00161541 0.371634 -0.204234 158 | -0.0121265 -0.999326 -0.0346372 0.0449551 159 | 0.37144 -0.036663 0.927733 -0.737935 160 | -0 -0 0 1 161 | 32 32 0 162 | -0.945852 0.0086625 0.324483 -0.161994 163 | -0.00399626 -0.999879 0.0150442 0.0536122 164 | 0.324574 0.0129328 0.945772 -0.759747 165 | -0 -0 0 1 166 | 33 33 0 167 | -0.961151 0.0241985 0.274961 -0.110321 168 | 0.00151011 -0.995674 0.0929049 0.055992 169 | 0.27602 0.0897109 0.956956 -0.763373 170 | -0 -0 0 1 171 | 34 34 0 172 | -0.974442 0.0262437 0.2231 -0.0630098 173 | 0.00447321 -0.990689 0.136075 0.0607826 174 | 0.224594 0.133595 0.965251 -0.780226 175 | -0 -0 0 1 176 | 35 35 0 177 | -0.985381 0.0221099 0.168924 -0.00981449 178 | 0.00404448 -0.988227 0.152938 0.0614959 179 | 0.170316 0.151386 0.973691 -0.774799 180 | -0 -0 0 1 181 | 36 36 0 182 | -0.992782 0.0174412 0.118659 0.0383475 183 | 0.00214824 -0.986625 0.162994 0.0604445 184 | 0.119915 0.162072 0.979466 -0.789822 185 | -0 -0 0 1 186 | 37 37 0 187 | -0.997837 0.0124357 0.0645548 0.0914093 188 | -0.00120935 -0.985252 0.171103 0.0562101 189 | 0.0657306 0.170655 0.983136 -0.799369 190 | -0 -0 0 1 191 | 38 38 0 192 | -0.999969 0.00547312 0.00563471 0.142159 193 | -0.00440454 -0.984609 0.174717 0.0404514 194 | 0.00650423 0.174686 0.984603 -0.819422 195 | -0 -0 0 1 196 | 39 39 0 197 | -0.998555 -0.00159224 -0.0537083 0.199665 198 | -0.00771476 -0.984956 0.172634 0.0278651 199 | -0.0531752 0.172799 0.983521 -0.834474 200 | -0 -0 0 1 201 | 40 40 0 202 | -0.994015 -0.00886813 -0.108881 0.259056 203 | -0.00954752 -0.985833 0.167456 0.0120382 204 | -0.108824 0.167494 0.979849 -0.842212 205 | -0 -0 0 1 206 | 41 41 0 207 | -0.986982 -0.0148917 -0.160141 0.314469 208 | -0.0108554 -0.987265 0.158711 0.00167613 209 | -0.160465 0.158383 0.974251 -0.835359 210 | -0 -0 0 1 211 | 42 42 0 212 | -0.977821 -0.00988501 -0.209211 0.372428 213 | -0.01241 -0.994396 0.104987 -0.000702171 214 | -0.209076 0.105255 0.972218 -0.827836 215 | -0 -0 0 1 216 | 43 43 0 217 | -0.966091 0.00987371 -0.258011 0.429359 218 | -0.0146635 -0.999754 0.0166466 0.00998298 219 | -0.257783 0.0198654 0.965999 -0.823972 220 | -0 -0 0 1 221 | 44 44 0 222 | -0.951909 0.0166086 -0.30593 0.488011 223 | -0.0119105 -0.999781 -0.0172173 0.0208751 224 | -0.306149 -0.0127455 0.951898 -0.818722 225 | -0 -0 0 1 226 | 45 45 0 227 | -0.93436 0.00744593 -0.356252 0.547082 228 | -0.00595452 -0.999968 -0.00528285 0.0337707 229 | -0.35628 -0.00281478 0.934375 -0.813268 230 | -0 -0 0 1 231 | 46 46 0 232 | -0.914755 -0.00995615 -0.403885 0.609272 233 | -0.000271148 -0.999681 0.0252572 0.0358758 234 | -0.404008 0.0232137 0.914461 -0.808482 235 | -0 -0 0 1 236 | 47 47 0 237 | -0.891555 -0.0493169 -0.45022 0.672292 238 | 0.00612992 -0.995277 0.0968832 0.037991 239 | -0.452872 0.0836169 0.887646 -0.803465 240 | -0 -0 0 1 241 | 48 48 0 242 | -0.862772 -0.0812406 -0.499024 0.729252 243 | 0.0102232 -0.989607 0.143432 0.0409367 244 | -0.50549 0.118648 0.854636 -0.775045 245 | -0 -0 0 1 246 | 49 49 0 247 | -0.830591 -0.0935893 -0.548963 0.779629 248 | 0.0098747 -0.988097 0.153514 0.0392285 249 | -0.556796 0.122086 0.821628 -0.752254 250 | -0 -0 0 1 251 | 50 50 0 252 | -0.786895 -0.106556 -0.607817 0.819092 253 | 0.00739515 -0.986536 0.163375 0.0342222 254 | -0.617042 0.124064 0.777089 -0.706634 255 | -0 -0 0 1 256 | 51 51 0 257 | -0.741913 -0.116178 -0.660354 0.857285 258 | 0.00505018 -0.985814 0.167764 0.0337076 259 | -0.670477 0.121131 0.731975 -0.663902 260 | -0 -0 0 1 261 | 52 52 0 262 | -0.690172 -0.120777 -0.713495 0.888125 263 | 0.00226889 -0.98633 0.164766 0.0348546 264 | -0.723642 0.112098 0.681011 -0.606457 265 | -0 -0 0 1 266 | 53 53 0 267 | -0.638952 -0.123638 -0.759246 0.931896 268 | 4.08156e-05 -0.987004 0.160693 0.0286458 269 | -0.769247 0.102644 0.630653 -0.552544 270 | -0 -0 0 1 271 | 54 54 0 272 | -0.591481 -0.122528 -0.796955 0.970329 273 | -0.0019234 -0.988169 0.153354 0.0195295 274 | -0.806316 0.092239 0.584248 -0.502421 275 | -0 -0 0 1 276 | 55 55 0 277 | -0.546962 -0.0905647 -0.832245 1.00946 278 | -0.00367844 -0.993862 0.110569 0.00954444 279 | -0.83715 0.0635386 0.543271 -0.445149 280 | -0 -0 0 1 281 | 56 56 0 282 | -0.496417 -0.0492804 -0.866684 1.04712 283 | -0.00548541 -0.998189 0.0598998 0.00693642 284 | -0.868067 0.0344894 0.495248 -0.388295 285 | -0 -0 0 1 286 | 57 57 0 287 | -0.444086 -0.0369355 -0.895222 1.08594 288 | -0.00386784 -0.999062 0.0431384 0.00572749 289 | -0.895976 0.0226197 0.443527 -0.319584 290 | -0 -0 0 1 291 | 58 58 0 292 | -0.390455 -0.0333077 -0.920019 1.12414 293 | -0.00103058 -0.999329 0.0366163 0.00570318 294 | -0.920621 0.0152452 0.390159 -0.248746 295 | -0 -0 0 1 296 | 59 59 0 297 | -0.337272 -0.0280555 -0.940989 1.15313 298 | 0.0016514 -0.999572 0.0292103 0.00883949 299 | -0.941406 0.00829787 0.337174 -0.176379 300 | -0 -0 0 1 301 | 60 60 0 302 | -0.280369 -0.0241403 -0.959589 1.18663 303 | 0.00456108 -0.999706 0.0238169 0.00305918 304 | -0.959881 0.00230077 0.280397 -0.10719 305 | -0 -0 0 1 306 | 61 61 0 307 | -0.209918 -0.00347925 -0.977713 1.20698 308 | 0.00716887 -0.999972 0.00201929 0.00534963 309 | -0.977693 -0.00658521 0.209937 -0.0299376 310 | -0 -0 0 1 311 | 62 62 0 312 | -0.118066 -0.00163304 -0.993004 1.22423 313 | 0.00959433 -0.999954 0.000503729 0.00476275 314 | -0.992959 -0.00946773 0.118076 0.0504353 315 | -0 -0 0 1 316 | 63 63 0 317 | -0.0521229 0.000375594 -0.998641 1.24025 318 | 0.0123472 -0.999923 -0.00102052 0.0110495 319 | -0.998564 -0.0123836 0.0521143 0.130098 320 | -0 -0 0 1 321 | 64 64 0 322 | 0.00439078 0.00199301 -0.999988 1.23758 323 | 0.013956 -0.999901 -0.00193156 0.0231144 324 | -0.999893 -0.0139473 -0.00441816 0.195353 325 | -0 -0 0 1 326 | 65 65 0 327 | 0.0606092 -0.0431476 -0.997229 1.24368 328 | 0.0165271 -0.998885 0.0442237 0.0180421 329 | -0.998025 -0.0191617 -0.0598285 0.26169 330 | -0 -0 0 1 331 | 66 66 0 332 | 0.114528 -0.139384 -0.983593 1.23595 333 | 0.0198034 -0.989591 0.142539 0.0116618 334 | -0.993223 -0.0358032 -0.110575 0.324853 335 | -0 -0 0 1 336 | 67 67 0 337 | 0.165042 -0.157672 -0.973602 1.23216 338 | 0.0182279 -0.986483 0.162848 0.00380221 339 | -0.986118 -0.0446235 -0.159937 0.386766 340 | -0 -0 0 1 341 | 68 68 0 342 | 0.217059 -0.153404 -0.964029 1.21964 343 | 0.0138892 -0.986989 0.160185 0.00058729 344 | -0.97606 -0.0481591 -0.212104 0.44364 345 | -0 -0 0 1 346 | 69 69 0 347 | 0.273996 -0.13192 -0.95264 1.2047 348 | 0.00804659 -0.990198 0.139435 0.000404743 349 | -0.961697 -0.0458703 -0.270249 0.50176 350 | -0 -0 0 1 351 | 70 70 0 352 | 0.352161 -0.107657 -0.929727 1.18964 353 | -0.000198945 -0.993371 0.114951 -0.00259242 354 | -0.935939 -0.0402964 -0.349848 0.559476 355 | -0 -0 0 1 356 | 71 71 0 357 | 0.477466 -0.0837853 -0.874646 1.16886 358 | -0.00980226 -0.995889 0.0900485 -0.00467969 359 | -0.878596 -0.0344216 -0.476324 0.615349 360 | -0 -0 0 1 361 | 72 72 0 362 | 0.602859 -0.0754874 -0.794269 1.15003 363 | -0.0170104 -0.996504 0.0817967 -0.00995901 364 | -0.797666 -0.0358011 -0.602035 0.673814 365 | -0 -0 0 1 366 | 73 73 0 367 | 0.699804 -0.0615853 -0.711675 1.1199 368 | -0.0203082 -0.997589 0.0663577 -0.013428 369 | -0.714046 -0.0319846 -0.699368 0.723573 370 | -0 -0 0 1 371 | 74 74 0 372 | 0.749924 -0.035281 -0.660583 1.08778 373 | -0.0203941 -0.999335 0.0302211 -0.0157662 374 | -0.66121 -0.00919147 -0.750144 0.785462 375 | -0 -0 0 1 376 | 75 75 0 377 | 0.782672 -0.0102693 -0.622349 1.04848 378 | -0.0185598 -0.999804 -0.00684324 -0.0167516 379 | -0.622157 0.0169067 -0.78271 0.837468 380 | -0 -0 0 1 381 | 76 76 0 382 | 0.812515 -0.00101189 -0.582939 1.01723 383 | -0.0156853 -0.999674 -0.0201272 -0.0124004 384 | -0.582729 0.0254972 -0.812266 0.887961 385 | -0 -0 0 1 386 | 77 77 0 387 | 0.838055 -0.00265162 -0.545579 0.997259 388 | -0.0141157 -0.999759 -0.0168239 -0.00855619 389 | -0.545403 0.0218006 -0.83789 0.919517 390 | -0 -0 0 1 391 | 78 78 0 392 | 0.864171 -0.0223559 -0.502702 0.973703 393 | -0.0105149 -0.999597 0.026378 -0.0114587 394 | -0.503089 -0.0175092 -0.864057 0.945696 395 | -0 -0 0 1 396 | 79 79 0 397 | 0.888061 -0.0426972 -0.457738 0.943241 398 | -0.00817181 -0.996987 0.0771435 -0.0168973 399 | -0.459652 -0.0647676 -0.885734 0.976918 400 | -0 -0 0 1 401 | 80 80 0 402 | 0.911032 -0.0605293 -0.407869 0.903461 403 | -0.00623989 -0.991077 0.133142 -0.0207898 404 | -0.412289 -0.118751 -0.903281 1.0096 405 | -0 -0 0 1 406 | 81 81 0 407 | 0.9312 -0.0633774 -0.358958 0.850727 408 | -0.00703144 -0.987709 0.156148 -0.00643376 409 | -0.364442 -0.142881 -0.920199 1.0443 410 | -0 -0 0 1 411 | 82 82 0 412 | 0.946872 -0.0581857 -0.316303 0.79278 413 | -0.0099764 -0.988339 0.151945 0.0129083 414 | -0.321455 -0.140717 -0.936411 1.06515 415 | -0 -0 0 1 416 | 83 83 0 417 | 0.962174 -0.0552417 -0.266775 0.742935 418 | -0.01552 -0.98875 0.148767 0.0147386 419 | -0.271992 -0.139 -0.952208 1.09581 420 | -0 -0 0 1 421 | 84 84 0 422 | 0.974917 -0.0507512 -0.216705 0.686965 423 | -0.0202922 -0.989868 0.140531 0.0149814 424 | -0.221641 -0.132609 -0.966069 1.11697 425 | -0 -0 0 1 426 | 85 85 0 427 | 0.986631 -0.0462245 -0.15628 0.625289 428 | -0.0253967 -0.990827 0.132732 0.0169773 429 | -0.160982 -0.126988 -0.978754 1.14478 430 | -0 -0 0 1 431 | 86 86 0 432 | 0.994396 -0.0413755 -0.0972891 0.557349 433 | -0.0289945 -0.991683 0.125393 0.0121533 434 | -0.101668 -0.12187 -0.987325 1.15124 435 | -0 -0 0 1 436 | 87 87 0 437 | 0.998357 -0.0380999 -0.0428072 0.494354 438 | -0.0324662 -0.99158 0.12536 0.0112342 439 | -0.047223 -0.123764 -0.991187 1.15666 440 | -0 -0 0 1 441 | 88 88 0 442 | 0.999382 -0.0341525 0.00827299 0.425785 443 | -0.0349141 -0.991708 0.123678 0.00562682 444 | 0.00398046 -0.123891 -0.992288 1.17133 445 | -0 -0 0 1 446 | 89 89 0 447 | 0.998177 -0.0292928 0.0527639 0.355174 448 | -0.0355851 -0.991822 0.122565 -0.00471376 449 | 0.0487421 -0.124219 -0.991057 1.18816 450 | -0 -0 0 1 451 | 90 90 0 452 | 0.998328 -0.0274685 0.0508615 0.289043 453 | -0.0334158 -0.992206 0.120042 -0.0114604 454 | 0.0471678 -0.12154 -0.991465 1.19457 455 | -0 -0 0 1 456 | 91 91 0 457 | 0.996043 -0.0284271 0.084207 0.224418 458 | -0.0368025 -0.994343 0.0996418 -0.0140143 459 | 0.0808981 -0.102346 -0.991454 1.18827 460 | -0 -0 0 1 461 | 92 92 0 462 | 0.989421 -0.0252712 0.142857 0.158913 463 | -0.0395414 -0.994405 0.0979524 -0.0152679 464 | 0.139583 -0.102565 -0.984884 1.18444 465 | -0 -0 0 1 466 | 93 93 0 467 | 0.979383 -0.0217039 0.200842 0.0934835 468 | -0.0421441 -0.994287 0.0980641 -0.0175489 469 | 0.197566 -0.104507 -0.974703 1.17438 470 | -0 -0 0 1 471 | 94 94 0 472 | 0.965433 -0.0175242 0.260062 0.0332161 473 | -0.04374 -0.994481 0.0953642 -0.0189089 474 | 0.256955 -0.103443 -0.960871 1.16685 475 | -0 -0 0 1 476 | 95 95 0 477 | 0.944205 -0.0141292 0.329055 -0.0272243 478 | -0.0446033 -0.995361 0.0852471 -0.0180987 479 | 0.326324 -0.0951677 -0.940455 1.14299 480 | -0 -0 0 1 481 | 96 96 0 482 | 0.919079 -0.0109313 0.393921 -0.0966937 483 | -0.0442567 -0.996154 0.0756146 -0.00385216 484 | 0.39158 -0.0869295 -0.916029 1.11986 485 | -0 -0 0 1 486 | 97 97 0 487 | 0.892366 -0.00732579 0.451253 -0.164228 488 | -0.0429964 -0.9967 0.0688459 0.0122862 489 | 0.44926 -0.080838 -0.889736 1.08377 490 | -0 -0 0 1 491 | 98 98 0 492 | 0.867099 -0.00776889 0.498076 -0.224349 493 | -0.0424501 -0.997394 0.0583442 0.0279992 494 | 0.496324 -0.0717335 -0.865169 1.0589 495 | -0 -0 0 1 496 | 99 99 0 497 | 0.83797 -0.0109412 0.545607 -0.278232 498 | -0.0422138 -0.998103 0.0448187 0.0385524 499 | 0.544082 -0.0605889 -0.836842 1.02824 500 | -0 -0 0 1 501 | 100 100 0 502 | 0.803592 -0.00414244 0.595167 -0.331108 503 | -0.0414401 -0.997938 0.0490065 0.040191 504 | 0.593737 -0.064045 -0.802107 1.0035 505 | -0 -0 0 1 506 | 101 101 0 507 | 0.767099 0.00833128 0.641474 -0.381857 508 | -0.0415136 -0.997175 0.0625946 0.0384232 509 | 0.640184 -0.0746462 -0.764587 0.974428 510 | -0 -0 0 1 511 | 102 102 0 512 | 0.727782 0.0444582 0.684366 -0.431107 513 | -0.0395164 -0.99352 0.106565 0.0312474 514 | 0.684669 -0.1046 -0.72131 0.93695 515 | -0 -0 0 1 516 | 103 103 0 517 | 0.685857 0.128129 0.716368 -0.484195 518 | -0.0378451 -0.976767 0.210938 0.023498 519 | 0.726751 -0.171784 -0.665073 0.898635 520 | -0 -0 0 1 521 | 104 104 0 522 | 0.64215 0.184821 0.743965 -0.534368 523 | -0.039668 -0.961189 0.273024 0.0171567 524 | 0.765552 -0.204834 -0.609896 0.853534 525 | -0 -0 0 1 526 | 105 105 0 527 | 0.594207 0.200924 0.778812 -0.58411 528 | -0.0466691 -0.958051 0.282772 0.0143701 529 | 0.802957 -0.204371 -0.559903 0.817022 530 | -0 -0 0 1 531 | 106 106 0 532 | 0.540383 0.204179 0.81627 -0.62365 533 | -0.0549092 -0.959486 0.276353 0.0149934 534 | 0.839626 -0.194157 -0.507279 0.767308 535 | -0 -0 0 1 536 | 107 107 0 537 | 0.485396 0.205947 0.849692 -0.6716 538 | -0.0618459 -0.961338 0.268338 0.0146787 539 | 0.872104 -0.1828 -0.453892 0.716899 540 | -0 -0 0 1 541 | 108 108 0 542 | 0.441335 0.161083 0.882766 -0.710156 543 | -0.0684513 -0.974846 0.212107 0.0173034 544 | 0.894728 -0.154037 -0.419208 0.667172 545 | -0 -0 0 1 546 | 109 109 0 547 | 0.391766 0.145886 0.908425 -0.753986 548 | -0.0732193 -0.979274 0.188841 0.0139447 549 | 0.917147 -0.140496 -0.372964 0.612714 550 | -0 -0 0 1 551 | 110 110 0 552 | 0.399766 0.141721 0.905595 -0.790008 553 | -0.0691246 -0.980501 0.183958 0.0146811 554 | 0.914007 -0.136139 -0.382174 0.549686 555 | -0 -0 0 1 556 | 111 111 0 557 | 0.428022 0.130646 0.894276 -0.824756 558 | -0.0684105 -0.981974 0.1762 0.01749 559 | 0.901176 -0.136595 -0.411369 0.488365 560 | -0 -0 0 1 561 | 112 112 0 562 | 0.453852 0.0824547 0.887254 -0.850888 563 | -0.0712153 -0.989168 0.128354 0.0174968 564 | 0.888227 -0.12144 -0.443064 0.42838 565 | -0 -0 0 1 566 | 113 113 0 567 | 0.40171 0.0348042 0.915105 -0.862162 568 | -0.0814308 -0.993962 0.0735496 0.0238467 569 | 0.912139 -0.104063 -0.396451 0.375454 570 | -0 -0 0 1 571 | 114 114 0 572 | 0.310477 0.0424912 0.949631 -0.86803 573 | -0.0856594 -0.993685 0.0724684 0.0237015 574 | 0.946714 -0.103845 -0.304877 0.345193 575 | -0 -0 0 1 576 | 115 115 0 577 | 0.0350809 0.0554594 0.997844 -0.892778 578 | -0.0906181 -0.99417 0.058441 0.0322259 579 | 0.995268 -0.092473 -0.0298508 0.327932 580 | -0 -0 0 1 581 | 116 116 0 582 | -0.120639 0.0544499 0.991202 -0.910976 583 | -0.078843 -0.995866 0.0451101 0.0473571 584 | 0.98956 -0.0727073 0.124434 0.297206 585 | -0 -0 0 1 586 | 117 117 0 587 | -0.184796 0.0511349 0.981446 -0.930647 588 | -0.0628638 -0.997215 0.0401199 0.0533248 589 | 0.980764 -0.0542834 0.187496 0.249659 590 | -0 -0 0 1 591 | 118 118 0 592 | -0.275302 0.0493424 0.960091 -0.943503 593 | -0.0511069 -0.998021 0.0366371 0.043924 594 | 0.959999 -0.038981 0.277278 0.183833 595 | -0 -0 0 1 596 | 119 119 0 597 | -0.327658 0.041837 0.94387 -0.954633 598 | -0.0410963 -0.998705 0.0300013 0.0364221 599 | 0.943902 -0.0289594 0.328953 0.117725 600 | -0 -0 0 1 601 | 120 120 0 602 | -0.348918 0.032371 0.936594 -0.940401 603 | -0.0330093 -0.999208 0.0222378 0.0328316 604 | 0.936572 -0.0231571 0.34971 0.0616939 605 | -0 -0 0 1 606 | 121 121 0 607 | -0.283528 0.025167 0.958634 -0.933158 608 | -0.0241443 -0.999526 0.0190995 0.0261574 609 | 0.95866 -0.0177302 0.284001 -0.00793485 610 | -0 -0 0 1 611 | 122 122 0 612 | -0.255144 0.0240202 0.966605 -0.944612 613 | -0.0216582 -0.999583 0.0191229 0.0175957 614 | 0.96666 -0.0160558 0.255558 -0.0728434 615 | -0 -0 0 1 616 | 123 123 0 617 | -0.276508 0.0270732 0.96063 -0.959872 618 | -0.020043 -0.999548 0.0224009 0.0112251 619 | 0.960803 -0.0130599 0.276926 -0.12586 620 | -0 -0 0 1 621 | 124 124 0 622 | -0.322395 0.0320569 0.946062 -0.949662 623 | -0.0183776 -0.99945 0.0276033 0.00897421 624 | 0.946427 -0.00848719 0.322807 -0.177363 625 | -0 -0 0 1 626 | 125 125 0 627 | -0.378874 0.0367424 0.924718 -0.923118 628 | -0.0149132 -0.999324 0.0335965 0.00305845 629 | 0.925328 -0.00106164 0.379166 -0.238887 630 | -0 -0 0 1 631 | 126 126 0 632 | -0.438295 0.0444114 0.897733 -0.893917 633 | -0.0114769 -0.998974 0.0438165 0.000803722 634 | 0.898758 0.00890137 0.438355 -0.306518 635 | -0 -0 0 1 636 | 127 127 0 637 | -0.505588 0.0541912 0.861071 -0.860971 638 | -0.0101339 -0.99833 0.0568792 -0.00210933 639 | 0.862715 0.0200315 0.505293 -0.377019 640 | -0 -0 0 1 641 | 128 128 0 642 | -0.566169 0.139629 0.812377 -0.827561 643 | -0.00805971 -0.986439 0.163929 0.0114771 644 | 0.82425 0.0862641 0.559617 -0.435878 645 | -0 -0 0 1 646 | 129 129 0 647 | -0.635405 0.258968 0.727459 -0.793122 648 | -0.00981277 -0.944717 0.327739 0.018747 649 | 0.772117 0.201108 0.602819 -0.486051 650 | -0 -0 0 1 651 | 130 130 0 652 | -0.689106 0.314054 0.653072 -0.771202 653 | -0.0149581 -0.907183 0.42047 0.0272539 654 | 0.724506 0.27998 0.629843 -0.540526 655 | -0 -0 0 1 656 | 131 131 0 657 | -0.732797 0.356083 0.579839 -0.732357 658 | -0.0228823 -0.864558 0.502012 0.0345685 659 | 0.680062 0.354605 0.641694 -0.585915 660 | -0 -0 0 1 661 | 132 132 0 662 | -0.768816 0.388604 0.507847 -0.702135 663 | -0.0351153 -0.818627 0.573252 0.0329951 664 | 0.638505 0.422892 0.643019 -0.641451 665 | -0 -0 0 1 666 | 133 133 0 667 | -0.798723 0.399706 0.449751 -0.668863 668 | -0.0499652 -0.788948 0.612425 0.0265392 669 | 0.599621 0.466686 0.650122 -0.699359 670 | -0 -0 0 1 671 | 134 134 0 672 | -0.824134 0.38976 0.410962 -0.63638 673 | -0.0667087 -0.78732 0.612925 0.0191093 674 | 0.562453 0.477718 0.674858 -0.754697 675 | -0 -0 0 1 676 | 135 135 0 677 | -0.848438 0.376573 0.371949 -0.593035 678 | -0.0848483 -0.790402 0.606684 0.0131852 679 | 0.52245 0.483174 0.702559 -0.806433 680 | -0 -0 0 1 681 | 136 136 0 682 | -0.877887 0.339134 0.338086 -0.529431 683 | -0.103061 -0.823272 0.558213 0.0170881 684 | 0.467645 0.455204 0.757692 -0.838826 685 | -0 -0 0 1 686 | 137 137 0 687 | -0.902651 0.302276 0.30635 -0.462294 688 | -0.105593 -0.845616 0.523243 0.0148791 689 | 0.417218 0.439957 0.795215 -0.869296 690 | -0 -0 0 1 691 | 138 138 0 692 | -0.924863 0.264489 0.273266 -0.392382 693 | -0.0998974 -0.862279 0.496483 0.0126698 694 | 0.366946 0.43188 0.823911 -0.888316 695 | -0 -0 0 1 696 | 139 139 0 697 | -0.945232 0.222095 0.239188 -0.330628 698 | -0.0885037 -0.87975 0.467127 0.00901911 699 | 0.314172 0.420374 0.851224 -0.92039 700 | -0 -0 0 1 701 | 140 140 0 702 | -0.966104 0.173796 0.190888 -0.26256 703 | -0.0745454 -0.89575 0.438263 0.00559754 704 | 0.247156 0.409178 0.878343 -0.955775 705 | -0 -0 0 1 706 | 141 141 0 707 | -0.98057 0.124851 0.151312 -0.195966 708 | -0.0542067 -0.913741 0.402665 -0.00183788 709 | 0.188533 0.386639 0.902754 -0.994686 710 | -0 -0 0 1 711 | 142 142 0 712 | -0.990201 0.0842095 0.111406 -0.129096 713 | -0.0363674 -0.92571 0.376483 -0.0132498 714 | 0.134833 0.368742 0.919701 -1.03545 715 | -0 -0 0 1 716 | 143 143 0 717 | -0.996156 0.0519468 0.0705387 -0.0652216 718 | -0.0233363 -0.933476 0.357881 -0.0191859 719 | 0.084437 0.354859 0.931099 -1.05291 720 | -0 -0 0 1 721 | 144 144 0 722 | -0.999257 0.024959 0.0293721 0.00104253 723 | -0.0130138 -0.935752 0.352419 -0.0268804 724 | 0.036281 0.351775 0.935381 -1.06731 725 | -0 -0 0 1 726 | 145 145 0 727 | -0.999063 -0.00499873 -0.0429898 0.0737583 728 | -0.0121792 -0.920694 0.390094 -0.0159793 729 | -0.0415304 0.390253 0.919771 -1.07593 730 | -0 -0 0 1 731 | 146 146 0 732 | -0.991237 -0.0513162 -0.121718 0.14735 733 | -0.0108378 -0.886755 0.462113 0.0128887 734 | -0.131648 0.459383 0.878428 -1.08223 735 | -0 -0 0 1 736 | 147 147 0 737 | -0.979293 -0.0917452 -0.180464 0.217199 738 | -0.00678749 -0.876036 0.482197 0.0332945 739 | -0.202332 0.473437 0.857274 -1.11471 740 | -0 -0 0 1 741 | 148 148 0 742 | -0.962879 -0.12293 -0.240318 0.286557 743 | -0.00816355 -0.876615 0.481123 0.027244 744 | -0.269811 0.465225 0.84307 -1.14459 745 | -0 -0 0 1 746 | 149 149 0 747 | -0.940114 -0.151252 -0.305465 0.362904 748 | -0.00908179 -0.884725 0.466025 0.0266107 749 | -0.34074 0.44089 0.830369 -1.15518 750 | -0 -0 0 1 751 | 150 150 0 752 | -0.918287 -0.177652 -0.353821 0.443665 753 | -0.00560658 -0.887753 0.460287 0.0241039 754 | -0.395876 0.424659 0.814216 -1.13968 755 | -0 -0 0 1 756 | 151 151 0 757 | -0.895802 -0.205062 -0.394319 0.5216 758 | -0.00131227 -0.885978 0.463725 0.0271379 759 | -0.44445 0.415923 0.793392 -1.10088 760 | -0 -0 0 1 761 | 152 152 0 762 | -0.872663 -0.228461 -0.431585 0.603201 763 | -0.000414918 -0.883462 0.468502 0.0299703 764 | -0.488323 0.409023 0.77087 -1.07441 765 | -0 -0 0 1 766 | 153 153 0 767 | -0.851048 -0.247975 -0.462846 0.684172 768 | -0.000403316 -0.881154 0.47283 0.0344998 769 | -0.525088 0.402588 0.749804 -1.04281 770 | -0 -0 0 1 771 | 154 154 0 772 | -0.823648 -0.266322 -0.500676 0.761986 773 | -0.00249571 -0.881158 0.472815 0.0344301 774 | -0.567096 0.390683 0.7251 -1.00364 775 | -0 -0 0 1 776 | 155 155 0 777 | -0.780432 -0.270116 -0.563883 0.840424 778 | -0.0121624 -0.895135 0.445629 0.0281265 779 | -0.625123 0.354641 0.695307 -0.974086 780 | -0 -0 0 1 781 | 156 156 0 782 | -0.717578 -0.284564 -0.635692 0.90319 783 | -0.0188686 -0.904447 0.426169 0.0298864 784 | -0.696222 0.317804 0.643642 -0.939415 785 | -0 -0 0 1 786 | 157 157 0 787 | -0.660443 -0.305387 -0.685969 0.962433 788 | -0.0166778 -0.907367 0.420009 0.0299591 789 | -0.750691 0.288832 0.594171 -0.901135 790 | -0 -0 0 1 791 | 158 158 0 792 | -0.605424 -0.326288 -0.725946 1.02075 793 | -0.0119281 -0.908282 0.418189 0.0351336 794 | -0.795814 0.261841 0.546003 -0.849859 795 | -0 -0 0 1 796 | 159 159 0 797 | -0.55731 -0.332276 -0.76092 1.07812 798 | -0.00400248 -0.915348 0.402643 0.0337205 799 | -0.830295 0.227442 0.508802 -0.792189 800 | -0 -0 0 1 801 | 160 160 0 802 | -0.513249 -0.341791 -0.787245 1.13766 803 | 0.00188269 -0.917725 0.397213 0.0371002 804 | -0.858238 0.202387 0.471665 -0.734682 805 | -0 -0 0 1 806 | 161 161 0 807 | -0.472938 -0.353921 -0.806889 1.19404 808 | 0.00610205 -0.917072 0.398674 0.0355498 809 | -0.881074 0.183624 0.435878 -0.671038 810 | -0 -0 0 1 811 | 162 162 0 812 | -0.433625 -0.370813 -0.82126 1.24585 813 | 0.00628199 -0.912625 0.408749 0.0299191 814 | -0.901072 0.172085 0.398066 -0.619935 815 | -0 -0 0 1 816 | 163 163 0 817 | -0.41996 -0.384833 -0.821911 1.30047 818 | 0.0126437 -0.908037 0.418699 0.0283432 819 | -0.907455 0.165445 0.386205 -0.565293 820 | -0 -0 0 1 821 | 164 164 0 822 | -0.471784 -0.380146 -0.795556 1.33693 823 | 0.0304352 -0.908767 0.416193 0.0303815 824 | -0.881189 0.17214 0.440311 -0.496561 825 | -0 -0 0 1 826 | 165 165 0 827 | -0.523993 -0.360171 -0.771821 1.36866 828 | 0.0112571 -0.909038 0.416561 0.0284847 829 | -0.851648 0.209587 0.480385 -0.422456 830 | -0 -0 0 1 831 | 166 166 0 832 | -0.535826 -0.35792 -0.764712 1.40733 833 | 0.00690981 -0.907532 0.419925 0.0219567 834 | -0.8443 0.219723 0.488753 -0.340851 835 | -0 -0 0 1 836 | 167 167 0 837 | -0.515962 -0.360006 -0.777289 1.43685 838 | -0.00580637 -0.90591 0.423431 5.90674e-05 839 | -0.856592 0.222988 0.465325 -0.278051 840 | -0 -0 0 1 841 | 168 168 0 842 | -0.473275 -0.372931 -0.798081 1.45762 843 | -0.0138127 -0.902715 0.430016 -0.013759 844 | -0.880807 0.21454 0.422081 -0.22288 845 | -0 -0 0 1 846 | 169 169 0 847 | -0.422059 -0.348513 -0.836902 1.46075 848 | -0.0170883 -0.919931 0.391707 -0.0222408 849 | -0.906407 0.179625 0.38231 -0.158982 850 | -0 -0 0 1 851 | 170 170 0 852 | -0.338431 -0.310079 -0.888434 1.45473 853 | -0.0238213 -0.941021 0.337507 -0.024359 854 | -0.94069 0.135387 0.311084 -0.095404 855 | -0 -0 0 1 856 | 171 171 0 857 | -0.196344 -0.318074 -0.927512 1.4413 858 | -0.03335 -0.94321 0.330517 -0.0163835 859 | -0.979968 0.0958275 0.174586 -0.0335003 860 | -0 -0 0 1 861 | 172 172 0 862 | -0.113045 -0.42998 -0.895733 1.44473 863 | -0.0151376 -0.900662 0.434256 -0.0140824 864 | -0.993475 0.0626499 0.0953068 0.0346016 865 | -0 -0 0 1 866 | 173 173 0 867 | -0.0497801 -0.541519 -0.839213 1.45041 868 | -0.0017132 -0.840207 0.542262 -0.0108339 869 | -0.998759 0.0284316 0.0408979 0.107118 870 | -0 -0 0 1 871 | 174 174 0 872 | 0.00964921 -0.586096 -0.810184 1.45333 873 | 0.00358174 -0.810197 0.586147 -0.0138378 874 | -0.999947 -0.00855773 -0.00571851 0.178702 875 | -0 -0 0 1 876 | 175 175 0 877 | -0.0147081 -0.589462 -0.807662 1.44137 878 | 0.003848 -0.807777 0.589476 -0.0112111 879 | -0.999884 0.0055622 0.0141491 0.239766 880 | -0 -0 0 1 881 | 176 176 0 882 | -0.0284361 -0.574932 -0.817707 1.43265 883 | -0.00686922 -0.817906 0.575311 -0.0145722 884 | -0.999572 0.0219766 0.0193087 0.30527 885 | -0 -0 0 1 886 | 177 177 0 887 | -0.0581113 -0.552211 -0.831677 1.42221 888 | -0.0148301 -0.832515 0.553804 -0.0126611 889 | -0.9982 0.0445161 0.0401891 0.369234 890 | -0 -0 0 1 891 | 178 178 0 892 | -0.067784 -0.512165 -0.856208 1.41156 893 | -0.0161349 -0.857507 0.514219 -0.0154437 894 | -0.99757 0.0486707 0.0498615 0.436593 895 | -0 -0 0 1 896 | 179 179 0 897 | -0.0283679 -0.486088 -0.873449 1.41262 898 | -0.0304778 -0.872974 0.486814 -0.0219568 899 | -0.999133 0.0404307 0.00994954 0.504122 900 | -0 -0 0 1 901 | 180 180 0 902 | 0.0708281 -0.475599 -0.876806 1.39674 903 | -0.0297708 -0.87963 0.474725 -0.0215512 904 | -0.997044 -0.00752066 -0.0764615 0.573902 905 | -0 -0 0 1 906 | 181 181 0 907 | 0.264104 -0.500356 -0.824556 1.37129 908 | -0.0178961 -0.857306 0.514496 -0.0143097 909 | -0.964328 -0.121124 -0.235372 0.639701 910 | -0 -0 0 1 911 | 182 182 0 912 | 0.422877 -0.530946 -0.734351 1.35383 913 | -0.0245955 -0.816801 0.576395 -0.0129335 914 | -0.905853 -0.225683 -0.358465 0.705908 915 | -0 -0 0 1 916 | 183 183 0 917 | 0.487722 -0.520142 -0.701127 1.32742 918 | -0.0300404 -0.812649 0.581979 -0.0149387 919 | -0.872482 -0.262782 -0.411972 0.759243 920 | -0 -0 0 1 921 | 184 184 0 922 | 0.547189 -0.481935 -0.684341 1.32727 923 | -0.0218237 -0.82554 0.563922 -0.0269433 924 | -0.836724 -0.293637 -0.462244 0.814594 925 | -0 -0 0 1 926 | 185 185 0 927 | 0.603824 -0.425038 -0.674344 1.32808 928 | -0.0201351 -0.853841 0.520145 -0.0333196 929 | -0.796864 -0.300498 -0.524127 0.874127 930 | -0 -0 0 1 931 | 186 186 0 932 | 0.692213 -0.360226 -0.625363 1.32212 933 | -0.0317397 -0.880878 0.472278 -0.0407519 934 | -0.720995 -0.307068 -0.621189 0.928614 935 | -0 -0 0 1 936 | 187 187 0 937 | 0.789287 -0.29945 -0.536056 1.28924 938 | -0.037181 -0.894727 0.445064 -0.0387786 939 | -0.612898 -0.331352 -0.71733 0.984763 940 | -0 -0 0 1 941 | 188 188 0 942 | 0.845025 -0.244435 -0.475588 1.25638 943 | -0.0250121 -0.906499 0.421467 -0.042008 944 | -0.534141 -0.344254 -0.772128 1.03945 945 | -0 -0 0 1 946 | 189 189 0 947 | 0.876642 -0.202931 -0.436254 1.2045 948 | -0.0068055 -0.911843 0.410483 -0.0380368 949 | -0.481095 -0.356878 -0.800741 1.05921 950 | -0 -0 0 1 951 | 190 190 0 952 | 0.889654 -0.181673 -0.418939 1.16799 953 | 0.00477306 -0.9137 0.406361 -0.0313274 954 | -0.45661 -0.36352 -0.81201 1.06303 955 | -0 -0 0 1 956 | 191 191 0 957 | 0.870567 -0.20122 -0.449024 1.13505 958 | -0.0053799 -0.916398 0.400233 -0.0314726 959 | -0.49202 -0.346014 -0.798868 1.05982 960 | -0 -0 0 1 961 | 192 192 0 962 | 0.838521 -0.231131 -0.493417 1.11506 963 | -0.0178488 -0.916736 0.399094 -0.0206389 964 | -0.544576 -0.325842 -0.772828 1.01263 965 | -0 -0 0 1 966 | 193 193 0 967 | 0.827629 -0.264301 -0.495152 1.08837 968 | -0.00602172 -0.88632 0.463033 -0.0128855 969 | -0.561244 -0.380238 -0.735136 0.975234 970 | -0 -0 0 1 971 | 194 194 0 972 | 0.813254 -0.317369 -0.487744 1.06475 973 | 0.00371124 -0.835334 0.54973 -0.00556105 974 | -0.581897 -0.448881 -0.678161 0.942716 975 | -0 -0 0 1 976 | 195 195 0 977 | 0.781322 -0.361638 -0.508678 1.03183 978 | 0.012461 -0.805821 0.592028 -0.000211094 979 | -0.624004 -0.468903 -0.6251 0.899089 980 | -0 -0 0 1 981 | 196 196 0 982 | 0.761784 -0.402502 -0.507619 1.0007 983 | 0.00527235 -0.77969 0.626144 0.00676174 984 | -0.64781 -0.479663 -0.591833 0.850335 985 | -0 -0 0 1 986 | 197 197 0 987 | 0.744576 -0.444273 -0.498225 0.960252 988 | -0.00264438 -0.74832 0.663333 0.0140231 989 | -0.667532 -0.492585 -0.558356 0.804536 990 | -0 -0 0 1 991 | 198 198 0 992 | 0.737131 -0.477786 -0.477869 0.924725 993 | -0.013952 -0.717779 0.696132 0.02178 994 | -0.675606 -0.506473 -0.535763 0.767664 995 | -0 -0 0 1 996 | 199 199 0 997 | 0.747409 -0.483253 -0.455901 0.880362 998 | -0.0294666 -0.70966 0.703928 0.0198614 999 | -0.66371 -0.512688 -0.544646 0.783861 1000 | -0 -0 0 1 1001 | 200 200 0 1002 | 0.770769 -0.471281 -0.428729 0.831821 1003 | -0.0427639 -0.709674 0.703231 0.0164781 1004 | -0.635677 -0.523695 -0.567149 0.804925 1005 | -0 -0 0 1 1006 | 201 201 0 1007 | 0.801163 -0.449491 -0.395088 0.792978 1008 | -0.0508253 -0.708912 0.703464 0.015172 1009 | -0.596283 -0.543509 -0.5908 0.834763 1010 | -0 -0 0 1 1011 | 202 202 0 1012 | 0.848944 -0.405438 -0.338989 0.78739 1013 | -0.0609637 -0.712287 0.699236 0.00890429 1014 | -0.524954 -0.572946 -0.629409 0.876129 1015 | -0 -0 0 1 1016 | 203 203 0 1017 | 0.909096 -0.315243 -0.272334 0.774296 1018 | -0.0470069 -0.727179 0.684836 -0.000463806 1019 | -0.413926 -0.60978 -0.675894 0.932842 1020 | -0 -0 0 1 1021 | 204 204 0 1022 | 0.941453 -0.253198 -0.222612 0.763754 1023 | -0.0506584 -0.759033 0.649079 -0.00961452 1024 | -0.333315 -0.5998 -0.727421 0.992548 1025 | -0 -0 0 1 1026 | 205 205 0 1027 | 0.966121 -0.192704 -0.171685 0.736041 1028 | -0.0511806 -0.79505 0.604381 -0.0151156 1029 | -0.252965 -0.575118 -0.777977 1.04578 1030 | -0 -0 0 1 1031 | 206 206 0 1032 | 0.981054 -0.138801 -0.135158 0.709523 1033 | -0.0412557 -0.831316 0.554267 -0.0192595 1034 | -0.189292 -0.53819 -0.821292 1.10055 1035 | -0 -0 0 1 1036 | 207 207 0 1037 | 0.990537 -0.0960559 -0.098032 0.688519 1038 | -0.0332812 -0.861056 0.507419 -0.024738 1039 | -0.133152 -0.499355 -0.856105 1.15644 1040 | -0 -0 0 1 1041 | 208 208 0 1042 | 0.99582 -0.0583868 -0.070235 0.658258 1043 | -0.0222613 -0.900956 0.43334 -0.0306109 1044 | -0.0885799 -0.429965 -0.89849 1.21513 1045 | -0 -0 0 1 1046 | 209 209 0 1047 | 0.99859 -0.0325006 -0.0419652 0.643318 1048 | -0.0166975 -0.942829 0.332859 -0.0356972 1049 | -0.0503841 -0.331689 -0.942042 1.27991 1050 | -0 -0 0 1 1051 | 210 210 0 1052 | 0.999525 -0.0150773 -0.0268808 0.639133 1053 | -0.00833264 -0.971889 0.235291 -0.0175595 1054 | -0.0296728 -0.234955 -0.971553 1.33934 1055 | -0 -0 0 1 1056 | 211 211 0 1057 | 0.999996 0.000879476 0.00274552 0.631878 1058 | 0.000255254 -0.975602 0.219545 -0.00375967 1059 | 0.00287162 -0.219543 -0.975598 1.39112 1060 | -0 -0 0 1 1061 | 212 212 0 1062 | 0.999044 0.0154823 0.0408852 0.602806 1063 | 0.00817673 -0.984863 0.173143 -0.00950962 1064 | 0.042947 -0.172644 -0.984048 1.43972 1065 | -0 -0 0 1 1066 | 213 213 0 1067 | 0.995696 0.0262 0.0889001 0.557104 1068 | 0.0183015 -0.995906 0.088527 -0.0124151 1069 | 0.0908555 -0.086519 -0.992099 1.47179 1070 | -0 -0 0 1 1071 | 214 214 0 1072 | 0.991144 0.0236644 0.130664 0.517888 1073 | 0.0289541 -0.99883 -0.0387333 -0.0193053 1074 | 0.129594 0.0421736 -0.99067 1.49644 1075 | -0 -0 0 1 1076 | 215 215 0 1077 | 0.984036 0.0333999 0.174808 0.445597 1078 | 0.0452309 -0.996915 -0.0641391 -0.0203518 1079 | 0.172126 0.0710219 -0.982511 1.48279 1080 | -0 -0 0 1 1081 | 216 216 0 1082 | 0.974211 0.0479819 0.220479 0.366793 1083 | 0.0623181 -0.996339 -0.0585304 -0.0210373 1084 | 0.216863 0.0707607 -0.973634 1.45856 1085 | -0 -0 0 1 1086 | 217 217 0 1087 | 0.961448 0.0625295 0.267784 0.289372 1088 | 0.0785561 -0.995678 -0.0495486 -0.0190553 1089 | 0.263528 0.0686744 -0.962204 1.44004 1090 | -0 -0 0 1 1091 | 218 218 0 1092 | 0.948473 0.0743588 0.308009 0.217428 1093 | 0.0908351 -0.995083 -0.039484 -0.0112976 1094 | 0.303558 0.0654275 -0.950564 1.42367 1095 | -0 -0 0 1 1096 | 219 219 0 1097 | 0.948908 0.0818094 0.304763 0.143577 1098 | 0.0974335 -0.994577 -0.0363878 -0.0130482 1099 | 0.300134 0.0642229 -0.951733 1.40232 1100 | -0 -0 0 1 1101 | 220 220 0 1102 | 0.946797 0.0808174 0.31152 0.0785981 1103 | 0.0965486 -0.994699 -0.0353842 -0.0213527 1104 | 0.307009 0.0635784 -0.949581 1.38421 1105 | -0 -0 0 1 1106 | 221 221 0 1107 | 0.937856 0.0951283 0.333731 0.0282065 1108 | 0.0846529 -0.995356 0.0458282 -0.0171424 1109 | 0.336541 -0.0147289 -0.941554 1.35983 1110 | -0 -0 0 1 1111 | 222 222 0 1112 | 0.925237 0.122576 0.359043 0.00772055 1113 | 0.0594736 -0.98153 0.18183 -0.00522308 1114 | 0.3747 -0.146882 -0.915437 1.31942 1115 | -0 -0 0 1 1116 | 223 223 0 1117 | 0.910459 0.177038 0.373793 -0.0166112 1118 | 0.0351587 -0.933616 0.356546 0.013328 1119 | 0.412101 -0.311478 -0.856244 1.27712 1120 | -0 -0 0 1 1121 | 224 224 0 1122 | 0.892629 0.250686 0.37466 -0.0403788 1123 | 0.0130303 -0.845116 0.534425 0.0253875 1124 | 0.450604 -0.472161 -0.757641 1.24405 1125 | -0 -0 0 1 1126 | 225 225 0 1127 | 0.874117 0.29938 0.382479 -0.0785439 1128 | 0.000566017 -0.788084 0.615568 0.0301679 1129 | 0.485715 -0.537862 -0.689047 1.19972 1130 | -0 -0 0 1 1131 | 226 226 0 1132 | 0.851108 0.332511 0.406266 -0.115817 1133 | -0.0124097 -0.760895 0.648757 0.033101 1134 | 0.524844 -0.557204 -0.643477 1.15237 1135 | -0 -0 0 1 1136 | 227 227 0 1137 | 0.82296 0.371069 0.430167 -0.166907 1138 | -0.02763 -0.730165 0.682712 0.030798 1139 | 0.567426 -0.573731 -0.590644 1.14379 1140 | -0 -0 0 1 1141 | 228 228 0 1142 | 0.790616 0.397001 0.466172 -0.226492 1143 | -0.0382029 -0.727865 0.684656 0.0253854 1144 | 0.611119 -0.559109 -0.560295 1.12937 1145 | -0 -0 0 1 1146 | 229 229 0 1147 | 0.737831 0.42666 0.523036 -0.265034 1148 | -0.0567571 -0.732924 0.677939 0.0252728 1149 | 0.672595 -0.52989 -0.516558 1.08621 1150 | -0 -0 0 1 1151 | 230 230 0 1152 | 0.692175 0.454551 0.560605 -0.3051 1153 | -0.0613534 -0.736881 0.673232 0.0263279 1154 | 0.719117 -0.50039 -0.482162 1.03982 1155 | -0 -0 0 1 1156 | 231 231 0 1157 | 0.654359 0.456387 0.60293 -0.342021 1158 | -0.0656041 -0.760063 0.646529 0.0282515 1159 | 0.753332 -0.462617 -0.467414 0.999711 1160 | -0 -0 0 1 1161 | 232 232 0 1162 | 0.621042 0.397664 0.675404 -0.385533 1163 | -0.071379 -0.829452 0.553998 0.0475301 1164 | 0.78052 -0.392266 -0.48674 0.967359 1165 | -0 -0 0 1 1166 | 233 233 0 1167 | 0.591737 0.352329 0.72506 -0.421808 1168 | -0.0758373 -0.871113 0.485192 0.0538234 1169 | 0.802556 -0.342093 -0.48875 0.921093 1170 | -0 -0 0 1 1171 | 234 234 0 1172 | 0.55607 0.34368 0.75675 -0.478238 1173 | -0.0782733 -0.8848 0.45935 0.0512632 1174 | 0.827442 -0.314664 -0.465109 0.8797 1175 | -0 -0 0 1 1176 | 235 235 0 1177 | 0.507999 0.349003 0.787486 -0.543784 1178 | -0.0788486 -0.891558 0.445991 0.0492788 1179 | 0.857741 -0.288655 -0.425392 0.847501 1180 | -0 -0 0 1 1181 | 236 236 0 1182 | 0.45904 0.32343 0.827451 -0.587545 1183 | -0.0776535 -0.913207 0.400029 0.0535004 1184 | 0.885016 -0.247884 -0.394083 0.79737 1185 | -0 -0 0 1 1186 | 237 237 0 1187 | 0.398052 0.296795 0.868025 -0.633399 1188 | -0.0745884 -0.932614 0.353084 0.0655964 1189 | 0.914325 -0.20529 -0.349091 0.745563 1190 | -0 -0 0 1 1191 | 238 238 0 1192 | 0.358613 0.284382 0.889114 -0.659639 1193 | -0.063524 -0.942823 0.327183 0.0716066 1194 | 0.931322 -0.173812 -0.320044 0.68482 1195 | -0 -0 0 1 1196 | 239 239 0 1197 | 0.34488 0.267016 0.899867 -0.700522 1198 | -0.0490107 -0.952255 0.301344 0.0744502 1199 | 0.937366 -0.148031 -0.315327 0.62187 1200 | -0 -0 0 1 1201 | 240 240 0 1202 | 0.340874 0.268059 0.901082 -0.740375 1203 | -0.0378711 -0.953794 0.298066 0.0662616 1204 | 0.939346 -0.135728 -0.314972 0.569136 1205 | -0 -0 0 1 1206 | 241 241 0 1207 | 0.310068 0.267065 0.912433 -0.779814 1208 | -0.0358839 -0.955763 0.291941 0.0538657 1209 | 0.950037 -0.123263 -0.286768 0.523022 1210 | -0 -0 0 1 1211 | 242 242 0 1212 | 0.273221 0.250857 0.928666 -0.833212 1213 | -0.0323635 -0.962455 0.269506 0.0310876 1214 | 0.961407 -0.10369 -0.254844 0.49975 1215 | -0 -0 0 1 1216 | 243 243 0 1217 | 0.232672 0.193721 0.953067 -0.899527 1218 | -0.0303952 -0.978034 0.206216 0.0187138 1219 | 0.97208 -0.0769494 -0.221673 0.501681 1220 | -0 -0 0 1 1221 | 244 244 0 1222 | 0.189111 0.0584237 0.980216 -0.948541 1223 | -0.026887 -0.997546 0.0646438 0.0247439 1224 | 0.981588 -0.0385799 -0.187076 0.500789 1225 | -0 -0 0 1 1226 | 245 245 0 1227 | 0.149548 -0.038469 0.988006 -0.996628 1228 | -0.0206302 -0.999147 -0.0357802 0.0464223 1229 | 0.988539 -0.0150319 -0.150214 0.506496 1230 | -0 -0 0 1 1231 | 246 246 0 1232 | 0.109823 -0.0631013 0.991946 -1.05162 1233 | -0.00937557 -0.998004 -0.0624487 0.0510183 1234 | 0.993907 -0.00244175 -0.110196 0.527482 1235 | -0 -0 0 1 1236 | 247 247 0 1237 | 0.0721324 -0.064007 0.995339 -1.10214 1238 | 0.00609441 -0.997892 -0.0646128 0.0477031 1239 | 0.997376 0.0107267 -0.0715903 0.526667 1240 | -0 -0 0 1 1241 | 248 248 0 1242 | 0.0348307 -0.0518743 0.998046 -1.15694 1243 | 0.0219572 -0.998371 -0.0526575 0.0455528 1244 | 0.999152 0.0237484 -0.033635 0.521725 1245 | -0 -0 0 1 1246 | 249 249 0 1247 | -0.00087525 0.0259796 0.999662 -1.20847 1248 | 0.0395666 -0.998879 0.0259939 0.0328415 1249 | 0.999217 0.039576 -0.000153655 0.488142 1250 | -0 -0 0 1 1251 | 250 250 0 1252 | -0.0428759 0.159694 0.986235 -1.25398 1253 | 0.0564382 -0.985179 0.161977 0.0255155 1254 | 0.997485 0.0626062 0.0332276 0.45165 1255 | -0 -0 0 1 1256 | 251 251 0 1257 | -0.0882702 0.224081 0.970565 -1.29698 1258 | 0.0646493 -0.971025 0.230067 0.0145522 1259 | 0.993996 0.0830544 0.0712259 0.412247 1260 | -0 -0 0 1 1261 | 252 252 0 1262 | -0.132514 0.278975 0.951111 -1.32369 1263 | 0.0677213 -0.954783 0.289487 0.0126898 1264 | 0.988865 0.102772 0.10763 0.362439 1265 | -0 -0 0 1 1266 | 253 253 0 1267 | -0.173427 0.338221 0.924948 -1.36421 1268 | 0.0633974 -0.933398 0.353198 0.0122069 1269 | 0.982804 0.119893 0.140434 0.325536 1270 | -0 -0 0 1 1271 | 254 254 0 1272 | -0.215107 0.391322 0.89476 -1.38979 1273 | 0.0556163 -0.909813 0.411276 0.0108379 1274 | 0.975005 0.138232 0.173944 0.274786 1275 | -0 -0 0 1 1276 | 255 255 0 1277 | -0.258955 0.427648 0.86606 -1.43767 1278 | 0.0411087 -0.890953 0.452231 0.00614699 1279 | 0.965014 0.15271 0.213137 0.243446 1280 | -0 -0 0 1 1281 | 256 256 0 1282 | -0.304533 0.423052 0.853397 -1.47367 1283 | 0.0254049 -0.892027 0.451267 0.00185467 1284 | 0.952163 0.159106 0.260904 0.203788 1285 | -0 -0 0 1 1286 | 257 257 0 1287 | -0.342253 0.409888 0.845491 -1.48433 1288 | 0.0182096 -0.896771 0.44212 -0.000511412 1289 | 0.939431 0.166713 0.299459 0.156218 1290 | -0 -0 0 1 1291 | 258 258 0 1292 | -0.364535 0.387261 0.846843 -1.47529 1293 | 0.0149411 -0.906871 0.421143 -0.00165634 1294 | 0.93107 0.166174 0.3248 0.101218 1295 | -0 -0 0 1 1296 | 259 259 0 1297 | -0.333369 0.380105 0.862778 -1.45745 1298 | 0.0219428 -0.91175 0.410158 -0.004109 1299 | 0.942541 0.155666 0.295608 0.0265435 1300 | -0 -0 0 1 1301 | 260 260 0 1302 | -0.280775 0.356109 0.891264 -1.44181 1303 | 0.021998 -0.925987 0.376913 -0.00190389 1304 | 0.959522 0.125434 0.25216 -0.0467792 1305 | -0 -0 0 1 1306 | 261 261 0 1307 | -0.227506 0.355321 0.906635 -1.44754 1308 | 0.013149 -0.929845 0.367717 -0.00741619 1309 | 0.973688 0.0955792 0.206873 -0.129788 1310 | -0 -0 0 1 1311 | 262 262 0 1312 | -0.192873 0.35956 0.912971 -1.44206 1313 | -0.00245465 -0.930615 0.36599 -0.0125629 1314 | 0.981221 0.0683487 0.180373 -0.217279 1315 | -0 -0 0 1 1316 | 263 263 0 1317 | -0.20724 0.356092 0.91118 -1.42542 1318 | -0.0175384 -0.932604 0.360476 -0.00895727 1319 | 0.978133 0.0587244 0.199518 -0.292307 1320 | -0 -0 0 1 1321 | 264 264 0 1322 | -0.209814 0.349947 0.91297 -1.39131 1323 | -0.0231072 -0.935269 0.353184 0.00976658 1324 | 0.977468 0.0530069 0.204319 -0.369657 1325 | -0 -0 0 1 1326 | 265 265 0 1327 | -0.288866 0.347769 0.891972 -1.36128 1328 | -0.0315054 -0.934638 0.354201 0.0149727 1329 | 0.956851 0.0742147 0.280942 -0.452167 1330 | -0 -0 0 1 1331 | 266 266 0 1332 | -0.412201 0.330676 0.848966 -1.33224 1333 | -0.0147409 -0.93411 0.356682 0.00929703 1334 | 0.910974 0.13451 0.389915 -0.530995 1335 | -0 -0 0 1 1336 | 267 267 0 1337 | -0.490883 0.315975 0.811908 -1.30009 1338 | -0.0118241 -0.934245 0.356436 0.00410789 1339 | 0.871145 0.165368 0.462341 -0.609709 1340 | -0 -0 0 1 1341 | 268 268 0 1342 | -0.5773 0.29997 0.759436 -1.25881 1343 | -0.0159886 -0.934049 0.356786 0.00107158 1344 | 0.816376 0.19383 0.544022 -0.67973 1345 | -0 -0 0 1 1346 | 269 269 0 1347 | -0.659634 0.280369 0.697335 -1.21147 1348 | -0.0161597 -0.932893 0.359791 -0.000498097 1349 | 0.751413 0.226062 0.619899 -0.746852 1350 | -0 -0 0 1 1351 | 270 270 0 1352 | -0.733507 0.269208 0.624095 -1.15875 1353 | -0.0137943 -0.923924 0.382328 -0.00501337 1354 | 0.679542 0.271832 0.681418 -0.810896 1355 | -0 -0 0 1 1356 | 271 271 0 1357 | -0.787739 0.268996 0.554174 -1.10741 1358 | -0.00687892 -0.903405 0.428734 -0.0107761 1359 | 0.615971 0.333918 0.713497 -0.879441 1360 | -0 -0 0 1 1361 | 272 272 0 1362 | -0.820367 0.2732 0.502355 -1.06036 1363 | 0.00111194 -0.877728 0.479157 0.00203535 1364 | 0.571837 0.393643 0.719755 -0.947488 1365 | -0 -0 0 1 1366 | 273 273 0 1367 | -0.84508 0.252883 0.471052 -1.01107 1368 | 0.00224706 -0.879376 0.476122 0.00216885 1369 | 0.534635 0.40342 0.742575 -1.01928 1370 | -0 -0 0 1 1371 | 274 274 0 1372 | -0.851767 0.23133 0.470085 -0.969498 1373 | 0.00792783 -0.89145 0.45305 -0.00725494 1374 | 0.523861 0.38962 0.757473 -1.08728 1375 | -0 -0 0 1 1376 | 275 275 0 1377 | -0.852036 0.234234 0.468155 -0.919488 1378 | -0.0202578 -0.908391 0.417631 -0.0186962 1379 | 0.523091 0.346353 0.778727 -1.15474 1380 | -0 -0 0 1 1381 | 276 276 0 1382 | -0.871213 0.217539 0.440074 -0.877937 1383 | -0.0269014 -0.916262 0.399674 -0.0299593 1384 | 0.490168 0.336363 0.804112 -1.22139 1385 | -0 -0 0 1 1386 | 277 277 0 1387 | -0.890796 0.201692 0.407188 -0.823204 1388 | -0.0289729 -0.919482 0.392064 -0.0411009 1389 | 0.453478 0.337451 0.824915 -1.2777 1390 | -0 -0 0 1 1391 | 278 278 0 1392 | -0.910441 0.184804 0.370061 -0.767125 1393 | -0.029801 -0.921627 0.386932 -0.0505822 1394 | 0.412565 0.34125 0.844594 -1.34116 1395 | -0 -0 0 1 1396 | 279 279 0 1397 | -0.929336 0.164447 0.330593 -0.708956 1398 | -0.0282839 -0.92442 0.380325 -0.0557223 1399 | 0.36815 0.344099 0.863749 -1.37274 1400 | -0 -0 0 1 1401 | 280 280 0 1402 | -0.946601 0.143777 0.288574 -0.652475 1403 | -0.0258538 -0.926027 0.376571 -0.0668604 1404 | 0.32137 0.349001 0.880295 -1.4051 1405 | -0 -0 0 1 1406 | 281 281 0 1407 | -0.959983 0.123675 0.251271 -0.599574 1408 | -0.0219817 -0.927716 0.372639 -0.0860744 1409 | 0.279194 0.352203 0.89331 -1.43654 1410 | -0 -0 0 1 1411 | 282 282 0 1412 | -0.968958 0.10463 0.223993 -0.568215 1413 | -0.0201662 -0.936459 0.350196 -0.103896 1414 | 0.246401 0.334809 0.9095 -1.48171 1415 | -0 -0 0 1 1416 | 283 283 0 1417 | -0.968555 0.0938092 0.230436 -0.545326 1418 | -0.0120561 -0.942802 0.333135 -0.109342 1419 | 0.248507 0.319882 0.914287 -1.53102 1420 | -0 -0 0 1 1421 | 284 284 0 1422 | -0.963291 0.094611 0.251237 -0.54502 1423 | -0.00889846 -0.94658 0.322346 -0.120409 1424 | 0.268313 0.308277 0.912674 -1.58389 1425 | -0 -0 0 1 1426 | 285 285 0 1427 | -0.955053 0.0886041 0.282884 -0.545353 1428 | -0.00834534 -0.961943 0.273122 -0.129471 1429 | 0.296318 0.258485 0.919446 -1.64824 1430 | -0 -0 0 1 1431 | 286 286 0 1432 | -0.949773 0.0759323 0.303587 -0.542622 1433 | -0.0099934 -0.97698 0.213095 -0.13836 1434 | 0.312779 0.199358 0.928669 -1.70483 1435 | -0 -0 0 1 1436 | 287 287 0 1437 | -0.96029 0.0636066 0.271657 -0.535526 1438 | -0.0143264 -0.983623 0.179665 -0.149818 1439 | 0.278636 0.168639 0.945475 -1.76037 1440 | -0 -0 0 1 1441 | 288 288 0 1442 | -0.969277 0.0484024 0.241164 -0.533089 1443 | -0.00846102 -0.986428 0.163973 -0.143293 1444 | 0.245827 0.156895 0.956532 -1.81833 1445 | -0 -0 0 1 1446 | 289 289 0 1447 | -0.978272 0.0368965 0.204017 -0.534208 1448 | -0.00136476 -0.985162 0.171623 -0.128789 1449 | 0.207322 0.167615 0.963806 -1.87129 1450 | -0 -0 0 1 1451 | 290 290 0 1452 | -0.983591 0.0239793 0.17881 -0.529421 1453 | 0.00953651 -0.982831 0.18426 -0.131538 1454 | 0.180159 0.182942 0.966476 -1.91571 1455 | -0 -0 0 1 1456 | 291 291 0 1457 | -0.990742 0.010867 0.135325 -0.538412 1458 | 0.0153337 -0.981456 0.191075 -0.134494 1459 | 0.134892 0.191381 0.972202 -1.93085 1460 | -0 -0 0 1 1461 | 292 292 0 1462 | -0.995577 -0.00600877 0.0937582 -0.541944 1463 | 0.0244206 -0.980201 0.196493 -0.12626 1464 | 0.0907213 0.197913 0.976012 -1.93481 1465 | -0 -0 0 1 1466 | 293 293 0 1467 | -0.995435 -0.0124062 0.0946372 -0.539813 1468 | 0.04069 -0.952062 0.303187 -0.129763 1469 | 0.0863391 0.305653 0.94822 -1.93808 1470 | -0 -0 0 1 1471 | 294 294 0 1472 | -0.974495 0.0413968 0.220558 -0.537166 1473 | 0.0492045 -0.919506 0.389985 -0.136952 1474 | 0.218948 0.390891 0.894017 -1.94342 1475 | -0 -0 0 1 1476 | 295 295 0 1477 | -0.91691 0.127342 0.378232 -0.533845 1478 | 0.0329242 -0.920362 0.38968 -0.143143 1479 | 0.397732 0.369755 0.839697 -1.94234 1480 | -0 -0 0 1 1481 | 296 296 0 1482 | -0.886964 0.158553 0.433769 -0.536475 1483 | 0.0260146 -0.920579 0.389688 -0.150593 1484 | 0.461105 0.356924 0.812396 -1.93622 1485 | -0 -0 0 1 1486 | 297 297 0 1487 | -0.908951 0.14233 0.391854 -0.53926 1488 | 0.0222034 -0.922058 0.386415 -0.160865 1489 | 0.416311 0.359932 0.834945 -1.93759 1490 | -0 -0 0 1 1491 | 298 298 0 1492 | -0.927146 0.11424 0.356861 -0.541813 1493 | 0.0150429 -0.940274 0.340087 -0.165157 1494 | 0.374399 0.320679 0.870052 -1.93534 1495 | -0 -0 0 1 1496 | 299 299 0 1497 | -0.941502 0.0781221 0.327828 -0.543696 1498 | 0.0105196 -0.965474 0.260286 -0.165841 1499 | 0.336843 0.248509 0.908174 -1.93116 1500 | -0 -0 0 1 1501 | 300 300 0 1502 | -0.950853 0.0608904 0.303598 -0.54242 1503 | 0.00764763 -0.975557 0.219612 -0.164951 1504 | 0.30955 0.21114 0.927145 -1.93178 1505 | -0 -0 0 1 1506 | 301 301 0 1507 | -0.947695 0.0538137 0.314607 -0.541903 1508 | 0.0137453 -0.977889 0.208673 -0.164456 1509 | 0.318881 0.202083 0.926001 -1.93492 1510 | -0 -0 0 1 1511 | -------------------------------------------------------------------------------- /dataloader/datalist/tanks/logs/Horse.log: -------------------------------------------------------------------------------- 1 | 0 0 0 2 | 0.333487 0.0582181 -0.940956 0.246049 3 | -0.0576322 -0.994966 -0.0819853 -0.00593322 4 | -0.940992 0.0815704 -0.328452 0.0535024 5 | -0 -0 0 1 6 | 1 1 0 7 | 0.245471 0.0784569 -0.966224 0.24422 8 | -0.0567507 -0.993847 -0.0951175 -0.00553358 9 | -0.967741 0.0781824 -0.239508 0.0451454 10 | -0 -0 0 1 11 | 2 2 0 12 | 0.181022 0.089019 -0.979442 0.238977 13 | -0.0545094 -0.993456 -0.100367 -0.00333249 14 | -0.981967 0.0715575 -0.174985 0.0303806 15 | -0 -0 0 1 16 | 3 3 0 17 | 0.0803272 0.095014 -0.99223 0.244623 18 | -0.0539963 -0.99357 -0.0995137 -0.00339126 19 | -0.995305 0.0615704 -0.0746803 0.00455779 20 | -0 -0 0 1 21 | 4 4 0 22 | 0.0268262 0.0964456 -0.994977 0.238126 23 | -0.0496303 -0.993979 -0.097687 -0.00272161 24 | -0.998407 0.0520015 -0.0218781 -0.0129911 25 | -0 -0 0 1 26 | 5 5 0 27 | 0.0313773 0.0908639 -0.995369 0.248045 28 | -0.0478239 -0.994582 -0.0922996 -0.00339736 29 | -0.998363 0.0504985 -0.0268619 -0.0343998 30 | -0 -0 0 1 31 | 6 6 0 32 | 0.0339195 0.0909057 -0.995282 0.245212 33 | -0.0406015 -0.994907 -0.0922552 -0.00456413 34 | -0.9986 0.0435391 -0.0300559 -0.035359 35 | -0 -0 0 1 36 | 7 7 0 37 | 0.0541951 0.0883495 -0.994614 0.24396 38 | 0.00521888 -0.996089 -0.0881962 -0.00458477 39 | -0.998517 -0.000410973 -0.0544442 -0.0356513 40 | -0 -0 0 1 41 | 8 8 0 42 | 0.00160017 0.092262 -0.995733 0.246206 43 | 0.00933493 -0.995693 -0.0922432 -0.0030711 44 | -0.999955 -0.0091475 -0.00245453 -0.0452027 45 | -0 -0 0 1 46 | 9 9 0 47 | -0.191518 0.100364 -0.976344 0.250039 48 | 0.00823035 -0.994559 -0.103851 0.00245893 49 | -0.981455 -0.027925 0.189649 -0.0649545 50 | -0 -0 0 1 51 | 10 10 0 52 | -0.254294 0.0351352 -0.966488 0.249677 53 | 0.0096996 -0.999197 -0.0388764 0.0109627 54 | -0.967078 -0.0192606 0.253749 -0.0955581 55 | -0 -0 0 1 56 | 11 11 0 57 | -0.306477 -0.0235415 -0.951587 0.237457 58 | 0.00240052 -0.99971 0.0239589 0.0123132 59 | -0.951875 0.00505856 0.306445 -0.12886 60 | -0 -0 0 1 61 | 12 12 0 62 | -0.426398 -0.032709 -0.903944 0.226657 63 | -0.00781535 -0.999175 0.0398415 0.0106603 64 | -0.904502 0.024053 0.425791 -0.163565 65 | -0 -0 0 1 66 | 13 13 0 67 | -0.539164 -0.0295002 -0.841684 0.201342 68 | -0.0198172 -0.998665 0.0476967 0.0111544 69 | -0.841968 0.0423962 0.53786 -0.194878 70 | -0 -0 0 1 71 | 14 14 0 72 | -0.687231 -0.0149038 -0.726286 0.16897 73 | -0.0282519 -0.998485 0.0472222 0.0103959 74 | -0.725889 0.0529715 0.685769 -0.213991 75 | -0 -0 0 1 76 | 15 15 0 77 | -0.813985 0.00129749 -0.580885 0.135916 78 | -0.0368413 -0.9981 0.0493957 0.0089236 79 | -0.579717 0.0616078 0.812485 -0.236059 80 | -0 -0 0 1 81 | 16 16 0 82 | -0.882517 0.0160713 -0.470005 0.102817 83 | -0.0459638 -0.997579 0.0521941 0.00921122 84 | -0.468028 0.0676654 0.881119 -0.248775 85 | -0 -0 0 1 86 | 17 17 0 87 | -0.9374 0.0306253 -0.346904 0.0719323 88 | -0.0519501 -0.997277 0.0523376 0.00860293 89 | -0.344357 0.067083 0.936439 -0.259363 90 | -0 -0 0 1 91 | 18 18 0 92 | -0.981758 0.0426464 -0.185291 0.0305246 93 | -0.0537147 -0.997033 0.055129 0.00670076 94 | -0.182391 0.0640762 0.981136 -0.271075 95 | -0 -0 0 1 96 | 19 19 0 97 | -0.996572 0.0538889 -0.0627672 -0.0110904 98 | -0.0572727 -0.996928 0.053419 0.00592666 99 | -0.0596957 0.0568308 0.996598 -0.271277 100 | -0 -0 0 1 101 | 20 20 0 102 | -0.994751 0.0611132 0.0820749 -0.0405925 103 | -0.0575234 -0.997311 0.0454144 0.00423025 104 | 0.0846296 0.0404547 0.995591 -0.263326 105 | -0 -0 0 1 106 | 21 21 0 107 | -0.969858 0.0626008 0.235492 -0.0724779 108 | -0.0547098 -0.997705 0.0399012 0.0030372 109 | 0.237449 0.0258148 0.971057 -0.256907 110 | -0 -0 0 1 111 | 22 22 0 112 | -0.901621 0.0602879 0.428306 -0.0907017 113 | -0.0514441 -0.998156 0.0322053 0.00306936 114 | 0.429458 0.00700317 0.90306 -0.231912 115 | -0 -0 0 1 116 | 23 23 0 117 | -0.789255 0.0554234 0.611559 -0.114588 118 | -0.0490426 -0.998426 0.0271912 0.00138223 119 | 0.612104 -0.0085316 0.790732 -0.214537 120 | -0 -0 0 1 121 | 24 24 0 122 | -0.695018 0.0500982 0.717245 -0.129214 123 | -0.047456 -0.998591 0.0237643 0.00122257 124 | 0.717425 -0.017521 0.696415 -0.196706 125 | -0 -0 0 1 126 | 25 25 0 127 | -0.667328 0.0185277 0.744533 -0.144933 128 | -0.00475385 -0.999776 0.0206186 0.000359229 129 | 0.744748 0.01022 0.667267 -0.182261 130 | -0 -0 0 1 131 | 26 26 0 132 | -0.650901 -0.002328 0.759159 -0.15609 133 | 0.0373207 -0.998884 0.0289355 0.00282908 134 | 0.758244 0.0471665 0.650262 -0.162911 135 | -0 -0 0 1 136 | 27 27 0 137 | -0.590626 0.00246049 0.806942 -0.177294 138 | 0.0504092 -0.99793 0.0399389 0.00348779 139 | 0.80537 0.0642662 0.589279 -0.145579 140 | -0 -0 0 1 141 | 28 28 0 142 | -0.544385 0.0168622 0.838666 -0.18983 143 | 0.0512379 -0.997263 0.0533099 0.00353671 144 | 0.837269 0.0719926 0.542031 -0.125406 145 | -0 -0 0 1 146 | 29 29 0 147 | -0.437671 0.0356899 0.898427 -0.210035 148 | 0.0508625 -0.996629 0.0643687 0.00315775 149 | 0.897696 0.0738685 0.43438 -0.102081 150 | -0 -0 0 1 151 | 30 30 0 152 | -0.357857 0.0574888 0.932005 -0.233405 153 | 0.047937 -0.995656 0.0798211 0.00214814 154 | 0.932545 0.0732421 0.353547 -0.0722871 155 | -0 -0 0 1 156 | 31 31 0 157 | -0.287477 0.0704126 0.955196 -0.240755 158 | 0.044769 -0.995216 0.0868364 0.00153982 159 | 0.956741 0.0677266 0.282949 -0.0413004 160 | -0 -0 0 1 161 | 32 32 0 162 | -0.104381 0.0878527 0.99065 -0.252835 163 | 0.050263 -0.994352 0.093477 2.78921e-05 164 | 0.993266 0.0595502 0.0993754 -0.0137171 165 | -0 -0 0 1 166 | 33 33 0 167 | 0.00627881 0.100603 0.994907 -0.260436 168 | 0.0479128 -0.993814 0.10019 0.000941306 169 | 0.998832 0.0470397 -0.0110601 0.019065 170 | -0 -0 0 1 171 | 34 34 0 172 | 0.156817 0.108555 0.981644 -0.255122 173 | 0.0497545 -0.993547 0.101924 8.97758e-05 174 | 0.986374 0.0328578 -0.161207 0.0476408 175 | -0 -0 0 1 176 | 35 35 0 177 | 0.281645 0.113047 0.952836 -0.25086 178 | 0.0495047 -0.993425 0.10323 0.000376428 179 | 0.958241 0.0180957 -0.28539 0.0752936 180 | -0 -0 0 1 181 | 36 36 0 182 | 0.36061 0.111129 0.926073 -0.249631 183 | 0.0442329 -0.993797 0.102031 0.000110991 184 | 0.931667 0.00416945 -0.363288 0.107374 185 | -0 -0 0 1 186 | 37 37 0 187 | 0.418124 0.111641 0.901504 -0.244148 188 | 0.0432152 -0.99374 0.10302 0.00206757 189 | 0.907361 -0.00411637 -0.420331 0.142282 190 | -0 -0 0 1 191 | 38 38 0 192 | 0.53047 0.110735 0.84044 -0.229057 193 | 0.0461111 -0.993733 0.101828 0.00169594 194 | 0.846449 -0.015263 -0.532251 0.165218 195 | -0 -0 0 1 196 | 39 39 0 197 | 0.65559 0.108374 0.7473 -0.216398 198 | 0.0520623 -0.99378 0.0984455 0.00142033 199 | 0.753321 -0.0256337 -0.657154 0.188082 200 | -0 -0 0 1 201 | 40 40 0 202 | 0.750299 0.0998333 0.653517 -0.1899 203 | 0.0534258 -0.994455 0.0905783 0.00141635 204 | 0.658936 -0.0330462 -0.751472 0.204054 205 | -0 -0 0 1 206 | 41 41 0 207 | 0.837155 0.0936018 0.538897 -0.159495 208 | 0.0571756 -0.994826 0.0839729 0.000701085 209 | 0.543969 -0.0394866 -0.838176 0.21805 210 | -0 -0 0 1 211 | 42 42 0 212 | 0.910677 0.0882955 0.403574 -0.128109 213 | 0.0612222 -0.994951 0.0795295 0.000949073 214 | 0.408558 -0.047718 -0.911484 0.21926 215 | -0 -0 0 1 216 | 43 43 0 217 | 0.960235 0.0820739 0.266858 -0.0941022 218 | 0.0639015 -0.995051 0.0760975 0.000562457 219 | 0.271783 -0.0560189 -0.960727 0.225299 220 | -0 -0 0 1 221 | 44 44 0 222 | 0.984005 0.0768324 0.160723 -0.0645263 223 | 0.065369 -0.995005 0.0754423 0.00130347 224 | 0.165716 -0.0637293 -0.984112 0.226691 225 | -0 -0 0 1 226 | 45 45 0 227 | 0.997372 0.0703797 -0.0172079 -0.0393522 228 | 0.0714507 -0.994799 0.0725985 0.00143202 229 | -0.012009 -0.0736373 -0.997213 0.222328 230 | -0 -0 0 1 231 | 46 46 0 232 | 0.950888 0.0538403 -0.304816 -0.0158285 233 | 0.0801603 -0.993995 0.0744927 0.000188352 234 | -0.298975 -0.0952684 -0.949494 0.220302 235 | -0 -0 0 1 236 | 47 47 0 237 | 0.902412 0.0331274 -0.429599 0.000659708 238 | 0.0793871 -0.992754 0.090206 -0.00152349 239 | -0.423498 -0.115508 -0.898503 0.232764 240 | -0 -0 0 1 241 | 48 48 0 242 | 0.880096 -0.0155142 -0.474542 0.02182 243 | 0.0318747 -0.995281 0.0916544 -0.00226141 244 | -0.473724 -0.0957906 -0.875448 0.232022 245 | -0 -0 0 1 246 | 49 49 0 247 | 0.855164 -0.0253585 -0.517737 0.0383066 248 | 0.0294046 -0.994821 0.0972945 -0.00229659 249 | -0.517523 -0.0984266 -0.84999 0.247883 250 | -0 -0 0 1 251 | 50 50 0 252 | 0.871769 -0.0292611 -0.489042 0.064258 253 | 0.0239314 -0.99448 0.102164 -0.0021084 254 | -0.489332 -0.100767 -0.866257 0.243157 255 | -0 -0 0 1 256 | 51 51 0 257 | 0.849851 -0.0344343 -0.525897 0.0871271 258 | 0.0231073 -0.994469 0.102456 -0.00310863 259 | -0.526517 -0.0992248 -0.844355 0.247217 260 | -0 -0 0 1 261 | 52 52 0 262 | 0.822208 -0.0375514 -0.567947 0.118223 263 | 0.0198283 -0.995326 0.0945139 -0.000985058 264 | -0.568842 -0.0889715 -0.81762 0.239609 265 | -0 -0 0 1 266 | 53 53 0 267 | 0.773876 -0.0318347 -0.632537 0.150065 268 | 0.0208433 -0.996915 0.0756739 -0.00145917 269 | -0.632995 -0.0717464 -0.770824 0.237312 270 | -0 -0 0 1 271 | 54 54 0 272 | 0.734297 0.00494075 -0.678811 0.172767 273 | 0.0221377 -0.999616 0.0166715 -0.00388953 274 | -0.678468 -0.0272691 -0.734124 0.220335 275 | -0 -0 0 1 276 | 55 55 0 277 | 0.680918 0.0345317 -0.731545 0.202982 278 | 0.0254863 -0.9994 -0.0234531 -0.00303322 279 | -0.731916 -0.00267474 -0.681389 0.205415 280 | -0 -0 0 1 281 | 56 56 0 282 | 0.614298 0.0466839 -0.787692 0.23217 283 | 0.0374036 -0.998849 -0.0300285 -0.000377699 284 | -0.788187 -0.0110161 -0.615337 0.186286 285 | -0 -0 0 1 286 | 57 57 0 287 | 0.541559 0.0497956 -0.839187 0.263345 288 | 0.0450526 -0.998529 -0.0301764 -0.0016863 289 | -0.839455 -0.0214652 -0.543006 0.16244 290 | -0 -0 0 1 291 | 58 58 0 292 | 0.468643 0.0485295 -0.882053 0.289095 293 | 0.0512892 -0.9983 -0.0276749 0.000690224 294 | -0.881897 -0.0322702 -0.470336 0.130507 295 | -0 -0 0 1 296 | 59 59 0 297 | 0.376438 0.0510427 -0.925034 0.303695 298 | 0.0581426 -0.997814 -0.0313978 0.00121456 299 | -0.924615 -0.0419646 -0.378583 0.100666 300 | -0 -0 0 1 301 | 60 60 0 302 | 0.237526 0.0522648 -0.969974 0.314596 303 | 0.0601391 -0.997427 -0.0390173 0.00028985 304 | -0.969518 -0.0490657 -0.240058 0.063856 305 | -0 -0 0 1 306 | 61 61 0 307 | 0.124643 0.0515514 -0.990862 0.311147 308 | 0.0636965 -0.997005 -0.0438585 0.000964225 309 | -0.990155 -0.0576478 -0.127553 0.0291394 310 | -0 -0 0 1 311 | 62 62 0 312 | 0.00563151 0.055338 -0.998452 0.309841 313 | 0.0640828 -0.996435 -0.0548648 0.0022955 314 | -0.997929 -0.0636746 -0.00915764 -0.0107888 315 | -0 -0 0 1 316 | 63 63 0 317 | -0.0261116 0.0574581 -0.998006 0.320991 318 | 0.0669482 -0.996005 -0.0590945 0.00199665 319 | -0.997415 -0.0683578 0.0221605 -0.0483434 320 | -0 -0 0 1 321 | 64 64 0 322 | -0.0102977 0.056091 -0.998373 0.332777 323 | 0.0672776 -0.996124 -0.0566586 0.0030559 324 | -0.997681 -0.0677515 0.00648408 -0.0885359 325 | -0 -0 0 1 326 | 65 65 0 327 | -0.101311 0.0559605 -0.99328 0.347484 328 | 0.066875 -0.995775 -0.0629221 0.00404563 329 | -0.992605 -0.0728003 0.0971408 -0.130797 330 | -0 -0 0 1 331 | 66 66 0 332 | -0.268661 0.0581252 -0.961479 0.351525 333 | 0.0659587 -0.994725 -0.0785655 0.00477127 334 | -0.960974 -0.0845254 0.26341 -0.176141 335 | -0 -0 0 1 336 | 67 67 0 337 | -0.416281 0.0547188 -0.907588 0.334496 338 | 0.0670815 -0.993619 -0.0906737 0.00790373 339 | -0.906758 -0.0986281 0.409954 -0.217047 340 | -0 -0 0 1 341 | 68 68 0 342 | -0.523985 0.0494012 -0.850294 0.310999 343 | 0.0684493 -0.992645 -0.0998529 0.00784707 344 | -0.848973 -0.110523 0.516749 -0.247245 345 | -0 -0 0 1 346 | 69 69 0 347 | -0.639159 0.0378985 -0.76814 0.285624 348 | 0.0665426 -0.992314 -0.104328 0.007347 349 | -0.76619 -0.117796 0.631725 -0.289343 350 | -0 -0 0 1 351 | 70 70 0 352 | -0.715775 0.0281961 -0.697762 0.248187 353 | 0.0650971 -0.99214 -0.106869 0.00703895 354 | -0.69529 -0.121917 0.708313 -0.329405 355 | -0 -0 0 1 356 | 71 71 0 357 | -0.787744 0.0165984 -0.615779 0.207661 358 | 0.0645276 -0.991914 -0.109285 0.00615035 359 | -0.612613 -0.125823 0.780303 -0.349034 360 | -0 -0 0 1 361 | 72 72 0 362 | -0.853294 0.00244405 -0.521424 0.172499 363 | 0.06143 -0.992554 -0.105181 0.00404469 364 | -0.517798 -0.121781 0.846791 -0.376524 365 | -0 -0 0 1 366 | 73 73 0 367 | -0.91338 -0.0111396 -0.406955 0.135092 368 | 0.0587069 -0.992781 -0.104588 0.00530962 369 | -0.402852 -0.11942 0.907441 -0.403999 370 | -0 -0 0 1 371 | 74 74 0 372 | -0.952178 -0.0229581 -0.304681 0.0961013 373 | 0.0567742 -0.993101 -0.102597 0.00265794 374 | -0.300223 -0.114989 0.946913 -0.410506 375 | -0 -0 0 1 376 | 75 75 0 377 | -0.980783 -0.0345267 -0.192025 0.0587294 378 | 0.0551428 -0.993144 -0.103076 0.000989848 379 | -0.187149 -0.111684 0.975962 -0.425785 380 | -0 -0 0 1 381 | 76 76 0 382 | -0.994391 -0.0417245 -0.0971908 0.0140603 383 | 0.0516794 -0.993413 -0.102272 0.00122264 384 | -0.0922833 -0.106721 0.989997 -0.440116 385 | -0 -0 0 1 386 | 77 77 0 387 | -0.998806 -0.048325 -0.00710303 -0.0383012 388 | 0.0488003 -0.993466 -0.103166 7.63441e-05 389 | -0.00207111 -0.10339 0.994639 -0.440919 390 | -0 -0 0 1 391 | 78 78 0 392 | -0.991106 -0.0602391 0.118658 -0.0823408 393 | 0.047478 -0.993062 -0.107582 -0.00159121 394 | 0.124315 -0.100992 0.98709 -0.429395 395 | -0 -0 0 1 396 | 79 79 0 397 | -0.961826 -0.0729069 0.26377 -0.128608 398 | 0.0438352 -0.992458 -0.114476 -0.0034804 399 | 0.270127 -0.0985432 0.957769 -0.412807 400 | -0 -0 0 1 401 | 80 80 0 402 | -0.904192 -0.0892039 0.417706 -0.169836 403 | 0.0437838 -0.992154 -0.117104 -0.00308917 404 | 0.424875 -0.0875956 0.901004 -0.392371 405 | -0 -0 0 1 406 | 81 81 0 407 | -0.867175 -0.100906 0.487674 -0.203937 408 | 0.0477099 -0.991586 -0.120336 -0.00433841 409 | 0.495714 -0.0810851 0.864692 -0.364851 410 | -0 -0 0 1 411 | 82 82 0 412 | -0.824247 -0.108497 0.555739 -0.241615 413 | 0.0487538 -0.991424 -0.121246 -0.00610201 414 | 0.564128 -0.0728424 0.822468 -0.33787 415 | -0 -0 0 1 416 | 83 83 0 417 | -0.781883 -0.113865 0.612938 -0.282942 418 | 0.0468994 -0.991136 -0.124296 -0.00643987 419 | 0.621658 -0.0684386 0.780293 -0.30627 420 | -0 -0 0 1 421 | 84 84 0 422 | -0.692893 -0.127246 0.709723 -0.309185 423 | 0.0474428 -0.990218 -0.131218 -0.00636809 424 | 0.719477 -0.0572489 0.692152 -0.269886 425 | -0 -0 0 1 426 | 85 85 0 427 | -0.595073 -0.132623 0.792654 -0.331789 428 | 0.0489568 -0.99044 -0.128962 -0.00440845 429 | 0.802179 -0.0379359 0.595877 -0.22928 430 | -0 -0 0 1 431 | 86 86 0 432 | -0.519467 -0.124102 0.845431 -0.357426 433 | 0.0502984 -0.992123 -0.114729 -0.00197347 434 | 0.853009 -0.0170743 0.521617 -0.186043 435 | -0 -0 0 1 436 | 87 87 0 437 | -0.418598 -0.112019 0.901237 -0.37666 438 | 0.0499503 -0.993702 -0.100311 -0.00352438 439 | 0.906797 0.00302717 0.421557 -0.145073 440 | -0 -0 0 1 441 | 88 88 0 442 | -0.329418 -0.0988512 0.938995 -0.394087 443 | 0.0482891 -0.994967 -0.0878028 -0.00583412 444 | 0.942949 0.0164194 0.332533 -0.0944231 445 | -0 -0 0 1 446 | 89 89 0 447 | -0.204821 -0.088878 0.974756 -0.403455 448 | 0.0452016 -0.995665 -0.0812865 -0.00610201 449 | 0.977755 0.0274113 0.20795 -0.0481476 450 | -0 -0 0 1 451 | 90 90 0 452 | -0.0456893 -0.0827093 0.995526 -0.400516 453 | 0.0429112 -0.995809 -0.0807634 -0.00725087 454 | 0.998034 0.0390292 0.049047 -0.000188418 455 | -0 -0 0 1 456 | 91 91 0 457 | 0.094073 -0.0758653 0.992671 -0.396405 458 | 0.0412135 -0.995941 -0.0800209 -0.00700952 459 | 0.994712 0.0484392 -0.0905645 0.0506169 460 | -0 -0 0 1 461 | 92 92 0 462 | 0.190123 -0.0689606 0.979335 -0.392824 463 | 0.0405471 -0.996127 -0.0780146 -0.00656462 464 | 0.980923 0.0545416 -0.18659 0.0981344 465 | -0 -0 0 1 466 | 93 93 0 467 | 0.297739 -0.0645622 0.952462 -0.377093 468 | 0.039783 -0.996005 -0.0799499 -0.00586466 469 | 0.953818 0.061696 -0.293981 0.138658 470 | -0 -0 0 1 471 | 94 94 0 472 | 0.410771 -0.0574074 0.90993 -0.358355 473 | 0.0398196 -0.995934 -0.0808092 -0.00625058 474 | 0.910869 0.0694271 -0.406814 0.176874 475 | -0 -0 0 1 476 | 95 95 0 477 | 0.511163 -0.052047 0.857907 -0.341939 478 | 0.0400914 -0.995634 -0.0842901 -0.00698362 479 | 0.858548 0.0774806 -0.506845 0.211753 480 | -0 -0 0 1 481 | 96 96 0 482 | 0.610898 -0.0430421 0.790538 -0.318636 483 | 0.042258 -0.995325 -0.0868474 -0.00526224 484 | 0.79058 0.0864615 -0.606224 0.235694 485 | -0 -0 0 1 486 | 97 97 0 487 | 0.670686 -0.030485 0.741114 -0.287938 488 | 0.0436637 -0.9958 -0.0804755 -0.00441478 489 | 0.740455 0.0863337 -0.666538 0.266588 490 | -0 -0 0 1 491 | 98 98 0 492 | 0.752584 -0.0128977 0.65837 -0.257706 493 | 0.0431481 -0.996694 -0.0688482 -0.00466541 494 | 0.657081 0.0802214 -0.749539 0.296484 495 | -0 -0 0 1 496 | 99 99 0 497 | 0.829111 0.00280661 0.559077 -0.21635 498 | 0.0444607 -0.997151 -0.0609294 -0.00541482 499 | 0.557313 0.0753742 -0.826874 0.314971 500 | -0 -0 0 1 501 | 100 100 0 502 | 0.902959 0.0171403 0.429385 -0.175302 503 | 0.0452642 -0.997439 -0.0553705 -0.00515917 504 | 0.427337 0.0694331 -0.901422 0.330459 505 | -0 -0 0 1 506 | 101 101 0 507 | 0.941403 0.0280231 0.336118 -0.142102 508 | 0.0460615 -0.997888 -0.0458128 -0.00416546 509 | 0.334125 0.0586104 -0.940705 0.348754 510 | -0 -0 0 1 511 | 102 102 0 512 | 0.959561 0.0305508 0.279839 -0.0996191 513 | 0.0435941 -0.998228 -0.0405035 -0.00572982 514 | 0.278106 0.0510649 -0.959192 0.374411 515 | -0 -0 0 1 516 | 103 103 0 517 | 0.982139 0.0337604 0.185106 -0.0556054 518 | 0.0425934 -0.998125 -0.0439501 -0.00856917 519 | 0.183275 0.0510494 -0.981735 0.397988 520 | -0 -0 0 1 521 | 104 104 0 522 | 0.998025 0.0403074 0.048191 -0.00983432 523 | 0.042724 -0.997824 -0.0502148 -0.00746105 524 | 0.0460621 0.0521745 -0.997575 0.40318 525 | -0 -0 0 1 526 | 105 105 0 527 | 0.995743 0.0506376 -0.0770136 0.0281916 528 | 0.0461595 -0.997199 -0.0588569 -0.00696977 529 | -0.0797782 0.0550514 -0.995291 0.397807 530 | -0 -0 0 1 531 | 106 106 0 532 | 0.977834 0.0606784 -0.200395 0.0710101 533 | 0.0485214 -0.996703 -0.0650334 -0.00889019 534 | -0.203681 0.0538684 -0.977554 0.390657 535 | -0 -0 0 1 536 | 107 107 0 537 | 0.940498 0.0718671 -0.332111 0.111511 538 | 0.0505866 -0.9961 -0.0722955 -0.00610201 539 | -0.336012 0.0511934 -0.940465 0.375182 540 | -0 -0 0 1 541 | 108 108 0 542 | 0.86731 0.0909705 -0.489384 0.130196 543 | 0.0563273 -0.99478 -0.0850913 -0.00690136 544 | -0.49457 0.0462349 -0.867907 0.341703 545 | -0 -0 0 1 546 | 109 109 0 547 | 0.812571 0.0987952 -0.574428 0.146562 548 | 0.059203 -0.994423 -0.0872827 -0.00339681 549 | -0.579847 0.0369156 -0.813888 0.300207 550 | -0 -0 0 1 551 | 110 110 0 552 | 0.781618 0.0617364 -0.620695 0.155112 553 | 0.0581098 -0.997969 -0.0260858 -0.00015073 554 | -0.621045 -0.0156793 -0.783618 0.261266 555 | -0 -0 0 1 556 | 111 111 0 557 | 0.721966 0.0174914 -0.691708 0.15567 558 | 0.0537071 -0.998081 0.0308177 0.000433289 559 | -0.689841 -0.0593989 -0.72152 0.219228 560 | -0 -0 0 1 561 | 112 112 0 562 | 0.649872 -0.00867586 -0.759994 0.158534 563 | 0.0438363 -0.997842 0.0488755 0.000823163 564 | -0.758778 -0.0650781 -0.64809 0.174088 565 | -0 -0 0 1 566 | 113 113 0 567 | 0.505419 -0.0427763 -0.861813 0.144776 568 | 0.0387521 -0.996637 0.0721949 0.00292699 569 | -0.862003 -0.0698858 -0.502062 0.139914 570 | -0 -0 0 1 571 | 114 114 0 572 | 0.424691 -0.0805644 -0.901747 0.140652 573 | 0.0260078 -0.994536 0.101103 0.00504487 574 | -0.904965 -0.0663901 -0.420275 0.105426 575 | -0 -0 0 1 576 | 115 115 0 577 | 0.311151 -0.171916 -0.934682 0.152644 578 | 0.0145785 -0.982523 0.185569 0.00577006 579 | -0.950249 -0.0713662 -0.303207 0.0669794 580 | -0 -0 0 1 581 | 116 116 0 582 | 0.172968 -0.222836 -0.959389 0.153186 583 | 0.000651563 -0.974044 0.226358 0.00571229 584 | -0.984927 -0.0397776 -0.168333 0.0306292 585 | -0 -0 0 1 586 | 117 117 0 587 | 0.0233141 -0.24719 -0.968687 0.160716 588 | -0.0128442 -0.968944 0.246946 0.00655222 589 | -0.999646 0.00668472 -0.025765 -0.0108867 590 | -0 -0 0 1 591 | 118 118 0 592 | -0.221615 -0.246117 -0.943564 0.160965 593 | -0.0141531 -0.966711 0.255479 0.00798743 594 | -0.975031 0.0699725 0.210755 -0.0532132 595 | -0 -0 0 1 596 | 119 119 0 597 | -0.472193 -0.216677 -0.85445 0.145852 598 | -0.0200816 -0.966423 0.25617 0.0075382 599 | -0.881266 0.13812 0.451987 -0.088921 600 | -0 -0 0 1 601 | 120 120 0 602 | -0.673578 -0.164051 -0.720681 0.133612 603 | -0.0319074 -0.967694 0.250101 0.00620109 604 | -0.738427 0.191458 0.646582 -0.123465 605 | -0 -0 0 1 606 | 121 121 0 607 | -0.82166 -0.107588 -0.559731 0.107615 608 | -0.0357544 -0.97036 0.239003 0.00576408 609 | -0.568855 0.216392 0.79346 -0.159078 610 | -0 -0 0 1 611 | 122 122 0 612 | -0.918393 -0.0487338 -0.392657 0.0752606 613 | -0.0419682 -0.974789 0.219144 0.0037056 614 | -0.393437 0.21774 0.893195 -0.17516 615 | -0 -0 0 1 616 | 123 123 0 617 | -0.974903 0.00582579 -0.222555 0.0417523 618 | -0.0427882 -0.985924 0.161626 0.00142785 619 | -0.218481 0.167092 0.961429 -0.19196 620 | -0 -0 0 1 621 | 124 124 0 622 | -0.999041 0.0348547 0.0265096 0.00415963 623 | -0.0309447 -0.990253 0.135799 0.00178836 624 | 0.0309845 0.134848 0.990382 -0.197235 625 | -0 -0 0 1 626 | 125 125 0 627 | -0.967979 0.0547157 0.244994 -0.0328859 628 | -0.027178 -0.993062 0.114404 0.00206134 629 | 0.249554 0.104082 0.962751 -0.187978 630 | -0 -0 0 1 631 | 126 126 0 632 | -0.890067 0.0691525 0.450555 -0.0702377 633 | -0.0215362 -0.993701 0.109972 0.0033977 634 | 0.455321 0.088179 0.88595 -0.174136 635 | -0 -0 0 1 636 | 127 127 0 637 | -0.773524 0.084571 0.628099 -0.107894 638 | -0.0148495 -0.993203 0.115443 0.003635 639 | 0.633593 0.0799711 0.769523 -0.150317 640 | -0 -0 0 1 641 | 128 128 0 642 | -0.663841 0.0986758 0.741336 -0.129437 643 | -0.017504 -0.993036 0.116504 0.00179245 644 | 0.747669 0.0643639 0.660945 -0.113211 645 | -0 -0 0 1 646 | 129 129 0 647 | -0.56091 0.132626 0.817184 -0.149713 648 | -0.0196228 -0.988937 0.147032 0.00241859 649 | 0.827644 0.0664363 0.557307 -0.082791 650 | -0 -0 0 1 651 | 130 130 0 652 | -0.517822 0.259439 0.8152 -0.172727 653 | -0.0276278 -0.957481 0.287171 0.00290406 654 | 0.855042 0.126181 0.502972 -0.0569228 655 | -0 -0 0 1 656 | 131 131 0 657 | -0.343232 0.295231 0.891645 -0.184734 658 | -0.019051 -0.951308 0.307653 0.00293244 659 | 0.939057 0.0886097 0.332144 -0.0182126 660 | -0 -0 0 1 661 | 132 132 0 662 | -0.0581552 0.318631 0.946093 -0.19007 663 | -0.0228267 -0.947874 0.317828 0.00206679 664 | 0.998047 -0.0031129 0.0623971 0.0197775 665 | -0 -0 0 1 666 | 133 133 0 667 | 0.157648 0.313903 0.936276 -0.186436 668 | -0.0438036 -0.944976 0.324195 0.00322471 669 | 0.986523 -0.0921209 -0.135223 0.0572255 670 | -0 -0 0 1 671 | 134 134 0 672 | 0.412194 0.277318 0.867865 -0.17446 673 | -0.0478366 -0.94465 0.324574 0.00278584 674 | 0.909839 -0.175303 -0.376114 0.0875242 675 | -0 -0 0 1 676 | 135 135 0 677 | 0.649486 0.208857 0.731127 -0.153715 678 | -0.053206 -0.946696 0.317703 0.0018716 679 | 0.75851 -0.245244 -0.603753 0.112344 680 | -0 -0 0 1 681 | 136 136 0 682 | 0.757934 0.152976 0.63414 -0.130612 683 | -0.0649064 -0.949605 0.306655 0.00282096 684 | 0.649094 -0.273584 -0.709809 0.122801 685 | -0 -0 0 1 686 | 137 137 0 687 | 0.884296 0.0956506 0.457026 -0.0986983 688 | -0.052078 -0.952482 0.30011 0.00215922 689 | 0.464014 -0.289187 -0.837294 0.137699 690 | -0 -0 0 1 691 | 138 138 0 692 | 0.97035 0.0362543 0.238968 -0.0643784 693 | -0.0377179 -0.953861 0.297869 0.00266038 694 | 0.238741 -0.298051 -0.924212 0.15658 695 | -0 -0 0 1 696 | 139 139 0 697 | 0.995618 -0.0126278 0.0926606 -0.0260925 698 | -0.0391771 -0.956023 0.290662 0.001617 699 | 0.0849153 -0.293019 -0.952328 0.155762 700 | -0 -0 0 1 701 | 140 140 0 702 | 0.993249 -0.0594611 -0.0996079 0.00690957 703 | -0.0282968 -0.956894 0.289055 0.00126527 704 | -0.112502 -0.284285 -0.952116 0.153023 705 | -0 -0 0 1 706 | 141 141 0 707 | 0.966615 -0.100705 -0.235614 0.043069 708 | -0.0235199 -0.950519 0.309776 -0.000855226 709 | -0.255152 -0.293892 -0.921154 0.150897 710 | -0 -0 0 1 711 | 142 142 0 712 | 0.923363 -0.15726 -0.350244 0.0669639 713 | -0.0248243 -0.934808 0.354284 -0.00540877 714 | -0.383125 -0.318438 -0.867071 0.139692 715 | -0 -0 0 1 716 | 143 143 0 717 | 0.844237 -0.201373 -0.496701 0.0811733 718 | -0.0133626 -0.934354 0.356095 -0.00880657 719 | -0.535803 -0.293991 -0.791508 0.138569 720 | -0 -0 0 1 721 | 144 144 0 722 | 0.844696 -0.198539 -0.497062 0.090818 723 | -0.0402739 -0.949604 0.310854 -0.00913856 724 | -0.533729 -0.242559 -0.810123 0.150243 725 | -0 -0 0 1 726 | 145 145 0 727 | 0.778302 -0.192914 -0.59752 0.11226 728 | -0.0203656 -0.958887 0.283057 -0.00748482 729 | -0.62756 -0.208135 -0.750233 0.129334 730 | -0 -0 0 1 731 | 146 146 0 732 | 0.579085 -0.22275 -0.784247 0.134457 733 | 0.00743895 -0.960467 0.278294 -0.0060797 734 | -0.815233 -0.16699 -0.554535 0.105483 735 | -0 -0 0 1 736 | 147 147 0 737 | 0.470801 -0.2421 -0.848371 0.144907 738 | -0.0084403 -0.962803 0.270072 -0.00669605 739 | -0.882199 -0.11999 -0.455333 0.0799833 740 | -0 -0 0 1 741 | 148 148 0 742 | 0.386645 -0.24608 -0.888791 0.152515 743 | -0.00983408 -0.964788 0.262844 -0.00921821 744 | -0.922176 -0.0928867 -0.37545 0.0614973 745 | -0 -0 0 1 746 | 149 149 0 747 | 0.397201 -0.203689 -0.894842 0.1528 748 | -0.0123081 -0.976153 0.216735 -0.0111538 749 | -0.917649 -0.0750734 -0.390236 0.0545013 750 | -0 -0 0 1 751 | 150 150 0 752 | 0.428337 -0.171887 -0.88712 0.152381 753 | -0.00444691 -0.982131 0.188149 -0.0112657 754 | -0.903608 -0.0766461 -0.421447 0.0517873 755 | -0 -0 0 1 756 | -------------------------------------------------------------------------------- /dataloader/datalist/tanks/logs/Train.log: -------------------------------------------------------------------------------- 1 | 0 0 0 2 | 0.999633 -0.0232816 0.0138163 -0.3686 3 | 0.0247054 0.993187 -0.113881 0.0526984 4 | -0.0110708 0.114181 0.993398 -2.17113 5 | -0 -0 0 1 6 | 1 1 0 7 | 0.999125 -0.0278002 -0.0312556 -0.365783 8 | 0.0240267 0.993049 -0.115221 0.0532314 9 | 0.0342415 0.114369 0.992848 -2.17141 10 | -0 -0 0 1 11 | 2 2 0 12 | 0.99637 -0.0327259 -0.0785823 -0.347926 13 | 0.023335 0.992789 -0.117579 0.0541618 14 | 0.0818635 0.115318 0.98995 -2.15608 15 | -0 -0 0 1 16 | 3 3 0 17 | 0.962313 -0.0505502 -0.267206 -0.299838 18 | 0.0179444 0.992234 -0.123087 0.054664 19 | 0.271353 0.113653 0.955746 -2.09594 20 | -0 -0 0 1 21 | 4 4 0 22 | 0.915591 -0.0820105 -0.39366 -0.267271 23 | 0.0190146 0.986716 -0.161336 0.0509778 24 | 0.401662 0.140233 0.904988 -2.03395 25 | -0 -0 0 1 26 | 5 5 0 27 | 0.868474 -0.104405 -0.484615 -0.270567 28 | 0.0242184 0.985339 -0.168878 0.0513353 29 | 0.495142 0.13493 0.858271 -2.01954 30 | -0 -0 0 1 31 | 6 6 0 32 | 0.843727 -0.120981 -0.522961 -0.272361 33 | 0.0316935 0.983798 -0.176457 0.0515965 34 | 0.535835 0.132307 0.833892 -2.01904 35 | -0 -0 0 1 36 | 7 7 0 37 | 0.870797 -0.125219 -0.47543 -0.265995 38 | 0.041522 0.982298 -0.182667 0.0577559 39 | 0.489887 0.139325 0.860581 -2.01795 40 | -0 -0 0 1 41 | 8 8 0 42 | 0.851516 -0.124003 -0.509455 -0.197314 43 | 0.0368139 0.983373 -0.177824 0.0610336 44 | 0.523035 0.132665 0.841923 -2.01084 45 | -0 -0 0 1 46 | 9 9 0 47 | 0.827772 -0.130194 -0.54575 -0.125025 48 | 0.040779 0.984093 -0.172913 0.0629862 49 | 0.55958 0.120878 0.819914 -1.97706 50 | -0 -0 0 1 51 | 10 10 0 52 | 0.697012 -0.132964 -0.704624 -0.0402968 53 | 0.0346257 0.987752 -0.15214 0.0595448 54 | 0.716223 0.0816452 0.693079 -1.91045 55 | -0 -0 0 1 56 | 11 11 0 57 | 0.743886 -0.052968 -0.666205 0.00447499 58 | 0.0526691 0.9984 -0.0205695 0.0371029 59 | 0.666228 -0.0197871 0.745485 -1.8188 60 | -0 -0 0 1 61 | 12 12 0 62 | 0.791559 -0.022798 -0.610667 0.0608883 63 | 0.0469886 0.998616 0.0236262 0.0264992 64 | 0.609283 -0.0473959 0.791535 -1.73417 65 | -0 -0 0 1 66 | 13 13 0 67 | 0.838991 -0.0365605 -0.542916 0.127882 68 | 0.0346421 0.999305 -0.0137602 0.0209172 69 | 0.543042 -0.0072631 0.839674 -1.64584 70 | -0 -0 0 1 71 | 14 14 0 72 | 0.876483 -0.0904827 -0.472854 0.228786 73 | 0.0259488 0.989631 -0.141272 0.0123494 74 | 0.480733 0.111552 0.869742 -1.56193 75 | -0 -0 0 1 76 | 15 15 0 77 | 0.895563 -0.0949518 -0.434685 0.30936 78 | 0.024436 0.985985 -0.165032 -0.0360468 79 | 0.444263 0.137175 0.885332 -1.46371 80 | -0 -0 0 1 81 | 16 16 0 82 | 0.879119 -0.0964651 -0.466737 0.373238 83 | 0.0202174 0.985969 -0.165699 -0.0486654 84 | 0.476173 0.136233 0.868735 -1.35331 85 | -0 -0 0 1 86 | 17 17 0 87 | 0.880497 -0.101805 -0.462992 0.45285 88 | 0.0257775 0.985505 -0.167676 -0.0122771 89 | 0.473351 0.135703 0.870358 -1.28848 90 | -0 -0 0 1 91 | 18 18 0 92 | 0.906946 -0.105443 -0.407836 0.519636 93 | 0.0327293 0.982877 -0.181332 0.0190077 94 | 0.419973 0.15111 0.894868 -1.20495 95 | -0 -0 0 1 96 | 19 19 0 97 | 0.925121 -0.102897 -0.365462 0.580361 98 | 0.0360951 0.982051 -0.18513 0.049242 99 | 0.377952 0.158077 0.91223 -1.11066 100 | -0 -0 0 1 101 | 20 20 0 102 | 0.947689 -0.082956 -0.308225 0.693707 103 | 0.0421475 0.989704 -0.13678 0.0724739 104 | 0.316399 0.116634 0.941429 -1.05164 105 | -0 -0 0 1 106 | 21 21 0 107 | 0.969222 -0.0222276 -0.245181 0.764337 108 | 0.0406766 0.996686 0.0704406 0.0886617 109 | 0.242803 -0.0782458 0.966915 -0.966066 110 | -0 -0 0 1 111 | 22 22 0 112 | 0.984967 -0.00774423 -0.172572 0.841963 113 | 0.0269152 0.993674 0.109029 0.0780227 114 | 0.170635 -0.112035 0.978944 -0.829183 115 | -0 -0 0 1 116 | 23 23 0 117 | 0.995343 -0.0018189 -0.0963782 0.955902 118 | 0.0122257 0.99413 0.107499 0.0553188 119 | 0.095617 -0.108176 0.989523 -0.74845 120 | -0 -0 0 1 121 | 24 24 0 122 | 0.995678 0.00839386 -0.0924906 1.04903 123 | -0.000558536 0.99643 0.0844169 0.0095993 124 | 0.092869 -0.0840004 0.992129 -0.660253 125 | -0 -0 0 1 126 | 25 25 0 127 | 0.981324 0.00715416 -0.19223 1.11366 128 | -0.0159001 0.998905 -0.0439932 -0.00389854 129 | 0.191705 0.0462281 0.980363 -0.567527 130 | -0 -0 0 1 131 | 26 26 0 132 | 0.872783 -0.0124582 -0.487949 1.15731 133 | -0.033965 0.995701 -0.0861746 0.0170945 134 | 0.486925 0.0917849 0.868608 -0.541029 135 | -0 -0 0 1 136 | 27 27 0 137 | 0.688488 -0.0394825 -0.724173 1.15975 138 | -0.0261613 0.996515 -0.079203 0.0202659 139 | 0.724776 0.0734756 0.685056 -0.54358 140 | -0 -0 0 1 141 | 28 28 0 142 | 0.437621 -0.0681977 -0.896569 1.14928 143 | -0.00755804 0.996805 -0.0795114 0.0217207 144 | 0.899128 0.0415722 0.435708 -0.564394 145 | -0 -0 0 1 146 | 29 29 0 147 | 0.173158 -0.0844967 -0.981263 1.13512 148 | 0.0120678 0.99642 -0.0836724 0.0224057 149 | 0.98482 0.00264687 0.173558 -0.57268 150 | -0 -0 0 1 151 | 30 30 0 152 | 0.0491008 -0.0974671 -0.994027 1.14447 153 | 0.0340167 0.994813 -0.0958639 0.0421396 154 | 0.998214 -0.0291065 0.0521616 -0.554974 155 | -0 -0 0 1 156 | 31 31 0 157 | -0.0372913 -0.0996114 -0.994327 1.14005 158 | 0.0412405 0.994018 -0.101127 0.0531711 159 | 0.998453 -0.0447777 -0.0329602 -0.494412 160 | -0 -0 0 1 161 | 32 32 0 162 | -0.242193 -0.0956832 -0.965499 1.20193 163 | 0.0397663 0.99331 -0.108415 0.0467412 164 | 0.969413 -0.0646515 -0.236768 -0.433989 165 | -0 -0 0 1 166 | 33 33 0 167 | -0.208484 -0.0978577 -0.973118 1.23969 168 | 0.0506198 0.992569 -0.110659 0.0473462 169 | 0.976715 -0.0723296 -0.201981 -0.307674 170 | -0 -0 0 1 171 | 34 34 0 172 | -0.254497 -0.0914047 -0.962744 1.32972 173 | 0.0463717 0.993225 -0.106557 0.0328173 174 | 0.965961 -0.0717625 -0.248534 -0.220478 175 | -0 -0 0 1 176 | 35 35 0 177 | -0.30531 -0.0887613 -0.948107 1.42099 178 | 0.0414706 0.993462 -0.106362 0.0319056 179 | 0.95135 -0.0717919 -0.299633 -0.122326 180 | -0 -0 0 1 181 | 36 36 0 182 | -0.235167 -0.0896713 -0.96781 1.47446 183 | 0.0434084 0.993773 -0.102625 0.0384823 184 | 0.970985 -0.0661449 -0.22981 -0.0512808 185 | -0 -0 0 1 186 | 37 37 0 187 | -0.186604 -0.0804697 -0.979134 1.52661 188 | 0.042533 0.995044 -0.0898832 0.0267952 189 | 0.981514 -0.0584181 -0.182256 0.0719078 190 | -0 -0 0 1 191 | 38 38 0 192 | -0.236795 -0.0731822 -0.968799 1.59463 193 | 0.0363906 0.995791 -0.0841158 0.029266 194 | 0.970878 -0.0551734 -0.233136 0.174554 195 | -0 -0 0 1 196 | 39 39 0 197 | -0.272914 -0.0725253 -0.959301 1.71889 198 | 0.0281315 0.996126 -0.0833127 0.0334936 199 | 0.961627 -0.0497238 -0.269817 0.210039 200 | -0 -0 0 1 201 | 40 40 0 202 | -0.254008 -0.0475211 -0.966034 1.83054 203 | 0.0268849 0.998059 -0.0561656 0.0374671 204 | 0.966828 -0.0402382 -0.252238 0.275284 205 | -0 -0 0 1 206 | 41 41 0 207 | -0.185346 -0.017375 -0.98252 1.90176 208 | 0.029285 0.999302 -0.0231962 0.0227946 209 | 0.982237 -0.0330724 -0.184708 0.365681 210 | -0 -0 0 1 211 | 42 42 0 212 | -0.123654 -0.0117967 -0.992255 1.97555 213 | 0.0261508 0.999543 -0.0151422 0.016197 214 | 0.991981 -0.0278206 -0.123289 0.439601 215 | -0 -0 0 1 216 | 43 43 0 217 | -0.0318772 -0.0112961 -0.999428 1.98992 218 | 0.0221198 0.999683 -0.0120045 0.00657606 219 | 0.999247 -0.0224898 -0.0316172 0.450948 220 | -0 -0 0 1 221 | 44 44 0 222 | 0.118193 -0.0174902 -0.992837 1.99009 223 | 0.0227339 0.99963 -0.0149035 0.00441607 224 | 0.99273 -0.0208095 0.118547 0.464346 225 | -0 -0 0 1 226 | 45 45 0 227 | 0.211775 -0.0236087 -0.977033 1.98143 228 | 0.0220314 0.999569 -0.0193779 -0.0452274 229 | 0.97707 -0.0174216 0.212204 0.471023 230 | -0 -0 0 1 231 | 46 46 0 232 | 0.281752 -0.0447899 -0.958441 1.97409 233 | 0.0208876 0.998959 -0.0405431 -0.0757049 234 | 0.95926 -0.00859639 0.282395 0.478032 235 | -0 -0 0 1 236 | 47 47 0 237 | 0.33257 -0.0607904 -0.941117 1.94603 238 | 0.0199678 0.998151 -0.0574183 -0.0619431 239 | 0.942867 0.000303566 0.333168 0.49588 240 | -0 -0 0 1 241 | 48 48 0 242 | 0.24179 -0.0521229 -0.968928 1.81741 243 | 0.0138091 0.99864 -0.0502753 -0.0258342 244 | 0.97023 -0.00122397 0.242181 0.543541 245 | -0 -0 0 1 246 | 49 49 0 247 | 0.0643863 -0.0459604 -0.996866 1.70192 248 | 0.00802663 0.99893 -0.0455371 0.000174929 249 | 0.997893 -0.00506951 0.0646864 0.619638 250 | -0 -0 0 1 251 | 50 50 0 252 | -0.159203 -0.0429124 -0.986313 1.6054 253 | 0.00686895 0.998983 -0.0445724 0.0259828 254 | 0.987222 -0.013871 -0.158746 0.728788 255 | -0 -0 0 1 256 | 51 51 0 257 | -0.36571 -0.0590434 -0.928854 1.60099 258 | 0.00679799 0.99779 -0.0661019 0.0486865 259 | 0.930704 -0.0304885 -0.3645 0.828061 260 | -0 -0 0 1 261 | 52 52 0 262 | -0.582378 -0.0571276 -0.810908 1.61291 263 | 0.00604419 0.997196 -0.0745921 0.0437002 264 | 0.812896 -0.0483421 -0.5804 0.941569 265 | -0 -0 0 1 266 | 53 53 0 267 | -0.681195 -0.0243783 -0.731696 1.6729 268 | 0.0125315 0.998911 -0.0449479 0.0482432 269 | 0.731995 -0.0397876 -0.680147 1.04225 270 | -0 -0 0 1 271 | 54 54 0 272 | -0.651585 -0.0120742 -0.75848 1.71654 273 | 0.021604 0.999172 -0.0344651 0.0466511 274 | 0.758268 -0.0388432 -0.650785 1.15547 275 | -0 -0 0 1 276 | 55 55 0 277 | -0.614671 -0.00751562 -0.788748 1.74022 278 | 0.0266504 0.999186 -0.0302894 0.0463387 279 | 0.788333 -0.0396385 -0.61397 1.30427 280 | -0 -0 0 1 281 | 56 56 0 282 | -0.616448 -0.00183783 -0.787393 1.76934 283 | 0.0263565 0.999389 -0.0229671 0.0111288 284 | 0.786954 -0.034911 -0.616023 1.45234 285 | -0 -0 0 1 286 | 57 57 0 287 | -0.633162 0.00317049 -0.774013 1.78157 288 | 0.0247787 0.999562 -0.0161752 -0.0234706 289 | 0.773623 -0.0294205 -0.632963 1.58984 290 | -0 -0 0 1 291 | 58 58 0 292 | -0.644971 0.00975194 -0.764145 1.77443 293 | 0.0230336 0.999712 -0.00668313 -0.026513 294 | 0.76386 -0.0219114 -0.64501 1.74466 295 | -0 -0 0 1 296 | 59 59 0 297 | -0.628905 0.0111872 -0.777401 1.84266 298 | 0.0184074 0.99983 -0.000503185 -0.0236905 299 | 0.777264 -0.0146264 -0.629005 1.86935 300 | -0 -0 0 1 301 | 60 60 0 302 | -0.574934 0.0151402 -0.81806 1.88685 303 | 0.0173898 0.999829 0.0062827 -0.0218278 304 | 0.818015 -0.0106137 -0.575099 1.92104 305 | -0 -0 0 1 306 | 61 61 0 307 | -0.542167 -0.00971241 -0.840215 1.81891 308 | 0.0146278 0.999673 -0.0209946 0.0168062 309 | 0.840143 -0.0236731 -0.541848 1.81658 310 | -0 -0 0 1 311 | 62 62 0 312 | -0.52684 -0.0368845 -0.849164 1.7534 313 | 0.013415 0.998573 -0.0516972 0.0541002 314 | 0.849859 -0.0386277 -0.525593 1.66769 315 | -0 -0 0 1 316 | 63 63 0 317 | -0.488528 -0.0436522 -0.871455 1.65136 318 | 0.0199413 0.997928 -0.0611662 0.0689963 319 | 0.87232 -0.0472593 -0.486646 1.54673 320 | -0 -0 0 1 321 | 64 64 0 322 | -0.476147 -0.0558521 -0.87759 1.57395 323 | 0.0217352 0.996929 -0.0752398 0.0632674 324 | 0.879097 -0.0548998 -0.473471 1.42497 325 | -0 -0 0 1 326 | 65 65 0 327 | -0.419003 -0.0676868 -0.905458 1.48308 328 | 0.0289892 0.995712 -0.0878484 0.0761312 329 | 0.907522 -0.0630573 -0.415244 1.30526 330 | -0 -0 0 1 331 | 66 66 0 332 | -0.350719 -0.075021 -0.933471 1.40375 333 | 0.0346497 0.995064 -0.0929895 0.0857747 334 | 0.935839 -0.0649578 -0.346389 1.18367 335 | -0 -0 0 1 336 | 67 67 0 337 | -0.202471 -0.00463388 -0.979277 1.30847 338 | 0.0436276 0.998953 -0.0137472 0.107331 339 | 0.978316 -0.045507 -0.202057 1.12087 340 | -0 -0 0 1 341 | 68 68 0 342 | -0.0369606 0.154981 -0.987226 1.23798 343 | 0.0432012 0.987225 0.153363 0.10704 344 | 0.998382 -0.0369809 -0.0431838 1.09133 345 | -0 -0 0 1 346 | 69 69 0 347 | 0.053846 0.115009 -0.991904 1.17308 348 | 0.0374281 0.992415 0.1171 0.0677365 349 | 0.997848 -0.0434304 0.049133 1.07558 350 | -0 -0 0 1 351 | 70 70 0 352 | -0.0419536 0.0386751 -0.998371 1.13784 353 | 0.0345389 0.998709 0.0372368 0.0286325 354 | 0.998522 -0.0329204 -0.0432353 1.11424 355 | -0 -0 0 1 356 | 71 71 0 357 | -0.284401 -0.102575 -0.953202 1.13018 358 | 0.0136772 0.993724 -0.111017 0.0309096 359 | 0.958608 -0.0446104 -0.281214 1.14552 360 | -0 -0 0 1 361 | 72 72 0 362 | -0.495933 -0.162945 -0.852936 1.14865 363 | -0.00206578 0.982455 -0.186487 0.0477755 364 | 0.868358 -0.0907231 -0.487568 1.15598 365 | -0 -0 0 1 366 | 73 73 0 367 | -0.542232 -0.142034 -0.828137 1.14283 368 | 0.0216477 0.98292 -0.182755 0.0574755 369 | 0.83995 -0.117023 -0.529896 1.16461 370 | -0 -0 0 1 371 | 74 74 0 372 | -0.586924 -0.0989481 -0.803573 1.10242 373 | 0.0394457 0.987831 -0.150448 0.0580641 374 | 0.808681 -0.119999 -0.575878 1.15251 375 | -0 -0 0 1 376 | 75 75 0 377 | -0.70448 -0.0621812 -0.706994 1.0399 378 | 0.045307 0.990183 -0.132234 0.0415118 379 | 0.708276 -0.125188 -0.694747 1.14987 380 | -0 -0 0 1 381 | 76 76 0 382 | -0.769549 -0.0110613 -0.638491 1.01661 383 | 0.0540279 0.995137 -0.0823576 0.0343478 384 | 0.636298 -0.0978746 -0.76521 1.14348 385 | -0 -0 0 1 386 | 77 77 0 387 | -0.78797 -0.00106285 -0.615713 0.976908 388 | 0.0574198 0.995514 -0.0752025 -0.000835338 389 | 0.613031 -0.0946114 -0.784374 1.12668 390 | -0 -0 0 1 391 | 78 78 0 392 | -0.896018 0.0114263 -0.44387 0.938823 393 | 0.0480182 0.9963 -0.0712849 -0.0612467 394 | 0.441413 -0.0851864 -0.893251 1.13287 395 | -0 -0 0 1 396 | 79 79 0 397 | -0.915698 0.0135704 -0.401638 0.929842 398 | 0.0468041 0.99623 -0.0730488 -0.0910788 399 | 0.399132 -0.0856889 -0.91288 1.13788 400 | -0 -0 0 1 401 | 80 80 0 402 | -0.882682 0.00856392 -0.469892 0.900332 403 | 0.0502095 0.99583 -0.0761683 -0.126592 404 | 0.46728 -0.0908255 -0.879432 1.15801 405 | -0 -0 0 1 406 | 81 81 0 407 | -0.869991 0.0032858 -0.493057 0.891583 408 | 0.0475553 0.995875 -0.0772739 -0.16476 409 | 0.490769 -0.090675 -0.866559 1.16894 410 | -0 -0 0 1 411 | 82 82 0 412 | -0.85447 -0.0028089 -0.519493 0.854853 413 | 0.0461203 0.995627 -0.0812429 -0.199125 414 | 0.517449 -0.0933788 -0.850604 1.19795 415 | -0 -0 0 1 416 | 83 83 0 417 | -0.832375 -0.0127787 -0.554065 0.825517 418 | 0.045345 0.994812 -0.0910659 -0.215612 419 | 0.552355 -0.100925 -0.827477 1.21412 420 | -0 -0 0 1 421 | 84 84 0 422 | -0.807366 -0.0195992 -0.589725 0.792181 423 | 0.047081 0.994122 -0.0974955 -0.267306 424 | 0.58817 -0.106479 -0.801697 1.23979 425 | -0 -0 0 1 426 | 85 85 0 427 | -0.821852 -0.010515 -0.569604 0.783023 428 | 0.0440802 0.995659 -0.0819811 -0.224695 429 | 0.567993 -0.0924846 -0.817821 1.27149 430 | -0 -0 0 1 431 | 86 86 0 432 | -0.878628 0.142715 -0.45568 0.792986 433 | 0.0453753 0.974927 0.217848 -0.193252 434 | 0.475345 0.170731 -0.863075 1.26931 435 | -0 -0 0 1 436 | 87 87 0 437 | -0.900014 0.217662 -0.377623 0.779171 438 | 0.0263339 0.891954 0.451359 -0.184134 439 | 0.435066 0.396285 -0.808502 1.27268 440 | -0 -0 0 1 441 | 88 88 0 442 | -0.795999 0.302571 -0.524249 0.743902 443 | -0.00744973 0.861137 0.508318 -0.17798 444 | 0.605252 0.408526 -0.68321 1.28438 445 | -0 -0 0 1 446 | 89 89 0 447 | -0.686297 0.418456 -0.594887 0.712174 448 | -0.0299144 0.800983 0.597939 -0.179551 449 | 0.726706 0.428159 -0.537194 1.30906 450 | -0 -0 0 1 451 | 90 90 0 452 | -0.602174 0.449255 -0.659967 0.65235 453 | -0.0484164 0.804577 0.591871 -0.19836 454 | 0.796896 0.388362 -0.462744 1.33377 455 | -0 -0 0 1 456 | 91 91 0 457 | -0.656861 0.274281 -0.702356 0.623154 458 | -0.0691975 0.905633 0.418379 -0.212618 459 | 0.75083 0.323418 -0.575895 1.36959 460 | -0 -0 0 1 461 | 92 92 0 462 | -0.740977 0.0672344 -0.668156 0.614335 463 | -0.0668322 0.982652 0.172997 -0.221965 464 | 0.668196 0.172841 -0.723629 1.37291 465 | -0 -0 0 1 466 | 93 93 0 467 | -0.752599 -0.0759759 -0.654082 0.612852 468 | -0.051255 0.997067 -0.0568409 -0.23538 469 | 0.656482 -0.00925341 -0.754285 1.38053 470 | -0 -0 0 1 471 | 94 94 0 472 | -0.782537 -0.159958 -0.601705 0.612625 473 | -0.0169726 0.971555 -0.236206 -0.254843 474 | 0.622372 -0.174627 -0.762993 1.37889 475 | -0 -0 0 1 476 | 95 95 0 477 | -0.773999 -0.157451 -0.613299 0.574858 478 | 0.0301742 0.958317 -0.284108 -0.244609 479 | 0.632468 -0.238405 -0.736985 1.36625 480 | -0 -0 0 1 481 | 96 96 0 482 | -0.79333 -0.131471 -0.594426 0.547073 483 | 0.0577046 0.955768 -0.288404 -0.206656 484 | 0.606051 -0.263101 -0.750653 1.40185 485 | -0 -0 0 1 486 | 97 97 0 487 | -0.75996 -0.122788 -0.638266 0.529796 488 | 0.0854458 0.954598 -0.28538 -0.19032 489 | 0.644329 -0.271415 -0.714965 1.40159 490 | -0 -0 0 1 491 | 98 98 0 492 | -0.776981 -0.111802 -0.619517 0.507971 493 | 0.0875503 0.955349 -0.282212 -0.185606 494 | 0.623407 -0.273512 -0.732499 1.41957 495 | -0 -0 0 1 496 | 99 99 0 497 | -0.84273 -0.0786394 -0.532562 0.480639 498 | 0.0939653 0.952599 -0.289354 -0.172198 499 | 0.530073 -0.29389 -0.795394 1.44138 500 | -0 -0 0 1 501 | 100 100 0 502 | -0.805556 -0.0474171 -0.59062 0.46322 503 | 0.125517 0.960515 -0.248309 -0.161372 504 | 0.579073 -0.27416 -0.767796 1.4453 505 | -0 -0 0 1 506 | 101 101 0 507 | -0.773342 -0.0524406 -0.631817 0.452159 508 | 0.12968 0.962419 -0.238608 -0.11826 509 | 0.620585 -0.266459 -0.737478 1.45141 510 | -0 -0 0 1 511 | 102 102 0 512 | -0.814516 -0.0501599 -0.577969 0.4453 513 | 0.109844 0.9649 -0.23854 -0.0933238 514 | 0.569647 -0.257781 -0.780417 1.45984 515 | -0 -0 0 1 516 | 103 103 0 517 | -0.91636 -0.0107754 -0.400211 0.428258 518 | 0.0871487 0.970298 -0.225668 -0.0706486 519 | 0.390755 -0.241671 -0.888203 1.46495 520 | -0 -0 0 1 521 | 104 104 0 522 | -0.899292 -0.00638476 -0.437302 0.423427 523 | 0.0923426 0.974579 -0.204127 -0.0675672 524 | 0.427489 -0.223952 -0.875842 1.45488 525 | -0 -0 0 1 526 | 105 105 0 527 | -0.894988 -0.0173813 -0.445751 0.41839 528 | 0.0793261 0.977114 -0.197374 -0.00902215 529 | 0.43898 -0.212007 -0.873127 1.46921 530 | -0 -0 0 1 531 | 106 106 0 532 | -0.932238 -0.0161825 -0.361485 0.417467 533 | 0.0596939 0.978434 -0.197747 0.0318228 534 | 0.356889 -0.205925 -0.911167 1.49943 535 | -0 -0 0 1 536 | 107 107 0 537 | -0.948705 -0.00804836 -0.316061 0.401114 538 | 0.0565127 0.97926 -0.194568 0.0526504 539 | 0.311072 -0.202449 -0.928574 1.55993 540 | -0 -0 0 1 541 | 108 108 0 542 | -0.970502 0.0220904 -0.240079 0.348796 543 | 0.0534553 0.990725 -0.12493 0.0582575 544 | 0.235093 -0.134078 -0.962681 1.65097 545 | -0 -0 0 1 546 | 109 109 0 547 | -0.976875 0.0399156 -0.210055 0.286604 548 | 0.0554932 0.996086 -0.0687941 0.0620433 549 | 0.206486 -0.0788598 -0.975266 1.72199 550 | -0 -0 0 1 551 | 110 110 0 552 | -0.993974 0.0411759 -0.101586 0.258954 553 | 0.0448687 0.998403 -0.0343376 0.0689804 554 | 0.10001 -0.0386887 -0.994234 1.84851 555 | -0 -0 0 1 556 | 111 111 0 557 | -0.994475 0.0425269 -0.0959694 0.221456 558 | 0.0373332 0.997773 0.055281 0.0807525 559 | 0.0981066 0.0513928 -0.993848 1.95555 560 | -0 -0 0 1 561 | 112 112 0 562 | -0.996755 0.0364478 -0.071775 0.152442 563 | 0.0288636 0.994158 0.104004 0.0715619 564 | 0.0751464 0.101595 -0.991984 2.03785 565 | -0 -0 0 1 566 | 113 113 0 567 | -0.989197 0.000687975 0.14659 0.113282 568 | 0.0184843 0.992593 0.120074 0.053129 569 | -0.145422 0.121487 -0.981883 2.08865 570 | -0 -0 0 1 571 | 114 114 0 572 | -0.987642 -0.0187048 0.155608 0.0187187 573 | -0.00107412 0.993637 0.112623 -0.000216482 574 | -0.156724 0.111064 -0.981378 2.11869 575 | -0 -0 0 1 576 | 115 115 0 577 | -0.98276 -0.0108452 0.184566 -0.0308363 578 | -0.0144249 0.999733 -0.0180634 -0.0137794 579 | -0.184321 -0.0204143 -0.982654 2.15065 580 | -0 -0 0 1 581 | 116 116 0 582 | -0.985835 -0.00167325 0.167711 -0.0508789 583 | -0.0148471 0.996895 -0.0773281 -0.00614615 584 | -0.167061 -0.0787227 -0.982799 2.15547 585 | -0 -0 0 1 586 | 117 117 0 587 | -0.98965 0.00513947 0.143409 -0.132186 588 | -0.0070492 0.996411 -0.0843547 0.0327007 589 | -0.143328 -0.0844926 -0.986062 2.13928 590 | -0 -0 0 1 591 | 118 118 0 592 | -0.989151 0.0138546 0.146248 -0.226092 593 | 0.00265382 0.997066 -0.0765066 0.035189 594 | -0.146879 -0.0752884 -0.986285 2.06268 595 | -0 -0 0 1 596 | 119 119 0 597 | -0.9674 0.0230309 0.252205 -0.328348 598 | 0.00690713 0.997885 -0.064631 0.0372617 599 | -0.25316 -0.060782 -0.965513 1.98195 600 | -0 -0 0 1 601 | 120 120 0 602 | -0.925983 0.0257829 0.376683 -0.395445 603 | 0.00999013 0.99899 -0.0438197 0.0409198 604 | -0.377432 -0.0368132 -0.925305 1.89286 605 | -0 -0 0 1 606 | 121 121 0 607 | -0.88525 0.0284358 0.464246 -0.417736 608 | 0.0133213 0.99927 -0.0358051 0.0302164 609 | -0.464925 -0.0255121 -0.884982 1.76907 610 | -0 -0 0 1 611 | 122 122 0 612 | -0.854283 0.0346194 0.518655 -0.488729 613 | 0.0165154 0.999084 -0.0394846 0.0288938 614 | -0.519546 -0.0251652 -0.854072 1.64502 615 | -0 -0 0 1 616 | 123 123 0 617 | -0.823196 0.0395771 0.566377 -0.537409 618 | 0.0173561 0.998855 -0.0445717 0.0287593 619 | -0.567492 -0.0268612 -0.82294 1.55274 620 | -0 -0 0 1 621 | 124 124 0 622 | -0.849306 0.0428573 0.526159 -0.586959 623 | 0.0186446 0.998512 -0.0512365 0.0343478 624 | -0.527572 -0.0337054 -0.848841 1.49765 625 | -0 -0 0 1 626 | 125 125 0 627 | -0.856059 0.0360283 0.515622 -0.64898 628 | 0.0182065 0.999051 -0.0395798 0.0541286 629 | -0.516558 -0.024495 -0.855902 1.56007 630 | -0 -0 0 1 631 | 126 126 0 632 | -0.735996 0.0255678 0.676503 -0.765152 633 | 0.012507 0.99963 -0.0241732 0.0735016 634 | -0.67687 -0.00933036 -0.736043 1.64986 635 | -0 -0 0 1 636 | 127 127 0 637 | -0.552482 0.0153357 0.833384 -0.861057 638 | 0.00682321 0.99988 -0.0138761 0.0752855 639 | -0.833497 -0.00197994 -0.552521 1.7092 640 | -0 -0 0 1 641 | 128 128 0 642 | -0.335925 0.0160754 0.941752 -0.957634 643 | 0.00657963 0.99987 -0.0147204 0.059231 644 | -0.941866 0.00125142 -0.335987 1.69023 645 | -0 -0 0 1 646 | 129 129 0 647 | -0.322216 0.021562 0.94642 -1.07449 648 | 0.0130861 0.999747 -0.0183216 0.0713831 649 | -0.946576 0.00648142 -0.322417 1.63267 650 | -0 -0 0 1 651 | 130 130 0 652 | -0.348186 0.0215501 0.937178 -1.16432 653 | 0.0177066 0.999709 -0.0164095 0.0632024 654 | -0.937258 0.0108807 -0.348466 1.52771 655 | -0 -0 0 1 656 | 131 131 0 657 | -0.405456 0.0252339 0.913766 -1.26355 658 | 0.0203025 0.999621 -0.0185962 0.0595877 659 | -0.913889 0.0110118 -0.405815 1.3916 660 | -0 -0 0 1 661 | 132 132 0 662 | -0.460981 0.0361836 0.886672 -1.36285 663 | 0.0229214 0.999321 -0.0288638 0.0603999 664 | -0.887114 0.00701809 -0.461497 1.23912 665 | -0 -0 0 1 666 | 133 133 0 667 | -0.515561 0.0464022 0.855596 -1.49942 668 | 0.0237774 0.998923 -0.0398477 0.0605876 669 | -0.856523 -0.000200081 -0.516109 1.10814 670 | -0 -0 0 1 671 | 134 134 0 672 | -0.561754 0.0520303 0.825666 -1.63478 673 | 0.025321 0.998634 -0.0457026 0.0551542 674 | -0.826917 -0.00476694 -0.562304 0.985991 675 | -0 -0 0 1 676 | 135 135 0 677 | -0.595076 0.054363 0.801829 -1.7558 678 | 0.0259471 0.998489 -0.0484397 0.0609658 679 | -0.80325 -0.00802018 -0.595588 0.852149 680 | -0 -0 0 1 681 | 136 136 0 682 | -0.551798 0.0465746 0.832676 -1.85847 683 | 0.0216065 0.998903 -0.041554 0.0605577 684 | -0.833698 -0.00493821 -0.552199 0.718436 685 | -0 -0 0 1 686 | 137 137 0 687 | -0.492264 0.0417058 0.869446 -1.96391 688 | 0.0187923 0.999128 -0.0372865 0.0568667 689 | -0.870243 -0.00201587 -0.492618 0.579632 690 | -0 -0 0 1 691 | 138 138 0 692 | -0.46897 0.0426956 0.882181 -2.07193 693 | 0.0192556 0.999088 -0.0381172 0.0587134 694 | -0.883004 -0.000888916 -0.469365 0.437267 695 | -0 -0 0 1 696 | 139 139 0 697 | -0.492171 0.0192681 0.870285 -2.15516 698 | 0.021246 0.999723 -0.0101186 0.0391689 699 | -0.870239 0.0135099 -0.492444 0.282877 700 | -0 -0 0 1 701 | 140 140 0 702 | -0.537053 0.000407698 0.843549 -2.24097 703 | 0.0218845 0.99967 0.0134498 0.0343478 704 | -0.843265 0.0256838 -0.536885 0.148968 705 | -0 -0 0 1 706 | 141 141 0 707 | -0.510014 -0.00288401 0.860161 -2.32971 708 | 0.0175419 0.999752 0.0137531 0.0225832 709 | -0.859987 0.0221031 -0.509837 0.0125297 710 | -0 -0 0 1 711 | 142 142 0 712 | -0.461823 -0.00989638 0.886917 -2.40437 713 | 0.0125933 0.999764 0.017713 0.0257997 714 | -0.886883 0.0193495 -0.461589 -0.140768 715 | -0 -0 0 1 716 | 143 143 0 717 | -0.329952 -0.0152285 0.943875 -2.45098 718 | 0.00636996 0.999811 0.0183577 0.0267815 719 | -0.943976 0.0120696 -0.329792 -0.289911 720 | -0 -0 0 1 721 | 144 144 0 722 | -0.169074 -0.0254681 0.985274 -2.48327 723 | 0.00144105 0.999659 0.0260872 0.0365492 724 | -0.985602 0.00583052 -0.16898 -0.445743 725 | -0 -0 0 1 726 | 145 145 0 727 | 0.0243041 -0.0349643 0.999093 -2.45019 728 | -0.00138989 0.999386 0.0350084 0.0468218 729 | -0.999704 -0.00223948 0.0242406 -0.595113 730 | -0 -0 0 1 731 | 146 146 0 732 | 0.181224 -0.0350012 0.982819 -2.369 733 | -0.000990072 0.999359 0.0357728 0.0356448 734 | -0.983441 -0.00745594 0.181073 -0.751812 735 | -0 -0 0 1 736 | 147 147 0 737 | 0.270011 -0.030109 0.962386 -2.28655 738 | -0.000768905 0.999504 0.0314859 0.0364923 739 | -0.962857 -0.00924153 0.269854 -0.887554 740 | -0 -0 0 1 741 | 148 148 0 742 | 0.402892 -0.0277614 0.914827 -2.2145 743 | -0.000286547 0.999536 0.0304582 0.0374353 744 | -0.915248 -0.0125335 0.402697 -0.992202 745 | -0 -0 0 1 746 | 149 149 0 747 | 0.459362 -0.0324057 0.887658 -2.14014 748 | 0.000827085 0.999349 0.0360552 0.0347836 749 | -0.888249 -0.0158282 0.45909 -1.07111 750 | -0 -0 0 1 751 | 150 150 0 752 | 0.604647 -0.0307654 0.795899 -2.03731 753 | 0.00543639 0.99939 0.0345013 0.00602985 754 | -0.796475 -0.0165343 0.604446 -1.17035 755 | -0 -0 0 1 756 | 151 151 0 757 | 0.664756 -0.0218705 0.74674 -1.9279 758 | 0.00723683 0.999713 0.0228373 0.0154192 759 | -0.747025 -0.0097772 0.664724 -1.24707 760 | -0 -0 0 1 761 | 152 152 0 762 | 0.688688 -0.0117455 0.724963 -1.84598 763 | 0.00945035 0.999929 0.00722292 0.0148311 764 | -0.724996 0.00187681 0.68875 -1.38816 765 | -0 -0 0 1 766 | 153 153 0 767 | 0.715788 -0.00915734 0.698257 -1.82968 768 | 0.0112666 0.999935 0.00156421 0.0083899 769 | -0.698226 0.00674736 0.715845 -1.55656 770 | -0 -0 0 1 771 | 154 154 0 772 | 0.751244 -0.0136928 0.659883 -1.87641 773 | 0.0131755 0.999897 0.00574866 -0.00311042 774 | -0.659893 0.0043756 0.751347 -1.71726 775 | -0 -0 0 1 776 | 155 155 0 777 | 0.768802 -0.0128973 0.639357 -1.91592 778 | 0.0121125 0.999911 0.00560579 -0.014888 779 | -0.639372 0.00343445 0.76889 -1.84535 780 | -0 -0 0 1 781 | 156 156 0 782 | 0.865804 -0.0188059 0.50003 -1.91273 783 | 0.0149901 0.99982 0.0116472 -0.0405304 784 | -0.500159 -0.00258871 0.86593 -2.0131 785 | -0 -0 0 1 786 | 157 157 0 787 | 0.899296 -0.0133045 0.437138 -1.90089 788 | 0.0171012 0.999842 -0.00475064 -0.0503844 789 | -0.437006 0.0117478 0.899382 -2.18536 790 | -0 -0 0 1 791 | 158 158 0 792 | 0.937175 -0.0100732 0.348715 -1.91763 793 | 0.017283 0.999696 -0.0175702 -0.0361501 794 | -0.348432 0.0224932 0.937064 -2.36189 795 | -0 -0 0 1 796 | 159 159 0 797 | 0.970644 -0.0112429 0.240259 -1.87968 798 | 0.0176988 0.999537 -0.0247294 -0.0302356 799 | -0.239869 0.0282557 0.970394 -2.51896 800 | -0 -0 0 1 801 | 160 160 0 802 | 0.968196 -0.0183693 0.249519 -1.7617 803 | 0.0274573 0.999078 -0.0329901 -0.0398184 804 | -0.248683 0.038792 0.967808 -2.62669 805 | -0 -0 0 1 806 | 161 161 0 807 | 0.946343 -0.0183151 0.322645 -1.637 808 | 0.0339631 0.9985 -0.0429362 -0.0423368 809 | -0.321375 0.0515905 0.945546 -2.68018 810 | -0 -0 0 1 811 | 162 162 0 812 | 0.937186 -0.017216 0.348406 -1.49892 813 | 0.0360137 0.998219 -0.0475485 -0.0286375 814 | -0.346967 0.0571091 0.936137 -2.73866 815 | -0 -0 0 1 816 | 163 163 0 817 | 0.972469 -0.022066 0.231986 -1.3547 818 | 0.033411 0.998424 -0.0450888 -0.00445069 819 | -0.230625 0.0515983 0.971674 -2.67768 820 | -0 -0 0 1 821 | 164 164 0 822 | 0.992416 -0.0301697 0.119169 -1.19404 823 | 0.0348041 0.998709 -0.0370014 -0.00739048 824 | -0.117898 0.0408683 0.992184 -2.57002 825 | -0 -0 0 1 826 | 165 165 0 827 | 0.987165 -0.0330802 0.156241 -1.04726 828 | 0.0391365 0.998591 -0.035846 -0.00718917 829 | -0.154835 0.0415006 0.987068 -2.44599 830 | -0 -0 0 1 831 | 166 166 0 832 | 0.989198 -0.0325258 0.142928 -0.898864 833 | 0.0386593 0.998438 -0.0403474 -0.000562265 834 | -0.141392 0.0454371 0.98891 -2.34373 835 | -0 -0 0 1 836 | 167 167 0 837 | 0.997569 -0.0329792 0.061381 -0.765259 838 | 0.0355242 0.998534 -0.0408437 -0.000636129 839 | -0.059944 0.0429249 0.997278 -2.24505 840 | -0 -0 0 1 841 | 168 168 0 842 | 0.998845 -0.0353579 -0.0325279 -0.657798 843 | 0.0341936 0.998778 -0.0356823 0.00675672 844 | 0.0337498 0.0345288 0.998834 -2.09728 845 | -0 -0 0 1 846 | 169 169 0 847 | 0.955395 -0.0327012 -0.293515 -0.582344 848 | 0.0273581 0.999377 -0.022292 0.0182423 849 | 0.294061 0.0132676 0.955695 -1.97161 850 | -0 -0 0 1 851 | 170 170 0 852 | 0.897482 -0.0179799 -0.440685 -0.497543 853 | 0.0286779 0.999433 0.0176276 0.0457167 854 | 0.440118 -0.0284584 0.897489 -1.86247 855 | -0 -0 0 1 856 | 171 171 0 857 | 0.814239 0.0771709 -0.575378 -0.398219 858 | 0.0351162 0.982763 0.181504 0.0568634 859 | 0.579467 -0.167993 0.797494 -1.78063 860 | -0 -0 0 1 861 | 172 172 0 862 | 0.821443 0.098241 -0.561765 -0.286716 863 | 0.0220564 0.978841 0.203431 0.0167165 864 | 0.569864 -0.179497 0.801895 -1.67505 865 | -0 -0 0 1 866 | 173 173 0 867 | 0.831551 0.034686 -0.554365 -0.175448 868 | 0.00905393 0.997069 0.0759666 -0.00767929 869 | 0.555375 -0.0681892 0.8288 -1.58214 870 | -0 -0 0 1 871 | 174 174 0 872 | 0.819782 -0.093765 -0.564947 -0.0915265 873 | 0.000769091 0.986684 -0.162645 -0.0201555 874 | 0.572675 0.132899 0.808938 -1.47626 875 | -0 -0 0 1 876 | 175 175 0 877 | 0.841446 -0.156675 -0.517129 0.00132468 878 | 0.0158707 0.963794 -0.266177 -0.0178098 879 | 0.540109 0.215766 0.813466 -1.35599 880 | -0 -0 0 1 881 | 176 176 0 882 | 0.872257 -0.166162 -0.459955 0.105492 883 | 0.0373009 0.960375 -0.276205 -0.0106844 884 | 0.487624 0.223765 0.843891 -1.25098 885 | -0 -0 0 1 886 | 177 177 0 887 | 0.891541 -0.169862 -0.419882 0.188008 888 | 0.0545493 0.960536 -0.272756 0.00473549 889 | 0.449643 0.220269 0.865623 -1.12911 890 | -0 -0 0 1 891 | 178 178 0 892 | 0.871739 -0.143447 -0.468502 0.276447 893 | 0.0619694 0.980784 -0.184992 0.0259625 894 | 0.486035 0.132232 0.863877 -1.02112 895 | -0 -0 0 1 896 | 179 179 0 897 | 0.793305 -0.0626367 -0.605594 0.3318 898 | 0.0672406 0.997622 -0.0151016 0.05136 899 | 0.6051 -0.0287403 0.795631 -0.878139 900 | -0 -0 0 1 901 | 180 180 0 902 | 0.72484 0.0392918 -0.687796 0.418494 903 | 0.0712852 0.988735 0.131608 0.0682817 904 | 0.685219 -0.144425 0.713874 -0.768978 905 | -0 -0 0 1 906 | 181 181 0 907 | 0.594943 0.139452 -0.791578 0.484694 908 | 0.0666078 0.972893 0.221456 0.0597262 909 | 0.801003 -0.184479 0.569527 -0.663485 910 | -0 -0 0 1 911 | 182 182 0 912 | 0.303994 0.208151 -0.929656 0.518774 913 | 0.0496087 0.971056 0.233642 0.0387798 914 | 0.951381 -0.117145 0.284869 -0.571561 915 | -0 -0 0 1 916 | 183 183 0 917 | 0.00227422 0.0933874 -0.995627 0.524108 918 | 0.00868429 0.99559 0.0934038 0.0283738 919 | 0.99996 -0.00885873 0.00145319 -0.512555 920 | -0 -0 0 1 921 | 184 184 0 922 | -0.184912 -0.13943 -0.972814 0.573556 923 | -0.00542279 0.990014 -0.140865 0.0254121 924 | 0.98274 -0.0207722 -0.183821 -0.459503 925 | -0 -0 0 1 926 | 185 185 0 927 | -0.243623 -0.18305 -0.952439 0.615612 928 | 0.0122502 0.981369 -0.191744 0.00546257 929 | 0.969793 -0.0583808 -0.236842 -0.373143 930 | -0 -0 0 1 931 | 186 186 0 932 | -0.204043 -0.201514 -0.957997 0.656087 933 | 0.0278193 0.976996 -0.211436 0.028252 934 | 0.978566 -0.0697928 -0.193744 -0.284877 935 | -0 -0 0 1 936 | 187 187 0 937 | -0.259171 -0.14106 -0.955475 0.687472 938 | 0.0390594 0.986937 -0.1563 0.0475007 939 | 0.965041 -0.0778287 -0.250276 -0.178919 940 | -0 -0 0 1 941 | 188 188 0 942 | -0.323293 0.0445995 -0.945247 0.741513 943 | 0.0532075 0.998165 0.0288983 0.0645402 944 | 0.944802 -0.0409516 -0.325073 -0.0634842 945 | -0 -0 0 1 946 | 189 189 0 947 | -0.28207 0.103683 -0.953775 0.798435 948 | 0.0599695 0.994105 0.0903317 0.0589328 949 | 0.957518 -0.0317175 -0.286624 0.0579204 950 | -0 -0 0 1 951 | 190 190 0 952 | -0.223844 0.129719 -0.965954 0.841675 953 | 0.0515243 0.991292 0.121182 0.0562224 954 | 0.973262 -0.0226443 -0.228579 0.185689 955 | -0 -0 0 1 956 | 191 191 0 957 | -0.1612 0.127183 -0.978693 0.923421 958 | 0.0421476 0.991644 0.121924 0.053142 959 | 0.986021 -0.0215954 -0.165213 0.316045 960 | -0 -0 0 1 961 | 192 192 0 962 | -0.0920782 0.113433 -0.98927 1.02263 963 | 0.0341624 0.993265 0.110711 0.043114 964 | 0.995166 -0.0236018 -0.0953332 0.446221 965 | -0 -0 0 1 966 | 193 193 0 967 | -0.0223008 0.0551414 -0.998229 1.11997 968 | 0.0286825 0.998102 0.0544936 0.0435416 969 | 0.99934 -0.0274165 -0.0238401 0.573031 970 | -0 -0 0 1 971 | 194 194 0 972 | 0.0394983 -0.0141958 -0.999119 1.16991 973 | 0.0254452 0.999589 -0.0131965 0.0593623 974 | 0.998896 -0.0249015 0.0398433 0.696441 975 | -0 -0 0 1 976 | 195 195 0 977 | 0.000813523 -0.113525 -0.993535 1.24647 978 | 0.0232494 0.993269 -0.113476 0.050798 979 | 0.999729 -0.0230068 0.00344744 0.778322 980 | -0 -0 0 1 981 | 196 196 0 982 | -0.171655 -0.291361 -0.941086 1.31649 983 | 0.0119723 0.954578 -0.297721 0.0404445 984 | 0.985084 -0.0623723 -0.16037 0.853472 985 | -0 -0 0 1 986 | 197 197 0 987 | -0.216312 -0.341681 -0.914584 1.3318 988 | 0.0345189 0.9335 -0.356912 0.0612265 989 | 0.975714 -0.108775 -0.190132 0.939534 990 | -0 -0 0 1 991 | 198 198 0 992 | -0.336344 -0.292449 -0.89518 1.26856 993 | 0.0428052 0.94483 -0.324752 0.0725807 994 | 0.940766 -0.147547 -0.30527 0.986707 995 | -0 -0 0 1 996 | 199 199 0 997 | -0.569467 -0.0598952 -0.819829 1.20543 998 | 0.056063 0.99219 -0.11143 0.0658361 999 | 0.8201 -0.109418 -0.561662 1.05782 1000 | -0 -0 0 1 1001 | 200 200 0 1002 | -0.533287 0.0142984 -0.845814 1.12767 1003 | 0.0664868 0.997473 -0.0250578 0.0618875 1004 | 0.843318 -0.0695984 -0.532889 1.09951 1005 | -0 -0 0 1 1006 | 201 201 0 1007 | -0.573364 0.125963 -0.80956 1.06906 1008 | 0.0590584 0.991894 0.112506 0.0796165 1009 | 0.817169 0.0166957 -0.576156 1.09444 1010 | -0 -0 0 1 1011 | 202 202 0 1012 | -0.65429 0.125225 -0.745804 1.05249 1013 | 0.0424828 0.990724 0.129078 0.0673899 1014 | 0.75505 0.0527709 -0.65354 1.10711 1015 | -0 -0 0 1 1016 | 203 203 0 1017 | -0.811488 0.115671 -0.572807 1.01984 1018 | 0.0393868 0.988811 0.143879 0.0510155 1019 | 0.58304 0.0941952 -0.806964 1.13691 1020 | -0 -0 0 1 1021 | 204 204 0 1022 | -0.890245 0.0868913 -0.447117 0.979527 1023 | 0.0160741 0.987017 0.159809 0.0137725 1024 | 0.455198 0.135082 -0.880084 1.12189 1025 | -0 -0 0 1 1026 | 205 205 0 1027 | -0.91407 0.0623769 -0.400732 0.932029 1028 | -0.0032273 0.986951 0.160988 -0.0792203 1029 | 0.405545 0.148447 -0.901941 1.11599 1030 | -0 -0 0 1 1031 | 206 206 0 1032 | -0.889116 0.0514512 -0.454781 0.896722 1033 | -0.0175256 0.989105 0.146165 -0.0955073 1034 | 0.457347 0.137927 -0.878527 1.12713 1035 | -0 -0 0 1 1036 | 207 207 0 1037 | -0.885755 0.0534896 -0.461062 0.883914 1038 | -0.0140073 0.989805 0.141741 -0.161561 1039 | 0.463943 0.132006 -0.875975 1.14965 1040 | -0 -0 0 1 1041 | 208 208 0 1042 | -0.889055 0.0486449 -0.455209 0.864529 1043 | -0.0155001 0.99057 0.136128 -0.211026 1044 | 0.457538 0.128081 -0.879917 1.19374 1045 | -0 -0 0 1 1046 | 209 209 0 1047 | -0.882596 0.049525 -0.467515 0.813448 1048 | -0.00961579 0.992326 0.123273 -0.253684 1049 | 0.470033 0.113295 -0.875347 1.23579 1050 | -0 -0 0 1 1051 | 210 210 0 1052 | -0.91843 0.0311022 -0.394359 0.789101 1053 | -0.00666188 0.995547 0.0940316 -0.297619 1054 | 0.395527 0.0889886 -0.914133 1.27153 1055 | -0 -0 0 1 1056 | 211 211 0 1057 | -0.926257 0.0117826 -0.376708 0.743153 1058 | -0.00921479 0.998504 0.0538885 -0.337723 1059 | 0.376779 0.0533859 -0.924763 1.27911 1060 | -0 -0 0 1 1061 | 212 212 0 1062 | -0.975703 0.00305495 -0.219076 0.692066 1063 | -0.00285815 0.99964 0.0266691 -0.335349 1064 | 0.219078 0.0266473 -0.975343 1.3144 1065 | -0 -0 0 1 1066 | 213 213 0 1067 | -0.967506 0.00873609 -0.252698 0.645635 1068 | 0.00489986 0.999863 0.0158064 -0.350849 1069 | 0.252801 0.0140546 -0.967416 1.34646 1070 | -0 -0 0 1 1071 | 214 214 0 1072 | -0.956068 0.0157708 -0.292721 0.632695 1073 | 0.0129416 0.999849 0.0115994 -0.309345 1074 | 0.29286 0.00730155 -0.956128 1.37064 1075 | -0 -0 0 1 1076 | 215 215 0 1077 | -0.956552 0.0237573 -0.290592 0.601631 1078 | 0.020863 0.999697 0.0130546 -0.259668 1079 | 0.290814 0.00642477 -0.956758 1.37076 1080 | -0 -0 0 1 1081 | 216 216 0 1082 | -0.981085 0.0277464 -0.191578 0.577576 1083 | 0.025524 0.999575 0.0140592 -0.216613 1084 | 0.191887 0.00890346 -0.981377 1.41012 1085 | -0 -0 0 1 1086 | 217 217 0 1087 | -0.984567 0.0285385 -0.172664 0.563388 1088 | 0.0272645 0.999581 0.00974602 -0.189107 1089 | 0.17287 0.004888 -0.984933 1.42512 1090 | -0 -0 0 1 1091 | 218 218 0 1092 | -0.972278 0.0320025 -0.231626 0.533392 1093 | 0.032002 0.999481 0.00376052 -0.163907 1094 | 0.231626 -0.0037562 -0.972798 1.43702 1095 | -0 -0 0 1 1096 | 219 219 0 1097 | -0.955128 0.0364776 -0.293938 0.469259 1098 | 0.0364484 0.99932 0.00557911 -0.139403 1099 | 0.293941 -0.00538479 -0.955808 1.436 1100 | -0 -0 0 1 1101 | 220 220 0 1102 | -0.930408 0.0427975 -0.364019 0.442404 1103 | 0.0416916 0.999071 0.0108992 -0.0914612 1104 | 0.364148 -0.0050358 -0.931328 1.45246 1105 | -0 -0 0 1 1106 | 221 221 0 1107 | -0.902365 0.0480943 -0.428281 0.433516 1108 | 0.0446421 0.998839 0.0181073 -0.0316921 1109 | 0.428655 -0.00277993 -0.903464 1.48354 1110 | -0 -0 0 1 1111 | 222 222 0 1112 | -0.89984 0.0507775 -0.433254 0.403773 1113 | 0.0459532 0.99871 0.0216072 -0.00980495 1114 | 0.433792 -0.000466397 -0.901013 1.49889 1115 | -0 -0 0 1 1116 | 223 223 0 1117 | -0.989712 0.0436915 -0.136237 0.299925 1118 | 0.0424743 0.999028 0.0118299 0.0390397 1119 | 0.136622 0.00592159 -0.990606 1.55628 1120 | -0 -0 0 1 1121 | 224 224 0 1122 | -0.981198 0.0273279 0.191061 0.210655 1123 | 0.0310229 0.999385 0.0163744 0.088648 1124 | -0.190496 0.0219938 -0.981441 1.59058 1125 | -0 -0 0 1 1126 | 225 225 0 1127 | -0.931171 -0.0243756 0.363767 0.141861 1128 | 0.0259256 0.990809 0.132757 0.120685 1129 | -0.36366 0.133051 -0.921981 1.63936 1130 | -0 -0 0 1 1131 | 226 226 0 1132 | -0.888968 -0.0932072 0.448383 0.0802484 1133 | 0.0274197 0.966481 0.255269 0.0825339 1134 | -0.457147 0.23922 -0.856616 1.63519 1135 | -0 -0 0 1 1136 | 227 227 0 1137 | -0.897164 -0.0709521 0.435961 0.00877627 1138 | 0.00542116 0.985171 0.171492 0.0523039 1139 | -0.441664 0.15622 -0.883475 1.59087 1140 | -0 -0 0 1 1141 | 228 228 0 1142 | -0.920869 0.0254522 0.389041 -0.0750516 1143 | -0.000729418 0.997753 -0.0670024 0.0686162 1144 | -0.389872 -0.0619842 -0.918781 1.53789 1145 | -0 -0 0 1 1146 | 229 229 0 1147 | -0.942542 0.0940571 0.320573 -0.141236 1148 | 0.00991552 0.967004 -0.254568 0.0535068 1149 | -0.333939 -0.236763 -0.912375 1.45656 1150 | -0 -0 0 1 1151 | 230 230 0 1152 | -0.960652 0.117172 0.251831 -0.246803 1153 | 0.0339497 0.9494 -0.312229 0.0519612 1154 | -0.275672 -0.291394 -0.916021 1.35607 1155 | -0 -0 0 1 1156 | 231 231 0 1157 | -0.947451 0.127375 0.293448 -0.352153 1158 | 0.0476087 0.963239 -0.264392 0.0447648 1159 | -0.316337 -0.236528 -0.918687 1.27848 1160 | -0 -0 0 1 1161 | 232 232 0 1162 | -0.849918 0.0996258 0.51741 -0.436443 1163 | 0.0518492 0.99301 -0.106032 0.0490551 1164 | -0.524357 -0.0632909 -0.849143 1.18738 1165 | -0 -0 0 1 1166 | 233 233 0 1167 | -0.851484 0.10255 0.514256 -0.508543 1168 | 0.0731102 0.994329 -0.0772307 0.0378645 1169 | -0.519259 -0.0281634 -0.854153 1.06461 1170 | -0 -0 0 1 1171 | 234 234 0 1172 | -0.875894 0.100522 0.471916 -0.565329 1173 | 0.0789129 0.994733 -0.0654214 0.0334068 1174 | -0.476006 -0.020062 -0.879213 0.934473 1175 | -0 -0 0 1 1176 | 235 235 0 1177 | -0.905974 0.0926503 0.413071 -0.642205 1178 | 0.0764549 0.995521 -0.0556061 0.0383274 1179 | -0.416373 -0.0187963 -0.908999 0.80844 1180 | -0 -0 0 1 1181 | 236 236 0 1182 | -0.929035 0.0834526 0.360457 -0.720689 1183 | 0.0714356 0.996358 -0.046559 0.0369699 1184 | -0.36303 -0.0175055 -0.931613 0.689641 1185 | -0 -0 0 1 1186 | 237 237 0 1187 | -0.94946 0.0739677 0.305048 -0.807114 1188 | 0.0654754 0.997131 -0.0379915 0.0285016 1189 | -0.306983 -0.0160983 -0.951579 0.56501 1190 | -0 -0 0 1 1191 | 238 238 0 1192 | -0.966639 0.065664 0.247583 -0.892023 1193 | 0.0589631 0.997668 -0.0343916 0.0306911 1194 | -0.249264 -0.018646 -0.968256 0.443177 1195 | -0 -0 0 1 1196 | 239 239 0 1197 | -0.966739 0.0586794 0.248942 -0.956712 1198 | 0.0506661 0.997974 -0.0384812 0.0281723 1199 | -0.250695 -0.0245883 -0.967754 0.302871 1200 | -0 -0 0 1 1201 | 240 240 0 1202 | -0.931889 0.0506265 0.359194 -1.01847 1203 | 0.0384633 0.998421 -0.0409335 0.0263363 1204 | -0.3607 -0.0243296 -0.932365 0.198633 1205 | -0 -0 0 1 1206 | 241 241 0 1207 | -0.81898 0.0449272 0.572061 -1.06483 1208 | 0.0248726 0.998773 -0.0428308 0.053526 1209 | -0.573283 -0.0208489 -0.819092 0.145493 1210 | -0 -0 0 1 1211 | 242 242 0 1212 | -0.545275 -0.022641 0.837952 -1.03962 1213 | 0.0109886 0.999356 0.0341526 0.0889837 1214 | -0.838185 0.0278305 -0.544675 0.17433 1215 | -0 -0 0 1 1216 | 243 243 0 1217 | -0.0757316 -0.106718 0.991401 -1.04699 1218 | 0.0141384 0.994041 0.108082 0.0941254 1219 | -0.997028 0.0222021 -0.0737715 0.20848 1220 | -0 -0 0 1 1221 | 244 244 0 1222 | 0.206159 -0.141984 0.968163 -1.04488 1223 | 0.00714286 0.989609 0.143608 0.0891512 1224 | -0.978492 -0.0226906 0.205031 0.180166 1225 | -0 -0 0 1 1226 | 245 245 0 1227 | 0.216052 -0.0204518 0.976168 -1.05371 1228 | -0.00458389 0.999748 0.0219604 0.0631715 1229 | -0.976371 -0.00921923 0.215904 0.10221 1230 | -0 -0 0 1 1231 | 246 246 0 1232 | 0.272122 0.125524 0.95404 -1.07263 1233 | -0.011194 0.991801 -0.127299 0.0658675 1234 | -0.962198 0.0239615 0.271296 0.00604324 1235 | -0 -0 0 1 1236 | 247 247 0 1237 | 0.380217 0.128902 0.915871 -1.04457 1238 | -0.00406444 0.990464 -0.137713 0.0752788 1239 | -0.924888 0.0486385 0.377115 -0.079502 1240 | -0 -0 0 1 1241 | 248 248 0 1242 | 0.431156 0.119035 0.894391 -1.03322 1243 | 0.01433 0.990231 -0.138699 0.0847884 1244 | -0.902164 0.0726173 0.425238 -0.190848 1245 | -0 -0 0 1 1246 | 249 249 0 1247 | 0.486294 0.10675 0.86725 -1.02153 1248 | 0.0283198 0.990063 -0.137746 0.0836847 1249 | -0.873336 0.0915455 0.478438 -0.312239 1250 | -0 -0 0 1 1251 | 250 250 0 1252 | 0.581211 0.0829905 0.80951 -1.01129 1253 | 0.0323529 0.991643 -0.124891 0.0745738 1254 | -0.813109 0.0987783 0.573669 -0.38064 1255 | -0 -0 0 1 1256 | 251 251 0 1257 | 0.626845 0.0671796 0.776242 -1.06905 1258 | 0.0425381 0.991839 -0.12019 0.0697121 1259 | -0.777982 0.10836 0.618872 -0.46041 1260 | -0 -0 0 1 1261 | 252 252 0 1262 | 0.565412 0.0560908 0.822899 -1.11695 1263 | 0.0514775 0.99334 -0.103079 0.0639613 1264 | -0.823201 0.100643 0.558759 -0.528949 1265 | -0 -0 0 1 1266 | 253 253 0 1267 | 0.516024 0.0556809 0.854763 -1.1779 1268 | 0.0520683 0.994001 -0.096185 0.0602044 1269 | -0.85499 0.0941398 0.510029 -0.582466 1270 | -0 -0 0 1 1271 | 254 254 0 1272 | 0.490298 0.0541857 0.869869 -1.2333 1273 | 0.0481943 0.994853 -0.0891357 0.0515047 1274 | -0.870221 0.0856258 0.485163 -0.603026 1275 | -0 -0 0 1 1276 | 255 255 0 1277 | 0.485795 0.0321823 0.87348 -1.28976 1278 | 0.0472851 0.996891 -0.0630273 0.0352259 1279 | -0.872793 0.0719209 0.482762 -0.653225 1280 | -0 -0 0 1 1281 | 256 256 0 1282 | 0.560554 0.000768552 0.828118 -1.28702 1283 | 0.0408404 0.998757 -0.0285718 -0.0338705 1284 | -0.82711 0.0498367 0.559826 -0.702847 1285 | -0 -0 0 1 1286 | 257 257 0 1287 | 0.678921 -0.0109384 0.73413 -1.21352 1288 | 0.0358694 0.999189 -0.0182842 -0.065632 1289 | -0.733335 0.0387463 0.678763 -0.740479 1290 | -0 -0 0 1 1291 | 258 258 0 1292 | 0.694831 -0.00645815 0.719144 -1.18682 1293 | 0.0310111 0.999299 -0.0209886 -0.045945 1294 | -0.718504 0.036885 0.694544 -0.78659 1295 | -0 -0 0 1 1296 | 259 259 0 1297 | 0.661817 -0.00310285 0.749659 -1.20656 1298 | 0.0277137 0.999409 -0.0203298 -0.00248284 1299 | -0.749153 0.0342305 0.661512 -0.859404 1300 | -0 -0 0 1 1301 | 260 260 0 1302 | 0.591394 -0.00361708 0.806375 -1.24936 1303 | 0.0293981 0.999422 -0.0170775 0.0427053 1304 | -0.805847 0.0338055 0.591159 -0.940835 1305 | -0 -0 0 1 1306 | 261 261 0 1307 | 0.524946 -0.0226406 0.850835 -1.32684 1308 | 0.0268639 0.999589 0.0100245 0.0454883 1309 | -0.850712 0.0175944 0.525338 -1.02199 1310 | -0 -0 0 1 1311 | 262 262 0 1312 | 0.471509 -0.0879195 0.877468 -1.40557 1313 | 0.0237315 0.995922 0.0870361 0.0633838 1314 | -0.881542 -0.0202147 0.471673 -1.10442 1315 | -0 -0 0 1 1316 | 263 263 0 1317 | 0.409037 -0.192209 0.892045 -1.43429 1318 | 0.0160996 0.978932 0.203549 0.0692954 1319 | -0.912376 -0.0688973 0.403514 -1.08644 1320 | -0 -0 0 1 1321 | 264 264 0 1322 | 0.16527 -0.215502 0.962416 -1.39573 1323 | -0.00643276 0.975579 0.219554 0.068642 1324 | -0.986227 -0.0424767 0.159848 -1.02267 1325 | -0 -0 0 1 1326 | 265 265 0 1327 | 0.0129025 -0.0420417 0.999033 -1.37839 1328 | -0.0022113 0.999112 0.0420736 0.0293147 1329 | -0.999914 -0.00275202 0.0127981 -1.00014 1330 | -0 -0 0 1 1331 | 266 266 0 1332 | -0.0855129 0.0518348 0.994988 -1.39137 1333 | 0.0102156 0.998639 -0.051147 -0.00244455 1334 | -0.996285 0.00579064 -0.085926 -1.04926 1335 | -0 -0 0 1 1336 | 267 267 0 1337 | -0.0557775 0.220956 0.973687 -1.39051 1338 | 0.00281539 0.975237 -0.221146 -0.028823 1339 | -0.998439 -0.00959367 -0.0550184 -1.05127 1340 | -0 -0 0 1 1341 | 268 268 0 1342 | 0.225585 0.292997 0.92912 -1.40564 1343 | -0.00610795 0.95411 -0.299394 -0.0330941 1344 | -0.974204 0.0618637 0.217022 -1.13348 1345 | -0 -0 0 1 1346 | 269 269 0 1347 | 0.451619 0.259523 0.853632 -1.42602 1348 | 0.0170192 0.954081 -0.299065 -0.0124998 1349 | -0.892049 0.149592 0.426464 -1.2351 1350 | -0 -0 0 1 1351 | 270 270 0 1352 | 0.534558 0.186314 0.824339 -1.45288 1353 | 0.0450174 0.967735 -0.247916 0.00557297 1354 | -0.843932 0.169635 0.508923 -1.30633 1355 | -0 -0 0 1 1356 | 271 271 0 1357 | 0.684433 0.120046 0.719125 -1.4484 1358 | 0.0508119 0.976099 -0.211305 0.0105199 1359 | -0.727303 0.181164 0.661974 -1.42734 1360 | -0 -0 0 1 1361 | 272 272 0 1362 | 0.788271 0.0107892 0.615233 -1.43362 1363 | 0.0625215 0.993267 -0.0975247 0.0332949 1364 | -0.612143 0.115341 0.782289 -1.52453 1365 | -0 -0 0 1 1366 | 273 273 0 1367 | 0.879121 -0.0731634 0.470949 -1.39263 1368 | 0.0674528 0.9973 0.0290194 0.0336566 1369 | -0.4718 0.00625524 0.881683 -1.64314 1370 | -0 -0 0 1 1371 | 274 274 0 1372 | 0.922964 -0.112508 0.368074 -1.34011 1373 | 0.0599251 0.986666 0.151326 0.0346216 1374 | -0.380192 -0.117612 0.917399 -1.75004 1375 | -0 -0 0 1 1376 | 275 275 0 1377 | 0.945659 -0.0997101 0.309493 -1.24884 1378 | 0.0421132 0.981363 0.187491 0.0133057 1379 | -0.32242 -0.164269 0.932235 -1.85005 1380 | -0 -0 0 1 1381 | 276 276 0 1382 | 0.952192 -0.0740811 0.296382 -1.14395 1383 | 0.0191668 0.982729 0.184057 -0.0138983 1384 | -0.304898 -0.169577 0.937166 -1.85154 1385 | -0 -0 0 1 1386 | 277 277 0 1387 | 0.976814 -0.0111487 0.2138 -1.03866 1388 | 0.00420228 0.999449 0.0329175 -0.0699878 1389 | -0.214049 -0.0312558 0.976323 -1.84841 1390 | -0 -0 0 1 1391 | 278 278 0 1392 | 0.99921 0.0258983 0.0301528 -0.938155 1393 | -0.0211531 0.988725 -0.148243 -0.0843899 1394 | -0.0336521 0.147488 0.988491 -1.81725 1395 | -0 -0 0 1 1396 | 279 279 0 1397 | 0.998981 -0.00863183 -0.0442977 -0.837251 1398 | -0.00167489 0.973772 -0.22752 -0.0906046 1399 | 0.0450998 0.227363 0.972765 -1.76802 1400 | -0 -0 0 1 1401 | 280 280 0 1402 | 0.999716 -0.0222741 0.00842429 -0.748421 1403 | 0.0236945 0.965767 -0.258328 -0.0882995 1404 | -0.00238189 0.258454 0.966021 -1.71486 1405 | -0 -0 0 1 1406 | 281 281 0 1407 | 0.99645 -0.0205864 0.0816307 -0.676479 1408 | 0.0414309 0.964008 -0.262627 -0.0444318 1409 | -0.073286 0.265077 0.961438 -1.71041 1410 | -0 -0 0 1 1411 | 282 282 0 1412 | 0.999412 -0.0341696 0.00286222 -0.58081 1413 | 0.0337331 0.964797 -0.260822 0.00281658 1414 | 0.00615072 0.260765 0.965383 -1.78848 1415 | -0 -0 0 1 1416 | 283 283 0 1417 | 0.981467 -0.0758679 -0.175972 -0.452485 1418 | 0.0398253 0.978995 -0.199958 0.0277672 1419 | 0.187446 0.189244 0.963873 -1.83278 1420 | -0 -0 0 1 1421 | 284 284 0 1422 | 0.941353 -0.0850585 -0.326527 -0.341121 1423 | 0.0595297 0.994392 -0.0874138 0.0457903 1424 | 0.332131 0.0628492 0.941137 -1.87592 1425 | -0 -0 0 1 1426 | 285 285 0 1427 | 0.926289 -0.0761625 -0.369037 -0.227173 1428 | 0.0697598 0.997092 -0.0306832 0.0540367 1429 | 0.370301 0.00267752 0.928908 -1.93913 1430 | -0 -0 0 1 1431 | 286 286 0 1432 | 0.897798 -0.0661135 -0.435417 -0.14579 1433 | 0.0621251 0.997794 -0.023407 0.0735809 1434 | 0.436004 -0.00603562 0.899924 -1.98243 1435 | -0 -0 0 1 1436 | 287 287 0 1437 | 0.867364 -0.050272 -0.495129 -0.10782 1438 | 0.0497226 0.998661 -0.0142935 0.0671998 1439 | 0.495185 -0.0122214 0.868702 -1.99849 1440 | -0 -0 0 1 1441 | 288 288 0 1442 | 0.842096 -0.0484652 -0.537146 -0.0928497 1443 | 0.0394181 0.998821 -0.0283241 0.0499989 1444 | 0.537885 0.00267836 0.843014 -1.99987 1445 | -0 -0 0 1 1446 | 289 289 0 1447 | 0.880893 -0.0706861 -0.468008 -0.0853173 1448 | 0.0354844 0.995866 -0.0836224 0.048002 1449 | 0.471984 0.0570554 0.879759 -2.00119 1450 | -0 -0 0 1 1451 | 290 290 0 1452 | 0.940245 -0.068394 -0.333559 -0.0832527 1453 | 0.0373347 0.994421 -0.098659 0.0497564 1454 | 0.338446 0.0803103 0.937552 -2.00599 1455 | -0 -0 0 1 1456 | 291 291 0 1457 | 0.95971 -0.0751895 -0.270745 -0.0789363 1458 | 0.0357128 0.988359 -0.147889 0.0504851 1459 | 0.278713 0.132261 0.951223 -2.01057 1460 | -0 -0 0 1 1461 | 292 292 0 1462 | 0.962936 -0.074663 -0.25919 -0.119419 1463 | 0.0344853 0.987118 -0.156233 0.0512516 1464 | 0.267516 0.141504 0.953106 -2.0332 1465 | -0 -0 0 1 1466 | 293 293 0 1467 | 0.98293 -0.0630221 -0.172846 -0.241745 1468 | 0.0390512 0.98956 -0.138733 0.0529808 1469 | 0.179785 0.129615 0.975129 -2.13164 1470 | -0 -0 0 1 1471 | 294 294 0 1472 | 0.992315 -0.048361 -0.113892 -0.34153 1473 | 0.0397877 0.996284 -0.076382 0.0517629 1474 | 0.117163 0.0712636 0.990553 -2.22131 1475 | -0 -0 0 1 1476 | 295 295 0 1477 | 0.992652 -0.0409192 -0.113874 -0.358829 1478 | 0.0399959 0.999146 -0.0103822 0.0396408 1479 | 0.114202 0.00575142 0.993441 -2.30874 1480 | -0 -0 0 1 1481 | 296 296 0 1482 | 0.967552 -0.0462198 -0.248407 -0.369018 1483 | 0.031495 0.997521 -0.0629295 0.0291705 1484 | 0.2507 0.053064 0.966609 -2.3515 1485 | -0 -0 0 1 1486 | 297 297 0 1487 | 0.949118 -0.0814574 -0.304203 -0.365029 1488 | 0.0212955 0.980358 -0.196071 0.0410547 1489 | 0.3142 0.179617 0.93221 -2.37868 1490 | -0 -0 0 1 1491 | 298 298 0 1492 | 0.94423 -0.0940247 -0.315578 -0.371787 1493 | 0.0305002 0.97922 -0.200495 0.0482809 1494 | 0.327871 0.179688 0.927477 -2.37229 1495 | -0 -0 0 1 1496 | 299 299 0 1497 | 0.929896 -0.104079 -0.352789 -0.374905 1498 | 0.0372072 0.980828 -0.191288 0.0533307 1499 | 0.365935 0.164752 0.915941 -2.37071 1500 | -0 -0 0 1 1501 | 300 300 0 1502 | 0.944447 -0.0926965 -0.31532 -0.374779 1503 | 0.0481573 0.988078 -0.14623 0.0581205 1504 | 0.325116 0.122922 0.937651 -2.3693 1505 | -0 -0 0 1 1506 | -------------------------------------------------------------------------------- /dataloader/datalist/tanks/test.txt: -------------------------------------------------------------------------------- 1 | Family 2 | Francis 3 | Horse 4 | Lighthouse 5 | M60 6 | Panther 7 | Playground 8 | Train 9 | -------------------------------------------------------------------------------- /dataloader/mvs_dataset.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from torch.utils.data import Dataset 3 | 4 | from PIL import Image 5 | from utils.utils import read_pfm 6 | 7 | import numpy as np 8 | import cv2 9 | import glob 10 | import os, sys 11 | import re 12 | 13 | 14 | def scale_inputs(img, intrinsics, max_w, max_h, base=32): 15 | h, w = img.shape[:2] 16 | if h > max_h or w > max_w: 17 | scale = 1.0 * max_h / h 18 | if scale * w > max_w: 19 | scale = 1.0 * max_w / w 20 | new_w, new_h = scale * w // base * base, scale * h // base * base 21 | else: 22 | new_w, new_h = 1.0 * w // base * base, 1.0 * h // base * base 23 | 24 | scale_w = 1.0 * new_w / w 25 | scale_h = 1.0 * new_h / h 26 | intrinsics[0, :] *= scale_w 27 | intrinsics[1, :] *= scale_h 28 | img = cv2.resize(img, (int(new_w), int(new_h))) 29 | return img, intrinsics 30 | 31 | class MVSTrainSet(Dataset): 32 | def __init__(self, root_dir, data_list, lightings=range(7), num_views=4): 33 | super(MVSTrainSet, self).__init__() 34 | 35 | self.root_dir = root_dir 36 | scene_names = open(data_list, 'r').readlines() 37 | self.scene_names = list(map(lambda x: x.strip(), scene_names)) 38 | self.lightings = lightings 39 | self.num_views = num_views 40 | self.generate_pairs() 41 | 42 | def generate_pairs(self, ): 43 | data_pairs = [] 44 | pair_list = open('{}/Cameras/pair.txt'.format(self.root_dir), 'r').readlines() 45 | 46 | pair_list = list(map(lambda x: x.strip(), pair_list)) 47 | cnt = int(pair_list[0]) 48 | for i in range(cnt): 49 | ref_id = int(pair_list[i*2+1]) 50 | candidates = pair_list[i*2+2].split() 51 | 52 | nei_id = [int(candidates[2*j+1]) for j in range(self.num_views)] 53 | for scene_name in self.scene_names: 54 | for light in self.lightings: 55 | data_pairs.append({'scene_name': scene_name, 56 | 'frame_idx': [ref_id, ]+nei_id, 57 | 'light': light 58 | }) 59 | self.data_pairs = data_pairs 60 | 61 | def parse_cameras(self, path): 62 | cam_txt = open(path).readlines() 63 | f = lambda xs: list(map(lambda x: list(map(float, x.strip().split())), xs)) 64 | 65 | extr_mat = f(cam_txt[1:5]) 66 | intr_mat = f(cam_txt[7:10]) 67 | 68 | extr_mat = np.array(extr_mat, np.float32) 69 | intr_mat = np.array(intr_mat, np.float32) 70 | 71 | min_dep, delta = list(map(float, cam_txt[11].strip().split())) 72 | max_dep = 1.06 * 191.5 * delta + min_dep 73 | 74 | intr_mat[:2] *= 4. 75 | # note the loaded camera model is for 1/4 original resolution 76 | 77 | return extr_mat, intr_mat, min_dep, max_dep 78 | 79 | def load_depths(self, path): 80 | depth_s3 = np.array(read_pfm(path)[0], np.float32) 81 | h, w = depth_s3.shape 82 | depth_s2 = cv2.resize(depth_s3, (w//2, h//2), interpolation=cv2.INTER_NEAREST) 83 | depth_s1 = cv2.resize(depth_s3, (w//4, h//4), interpolation=cv2.INTER_NEAREST) 84 | return {'stage1': depth_s1, 'stage2': depth_s2, 'stage3': depth_s3} 85 | 86 | def make_masks(self, depths:dict, min_d, max_d): 87 | masks = {} 88 | for k, v in depths.items(): 89 | m = np.ones(v.shape, np.uint8) 90 | m[v>max_d] = 0 91 | m[v 0, 1, 0)) 110 | mask_image = np.reshape(mask_image, (image_shape[0], image_shape[1], 1)) 111 | mask_image = np.tile(mask_image, [1, 1, 3]) 112 | mask_image = np.float32(mask_image) 113 | 114 | normal_image = np.multiply(normal_image, mask_image) 115 | normal_image = np.float32(normal_image) 116 | 117 | write_gipuma_dmb(out_normal_path, normal_image) 118 | return 119 | 120 | def ucsnet_to_gipuma(dense_folder, gipuma_point_folder): 121 | 122 | image_folder = os.path.join(dense_folder, 'rgb') 123 | cam_folder = os.path.join(dense_folder, 'cam') 124 | depth_folder = os.path.join(dense_folder, 'depth') 125 | 126 | gipuma_cam_folder = os.path.join(gipuma_point_folder, 'cams') 127 | gipuma_image_folder = os.path.join(gipuma_point_folder, 'images') 128 | 129 | 130 | if not os.path.isdir(gipuma_point_folder): 131 | os.mkdir(gipuma_point_folder) 132 | if not os.path.isdir(gipuma_cam_folder): 133 | os.mkdir(gipuma_cam_folder) 134 | if not os.path.isdir(gipuma_image_folder): 135 | os.mkdir(gipuma_image_folder) 136 | 137 | # convert cameras 138 | image_names = os.listdir(image_folder) 139 | for image_name in image_names: 140 | image_prefix = os.path.splitext(image_name)[0] 141 | in_cam_file = os.path.join(cam_folder, 'cam_'+image_prefix+'.txt') 142 | out_cam_file = os.path.join(gipuma_cam_folder, image_name+'.P') 143 | ucsnet_to_gipuma_cam(in_cam_file, out_cam_file) 144 | 145 | # copy images to gipuma image folder 146 | image_names = os.listdir(image_folder) 147 | for image_name in image_names: 148 | in_image_file = os.path.join(image_folder, image_name) 149 | out_image_file = os.path.join(gipuma_image_folder, image_name) 150 | shutil.copyfile(in_image_file, out_image_file) 151 | 152 | # convert depth maps and fake normal maps 153 | gipuma_prefix = '2333__' 154 | for image_name in image_names: 155 | image_prefix = os.path.splitext(image_name)[0] 156 | sub_depth_folder = os.path.join(gipuma_point_folder, gipuma_prefix+image_prefix) 157 | if not os.path.isdir(sub_depth_folder): 158 | os.mkdir(sub_depth_folder) 159 | 160 | in_depth_pfm = os.path.join(depth_folder, image_prefix+'_prob_filtered.pfm') 161 | # 162 | out_depth_dmb = os.path.join(sub_depth_folder, 'disp.dmb') 163 | fake_normal_dmb = os.path.join(sub_depth_folder, 'normals.dmb') 164 | ucsnet_to_gipuma_dmb(in_depth_pfm, out_depth_dmb) 165 | fake_gipuma_normal(out_depth_dmb, fake_normal_dmb) 166 | 167 | def probability_filter(dense_folder, prob_threshold, s=3): 168 | ''' 169 | filter with stage 3. 170 | :param dense_folder: 171 | :param prob_threshold: 172 | :return: 173 | ''' 174 | image_folder = os.path.join(dense_folder, 'rgb') 175 | depth_folder = os.path.join(dense_folder, 'depth') 176 | conf_folder = os.path.join(dense_folder, 'confidence') 177 | 178 | # convert cameras 179 | image_names = os.listdir(image_folder) 180 | for image_name in image_names: 181 | image_prefix = os.path.splitext(image_name)[0] 182 | 183 | init_depth_map_path = os.path.join(depth_folder, 'dep_'+image_prefix+'_3.pfm') 184 | prob_map_path = os.path.join(conf_folder, 'conf_'+image_prefix+'_1.pfm') 185 | out_depth_map_path = os.path.join(depth_folder, image_prefix+'_prob_filtered.pfm') 186 | 187 | depth_map, _ = read_pfm(init_depth_map_path) 188 | prob_map, _ = read_pfm(prob_map_path) 189 | h, w = depth_map.shape 190 | 191 | prob_map = cv2.resize(prob_map, (w, h), interpolation=cv2.INTER_LINEAR) 192 | 193 | depth_map[prob_map < prob_threshold] = 0 194 | write_pfm(out_depth_map_path, depth_map) 195 | 196 | def depth_map_fusion(point_folder, fusibile_exe_path, disp_thresh, num_consistent): 197 | 198 | cam_folder = os.path.join(point_folder, 'cams') 199 | image_folder = os.path.join(point_folder, 'images') 200 | depth_min = 0.001 201 | depth_max = 100000 202 | normal_thresh = 360 203 | 204 | cmd = fusibile_exe_path 205 | cmd = cmd + ' -input_folder ' + point_folder + '/' 206 | cmd = cmd + ' -p_folder ' + cam_folder + '/' 207 | cmd = cmd + ' -images_folder ' + image_folder + '/' 208 | cmd = cmd + ' --depth_min=' + str(depth_min) 209 | cmd = cmd + ' --depth_max=' + str(depth_max) 210 | cmd = cmd + ' --normal_thresh=' + str(normal_thresh) 211 | cmd = cmd + ' --disp_thresh=' + str(disp_thresh) 212 | cmd = cmd + ' --num_consistent=' + str(num_consistent) 213 | print (cmd) 214 | os.system(cmd) 215 | 216 | return 217 | 218 | if __name__ == '__main__': 219 | parser = argparse.ArgumentParser() 220 | parser.add_argument('--dense_folder', type=str, default = '') 221 | parser.add_argument('--fusibile_exe_path', type=str, default = '') 222 | parser.add_argument('--prob_threshold', type=float, default = '0.8') 223 | parser.add_argument('--disp_threshold', type=float, default = '0.25') 224 | parser.add_argument('--num_consistent', type=float, default = '3') 225 | args = parser.parse_args() 226 | 227 | dense_folder = args.dense_folder 228 | fusibile_exe_path = args.fusibile_exe_path 229 | prob_threshold = args.prob_threshold 230 | disp_threshold = args.disp_threshold 231 | num_consistent = args.num_consistent 232 | 233 | point_folder = os.path.join(dense_folder, 'points_ucsnet') 234 | if not os.path.isdir(point_folder): 235 | os.mkdir(point_folder) 236 | 237 | # probability filter 238 | print ('filter depth map with probability map') 239 | probability_filter(dense_folder, prob_threshold) 240 | 241 | # convert to gipuma format 242 | print ('Convert ucsnet output to gipuma input') 243 | ucsnet_to_gipuma(dense_folder, point_folder) 244 | 245 | # depth map fusion with gipuma 246 | print ('Run depth map fusion & filter') 247 | depth_map_fusion(point_folder, fusibile_exe_path, disp_threshold, num_consistent) 248 | -------------------------------------------------------------------------------- /networks/submodules.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | import torch.nn.functional as F 4 | 5 | eps = 1e-12 6 | 7 | def homo_warping(src_fea, src_proj, ref_proj, depth_values): 8 | # src_fea: [B, C, H, W] 9 | # src_proj: [B, 4, 4] 10 | # ref_proj: [B, 4, 4] 11 | # depth_values: [B, Ndepth] o [B, Ndepth, H, W] 12 | # out: [B, C, Ndepth, H, W] 13 | batch, channels = src_fea.shape[0], src_fea.shape[1] 14 | num_depth = depth_values.shape[1] 15 | height, width = src_fea.shape[2], src_fea.shape[3] 16 | 17 | with torch.no_grad(): 18 | proj = torch.matmul(src_proj, torch.inverse(ref_proj)) 19 | rot = proj[:, :3, :3] # [B,3,3] 20 | trans = proj[:, :3, 3:4] # [B,3,1] 21 | 22 | y, x = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device=src_fea.device), 23 | torch.arange(0, width, dtype=torch.float32, device=src_fea.device)]) 24 | y, x = y.contiguous(), x.contiguous() 25 | y, x = y.view(height * width), x.view(height * width) 26 | xyz = torch.stack((x, y, torch.ones_like(x))) # [3, H*W] 27 | xyz = torch.unsqueeze(xyz, 0).repeat(batch, 1, 1) # [B, 3, H*W] 28 | rot_xyz = torch.matmul(rot, xyz) # [B, 3, H*W] 29 | rot_depth_xyz = rot_xyz.unsqueeze(2).repeat(1, 1, num_depth, 1) * depth_values.view(batch, 1, num_depth, 30 | -1) # [B, 3, Ndepth, H*W] 31 | proj_xyz = rot_depth_xyz + trans.view(batch, 3, 1, 1) # [B, 3, Ndepth, H*W] 32 | proj_xy = proj_xyz[:, :2, :, :] / proj_xyz[:, 2:3, :, :] # [B, 2, Ndepth, H*W] 33 | proj_x_normalized = proj_xy[:, 0, :, :] / ((width - 1) / 2) - 1 34 | proj_y_normalized = proj_xy[:, 1, :, :] / ((height - 1) / 2) - 1 35 | proj_xy = torch.stack((proj_x_normalized, proj_y_normalized), dim=3) # [B, Ndepth, H*W, 2] 36 | grid = proj_xy 37 | 38 | warped_src_fea = F.grid_sample(src_fea, grid.view(batch, num_depth * height, width, 2), mode='bilinear', 39 | padding_mode='zeros') 40 | warped_src_fea = warped_src_fea.view(batch, channels, num_depth, height, width) 41 | 42 | return warped_src_fea 43 | 44 | def uncertainty_aware_samples(cur_depth, exp_var, ndepth, device, dtype, shape): 45 | if cur_depth.dim() == 2: 46 | #must be the first stage 47 | cur_depth_min = cur_depth[:, 0] # (B,) 48 | cur_depth_max = cur_depth[:, -1] 49 | new_interval = (cur_depth_max - cur_depth_min) / (ndepth - 1) # (B, ) 50 | depth_range_samples = cur_depth_min.unsqueeze(1) + (torch.arange(0, ndepth, device=device, dtype=dtype, 51 | requires_grad=False).reshape(1, -1) * new_interval.unsqueeze(1)) # (B, D) 52 | depth_range_samples = depth_range_samples.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, shape[1], shape[2]) # (B, D, H, W) 53 | else: 54 | low_bound = -torch.min(cur_depth, exp_var) 55 | high_bound = exp_var 56 | 57 | # assert exp_var.min() >= 0, exp_var.min() 58 | assert ndepth > 1 59 | 60 | step = (high_bound - low_bound) / (float(ndepth) - 1) 61 | new_samps = [] 62 | for i in range(int(ndepth)): 63 | new_samps.append(cur_depth + low_bound + step * i + eps) 64 | 65 | depth_range_samples = torch.cat(new_samps, 1) 66 | # assert depth_range_samples.min() >= 0, depth_range_samples.min() 67 | return depth_range_samples 68 | 69 | def depth_regression(p, depth_values): 70 | if depth_values.dim() <= 2: 71 | # print("regression dim <= 2") 72 | depth_values = depth_values.view(*depth_values.shape, 1, 1) 73 | depth = torch.sum(p * depth_values, 1) 74 | return depth 75 | 76 | class Conv2dUnit(nn.Module): 77 | """Applies a 2D convolution (optionally with batch normalization and relu activation) 78 | over an input signal composed of several input planes. 79 | 80 | Attributes: 81 | conv (nn.Module): convolution module 82 | bn (nn.Module): batch normalization module 83 | relu (bool): whether to activate by relu 84 | 85 | Notes: 86 | Default momentum for batch normalization is set to be 0.01, 87 | 88 | """ 89 | 90 | def __init__(self, in_channels, out_channels, kernel_size, stride=1, 91 | relu=True, bn=True, bn_momentum=0.1, **kwargs): 92 | super(Conv2dUnit, self).__init__() 93 | 94 | self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, 95 | bias=(not bn), **kwargs) 96 | self.kernel_size = kernel_size 97 | self.stride = stride 98 | self.bn = nn.BatchNorm2d(out_channels, momentum=bn_momentum) if bn else None 99 | self.relu = relu 100 | 101 | def forward(self, x): 102 | x = self.conv(x) 103 | if self.bn is not None: 104 | x = self.bn(x) 105 | if self.relu: 106 | x = F.relu(x, inplace=True) 107 | return x 108 | 109 | class Deconv2dUnit(nn.Module): 110 | """Applies a 2D deconvolution (optionally with batch normalization and relu activation) 111 | over an input signal composed of several input planes. 112 | 113 | Attributes: 114 | conv (nn.Module): convolution module 115 | bn (nn.Module): batch normalization module 116 | relu (bool): whether to activate by relu 117 | 118 | Notes: 119 | Default momentum for batch normalization is set to be 0.01, 120 | 121 | """ 122 | 123 | def __init__(self, in_channels, out_channels, kernel_size, stride=1, 124 | relu=True, bn=True, bn_momentum=0.1, **kwargs): 125 | super(Deconv2dUnit, self).__init__() 126 | self.out_channels = out_channels 127 | assert stride in [1, 2] 128 | self.stride = stride 129 | 130 | self.conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, 131 | bias=(not bn), **kwargs) 132 | self.bn = nn.BatchNorm2d(out_channels, momentum=bn_momentum) if bn else None 133 | self.relu = relu 134 | 135 | def forward(self, x): 136 | y = self.conv(x) 137 | if self.stride == 2: 138 | h, w = list(x.size())[2:] 139 | y = y[:, :, :2 * h, :2 * w].contiguous() 140 | if self.bn is not None: 141 | x = self.bn(y) 142 | if self.relu: 143 | x = F.relu(x, inplace=True) 144 | return x 145 | 146 | class Conv3dUnit(nn.Module): 147 | """Applies a 3D convolution (optionally with batch normalization and relu activation) 148 | over an input signal composed of several input planes. 149 | 150 | Attributes: 151 | conv (nn.Module): convolution module 152 | bn (nn.Module): batch normalization module 153 | relu (bool): whether to activate by relu 154 | 155 | Notes: 156 | Default momentum for batch normalization is set to be 0.01, 157 | 158 | """ 159 | 160 | def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, 161 | relu=True, bn=True, bn_momentum=0.1, init_method="xavier", **kwargs): 162 | super(Conv3dUnit, self).__init__() 163 | self.out_channels = out_channels 164 | self.kernel_size = kernel_size 165 | assert stride in [1, 2] 166 | self.stride = stride 167 | 168 | self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, 169 | bias=(not bn), **kwargs) 170 | self.bn = nn.BatchNorm3d(out_channels, momentum=bn_momentum) if bn else None 171 | self.relu = relu 172 | 173 | def forward(self, x): 174 | x = self.conv(x) 175 | if self.bn is not None: 176 | x = self.bn(x) 177 | if self.relu: 178 | x = F.relu(x, inplace=True) 179 | return x 180 | 181 | class Deconv3dUnit(nn.Module): 182 | """Applies a 3D deconvolution (optionally with batch normalization and relu activation) 183 | over an input signal composed of several input planes. 184 | 185 | Attributes: 186 | conv (nn.Module): convolution module 187 | bn (nn.Module): batch normalization module 188 | relu (bool): whether to activate by relu 189 | 190 | Notes: 191 | Default momentum for batch normalization is set to be 0.01, 192 | 193 | """ 194 | 195 | def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, 196 | relu=True, bn=True, bn_momentum=0.1, init_method="xavier", **kwargs): 197 | super(Deconv3dUnit, self).__init__() 198 | self.out_channels = out_channels 199 | assert stride in [1, 2] 200 | self.stride = stride 201 | 202 | self.conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, 203 | bias=(not bn), **kwargs) 204 | self.bn = nn.BatchNorm3d(out_channels, momentum=bn_momentum) if bn else None 205 | self.relu = relu 206 | 207 | def forward(self, x): 208 | y = self.conv(x) 209 | if self.bn is not None: 210 | x = self.bn(y) 211 | if self.relu: 212 | x = F.relu(x, inplace=True) 213 | return x 214 | 215 | class Deconv2dBlock(nn.Module): 216 | def __init__(self, in_channels, out_channels, kernel_size, relu=True, bn=True, 217 | bn_momentum=0.1): 218 | super(Deconv2dBlock, self).__init__() 219 | 220 | self.deconv = Deconv2dUnit(in_channels, out_channels, kernel_size, stride=2, padding=1, output_padding=1, 221 | bn=True, relu=relu, bn_momentum=bn_momentum) 222 | 223 | self.conv = Conv2dUnit(2 * out_channels, out_channels, kernel_size, stride=1, padding=1, 224 | bn=bn, relu=relu, bn_momentum=bn_momentum) 225 | 226 | def forward(self, x_pre, x): 227 | x = self.deconv(x) 228 | x = torch.cat((x, x_pre), dim=1) 229 | x = self.conv(x) 230 | return x 231 | 232 | class FeatExtNet(nn.Module): 233 | def __init__(self, base_channels, num_stage=3,): 234 | super(FeatExtNet, self).__init__() 235 | 236 | self.base_channels = base_channels 237 | self.num_stage = num_stage 238 | 239 | self.conv0 = nn.Sequential( 240 | Conv2dUnit(3, base_channels, 3, 1, padding=1), 241 | Conv2dUnit(base_channels, base_channels, 3, 1, padding=1), 242 | ) 243 | 244 | self.conv1 = nn.Sequential( 245 | Conv2dUnit(base_channels, base_channels * 2, 5, stride=2, padding=2), 246 | Conv2dUnit(base_channels * 2, base_channels * 2, 3, 1, padding=1), 247 | Conv2dUnit(base_channels * 2, base_channels * 2, 3, 1, padding=1), 248 | ) 249 | 250 | self.conv2 = nn.Sequential( 251 | Conv2dUnit(base_channels * 2, base_channels * 4, 5, stride=2, padding=2), 252 | Conv2dUnit(base_channels * 4, base_channels * 4, 3, 1, padding=1), 253 | Conv2dUnit(base_channels * 4, base_channels * 4, 3, 1, padding=1), 254 | ) 255 | 256 | self.out1 = nn.Conv2d(base_channels * 4, base_channels * 4, 1, bias=False) 257 | self.out_channels = [4 * base_channels] 258 | 259 | if num_stage == 3: 260 | self.deconv1 = Deconv2dBlock(base_channels * 4, base_channels * 2, 3) 261 | self.deconv2 = Deconv2dBlock(base_channels * 2, base_channels, 3) 262 | 263 | self.out2 = nn.Conv2d(base_channels * 2, base_channels * 2, 1, bias=False) 264 | self.out3 = nn.Conv2d(base_channels, base_channels, 1, bias=False) 265 | self.out_channels.append(2 * base_channels) 266 | self.out_channels.append(base_channels) 267 | 268 | elif num_stage == 2: 269 | self.deconv1 = Deconv2dBlock(base_channels * 4, base_channels * 2, 3) 270 | 271 | self.out2 = nn.Conv2d(base_channels * 2, base_channels * 2, 1, bias=False) 272 | self.out_channels.append(2 * base_channels) 273 | 274 | def forward(self, x): 275 | conv0 = self.conv0(x) 276 | conv1 = self.conv1(conv0) 277 | conv2 = self.conv2(conv1) 278 | intra_feat = conv2 279 | outputs = {} 280 | out = self.out1(intra_feat) 281 | 282 | outputs["stage1"] = out 283 | if self.num_stage == 3: 284 | intra_feat = self.deconv1(conv1, intra_feat) 285 | out = self.out2(intra_feat) 286 | outputs["stage2"] = out 287 | 288 | intra_feat = self.deconv2(conv0, intra_feat) 289 | out = self.out3(intra_feat) 290 | outputs["stage3"] = out 291 | 292 | elif self.num_stage == 2: 293 | intra_feat = self.deconv1(conv1, intra_feat) 294 | out = self.out2(intra_feat) 295 | outputs["stage2"] = out 296 | 297 | return outputs 298 | 299 | class CostRegNet(nn.Module): 300 | def __init__(self, in_channels, base_channels): 301 | super(CostRegNet, self).__init__() 302 | self.conv0 = Conv3dUnit(in_channels, base_channels, padding=1) 303 | 304 | self.conv1 = Conv3dUnit(base_channels, base_channels * 2, stride=2, padding=1) 305 | self.conv2 = Conv3dUnit(base_channels * 2, base_channels * 2, padding=1) 306 | 307 | self.conv3 = Conv3dUnit(base_channels * 2, base_channels * 4, stride=2, padding=1) 308 | self.conv4 = Conv3dUnit(base_channels * 4, base_channels * 4, padding=1) 309 | 310 | self.conv5 = Conv3dUnit(base_channels * 4, base_channels * 8, stride=2, padding=1) 311 | self.conv6 = Conv3dUnit(base_channels * 8, base_channels * 8, padding=1) 312 | 313 | self.deconv7 = Deconv3dUnit(base_channels * 8, base_channels * 4, stride=2, padding=1, output_padding=1) 314 | 315 | self.deconv8 = Deconv3dUnit(base_channels * 4, base_channels * 2, stride=2, padding=1, output_padding=1) 316 | 317 | self.deconv9 = Deconv3dUnit(base_channels * 2, base_channels * 1, stride=2, padding=1, output_padding=1) 318 | 319 | self.prob = nn.Conv3d(base_channels, 1, 3, stride=1, padding=1, bias=False) 320 | 321 | def forward(self, x): 322 | conv0 = self.conv0(x) 323 | conv2 = self.conv2(self.conv1(conv0)) 324 | conv4 = self.conv4(self.conv3(conv2)) 325 | x = self.conv6(self.conv5(conv4)) 326 | x = conv4 + self.deconv7(x) 327 | x = conv2 + self.deconv8(x) 328 | x = conv0 + self.deconv9(x) 329 | x = self.prob(x) 330 | return x 331 | 332 | -------------------------------------------------------------------------------- /networks/ucsnet.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | import torch.nn.functional as F 4 | from .submodules import * 5 | 6 | 7 | def compute_depth(feats, proj_mats, depth_samps, cost_reg, lamb, is_training=False): 8 | ''' 9 | 10 | :param feats: [(B, C, H, W), ] * num_views 11 | :param proj_mats: [()] 12 | :param depth_samps: 13 | :param cost_reg: 14 | :param lamb: 15 | :return: 16 | ''' 17 | 18 | proj_mats = torch.unbind(proj_mats, 1) 19 | num_views = len(feats) 20 | num_depth = depth_samps.shape[1] 21 | 22 | assert len(proj_mats) == num_views, "Different number of images and projection matrices" 23 | 24 | ref_feat, src_feats = feats[0], feats[1:] 25 | ref_proj, src_projs = proj_mats[0], proj_mats[1:] 26 | 27 | ref_volume = ref_feat.unsqueeze(2).repeat(1, 1, num_depth, 1, 1) 28 | volume_sum = ref_volume 29 | volume_sq_sum = ref_volume ** 2 30 | del ref_volume 31 | 32 | #todo optimize impl 33 | for src_fea, src_proj in zip(src_feats, src_projs): 34 | src_proj_new = src_proj[:, 0].clone() 35 | src_proj_new[:, :3, :4] = torch.matmul(src_proj[:, 1, :3, :3], src_proj[:, 0, :3, :4]) 36 | 37 | ref_proj_new = ref_proj[:, 0].clone() 38 | ref_proj_new[:, :3, :4] = torch.matmul(ref_proj[:, 1, :3, :3], ref_proj[:, 0, :3, :4]) 39 | warped_volume = homo_warping(src_fea, src_proj_new, ref_proj_new, depth_samps) 40 | 41 | if is_training: 42 | volume_sum = volume_sum + warped_volume 43 | volume_sq_sum = volume_sq_sum + warped_volume ** 2 44 | else: 45 | volume_sum += warped_volume 46 | volume_sq_sum += warped_volume.pow_(2) #in_place method 47 | del warped_volume 48 | volume_variance = volume_sq_sum.div_(num_views).sub_(volume_sum.div_(num_views).pow_(2)) 49 | 50 | prob_volume_pre = cost_reg(volume_variance).squeeze(1) 51 | prob_volume = F.softmax(prob_volume_pre, dim=1) 52 | depth = depth_regression(prob_volume, depth_values=depth_samps) 53 | 54 | with torch.no_grad(): 55 | prob_volume_sum4 = 4 * F.avg_pool3d(F.pad(prob_volume.unsqueeze(1), pad=(0, 0, 0, 0, 1, 2)), (4, 1, 1), 56 | stride=1, padding=0).squeeze(1) 57 | depth_index = depth_regression(prob_volume, depth_values=torch.arange(num_depth, device=prob_volume.device, 58 | dtype=torch.float)).long() 59 | depth_index = depth_index.clamp(min=0, max=num_depth - 1) 60 | prob_conf = torch.gather(prob_volume_sum4, 1, depth_index.unsqueeze(1)).squeeze(1) 61 | 62 | samp_variance = (depth_samps - depth.unsqueeze(1)) ** 2 63 | exp_variance = lamb * torch.sum(samp_variance * prob_volume, dim=1, keepdim=False) ** 0.5 64 | 65 | return {"depth": depth, "confidence": prob_conf, 'variance': exp_variance} 66 | 67 | class UCSNet(nn.Module): 68 | def __init__(self, lamb=1.5, stage_configs=[64, 32, 8], grad_method="detach", base_chs=[8, 8, 8], feat_ext_ch=8): 69 | super(UCSNet, self).__init__() 70 | 71 | self.stage_configs = stage_configs 72 | self.grad_method = grad_method 73 | self.base_chs = base_chs 74 | self.lamb = lamb 75 | self.num_stage = len(stage_configs) 76 | self.ds_ratio = {"stage1": 4.0, 77 | "stage2": 2.0, 78 | "stage3": 1.0 79 | } 80 | 81 | self.feature_extraction = FeatExtNet(base_channels=feat_ext_ch, num_stage=self.num_stage,) 82 | 83 | self.cost_regularization = nn.ModuleList([CostRegNet(in_channels=self.feature_extraction.out_channels[i], 84 | base_channels=self.base_chs[i]) for i in range(self.num_stage)]) 85 | 86 | def forward(self, imgs, proj_matrices, depth_values): 87 | features = [] 88 | for nview_idx in range(imgs.shape[1]): 89 | img = imgs[:, nview_idx] 90 | features.append(self.feature_extraction(img)) 91 | 92 | outputs = {} 93 | depth, cur_depth, exp_var = None, None, None 94 | for stage_idx in range(self.num_stage): 95 | features_stage = [feat["stage{}".format(stage_idx + 1)] for feat in features] 96 | proj_matrices_stage = proj_matrices["stage{}".format(stage_idx + 1)] 97 | stage_scale = self.ds_ratio["stage{}".format(stage_idx + 1)] 98 | cur_h = img.shape[2] // int(stage_scale) 99 | cur_w = img.shape[3] // int(stage_scale) 100 | 101 | if depth is not None: 102 | if self.grad_method == "detach": 103 | cur_depth = depth.detach() 104 | exp_var = exp_var.detach() 105 | else: 106 | cur_depth = depth 107 | 108 | cur_depth = F.interpolate(cur_depth.unsqueeze(1), 109 | [cur_h, cur_w], mode='bilinear') 110 | exp_var = F.interpolate(exp_var.unsqueeze(1), [cur_h, cur_w], mode='bilinear') 111 | 112 | else: 113 | cur_depth = depth_values 114 | 115 | depth_range_samples = uncertainty_aware_samples(cur_depth=cur_depth, 116 | exp_var=exp_var, 117 | ndepth=self.stage_configs[stage_idx], 118 | dtype=img[0].dtype, 119 | device=img[0].device, 120 | shape=[img.shape[0], cur_h, cur_w]) 121 | 122 | outputs_stage = compute_depth(features_stage, proj_matrices_stage, 123 | depth_samps=depth_range_samples, 124 | cost_reg=self.cost_regularization[stage_idx], 125 | lamb=self.lamb, 126 | is_training=self.training) 127 | 128 | depth = outputs_stage['depth'] 129 | exp_var = outputs_stage['variance'] 130 | 131 | outputs["stage{}".format(stage_idx + 1)] = outputs_stage 132 | 133 | return outputs 134 | 135 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | torch==1.2 2 | torchvision==0.2.0 3 | numpy 4 | pillow 5 | tensorboardX 6 | opencv-python 7 | -------------------------------------------------------------------------------- /results/dtu.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/touristCheng/UCSNet/a1361810f47b420941a1e7b32e24f37c305f0953/results/dtu.png -------------------------------------------------------------------------------- /scripts/fuse_dtu.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | 3 | exe_path="/home/shuocheng/fusibile/fusibile" 4 | root_path="/new1/shuocheng/dtu_results" 5 | target_path="/new1/shuocheng/dtu_points" 6 | 7 | 8 | 9 | declare -a arr=(1 4 9 10 11 12 13 15 23 24 29 32 33 34 48 49 62 75 77 110 114 118) 10 | 11 | for i in ${arr[@]}; do 12 | scene_path="$root_path/scan$i" 13 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold 0.6 --disp_threshold 0.25 --num_consistent 3 14 | done 15 | 16 | python utils/collect_pointclouds.py --root_dir $root_path --target_dir $target_path --dataset "dtu" -------------------------------------------------------------------------------- /scripts/fuse_tanks.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | 3 | exe_path="/home/shuocheng/fusibile/fusibile" 4 | root_path="/new1/shuocheng/tanks_results" 5 | target_path="/new1/shuocheng/tanks_points" 6 | 7 | root_path="/cephfs/shuocheng/tanks_results" 8 | target_path="/cephfs/shuocheng/tanks_points" 9 | 10 | 11 | 12 | 13 | scene_path="$root_path/Family" 14 | disp=0.25 15 | num_const=4 16 | prob=0.6 17 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold $prob --disp_threshold $disp --num_consistent $num_const 18 | 19 | 20 | scene_path="$root_path/Horse" 21 | disp=0.25 22 | num_const=4 23 | prob=0.6 24 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold $prob --disp_threshold $disp --num_consistent $num_const 25 | 26 | 27 | scene_path="$root_path/Francis" 28 | disp=0.2 29 | num_const=7 30 | prob=0.6 31 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold $prob --disp_threshold $disp --num_consistent $num_const 32 | 33 | 34 | scene_path="$root_path/Lighthouse" 35 | disp=0.3 36 | num_const=5 37 | prob=0.6 38 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold $prob --disp_threshold $disp --num_consistent $num_const 39 | 40 | scene_path="$root_path/M60" 41 | disp=0.25 42 | num_const=4 43 | prob=0.6 44 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold $prob --disp_threshold $disp --num_consistent $num_const 45 | 46 | 47 | scene_path="$root_path/Panther" 48 | disp=0.2 49 | num_const=4 50 | prob=0.6 51 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold $prob --disp_threshold $disp --num_consistent $num_const 52 | 53 | 54 | scene_path="$root_path/Playground" 55 | disp=0.25 56 | num_const=5 57 | prob=0.6 58 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold $prob --disp_threshold $disp --num_consistent $num_const 59 | 60 | 61 | scene_path="$root_path/Train" 62 | disp=0.25 63 | num_const=5 64 | prob=0.6 65 | CUDA_VISIBLE_DEVICES=0 python depthfusion.py --dense_folder $scene_path --fusibile_exe_path $exe_path --prob_threshold $prob --disp_threshold $disp --num_consistent $num_const 66 | 67 | 68 | 69 | python utils/collect_pointclouds.py --root_dir $root_path --target_dir $target_path --dataset "tanks" -------------------------------------------------------------------------------- /scripts/test_on_dtu.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | 3 | 4 | save_path="/new1/shuocheng/dtu_results" 5 | test_list="./dataloader/datalist/dtu/test.txt" 6 | root_path="/new1/shuocheng/dtu/mvs_eval/dtu" 7 | 8 | 9 | 10 | CUDA_VISIBLE_DEVICES=0 python test.py --root_path $root_path --test_list $test_list --save_path $save_path --max_h 1200 --max_w 1600 11 | -------------------------------------------------------------------------------- /scripts/test_on_tanks.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | 3 | 4 | #save_path="/new1/shuocheng/tanks_results" 5 | #test_list="./dataloader/datalist/tanks/test.txt" 6 | #root_path="/new1/shuocheng/tankandtemples" 7 | 8 | save_path="/cephfs/shuocheng/tanks_results" 9 | test_list="./dataloader/datalist/tanks/test.txt" 10 | root_path="/cephfs/shuocheng/tankandtemples/intermediate" 11 | 12 | CUDA_VISIBLE_DEVICES=0 python test.py --root_path $root_path --test_list $test_list --save_path $save_path --max_h 1080 --max_w 1920 13 | -------------------------------------------------------------------------------- /scripts/train.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | 3 | root_path="/cephfs/shuocheng/mvs_training/dtu" 4 | 5 | root_path="/new1/shuocheng/dtu/mvs_training/dtu" 6 | 7 | save_path="./training_$(date +"%F-%T")" 8 | num_gpus=$1 9 | batch=2 10 | 11 | mkdir -p $save_path 12 | 13 | python -m torch.distributed.launch --nproc_per_node=$num_gpus train.py --root_path=$root_path --save_path $save_path \ 14 | --batch_size $batch --epochs 60 --lr 0.0016 --lr_idx "20,30,40,50:0.625" --loss_weights "0.5,1.0,2.0" \ 15 | --net_configs "64,32,8" --num_views 2 --lamb 1.5 --sync_bn | tee -a $save_path/log.txt 16 | -------------------------------------------------------------------------------- /test.py: -------------------------------------------------------------------------------- 1 | 2 | import torch 3 | import torch.nn as nn 4 | import torch.nn.parallel 5 | from torch.utils.data import DataLoader 6 | import torch.backends.cudnn as cudnn 7 | 8 | from dataloader.mvs_dataset import MVSTestSet 9 | from networks.ucsnet import UCSNet 10 | from utils.utils import dict2cuda, dict2numpy, mkdir_p, save_cameras, write_pfm 11 | 12 | import numpy as np 13 | import argparse, os, time, gc, cv2 14 | from PIL import Image 15 | import os.path as osp 16 | from collections import * 17 | import sys 18 | 19 | cudnn.benchmark = True 20 | 21 | parser = argparse.ArgumentParser(description='Test UCSNet.') 22 | 23 | parser.add_argument('--root_path', type=str, help='path to root directory.') 24 | parser.add_argument('--test_list', type=str, help='testing scene list.') 25 | parser.add_argument('--save_path', type=str, help='path to save depth maps.') 26 | 27 | #test parameters 28 | parser.add_argument('--max_h', type=int, help='image height', default=1080) 29 | parser.add_argument('--max_w', type=int, help='image width', default=1920) 30 | parser.add_argument('--num_views', type=int, help='num of candidate views', default=3) 31 | parser.add_argument('--lamb', type=float, help='the interval coefficient.', default=1.5) 32 | parser.add_argument('--net_configs', type=str, help='number of samples for each stage.', default='64,32,8') 33 | parser.add_argument('--ckpt', type=str, help='the path for pre-trained model.', default='./checkpoints/model.ckpt') 34 | 35 | args = parser.parse_args() 36 | 37 | 38 | def main(args): 39 | # dataset, dataloader 40 | testset = MVSTestSet(root_dir=args.root_path, data_list=args.test_list, 41 | max_h=args.max_h, max_w=args.max_w, num_views=args.num_views) 42 | test_loader = DataLoader(testset, 1, shuffle=False, num_workers=4, drop_last=False) 43 | 44 | # build model 45 | model = UCSNet(stage_configs=list(map(int, args.net_configs.split(","))), 46 | lamb=args.lamb) 47 | 48 | # load checkpoint file specified by args.loadckpt 49 | print("Loading model {} ...".format(args.ckpt)) 50 | state_dict = torch.load(args.ckpt, map_location=torch.device("cpu")) 51 | model.load_state_dict(state_dict['model'], strict=True) 52 | print('Success!') 53 | 54 | model = nn.DataParallel(model) 55 | model.cuda() 56 | model.eval() 57 | 58 | tim_cnt = 0 59 | 60 | for batch_idx, sample in enumerate(test_loader): 61 | scene_name = sample["scene_name"][0] 62 | frame_idx = sample["frame_idx"][0][0] 63 | scene_path = osp.join(args.save_path, scene_name) 64 | 65 | print('Process data ...') 66 | sample_cuda = dict2cuda(sample) 67 | 68 | print('Testing {} frame {} ...'.format(scene_name, frame_idx)) 69 | start_time = time.time() 70 | outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"]) 71 | end_time = time.time() 72 | 73 | outputs = dict2numpy(outputs) 74 | del sample_cuda 75 | 76 | tim_cnt += (end_time - start_time) 77 | 78 | print('Finished {}/{}, time: {:.2f}s ({:.2f}s/frame).'.format(batch_idx+1, len(test_loader), end_time-start_time, 79 | tim_cnt / (batch_idx + 1.))) 80 | 81 | rgb_path = osp.join(scene_path, 'rgb') 82 | mkdir_p(rgb_path) 83 | depth_path = osp.join(scene_path, 'depth') 84 | mkdir_p(depth_path) 85 | cam_path = osp.join(scene_path, 'cam') 86 | mkdir_p(cam_path) 87 | conf_path = osp.join(scene_path, 'confidence') 88 | mkdir_p(conf_path) 89 | 90 | 91 | ref_img = sample["imgs"][0, 0].numpy().transpose(1, 2, 0) * 255 92 | ref_img = np.clip(ref_img, 0, 255).astype(np.uint8) 93 | Image.fromarray(ref_img).save(rgb_path+'/{:08d}.png'.format(frame_idx)) 94 | 95 | cam = sample["proj_matrices"]["stage3"][0, 0].numpy() 96 | save_cameras(cam, cam_path+'/cam_{:08d}.txt'.format(frame_idx)) 97 | 98 | for stage_id in range(3): 99 | cur_res = outputs["stage{}".format(stage_id+1)] 100 | cur_dep = cur_res["depth"][0] 101 | cur_conf = cur_res["confidence"][0] 102 | 103 | write_pfm(depth_path+"/dep_{:08d}_{}.pfm".format(frame_idx, stage_id+1), cur_dep) 104 | write_pfm(conf_path+'/conf_{:08d}_{}.pfm'.format(frame_idx, stage_id+1), cur_conf) 105 | 106 | print('Saved results for {}/{} (resolution: {})'.format(scene_name, frame_idx, cur_dep.shape)) 107 | 108 | torch.cuda.empty_cache() 109 | gc.collect() 110 | 111 | if __name__ == '__main__': 112 | with torch.no_grad(): 113 | main(args) -------------------------------------------------------------------------------- /train.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | import torch.backends.cudnn as cudnn 4 | import torch.optim as optim 5 | import torch.distributed as dist 6 | from torch.utils.data import DataLoader 7 | import torch.nn.functional as F 8 | 9 | from tensorboardX import SummaryWriter 10 | from dataloader.mvs_dataset import MVSTrainSet, MVSTestSet 11 | from networks.ucsnet import UCSNet 12 | from utils.utils import * 13 | 14 | import argparse, os, sys, time, gc, datetime 15 | import os.path as osp 16 | 17 | cudnn.benchmark = True 18 | num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 19 | is_distributed = num_gpus > 1 20 | 21 | 22 | parser = argparse.ArgumentParser(description='Deep stereo using adaptive cost volume.') 23 | parser.add_argument('--root_path', type=str, help='path to root directory.') 24 | parser.add_argument('--train_list', type=str, help='train scene list.', default='./dataloader/datalist/dtu/train.txt') 25 | parser.add_argument('--val_list', type=str, help='val scene list.', default='./dataloader/datalist/dtu/val.txt') 26 | parser.add_argument('--save_path', type=str, help='path to save checkpoints.') 27 | 28 | parser.add_argument('--epochs', type=int, default=60) 29 | parser.add_argument('--lr', type=float, default=0.0016) 30 | parser.add_argument('--lr_idx', type=str, default="10,12,14:0.5") 31 | parser.add_argument('--loss_weights', type=str, default="0.5,1.0,2.0") 32 | parser.add_argument('--wd', type=float, default=0.0, help='weight decay') 33 | parser.add_argument('--batch_size', type=int, default=1) 34 | 35 | parser.add_argument('--num_views', type=int, help='num of candidate views', default=2) 36 | parser.add_argument('--lamb', type=float, help='the interval coefficient.', default=1.5) 37 | parser.add_argument('--net_configs', type=str, help='number of samples for each stage.', default='64,32,8') 38 | 39 | parser.add_argument('--log_freq', type=int, default=50, help='print and summary frequency') 40 | parser.add_argument('--save_freq', type=int, default=1, help='save checkpoint frequency.') 41 | parser.add_argument('--eval_freq', type=int, default=1, help='evaluate frequency.') 42 | 43 | parser.add_argument('--sync_bn', action='store_true',help='Sync BN.') 44 | parser.add_argument('--opt_level', type=str, default="O0") 45 | parser.add_argument('--seed', type=int, default=0) 46 | parser.add_argument("--local_rank", type=int, default=0) 47 | 48 | 49 | args = parser.parse_args() 50 | 51 | if args.sync_bn: 52 | import apex 53 | import apex.amp as amp 54 | 55 | on_main = True 56 | 57 | torch.manual_seed(args.seed) 58 | torch.cuda.manual_seed(args.seed) 59 | 60 | def print_func(data: dict, prefix: str= ''): 61 | for k, v in data.items(): 62 | if isinstance(v, dict): 63 | print_func(v, prefix + '.' + k) 64 | elif isinstance(v, list): 65 | print(prefix+'.'+k, v) 66 | else: 67 | print(prefix+'.'+k, v.shape) 68 | 69 | def main(args, model:nn.Module, optimizer, train_loader, val_loader): 70 | milestones = list(map(lambda x: int(x) * len(train_loader), args.lr_idx.split(':')[0].split(','))) 71 | gamma = float(args.lr_idx.split(':')[1]) 72 | scheduler = get_step_schedule_with_warmup(optimizer=optimizer, milestones=milestones, gamma=gamma) 73 | 74 | loss_weights = list(map(float, args.loss_weights.split(','))) 75 | 76 | for ep in range(args.epochs): 77 | model.train() 78 | for batch_idx, sample in enumerate(train_loader): 79 | 80 | tic = time.time() 81 | sample_cuda = dict2cuda(sample) 82 | 83 | # print_func(sample_cuda) 84 | 85 | optimizer.zero_grad() 86 | outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"]) 87 | 88 | # print_func(outputs) 89 | 90 | loss = multi_stage_loss(outputs, sample_cuda["depth_labels"], sample_cuda["masks"], loss_weights) 91 | if is_distributed and args.sync_bn: 92 | with amp.scale_loss(loss, optimizer) as scaled_loss: 93 | scaled_loss.backward() 94 | else: 95 | loss.backward() 96 | 97 | optimizer.step() 98 | scheduler.step() 99 | 100 | log_index = (len(train_loader)+len(val_loader)) * ep + batch_idx 101 | if log_index % args.log_freq == 0: 102 | 103 | image_summary, scalar_summary = collect_summary(sample_cuda, outputs) 104 | if on_main: 105 | add_summary(image_summary, 'image', logger, index=log_index, flag='train') 106 | add_summary(scalar_summary, 'scalar', logger, index=log_index, flag='train') 107 | print("Epoch {}/{}, Iter {}/{}, lr {:.6f}, train loss {:.2f}, eval 4mm ({:.2f}, {:.2f}), time = {:.2f}".format( 108 | ep+1, args.epochs, batch_idx+1, len(train_loader), 109 | optimizer.param_groups[0]["lr"], loss, 110 | scalar_summary["4mm_abs"], scalar_summary["4mm_acc"], 111 | time.time() - tic)) 112 | 113 | del scalar_summary, image_summary 114 | 115 | gc.collect() 116 | if on_main and (ep + 1) % args.save_freq == 0: 117 | torch.save({"epoch": ep+1, 118 | "model": model.module.state_dict(), 119 | "optimizer": optimizer.state_dict()}, 120 | "{}/model_{:06d}.ckpt".format(args.save_path, ep+1)) 121 | 122 | if (ep + 1) % args.eval_freq == 0 or (ep+1) == args.epochs: 123 | with torch.no_grad(): 124 | test(args, model, val_loader, ep) 125 | 126 | def test(args, model, test_loader, epoch): 127 | model.eval() 128 | avg_scalars = DictAverageMeter() 129 | for batch_idx, sample in enumerate(test_loader): 130 | sample_cuda = dict2cuda(sample) 131 | outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"]) 132 | 133 | image_summary, scalar_summary = collect_summary(sample_cuda, outputs) 134 | avg_scalars.update(scalar_summary) 135 | 136 | log_index = len(train_loader) * (epoch + 1) + len(val_loader) * epoch + batch_idx 137 | if log_index % args.log_freq == 0 and on_main: 138 | add_summary(image_summary, 'image', logger, index=log_index, flag='val') 139 | add_summary(scalar_summary, 'scalar', logger, index=log_index, flag='val') 140 | 141 | del scalar_summary, image_summary 142 | 143 | if on_main: 144 | print("Epoch {}/{}: {}".format(epoch + 1, args.epochs, avg_scalars.mean())) 145 | add_summary(avg_scalars.mean(), 'scalar', logger, index=epoch + 1, flag='brief') 146 | 147 | gc.collect() 148 | 149 | def collect_summary(inputs, outputs): 150 | depth = outputs["stage3"]["depth"] 151 | label = inputs["depth_labels"]["stage3"] 152 | mask = inputs["masks"]["stage3"].bool() 153 | 154 | err_map = torch.abs(label - depth) * mask.float() 155 | rgb = inputs["imgs"][:, 0] 156 | 157 | image_summary = {"depth": depth, 158 | "label": label, 159 | "mask": mask, 160 | "error": err_map, 161 | "ref_view": rgb 162 | } 163 | 164 | scalar_summary = {} 165 | for thresh in [2, 3, 4, 20]: 166 | abs_err, acc = evaluate(depth, mask, label, thresh) 167 | scalar_summary["{}mm_abs".format(thresh)] = abs_err 168 | scalar_summary["{}mm_acc".format(thresh)] = acc 169 | scalar_summary = reduce_tensors(scalar_summary) 170 | return dict2numpy(image_summary), dict2float(scalar_summary) 171 | 172 | def distribute_model(args): 173 | def sync(): 174 | if not dist.is_available(): 175 | return 176 | if not dist.is_initialized(): 177 | return 178 | if dist.get_world_size() == 1: 179 | return 180 | dist.barrier() 181 | 182 | if is_distributed: 183 | torch.cuda.set_device(args.local_rank) 184 | torch.distributed.init_process_group( 185 | backend="nccl", init_method="env://" 186 | ) 187 | sync() 188 | 189 | model: torch.nn.Module = UCSNet(stage_configs=list(map(int, args.net_configs.split(","))), 190 | lamb=args.lamb) 191 | model.to(torch.device("cuda")) 192 | 193 | optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, betas=(0.9, 0.999), 194 | weight_decay=args.wd) 195 | 196 | train_set = MVSTrainSet(root_dir=args.root_path, data_list=args.train_list, num_views=args.num_views) 197 | 198 | val_set = MVSTrainSet(root_dir=args.root_path, data_list=args.val_list, num_views=args.num_views) 199 | 200 | if is_distributed: 201 | if args.sync_bn: 202 | model = apex.parallel.convert_syncbn_model(model) 203 | model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level, ) 204 | print('Convert BN to Sync_BN successful.') 205 | 206 | model = torch.nn.parallel.DistributedDataParallel( 207 | model, device_ids=[args.local_rank], output_device=args.local_rank,) 208 | 209 | train_sampler = torch.utils.data.DistributedSampler(train_set, num_replicas=dist.get_world_size(), 210 | rank=dist.get_rank()) 211 | val_sampler = torch.utils.data.DistributedSampler(val_set, num_replicas=dist.get_world_size(), 212 | rank=dist.get_rank()) 213 | else: 214 | model = nn.DataParallel(model) 215 | train_sampler, val_sampler = None, None 216 | 217 | train_loader = DataLoader(train_set, args.batch_size, sampler=train_sampler, num_workers=1, 218 | drop_last=True, shuffle=not is_distributed) 219 | val_loader = DataLoader(val_set, args.batch_size, sampler=val_sampler, num_workers=1, 220 | drop_last=False, shuffle=False) 221 | 222 | return model, optimizer, train_loader, val_loader 223 | 224 | def multi_stage_loss(outputs, labels, masks, weights): 225 | tot_loss = 0. 226 | for stage_id in range(3): 227 | depth_i = outputs["stage{}".format(stage_id+1)]["depth"] 228 | label_i = labels["stage{}".format(stage_id+1)] 229 | mask_i = masks["stage{}".format(stage_id+1)].bool() 230 | depth_loss = F.smooth_l1_loss(depth_i[mask_i], label_i[mask_i], reduction='mean') 231 | tot_loss += depth_loss * weights[stage_id] 232 | return tot_loss 233 | 234 | if __name__ == '__main__': 235 | 236 | model, optimizer, train_loader, val_loader = distribute_model(args) 237 | 238 | on_main = (not is_distributed) or (dist.get_rank() == 0) 239 | 240 | if on_main: 241 | mkdir_p(args.save_path) 242 | logger = SummaryWriter(args.save_path) 243 | print(args) 244 | 245 | main(args=args, model=model, optimizer=optimizer, train_loader=train_loader, val_loader=val_loader) -------------------------------------------------------------------------------- /utils/collect_pointclouds.py: -------------------------------------------------------------------------------- 1 | import os, sys 2 | import argparse 3 | import glob 4 | import errno 5 | import os.path as osp 6 | import shutil 7 | 8 | 9 | parser = argparse.ArgumentParser() 10 | 11 | parser.add_argument('--root_dir', help='path to prediction', type=str,) 12 | parser.add_argument('--target_dir', type=str) 13 | parser.add_argument('--dataset', type=str, ) 14 | 15 | args = parser.parse_args() 16 | 17 | def mkdir_p(path): 18 | try: 19 | os.makedirs(path) 20 | except OSError as exc: # Python >2.5 21 | if exc.errno == errno.EEXIST and os.path.isdir(path): 22 | pass 23 | else: 24 | raise 25 | 26 | def collect_dtu(args): 27 | mkdir_p(args.target_dir) 28 | all_scenes = sorted(glob.glob(args.root_dir+'/*')) 29 | all_scenes = list(filter(os.path.isdir, all_scenes)) 30 | for scene in all_scenes: 31 | scene_id = int(scene.strip().split('/')[-1][len('scan'):]) 32 | all_plys = sorted(glob.glob('{}/points_ucsnet/consistencyCheck*'.format(scene))) 33 | print('Found points: ', all_plys) 34 | 35 | shutil.copyfile(all_plys[-1]+'/final3d_model.ply', '{}/ucsnet{:03d}_l3.ply'.format(args.target_dir, scene_id)) 36 | 37 | def collect_tanks(args): 38 | mkdir_p(args.target_dir) 39 | all_scenes = sorted(glob.glob(args.root_dir + '/*')) 40 | all_scenes = list(filter(os.path.isdir, all_scenes)) 41 | for scene in all_scenes: 42 | all_plys = sorted(glob.glob('{}/points_ucsnet/consistencyCheck*'.format(scene))) 43 | print('Found points: ', all_plys) 44 | scene_name = scene.strip().split('/')[-1] 45 | shutil.copyfile(all_plys[-1]+'/final3d_model.ply', '{}/{}.ply'.format(args.target_dir, scene_name)) 46 | shutil.copyfile('./dataloader/datalist/tanks/logs/{}.log'.format(scene_name), 47 | '{}/{}.log'.format(args.target_dir, scene_name)) 48 | 49 | if __name__ == '__main__': 50 | if args.dataset == 'dtu': 51 | collect_dtu(args) 52 | elif args.dataset == 'tanks': 53 | collect_tanks(args) 54 | else: 55 | print('Unknown dataset.') 56 | -------------------------------------------------------------------------------- /utils/utils.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from torch.optim.lr_scheduler import LambdaLR, _LRScheduler 3 | import torchvision.utils as vutils 4 | import torch.distributed as dist 5 | 6 | 7 | import errno 8 | import os 9 | import re 10 | import sys 11 | import numpy as np 12 | from bisect import bisect_right 13 | 14 | num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 15 | is_distributed = num_gpus > 1 16 | 17 | def mkdir_p(path): 18 | try: 19 | os.makedirs(path) 20 | except OSError as exc: # Python ≥ 2.5 21 | if exc.errno == errno.EEXIST and os.path.isdir(path): 22 | pass 23 | else: 24 | raise 25 | 26 | def dict2cuda(data: dict): 27 | new_dic = {} 28 | for k, v in data.items(): 29 | if isinstance(v, dict): 30 | v = dict2cuda(v) 31 | elif isinstance(v, torch.Tensor): 32 | v = v.cuda() 33 | new_dic[k] = v 34 | return new_dic 35 | 36 | def dict2numpy(data: dict): 37 | new_dic = {} 38 | for k, v in data.items(): 39 | if isinstance(v, dict): 40 | v = dict2numpy(v) 41 | elif isinstance(v, torch.Tensor): 42 | v = v.detach().cpu().numpy().copy() 43 | new_dic[k] = v 44 | return new_dic 45 | 46 | def dict2float(data: dict): 47 | new_dic = {} 48 | for k, v in data.items(): 49 | if isinstance(v, dict): 50 | v = dict2float(v) 51 | elif isinstance(v, torch.Tensor): 52 | v = v.detach().cpu().item() 53 | new_dic[k] = v 54 | return new_dic 55 | 56 | def metric_with_thresh(depth, label, mask, thresh): 57 | err = torch.abs(depth - label) 58 | valid = err <= thresh 59 | mean_abs = torch.mean(err[valid]) 60 | acc = valid.sum(dtype=torch.float) / mask.sum(dtype=torch.float) 61 | return mean_abs, acc 62 | 63 | def evaluate(depth, mask, label, thresh): 64 | batch_abs_err = [] 65 | batch_acc = [] 66 | for d, m, l in zip(depth, mask, label): 67 | abs_err, acc = metric_with_thresh(d, l, m, thresh) 68 | batch_abs_err.append(abs_err) 69 | batch_acc.append(acc) 70 | 71 | tot_abs = torch.stack(batch_abs_err) 72 | tot_acc = torch.stack(batch_acc) 73 | return tot_abs.mean(), tot_acc.mean() 74 | 75 | def save_cameras(cam, path): 76 | cam_txt = open(path, 'w+') 77 | 78 | cam_txt.write('extrinsic\n') 79 | for i in range(4): 80 | for j in range(4): 81 | cam_txt.write(str(cam[0, i, j]) + ' ') 82 | cam_txt.write('\n') 83 | cam_txt.write('\n') 84 | 85 | cam_txt.write('intrinsic\n') 86 | for i in range(3): 87 | for j in range(3): 88 | cam_txt.write(str(cam[1, i, j]) + ' ') 89 | cam_txt.write('\n') 90 | cam_txt.close() 91 | 92 | def read_pfm(filename): 93 | file = open(filename, 'rb') 94 | color = None 95 | width = None 96 | height = None 97 | scale = None 98 | endian = None 99 | 100 | header = file.readline().decode('utf-8').rstrip() 101 | if header == 'PF': 102 | color = True 103 | elif header == 'Pf': 104 | color = False 105 | else: 106 | raise Exception('Not a PFM file.') 107 | 108 | dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8')) 109 | if dim_match: 110 | width, height = map(int, dim_match.groups()) 111 | else: 112 | raise Exception('Malformed PFM header.') 113 | 114 | scale = float(file.readline().rstrip()) 115 | if scale < 0: # little-endian 116 | endian = '<' 117 | scale = -scale 118 | else: 119 | endian = '>' # big-endian 120 | 121 | data = np.fromfile(file, endian + 'f') 122 | shape = (height, width, 3) if color else (height, width) 123 | 124 | data = np.reshape(data, shape) 125 | data = np.flipud(data) 126 | file.close() 127 | return data, scale 128 | 129 | def write_pfm(file, image, scale=1): 130 | file = open(file, 'wb') 131 | color = None 132 | if image.dtype.name != 'float32': 133 | raise Exception('Image dtype must be float32.') 134 | 135 | image = np.flipud(image) 136 | 137 | if len(image.shape) == 3 and image.shape[2] == 3: # color image 138 | color = True 139 | elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale 140 | color = False 141 | else: 142 | raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') 143 | 144 | file.write('PF\n'.encode() if color else 'Pf\n'.encode()) 145 | file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0])) 146 | 147 | endian = image.dtype.byteorder 148 | 149 | if endian == '<' or endian == '=' and sys.byteorder == 'little': 150 | scale = -scale 151 | 152 | file.write('%f\n'.encode() % scale) 153 | 154 | image_string = image.tostring() 155 | file.write(image_string) 156 | file.close() 157 | 158 | def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1): 159 | """ Create a schedule with a learning rate that decreases linearly after 160 | linearly increasing during a warmup period. 161 | """ 162 | def lr_lambda(current_step): 163 | if current_step < num_warmup_steps: 164 | return float(current_step) / float(max(1, num_warmup_steps)) 165 | return max( 166 | 0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)) 167 | ) 168 | 169 | return LambdaLR(optimizer, lr_lambda, last_epoch) 170 | 171 | def get_step_schedule_with_warmup(optimizer, milestones, gamma=0.1, warmup_factor=1.0/3, warmup_iters=500, last_epoch=-1,): 172 | def lr_lambda(current_step): 173 | if current_step < warmup_iters: 174 | alpha = float(current_step) / warmup_iters 175 | current_factor = warmup_factor * (1. - alpha) + alpha 176 | else: 177 | current_factor = 1. 178 | 179 | return max(0.0, current_factor * (gamma ** bisect_right(milestones, current_step))) 180 | 181 | return LambdaLR(optimizer, lr_lambda, last_epoch) 182 | 183 | def add_summary(data_dict: dict, dtype: str, logger, index: int, flag: str): 184 | def preprocess(name, img): 185 | if not (len(img.shape) == 3 or len(img.shape) == 4): 186 | raise NotImplementedError("invalid img shape {}:{} in save_images".format(name, img.shape)) 187 | if len(img.shape) == 3: 188 | img = img[:, np.newaxis, :, :] 189 | if img.dtype == np.bool: 190 | img = img.astype(np.float32) 191 | img = torch.from_numpy(img[:1]) 192 | if 'depth' in name or 'label' in name: 193 | return vutils.make_grid(img, padding=0, nrow=1, normalize=True, scale_each=True, range=(450, 850)) 194 | elif 'mask' in name: 195 | return vutils.make_grid(img, padding=0, nrow=1, normalize=True, scale_each=True, range=(0, 1)) 196 | elif 'error' in name: 197 | return vutils.make_grid(img, padding=0, nrow=1, normalize=True, scale_each=True, range=(0, 4)) 198 | return vutils.make_grid(img, padding=0, nrow=1, normalize=True, scale_each=True,) 199 | 200 | on_main = (not is_distributed) or (dist.get_rank() == 0) 201 | if not on_main: 202 | return 203 | 204 | if dtype == 'image': 205 | for k, v in data_dict.items(): 206 | logger.add_image('{}/{}'.format(flag, k), preprocess(k, v), index) 207 | 208 | elif dtype == 'scalar': 209 | for k, v in data_dict.items(): 210 | logger.add_scalar('{}/{}'.format(flag, k), v, index) 211 | else: 212 | raise NotImplementedError 213 | 214 | class DictAverageMeter(object): 215 | def __init__(self): 216 | self.data = {} 217 | self.count = 0 218 | 219 | def update(self, new_input: dict): 220 | self.count += 1 221 | for k, v in new_input.items(): 222 | assert isinstance(v, float), type(v) 223 | self.data[k] = self.data.get(k, 0) + v 224 | 225 | def mean(self): 226 | return {k: v / self.count for k, v in self.data.items()} 227 | 228 | def reduce_tensors(datas: dict): 229 | if not is_distributed: 230 | return datas 231 | world_size = dist.get_world_size() 232 | with torch.no_grad(): 233 | keys = list(datas.keys()) 234 | vals = [] 235 | for k in keys: 236 | vals.append(datas[k]) 237 | vals = torch.stack(vals, dim=0) 238 | dist.reduce(vals, op=dist.reduce_op.SUM, dst=0) 239 | if dist.get_rank() == 0: 240 | vals /= float(world_size) 241 | reduced_datas = {k: v for k, v in zip(keys, vals)} 242 | return reduced_datas 243 | 244 | --------------------------------------------------------------------------------