├── .dockerignore
├── .github
├── ISSUE_TEMPLATE
│ ├── bug-report.yml
│ ├── config.yml
│ ├── feature-request.yml
│ └── question.yml
├── dependabot.yml
└── workflows
│ ├── ci.yml
│ ├── cla.yml
│ ├── docker.yml
│ ├── docs.yml
│ ├── format.yml
│ ├── links.yml
│ ├── merge-main-into-prs.yml
│ ├── mirror.yml
│ ├── publish.yml
│ └── stale.yml
├── .gitignore
├── CITATION.cff
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── README.zh-CN.md
├── docker
├── Dockerfile
├── Dockerfile-arm64
├── Dockerfile-conda
├── Dockerfile-cpu
├── Dockerfile-jetson-jetpack4
├── Dockerfile-jetson-jetpack5
├── Dockerfile-jetson-jetpack6
├── Dockerfile-jupyter
├── Dockerfile-python
└── Dockerfile-runner
├── docs
├── README.md
├── build_docs.py
├── build_reference.py
├── coming_soon_template.md
├── en
│ ├── CNAME
│ ├── datasets
│ │ ├── classify
│ │ │ ├── caltech101.md
│ │ │ ├── caltech256.md
│ │ │ ├── cifar10.md
│ │ │ ├── cifar100.md
│ │ │ ├── fashion-mnist.md
│ │ │ ├── imagenet.md
│ │ │ ├── imagenet10.md
│ │ │ ├── imagenette.md
│ │ │ ├── imagewoof.md
│ │ │ ├── index.md
│ │ │ └── mnist.md
│ │ ├── detect
│ │ │ ├── african-wildlife.md
│ │ │ ├── argoverse.md
│ │ │ ├── brain-tumor.md
│ │ │ ├── coco.md
│ │ │ ├── coco128.md
│ │ │ ├── coco8-multispectral.md
│ │ │ ├── coco8.md
│ │ │ ├── globalwheat2020.md
│ │ │ ├── index.md
│ │ │ ├── lvis.md
│ │ │ ├── medical-pills.md
│ │ │ ├── objects365.md
│ │ │ ├── open-images-v7.md
│ │ │ ├── roboflow-100.md
│ │ │ ├── signature.md
│ │ │ ├── sku-110k.md
│ │ │ ├── visdrone.md
│ │ │ ├── voc.md
│ │ │ └── xview.md
│ │ ├── explorer
│ │ │ ├── api.md
│ │ │ ├── dashboard.md
│ │ │ ├── explorer.md
│ │ │ └── index.md
│ │ ├── index.md
│ │ ├── obb
│ │ │ ├── dota-v2.md
│ │ │ ├── dota8.md
│ │ │ └── index.md
│ │ ├── pose
│ │ │ ├── coco.md
│ │ │ ├── coco8-pose.md
│ │ │ ├── dog-pose.md
│ │ │ ├── hand-keypoints.md
│ │ │ ├── index.md
│ │ │ └── tiger-pose.md
│ │ ├── segment
│ │ │ ├── carparts-seg.md
│ │ │ ├── coco.md
│ │ │ ├── coco8-seg.md
│ │ │ ├── crack-seg.md
│ │ │ ├── index.md
│ │ │ └── package-seg.md
│ │ └── track
│ │ │ └── index.md
│ ├── guides
│ │ ├── analytics.md
│ │ ├── azureml-quickstart.md
│ │ ├── conda-quickstart.md
│ │ ├── coral-edge-tpu-on-raspberry-pi.md
│ │ ├── data-collection-and-annotation.md
│ │ ├── deepstream-nvidia-jetson.md
│ │ ├── defining-project-goals.md
│ │ ├── distance-calculation.md
│ │ ├── docker-quickstart.md
│ │ ├── heatmaps.md
│ │ ├── hyperparameter-tuning.md
│ │ ├── index.md
│ │ ├── instance-segmentation-and-tracking.md
│ │ ├── isolating-segmentation-objects.md
│ │ ├── kfold-cross-validation.md
│ │ ├── model-deployment-options.md
│ │ ├── model-deployment-practices.md
│ │ ├── model-evaluation-insights.md
│ │ ├── model-monitoring-and-maintenance.md
│ │ ├── model-testing.md
│ │ ├── model-training-tips.md
│ │ ├── nvidia-jetson.md
│ │ ├── object-blurring.md
│ │ ├── object-counting.md
│ │ ├── object-cropping.md
│ │ ├── optimizing-openvino-latency-vs-throughput-modes.md
│ │ ├── parking-management.md
│ │ ├── preprocessing_annotated_data.md
│ │ ├── queue-management.md
│ │ ├── raspberry-pi.md
│ │ ├── region-counting.md
│ │ ├── ros-quickstart.md
│ │ ├── sahi-tiled-inference.md
│ │ ├── security-alarm-system.md
│ │ ├── speed-estimation.md
│ │ ├── steps-of-a-cv-project.md
│ │ ├── streamlit-live-inference.md
│ │ ├── trackzone.md
│ │ ├── triton-inference-server.md
│ │ ├── view-results-in-terminal.md
│ │ ├── vision-eye.md
│ │ ├── workouts-monitoring.md
│ │ ├── yolo-common-issues.md
│ │ ├── yolo-data-augmentation.md
│ │ ├── yolo-performance-metrics.md
│ │ └── yolo-thread-safe-inference.md
│ ├── help
│ │ ├── CI.md
│ │ ├── CLA.md
│ │ ├── FAQ.md
│ │ ├── code-of-conduct.md
│ │ ├── contributing.md
│ │ ├── environmental-health-safety.md
│ │ ├── index.md
│ │ ├── minimum-reproducible-example.md
│ │ ├── privacy.md
│ │ └── security.md
│ ├── hub
│ │ ├── api
│ │ │ └── index.md
│ │ ├── app
│ │ │ ├── android.md
│ │ │ ├── index.md
│ │ │ └── ios.md
│ │ ├── cloud-training.md
│ │ ├── datasets.md
│ │ ├── index.md
│ │ ├── inference-api.md
│ │ ├── integrations.md
│ │ ├── models.md
│ │ ├── pro.md
│ │ ├── projects.md
│ │ ├── quickstart.md
│ │ └── teams.md
│ ├── index.md
│ ├── integrations
│ │ ├── albumentations.md
│ │ ├── amazon-sagemaker.md
│ │ ├── clearml.md
│ │ ├── comet.md
│ │ ├── coreml.md
│ │ ├── dvc.md
│ │ ├── edge-tpu.md
│ │ ├── google-colab.md
│ │ ├── gradio.md
│ │ ├── ibm-watsonx.md
│ │ ├── index.md
│ │ ├── jupyterlab.md
│ │ ├── kaggle.md
│ │ ├── mlflow.md
│ │ ├── mnn.md
│ │ ├── ncnn.md
│ │ ├── neural-magic.md
│ │ ├── onnx.md
│ │ ├── openvino.md
│ │ ├── paddlepaddle.md
│ │ ├── paperspace.md
│ │ ├── ray-tune.md
│ │ ├── roboflow.md
│ │ ├── rockchip-rknn.md
│ │ ├── seeedstudio-recamera.md
│ │ ├── sony-imx500.md
│ │ ├── tensorboard.md
│ │ ├── tensorrt.md
│ │ ├── tf-graphdef.md
│ │ ├── tf-savedmodel.md
│ │ ├── tfjs.md
│ │ ├── tflite.md
│ │ ├── torchscript.md
│ │ ├── vscode.md
│ │ └── weights-biases.md
│ ├── macros
│ │ ├── augmentation-args.md
│ │ ├── export-args.md
│ │ ├── export-table.md
│ │ ├── predict-args.md
│ │ ├── sam-auto-annotate.md
│ │ ├── solutions-args.md
│ │ ├── track-args.md
│ │ ├── train-args.md
│ │ ├── validation-args.md
│ │ ├── visualization-args.md
│ │ ├── yolo-cls-perf.md
│ │ ├── yolo-det-perf.md
│ │ ├── yolo-obb-perf.md
│ │ ├── yolo-pose-perf.md
│ │ └── yolo-seg-perf.md
│ ├── models
│ │ ├── fast-sam.md
│ │ ├── index.md
│ │ ├── mobile-sam.md
│ │ ├── rtdetr.md
│ │ ├── sam-2.md
│ │ ├── sam.md
│ │ ├── yolo-nas.md
│ │ ├── yolo-world.md
│ │ ├── yolo11.md
│ │ ├── yolo12.md
│ │ ├── yoloe.md
│ │ ├── yolov10.md
│ │ ├── yolov3.md
│ │ ├── yolov4.md
│ │ ├── yolov5.md
│ │ ├── yolov6.md
│ │ ├── yolov7.md
│ │ ├── yolov8.md
│ │ └── yolov9.md
│ ├── modes
│ │ ├── benchmark.md
│ │ ├── export.md
│ │ ├── index.md
│ │ ├── predict.md
│ │ ├── track.md
│ │ ├── train.md
│ │ └── val.md
│ ├── quickstart.md
│ ├── reference
│ │ ├── cfg
│ │ │ └── __init__.md
│ │ ├── data
│ │ │ ├── annotator.md
│ │ │ ├── augment.md
│ │ │ ├── base.md
│ │ │ ├── build.md
│ │ │ ├── converter.md
│ │ │ ├── dataset.md
│ │ │ ├── loaders.md
│ │ │ ├── split.md
│ │ │ ├── split_dota.md
│ │ │ └── utils.md
│ │ ├── engine
│ │ │ ├── exporter.md
│ │ │ ├── model.md
│ │ │ ├── predictor.md
│ │ │ ├── results.md
│ │ │ ├── trainer.md
│ │ │ ├── tuner.md
│ │ │ └── validator.md
│ │ ├── hub
│ │ │ ├── __init__.md
│ │ │ ├── auth.md
│ │ │ ├── google
│ │ │ │ └── __init__.md
│ │ │ ├── session.md
│ │ │ └── utils.md
│ │ ├── models
│ │ │ ├── fastsam
│ │ │ │ ├── model.md
│ │ │ │ ├── predict.md
│ │ │ │ ├── utils.md
│ │ │ │ └── val.md
│ │ │ ├── nas
│ │ │ │ ├── model.md
│ │ │ │ ├── predict.md
│ │ │ │ └── val.md
│ │ │ ├── rtdetr
│ │ │ │ ├── model.md
│ │ │ │ ├── predict.md
│ │ │ │ ├── train.md
│ │ │ │ └── val.md
│ │ │ ├── sam
│ │ │ │ ├── amg.md
│ │ │ │ ├── build.md
│ │ │ │ ├── model.md
│ │ │ │ ├── modules
│ │ │ │ │ ├── blocks.md
│ │ │ │ │ ├── decoders.md
│ │ │ │ │ ├── encoders.md
│ │ │ │ │ ├── memory_attention.md
│ │ │ │ │ ├── sam.md
│ │ │ │ │ ├── tiny_encoder.md
│ │ │ │ │ ├── transformer.md
│ │ │ │ │ └── utils.md
│ │ │ │ └── predict.md
│ │ │ ├── utils
│ │ │ │ ├── loss.md
│ │ │ │ └── ops.md
│ │ │ └── yolo
│ │ │ │ ├── classify
│ │ │ │ ├── predict.md
│ │ │ │ ├── train.md
│ │ │ │ └── val.md
│ │ │ │ ├── detect
│ │ │ │ ├── predict.md
│ │ │ │ ├── train.md
│ │ │ │ └── val.md
│ │ │ │ ├── model.md
│ │ │ │ ├── obb
│ │ │ │ ├── predict.md
│ │ │ │ ├── train.md
│ │ │ │ └── val.md
│ │ │ │ ├── pose
│ │ │ │ ├── predict.md
│ │ │ │ ├── train.md
│ │ │ │ └── val.md
│ │ │ │ ├── segment
│ │ │ │ ├── predict.md
│ │ │ │ ├── train.md
│ │ │ │ └── val.md
│ │ │ │ ├── world
│ │ │ │ ├── train.md
│ │ │ │ └── train_world.md
│ │ │ │ └── yoloe
│ │ │ │ ├── predict.md
│ │ │ │ ├── train.md
│ │ │ │ ├── train_seg.md
│ │ │ │ └── val.md
│ │ ├── nn
│ │ │ ├── autobackend.md
│ │ │ ├── modules
│ │ │ │ ├── activation.md
│ │ │ │ ├── block.md
│ │ │ │ ├── conv.md
│ │ │ │ ├── head.md
│ │ │ │ ├── transformer.md
│ │ │ │ └── utils.md
│ │ │ ├── tasks.md
│ │ │ └── text_model.md
│ │ ├── solutions
│ │ │ ├── ai_gym.md
│ │ │ ├── analytics.md
│ │ │ ├── distance_calculation.md
│ │ │ ├── heatmap.md
│ │ │ ├── instance_segmentation.md
│ │ │ ├── object_blurrer.md
│ │ │ ├── object_counter.md
│ │ │ ├── object_cropper.md
│ │ │ ├── parking_management.md
│ │ │ ├── queue_management.md
│ │ │ ├── region_counter.md
│ │ │ ├── security_alarm.md
│ │ │ ├── solutions.md
│ │ │ ├── speed_estimation.md
│ │ │ ├── streamlit_inference.md
│ │ │ ├── trackzone.md
│ │ │ └── vision_eye.md
│ │ ├── trackers
│ │ │ ├── basetrack.md
│ │ │ ├── bot_sort.md
│ │ │ ├── byte_tracker.md
│ │ │ ├── track.md
│ │ │ └── utils
│ │ │ │ ├── gmc.md
│ │ │ │ ├── kalman_filter.md
│ │ │ │ └── matching.md
│ │ └── utils
│ │ │ ├── __init__.md
│ │ │ ├── autobatch.md
│ │ │ ├── benchmarks.md
│ │ │ ├── callbacks
│ │ │ ├── base.md
│ │ │ ├── clearml.md
│ │ │ ├── comet.md
│ │ │ ├── dvc.md
│ │ │ ├── hub.md
│ │ │ ├── mlflow.md
│ │ │ ├── neptune.md
│ │ │ ├── raytune.md
│ │ │ ├── tensorboard.md
│ │ │ └── wb.md
│ │ │ ├── checks.md
│ │ │ ├── dist.md
│ │ │ ├── downloads.md
│ │ │ ├── errors.md
│ │ │ ├── export.md
│ │ │ ├── files.md
│ │ │ ├── instance.md
│ │ │ ├── loss.md
│ │ │ ├── metrics.md
│ │ │ ├── ops.md
│ │ │ ├── patches.md
│ │ │ ├── plotting.md
│ │ │ ├── tal.md
│ │ │ ├── torch_utils.md
│ │ │ ├── triton.md
│ │ │ └── tuner.md
│ ├── robots.txt
│ ├── solutions
│ │ └── index.md
│ ├── tasks
│ │ ├── classify.md
│ │ ├── detect.md
│ │ ├── index.md
│ │ ├── obb.md
│ │ ├── pose.md
│ │ └── segment.md
│ ├── usage
│ │ ├── callbacks.md
│ │ ├── cfg.md
│ │ ├── cli.md
│ │ ├── engine.md
│ │ ├── python.md
│ │ └── simple-utilities.md
│ └── yolov5
│ │ ├── environments
│ │ ├── aws_quickstart_tutorial.md
│ │ ├── azureml_quickstart_tutorial.md
│ │ ├── docker_image_quickstart_tutorial.md
│ │ └── google_cloud_quickstart_tutorial.md
│ │ ├── index.md
│ │ ├── quickstart_tutorial.md
│ │ └── tutorials
│ │ ├── architecture_description.md
│ │ ├── clearml_logging_integration.md
│ │ ├── comet_logging_integration.md
│ │ ├── hyperparameter_evolution.md
│ │ ├── model_ensembling.md
│ │ ├── model_export.md
│ │ ├── model_pruning_and_sparsity.md
│ │ ├── multi_gpu_training.md
│ │ ├── neural_magic_pruning_quantization.md
│ │ ├── pytorch_hub_model_loading.md
│ │ ├── test_time_augmentation.md
│ │ ├── tips_for_best_training_results.md
│ │ ├── train_custom_data.md
│ │ └── transfer_learning_with_frozen_layers.md
├── mkdocs_github_authors.yaml
├── model_data.py
└── overrides
│ ├── javascript
│ ├── benchmark.js
│ ├── extra.js
│ ├── giscus.js
│ └── tablesort.js
│ ├── main.html
│ ├── partials
│ └── comments.html
│ └── stylesheets
│ └── style.css
├── examples
├── README.md
├── RTDETR-ONNXRuntime-Python
│ ├── README.md
│ └── main.py
├── YOLO-Interactive-Tracking-UI
│ ├── README.md
│ └── interactive_tracker.py
├── YOLO-Series-ONNXRuntime-Rust
│ ├── Cargo.toml
│ ├── README.md
│ └── src
│ │ └── main.rs
├── YOLOv8-Action-Recognition
│ ├── README.md
│ ├── action_recognition.py
│ └── requirements.txt
├── YOLOv8-CPP-Inference
│ ├── CMakeLists.txt
│ ├── README.md
│ ├── inference.cpp
│ ├── inference.h
│ └── main.cpp
├── YOLOv8-LibTorch-CPP-Inference
│ ├── CMakeLists.txt
│ ├── README.md
│ └── main.cc
├── YOLOv8-MNN-CPP
│ ├── CMakeLists.txt
│ ├── README.md
│ ├── main.cpp
│ └── main_interpreter.cpp
├── YOLOv8-ONNXRuntime-CPP
│ ├── CMakeLists.txt
│ ├── README.md
│ ├── inference.cpp
│ ├── inference.h
│ └── main.cpp
├── YOLOv8-ONNXRuntime-Rust
│ ├── Cargo.toml
│ ├── README.md
│ └── src
│ │ ├── cli.rs
│ │ ├── lib.rs
│ │ ├── main.rs
│ │ ├── model.rs
│ │ ├── ort_backend.rs
│ │ └── yolo_result.rs
├── YOLOv8-ONNXRuntime
│ ├── README.md
│ └── main.py
├── YOLOv8-OpenCV-ONNX-Python
│ ├── README.md
│ └── main.py
├── YOLOv8-OpenVINO-CPP-Inference
│ ├── CMakeLists.txt
│ ├── README.md
│ ├── inference.cc
│ ├── inference.h
│ └── main.cc
├── YOLOv8-Region-Counter
│ ├── README.md
│ └── yolov8_region_counter.py
├── YOLOv8-SAHI-Inference-Video
│ ├── README.md
│ └── yolov8_sahi.py
├── YOLOv8-Segmentation-ONNXRuntime-Python
│ ├── README.md
│ └── main.py
├── YOLOv8-TFLite-Python
│ ├── README.md
│ └── main.py
├── heatmaps.ipynb
├── hub.ipynb
├── object_counting.ipynb
├── object_tracking.ipynb
└── tutorial.ipynb
├── mkdocs.yml
├── pyproject.toml
├── tests
├── __init__.py
├── conftest.py
├── test_cli.py
├── test_cuda.py
├── test_engine.py
├── test_exports.py
├── test_integrations.py
├── test_python.py
└── test_solutions.py
└── ultralytics
├── __init__.py
├── assets
├── bus.jpg
└── zidane.jpg
├── cfg
├── __init__.py
├── datasets
│ ├── Argoverse.yaml
│ ├── DOTAv1.5.yaml
│ ├── DOTAv1.yaml
│ ├── GlobalWheat2020.yaml
│ ├── ImageNet.yaml
│ ├── Objects365.yaml
│ ├── SKU-110K.yaml
│ ├── VOC.yaml
│ ├── VisDrone.yaml
│ ├── african-wildlife.yaml
│ ├── brain-tumor.yaml
│ ├── carparts-seg.yaml
│ ├── coco-pose.yaml
│ ├── coco.yaml
│ ├── coco128-seg.yaml
│ ├── coco128.yaml
│ ├── coco8-multispectral.yaml
│ ├── coco8-pose.yaml
│ ├── coco8-seg.yaml
│ ├── coco8.yaml
│ ├── crack-seg.yaml
│ ├── dog-pose.yaml
│ ├── dota8-multispectral.yaml
│ ├── dota8.yaml
│ ├── hand-keypoints.yaml
│ ├── lvis.yaml
│ ├── medical-pills.yaml
│ ├── open-images-v7.yaml
│ ├── package-seg.yaml
│ ├── signature.yaml
│ ├── tiger-pose.yaml
│ └── xView.yaml
├── default.yaml
├── models
│ ├── 11
│ │ ├── yolo11-cls-resnet18.yaml
│ │ ├── yolo11-cls.yaml
│ │ ├── yolo11-obb.yaml
│ │ ├── yolo11-pose.yaml
│ │ ├── yolo11-seg.yaml
│ │ ├── yolo11.yaml
│ │ ├── yoloe-11-seg.yaml
│ │ └── yoloe-11.yaml
│ ├── 12
│ │ ├── yolo12-cls.yaml
│ │ ├── yolo12-obb.yaml
│ │ ├── yolo12-pose.yaml
│ │ ├── yolo12-seg.yaml
│ │ └── yolo12.yaml
│ ├── README.md
│ ├── rt-detr
│ │ ├── rtdetr-l.yaml
│ │ ├── rtdetr-resnet101.yaml
│ │ ├── rtdetr-resnet50.yaml
│ │ └── rtdetr-x.yaml
│ ├── v10
│ │ ├── yolov10b.yaml
│ │ ├── yolov10l.yaml
│ │ ├── yolov10m.yaml
│ │ ├── yolov10n.yaml
│ │ ├── yolov10s.yaml
│ │ └── yolov10x.yaml
│ ├── v3
│ │ ├── yolov3-spp.yaml
│ │ ├── yolov3-tiny.yaml
│ │ └── yolov3.yaml
│ ├── v5
│ │ ├── yolov5-p6.yaml
│ │ └── yolov5.yaml
│ ├── v6
│ │ └── yolov6.yaml
│ ├── v8
│ │ ├── yoloe-v8-seg.yaml
│ │ ├── yoloe-v8.yaml
│ │ ├── yolov8-cls-resnet101.yaml
│ │ ├── yolov8-cls-resnet50.yaml
│ │ ├── yolov8-cls.yaml
│ │ ├── yolov8-ghost-p2.yaml
│ │ ├── yolov8-ghost-p6.yaml
│ │ ├── yolov8-ghost.yaml
│ │ ├── yolov8-obb.yaml
│ │ ├── yolov8-p2.yaml
│ │ ├── yolov8-p6.yaml
│ │ ├── yolov8-pose-p6.yaml
│ │ ├── yolov8-pose.yaml
│ │ ├── yolov8-rtdetr.yaml
│ │ ├── yolov8-seg-p6.yaml
│ │ ├── yolov8-seg.yaml
│ │ ├── yolov8-world.yaml
│ │ ├── yolov8-worldv2.yaml
│ │ └── yolov8.yaml
│ └── v9
│ │ ├── yolov9c-seg.yaml
│ │ ├── yolov9c.yaml
│ │ ├── yolov9e-seg.yaml
│ │ ├── yolov9e.yaml
│ │ ├── yolov9m.yaml
│ │ ├── yolov9s.yaml
│ │ └── yolov9t.yaml
├── solutions
│ └── default.yaml
└── trackers
│ ├── botsort.yaml
│ └── bytetrack.yaml
├── data
├── __init__.py
├── annotator.py
├── augment.py
├── base.py
├── build.py
├── converter.py
├── dataset.py
├── loaders.py
├── scripts
│ ├── download_weights.sh
│ ├── get_coco.sh
│ ├── get_coco128.sh
│ └── get_imagenet.sh
├── split.py
├── split_dota.py
└── utils.py
├── engine
├── __init__.py
├── exporter.py
├── model.py
├── predictor.py
├── results.py
├── trainer.py
├── tuner.py
└── validator.py
├── hub
├── __init__.py
├── auth.py
├── google
│ └── __init__.py
├── session.py
└── utils.py
├── models
├── __init__.py
├── fastsam
│ ├── __init__.py
│ ├── model.py
│ ├── predict.py
│ ├── utils.py
│ └── val.py
├── nas
│ ├── __init__.py
│ ├── model.py
│ ├── predict.py
│ └── val.py
├── rtdetr
│ ├── __init__.py
│ ├── model.py
│ ├── predict.py
│ ├── train.py
│ └── val.py
├── sam
│ ├── __init__.py
│ ├── amg.py
│ ├── build.py
│ ├── model.py
│ ├── modules
│ │ ├── __init__.py
│ │ ├── blocks.py
│ │ ├── decoders.py
│ │ ├── encoders.py
│ │ ├── memory_attention.py
│ │ ├── sam.py
│ │ ├── tiny_encoder.py
│ │ ├── transformer.py
│ │ └── utils.py
│ └── predict.py
├── utils
│ ├── __init__.py
│ ├── loss.py
│ └── ops.py
└── yolo
│ ├── __init__.py
│ ├── classify
│ ├── __init__.py
│ ├── predict.py
│ ├── train.py
│ └── val.py
│ ├── detect
│ ├── __init__.py
│ ├── predict.py
│ ├── train.py
│ └── val.py
│ ├── model.py
│ ├── obb
│ ├── __init__.py
│ ├── predict.py
│ ├── train.py
│ └── val.py
│ ├── pose
│ ├── __init__.py
│ ├── predict.py
│ ├── train.py
│ └── val.py
│ ├── segment
│ ├── __init__.py
│ ├── predict.py
│ ├── train.py
│ └── val.py
│ ├── world
│ ├── __init__.py
│ ├── train.py
│ └── train_world.py
│ └── yoloe
│ ├── __init__.py
│ ├── predict.py
│ ├── train.py
│ ├── train_seg.py
│ └── val.py
├── nn
├── __init__.py
├── autobackend.py
├── modules
│ ├── __init__.py
│ ├── activation.py
│ ├── block.py
│ ├── conv.py
│ ├── head.py
│ ├── transformer.py
│ └── utils.py
├── tasks.py
└── text_model.py
├── solutions
├── __init__.py
├── ai_gym.py
├── analytics.py
├── distance_calculation.py
├── heatmap.py
├── instance_segmentation.py
├── object_blurrer.py
├── object_counter.py
├── object_cropper.py
├── parking_management.py
├── queue_management.py
├── region_counter.py
├── security_alarm.py
├── solutions.py
├── speed_estimation.py
├── streamlit_inference.py
├── trackzone.py
└── vision_eye.py
├── trackers
├── README.md
├── __init__.py
├── basetrack.py
├── bot_sort.py
├── byte_tracker.py
├── track.py
└── utils
│ ├── __init__.py
│ ├── gmc.py
│ ├── kalman_filter.py
│ └── matching.py
└── utils
├── __init__.py
├── autobatch.py
├── benchmarks.py
├── callbacks
├── __init__.py
├── base.py
├── clearml.py
├── comet.py
├── dvc.py
├── hub.py
├── mlflow.py
├── neptune.py
├── raytune.py
├── tensorboard.py
└── wb.py
├── checks.py
├── dist.py
├── downloads.py
├── errors.py
├── export.py
├── files.py
├── instance.py
├── loss.py
├── metrics.py
├── ops.py
├── patches.py
├── plotting.py
├── tal.py
├── torch_utils.py
├── triton.py
└── tuner.py
/.dockerignore:
--------------------------------------------------------------------------------
1 | # Python
2 | __pycache__
3 | *.pyc
4 | *.pyo
5 | *.pyd
6 | .Python
7 | *.py[cod]
8 | *$py.class
9 | .pytest_cache
10 | .coverage
11 | coverage.xml
12 | .ruff_cache
13 | *.egg-info
14 | dist
15 | build
16 |
17 | # Development
18 | .env
19 | .venv
20 | env/
21 | venv/
22 | ENV/
23 | .idea
24 | .vscode
25 | *.swp
26 | *.swo
27 | .DS_Store
28 |
29 | # Project specific
30 | *.log
31 | benchmarks.log
32 | runs/
33 |
34 | # Dependencies
35 | node_modules/
36 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/config.yml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | blank_issues_enabled: true
4 | contact_links:
5 | - name: 📄 Docs
6 | url: https://docs.ultralytics.com/
7 | about: Full Ultralytics YOLO Documentation
8 | - name: 💬 Forum
9 | url: https://community.ultralytics.com/
10 | about: Ask on Ultralytics Community Forum
11 | - name: 🎧 Discord
12 | url: https://ultralytics.com/discord
13 | about: Ask on Ultralytics Discord
14 | - name: ⌨️ Reddit
15 | url: https://reddit.com/r/ultralytics
16 | about: Ask on Ultralytics Subreddit
17 |
--------------------------------------------------------------------------------
/.github/dependabot.yml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Dependabot for package version updates
4 | # https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
5 |
6 | version: 2
7 | updates:
8 | - package-ecosystem: pip
9 | directory: "/"
10 | schedule:
11 | interval: weekly
12 | time: "04:00"
13 | open-pull-requests-limit: 10
14 | reviewers:
15 | - glenn-jocher
16 | labels:
17 | - dependencies
18 |
19 | - package-ecosystem: github-actions
20 | directory: "/.github/workflows"
21 | schedule:
22 | interval: weekly
23 | time: "04:00"
24 | open-pull-requests-limit: 5
25 | reviewers:
26 | - glenn-jocher
27 | labels:
28 | - dependencies
29 |
--------------------------------------------------------------------------------
/CITATION.cff:
--------------------------------------------------------------------------------
1 | # This CITATION.cff file was generated with https://bit.ly/cffinit
2 |
3 | cff-version: 1.2.0
4 | title: Ultralytics YOLO
5 | message: >-
6 | If you use this software, please cite it using the
7 | metadata from this file.
8 | type: software
9 | authors:
10 | - given-names: Glenn
11 | family-names: Jocher
12 | affiliation: Ultralytics
13 | orcid: "https://orcid.org/0000-0001-5950-6979"
14 | - family-names: Qiu
15 | given-names: Jing
16 | affiliation: Ultralytics
17 | orcid: "https://orcid.org/0000-0003-3783-7069"
18 | - given-names: Ayush
19 | family-names: Chaurasia
20 | affiliation: Ultralytics
21 | orcid: "https://orcid.org/0000-0002-7603-6750"
22 | repository-code: "https://github.com/ultralytics/ultralytics"
23 | url: "https://ultralytics.com"
24 | license: AGPL-3.0
25 | version: 8.0.0
26 | date-released: "2023-01-10"
27 |
--------------------------------------------------------------------------------
/docker/Dockerfile-jupyter:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Builds ultralytics/ultralytics:latest-jupyter image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
4 | # Image provides JupyterLab interface for interactive YOLO development and includes tutorial notebooks
5 |
6 | # Start from Python-based Ultralytics image for full Python environment
7 | FROM ultralytics/ultralytics:latest-python
8 |
9 | # Install JupyterLab for interactive development
10 | RUN uv pip install --system jupyterlab
11 |
12 | # Create persistent data directory structure
13 | RUN mkdir /data
14 |
15 | # Configure YOLO directories
16 | RUN mkdir /data/{datasets,weights,runs} && \
17 | yolo settings datasets_dir="/data/datasets" weights_dir="/data/weights" runs_dir="/data/runs"
18 |
19 | # Start JupyterLab with tutorial notebook
20 | ENTRYPOINT ["/usr/local/bin/jupyter", "lab", "--allow-root", "--ip=*", "/ultralytics/examples/tutorial.ipynb"]
21 |
22 | # Usage Examples -------------------------------------------------------------------------------------------------------
23 |
24 | # Build and Push
25 | # t=ultralytics/ultralytics:latest-jupyter && sudo docker build -f docker/Dockerfile-jupyter -t $t . && sudo docker push $t
26 |
27 | # Run
28 | # t=ultralytics/ultralytics:latest-jupyter && sudo docker run -it --ipc=host -p 8888:8888 $t
29 |
30 | # Pull and Run
31 | # t=ultralytics/ultralytics:latest-jupyter && sudo docker pull $t && sudo docker run -it --ipc=host -p 8888:8888 $t
32 |
33 | # Pull and Run with local volume mounted
34 | # t=ultralytics/ultralytics:latest-jupyter && sudo docker pull $t && sudo docker run -it --ipc=host -p 8888:8888 -v "$(pwd)"/datasets:/data/datasets $t
35 |
--------------------------------------------------------------------------------
/docs/en/CNAME:
--------------------------------------------------------------------------------
1 | docs.ultralytics.com
2 |
--------------------------------------------------------------------------------
/docs/en/macros/sam-auto-annotate.md:
--------------------------------------------------------------------------------
1 | | Argument | Type | Default | Description |
2 | | ------------ | ----------- | -------------- | ------------------------------------------------------------------------------------ |
3 | | `data` | `str` | required | Path to directory containing target images for annotation or segmentation. |
4 | | `det_model` | `str` | `'yolo11x.pt'` | YOLO detection model path for initial object detection. |
5 | | `sam_model` | `str` | `'sam_b.pt'` | SAM model path for segmentation (supports SAM, SAM2 variants and mobile_sam models). |
6 | | `device` | `str` | `''` | Computation device (e.g., 'cuda:0', 'cpu', or '' for automatic device detection). |
7 | | `conf` | `float` | `0.25` | YOLO detection confidence threshold for filtering weak detections. |
8 | | `iou` | `float` | `0.45` | IoU threshold for Non-Maximum Suppression to filter overlapping boxes. |
9 | | `imgsz` | `int` | `640` | Input size for resizing images (must be multiple of 32). |
10 | | `max_det` | `int` | `300` | Maximum number of detections per image for memory efficiency. |
11 | | `classes` | `list[int]` | `None` | List of class indices to detect (e.g., `[0, 1]` for person & bicycle). |
12 | | `output_dir` | `str` | `None` | Save directory for annotations (defaults to './labels' relative to data path). |
13 |
--------------------------------------------------------------------------------
/docs/en/macros/yolo-det-perf.md:
--------------------------------------------------------------------------------
1 | | Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) |
2 | | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
3 | | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
4 | | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
5 | | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
6 | | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
7 | | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
8 |
--------------------------------------------------------------------------------
/docs/en/reference/data/annotator.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore Ultralytics' annotator script for automatic image annotation using YOLO and SAM models. Contribute to improve it on GitHub!.
3 | keywords: Ultralytics, image annotation, YOLO, SAM, Python script, GitHub, object detection, segmentation
4 | ---
5 |
6 | # Reference for `ultralytics/data/annotator.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/annotator.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/annotator.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/data/annotator.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.data.annotator.auto_annotate
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/data/base.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics BaseDataset class for efficient image loading and processing with custom transformations and caching options.
3 | keywords: Ultralytics, BaseDataset, image processing, data augmentation, YOLO, dataset class, image caching
4 | ---
5 |
6 | # Reference for `ultralytics/data/base.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/base.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/base.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/data/base.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.data.base.BaseDataset
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/data/build.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the functionality and examples of data builders like InfiniteDataLoader and various YOLO dataset builders in Ultralytics.
3 | keywords: Ultralytics, Data Builders, InfiniteDataLoader, YOLO dataset, build.py, AI, Machine Learning
4 | ---
5 |
6 | # Reference for `ultralytics/data/build.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/build.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/build.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/data/build.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.data.build.InfiniteDataLoader
15 |
16 |
17 |
18 | ## ::: ultralytics.data.build._RepeatSampler
19 |
20 |
21 |
22 | ## ::: ultralytics.data.build.seed_worker
23 |
24 |
25 |
26 | ## ::: ultralytics.data.build.build_yolo_dataset
27 |
28 |
29 |
30 | ## ::: ultralytics.data.build.build_grounding
31 |
32 |
33 |
34 | ## ::: ultralytics.data.build.build_dataloader
35 |
36 |
37 |
38 | ## ::: ultralytics.data.build.check_source
39 |
40 |
41 |
42 | ## ::: ultralytics.data.build.load_inference_source
43 |
44 |
45 |
--------------------------------------------------------------------------------
/docs/en/reference/data/converter.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore comprehensive data conversion tools for YOLO models including COCO, DOTA, and YOLO bbox2segment converters.
3 | keywords: Ultralytics, data conversion, YOLO models, COCO, DOTA, YOLO bbox2segment, machine learning, annotations
4 | ---
5 |
6 | # Reference for `ultralytics/data/converter.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/converter.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/converter.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/data/converter.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.data.converter.coco91_to_coco80_class
15 |
16 |
17 |
18 | ## ::: ultralytics.data.converter.coco80_to_coco91_class
19 |
20 |
21 |
22 | ## ::: ultralytics.data.converter.convert_coco
23 |
24 |
25 |
26 | ## ::: ultralytics.data.converter.convert_segment_masks_to_yolo_seg
27 |
28 |
29 |
30 | ## ::: ultralytics.data.converter.convert_dota_to_yolo_obb
31 |
32 |
33 |
34 | ## ::: ultralytics.data.converter.min_index
35 |
36 |
37 |
38 | ## ::: ultralytics.data.converter.merge_multi_segment
39 |
40 |
41 |
42 | ## ::: ultralytics.data.converter.yolo_bbox2segment
43 |
44 |
45 |
46 | ## ::: ultralytics.data.converter.create_synthetic_coco_dataset
47 |
48 |
49 |
50 | ## ::: ultralytics.data.converter.convert_to_multispectral
51 |
52 |
53 |
--------------------------------------------------------------------------------
/docs/en/reference/data/dataset.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the YOLODataset and its subclasses for object detection, segmentation, and multi-modal tasks. Find details on dataset loading, caching, and augmentation.
3 | keywords: Ultralytics, YOLODataset, object detection, segmentation, dataset loading, caching, data augmentation
4 | ---
5 |
6 | # Reference for `ultralytics/data/dataset.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/dataset.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/dataset.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/data/dataset.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.data.dataset.YOLODataset
15 |
16 |
17 |
18 | ## ::: ultralytics.data.dataset.YOLOMultiModalDataset
19 |
20 |
21 |
22 | ## ::: ultralytics.data.dataset.GroundingDataset
23 |
24 |
25 |
26 | ## ::: ultralytics.data.dataset.YOLOConcatDataset
27 |
28 |
29 |
30 | ## ::: ultralytics.data.dataset.SemanticDataset
31 |
32 |
33 |
34 | ## ::: ultralytics.data.dataset.ClassificationDataset
35 |
36 |
37 |
--------------------------------------------------------------------------------
/docs/en/reference/data/loaders.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore detailed documentation on Ultralytics data loaders including SourceTypes, LoadStreams, and more. Enhance your ML workflows with our comprehensive guides.
3 | keywords: Ultralytics, data loaders, SourceTypes, LoadStreams, LoadScreenshots, LoadImagesAndVideos, LoadPilAndNumpy, LoadTensor, ML workflows
4 | ---
5 |
6 | # Reference for `ultralytics/data/loaders.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/loaders.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/loaders.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/data/loaders.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.data.loaders.SourceTypes
15 |
16 |
17 |
18 | ## ::: ultralytics.data.loaders.LoadStreams
19 |
20 |
21 |
22 | ## ::: ultralytics.data.loaders.LoadScreenshots
23 |
24 |
25 |
26 | ## ::: ultralytics.data.loaders.LoadImagesAndVideos
27 |
28 |
29 |
30 | ## ::: ultralytics.data.loaders.LoadPilAndNumpy
31 |
32 |
33 |
34 | ## ::: ultralytics.data.loaders.LoadTensor
35 |
36 |
37 |
38 | ## ::: ultralytics.data.loaders.autocast_list
39 |
40 |
41 |
42 | ## ::: ultralytics.data.loaders.get_best_youtube_url
43 |
44 |
45 |
--------------------------------------------------------------------------------
/docs/en/reference/data/split.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to split datasets into train, validation, and test subsets using Ultralytics utilities for efficient data preparation.
3 | keywords: dataset splitting, autosplit dataset, training dataset preparation, validation set creation, Ultralytics data tools
4 | ---
5 |
6 | # Reference for `ultralytics/data/split.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/split.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/split.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/data/split.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.data.split.split_classify_dataset
15 |
16 |
17 |
18 | ## ::: ultralytics.data.split.autosplit
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/data/split_dota.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to utilize the ultralytics.data.split_dota module to process and split DOTA datasets efficiently. Explore detailed functions and examples.
3 | keywords: Ultralytics, DOTA dataset, data splitting, YOLO, Python, bbox_iof, load_yolo_dota, get_windows, crop_and_save
4 | ---
5 |
6 | # Reference for `ultralytics/data/split_dota.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/split_dota.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/split_dota.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/data/split_dota.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.data.split_dota.bbox_iof
15 |
16 |
17 |
18 | ## ::: ultralytics.data.split_dota.load_yolo_dota
19 |
20 |
21 |
22 | ## ::: ultralytics.data.split_dota.get_windows
23 |
24 |
25 |
26 | ## ::: ultralytics.data.split_dota.get_window_obj
27 |
28 |
29 |
30 | ## ::: ultralytics.data.split_dota.crop_and_save
31 |
32 |
33 |
34 | ## ::: ultralytics.data.split_dota.split_images_and_labels
35 |
36 |
37 |
38 | ## ::: ultralytics.data.split_dota.split_trainval
39 |
40 |
41 |
42 | ## ::: ultralytics.data.split_dota.split_test
43 |
44 |
45 |
--------------------------------------------------------------------------------
/docs/en/reference/engine/exporter.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to export YOLOv8 models to formats like ONNX, TensorRT, CoreML, and more. Optimize your exports for different platforms.
3 | keywords: YOLOv8, export formats, ONNX, TensorRT, CoreML, machine learning model export, AI, deep learning
4 | ---
5 |
6 | # Reference for `ultralytics/engine/exporter.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/exporter.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/exporter.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/engine/exporter.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.engine.exporter.Exporter
15 |
16 |
17 |
18 | ## ::: ultralytics.engine.exporter.IOSDetectModel
19 |
20 |
21 |
22 | ## ::: ultralytics.engine.exporter.NMSModel
23 |
24 |
25 |
26 | ## ::: ultralytics.engine.exporter.export_formats
27 |
28 |
29 |
30 | ## ::: ultralytics.engine.exporter.validate_args
31 |
32 |
33 |
34 | ## ::: ultralytics.engine.exporter.gd_outputs
35 |
36 |
37 |
38 | ## ::: ultralytics.engine.exporter.try_export
39 |
40 |
41 |
42 | ## ::: ultralytics.engine.exporter.arange_patch
43 |
44 |
45 |
--------------------------------------------------------------------------------
/docs/en/reference/engine/model.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the base class for implementing YOLO models with unified APIs for training, validation, prediction, and more. Learn how to utilize different task types and model configurations.
3 | keywords: YOLO model, Ultralytics, machine learning, deep learning, PyTorch model, training, validation, prediction, exporting, benchmarking, Ultralytics HUB, Triton Server
4 | ---
5 |
6 | # Reference for `ultralytics/engine/model.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/engine/model.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.engine.model.Model
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/engine/predictor.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover how to use the Base Predictor class in the Ultralytics YOLO engine for efficient image and video inference.
3 | keywords: Ultralytics, YOLO, Base Predictor, image inference, video inference, machine learning, Python
4 | ---
5 |
6 | # Reference for `ultralytics/engine/predictor.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/predictor.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/predictor.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/engine/predictor.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.engine.predictor.BasePredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/engine/results.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the details of Ultralytics engine results including classes like BaseTensor, Results, Boxes, Masks, Keypoints, Probs, and OBB to handle inference results efficiently.
3 | keywords: Ultralytics, engine results, BaseTensor, Results class, Boxes, Masks, Keypoints, Probs, OBB, inference results, machine learning, PyTorch
4 | ---
5 |
6 | # Reference for `ultralytics/engine/results.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/results.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/results.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/engine/results.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.engine.results.BaseTensor
15 |
16 |
17 |
18 | ## ::: ultralytics.engine.results.Results
19 |
20 |
21 |
22 | ## ::: ultralytics.engine.results.Boxes
23 |
24 |
25 |
26 | ## ::: ultralytics.engine.results.Masks
27 |
28 |
29 |
30 | ## ::: ultralytics.engine.results.Keypoints
31 |
32 |
33 |
34 | ## ::: ultralytics.engine.results.Probs
35 |
36 |
37 |
38 | ## ::: ultralytics.engine.results.OBB
39 |
40 |
41 |
--------------------------------------------------------------------------------
/docs/en/reference/engine/trainer.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to use BaseTrainer in Ultralytics YOLO for efficient model training. Comprehensive guide for configurations, datasets, and optimization.
3 | keywords: Ultralytics, YOLO, BaseTrainer, model training, configuration, datasets, optimization, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/engine/trainer.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/trainer.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/trainer.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/engine/trainer.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.engine.trainer.BaseTrainer
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/engine/tuner.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Optimize YOLO model performance using Ultralytics Tuner. Learn about systematic hyperparameter tuning for object detection, segmentation, classification, and tracking.
3 | keywords: Ultralytics, YOLO, hyperparameter tuning, machine learning, deep learning, object detection, instance segmentation, image classification, pose estimation, multi-object tracking
4 | ---
5 |
6 | # Reference for `ultralytics/engine/tuner.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/tuner.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/tuner.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/engine/tuner.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.engine.tuner.Tuner
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/engine/validator.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore Ultralytics BaseValidator for model validation in PyTorch, TensorFlow, ONNX, and more. Learn to check model accuracy and performance metrics.
3 | keywords: Ultralytics, BaseValidator, model validation, PyTorch, TensorFlow, ONNX, model accuracy, performance metrics
4 | ---
5 |
6 | # Reference for `ultralytics/engine/validator.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/validator.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/validator.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/engine/validator.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.engine.validator.BaseValidator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/hub/__init__.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore Ultralytics HUB API functions for login, logout, model reset, export, and dataset checks. Enhance your YOLO workflows with these essential utilities.
3 | keywords: Ultralytics HUB API, login, logout, reset model, export model, check dataset, YOLO, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/hub/__init__.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/\_\_init\_\_.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/__init__.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/hub/__init__.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.hub.login
15 |
16 |
17 |
18 | ## ::: ultralytics.hub.logout
19 |
20 |
21 |
22 | ## ::: ultralytics.hub.reset_model
23 |
24 |
25 |
26 | ## ::: ultralytics.hub.export_fmts_hub
27 |
28 |
29 |
30 | ## ::: ultralytics.hub.export_model
31 |
32 |
33 |
34 | ## ::: ultralytics.hub.get_export
35 |
36 |
37 |
38 | ## ::: ultralytics.hub.check_dataset
39 |
40 |
41 |
--------------------------------------------------------------------------------
/docs/en/reference/hub/auth.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to manage API key and cookie-based authentication in Ultralytics with the Auth class. Step-by-step guide for effective authentication.
3 | keywords: Ultralytics, authentication, API key, cookies, Auth class, YOLO, API, guide
4 | ---
5 |
6 | # Reference for `ultralytics/hub/auth.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/auth.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/auth.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/hub/auth.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.hub.auth.Auth
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/hub/google/__init__.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Reference for the GCPRegions class in Ultralytics, which provides functionality for testing and analyzing latency across Google Cloud Platform regions.
3 | keywords: Ultralytics, GCP, Google Cloud Platform, regions, latency testing, cloud computing, networking, performance analysis
4 | ---
5 |
6 | # Reference for `ultralytics/hub/google/__init__.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/google/\_\_init\_\_.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/google/__init__.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/hub/google/__init__.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.hub.google.GCPRegions
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/hub/session.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the HUBTrainingSession class for managing Ultralytics YOLO model training, heartbeats, and checkpointing.
3 | keywords: Ultralytics, YOLO, HUBTrainingSession, model training, heartbeats, checkpointing, Python
4 | ---
5 |
6 | # Reference for `ultralytics/hub/session.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/session.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/session.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/hub/session.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.hub.session.HUBTrainingSession
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/hub/utils.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the utilities in the Ultralytics HUB. Learn about smart_request, request_with_credentials, and more to enhance your YOLO projects.
3 | keywords: Ultralytics, HUB, Utilities, YOLO, smart_request, request_with_credentials
4 | ---
5 |
6 | # Reference for `ultralytics/hub/utils.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/utils.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/hub/utils.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.hub.utils.Events
15 |
16 |
17 |
18 | ## ::: ultralytics.hub.utils.request_with_credentials
19 |
20 |
21 |
22 | ## ::: ultralytics.hub.utils.requests_with_progress
23 |
24 |
25 |
26 | ## ::: ultralytics.hub.utils.smart_request
27 |
28 |
29 |
--------------------------------------------------------------------------------
/docs/en/reference/models/fastsam/model.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover how to use the FastSAM model with Ultralytics. Learn about its interface and implementation details with practical examples.
3 | keywords: FastSAM, Ultralytics, model interface, YOLO, deep learning, machine learning, segmentation, predictor, validator, Python
4 | ---
5 |
6 | # Reference for `ultralytics/models/fastsam/model.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/fastsam/model.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.fastsam.model.FastSAM
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/fastsam/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Fast SAM Predictor in the Ultralytics YOLO framework. Learn about its segmentation prediction tasks, configuration, and post-processing steps.
3 | keywords: Ultralytics, Fast SAM Predictor, YOLO, segmentation, prediction, AI model, non-max suppression, mask prediction, tutorial
4 | ---
5 |
6 | # Reference for `ultralytics/models/fastsam/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/fastsam/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.fastsam.predict.FastSAMPredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/fastsam/utils.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the utility functions in FastSAM for adjusting bounding boxes and calculating IoU, benefiting computer vision projects.
3 | keywords: FastSAM, bounding boxes, IoU, Ultralytics, image processing, computer vision
4 | ---
5 |
6 | # Reference for `ultralytics/models/fastsam/utils.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/utils.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/fastsam/utils.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.fastsam.utils.adjust_bboxes_to_image_border
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/fastsam/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover FastSAM Validator for segmentation in Ultralytics YOLO. Learn how to validate with custom metrics and avoid common errors. Contribute on GitHub!.
3 | keywords: FastSAM Validator, Ultralytics, YOLO, segmentation, validation, metrics, GitHub, contribute, documentation
4 | ---
5 |
6 | # Reference for `ultralytics/models/fastsam/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/fastsam/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/fastsam/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.fastsam.val.FastSAMValidator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/nas/model.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the YOLO-NAS model interface and learn how to utilize pre-trained YOLO-NAS models for object detection with Ultralytics.
3 | keywords: Ultralytics, YOLO, YOLO-NAS, object detection, pre-trained models, machine learning, deep learning, NAS model
4 | ---
5 |
6 | # Reference for `ultralytics/models/nas/model.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/nas/model.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.nas.model.NAS
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/nas/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn about NASPredictor in Ultralytics YOLO for efficient object detection. Explore its attributes, methods, and usage with examples.
3 | keywords: Ultralytics, YOLO, NASPredictor, object detection, machine learning, AI, non-maximum suppression, bounding boxes, image processing
4 | ---
5 |
6 | # Reference for `ultralytics/models/nas/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/nas/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.nas.predict.NASPredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/nas/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics NASValidator for efficient YOLO model validation. Learn about NMS and post-processing configurations.
3 | keywords: Ultralytics, YOLO, NASValidator, object detection, non-maximum suppression, NMS, YOLO models, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/nas/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/nas/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.nas.val.NASValidator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/rtdetr/model.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the interface for Baidu's RT-DETR, a Vision Transformer-based real-time object detector in the Ultralytics Docs. Learn more about its efficient hybrid encoding and IoU-aware query selection.
3 | keywords: RT-DETR, real-time object detection, Vision Transformer, Ultralytics, model interface, Baidu, hybrid encoding, IoU-aware query selection, machine learning, AI
4 | ---
5 |
6 | # Reference for `ultralytics/models/rtdetr/model.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/rtdetr/model.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.rtdetr.model.RTDETR
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/rtdetr/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Access the complete reference for the RTDETRPredictor class in Ultralytics. Learn about its attributes, methods, and example usage for real-time object detection.
3 | keywords: RTDETRPredictor, Ultralytics, Real-Time Detection Transformer, object detection, Vision Transformers, documentation, RT-DETR, Python class
4 | ---
5 |
6 | # Reference for `ultralytics/models/rtdetr/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/rtdetr/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.rtdetr.predict.RTDETRPredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/rtdetr/train.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore RTDETRTrainer for efficient real-time object detection leveraging Vision Transformers. Learn configuration, dataset handling, and advanced model training.
3 | keywords: RTDETRTrainer, real-time object detection, Vision Transformers, YOLO, RT-DETR model, model training, dataset handling
4 | ---
5 |
6 | # Reference for `ultralytics/models/rtdetr/train.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/rtdetr/train.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.rtdetr.train.RTDETRTrainer
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/rtdetr/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the RTDETRValidator and RTDETRDataset classes for real-time detection and tracking. Understand initialization, transformations, and post-processing.
3 | keywords: RTDETR, Ultralytics, object detection, tracking, YOLO, RTDETRDataset, RTDETRValidator, real-time detection
4 | ---
5 |
6 | # Reference for `ultralytics/models/rtdetr/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/rtdetr/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.rtdetr.val.RTDETRDataset
15 |
16 |
17 |
18 | ## ::: ultralytics.models.rtdetr.val.RTDETRValidator
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/models/sam/model.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the SAM (Segment Anything Model) and SAM 2 (Segment Anything Model 2) interface for real-time image segmentation. Learn about promptable segmentation and zero-shot capabilities.
3 | keywords: Ultralytics, SAM, Segment Anything Model, SAM 2, Segment Anything Model 2, image segmentation, real-time segmentation, zero-shot performance, promptable segmentation, SA-1B dataset
4 | ---
5 |
6 | # Reference for `ultralytics/models/sam/model.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/model.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.sam.model.SAM
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/sam/modules/decoders.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the MaskDecoder and MLP modules in Ultralytics for efficient mask prediction using transformer architecture. Detailed attributes, functionalities, and implementation.
3 | keywords: Ultralytics, MaskDecoder, MLP, machine learning, transformer architecture, mask prediction, neural networks, PyTorch modules
4 | ---
5 |
6 | # Reference for `ultralytics/models/sam/modules/decoders.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/decoders.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/decoders.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/decoders.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.sam.modules.decoders.MaskDecoder
15 |
16 |
17 |
18 | ## ::: ultralytics.models.sam.modules.decoders.SAM2MaskDecoder
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/models/sam/modules/encoders.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore detailed documentation of various SAM encoder modules such as ImageEncoderViT, PromptEncoder, and more, available in Ultralytics' repository.
3 | keywords: Ultralytics, SAM encoder, ImageEncoderViT, PromptEncoder, PositionEmbeddingRandom, Block, Attention, PatchEmbed
4 | ---
5 |
6 | # Reference for `ultralytics/models/sam/modules/encoders.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/encoders.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/encoders.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/encoders.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.sam.modules.encoders.ImageEncoderViT
15 |
16 |
17 |
18 | ## ::: ultralytics.models.sam.modules.encoders.PromptEncoder
19 |
20 |
21 |
22 | ## ::: ultralytics.models.sam.modules.encoders.MemoryEncoder
23 |
24 |
25 |
26 | ## ::: ultralytics.models.sam.modules.encoders.ImageEncoder
27 |
28 |
29 |
30 | ## ::: ultralytics.models.sam.modules.encoders.FpnNeck
31 |
32 |
33 |
34 | ## ::: ultralytics.models.sam.modules.encoders.Hiera
35 |
36 |
37 |
--------------------------------------------------------------------------------
/docs/en/reference/models/sam/modules/memory_attention.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore detailed documentation of various SAM 2 encoder modules such as MemoryAttentionLayer, MemoryAttention, available in Ultralytics' repository.
3 | keywords: Ultralytics, SAM 2 encoder, MemoryAttentionLayer, MemoryAttention
4 | ---
5 |
6 | # Reference for `ultralytics/models/sam/modules/memory_attention.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/memory_attention.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/memory_attention.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/memory_attention.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.sam.modules.memory_attention.MemoryAttentionLayer
15 |
16 |
17 |
18 | ## ::: ultralytics.models.sam.modules.memory_attention.MemoryAttention
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/models/sam/modules/sam.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover the Ultralytics SAM and SAM 2 module for object segmentation. Learn about its components, such as image encoders and mask decoders, in this comprehensive guide.
3 | keywords: Ultralytics, SAM Module, SAM 2 Module, object segmentation, image encoder, mask decoder, prompt encoder, AI, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/sam/modules/sam.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/sam.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/sam.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/sam.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.sam.modules.sam.SAMModel
15 |
16 |
17 |
18 | ## ::: ultralytics.models.sam.modules.sam.SAM2Model
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/models/sam/modules/transformer.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the TwoWayTransformer module in Ultralytics, designed for simultaneous attention to image and query points. Ideal for object detection and segmentation tasks.
3 | keywords: Ultralytics, TwoWayTransformer, module, deep learning, transformer, object detection, image segmentation, attention mechanism, neural networks
4 | ---
5 |
6 | # Reference for `ultralytics/models/sam/modules/transformer.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/transformer.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/transformer.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/modules/transformer.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.sam.modules.transformer.TwoWayTransformer
15 |
16 |
17 |
18 | ## ::: ultralytics.models.sam.modules.transformer.TwoWayAttentionBlock
19 |
20 |
21 |
22 | ## ::: ultralytics.models.sam.modules.transformer.Attention
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/models/sam/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore Ultralytics SAM and SAM 2 Predictor for advanced, real-time image segmentation using the Segment Anything Model (SAM and SAM 2). Complete implementation details and auxiliary utilities.
3 | keywords: Ultralytics, SAM, Segment Anything Model, SAM 2, Segment Anything Model 2, image segmentation, real-time, prediction, AI, machine learning, Python, torch, inference
4 | ---
5 |
6 | # Reference for `ultralytics/models/sam/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.sam.predict.Predictor
15 |
16 |
17 |
18 | ## ::: ultralytics.models.sam.predict.SAM2Predictor
19 |
20 |
21 |
22 | ## ::: ultralytics.models.sam.predict.SAM2VideoPredictor
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/models/utils/loss.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore detailed implementations of loss functions for DETR and RT-DETR models in Ultralytics.
3 | keywords: ultralytics, YOLO, DETR, RT-DETR, loss functions, object detection, deep learning, focal loss, varifocal loss, Hungarian matcher
4 | ---
5 |
6 | # Reference for `ultralytics/models/utils/loss.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/utils/loss.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/utils/loss.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/utils/loss.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.utils.loss.DETRLoss
15 |
16 |
17 |
18 | ## ::: ultralytics.models.utils.loss.RTDETRDetectionLoss
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/models/utils/ops.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the utilities and operations in Ultralytics models like HungarianMatcher and get_cdn_group. Learn how to optimize and manage model operations efficiently.
3 | keywords: Ultralytics, models, utils, operations, HungarianMatcher, get_cdn_group, model optimization, pytorch, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/utils/ops.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/utils/ops.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/utils/ops.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/utils/ops.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.utils.ops.HungarianMatcher
15 |
16 |
17 |
18 | ## ::: ultralytics.models.utils.ops.get_cdn_group
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/classify/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn about the ClassificationPredictor class for YOLO models at Ultralytics. Get details on initialization, preprocessing, and postprocessing for classification tasks.
3 | keywords: YOLO, ClassificationPredictor, Ultralytics, model prediction, preprocess, postprocess, deep learning, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/classify/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/classify/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/classify/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/classify/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.classify.predict.ClassificationPredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/classify/train.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the train.py module in Ultralytics YOLO for efficient classification model training. Learn more with examples and detailed code documentation.
3 | keywords: YOLO, Ultralytics, classification, training, machine learning, deep learning, PyTorch, train.py
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/classify/train.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/classify/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/classify/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/classify/train.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.classify.train.ClassificationTrainer
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/classify/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the source code and functionalities of the YOLO Classification Validator in Ultralytics for evaluating classification models effectively.
3 | keywords: Ultralytics, YOLO, classification, validation, ClassifyMetrics, ConfusionMatrix, PyTorch, deep learning, model evaluation, AI, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/classify/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/classify/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/classify/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/classify/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.classify.val.ClassificationValidator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/detect/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics YOLO Detection Predictor. Learn how to implement and use the DetectionPredictor class for object detection in Python.
3 | keywords: YOLO, Ultralytics, DetectionPredictor, object detection, Python, machine learning, AI, non_max_suppression
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/detect/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/detect/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.detect.predict.DetectionPredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/detect/train.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn about the DetectionTrainer class for training YOLO models on custom datasets. Discover methods, examples, and more.
3 | keywords: Ultralytics, YOLO, DetectionTrainer, training, object detection, machine learning, build dataset, dataloader, detection model
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/detect/train.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/detect/train.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.detect.train.DetectionTrainer
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/detect/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the DetectionValidator class for YOLO models in Ultralytics. Learn validation techniques, metrics, and dataset handling for object detection.
3 | keywords: YOLO validation, detection validation, YOLO metrics, Ultralytics, object detection, machine learning, AI
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/detect/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/detect/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.detect.val.DetectionValidator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/model.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the ultralytics.models.yolo.model module for YOLO object detection. Learn initialization, model mapping, and more.
3 | keywords: YOLO, object detection, Ultralytics, YOLO model, machine learning, Python, model initialization
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/model.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/model.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.model.YOLO
15 |
16 |
17 |
18 | ## ::: ultralytics.models.yolo.model.YOLOWorld
19 |
20 |
21 |
22 | ## ::: ultralytics.models.yolo.model.YOLOE
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/obb/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to use the Ultralytics YOLO OBBPredictor for oriented bounding box predictions. Enhance your object detection models with ease.
3 | keywords: Ultralytics, YOLO, OBBPredictor, oriented bounding box, object detection, AI, machine learning, PyTorch
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/obb/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/obb/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/obb/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/obb/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.obb.predict.OBBPredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/obb/train.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics YOLO OBB Trainer class for efficient training with Oriented Bounding Box models. Learn with examples and method details.
3 | keywords: Ultralytics, YOLO, OBB Trainer, Oriented Bounding Box, Machine Learning, Training, AI
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/obb/train.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/obb/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/obb/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/obb/train.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.obb.train.OBBTrainer
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/obb/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the OBBValidator for YOLO, an advanced class for oriented bounding boxes (OBB). Learn initialization, processes, and evaluation methods.
3 | keywords: Ultralytics, YOLO, OBBValidator, Oriented Bounding Boxes, DetectionValidator, validation, Python, deep learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/obb/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/obb/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/obb/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/obb/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.obb.val.OBBValidator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/pose/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn about the PosePredictor class for YOLO model predictions on pose data. Get setup instructions, example usage, and implementation details.
3 | keywords: YOLO, Pose Prediction, Ultralytics, PosePredictor, YOLOv8, Machine Learning, Deep Learning, Python, AI Models
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/pose/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/pose/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/pose/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/pose/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.pose.predict.PosePredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/pose/train.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the PoseTrainer class for training pose models using YOLO from Ultralytics. Includes initialization, model configuration, and plotting methods.
3 | keywords: PoseTrainer, YOLO, Ultralytics, pose models, training, model configuration, deep learning, machine learning, pose estimation
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/pose/train.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/pose/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/pose/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/pose/train.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.pose.train.PoseTrainer
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/pose/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the PoseValidator class for YOLO models. Learn how to extend DetectionValidator for pose validation with example code and detailed methods.
3 | keywords: Ultralytics, YOLO, PoseValidator, pose validation, machine learning, object detection, keypoints, python code, AI, deep learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/pose/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/pose/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/pose/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/pose/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.pose.val.PoseValidator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/segment/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Understand the SegmentationPredictor class for segmentation-based predictions using YOLO. Learn more about its implementation and example usage.
3 | keywords: YOLO, SegmentationPredictor, machine learning, computer vision, object detection, Ultralytics, prediction, model, non-max suppression
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/segment/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/segment/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/segment/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/segment/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.segment.predict.SegmentationPredictor
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/segment/train.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to train YOLO models for segmentation tasks with Ultralytics. Explore the SegmentationTrainer class and its functionalities.
3 | keywords: YOLO, segmentation, train, Ultralytics, SegmentationTrainer, Python, machine learning, deep learning, tutorials
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/segment/train.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/segment/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/segment/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/segment/train.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.segment.train.SegmentationTrainer
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/segment/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the YOLO Segmentation Validator module for validating segment models. Understand its usage, metrics, and implementation within the Ultralytics framework.
3 | keywords: YOLO, segmentation, validator, Ultralytics, model validation, machine learning, deep learning, AI, computer vision
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/segment/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/segment/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/segment/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/segment/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.segment.val.SegmentationValidator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/world/train.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to train a World Model with Ultralytics YOLO using advanced techniques and customizable options for optimal performance.
3 | keywords: Ultralytics, YOLO, World Model, training, deep learning, computer vision, AI, machine learning, tutorial
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/world/train.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/world/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/world/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/world/train.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.world.train.WorldTrainer
15 |
16 |
17 |
18 | ## ::: ultralytics.models.yolo.world.train.on_pretrain_routine_end
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/world/train_world.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the WorldTrainerFromScratch in YOLO for open-set datasets. Learn how to build, train, and evaluate models efficiently.
3 | keywords: YOLO, WorldTrainer, open-set datasets, training, evaluation, build dataset, YOLO World, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/world/train_world.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/world/train_world.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/world/train_world.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/world/train_world.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.world.train_world.WorldTrainerFromScratch
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/yoloe/predict.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Documentation for YOLOE visual prompt predictors in Ultralytics, supporting inference with visual prompts for both object detection and segmentation models.
3 | keywords: YOLOE, visual prompts, predictors, YOLOEVPDetectPredictor, YOLOEVPSegPredictor, inference, object detection, segmentation, Ultralytics, deep learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/yoloe/predict.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/yoloe/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/yoloe/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/yoloe/predict.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.yoloe.predict.YOLOEVPDetectPredictor
15 |
16 |
17 |
18 | ## ::: ultralytics.models.yolo.yoloe.predict.YOLOEVPSegPredictor
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/yoloe/train.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn about YOLOE enhanced visual prompting (EVP) predictors in Ultralytics, which enable object detection and segmentation models to use visual prompts during inference for improved performance.
3 | keywords: YOLOE, EVP, visual prompts, computer vision, object detection, segmentation, bounding boxes, masks, predictors, YOLOEVPDetectPredictor, YOLOEVPSegPredictor, Ultralytics, inference
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/yoloe/train.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/yoloe/train.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/yoloe/train.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/yoloe/train.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.yoloe.train.YOLOETrainer
15 |
16 |
17 |
18 | ## ::: ultralytics.models.yolo.yoloe.train.YOLOEPETrainer
19 |
20 |
21 |
22 | ## ::: ultralytics.models.yolo.yoloe.train.YOLOETrainerFromScratch
23 |
24 |
25 |
26 | ## ::: ultralytics.models.yolo.yoloe.train.YOLOEPEFreeTrainer
27 |
28 |
29 |
30 | ## ::: ultralytics.models.yolo.yoloe.train.YOLOEVPTrainer
31 |
32 |
33 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/yoloe/train_seg.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Documentation for YOLOE segmentation trainer classes in Ultralytics, supporting different training approaches including standard training, linear probing, training from scratch, and visual prompt training.
3 | keywords: YOLOE, segmentation, trainers, YOLOESegTrainer, YOLOEPESegTrainer, YOLOESegTrainerFromScratch, YOLOESegVPTrainer, linear probing, visual prompts, Ultralytics, deep learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/yoloe/train_seg.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/yoloe/train_seg.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/yoloe/train_seg.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/yoloe/train_seg.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.yoloe.train_seg.YOLOESegTrainer
15 |
16 |
17 |
18 | ## ::: ultralytics.models.yolo.yoloe.train_seg.YOLOEPESegTrainer
19 |
20 |
21 |
22 | ## ::: ultralytics.models.yolo.yoloe.train_seg.YOLOESegTrainerFromScratch
23 |
24 |
25 |
26 | ## ::: ultralytics.models.yolo.yoloe.train_seg.YOLOESegVPTrainer
27 |
28 |
29 |
--------------------------------------------------------------------------------
/docs/en/reference/models/yolo/yoloe/val.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Documentation for YOLOE validator classes in Ultralytics, supporting both text and visual prompt embeddings for object detection and segmentation models.
3 | keywords: YOLOE, validation, object detection, segmentation, visual prompts, text prompts, embeddings, Ultralytics, YOLOEDetectValidator, YOLOESegValidator, deep learning
4 | ---
5 |
6 | # Reference for `ultralytics/models/yolo/yoloe/val.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/yoloe/val.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/yoloe/val.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/yolo/yoloe/val.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.models.yolo.yoloe.val.YOLOEDetectValidator
15 |
16 |
17 |
18 | ## ::: ultralytics.models.yolo.yoloe.val.YOLOESegValidator
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/nn/autobackend.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Get to know more about Ultralytics nn.autobackend.check_class_names functionality. Optimize your YOLO models seamlessly.
3 | keywords: Ultralytics, AutoBackend, check_class_names, YOLO, YOLO models, optimization
4 | ---
5 |
6 | # Reference for `ultralytics/nn/autobackend.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/autobackend.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/autobackend.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/nn/autobackend.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.nn.autobackend.AutoBackend
15 |
16 |
17 |
18 | ## ::: ultralytics.nn.autobackend.check_class_names
19 |
20 |
21 |
22 | ## ::: ultralytics.nn.autobackend.default_class_names
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/nn/modules/activation.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore activation functions in Ultralytics, including the Unified activation function and other custom implementations for neural networks.
3 | keywords: ultralytics, activation functions, neural networks, Unified activation, AGLU, SiLU, ReLU, PyTorch, deep learning, custom activations
4 | ---
5 |
6 | # Reference for `ultralytics/nn/modules/activation.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/activation.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/activation.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/nn/modules/activation.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.nn.modules.activation.AGLU
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/nn/modules/head.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore docs covering Ultralytics YOLO detection, pose & RTDETRDecoder. Comprehensive guides to help you understand Ultralytics nn modules.
3 | keywords: Ultralytics, YOLO, Detection, Pose, RTDETRDecoder, nn modules, guides
4 | ---
5 |
6 | # Reference for `ultralytics/nn/modules/head.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/head.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/head.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/nn/modules/head.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.nn.modules.head.Detect
15 |
16 |
17 |
18 | ## ::: ultralytics.nn.modules.head.Segment
19 |
20 |
21 |
22 | ## ::: ultralytics.nn.modules.head.OBB
23 |
24 |
25 |
26 | ## ::: ultralytics.nn.modules.head.Pose
27 |
28 |
29 |
30 | ## ::: ultralytics.nn.modules.head.Classify
31 |
32 |
33 |
34 | ## ::: ultralytics.nn.modules.head.WorldDetect
35 |
36 |
37 |
38 | ## ::: ultralytics.nn.modules.head.LRPCHead
39 |
40 |
41 |
42 | ## ::: ultralytics.nn.modules.head.YOLOEDetect
43 |
44 |
45 |
46 | ## ::: ultralytics.nn.modules.head.YOLOESegment
47 |
48 |
49 |
50 | ## ::: ultralytics.nn.modules.head.RTDETRDecoder
51 |
52 |
53 |
54 | ## ::: ultralytics.nn.modules.head.v10Detect
55 |
56 |
57 |
--------------------------------------------------------------------------------
/docs/en/reference/nn/modules/utils.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the detailed reference of utility functions in the Ultralytics PyTorch modules. Learn about initialization, inverse sigmoid, and multiscale deformable attention.
3 | keywords: Ultralytics, PyTorch, utils, initialization, inverse sigmoid, multiscale deformable attention, deep learning, neural networks
4 | ---
5 |
6 | # Reference for `ultralytics/nn/modules/utils.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/utils.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/nn/modules/utils.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.nn.modules.utils._get_clones
15 |
16 |
17 |
18 | ## ::: ultralytics.nn.modules.utils.bias_init_with_prob
19 |
20 |
21 |
22 | ## ::: ultralytics.nn.modules.utils.linear_init
23 |
24 |
25 |
26 | ## ::: ultralytics.nn.modules.utils.inverse_sigmoid
27 |
28 |
29 |
30 | ## ::: ultralytics.nn.modules.utils.multi_scale_deformable_attn_pytorch
31 |
32 |
33 |
--------------------------------------------------------------------------------
/docs/en/reference/nn/text_model.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Documentation for text encoding models in Ultralytics YOLOE, supporting both OpenAI CLIP and Apple MobileCLIP implementations for vision-language tasks.
3 | keywords: YOLOE, text encoding, CLIP, MobileCLIP, TextModel, vision-language models, embeddings, Ultralytics, deep learning
4 | ---
5 |
6 | # Reference for `ultralytics/nn/text_model.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/text_model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/text_model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/nn/text_model.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.nn.text_model.TextModel
15 |
16 |
17 |
18 | ## ::: ultralytics.nn.text_model.CLIP
19 |
20 |
21 |
22 | ## ::: ultralytics.nn.text_model.MobileCLIP
23 |
24 |
25 |
26 | ## ::: ultralytics.nn.text_model.MobileCLIPTS
27 |
28 |
29 |
30 | ## ::: ultralytics.nn.text_model.build_text_model
31 |
32 |
33 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/ai_gym.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the AI Gym class for real-time pose detection and gym step counting using Ultralytics YOLO. Learn to implement pose estimation effectively.
3 | keywords: Ultralytics, AI Gym, YOLO, pose detection, gym step counting, real-time pose estimation, Python
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/ai_gym.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/ai_gym.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/ai_gym.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/ai_gym.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.ai_gym.AIGym
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/analytics.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Analytics class in Ultralytics for visual analytics. Learn to create and update line, bar, and pie charts efficiently.
3 | keywords: Ultralytics, Analytics, Python, visual analytics, line chart, bar chart, pie chart, data visualization, AGPL-3.0 license
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/analytics.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/analytics.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/analytics.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/analytics.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.analytics.Analytics
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/distance_calculation.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics distance calculation module. Learn to calculate distances between objects in real-time video streams with our comprehensive guide.
3 | keywords: Ultralytics, distance calculation, object tracking, real-time video, centroid, distance estimation, YOLO, ML, cv2
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/distance_calculation.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/distance_calculation.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/distance_calculation.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/distance_calculation.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.distance_calculation.DistanceCalculation
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/heatmap.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to use the Ultralytics Heatmap module for real-time video analysis with object tracking and heatmap generation.
3 | keywords: Ultralytics, Heatmap, Python, Real-time Video, Object Tracking, cv2, Shapely, Computer Vision, AI
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/heatmap.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/heatmap.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/heatmap.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/heatmap.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.heatmap.Heatmap
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/instance_segmentation.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: This page provides a detailed reference for the InstanceSegmentation class in the Ultralytics solutions package, enabling instance segmentation in images and videos.
3 | keywords: Ultralytics, InstanceSegmentation, instance segmentation, masks, Python, computer vision
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/instance_segmentation.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/instance_segmentation.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/instance_segmentation.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/instance_segmentation.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.instance_segmentation.InstanceSegmentation
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/object_blurrer.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: This page provides a detailed reference for the ObjectBlurrer class in the Ultralytics solutions package, which enables real-time blurring of detected objects in images and videos.
3 | keywords: Ultralytics, ObjectBlurrer, object detection, blurring, real-time processing, Python, computer vision
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/object_blurrer.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_blurrer.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_blurrer.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/object_blurrer.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.object_blurrer.ObjectBlurrer
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/object_counter.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics Object Counter for real-time video streams. Learn about initializing parameters, tracking objects, and more.
3 | keywords: Ultralytics, Object Counter, Real-time Tracking, Video Stream, Python, Object Detection
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/object_counter.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_counter.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_counter.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/object_counter.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.object_counter.ObjectCounter
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/object_cropper.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Detailed documentation for the ObjectCropper class, part of the Ultralytics solutions package, enabling real-time cropping of detected objects from images and video streams.
3 | keywords: Ultralytics, ObjectCropper, object detection, cropping, real-time processing, Python, computer vision
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/object_cropper.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_cropper.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_cropper.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/object_cropper.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.object_cropper.ObjectCropper
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/parking_management.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore Ultralytics' Parking Management solution leveraging YOLO for efficient parking zone monitoring and management.
3 | keywords: Ultralytics, YOLO, parking management, computer vision, parking monitoring, AI solutions, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/parking_management.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/parking_management.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/parking_management.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/parking_management.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.parking_management.ParkingPtsSelection
15 |
16 |
17 |
18 | ## ::: ultralytics.solutions.parking_management.ParkingManagement
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/queue_management.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover the Ultralytics Queue Management script for real-time object tracking and queue management.
3 | keywords: Ultralytics, queue management, object tracking, real-time video, Python script, YOLO, AGPL-3.0
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/queue_management.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/queue_management.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/queue_management.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/queue_management.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.queue_management.QueueManager
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/region_counter.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics Object Counter for real-time video streams. Learn about initializing parameters, tracking objects, and more.
3 | keywords: Ultralytics, Object Counter, Real-time Tracking, Video Stream, Python, Object Detection
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/region_counter.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/region_counter.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/region_counter.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/region_counter.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.region_counter.RegionCounter
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/security_alarm.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover how Ultralytics' Security Alarm System enhances real-time surveillance with intelligent object detection and tracking. Learn about setup, monitoring, and threat detection.
3 | keywords: Ultralytics, Security Alarm System, Real-time Surveillance, Object Detection, Video Monitoring, Python, Threat Detection
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/security_alarm.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/security_alarm.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/security_alarm.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/security_alarm.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.security_alarm.SecurityAlarm
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/solutions.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics Solution Base class for real-time object counting,virtual gym, heatmaps, speed estimation using Ultralytics YOLO. Learn to implement Ultralytics solutions effectively.
3 | keywords: Ultralytics, Solutions, Object counting, Speed Estimation, Heatmaps, Queue Management, AI Gym, YOLO, pose detection, gym step counting, real-time pose estimation, Python
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/solutions.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/solutions.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.solutions.BaseSolution
15 |
16 |
17 |
18 | ## ::: ultralytics.solutions.solutions.SolutionAnnotator
19 |
20 |
21 |
22 | ## ::: ultralytics.solutions.solutions.SolutionResults
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/speed_estimation.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Ultralytics YOLO-based speed estimation script for real-time object tracking and speed measurement, optimized for accuracy and performance.
3 | keywords: Ultralytics, speed estimation, YOLO, real-time tracking, object tracking, python
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/speed_estimation.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/speed_estimation.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/speed_estimation.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/speed_estimation.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.speed_estimation.SpeedEstimator
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/streamlit_inference.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the live inference capabilities of Streamlit combined with Ultralytics YOLOv8. Learn to implement real-time object detection in your web applications with our comprehensive guide.
3 | keywords: Ultralytics, YOLOv8, live inference, real-time object detection, Streamlit, computer vision, webcam inference, object detection, Python, ML, cv2
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/streamlit_inference.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/streamlit_inference.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/streamlit_inference.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/streamlit_inference.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.streamlit_inference.Inference
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/trackzone.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover Ultralytics' TrackZone solution for real-time object tracking within defined zones. Gain insights into initializing regions, tracking objects exclusively within specific areas, and optimizing video stream processing for region-based object detection.
3 | keywords: Ultralytics, TrackZone, Object Tracking, Zone Tracking, Region Tracking, Python, Real-time Object Tracking, Video Stream Processing, Region-based Detection
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/trackzone.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/trackzone.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/trackzone.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/trackzone.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.trackzone.TrackZone
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/solutions/vision_eye.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover the Ultralytics VisionEye solution for object tracking and analysis. Learn how to initialize parameters, map vision points, and track objects in real-time.
3 | keywords: Ultralytics, VisionEye, Object Tracking, Computer Vision, Real-time Analysis, Python, AI
4 | ---
5 |
6 | # Reference for `ultralytics/solutions/vision_eye.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/vision_eye.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/vision_eye.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/vision_eye.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.solutions.vision_eye.VisionEye
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/trackers/basetrack.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover the BaseTrack classes and methods for object tracking in YOLO by Ultralytics. Learn about TrackState, BaseTrack attributes, and methods.
3 | keywords: Ultralytics, YOLO, object tracking, BaseTrack, TrackState, tracking methods, TrackState enumeration, object detection
4 | ---
5 |
6 | # Reference for `ultralytics/trackers/basetrack.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/basetrack.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/basetrack.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/trackers/basetrack.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.trackers.basetrack.TrackState
15 |
16 |
17 |
18 | ## ::: ultralytics.trackers.basetrack.BaseTrack
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/trackers/bot_sort.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the robust object tracking capabilities of the BOTrack and BOTSORT classes in the Ultralytics Bot SORT tracker API. Enhance your YOLOv8 projects.
3 | keywords: Ultralytics, Bot SORT, BOTrack, BOTSORT, YOLOv8, object tracking, Kalman filter, ReID, GMC algorithm
4 | ---
5 |
6 | # Reference for `ultralytics/trackers/bot_sort.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/bot_sort.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/bot_sort.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/trackers/bot_sort.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.trackers.bot_sort.BOTrack
15 |
16 |
17 |
18 | ## ::: ultralytics.trackers.bot_sort.BOTSORT
19 |
20 |
21 |
22 | ## ::: ultralytics.trackers.bot_sort.ReID
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/trackers/byte_tracker.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the BYTETracker module in Ultralytics for state-of-the-art object tracking using Kalman filtering. Learn about its classes, methods, and attributes.
3 | keywords: Ultralytics, BYTETracker, object tracking, Kalman filter, YOLOv8, documentation
4 | ---
5 |
6 | # Reference for `ultralytics/trackers/byte_tracker.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/byte_tracker.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/byte_tracker.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/trackers/byte_tracker.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.trackers.byte_tracker.STrack
15 |
16 |
17 |
18 | ## ::: ultralytics.trackers.byte_tracker.BYTETracker
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/trackers/track.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the track.py script for Ultralytics object tracking. Learn how on_predict_start, on_predict_postprocess_end, and register_tracker functions work.
3 | keywords: Ultralytics, YOLO, object tracking, track.py, on_predict_start, on_predict_postprocess_end, register_tracker
4 | ---
5 |
6 | # Reference for `ultralytics/trackers/track.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/track.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/track.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/trackers/track.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.trackers.track.on_predict_start
15 |
16 |
17 |
18 | ## ::: ultralytics.trackers.track.on_predict_postprocess_end
19 |
20 |
21 |
22 | ## ::: ultralytics.trackers.track.register_tracker
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/trackers/utils/gmc.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the Generalized Motion Compensation (GMC) class for tracking and object detection with methods like ORB, SIFT, ECC, and more.
3 | keywords: GMC, Generalized Motion Compensation, Ultralytics, tracking, object detection, ORB, SIFT, ECC, Sparse Optical Flow, computer vision, video frames
4 | ---
5 |
6 | # Reference for `ultralytics/trackers/utils/gmc.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/utils/gmc.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/utils/gmc.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/trackers/utils/gmc.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.trackers.utils.gmc.GMC
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/trackers/utils/kalman_filter.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore Kalman filter implementations like KalmanFilterXYAH and KalmanFilterXYWH for tracking bounding boxes in image space using Ultralytics.
3 | keywords: Kalman Filter, Object Tracking, Python, Ultralytics, YOLO, Bounding Boxes, Image Processing
4 | ---
5 |
6 | # Reference for `ultralytics/trackers/utils/kalman_filter.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/utils/kalman_filter.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/utils/kalman_filter.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/trackers/utils/kalman_filter.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.trackers.utils.kalman_filter.KalmanFilterXYAH
15 |
16 |
17 |
18 | ## ::: ultralytics.trackers.utils.kalman_filter.KalmanFilterXYWH
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/trackers/utils/matching.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the utility functions for matching in trackers used by Ultralytics, including linear assignment, IoU distance, embedding distance, and more.
3 | keywords: Ultralytics, matching utils, linear assignment, IoU distance, embedding distance, fuse score, tracking, Python, documentation
4 | ---
5 |
6 | # Reference for `ultralytics/trackers/utils/matching.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/utils/matching.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/utils/matching.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/trackers/utils/matching.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.trackers.utils.matching.linear_assignment
15 |
16 |
17 |
18 | ## ::: ultralytics.trackers.utils.matching.iou_distance
19 |
20 |
21 |
22 | ## ::: ultralytics.trackers.utils.matching.embedding_distance
23 |
24 |
25 |
26 | ## ::: ultralytics.trackers.utils.matching.fuse_score
27 |
28 |
29 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/autobatch.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Discover how to automatically estimate the best YOLO batch size for optimal CUDA memory usage in PyTorch using Ultralytics' autobatch utility.
3 | keywords: YOLO batch size, CUDA memory, PyTorch autobatch, Ultralytics, machine learning, optimal batch size, training batch size, YOLO model
4 | ---
5 |
6 | # Reference for `ultralytics/utils/autobatch.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/autobatch.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/autobatch.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/autobatch.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.autobatch.check_train_batch_size
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.autobatch.autobatch
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/benchmarks.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore YOLO model benchmarking for speed and accuracy with formats like PyTorch, ONNX, TensorRT, and more. Detailed profiling & usage guides.
3 | keywords: YOLO, model benchmarking, ONNX, TensorRT, PyTorch, TensorFlow, CoreML, profiling, Ultralytics, model performance
4 | ---
5 |
6 | # Reference for `ultralytics/utils/benchmarks.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/benchmarks.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/benchmarks.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/benchmarks.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.benchmarks.RF100Benchmark
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.benchmarks.ProfileModels
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.benchmarks.benchmark
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/callbacks/clearml.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to integrate ClearML with Ultralytics YOLO using detailed callbacks for pretraining, training, validation, and final logging.
3 | keywords: Ultralytics, YOLO, ClearML, integration, callbacks, pretraining, training, validation, logging, AI, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/utils/callbacks/clearml.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/clearml.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/clearml.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/callbacks/clearml.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.callbacks.clearml._log_debug_samples
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.callbacks.clearml._log_plot
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.callbacks.clearml.on_pretrain_routine_start
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.callbacks.clearml.on_train_epoch_end
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.callbacks.clearml.on_fit_epoch_end
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.callbacks.clearml.on_val_end
35 |
36 |
37 |
38 | ## ::: ultralytics.utils.callbacks.clearml.on_train_end
39 |
40 |
41 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/callbacks/dvc.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn to integrate DVCLive with Ultralytics for enhanced logging during training. Step-by-step methods for setting up and optimizing DVC callbacks.
3 | keywords: Ultralytics, DVC, DVCLive, machine learning, logging, training, callbacks, integration
4 | ---
5 |
6 | # Reference for `ultralytics/utils/callbacks/dvc.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/dvc.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/dvc.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/callbacks/dvc.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.callbacks.dvc._log_images
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.callbacks.dvc._log_plots
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.callbacks.dvc._log_confusion_matrix
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.callbacks.dvc.on_pretrain_routine_start
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.callbacks.dvc.on_pretrain_routine_end
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.callbacks.dvc.on_train_start
35 |
36 |
37 |
38 | ## ::: ultralytics.utils.callbacks.dvc.on_train_epoch_start
39 |
40 |
41 |
42 | ## ::: ultralytics.utils.callbacks.dvc.on_fit_epoch_end
43 |
44 |
45 |
46 | ## ::: ultralytics.utils.callbacks.dvc.on_train_end
47 |
48 |
49 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/callbacks/hub.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore detailed guides on Ultralytics callbacks, including pretrain, model save, train start/end, and more. Enhance your ML training workflows with ease.
3 | keywords: Ultralytics, callbacks, pretrain, model save, train start, train end, validation, predict, export, training, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/utils/callbacks/hub.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/hub.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/hub.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/callbacks/hub.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.callbacks.hub.on_pretrain_routine_start
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.callbacks.hub.on_pretrain_routine_end
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.callbacks.hub.on_fit_epoch_end
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.callbacks.hub.on_model_save
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.callbacks.hub.on_train_end
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.callbacks.hub.on_train_start
35 |
36 |
37 |
38 | ## ::: ultralytics.utils.callbacks.hub.on_val_start
39 |
40 |
41 |
42 | ## ::: ultralytics.utils.callbacks.hub.on_predict_start
43 |
44 |
45 |
46 | ## ::: ultralytics.utils.callbacks.hub.on_export_start
47 |
48 |
49 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/callbacks/mlflow.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to set up and customize MLflow logging for Ultralytics YOLO. Log metrics, parameters, and model artifacts easily.
3 | keywords: MLflow, Ultralytics YOLO, logging, metrics, parameters, model artifacts, setup, tracking, customization
4 | ---
5 |
6 | # Reference for `ultralytics/utils/callbacks/mlflow.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/mlflow.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/mlflow.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/callbacks/mlflow.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.callbacks.mlflow.sanitize_dict
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.callbacks.mlflow.on_pretrain_routine_end
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.callbacks.mlflow.on_train_epoch_end
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.callbacks.mlflow.on_fit_epoch_end
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.callbacks.mlflow.on_train_end
31 |
32 |
33 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/callbacks/neptune.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to use NeptuneAI with Ultralytics for advanced logging and tracking of experiments. Detailed setup and callback functions included.
3 | keywords: Ultralytics, NeptuneAI, YOLO, experiment logging, machine learning, AI, callbacks, training, validation
4 | ---
5 |
6 | # Reference for `ultralytics/utils/callbacks/neptune.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/neptune.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/neptune.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/callbacks/neptune.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.callbacks.neptune._log_scalars
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.callbacks.neptune._log_images
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.callbacks.neptune._log_plot
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.callbacks.neptune.on_pretrain_routine_start
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.callbacks.neptune.on_train_epoch_end
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.callbacks.neptune.on_fit_epoch_end
35 |
36 |
37 |
38 | ## ::: ultralytics.utils.callbacks.neptune.on_val_end
39 |
40 |
41 |
42 | ## ::: ultralytics.utils.callbacks.neptune.on_train_end
43 |
44 |
45 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/callbacks/raytune.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to integrate Ray Tune with Ultralytics YOLO for efficient hyperparameter tuning and performance tracking.
3 | keywords: Ultralytics, Ray Tune, hyperparameter tuning, YOLO, machine learning, deep learning, callbacks, integration, training metrics
4 | ---
5 |
6 | # Reference for `ultralytics/utils/callbacks/raytune.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/raytune.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/raytune.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/callbacks/raytune.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.callbacks.raytune.on_fit_epoch_end
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/callbacks/tensorboard.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to integrate and use TensorBoard with Ultralytics for effective model training visualization.
3 | keywords: Ultralytics, TensorBoard, callbacks, machine learning, training visualization, logging
4 | ---
5 |
6 | # Reference for `ultralytics/utils/callbacks/tensorboard.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/tensorboard.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/tensorboard.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/callbacks/tensorboard.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.callbacks.tensorboard._log_scalars
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.callbacks.tensorboard._log_tensorboard_graph
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.callbacks.tensorboard.on_pretrain_routine_start
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.callbacks.tensorboard.on_train_start
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.callbacks.tensorboard.on_train_epoch_end
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.callbacks.tensorboard.on_fit_epoch_end
35 |
36 |
37 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/callbacks/wb.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how Ultralytics YOLO integrates with WandB using custom callbacks for logging metrics and visualizations.
3 | keywords: Ultralytics, YOLO, WandB, callbacks, logging, metrics, visualizations, AI, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/utils/callbacks/wb.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/wb.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/wb.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/callbacks/wb.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.callbacks.wb._custom_table
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.callbacks.wb._plot_curve
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.callbacks.wb._log_plots
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.callbacks.wb.on_pretrain_routine_start
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.callbacks.wb.on_fit_epoch_end
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.callbacks.wb.on_train_epoch_end
35 |
36 |
37 |
38 | ## ::: ultralytics.utils.callbacks.wb.on_train_end
39 |
40 |
41 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/dist.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore Ultralytics' utilities for distributed training including DDP file generation, command setup, and cleanup. Improve multi-node training efficiency.
3 | keywords: Ultralytics, distributed training, DDP, multi-node training, network port, DDP file generation, DDP command, training utilities
4 | ---
5 |
6 | # Reference for `ultralytics/utils/dist.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/dist.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/dist.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/dist.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.dist.find_free_network_port
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.dist.generate_ddp_file
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.dist.generate_ddp_command
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.dist.ddp_cleanup
27 |
28 |
29 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/downloads.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore and utilize the Ultralytics download utilities to handle URLs, zip/unzip files, and manage GitHub assets effectively.
3 | keywords: Ultralytics, download utilities, URL validation, zip directory, unzip file, check disk space, Google Drive, GitHub assets, YOLO, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/utils/downloads.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/downloads.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/downloads.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/downloads.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.downloads.is_url
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.downloads.delete_dsstore
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.downloads.zip_directory
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.downloads.unzip_file
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.downloads.check_disk_space
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.downloads.get_google_drive_file_info
35 |
36 |
37 |
38 | ## ::: ultralytics.utils.downloads.safe_download
39 |
40 |
41 |
42 | ## ::: ultralytics.utils.downloads.get_github_assets
43 |
44 |
45 |
46 | ## ::: ultralytics.utils.downloads.attempt_download_asset
47 |
48 |
49 |
50 | ## ::: ultralytics.utils.downloads.download
51 |
52 |
53 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/errors.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore error handling for Ultralytics YOLO. Learn about custom exceptions like HUBModelError to manage model fetching issues effectively.
3 | keywords: Ultralytics, YOLO, error handling, HUBModelError, model fetching, custom exceptions, Python
4 | ---
5 |
6 | # Reference for `ultralytics/utils/errors.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/errors.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/errors.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/errors.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.errors.HUBModelError
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/export.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to export PyTorch models to ONNX and TensorRT formats using Ultralytics utilities. Comprehensive guide for configurations, dynamic shapes, and precision optimizations.
3 | keywords: Ultralytics, YOLO, export, ONNX, TensorRT, PyTorch, model conversion, dynamic shapes, FP16, INT8, machine learning
4 | ---
5 |
6 | # Reference for `ultralytics/utils/export.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/export.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/export.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/export.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.export.export_onnx
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.export.export_engine
19 |
20 |
21 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/files.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the utility functions and context managers in Ultralytics like WorkingDirectory, increment_path, file_size, and more. Enhance your file handling in Python.
3 | keywords: Ultralytics, file utilities, Python, WorkingDirectory, increment_path, file_size, file_age, contexts, file handling, file management
4 | ---
5 |
6 | # Reference for `ultralytics/utils/files.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/files.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/files.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/files.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.files.WorkingDirectory
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.files.spaces_in_path
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.files.increment_path
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.files.file_age
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.files.file_date
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.files.file_size
35 |
36 |
37 |
38 | ## ::: ultralytics.utils.files.get_latest_run
39 |
40 |
41 |
42 | ## ::: ultralytics.utils.files.update_models
43 |
44 |
45 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/instance.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore Ultralytics utilities for bounding boxes and instances, providing detailed documentation on handling bbox formats, conversions, and more.
3 | keywords: Ultralytics, bounding boxes, Instances, bbox formats, conversions, AI, deep learning, YOLO, xyxy, xywh, ltwh
4 | ---
5 |
6 | # Reference for `ultralytics/utils/instance.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/instance.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/instance.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/instance.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.instance.Bboxes
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.instance.Instances
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.instance._ntuple
23 |
24 |
25 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/patches.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore and contribute to Ultralytics' utils/patches.py. Learn about the imread, imwrite, imshow, and torch_save functions.
3 | keywords: Ultralytics, utils, patches, imread, imwrite, imshow, torch_save, OpenCV, PyTorch, GitHub
4 | ---
5 |
6 | # Reference for `ultralytics/utils/patches.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/patches.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/patches.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/patches.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.patches.imread
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.patches.imwrite
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.patches.imshow
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.patches.torch_load
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.patches.torch_save
31 |
32 |
33 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/plotting.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore detailed functionalities of Ultralytics plotting utilities for data visualizations and custom annotations in ML projects.
3 | keywords: ultralytics, plotting, utilities, documentation, data visualization, annotations, python, ML tools
4 | ---
5 |
6 | # Reference for `ultralytics/utils/plotting.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/plotting.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/plotting.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/plotting.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.plotting.Colors
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.plotting.Annotator
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.plotting.plot_labels
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.plotting.save_one_box
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.plotting.plot_images
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.plotting.plot_results
35 |
36 |
37 |
38 | ## ::: ultralytics.utils.plotting.plt_color_scatter
39 |
40 |
41 |
42 | ## ::: ultralytics.utils.plotting.plot_tune_results
43 |
44 |
45 |
46 | ## ::: ultralytics.utils.plotting.output_to_target
47 |
48 |
49 |
50 | ## ::: ultralytics.utils.plotting.output_to_rotated_target
51 |
52 |
53 |
54 | ## ::: ultralytics.utils.plotting.feature_visualization
55 |
56 |
57 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/tal.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore the TaskAlignedAssigner in Ultralytics YOLO. Learn about the TaskAlignedMetric and its applications in object detection.
3 | keywords: Ultralytics, YOLO, TaskAlignedAssigner, object detection, machine learning, AI, Tal.py, PyTorch
4 | ---
5 |
6 | # Reference for `ultralytics/utils/tal.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/tal.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/tal.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/tal.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.tal.TaskAlignedAssigner
15 |
16 |
17 |
18 | ## ::: ultralytics.utils.tal.RotatedTaskAlignedAssigner
19 |
20 |
21 |
22 | ## ::: ultralytics.utils.tal.make_anchors
23 |
24 |
25 |
26 | ## ::: ultralytics.utils.tal.dist2bbox
27 |
28 |
29 |
30 | ## ::: ultralytics.utils.tal.bbox2dist
31 |
32 |
33 |
34 | ## ::: ultralytics.utils.tal.dist2rbox
35 |
36 |
37 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/triton.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Learn how to use the TritonRemoteModel class for interacting with remote Triton Inference Server models. Detailed guide with code examples and attributes.
3 | keywords: Ultralytics, TritonRemoteModel, Triton Inference Server, model client, inference, remote model, machine learning, AI, Python
4 | ---
5 |
6 | # Reference for `ultralytics/utils/triton.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/triton.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/triton.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/triton.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.triton.TritonRemoteModel
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/reference/utils/tuner.md:
--------------------------------------------------------------------------------
1 | ---
2 | description: Explore how to use ultralytics.utils.tuner.py for efficient hyperparameter tuning with Ray Tune. Learn implementation details and example usage.
3 | keywords: Ultralytics, tuner, hyperparameter tuning, Ray Tune, YOLO, machine learning, AI, optimization
4 | ---
5 |
6 | # Reference for `ultralytics/utils/tuner.py`
7 |
8 | !!! note
9 |
10 | This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/tuner.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/tuner.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/utils/tuner.py) 🛠️. Thank you 🙏!
11 |
12 |
13 |
14 | ## ::: ultralytics.utils.tuner.run_ray_tune
15 |
16 |
17 |
--------------------------------------------------------------------------------
/docs/en/robots.txt:
--------------------------------------------------------------------------------
1 | User-agent: *
2 | Sitemap: https://docs.ultralytics.com/sitemap.xml
3 | Sitemap: https://docs.ultralytics.com/ar/sitemap.xml
4 | Sitemap: https://docs.ultralytics.com/de/sitemap.xml
5 | Sitemap: https://docs.ultralytics.com/es/sitemap.xml
6 | Sitemap: https://docs.ultralytics.com/fr/sitemap.xml
7 | Sitemap: https://docs.ultralytics.com/it/sitemap.xml
8 | Sitemap: https://docs.ultralytics.com/ja/sitemap.xml
9 | Sitemap: https://docs.ultralytics.com/ko/sitemap.xml
10 | Sitemap: https://docs.ultralytics.com/pt/sitemap.xml
11 | Sitemap: https://docs.ultralytics.com/ru/sitemap.xml
12 | Sitemap: https://docs.ultralytics.com/tr/sitemap.xml
13 | Sitemap: https://docs.ultralytics.com/vi/sitemap.xml
14 | Sitemap: https://docs.ultralytics.com/zh/sitemap.xml
15 |
--------------------------------------------------------------------------------
/docs/overrides/main.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | {% extends "base.html" %} {% block announce %}
5 |
6 |
10 |
Introducing
11 |

17 |
18 |
19 | {% endblock %}
20 |
21 |
22 | {% block htmltitle %} {% if page.toc|first is defined %} {% set
23 | page_specific_title = page.toc.items[0].title %} {% else %} {% set
24 | page_specific_title = page.title | striptags %} {% endif %}
25 |
26 | {%- if page_specific_title -%} {{ page_specific_title }} - {{ config.site_name
27 | }} {%- else -%} {{ config.site_name }} {%- endif -%}
28 |
29 | {% endblock %}
30 |
--------------------------------------------------------------------------------
/docs/overrides/partials/comments.html:
--------------------------------------------------------------------------------
1 |
2 |
3 | {% if page.meta.comments %}
4 |
5 |
6 |
7 |
8 |
9 | {% endif %}
10 |
--------------------------------------------------------------------------------
/examples/YOLO-Series-ONNXRuntime-Rust/Cargo.toml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | [package]
4 | name = "YOLO-ONNXRuntime-Rust"
5 | version = "0.1.0"
6 | edition = "2021"
7 | authors = ["Jamjamjon "]
8 |
9 | [dependencies]
10 | anyhow = "1.0.92"
11 | clap = "4.5.20"
12 | tracing = "0.1.40"
13 | tracing-subscriber = "0.3.18"
14 | usls = { version = "0.0.19", features = ["auto"] }
15 |
--------------------------------------------------------------------------------
/examples/YOLOv8-Action-Recognition/requirements.txt:
--------------------------------------------------------------------------------
1 | # Ultralytics YOLO 🚀, AGPL-3.0 license
2 |
3 | ultralytics
4 | transformers
5 |
--------------------------------------------------------------------------------
/examples/YOLOv8-CPP-Inference/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required(VERSION 3.5)
2 |
3 | project(Yolov8CPPInference VERSION 0.1)
4 |
5 | set(CMAKE_INCLUDE_CURRENT_DIR ON)
6 |
7 | # CUDA
8 | set(CUDA_TOOLKIT_ROOT_DIR "/usr/local/cuda")
9 | find_package(CUDA 11 REQUIRED)
10 |
11 | set(CMAKE_CUDA_STANDARD 11)
12 | set(CMAKE_CUDA_STANDARD_REQUIRED ON)
13 | # !CUDA
14 |
15 | # OpenCV
16 | find_package(OpenCV REQUIRED)
17 | include_directories(${OpenCV_INCLUDE_DIRS})
18 | # !OpenCV
19 |
20 | set(PROJECT_SOURCES
21 | main.cpp
22 |
23 | inference.h
24 | inference.cpp
25 | )
26 |
27 | add_executable(Yolov8CPPInference ${PROJECT_SOURCES})
28 | target_link_libraries(Yolov8CPPInference ${OpenCV_LIBS})
29 |
--------------------------------------------------------------------------------
/examples/YOLOv8-MNN-CPP/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required(VERSION 3.12)
2 | project(mnn_yolo_cpp)
3 |
4 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
5 |
6 | include_directories(${CMAKE_CURRENT_LIST_DIR}/include/)
7 |
8 | link_directories(${CMAKE_CURRENT_LIST_DIR}/libs)
9 |
10 | add_executable("main" "${CMAKE_CURRENT_LIST_DIR}/main.cpp")
11 | add_executable("main_interpreter" "${CMAKE_CURRENT_LIST_DIR}/main_interpreter.cpp")
12 |
13 | target_link_libraries("main" MNN MNN_Express MNNOpenCV)
14 | target_link_libraries("main_interpreter" MNN MNN_Express MNNOpenCV)
15 |
--------------------------------------------------------------------------------
/examples/YOLOv8-ONNXRuntime-Rust/Cargo.toml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | [package]
4 | name = "yolov8-rs"
5 | version = "0.1.0"
6 | edition = "2021"
7 |
8 | # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
9 |
10 | [dependencies]
11 | clap = { version = "4.2.4", features = ["derive"] }
12 | image = { version = "0.25.2"}
13 | imageproc = { version = "0.25.0"}
14 | ndarray = { version = "0.16" }
15 | ort = { version = "2.0.0-rc.5", features = ["cuda", "tensorrt", "load-dynamic", "copy-dylibs", "half"]}
16 | rusttype = { version = "0.9.3" }
17 | anyhow = { version = "1.0.75" }
18 | regex = { version = "1.5.4" }
19 | rand = { version = "0.8.5" }
20 | chrono = { version = "0.4.30" }
21 | half = { version = "2.3.1" }
22 | dirs = { version = "5.0.1" }
23 | ureq = { version = "2.9.1" }
24 | ab_glyph = "0.2.29"
25 |
--------------------------------------------------------------------------------
/examples/YOLOv8-ONNXRuntime-Rust/src/main.rs:
--------------------------------------------------------------------------------
1 | use clap::Parser;
2 |
3 | use yolov8_rs::{Args, YOLOv8};
4 |
5 | fn main() -> Result<(), Box> {
6 | let args = Args::parse();
7 |
8 | // 1. load image
9 | let x = image::ImageReader::open(&args.source)?
10 | .with_guessed_format()?
11 | .decode()?;
12 |
13 | // 2. model support dynamic batch inference, so input should be a Vec
14 | let xs = vec![x];
15 |
16 | // You can test `--batch 2` with this
17 | // let xs = vec![x.clone(), x];
18 |
19 | // 3. build yolov8 model
20 | let mut model = YOLOv8::new(args)?;
21 | model.summary(); // model info
22 |
23 | // 4. run
24 | let ys = model.run(&xs)?;
25 | println!("{:?}", ys);
26 |
27 | Ok(())
28 | }
29 |
--------------------------------------------------------------------------------
/examples/YOLOv8-OpenVINO-CPP-Inference/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required(VERSION 3.12)
2 | project(yolov8_openvino_example)
3 |
4 | set(CMAKE_CXX_STANDARD 14)
5 |
6 | find_package(OpenCV REQUIRED)
7 |
8 | include_directories(
9 | ${OpenCV_INCLUDE_DIRS}
10 | /path/to/intel/openvino/runtime/include
11 | )
12 |
13 | add_executable(detect
14 | main.cc
15 | inference.cc
16 | )
17 |
18 | target_link_libraries(detect
19 | ${OpenCV_LIBS}
20 | /path/to/intel/openvino/runtime/lib/intel64/libopenvino.so
21 | )
22 |
--------------------------------------------------------------------------------
/examples/YOLOv8-OpenVINO-CPP-Inference/main.cc:
--------------------------------------------------------------------------------
1 | #include "inference.h"
2 |
3 | #include
4 | #include
5 |
6 | int main(int argc, char **argv) {
7 | // Check if the correct number of arguments is provided
8 | if (argc != 3) {
9 | std::cerr << "usage: " << argv[0] << " " << std::endl;
10 | return 1;
11 | }
12 |
13 | // Get the model and image paths from the command-line arguments
14 | const std::string model_path = argv[1];
15 | const std::string image_path = argv[2];
16 |
17 | // Read the input image
18 | cv::Mat image = cv::imread(image_path);
19 |
20 | // Check if the image was successfully loaded
21 | if (image.empty()) {
22 | std::cerr << "ERROR: image is empty" << std::endl;
23 | return 1;
24 | }
25 |
26 | // Define the confidence and NMS thresholds
27 | const float confidence_threshold = 0.5;
28 | const float NMS_threshold = 0.5;
29 |
30 | // Initialize the YOLO inference with the specified model and parameters
31 | yolo::Inference inference(model_path, cv::Size(640, 640), confidence_threshold, NMS_threshold);
32 |
33 | // Run inference on the input image
34 | inference.RunInference(image);
35 |
36 | // Display the image with the detections
37 | cv::imshow("image", image);
38 | cv::waitKey(0);
39 |
40 | return 0;
41 | }
42 |
--------------------------------------------------------------------------------
/tests/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from ultralytics.utils import ASSETS, ROOT, WEIGHTS_DIR, checks
4 |
5 | # Constants used in tests
6 | MODEL = WEIGHTS_DIR / "path with spaces" / "yolo11n.pt" # test spaces in path
7 | CFG = "yolo11n.yaml"
8 | SOURCE = ASSETS / "bus.jpg"
9 | SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
10 | TMP = (ROOT / "../tests/tmp").resolve() # temp directory for test files
11 | CUDA_IS_AVAILABLE = checks.cuda_is_available()
12 | CUDA_DEVICE_COUNT = checks.cuda_device_count()
13 |
14 | __all__ = (
15 | "MODEL",
16 | "CFG",
17 | "SOURCE",
18 | "SOURCES_LIST",
19 | "TMP",
20 | "CUDA_IS_AVAILABLE",
21 | "CUDA_DEVICE_COUNT",
22 | )
23 |
--------------------------------------------------------------------------------
/ultralytics/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | __version__ = "8.3.119"
4 |
5 | import os
6 |
7 | # Set ENV variables (place before imports)
8 | if not os.environ.get("OMP_NUM_THREADS"):
9 | os.environ["OMP_NUM_THREADS"] = "1" # default for reduced CPU utilization during training
10 |
11 | from ultralytics.models import NAS, RTDETR, SAM, YOLO, YOLOE, FastSAM, YOLOWorld
12 | from ultralytics.utils import ASSETS, SETTINGS
13 | from ultralytics.utils.checks import check_yolo as checks
14 | from ultralytics.utils.downloads import download
15 |
16 | settings = SETTINGS
17 | __all__ = (
18 | "__version__",
19 | "ASSETS",
20 | "YOLO",
21 | "YOLOWorld",
22 | "YOLOE",
23 | "NAS",
24 | "SAM",
25 | "FastSAM",
26 | "RTDETR",
27 | "checks",
28 | "download",
29 | "settings",
30 | )
31 |
--------------------------------------------------------------------------------
/ultralytics/assets/bus.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/triple-Mu/yolov8/e700646ea265326aad8822aa6db2a7d4fabacf85/ultralytics/assets/bus.jpg
--------------------------------------------------------------------------------
/ultralytics/assets/zidane.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/triple-Mu/yolov8/e700646ea265326aad8822aa6db2a7d4fabacf85/ultralytics/assets/zidane.jpg
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/DOTAv1.5.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
4 | # Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
5 | # Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── dota1.5 ← downloads here (2GB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/DOTAv1.5 # dataset root dir
13 | train: images/train # train images (relative to 'path') 1411 images
14 | val: images/val # val images (relative to 'path') 458 images
15 | test: images/test # test images (optional) 937 images
16 |
17 | # Classes for DOTA 1.5
18 | names:
19 | 0: plane
20 | 1: ship
21 | 2: storage tank
22 | 3: baseball diamond
23 | 4: tennis court
24 | 5: basketball court
25 | 6: ground track field
26 | 7: harbor
27 | 8: bridge
28 | 9: large vehicle
29 | 10: small vehicle
30 | 11: helicopter
31 | 12: roundabout
32 | 13: soccer ball field
33 | 14: swimming pool
34 | 15: container crane
35 |
36 | # Download script/URL (optional)
37 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.5.zip
38 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/DOTAv1.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
4 | # Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
5 | # Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── dota1 ← downloads here (2GB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/DOTAv1 # dataset root dir
13 | train: images/train # train images (relative to 'path') 1411 images
14 | val: images/val # val images (relative to 'path') 458 images
15 | test: images/test # test images (optional) 937 images
16 |
17 | # Classes for DOTA 1.0
18 | names:
19 | 0: plane
20 | 1: ship
21 | 2: storage tank
22 | 3: baseball diamond
23 | 4: tennis court
24 | 5: basketball court
25 | 6: ground track field
26 | 7: harbor
27 | 8: bridge
28 | 9: large vehicle
29 | 10: small vehicle
30 | 11: helicopter
31 | 12: roundabout
32 | 13: soccer ball field
33 | 14: swimming pool
34 |
35 | # Download script/URL (optional)
36 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.zip
37 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/african-wildlife.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # African-wildlife dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
5 | # Example usage: yolo train data=african-wildlife.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── african-wildlife ← downloads here (100 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/african-wildlife # dataset root dir
13 | train: train/images # train images (relative to 'path') 1052 images
14 | val: valid/images # val images (relative to 'path') 225 images
15 | test: test/images # test images (relative to 'path') 227 images
16 |
17 | # Classes
18 | names:
19 | 0: buffalo
20 | 1: elephant
21 | 2: rhino
22 | 3: zebra
23 |
24 | # Download script/URL (optional)
25 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip
26 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/brain-tumor.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Brain-tumor dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
5 | # Example usage: yolo train data=brain-tumor.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── brain-tumor ← downloads here (4.05 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/brain-tumor # dataset root dir
13 | train: train/images # train images (relative to 'path') 893 images
14 | val: valid/images # val images (relative to 'path') 223 images
15 | test: # test images (relative to 'path')
16 |
17 | # Classes
18 | names:
19 | 0: negative
20 | 1: positive
21 |
22 | # Download script/URL (optional)
23 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
24 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/carparts-seg.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Carparts-seg dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
5 | # Example usage: yolo train data=carparts-seg.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── carparts-seg ← downloads here (132 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/carparts-seg # dataset root dir
13 | train: train/images # train images (relative to 'path') 3516 images
14 | val: valid/images # val images (relative to 'path') 276 images
15 | test: test/images # test images (relative to 'path') 401 images
16 |
17 | # Classes
18 | names:
19 | 0: back_bumper
20 | 1: back_door
21 | 2: back_glass
22 | 3: back_left_door
23 | 4: back_left_light
24 | 5: back_light
25 | 6: back_right_door
26 | 7: back_right_light
27 | 8: front_bumper
28 | 9: front_door
29 | 10: front_glass
30 | 11: front_left_door
31 | 12: front_left_light
32 | 13: front_light
33 | 14: front_right_door
34 | 15: front_right_light
35 | 16: hood
36 | 17: left_mirror
37 | 18: object
38 | 19: right_mirror
39 | 20: tailgate
40 | 21: trunk
41 | 22: wheel
42 |
43 | # Download script/URL (optional)
44 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
45 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/coco8-pose.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
5 | # Example usage: yolo train data=coco8-pose.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── coco8-pose ← downloads here (1 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/coco8-pose # dataset root dir
13 | train: images/train # train images (relative to 'path') 4 images
14 | val: images/val # val images (relative to 'path') 4 images
15 | test: # test images (optional)
16 |
17 | # Keypoints
18 | kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19 | flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20 |
21 | # Classes
22 | names:
23 | 0: person
24 |
25 | # Download script/URL (optional)
26 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
27 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/crack-seg.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Crack-seg dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
5 | # Example usage: yolo train data=crack-seg.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── crack-seg ← downloads here (91.2 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/crack-seg # dataset root dir
13 | train: train/images # train images (relative to 'path') 3717 images
14 | val: valid/images # val images (relative to 'path') 112 images
15 | test: test/images # test images (relative to 'path') 200 images
16 |
17 | # Classes
18 | names:
19 | 0: crack
20 |
21 | # Download script/URL (optional)
22 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/crack-seg.zip
23 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/dog-pose.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford
4 | # Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/
5 | # Example usage: yolo train data=dog-pose.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── dog-pose ← downloads here (337 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/dog-pose # dataset root dir
13 | train: train # train images (relative to 'path') 6773 images
14 | val: val # val images (relative to 'path') 1703 images
15 |
16 | # Keypoints
17 | kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18 |
19 | # Classes
20 | names:
21 | 0: dog
22 |
23 | # Download script/URL (optional)
24 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dog-pose.zip
25 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/dota8-multispectral.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # DOTA8-Multispectral dataset (DOTA8 interpolated across 10 channels in the visual spectrum) by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
5 | # Example usage: yolo train model=yolov8n-obb.pt data=dota8-multispectral.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── dota8-multispectral ← downloads here (37.3MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/dota8-multispectral # dataset root dir
13 | train: images/train # train images (relative to 'path') 4 images
14 | val: images/val # val images (relative to 'path') 4 images
15 |
16 | # Number of multispectral image channels
17 | channels: 10
18 |
19 | # Classes for DOTA 1.0
20 | names:
21 | 0: plane
22 | 1: ship
23 | 2: storage tank
24 | 3: baseball diamond
25 | 4: tennis court
26 | 5: basketball court
27 | 6: ground track field
28 | 7: harbor
29 | 8: bridge
30 | 9: large vehicle
31 | 10: small vehicle
32 | 11: helicopter
33 | 12: roundabout
34 | 13: soccer ball field
35 | 14: swimming pool
36 |
37 | # Download script/URL (optional)
38 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8-multispectral.zip
39 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/dota8.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
5 | # Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── dota8 ← downloads here (1MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/dota8 # dataset root dir
13 | train: images/train # train images (relative to 'path') 4 images
14 | val: images/val # val images (relative to 'path') 4 images
15 |
16 | # Classes for DOTA 1.0
17 | names:
18 | 0: plane
19 | 1: ship
20 | 2: storage tank
21 | 3: baseball diamond
22 | 4: tennis court
23 | 5: basketball court
24 | 6: ground track field
25 | 7: harbor
26 | 8: bridge
27 | 9: large vehicle
28 | 10: small vehicle
29 | 11: helicopter
30 | 12: roundabout
31 | 13: soccer ball field
32 | 14: swimming pool
33 |
34 | # Download script/URL (optional)
35 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8.zip
36 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/hand-keypoints.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Hand Keypoints dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/
5 | # Example usage: yolo train data=hand-keypoints.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── hand-keypoints ← downloads here (369 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/hand-keypoints # dataset root dir
13 | train: train # train images (relative to 'path') 18776 images
14 | val: val # val images (relative to 'path') 7992 images
15 |
16 | # Keypoints
17 | kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18 | flip_idx:
19 | [0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
20 |
21 | # Classes
22 | names:
23 | 0: hand
24 |
25 | # Download script/URL (optional)
26 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/hand-keypoints.zip
27 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/medical-pills.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Medical-pills dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/detect/medical-pills/
5 | # Example usage: yolo train data=medical-pills.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── medical-pills ← downloads here (8.19 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/medical-pills # dataset root dir
13 | train: train/images # train images (relative to 'path') 92 images
14 | val: valid/images # val images (relative to 'path') 23 images
15 | test: # test images (relative to 'path')
16 |
17 | # Classes
18 | names:
19 | 0: pill
20 |
21 | # Download script/URL (optional)
22 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/medical-pills.zip
23 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/package-seg.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Package-seg dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
5 | # Example usage: yolo train data=package-seg.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── package-seg ← downloads here (102 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/package-seg # dataset root dir
13 | train: train/images # train images (relative to 'path') 1920 images
14 | val: valid/images # val images (relative to 'path') 89 images
15 | test: test/images # test images (relative to 'path') 188 images
16 |
17 | # Classes
18 | names:
19 | 0: package
20 |
21 | # Download script/URL (optional)
22 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/package-seg.zip
23 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/signature.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Signature dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/detect/signature/
5 | # Example usage: yolo train data=signature.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── signature ← downloads here (11.2 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/signature # dataset root dir
13 | train: train/images # train images (relative to 'path') 143 images
14 | val: valid/images # val images (relative to 'path') 35 images
15 |
16 | # Classes
17 | names:
18 | 0: signature
19 |
20 | # Download script/URL (optional)
21 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/signature.zip
22 |
--------------------------------------------------------------------------------
/ultralytics/cfg/datasets/tiger-pose.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Tiger Pose dataset by Ultralytics
4 | # Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
5 | # Example usage: yolo train data=tiger-pose.yaml
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── tiger-pose ← downloads here (75.3 MB)
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../datasets/tiger-pose # dataset root dir
13 | train: train # train images (relative to 'path') 210 images
14 | val: val # val images (relative to 'path') 53 images
15 |
16 | # Keypoints
17 | kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18 | flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
19 |
20 | # Classes
21 | names:
22 | 0: tiger
23 |
24 | # Download script/URL (optional)
25 | download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip
26 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Ultralytics YOLO11-cls image classification model with ResNet18 backbone
4 | # Model docs: https://docs.ultralytics.com/models/yolo11
5 | # Task docs: https://docs.ultralytics.com/tasks/classify
6 |
7 | # Parameters
8 | nc: 1000 # number of classes
9 |
10 | # ResNet18 backbone
11 | backbone:
12 | # [from, repeats, module, args]
13 | - [-1, 1, TorchVision, [512, resnet18, DEFAULT, True, 2]] # truncate two layers from the end
14 |
15 | # YOLO11n head
16 | head:
17 | - [-1, 1, Classify, [nc]] # Classify
18 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/11/yolo11-cls.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Ultralytics YOLO11-cls image classification model
4 | # Model docs: https://docs.ultralytics.com/models/yolo11
5 | # Task docs: https://docs.ultralytics.com/tasks/classify
6 |
7 | # Parameters
8 | nc: 1000 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolo11n-cls.yaml' will call yolo11-cls.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | n: [0.50, 0.25, 1024] # summary: 86 layers, 1633584 parameters, 1633584 gradients, 0.5 GFLOPs
12 | s: [0.50, 0.50, 1024] # summary: 86 layers, 5545488 parameters, 5545488 gradients, 1.6 GFLOPs
13 | m: [0.50, 1.00, 512] # summary: 106 layers, 10455696 parameters, 10455696 gradients, 5.0 GFLOPs
14 | l: [1.00, 1.00, 512] # summary: 176 layers, 12937104 parameters, 12937104 gradients, 6.2 GFLOPs
15 | x: [1.00, 1.50, 512] # summary: 176 layers, 28458544 parameters, 28458544 gradients, 13.7 GFLOPs
16 |
17 | # YOLO11n backbone
18 | backbone:
19 | # [from, repeats, module, args]
20 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22 | - [-1, 2, C3k2, [256, False, 0.25]]
23 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24 | - [-1, 2, C3k2, [512, False, 0.25]]
25 | - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26 | - [-1, 2, C3k2, [512, True]]
27 | - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28 | - [-1, 2, C3k2, [1024, True]]
29 | - [-1, 2, C2PSA, [1024]] # 9
30 |
31 | # YOLO11n head
32 | head:
33 | - [-1, 1, Classify, [nc]] # Classify
34 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/12/yolo12-cls.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLO12-cls image classification model
4 | # Model docs: https://docs.ultralytics.com/models/yolo12
5 | # Task docs: https://docs.ultralytics.com/tasks/classify
6 |
7 | # Parameters
8 | nc: 80 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolo12n-cls.yaml' will call yolo12-cls.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | n: [0.50, 0.25, 1024] # summary: 152 layers, 1,820,976 parameters, 1,820,976 gradients, 3.7 GFLOPs
12 | s: [0.50, 0.50, 1024] # summary: 152 layers, 6,206,992 parameters, 6,206,992 gradients, 13.6 GFLOPs
13 | m: [0.50, 1.00, 512] # summary: 172 layers, 12,083,088 parameters, 12,083,088 gradients, 44.2 GFLOPs
14 | l: [1.00, 1.00, 512] # summary: 312 layers, 15,558,640 parameters, 15,558,640 gradients, 56.9 GFLOPs
15 | x: [1.00, 1.50, 512] # summary: 312 layers, 34,172,592 parameters, 34,172,592 gradients, 126.5 GFLOPs
16 |
17 | # YOLO12n backbone
18 | backbone:
19 | # [from, repeats, module, args]
20 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22 | - [-1, 2, C3k2, [256, False, 0.25]]
23 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24 | - [-1, 2, C3k2, [512, False, 0.25]]
25 | - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26 | - [-1, 4, A2C2f, [512, True, 4]]
27 | - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28 | - [-1, 4, A2C2f, [1024, True, 1]] # 8
29 |
30 | # YOLO12n head
31 | head:
32 | - [-1, 1, Classify, [nc]] # Classify
33 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v10/yolov10b.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv10b object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov10
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 |
7 | # Parameters
8 | nc: 80 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | b: [0.67, 1.00, 512]
12 |
13 | backbone:
14 | # [from, repeats, module, args]
15 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17 | - [-1, 3, C2f, [128, True]]
18 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19 | - [-1, 6, C2f, [256, True]]
20 | - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21 | - [-1, 6, C2f, [512, True]]
22 | - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23 | - [-1, 3, C2fCIB, [1024, True]]
24 | - [-1, 1, SPPF, [1024, 5]] # 9
25 | - [-1, 1, PSA, [1024]] # 10
26 |
27 | # YOLOv10.0n head
28 | head:
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31 | - [-1, 3, C2fCIB, [512, True]] # 13
32 |
33 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35 | - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36 |
37 | - [-1, 1, Conv, [256, 3, 2]]
38 | - [[-1, 13], 1, Concat, [1]] # cat head P4
39 | - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
40 |
41 | - [-1, 1, SCDown, [512, 3, 2]]
42 | - [[-1, 10], 1, Concat, [1]] # cat head P5
43 | - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
44 |
45 | - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
46 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v10/yolov10l.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv10l object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov10
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 |
7 | # Parameters
8 | nc: 80 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | l: [1.00, 1.00, 512]
12 |
13 | backbone:
14 | # [from, repeats, module, args]
15 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17 | - [-1, 3, C2f, [128, True]]
18 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19 | - [-1, 6, C2f, [256, True]]
20 | - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21 | - [-1, 6, C2f, [512, True]]
22 | - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23 | - [-1, 3, C2fCIB, [1024, True]]
24 | - [-1, 1, SPPF, [1024, 5]] # 9
25 | - [-1, 1, PSA, [1024]] # 10
26 |
27 | # YOLOv10.0n head
28 | head:
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31 | - [-1, 3, C2fCIB, [512, True]] # 13
32 |
33 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35 | - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36 |
37 | - [-1, 1, Conv, [256, 3, 2]]
38 | - [[-1, 13], 1, Concat, [1]] # cat head P4
39 | - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
40 |
41 | - [-1, 1, SCDown, [512, 3, 2]]
42 | - [[-1, 10], 1, Concat, [1]] # cat head P5
43 | - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
44 |
45 | - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
46 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v10/yolov10m.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv10m object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov10
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 |
7 | # Parameters
8 | nc: 80 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | m: [0.67, 0.75, 768]
12 |
13 | backbone:
14 | # [from, repeats, module, args]
15 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17 | - [-1, 3, C2f, [128, True]]
18 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19 | - [-1, 6, C2f, [256, True]]
20 | - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21 | - [-1, 6, C2f, [512, True]]
22 | - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23 | - [-1, 3, C2fCIB, [1024, True]]
24 | - [-1, 1, SPPF, [1024, 5]] # 9
25 | - [-1, 1, PSA, [1024]] # 10
26 |
27 | # YOLOv10.0n head
28 | head:
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31 | - [-1, 3, C2f, [512]] # 13
32 |
33 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35 | - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36 |
37 | - [-1, 1, Conv, [256, 3, 2]]
38 | - [[-1, 13], 1, Concat, [1]] # cat head P4
39 | - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
40 |
41 | - [-1, 1, SCDown, [512, 3, 2]]
42 | - [[-1, 10], 1, Concat, [1]] # cat head P5
43 | - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
44 |
45 | - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
46 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v10/yolov10n.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv10n object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov10
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 |
7 | # Parameters
8 | nc: 80 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | n: [0.33, 0.25, 1024]
12 |
13 | backbone:
14 | # [from, repeats, module, args]
15 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17 | - [-1, 3, C2f, [128, True]]
18 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19 | - [-1, 6, C2f, [256, True]]
20 | - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21 | - [-1, 6, C2f, [512, True]]
22 | - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23 | - [-1, 3, C2f, [1024, True]]
24 | - [-1, 1, SPPF, [1024, 5]] # 9
25 | - [-1, 1, PSA, [1024]] # 10
26 |
27 | # YOLOv10.0n head
28 | head:
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31 | - [-1, 3, C2f, [512]] # 13
32 |
33 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35 | - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36 |
37 | - [-1, 1, Conv, [256, 3, 2]]
38 | - [[-1, 13], 1, Concat, [1]] # cat head P4
39 | - [-1, 3, C2f, [512]] # 19 (P4/16-medium)
40 |
41 | - [-1, 1, SCDown, [512, 3, 2]]
42 | - [[-1, 10], 1, Concat, [1]] # cat head P5
43 | - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
44 |
45 | - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
46 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v10/yolov10s.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv10s object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov10
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 |
7 | # Parameters
8 | nc: 80 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | s: [0.33, 0.50, 1024]
12 |
13 | backbone:
14 | # [from, repeats, module, args]
15 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17 | - [-1, 3, C2f, [128, True]]
18 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19 | - [-1, 6, C2f, [256, True]]
20 | - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21 | - [-1, 6, C2f, [512, True]]
22 | - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23 | - [-1, 3, C2fCIB, [1024, True, True]]
24 | - [-1, 1, SPPF, [1024, 5]] # 9
25 | - [-1, 1, PSA, [1024]] # 10
26 |
27 | # YOLOv10.0n head
28 | head:
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31 | - [-1, 3, C2f, [512]] # 13
32 |
33 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35 | - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36 |
37 | - [-1, 1, Conv, [256, 3, 2]]
38 | - [[-1, 13], 1, Concat, [1]] # cat head P4
39 | - [-1, 3, C2f, [512]] # 19 (P4/16-medium)
40 |
41 | - [-1, 1, SCDown, [512, 3, 2]]
42 | - [[-1, 10], 1, Concat, [1]] # cat head P5
43 | - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
44 |
45 | - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
46 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v10/yolov10x.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv10x object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov10
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 |
7 | # Parameters
8 | nc: 80 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | x: [1.00, 1.25, 512]
12 |
13 | backbone:
14 | # [from, repeats, module, args]
15 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
16 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
17 | - [-1, 3, C2f, [128, True]]
18 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
19 | - [-1, 6, C2f, [256, True]]
20 | - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
21 | - [-1, 6, C2fCIB, [512, True]]
22 | - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
23 | - [-1, 3, C2fCIB, [1024, True]]
24 | - [-1, 1, SPPF, [1024, 5]] # 9
25 | - [-1, 1, PSA, [1024]] # 10
26 |
27 | # YOLOv10.0n head
28 | head:
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
31 | - [-1, 3, C2fCIB, [512, True]] # 13
32 |
33 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
35 | - [-1, 3, C2f, [256]] # 16 (P3/8-small)
36 |
37 | - [-1, 1, Conv, [256, 3, 2]]
38 | - [[-1, 13], 1, Concat, [1]] # cat head P4
39 | - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
40 |
41 | - [-1, 1, SCDown, [512, 3, 2]]
42 | - [[-1, 10], 1, Concat, [1]] # cat head P5
43 | - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
44 |
45 | - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
46 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v3/yolov3-tiny.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Ultralytics YOLOv3-tiiny object detection model with P4/16 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov3
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 |
7 | # Parameters
8 | nc: 80 # number of classes
9 | depth_multiple: 1.0 # model depth multiple
10 | width_multiple: 1.0 # layer channel multiple
11 |
12 | # YOLOv3-tiny backbone
13 | backbone:
14 | # [from, number, module, args]
15 | - [-1, 1, Conv, [16, 3, 1]] # 0
16 | - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 1-P1/2
17 | - [-1, 1, Conv, [32, 3, 1]]
18 | - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 3-P2/4
19 | - [-1, 1, Conv, [64, 3, 1]]
20 | - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 5-P3/8
21 | - [-1, 1, Conv, [128, 3, 1]]
22 | - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 7-P4/16
23 | - [-1, 1, Conv, [256, 3, 1]]
24 | - [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 9-P5/32
25 | - [-1, 1, Conv, [512, 3, 1]]
26 | - [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]] # 11
27 | - [-1, 1, nn.MaxPool2d, [2, 1, 0]] # 12
28 |
29 | # YOLOv3-tiny head
30 | head:
31 | - [-1, 1, Conv, [1024, 3, 1]]
32 | - [-1, 1, Conv, [256, 1, 1]]
33 | - [-1, 1, Conv, [512, 3, 1]] # 15 (P5/32-large)
34 |
35 | - [-2, 1, Conv, [128, 1, 1]]
36 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37 | - [[-1, 8], 1, Concat, [1]] # cat backbone P4
38 | - [-1, 1, Conv, [256, 3, 1]] # 19 (P4/16-medium)
39 |
40 | - [[19, 15], 1, Detect, [nc]] # Detect(P4, P5)
41 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Ultralytics YOLOv8-cls image classification model with ResNet101 backbone
4 | # Model docs: https://docs.ultralytics.com/models/yolov8
5 | # Task docs: https://docs.ultralytics.com/tasks/classify
6 |
7 | # Parameters
8 | nc: 1000 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | n: [0.33, 0.25, 1024]
12 | s: [0.33, 0.50, 1024]
13 | m: [0.67, 0.75, 1024]
14 | l: [1.00, 1.00, 1024]
15 | x: [1.00, 1.25, 1024]
16 |
17 | # YOLOv8.0n backbone
18 | backbone:
19 | # [from, repeats, module, args]
20 | - [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
21 | - [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
22 | - [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
23 | - [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3-P4/16
24 | - [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
25 |
26 | # YOLOv8.0n head
27 | head:
28 | - [-1, 1, Classify, [nc]] # Classify
29 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Ultralytics YOLOv8-cls image classification model with ResNet50 backbone
4 | # Model docs: https://docs.ultralytics.com/models/yolov8
5 | # Task docs: https://docs.ultralytics.com/tasks/classify
6 |
7 | # Parameters
8 | nc: 1000 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | n: [0.33, 0.25, 1024]
12 | s: [0.33, 0.50, 1024]
13 | m: [0.67, 0.75, 1024]
14 | l: [1.00, 1.00, 1024]
15 | x: [1.00, 1.25, 1024]
16 |
17 | # YOLOv8.0n backbone
18 | backbone:
19 | # [from, repeats, module, args]
20 | - [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
21 | - [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
22 | - [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
23 | - [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3-P4/16
24 | - [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
25 |
26 | # YOLOv8.0n head
27 | head:
28 | - [-1, 1, Classify, [nc]] # Classify
29 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v8/yolov8-cls.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Ultralytics YOLOv8-cls image classification model with YOLO backbone
4 | # Model docs: https://docs.ultralytics.com/models/yolov8
5 | # Task docs: https://docs.ultralytics.com/tasks/classify
6 |
7 | # Parameters
8 | nc: 1000 # number of classes
9 | scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
10 | # [depth, width, max_channels]
11 | n: [0.33, 0.25, 1024]
12 | s: [0.33, 0.50, 1024]
13 | m: [0.67, 0.75, 1024]
14 | l: [1.00, 1.00, 1024]
15 | x: [1.00, 1.25, 1024]
16 |
17 | # YOLOv8.0n backbone
18 | backbone:
19 | # [from, repeats, module, args]
20 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22 | - [-1, 3, C2f, [128, True]]
23 | - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24 | - [-1, 6, C2f, [256, True]]
25 | - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26 | - [-1, 6, C2f, [512, True]]
27 | - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28 | - [-1, 3, C2f, [1024, True]]
29 |
30 | # YOLOv8.0n head
31 | head:
32 | - [-1, 1, Classify, [nc]] # Classify
33 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v9/yolov9c-seg.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv9c-seg instance segmentation model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov9
5 | # Task docs: https://docs.ultralytics.com/tasks/segment
6 | # 380 layers, 27897120 parameters, 159.4 GFLOPs
7 |
8 | # Parameters
9 | nc: 80 # number of classes
10 |
11 | # GELAN backbone
12 | backbone:
13 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
14 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
15 | - [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]] # 2
16 | - [-1, 1, ADown, [256]] # 3-P3/8
17 | - [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]] # 4
18 | - [-1, 1, ADown, [512]] # 5-P4/16
19 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 6
20 | - [-1, 1, ADown, [512]] # 7-P5/32
21 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 8
22 | - [-1, 1, SPPELAN, [512, 256]] # 9
23 |
24 | head:
25 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
26 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
27 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 12
28 |
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
31 | - [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]] # 15 (P3/8-small)
32 |
33 | - [-1, 1, ADown, [256]]
34 | - [[-1, 12], 1, Concat, [1]] # cat head P4
35 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 18 (P4/16-medium)
36 |
37 | - [-1, 1, ADown, [512]]
38 | - [[-1, 9], 1, Concat, [1]] # cat head P5
39 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
40 |
41 | - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
42 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v9/yolov9c.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv9c object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov9
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 | # 358 layers, 25590912 parameters, 104.0 GFLOPs
7 |
8 | # Parameters
9 | nc: 80 # number of classes
10 |
11 | # GELAN backbone
12 | backbone:
13 | - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
14 | - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
15 | - [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]] # 2
16 | - [-1, 1, ADown, [256]] # 3-P3/8
17 | - [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]] # 4
18 | - [-1, 1, ADown, [512]] # 5-P4/16
19 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 6
20 | - [-1, 1, ADown, [512]] # 7-P5/32
21 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 8
22 | - [-1, 1, SPPELAN, [512, 256]] # 9
23 |
24 | head:
25 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
26 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
27 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 12
28 |
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
31 | - [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]] # 15 (P3/8-small)
32 |
33 | - [-1, 1, ADown, [256]]
34 | - [[-1, 12], 1, Concat, [1]] # cat head P4
35 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 18 (P4/16-medium)
36 |
37 | - [-1, 1, ADown, [512]]
38 | - [[-1, 9], 1, Concat, [1]] # cat head P5
39 | - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
40 |
41 | - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
42 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v9/yolov9m.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv9m object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov9
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 | # 348 layers, 20216160 parameters, 77.9 GFLOPs
7 |
8 | # Parameters
9 | nc: 80 # number of classes
10 |
11 | # GELAN backbone
12 | backbone:
13 | - [-1, 1, Conv, [32, 3, 2]] # 0-P1/2
14 | - [-1, 1, Conv, [64, 3, 2]] # 1-P2/4
15 | - [-1, 1, RepNCSPELAN4, [128, 128, 64, 1]] # 2
16 | - [-1, 1, AConv, [240]] # 3-P3/8
17 | - [-1, 1, RepNCSPELAN4, [240, 240, 120, 1]] # 4
18 | - [-1, 1, AConv, [360]] # 5-P4/16
19 | - [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 6
20 | - [-1, 1, AConv, [480]] # 7-P5/32
21 | - [-1, 1, RepNCSPELAN4, [480, 480, 240, 1]] # 8
22 | - [-1, 1, SPPELAN, [480, 240]] # 9
23 |
24 | head:
25 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
26 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
27 | - [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 12
28 |
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
31 | - [-1, 1, RepNCSPELAN4, [240, 240, 120, 1]] # 15
32 |
33 | - [-1, 1, AConv, [180]]
34 | - [[-1, 12], 1, Concat, [1]] # cat head P4
35 | - [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 18 (P4/16-medium)
36 |
37 | - [-1, 1, AConv, [240]]
38 | - [[-1, 9], 1, Concat, [1]] # cat head P5
39 | - [-1, 1, RepNCSPELAN4, [480, 480, 240, 1]] # 21 (P5/32-large)
40 |
41 | - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
42 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v9/yolov9s.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv9s object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov9
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 | # 544 layers, 7318368 parameters, 27.6 GFLOPs
7 |
8 | # Parameters
9 | nc: 80 # number of classes
10 |
11 | # GELAN backbone
12 | backbone:
13 | - [-1, 1, Conv, [32, 3, 2]] # 0-P1/2
14 | - [-1, 1, Conv, [64, 3, 2]] # 1-P2/4
15 | - [-1, 1, ELAN1, [64, 64, 32]] # 2
16 | - [-1, 1, AConv, [128]] # 3-P3/8
17 | - [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 4
18 | - [-1, 1, AConv, [192]] # 5-P4/16
19 | - [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 6
20 | - [-1, 1, AConv, [256]] # 7-P5/32
21 | - [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]] # 8
22 | - [-1, 1, SPPELAN, [256, 128]] # 9
23 |
24 | head:
25 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
26 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
27 | - [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 12
28 |
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
31 | - [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 15
32 |
33 | - [-1, 1, AConv, [96]]
34 | - [[-1, 12], 1, Concat, [1]] # cat head P4
35 | - [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 18 (P4/16-medium)
36 |
37 | - [-1, 1, AConv, [128]]
38 | - [[-1, 9], 1, Concat, [1]] # cat head P5
39 | - [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]] # 21 (P5/32-large)
40 |
41 | - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4 P5)
42 |
--------------------------------------------------------------------------------
/ultralytics/cfg/models/v9/yolov9t.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # YOLOv9t object detection model with P3/8 - P5/32 outputs
4 | # Model docs: https://docs.ultralytics.com/models/yolov9
5 | # Task docs: https://docs.ultralytics.com/tasks/detect
6 | # 544 layers, 2128720 parameters, 8.5 GFLOPs
7 |
8 | # Parameters
9 | nc: 80 # number of classes
10 |
11 | # GELAN backbone
12 | backbone:
13 | - [-1, 1, Conv, [16, 3, 2]] # 0-P1/2
14 | - [-1, 1, Conv, [32, 3, 2]] # 1-P2/4
15 | - [-1, 1, ELAN1, [32, 32, 16]] # 2
16 | - [-1, 1, AConv, [64]] # 3-P3/8
17 | - [-1, 1, RepNCSPELAN4, [64, 64, 32, 3]] # 4
18 | - [-1, 1, AConv, [96]] # 5-P4/16
19 | - [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 6
20 | - [-1, 1, AConv, [128]] # 7-P5/32
21 | - [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 8
22 | - [-1, 1, SPPELAN, [128, 64]] # 9
23 |
24 | head:
25 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
26 | - [[-1, 6], 1, Concat, [1]] # cat backbone P4
27 | - [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 12
28 |
29 | - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30 | - [[-1, 4], 1, Concat, [1]] # cat backbone P3
31 | - [-1, 1, RepNCSPELAN4, [64, 64, 32, 3]] # 15
32 |
33 | - [-1, 1, AConv, [48]]
34 | - [[-1, 12], 1, Concat, [1]] # cat head P4
35 | - [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 18 (P4/16-medium)
36 |
37 | - [-1, 1, AConv, [64]]
38 | - [[-1, 9], 1, Concat, [1]] # cat head P5
39 | - [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 21 (P5/32-large)
40 |
41 | - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
42 |
--------------------------------------------------------------------------------
/ultralytics/cfg/solutions/default.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Global configuration YAML with settings and arguments for Ultralytics Solutions
4 | # For documentation see https://docs.ultralytics.com/solutions/
5 |
6 | # Object counting settings --------------------------------------------------------------------------------------------
7 | region: # list[tuple[int, int]] object counting, queue or speed estimation region points.
8 | show_in: True # (bool) flag to display objects moving *into* the defined region
9 | show_out: True # (bool) flag to display objects moving *out of* the defined region
10 |
11 | # Heatmaps settings ----------------------------------------------------------------------------------------------------
12 | colormap: # (int | str) colormap for heatmap, Only OPENCV supported colormaps can be used.
13 |
14 | # Workouts monitoring settings -----------------------------------------------------------------------------------------
15 | up_angle: 145.0 # (float) Workouts up_angle for counts, 145.0 is default value.
16 | down_angle: 90 # (float) Workouts down_angle for counts, 90 is default value. Y
17 | kpts: [6, 8, 10] # (list[int]) keypoints for workouts monitoring, i.e. for push-ups kpts have values of [6, 8, 10].
18 |
19 | # Analytics settings ---------------------------------------------------------------------------------------------------
20 | analytics_type: "line" # (str) analytics type i.e "line", "pie", "bar" or "area" charts.
21 | json_file: # (str) parking system regions file path.
22 |
23 | # Security alarm system settings ---------------------------------------------------------------------------------------
24 | records: 5 # (int) Total detections count to send an email about security
25 |
--------------------------------------------------------------------------------
/ultralytics/cfg/trackers/botsort.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Default Ultralytics settings for BoT-SORT tracker when using mode="track"
4 | # For documentation and examples see https://docs.ultralytics.com/modes/track/
5 | # For BoT-SORT source code see https://github.com/NirAharon/BoT-SORT
6 |
7 | tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
8 | track_high_thresh: 0.25 # threshold for the first association
9 | track_low_thresh: 0.1 # threshold for the second association
10 | new_track_thresh: 0.25 # threshold for init new track if the detection does not match any tracks
11 | track_buffer: 30 # buffer to calculate the time when to remove tracks
12 | match_thresh: 0.8 # threshold for matching tracks
13 | fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
14 | # min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
15 |
16 | # BoT-SORT settings
17 | gmc_method: sparseOptFlow # method of global motion compensation
18 | # ReID model related thresh
19 | proximity_thresh: 0.5 # minimum IoU for valid match with ReID
20 | appearance_thresh: 0.25 # minimum appearance similarity for ReID
21 | with_reid: False
22 | model: auto # uses native features if detector is YOLO else yolo11n-cls.pt
23 |
--------------------------------------------------------------------------------
/ultralytics/cfg/trackers/bytetrack.yaml:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | # Default Ultralytics settings for ByteTrack tracker when using mode="track"
4 | # For documentation and examples see https://docs.ultralytics.com/modes/track/
5 | # For ByteTrack source code see https://github.com/ifzhang/ByteTrack
6 |
7 | tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
8 | track_high_thresh: 0.25 # threshold for the first association
9 | track_low_thresh: 0.1 # threshold for the second association
10 | new_track_thresh: 0.25 # threshold for init new track if the detection does not match any tracks
11 | track_buffer: 30 # buffer to calculate the time when to remove tracks
12 | match_thresh: 0.8 # threshold for matching tracks
13 | fuse_score: True # Whether to fuse confidence scores with the iou distances before matching
14 | # min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
15 |
--------------------------------------------------------------------------------
/ultralytics/data/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .base import BaseDataset
4 | from .build import build_dataloader, build_grounding, build_yolo_dataset, load_inference_source
5 | from .dataset import (
6 | ClassificationDataset,
7 | GroundingDataset,
8 | SemanticDataset,
9 | YOLOConcatDataset,
10 | YOLODataset,
11 | YOLOMultiModalDataset,
12 | )
13 |
14 | __all__ = (
15 | "BaseDataset",
16 | "ClassificationDataset",
17 | "SemanticDataset",
18 | "YOLODataset",
19 | "YOLOMultiModalDataset",
20 | "YOLOConcatDataset",
21 | "GroundingDataset",
22 | "build_yolo_dataset",
23 | "build_grounding",
24 | "build_dataloader",
25 | "load_inference_source",
26 | )
27 |
--------------------------------------------------------------------------------
/ultralytics/data/scripts/download_weights.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
3 |
4 | # Download latest models from https://github.com/ultralytics/assets/releases
5 | # Example usage: bash ultralytics/data/scripts/download_weights.sh
6 | # parent
7 | # └── weights
8 | # ├── yolov8n.pt ← downloads here
9 | # ├── yolov8s.pt
10 | # └── ...
11 |
12 | python << EOF
13 | from ultralytics.utils.downloads import attempt_download_asset
14 |
15 | assets = [f"yolov8{size}{suffix}.pt" for size in "nsmlx" for suffix in ("", "-cls", "-seg", "-pose")]
16 | for x in assets:
17 | attempt_download_asset(f"weights/{x}")
18 | EOF
19 |
--------------------------------------------------------------------------------
/ultralytics/data/scripts/get_coco128.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
3 |
4 | # Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
5 | # Example usage: bash data/scripts/get_coco128.sh
6 | # parent
7 | # ├── ultralytics
8 | # └── datasets
9 | # └── coco128 ← downloads here
10 |
11 | # Download/unzip images and labels
12 | d='../datasets' # unzip directory
13 | url=https://github.com/ultralytics/assets/releases/download/v0.0.0/
14 | f='coco128.zip' # or 'coco128-segments.zip', 68 MB
15 | echo 'Downloading' $url$f ' ...'
16 | curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
17 |
18 | wait # finish background tasks
19 |
--------------------------------------------------------------------------------
/ultralytics/engine/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
--------------------------------------------------------------------------------
/ultralytics/models/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .fastsam import FastSAM
4 | from .nas import NAS
5 | from .rtdetr import RTDETR
6 | from .sam import SAM
7 | from .yolo import YOLO, YOLOE, YOLOWorld
8 |
9 | __all__ = "YOLO", "RTDETR", "SAM", "FastSAM", "NAS", "YOLOWorld", "YOLOE" # allow simpler import
10 |
--------------------------------------------------------------------------------
/ultralytics/models/fastsam/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .model import FastSAM
4 | from .predict import FastSAMPredictor
5 | from .val import FastSAMValidator
6 |
7 | __all__ = "FastSAMPredictor", "FastSAM", "FastSAMValidator"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/fastsam/utils.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 |
4 | def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
5 | """
6 | Adjust bounding boxes to stick to image border if they are within a certain threshold.
7 |
8 | Args:
9 | boxes (torch.Tensor): Bounding boxes with shape (n, 4) in xyxy format.
10 | image_shape (Tuple[int, int]): Image dimensions as (height, width).
11 | threshold (int): Pixel threshold for considering a box close to the border.
12 |
13 | Returns:
14 | boxes (torch.Tensor): Adjusted bounding boxes with shape (n, 4).
15 | """
16 | # Image dimensions
17 | h, w = image_shape
18 |
19 | # Adjust boxes that are close to image borders
20 | boxes[boxes[:, 0] < threshold, 0] = 0 # x1
21 | boxes[boxes[:, 1] < threshold, 1] = 0 # y1
22 | boxes[boxes[:, 2] > w - threshold, 2] = w # x2
23 | boxes[boxes[:, 3] > h - threshold, 3] = h # y2
24 | return boxes
25 |
--------------------------------------------------------------------------------
/ultralytics/models/nas/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .model import NAS
4 | from .predict import NASPredictor
5 | from .val import NASValidator
6 |
7 | __all__ = "NASPredictor", "NASValidator", "NAS"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/nas/val.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | import torch
4 |
5 | from ultralytics.models.yolo.detect import DetectionValidator
6 | from ultralytics.utils import ops
7 |
8 | __all__ = ["NASValidator"]
9 |
10 |
11 | class NASValidator(DetectionValidator):
12 | """
13 | Ultralytics YOLO NAS Validator for object detection.
14 |
15 | Extends `DetectionValidator` from the Ultralytics models package and is designed to post-process the raw predictions
16 | generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes,
17 | ultimately producing the final detections.
18 |
19 | Attributes:
20 | args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU
21 | thresholds.
22 | lb (torch.Tensor): Optional tensor for multilabel NMS.
23 |
24 | Examples:
25 | >>> from ultralytics import NAS
26 | >>> model = NAS("yolo_nas_s")
27 | >>> validator = model.validator
28 | Assumes that raw_preds are available
29 | >>> final_preds = validator.postprocess(raw_preds)
30 |
31 | Notes:
32 | This class is generally not instantiated directly but is used internally within the `NAS` class.
33 | """
34 |
35 | def postprocess(self, preds_in):
36 | """Apply Non-maximum suppression to prediction outputs."""
37 | boxes = ops.xyxy2xywh(preds_in[0][0]) # Convert bounding box format from xyxy to xywh
38 | preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # Concatenate boxes with scores and permute
39 | return super().postprocess(preds)
40 |
--------------------------------------------------------------------------------
/ultralytics/models/rtdetr/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .model import RTDETR
4 | from .predict import RTDETRPredictor
5 | from .val import RTDETRValidator
6 |
7 | __all__ = "RTDETRPredictor", "RTDETRValidator", "RTDETR"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/sam/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .model import SAM
4 | from .predict import Predictor, SAM2Predictor, SAM2VideoPredictor
5 |
6 | __all__ = "SAM", "Predictor", "SAM2Predictor", "SAM2VideoPredictor" # tuple or list of exportable items
7 |
--------------------------------------------------------------------------------
/ultralytics/models/sam/modules/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
--------------------------------------------------------------------------------
/ultralytics/models/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
--------------------------------------------------------------------------------
/ultralytics/models/yolo/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from ultralytics.models.yolo import classify, detect, obb, pose, segment, world, yoloe
4 |
5 | from .model import YOLO, YOLOE, YOLOWorld
6 |
7 | __all__ = "classify", "segment", "detect", "pose", "obb", "world", "yoloe", "YOLO", "YOLOWorld", "YOLOE"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/yolo/classify/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from ultralytics.models.yolo.classify.predict import ClassificationPredictor
4 | from ultralytics.models.yolo.classify.train import ClassificationTrainer
5 | from ultralytics.models.yolo.classify.val import ClassificationValidator
6 |
7 | __all__ = "ClassificationPredictor", "ClassificationTrainer", "ClassificationValidator"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/yolo/detect/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .predict import DetectionPredictor
4 | from .train import DetectionTrainer
5 | from .val import DetectionValidator
6 |
7 | __all__ = "DetectionPredictor", "DetectionTrainer", "DetectionValidator"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/yolo/obb/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .predict import OBBPredictor
4 | from .train import OBBTrainer
5 | from .val import OBBValidator
6 |
7 | __all__ = "OBBPredictor", "OBBTrainer", "OBBValidator"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/yolo/pose/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .predict import PosePredictor
4 | from .train import PoseTrainer
5 | from .val import PoseValidator
6 |
7 | __all__ = "PoseTrainer", "PoseValidator", "PosePredictor"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/yolo/segment/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .predict import SegmentationPredictor
4 | from .train import SegmentationTrainer
5 | from .val import SegmentationValidator
6 |
7 | __all__ = "SegmentationPredictor", "SegmentationTrainer", "SegmentationValidator"
8 |
--------------------------------------------------------------------------------
/ultralytics/models/yolo/world/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .train import WorldTrainer
4 |
5 | __all__ = ["WorldTrainer"]
6 |
--------------------------------------------------------------------------------
/ultralytics/models/yolo/yoloe/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .predict import YOLOEVPDetectPredictor, YOLOEVPSegPredictor
4 | from .train import YOLOEPEFreeTrainer, YOLOEPETrainer, YOLOETrainer, YOLOEVPTrainer
5 | from .train_seg import YOLOEPESegTrainer, YOLOESegTrainer, YOLOESegTrainerFromScratch, YOLOESegVPTrainer
6 | from .val import YOLOEDetectValidator, YOLOESegValidator
7 |
8 | __all__ = [
9 | "YOLOETrainer",
10 | "YOLOEPETrainer",
11 | "YOLOESegTrainer",
12 | "YOLOEDetectValidator",
13 | "YOLOESegValidator",
14 | "YOLOEPESegTrainer",
15 | "YOLOESegTrainerFromScratch",
16 | "YOLOESegVPTrainer",
17 | "YOLOEVPTrainer",
18 | "YOLOEPEFreeTrainer",
19 | "YOLOEVPDetectPredictor",
20 | "YOLOEVPSegPredictor",
21 | ]
22 |
--------------------------------------------------------------------------------
/ultralytics/nn/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .tasks import (
4 | BaseModel,
5 | ClassificationModel,
6 | DetectionModel,
7 | SegmentationModel,
8 | attempt_load_one_weight,
9 | attempt_load_weights,
10 | guess_model_scale,
11 | guess_model_task,
12 | parse_model,
13 | torch_safe_load,
14 | yaml_model_load,
15 | )
16 |
17 | __all__ = (
18 | "attempt_load_one_weight",
19 | "attempt_load_weights",
20 | "parse_model",
21 | "yaml_model_load",
22 | "guess_model_task",
23 | "guess_model_scale",
24 | "torch_safe_load",
25 | "DetectionModel",
26 | "SegmentationModel",
27 | "ClassificationModel",
28 | "BaseModel",
29 | )
30 |
--------------------------------------------------------------------------------
/ultralytics/solutions/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .ai_gym import AIGym
4 | from .analytics import Analytics
5 | from .distance_calculation import DistanceCalculation
6 | from .heatmap import Heatmap
7 | from .instance_segmentation import InstanceSegmentation
8 | from .object_blurrer import ObjectBlurrer
9 | from .object_counter import ObjectCounter
10 | from .object_cropper import ObjectCropper
11 | from .parking_management import ParkingManagement, ParkingPtsSelection
12 | from .queue_management import QueueManager
13 | from .region_counter import RegionCounter
14 | from .security_alarm import SecurityAlarm
15 | from .speed_estimation import SpeedEstimator
16 | from .streamlit_inference import Inference
17 | from .trackzone import TrackZone
18 | from .vision_eye import VisionEye
19 |
20 | __all__ = (
21 | "ObjectCounter",
22 | "ObjectCropper",
23 | "ObjectBlurrer",
24 | "AIGym",
25 | "RegionCounter",
26 | "SecurityAlarm",
27 | "Heatmap",
28 | "InstanceSegmentation",
29 | "VisionEye",
30 | "SpeedEstimator",
31 | "DistanceCalculation",
32 | "QueueManager",
33 | "ParkingManagement",
34 | "ParkingPtsSelection",
35 | "Analytics",
36 | "Inference",
37 | "TrackZone",
38 | )
39 |
--------------------------------------------------------------------------------
/ultralytics/trackers/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .bot_sort import BOTSORT
4 | from .byte_tracker import BYTETracker
5 | from .track import register_tracker
6 |
7 | __all__ = "register_tracker", "BOTSORT", "BYTETracker" # allow simpler import
8 |
--------------------------------------------------------------------------------
/ultralytics/trackers/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
--------------------------------------------------------------------------------
/ultralytics/utils/callbacks/__init__.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from .base import add_integration_callbacks, default_callbacks, get_default_callbacks
4 |
5 | __all__ = "add_integration_callbacks", "default_callbacks", "get_default_callbacks"
6 |
--------------------------------------------------------------------------------
/ultralytics/utils/callbacks/raytune.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from ultralytics.utils import SETTINGS
4 |
5 | try:
6 | assert SETTINGS["raytune"] is True # verify integration is enabled
7 | import ray
8 | from ray import tune
9 | from ray.air import session
10 |
11 | except (ImportError, AssertionError):
12 | tune = None
13 |
14 |
15 | def on_fit_epoch_end(trainer):
16 | """
17 | Reports training metrics to Ray Tune at epoch end when a Ray session is active.
18 |
19 | Captures metrics from the trainer object and sends them to Ray Tune with the current epoch number,
20 | enabling hyperparameter tuning optimization. Only executes when within an active Ray Tune session.
21 |
22 | Args:
23 | trainer (ultralytics.engine.trainer.BaseTrainer): The Ultralytics trainer object containing metrics and epochs.
24 |
25 | Examples:
26 | >>> # Called automatically by the Ultralytics training loop
27 | >>> on_fit_epoch_end(trainer)
28 |
29 | References:
30 | Ray Tune docs: https://docs.ray.io/en/latest/tune/index.html
31 | """
32 | if ray.train._internal.session.get_session(): # check if Ray Tune session is active
33 | metrics = trainer.metrics
34 | session.report({**metrics, **{"epoch": trainer.epoch + 1}})
35 |
36 |
37 | callbacks = (
38 | {
39 | "on_fit_epoch_end": on_fit_epoch_end,
40 | }
41 | if tune
42 | else {}
43 | )
44 |
--------------------------------------------------------------------------------
/ultralytics/utils/errors.py:
--------------------------------------------------------------------------------
1 | # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2 |
3 | from ultralytics.utils import emojis
4 |
5 |
6 | class HUBModelError(Exception):
7 | """
8 | Exception raised when a model cannot be found or retrieved from Ultralytics HUB.
9 |
10 | This custom exception is used specifically for handling errors related to model fetching in Ultralytics YOLO.
11 | The error message is processed to include emojis for better user experience.
12 |
13 | Attributes:
14 | message (str): The error message displayed when the exception is raised.
15 |
16 | Methods:
17 | __init__: Initialize the HUBModelError with a custom message.
18 |
19 | Examples:
20 | >>> try:
21 | >>> # Code that might fail to find a model
22 | >>> raise HUBModelError("Custom model not found message")
23 | >>> except HUBModelError as e:
24 | >>> print(e) # Displays the emoji-enhanced error message
25 | """
26 |
27 | def __init__(self, message="Model not found. Please check model URL and try again."):
28 | """
29 | Initialize a HUBModelError exception.
30 |
31 | This exception is raised when a requested model is not found or cannot be retrieved from Ultralytics HUB.
32 | The message is processed to include emojis for better user experience.
33 |
34 | Args:
35 | message (str, optional): The error message to display when the exception is raised.
36 |
37 | Examples:
38 | >>> try:
39 | ... raise HUBModelError("Custom model error message")
40 | ... except HUBModelError as e:
41 | ... print(e)
42 | """
43 | super().__init__(emojis(message))
44 |
--------------------------------------------------------------------------------