├── .idea
├── .gitignore
├── vcs.xml
├── inspectionProfiles
│ └── profiles_settings.xml
├── modules.xml
├── misc.xml
├── deployment.xml
├── detr.iml
└── remote-mappings.xml
├── .github
├── DETR.png
├── pnp-detr.png
├── CODE_OF_CONDUCT.md
├── ISSUE_TEMPLATE
│ ├── bugs.md
│ ├── questions-help-support.md
│ └── unexpected-problems-bugs.md
└── CONTRIBUTING.md
├── tox.ini
├── util
├── __init__.py
├── box_ops.py
├── plot_utils.py
└── misc.py
├── models
├── __init__.py
├── position_encoding.py
├── matcher.py
├── backbone.py
├── sampler.py
├── segmentation.py
└── detr.py
├── requirements.txt
├── .gitignore
├── Dockerfile
├── .circleci
└── config.yml
├── datasets
├── __init__.py
├── panoptic_eval.py
├── coco_panoptic.py
├── sample_coco.py
├── coco.py
├── transforms.py
└── coco_eval.py
├── run_with_submitit.py
├── test_all.py
├── README.md
├── hubconf.py
├── engine.py
├── analyze_grad.py
├── compute_flops.py
├── jit_handles.py
├── flop_count.py
├── LICENSE
└── main.py
/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /workspace.xml
3 | /shelf/
4 |
--------------------------------------------------------------------------------
/.github/DETR.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/twangnh/pnp-detr/HEAD/.github/DETR.png
--------------------------------------------------------------------------------
/tox.ini:
--------------------------------------------------------------------------------
1 | [flake8]
2 | max-line-length = 120
3 | ignore = F401,E402,F403,W503,W504
4 |
--------------------------------------------------------------------------------
/.github/pnp-detr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/twangnh/pnp-detr/HEAD/.github/pnp-detr.png
--------------------------------------------------------------------------------
/util/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 |
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | from .detr import build
3 |
4 |
5 | def build_model(args):
6 | return build(args)
7 |
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | cython
2 | git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI&egg=pycocotools
3 | submitit
4 | torch>=1.5.0
5 | torchvision>=0.6.0
6 | git+https://github.com/cocodataset/panopticapi.git#egg=panopticapi
7 | scipy
8 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .nfs*
2 | *.ipynb
3 | *.pyc
4 | .dumbo.json
5 | .DS_Store
6 | .*.swp
7 | *.pth
8 | **/__pycache__/**
9 | .ipynb_checkpoints/
10 | datasets/data/
11 | experiment-*
12 | *.tmp
13 | *.pkl
14 | **/.mypy_cache/*
15 | .mypy_cache/*
16 | not_tracked_dir/
17 | .vscode
18 |
--------------------------------------------------------------------------------
/.github/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | # Code of Conduct
2 |
3 | Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
4 | Please read the [full text](https://code.fb.com/codeofconduct/)
5 | so that you can understand what actions will and will not be tolerated.
6 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM pytorch/pytorch:1.5-cuda10.1-cudnn7-runtime
2 |
3 | ENV DEBIAN_FRONTEND=noninteractive
4 |
5 | RUN apt-get update -qq && \
6 | apt-get install -y git vim libgtk2.0-dev && \
7 | rm -rf /var/cache/apk/*
8 |
9 | RUN pip --no-cache-dir install Cython
10 |
11 | COPY requirements.txt /workspace
12 |
13 | RUN pip --no-cache-dir install -r /workspace/requirements.txt
14 |
--------------------------------------------------------------------------------
/.idea/deployment.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
--------------------------------------------------------------------------------
/.idea/detr.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/.circleci/config.yml:
--------------------------------------------------------------------------------
1 | version: 2.1
2 |
3 | jobs:
4 | python_lint:
5 | docker:
6 | - image: circleci/python:3.7
7 | steps:
8 | - checkout
9 | - run:
10 | command: |
11 | pip install --user --progress-bar off flake8 typing
12 | flake8 .
13 |
14 | test:
15 | docker:
16 | - image: circleci/python:3.7
17 | steps:
18 | - checkout
19 | - run:
20 | command: |
21 | pip install --user --progress-bar off scipy pytest
22 | pip install --user --progress-bar off --pre torch torchvision -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
23 | pytest .
24 |
25 | workflows:
26 | build:
27 | jobs:
28 | - python_lint
29 | - test
30 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/bugs.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "🐛 Bugs"
3 | about: Report bugs in DETR
4 | title: Please read & provide the following
5 |
6 | ---
7 |
8 | ## Instructions To Reproduce the 🐛 Bug:
9 |
10 | 1. what changes you made (`git diff`) or what code you wrote
11 | ```
12 |
13 | ```
14 | 2. what exact command you run:
15 | 3. what you observed (including __full logs__):
16 | ```
17 |
18 | ```
19 | 4. please simplify the steps as much as possible so they do not require additional resources to
20 | run, such as a private dataset.
21 |
22 | ## Expected behavior:
23 |
24 | If there are no obvious error in "what you observed" provided above,
25 | please tell us the expected behavior.
26 |
27 | ## Environment:
28 |
29 | Provide your environment information using the following command:
30 | ```
31 | python -m torch.utils.collect_env
32 | ```
33 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/questions-help-support.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "How to do something❓"
3 | about: How to do something using DETR?
4 |
5 | ---
6 |
7 | ## ❓ How to do something using DETR
8 |
9 | Describe what you want to do, including:
10 | 1. what inputs you will provide, if any:
11 | 2. what outputs you are expecting:
12 |
13 |
14 | NOTE:
15 |
16 | 1. Only general answers are provided.
17 | If you want to ask about "why X did not work", please use the
18 | [Unexpected behaviors](https://github.com/facebookresearch/detr/issues/new/choose) issue template.
19 |
20 | 2. About how to implement new models / new dataloader / new training logic, etc., check documentation first.
21 |
22 | 3. We do not answer general machine learning / computer vision questions that are not specific to DETR, such as how a model works, how to improve your training/make it converge, or what algorithm/methods can be used to achieve X.
23 |
--------------------------------------------------------------------------------
/datasets/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | import torch.utils.data
3 | import torchvision
4 |
5 | from .coco import build as build_coco
6 |
7 |
8 | def get_coco_api_from_dataset(dataset):
9 | for _ in range(10):
10 | # if isinstance(dataset, torchvision.datasets.CocoDetection):
11 | # break
12 | if isinstance(dataset, torch.utils.data.Subset):
13 | dataset = dataset.dataset
14 | if isinstance(dataset, torchvision.datasets.CocoDetection):
15 | return dataset.coco
16 |
17 |
18 | def build_dataset(image_set, args):
19 | if args.dataset_file == 'coco':
20 | return build_coco(image_set, args)
21 | if args.dataset_file == 'coco_panoptic':
22 | # to avoid making panopticapi required for coco
23 | from .coco_panoptic import build as build_coco_panoptic
24 | return build_coco_panoptic(image_set, args)
25 | raise ValueError(f'dataset {args.dataset_file} not supported')
26 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "Unexpected behaviors"
3 | about: Run into unexpected behaviors when using DETR
4 | title: Please read & provide the following
5 |
6 | ---
7 |
8 | If you do not know the root cause of the problem, and wish someone to help you, please
9 | post according to this template:
10 |
11 | ## Instructions To Reproduce the Issue:
12 |
13 | 1. what changes you made (`git diff`) or what code you wrote
14 | ```
15 |
16 | ```
17 | 2. what exact command you run:
18 | 3. what you observed (including __full logs__):
19 | ```
20 |
21 | ```
22 | 4. please simplify the steps as much as possible so they do not require additional resources to
23 | run, such as a private dataset.
24 |
25 | ## Expected behavior:
26 |
27 | If there are no obvious error in "what you observed" provided above,
28 | please tell us the expected behavior.
29 |
30 | If you expect the model to converge / work better, note that we do not give suggestions
31 | on how to train a new model.
32 | Only in one of the two conditions we will help with it:
33 | (1) You're unable to reproduce the results in DETR model zoo.
34 | (2) It indicates a DETR bug.
35 |
36 | ## Environment:
37 |
38 | Provide your environment information using the following command:
39 | ```
40 | python -m torch.utils.collect_env
41 | ```
42 |
--------------------------------------------------------------------------------
/datasets/panoptic_eval.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | import json
3 | import os
4 |
5 | import util.misc as utils
6 |
7 | try:
8 | from panopticapi.evaluation import pq_compute
9 | except ImportError:
10 | pass
11 |
12 |
13 | class PanopticEvaluator(object):
14 | def __init__(self, ann_file, ann_folder, output_dir="panoptic_eval"):
15 | self.gt_json = ann_file
16 | self.gt_folder = ann_folder
17 | if utils.is_main_process():
18 | if not os.path.exists(output_dir):
19 | os.mkdir(output_dir)
20 | self.output_dir = output_dir
21 | self.predictions = []
22 |
23 | def update(self, predictions):
24 | for p in predictions:
25 | with open(os.path.join(self.output_dir, p["file_name"]), "wb") as f:
26 | f.write(p.pop("png_string"))
27 |
28 | self.predictions += predictions
29 |
30 | def synchronize_between_processes(self):
31 | all_predictions = utils.all_gather(self.predictions)
32 | merged_predictions = []
33 | for p in all_predictions:
34 | merged_predictions += p
35 | self.predictions = merged_predictions
36 |
37 | def summarize(self):
38 | if utils.is_main_process():
39 | json_data = {"annotations": self.predictions}
40 | predictions_json = os.path.join(self.output_dir, "predictions.json")
41 | with open(predictions_json, "w") as f:
42 | f.write(json.dumps(json_data))
43 | return pq_compute(self.gt_json, predictions_json, gt_folder=self.gt_folder, pred_folder=self.output_dir)
44 | return None
45 |
--------------------------------------------------------------------------------
/.idea/remote-mappings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
--------------------------------------------------------------------------------
/.github/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Contributing to DETR
2 | We want to make contributing to this project as easy and transparent as
3 | possible.
4 |
5 | ## Our Development Process
6 | Minor changes and improvements will be released on an ongoing basis. Larger changes (e.g., changesets implementing a new paper) will be released on a more periodic basis.
7 |
8 | ## Pull Requests
9 | We actively welcome your pull requests.
10 |
11 | 1. Fork the repo and create your branch from `master`.
12 | 2. If you've added code that should be tested, add tests.
13 | 3. If you've changed APIs, update the documentation.
14 | 4. Ensure the test suite passes.
15 | 5. Make sure your code lints.
16 | 6. If you haven't already, complete the Contributor License Agreement ("CLA").
17 |
18 | ## Contributor License Agreement ("CLA")
19 | In order to accept your pull request, we need you to submit a CLA. You only need
20 | to do this once to work on any of Facebook's open source projects.
21 |
22 | Complete your CLA here:
23 |
24 | ## Issues
25 | We use GitHub issues to track public bugs. Please ensure your description is
26 | clear and has sufficient instructions to be able to reproduce the issue.
27 |
28 | Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
29 | disclosure of security bugs. In those cases, please go through the process
30 | outlined on that page and do not file a public issue.
31 |
32 | ## Coding Style
33 | * 4 spaces for indentation rather than tabs
34 | * 80 character line length
35 | * PEP8 formatting following [Black](https://black.readthedocs.io/en/stable/)
36 |
37 | ## License
38 | By contributing to DETR, you agree that your contributions will be licensed
39 | under the LICENSE file in the root directory of this source tree.
40 |
--------------------------------------------------------------------------------
/util/box_ops.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | Utilities for bounding box manipulation and GIoU.
4 | """
5 | import torch
6 | from torchvision.ops.boxes import box_area
7 |
8 |
9 | def box_cxcywh_to_xyxy(x):
10 | x_c, y_c, w, h = x.unbind(-1)
11 | b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
12 | (x_c + 0.5 * w), (y_c + 0.5 * h)]
13 | return torch.stack(b, dim=-1)
14 |
15 |
16 | def box_xyxy_to_cxcywh(x):
17 | x0, y0, x1, y1 = x.unbind(-1)
18 | b = [(x0 + x1) / 2, (y0 + y1) / 2,
19 | (x1 - x0), (y1 - y0)]
20 | return torch.stack(b, dim=-1)
21 |
22 |
23 | # modified from torchvision to also return the union
24 | def box_iou(boxes1, boxes2):
25 | area1 = box_area(boxes1)
26 | area2 = box_area(boxes2)
27 |
28 | lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
29 | rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
30 |
31 | wh = (rb - lt).clamp(min=0) # [N,M,2]
32 | inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
33 |
34 | union = area1[:, None] + area2 - inter
35 |
36 | iou = inter / union
37 | return iou, union
38 |
39 |
40 | def generalized_box_iou(boxes1, boxes2):
41 | """
42 | Generalized IoU from https://giou.stanford.edu/
43 |
44 | The boxes should be in [x0, y0, x1, y1] format
45 |
46 | Returns a [N, M] pairwise matrix, where N = len(boxes1)
47 | and M = len(boxes2)
48 | """
49 | # degenerate boxes gives inf / nan results
50 | # so do an early check
51 | assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
52 | assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
53 | iou, union = box_iou(boxes1, boxes2)
54 |
55 | lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
56 | rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
57 |
58 | wh = (rb - lt).clamp(min=0) # [N,M,2]
59 | area = wh[:, :, 0] * wh[:, :, 1]
60 |
61 | return iou - (area - union) / area
62 |
63 |
64 | def masks_to_boxes(masks):
65 | """Compute the bounding boxes around the provided masks
66 |
67 | The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
68 |
69 | Returns a [N, 4] tensors, with the boxes in xyxy format
70 | """
71 | if masks.numel() == 0:
72 | return torch.zeros((0, 4), device=masks.device)
73 |
74 | h, w = masks.shape[-2:]
75 |
76 | y = torch.arange(0, h, dtype=torch.float)
77 | x = torch.arange(0, w, dtype=torch.float)
78 | y, x = torch.meshgrid(y, x)
79 |
80 | x_mask = (masks * x.unsqueeze(0))
81 | x_max = x_mask.flatten(1).max(-1)[0]
82 | x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
83 |
84 | y_mask = (masks * y.unsqueeze(0))
85 | y_max = y_mask.flatten(1).max(-1)[0]
86 | y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
87 |
88 | return torch.stack([x_min, y_min, x_max, y_max], 1)
89 |
--------------------------------------------------------------------------------
/models/position_encoding.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | Various positional encodings for the transformer.
4 | """
5 | import math
6 | import torch
7 | from torch import nn
8 |
9 | from util.misc import NestedTensor
10 |
11 |
12 | class PositionEmbeddingSine(nn.Module):
13 | """
14 | This is a more standard version of the position embedding, very similar to the one
15 | used by the Attention is all you need paper, generalized to work on images.
16 | """
17 | def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
18 | super().__init__()
19 | self.num_pos_feats = num_pos_feats
20 | self.temperature = temperature
21 | self.normalize = normalize
22 | if scale is not None and normalize is False:
23 | raise ValueError("normalize should be True if scale is passed")
24 | if scale is None:
25 | scale = 2 * math.pi
26 | self.scale = scale
27 |
28 | def forward(self, tensor_list: NestedTensor):
29 | x = tensor_list.tensors
30 | mask = tensor_list.mask
31 | assert mask is not None
32 | not_mask = ~mask
33 | y_embed = not_mask.cumsum(1, dtype=torch.float32)
34 | x_embed = not_mask.cumsum(2, dtype=torch.float32)
35 | if self.normalize:
36 | eps = 1e-6
37 | y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
38 | x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
39 |
40 | dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
41 | dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
42 |
43 | pos_x = x_embed[:, :, :, None] / dim_t
44 | pos_y = y_embed[:, :, :, None] / dim_t
45 | pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
46 | pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
47 | pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
48 | return pos
49 |
50 |
51 | class PositionEmbeddingLearned(nn.Module):
52 | """
53 | Absolute pos embedding, learned.
54 | """
55 | def __init__(self, num_pos_feats=256):
56 | super().__init__()
57 | self.row_embed = nn.Embedding(50, num_pos_feats)
58 | self.col_embed = nn.Embedding(50, num_pos_feats)
59 | self.reset_parameters()
60 |
61 | def reset_parameters(self):
62 | nn.init.uniform_(self.row_embed.weight)
63 | nn.init.uniform_(self.col_embed.weight)
64 |
65 | def forward(self, tensor_list: NestedTensor):
66 | x = tensor_list.tensors
67 | h, w = x.shape[-2:]
68 | i = torch.arange(w, device=x.device)
69 | j = torch.arange(h, device=x.device)
70 | x_emb = self.col_embed(i)
71 | y_emb = self.row_embed(j)
72 | pos = torch.cat([
73 | x_emb.unsqueeze(0).repeat(h, 1, 1),
74 | y_emb.unsqueeze(1).repeat(1, w, 1),
75 | ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
76 | return pos
77 |
78 |
79 | def build_position_encoding(args):
80 | N_steps = args.hidden_dim // 2
81 | if args.position_embedding in ('v2', 'sine'):
82 | # TODO find a better way of exposing other arguments
83 | position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
84 | elif args.position_embedding in ('v3', 'learned'):
85 | position_embedding = PositionEmbeddingLearned(N_steps)
86 | else:
87 | raise ValueError(f"not supported {args.position_embedding}")
88 |
89 | return position_embedding
90 |
--------------------------------------------------------------------------------
/run_with_submitit.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | A script to run multinode training with submitit.
4 | """
5 | import argparse
6 | import os
7 | import uuid
8 | from pathlib import Path
9 |
10 | import main as detection
11 | import submitit
12 |
13 |
14 | def parse_args():
15 | detection_parser = detection.get_args_parser()
16 | parser = argparse.ArgumentParser("Submitit for detection", parents=[detection_parser])
17 | parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
18 | parser.add_argument("--nodes", default=4, type=int, help="Number of nodes to request")
19 | parser.add_argument("--timeout", default=60, type=int, help="Duration of the job")
20 | parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.")
21 | return parser.parse_args()
22 |
23 |
24 | def get_shared_folder() -> Path:
25 | user = os.getenv("USER")
26 | if Path("/checkpoint/").is_dir():
27 | p = Path(f"/checkpoint/{user}/experiments")
28 | p.mkdir(exist_ok=True)
29 | return p
30 | raise RuntimeError("No shared folder available")
31 |
32 |
33 | def get_init_file():
34 | # Init file must not exist, but it's parent dir must exist.
35 | os.makedirs(str(get_shared_folder()), exist_ok=True)
36 | init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init"
37 | if init_file.exists():
38 | os.remove(str(init_file))
39 | return init_file
40 |
41 |
42 | class Trainer(object):
43 | def __init__(self, args):
44 | self.args = args
45 |
46 | def __call__(self):
47 | import main as detection
48 |
49 | self._setup_gpu_args()
50 | detection.main(self.args)
51 |
52 | def checkpoint(self):
53 | import os
54 | import submitit
55 | from pathlib import Path
56 |
57 | self.args.dist_url = get_init_file().as_uri()
58 | checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth")
59 | if os.path.exists(checkpoint_file):
60 | self.args.resume = checkpoint_file
61 | print("Requeuing ", self.args)
62 | empty_trainer = type(self)(self.args)
63 | return submitit.helpers.DelayedSubmission(empty_trainer)
64 |
65 | def _setup_gpu_args(self):
66 | import submitit
67 | from pathlib import Path
68 |
69 | job_env = submitit.JobEnvironment()
70 | self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id)))
71 | self.args.gpu = job_env.local_rank
72 | self.args.rank = job_env.global_rank
73 | self.args.world_size = job_env.num_tasks
74 | print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
75 |
76 |
77 | def main():
78 | args = parse_args()
79 | if args.job_dir == "":
80 | args.job_dir = get_shared_folder() / "%j"
81 |
82 | # Note that the folder will depend on the job_id, to easily track experiments
83 | executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)
84 |
85 | # cluster setup is defined by environment variables
86 | num_gpus_per_node = args.ngpus
87 | nodes = args.nodes
88 | timeout_min = args.timeout
89 |
90 | executor.update_parameters(
91 | mem_gb=40 * num_gpus_per_node,
92 | gpus_per_node=num_gpus_per_node,
93 | tasks_per_node=num_gpus_per_node, # one task per GPU
94 | cpus_per_task=10,
95 | nodes=nodes,
96 | timeout_min=timeout_min, # max is 60 * 72
97 | )
98 |
99 | executor.update_parameters(name="detr")
100 |
101 | args.dist_url = get_init_file().as_uri()
102 | args.output_dir = args.job_dir
103 |
104 | trainer = Trainer(args)
105 | job = executor.submit(trainer)
106 |
107 | print("Submitted job_id:", job.job_id)
108 |
109 |
110 | if __name__ == "__main__":
111 | main()
112 |
--------------------------------------------------------------------------------
/test_all.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | import unittest
3 |
4 | import torch
5 |
6 | from models.matcher import HungarianMatcher
7 | from models.position_encoding import PositionEmbeddingSine, PositionEmbeddingLearned
8 | from models.backbone import Backbone, Joiner, BackboneBase
9 | from util import box_ops
10 | from util.misc import nested_tensor_from_tensor_list
11 | from hubconf import detr_resnet50, detr_resnet50_panoptic
12 |
13 |
14 | class Tester(unittest.TestCase):
15 |
16 | def test_box_cxcywh_to_xyxy(self):
17 | t = torch.rand(10, 4)
18 | r = box_ops.box_xyxy_to_cxcywh(box_ops.box_cxcywh_to_xyxy(t))
19 | self.assertLess((t - r).abs().max(), 1e-5)
20 |
21 | @staticmethod
22 | def indices_torch2python(indices):
23 | return [(i.tolist(), j.tolist()) for i, j in indices]
24 |
25 | def test_hungarian(self):
26 | n_queries, n_targets, n_classes = 100, 15, 91
27 | logits = torch.rand(1, n_queries, n_classes + 1)
28 | boxes = torch.rand(1, n_queries, 4)
29 | tgt_labels = torch.randint(high=n_classes, size=(n_targets,))
30 | tgt_boxes = torch.rand(n_targets, 4)
31 | matcher = HungarianMatcher()
32 | targets = [{'labels': tgt_labels, 'boxes': tgt_boxes}]
33 | indices_single = matcher({'pred_logits': logits, 'pred_boxes': boxes}, targets)
34 | indices_batched = matcher({'pred_logits': logits.repeat(2, 1, 1),
35 | 'pred_boxes': boxes.repeat(2, 1, 1)}, targets * 2)
36 | self.assertEqual(len(indices_single[0][0]), n_targets)
37 | self.assertEqual(len(indices_single[0][1]), n_targets)
38 | self.assertEqual(self.indices_torch2python(indices_single),
39 | self.indices_torch2python([indices_batched[0]]))
40 | self.assertEqual(self.indices_torch2python(indices_single),
41 | self.indices_torch2python([indices_batched[1]]))
42 |
43 | # test with empty targets
44 | tgt_labels_empty = torch.randint(high=n_classes, size=(0,))
45 | tgt_boxes_empty = torch.rand(0, 4)
46 | targets_empty = [{'labels': tgt_labels_empty, 'boxes': tgt_boxes_empty}]
47 | indices = matcher({'pred_logits': logits.repeat(2, 1, 1),
48 | 'pred_boxes': boxes.repeat(2, 1, 1)}, targets + targets_empty)
49 | self.assertEqual(len(indices[1][0]), 0)
50 | indices = matcher({'pred_logits': logits.repeat(2, 1, 1),
51 | 'pred_boxes': boxes.repeat(2, 1, 1)}, targets_empty * 2)
52 | self.assertEqual(len(indices[0][0]), 0)
53 |
54 | def test_position_encoding_script(self):
55 | m1, m2 = PositionEmbeddingSine(), PositionEmbeddingLearned()
56 | mm1, mm2 = torch.jit.script(m1), torch.jit.script(m2) # noqa
57 |
58 | def test_backbone_script(self):
59 | backbone = Backbone('resnet50', True, False, False)
60 | torch.jit.script(backbone) # noqa
61 |
62 | def test_model_script_detection(self):
63 | model = detr_resnet50(pretrained=False).eval()
64 | scripted_model = torch.jit.script(model)
65 | x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)])
66 | out = model(x)
67 | out_script = scripted_model(x)
68 | self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
69 | self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))
70 |
71 | def test_model_script_panoptic(self):
72 | model = detr_resnet50_panoptic(pretrained=False).eval()
73 | scripted_model = torch.jit.script(model)
74 | x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)])
75 | out = model(x)
76 | out_script = scripted_model(x)
77 | self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
78 | self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))
79 | self.assertTrue(out["pred_masks"].equal(out_script["pred_masks"]))
80 |
81 |
82 | if __name__ == '__main__':
83 | unittest.main()
84 |
--------------------------------------------------------------------------------
/datasets/coco_panoptic.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | import json
3 | from pathlib import Path
4 |
5 | import numpy as np
6 | import torch
7 | from PIL import Image
8 |
9 | from panopticapi.utils import rgb2id
10 | from util.box_ops import masks_to_boxes
11 |
12 | from .coco import make_coco_transforms
13 |
14 |
15 | class CocoPanoptic:
16 | def __init__(self, img_folder, ann_folder, ann_file, transforms=None, return_masks=True):
17 | with open(ann_file, 'r') as f:
18 | self.coco = json.load(f)
19 |
20 | # sort 'images' field so that they are aligned with 'annotations'
21 | # i.e., in alphabetical order
22 | self.coco['images'] = sorted(self.coco['images'], key=lambda x: x['id'])
23 | # sanity check
24 | if "annotations" in self.coco:
25 | for img, ann in zip(self.coco['images'], self.coco['annotations']):
26 | assert img['file_name'][:-4] == ann['file_name'][:-4]
27 |
28 | self.img_folder = img_folder
29 | self.ann_folder = ann_folder
30 | self.ann_file = ann_file
31 | self.transforms = transforms
32 | self.return_masks = return_masks
33 |
34 | def __getitem__(self, idx):
35 | ann_info = self.coco['annotations'][idx] if "annotations" in self.coco else self.coco['images'][idx]
36 | img_path = Path(self.img_folder) / ann_info['file_name'].replace('.png', '.jpg')
37 | ann_path = Path(self.ann_folder) / ann_info['file_name']
38 |
39 | img = Image.open(img_path).convert('RGB')
40 | w, h = img.size
41 | if "segments_info" in ann_info:
42 | masks = np.asarray(Image.open(ann_path), dtype=np.uint32)
43 | masks = rgb2id(masks)
44 |
45 | ids = np.array([ann['id'] for ann in ann_info['segments_info']])
46 | masks = masks == ids[:, None, None]
47 |
48 | masks = torch.as_tensor(masks, dtype=torch.uint8)
49 | labels = torch.tensor([ann['category_id'] for ann in ann_info['segments_info']], dtype=torch.int64)
50 |
51 | target = {}
52 | target['image_id'] = torch.tensor([ann_info['image_id'] if "image_id" in ann_info else ann_info["id"]])
53 | if self.return_masks:
54 | target['masks'] = masks
55 | target['labels'] = labels
56 |
57 | target["boxes"] = masks_to_boxes(masks)
58 |
59 | target['size'] = torch.as_tensor([int(h), int(w)])
60 | target['orig_size'] = torch.as_tensor([int(h), int(w)])
61 | if "segments_info" in ann_info:
62 | for name in ['iscrowd', 'area']:
63 | target[name] = torch.tensor([ann[name] for ann in ann_info['segments_info']])
64 |
65 | if self.transforms is not None:
66 | img, target = self.transforms(img, target)
67 |
68 | return img, target
69 |
70 | def __len__(self):
71 | return len(self.coco['images'])
72 |
73 | def get_height_and_width(self, idx):
74 | img_info = self.coco['images'][idx]
75 | height = img_info['height']
76 | width = img_info['width']
77 | return height, width
78 |
79 |
80 | def build(image_set, args):
81 | img_folder_root = Path(args.coco_path)
82 | ann_folder_root = Path(args.coco_panoptic_path)
83 | assert img_folder_root.exists(), f'provided COCO path {img_folder_root} does not exist'
84 | assert ann_folder_root.exists(), f'provided COCO path {ann_folder_root} does not exist'
85 | mode = 'panoptic'
86 | PATHS = {
87 | "train": ("train2017", Path("annotations") / f'{mode}_train2017.json'),
88 | "val": ("val2017", Path("annotations") / f'{mode}_val2017.json'),
89 | }
90 |
91 | img_folder, ann_file = PATHS[image_set]
92 | img_folder_path = img_folder_root / img_folder
93 | ann_folder = ann_folder_root / f'{mode}_{img_folder}'
94 | ann_file = ann_folder_root / ann_file
95 |
96 | dataset = CocoPanoptic(img_folder_path, ann_folder, ann_file,
97 | transforms=make_coco_transforms(image_set), return_masks=args.masks)
98 |
99 | return dataset
100 |
--------------------------------------------------------------------------------
/models/matcher.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | Modules to compute the matching cost and solve the corresponding LSAP.
4 | """
5 | import torch
6 | from scipy.optimize import linear_sum_assignment
7 | from torch import nn
8 |
9 | from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou
10 |
11 |
12 | class HungarianMatcher(nn.Module):
13 | """This class computes an assignment between the targets and the predictions of the network
14 |
15 | For efficiency reasons, the targets don't include the no_object. Because of this, in general,
16 | there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
17 | while the others are un-matched (and thus treated as non-objects).
18 | """
19 |
20 | def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1):
21 | """Creates the matcher
22 |
23 | Params:
24 | cost_class: This is the relative weight of the classification error in the matching cost
25 | cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
26 | cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
27 | """
28 | super().__init__()
29 | self.cost_class = cost_class
30 | self.cost_bbox = cost_bbox
31 | self.cost_giou = cost_giou
32 | assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"
33 |
34 | @torch.no_grad()
35 | def forward(self, outputs, targets):
36 | """ Performs the matching
37 |
38 | Params:
39 | outputs: This is a dict that contains at least these entries:
40 | "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
41 | "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
42 |
43 | targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
44 | "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
45 | objects in the target) containing the class labels
46 | "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
47 |
48 | Returns:
49 | A list of size batch_size, containing tuples of (index_i, index_j) where:
50 | - index_i is the indices of the selected predictions (in order)
51 | - index_j is the indices of the corresponding selected targets (in order)
52 | For each batch element, it holds:
53 | len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
54 | """
55 | bs, num_queries = outputs["pred_logits"].shape[:2]
56 |
57 | # We flatten to compute the cost matrices in a batch
58 | out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
59 | out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
60 |
61 | # Also concat the target labels and boxes
62 | tgt_ids = torch.cat([v["labels"] for v in targets])
63 | tgt_bbox = torch.cat([v["boxes"] for v in targets])
64 |
65 | # Compute the classification cost. Contrary to the loss, we don't use the NLL,
66 | # but approximate it in 1 - proba[target class].
67 | # The 1 is a constant that doesn't change the matching, it can be ommitted.
68 | cost_class = -out_prob[:, tgt_ids]
69 |
70 | # Compute the L1 cost between boxes
71 | cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)
72 |
73 | # Compute the giou cost betwen boxes
74 | cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))
75 |
76 | # Final cost matrix
77 | C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
78 | C = C.view(bs, num_queries, -1).cpu()
79 |
80 | sizes = [len(v["boxes"]) for v in targets]
81 | indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
82 | return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
83 |
84 |
85 | def build_matcher(args):
86 | return HungarianMatcher(cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou)
87 |
--------------------------------------------------------------------------------
/util/plot_utils.py:
--------------------------------------------------------------------------------
1 | """
2 | Plotting utilities to visualize training logs.
3 | """
4 | import torch
5 | import pandas as pd
6 | import seaborn as sns
7 | import matplotlib.pyplot as plt
8 |
9 | from pathlib import Path, PurePath
10 |
11 |
12 | def plot_logs(logs, fields=('class_error', 'loss_bbox_unscaled', 'mAP'), ewm_col=0, log_name='log.txt'):
13 | '''
14 | Function to plot specific fields from training log(s). Plots both training and test results.
15 |
16 | :: Inputs - logs = list containing Path objects, each pointing to individual dir with a log file
17 | - fields = which results to plot from each log file - plots both training and test for each field.
18 | - ewm_col = optional, which column to use as the exponential weighted smoothing of the plots
19 | - log_name = optional, name of log file if different than default 'log.txt'.
20 |
21 | :: Outputs - matplotlib plots of results in fields, color coded for each log file.
22 | - solid lines are training results, dashed lines are test results.
23 |
24 | '''
25 | func_name = "plot_utils.py::plot_logs"
26 |
27 | # verify logs is a list of Paths (list[Paths]) or single Pathlib object Path,
28 | # convert single Path to list to avoid 'not iterable' error
29 |
30 | if not isinstance(logs, list):
31 | if isinstance(logs, PurePath):
32 | logs = [logs]
33 | print(f"{func_name} info: logs param expects a list argument, converted to list[Path].")
34 | else:
35 | raise ValueError(f"{func_name} - invalid argument for logs parameter.\n \
36 | Expect list[Path] or single Path obj, received {type(logs)}")
37 |
38 | # verify valid dir(s) and that every item in list is Path object
39 | for i, dir in enumerate(logs):
40 | if not isinstance(dir, PurePath):
41 | raise ValueError(f"{func_name} - non-Path object in logs argument of {type(dir)}: \n{dir}")
42 | if dir.exists():
43 | continue
44 | raise ValueError(f"{func_name} - invalid directory in logs argument:\n{dir}")
45 |
46 | # load log file(s) and plot
47 | dfs = [pd.read_json(Path(p) / log_name, lines=True) for p in logs]
48 |
49 | fig, axs = plt.subplots(ncols=len(fields), figsize=(16, 5))
50 |
51 | for df, color in zip(dfs, sns.color_palette(n_colors=len(logs))):
52 | for j, field in enumerate(fields):
53 | if field == 'mAP':
54 | coco_eval = pd.DataFrame(pd.np.stack(df.test_coco_eval.dropna().values)[:, 1]).ewm(com=ewm_col).mean()
55 | axs[j].plot(coco_eval, c=color)
56 | else:
57 | df.interpolate().ewm(com=ewm_col).mean().plot(
58 | y=[f'train_{field}', f'test_{field}'],
59 | ax=axs[j],
60 | color=[color] * 2,
61 | style=['-', '--']
62 | )
63 | for ax, field in zip(axs, fields):
64 | ax.legend([Path(p).name for p in logs])
65 | ax.set_title(field)
66 |
67 |
68 | def plot_precision_recall(files, naming_scheme='iter'):
69 | if naming_scheme == 'exp_id':
70 | # name becomes exp_id
71 | names = [f.parts[-3] for f in files]
72 | elif naming_scheme == 'iter':
73 | names = [f.stem for f in files]
74 | else:
75 | raise ValueError(f'not supported {naming_scheme}')
76 | fig, axs = plt.subplots(ncols=2, figsize=(16, 5))
77 | for f, color, name in zip(files, sns.color_palette("Blues", n_colors=len(files)), names):
78 | data = torch.load(f)
79 | # precision is n_iou, n_points, n_cat, n_area, max_det
80 | precision = data['precision']
81 | recall = data['params'].recThrs
82 | scores = data['scores']
83 | # take precision for all classes, all areas and 100 detections
84 | precision = precision[0, :, :, 0, -1].mean(1)
85 | scores = scores[0, :, :, 0, -1].mean(1)
86 | prec = precision.mean()
87 | rec = data['recall'][0, :, 0, -1].mean()
88 | print(f'{naming_scheme} {name}: mAP@50={prec * 100: 05.1f}, ' +
89 | f'score={scores.mean():0.3f}, ' +
90 | f'f1={2 * prec * rec / (prec + rec + 1e-8):0.3f}'
91 | )
92 | axs[0].plot(recall, precision, c=color)
93 | axs[1].plot(recall, scores, c=color)
94 |
95 | axs[0].set_title('Precision / Recall')
96 | axs[0].legend(names)
97 | axs[1].set_title('Scores / Recall')
98 | axs[1].legend(names)
99 | return fig, axs
100 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers [arxiv](https://arxiv.org/abs/2109.07036)
2 |
3 | **:star::star::star:[News] A Re-implementation is integrated into **detrex**, Benchmarking for Detection Transformers: at https://github.com/IDEA-Research/detrex**
4 |
5 | This repository is based on [detr](https://github.com/facebookresearch/detr)
6 |
7 | Recently, DETR pioneered the solution of vision tasks with transformers, it directly translates the image feature map into the object detection result. Though effective, translating the full feature map can be costly due to redundant computation on some area like the background. In this work, we encapsulate the idea of reducing spatial redundancy into a novel poll and pool (PnP) sampling module, with which we build an end-to-end PnP-DETR architecture that adaptively allocates its computation spatially to be more efficient. Concretely, the PnP module abstracts the image feature map into fine foreground object feature vectors and a small number of coarse background contextual feature vectors. The transformer models information interaction within the fine-coarse feature space and translates the features into the detection result. Moreover, the PnP-augmented model can instantly achieve various desired trade-offs between performance and computation with a single model by varying the sampled feature length, without requiring to train multiple models as existing methods. Thus it offers greater flexibility for deployment in diverse scenarios with varying computation constraint. We further validate the generalizability of the PnP module on panoptic segmentation and the recent transformer-based image recognition model ViT and show consistent efficiency gain. We believe our method makes a step for efficient visual analysis with transformers, wherein spatial redundancy is commonly observed.
8 |
9 | 
10 |
11 |
12 | # Usage
13 | First, clone the repository locally:
14 | ```
15 | git clone https://github.com/twangnh/pnp-detr
16 | ```
17 | Then, install PyTorch 1.5+ and torchvision 0.6+:
18 | ```
19 | conda install -c pytorch pytorch torchvision
20 | ```
21 | Install pycocotools (for evaluation on COCO) and scipy (for training):
22 | ```
23 | conda install cython scipy
24 | pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
25 | ```
26 | That's it, should be good to train and evaluate detection models.
27 |
28 | (optional) to work with panoptic install panopticapi:
29 | ```
30 | pip install git+https://github.com/cocodataset/panopticapi.git
31 | ```
32 |
33 | ## Data preparation
34 |
35 | Download and extract COCO 2017 train and val images with annotations from
36 | [http://cocodataset.org](http://cocodataset.org/#download).
37 | We expect the directory structure to be the following:
38 | ```
39 | path/to/coco/
40 | annotations/ # annotation json files
41 | train2017/ # train images
42 | val2017/ # val images
43 | ```
44 |
45 | ## Training
46 | To train PnP-DETR on a single node with 8 gpus for 300 epochs run:
47 | ```
48 | python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --coco_path /path/to/coco
49 | ```
50 | you can adjust the range of random poll ratio with --sample_ratio_lower_bound and --sample_ratio_higher_bound
51 |
52 | Following DETR, We train PnP-DETR with AdamW setting learning rate in the transformer to 1e-4 and 1e-5 in the backbone.
53 | Horizontal flips, scales an crops are used for augmentation.
54 | Images are rescaled to have min size 800 and max size 1333.
55 | The transformer is trained with dropout of 0.1, and the whole model is trained with grad clip of 0.1.
56 |
57 |
58 | ## Evaluation
59 | To evaluate DETR R50 on COCO val5k with a single GPU run:
60 | ```
61 | python main.py --batch_size 2 --no_aux_loss --eval --resume xxx --coco_path /path/to/coco --sample_topk_ratio xxx
62 | ```
63 |
64 | ## Multinode training
65 | Distributed training is available via Slurm and [submitit](https://github.com/facebookincubator/submitit):
66 | ```
67 | pip install submitit
68 | ```
69 | Train baseline DETR-6-6 model on 4 nodes for 300 epochs:
70 | ```
71 | python run_with_submitit.py --timeout 3000 --coco_path /path/to/coco
72 | ```
73 |
74 | ## Cite
75 | Please consider to cite our paper:
76 |
77 | ```
78 | @inproceedings{wang2021pnp,
79 | title={PnP-DETR: Towards Efficient Visual Analysis with Transformers},
80 | author={Wang, Tao and Yuan, Li and Chen, Yunpeng and Feng, Jiashi and Yan, Shuicheng},
81 | booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
82 | pages={4661--4670},
83 | year={2021}
84 | }
85 | ```
86 |
--------------------------------------------------------------------------------
/models/backbone.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | Backbone modules.
4 | """
5 | from collections import OrderedDict
6 |
7 | import torch
8 | import torch.nn.functional as F
9 | import torchvision
10 | from torch import nn
11 | from torchvision.models._utils import IntermediateLayerGetter
12 | from typing import Dict, List
13 |
14 | from util.misc import NestedTensor, is_main_process
15 |
16 | from .position_encoding import build_position_encoding
17 |
18 |
19 | class FrozenBatchNorm2d(torch.nn.Module):
20 | """
21 | BatchNorm2d where the batch statistics and the affine parameters are fixed.
22 |
23 | Copy-paste from torchvision.misc.ops with added eps before rqsrt,
24 | without which any other models than torchvision.models.resnet[18,34,50,101]
25 | produce nans.
26 | """
27 |
28 | def __init__(self, n):
29 | super(FrozenBatchNorm2d, self).__init__()
30 | self.register_buffer("weight", torch.ones(n))
31 | self.register_buffer("bias", torch.zeros(n))
32 | self.register_buffer("running_mean", torch.zeros(n))
33 | self.register_buffer("running_var", torch.ones(n))
34 |
35 | def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
36 | missing_keys, unexpected_keys, error_msgs):
37 | num_batches_tracked_key = prefix + 'num_batches_tracked'
38 | if num_batches_tracked_key in state_dict:
39 | del state_dict[num_batches_tracked_key]
40 |
41 | super(FrozenBatchNorm2d, self)._load_from_state_dict(
42 | state_dict, prefix, local_metadata, strict,
43 | missing_keys, unexpected_keys, error_msgs)
44 |
45 | def forward(self, x):
46 | # move reshapes to the beginning
47 | # to make it fuser-friendly
48 | w = self.weight.reshape(1, -1, 1, 1)
49 | b = self.bias.reshape(1, -1, 1, 1)
50 | rv = self.running_var.reshape(1, -1, 1, 1)
51 | rm = self.running_mean.reshape(1, -1, 1, 1)
52 | eps = 1e-5
53 | scale = w * (rv + eps).rsqrt()
54 | bias = b - rm * scale
55 | return x * scale + bias
56 |
57 |
58 | class BackboneBase(nn.Module):
59 |
60 | def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool):
61 | super().__init__()
62 | for name, parameter in backbone.named_parameters():
63 | if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
64 | parameter.requires_grad_(False)
65 | if return_interm_layers:
66 | return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
67 | else:
68 | return_layers = {'layer4': "0"}
69 | self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
70 | self.num_channels = num_channels
71 |
72 | def forward(self, tensor_list: NestedTensor):
73 | xs = self.body(tensor_list.tensors)
74 | out: Dict[str, NestedTensor] = {}
75 | for name, x in xs.items():
76 | m = tensor_list.mask
77 | assert m is not None
78 | mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
79 | out[name] = NestedTensor(x, mask)
80 | return out
81 |
82 |
83 | class Backbone(BackboneBase):
84 | """ResNet backbone with frozen BatchNorm."""
85 | def __init__(self, name: str,
86 | train_backbone: bool,
87 | return_interm_layers: bool,
88 | dilation: bool):
89 | backbone = getattr(torchvision.models, name)(
90 | replace_stride_with_dilation=[False, False, dilation],
91 | pretrained=is_main_process(), norm_layer=FrozenBatchNorm2d)
92 | num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
93 | super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
94 |
95 |
96 | class Joiner(nn.Sequential):
97 | def __init__(self, backbone, position_embedding):
98 | super().__init__(backbone, position_embedding)
99 |
100 | def forward(self, tensor_list: NestedTensor):
101 | xs = self[0](tensor_list)
102 | out: List[NestedTensor] = []
103 | pos = []
104 | for name, x in xs.items():
105 | out.append(x)
106 | # position encoding
107 | pos.append(self[1](x).to(x.tensors.dtype))
108 |
109 | return out, pos
110 |
111 |
112 | def build_backbone(args):
113 | position_embedding = build_position_encoding(args)
114 | train_backbone = args.lr_backbone > 0
115 | return_interm_layers = args.masks
116 | backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
117 | model = Joiner(backbone, position_embedding)
118 | model.num_channels = backbone.num_channels
119 | return model
120 |
--------------------------------------------------------------------------------
/models/sampler.py:
--------------------------------------------------------------------------------
1 | class SortSampler(nn.Module):
2 |
3 | def __init__(self, topk_ratio, input_dim, score_pred_net='2layer-fc-256', kproj_net='1layer-fc', unsample_abstract_number=30,pos_embed_kproj=False):
4 | ##topk_ratio : hard sample的比例
5 | ## unsample_abstract_number: soft sample的数量,是一个固定值
6 | super().__init__()
7 | self.topk_ratio = topk_ratio
8 | if score_pred_net == '2layer-fc-256':
9 | self.score_pred_net = nn.Sequential(nn.Linear(input_dim, input_dim),
10 | nn.ReLU(),
11 | nn.Linear(input_dim, 1))
12 | elif score_pred_net == '2layer-fc-16':
13 | self.score_pred_net = nn.Sequential(nn.Linear(input_dim, 16),
14 | nn.ReLU(),
15 | nn.Linear(16, 1))
16 | elif score_pred_net == '1layer-fc':
17 | self.score_pred_net = nn.Linear(input_dim, 1)
18 | else:
19 | raise ValueError
20 |
21 | self.norm_feature = nn.LayerNorm(input_dim,elementwise_affine=False)
22 | self.unsample_abstract_number = unsample_abstract_number
23 | if kproj_net == '2layer-fc':
24 | self.k_proj = nn.Sequential(nn.Linear(input_dim, input_dim),
25 | nn.ReLU(),
26 | nn.Linear(input_dim, unsample_abstract_number))
27 | elif kproj_net == '1layer-fc':
28 | self.k_proj = nn.Linear(input_dim, unsample_abstract_number)
29 | else:
30 | raise ValueError
31 | self.v_proj = nn.Linear(input_dim, input_dim)
32 | self.pos_embed_kproj = pos_embed_kproj
33 |
34 | def forward(self, src, mask, pos_embed):
35 | #pos_embed shape: h*w, 1, c
36 | l, bs ,c = src.shape
37 | if mask==None:
38 | mask = src.new_zeros(bs,l).bool()
39 | pos_embed = pos_embed.repeat(1,bs,1)
40 | sample_weight = self.score_pred_net(src).sigmoid().view(bs,-1)
41 | # sample_weight[mask] = sample_weight[mask].clone() * 0.
42 | # sample_weight.data[mask] = 0.
43 | sample_weight_clone = sample_weight.clone().detach()
44 | sample_weight_clone[mask] = -1.
45 |
46 | ##max sample number:
47 | sample_lens = ((~mask).sum(1)*self.topk_ratio).int()
48 | max_sample_num = sample_lens.max()
49 | mask_topk = torch.arange(max_sample_num).expand(len(sample_lens), max_sample_num).to(sample_lens.device) > (sample_lens-1).unsqueeze(1)
50 |
51 | ## for sampling remaining unsampled points
52 | min_sample_num = sample_lens.min()
53 |
54 | sort_order = sample_weight_clone.sort(descending=True,dim=1)[1]
55 | sort_confidence_topk = sort_order[:,:max_sample_num]
56 | sort_confidence_topk_remaining = sort_order[:,min_sample_num:]
57 | ## flatten for gathering
58 | src = src.flatten(2).permute(2, 0, 1)
59 | src = self.norm_feature(src)
60 |
61 | src_sample_remaining = src.gather(0, sort_confidence_topk_remaining.permute(1, 0)[..., None].expand(-1, -1, c))
62 |
63 | ## this will maskout the padding and sampled points
64 | mask_unsampled = torch.arange(mask.size(1)).expand(len(sample_lens), mask.size(1)).to(sample_lens.device) < (sample_lens).unsqueeze(1)
65 | mask_unsampled = mask_unsampled | mask.gather(1, sort_order)
66 | mask_unsampled = mask_unsampled[:,min_sample_num:]
67 |
68 | ## abstract the unsampled points with attention
69 | if self.pos_embed_kproj:
70 | pos_embed_sample_remaining = pos_embed.gather(0, sort_confidence_topk_remaining.permute(1, 0)[..., None].expand(-1, -1, c))
71 | kproj = self.k_proj(src_sample_remaining+pos_embed_sample_remaining)
72 | else:
73 | kproj = self.k_proj(src_sample_remaining)
74 | kproj = kproj.masked_fill(
75 | mask_unsampled.permute(1,0).unsqueeze(2),
76 | float('-inf'),
77 | ).permute(1,2,0).softmax(-1)
78 | abs_unsampled_points = torch.bmm(kproj, self.v_proj(src_sample_remaining).permute(1,0,2)).permute(1,0,2)
79 | abs_unsampled_pos_embed = torch.bmm(kproj, pos_embed.gather(0,sort_confidence_topk_remaining.
80 | permute(1,0)[...,None].expand(-1,-1,c)).permute(1,0,2)).permute(1,0,2)
81 | abs_unsampled_mask = mask.new_zeros(mask.size(0),abs_unsampled_points.size(0))
82 |
83 | ## reg sample weight to be sparse with l1 loss
84 | sample_reg_loss = sample_weight.gather(1,sort_confidence_topk).mean()
85 | src_sampled = src.gather(0,sort_confidence_topk.permute(1,0)[...,None].expand(-1,-1,c)) *sample_weight.gather(1,sort_confidence_topk).permute(1,0).unsqueeze(-1)
86 | pos_embed_sampled = pos_embed.gather(0,sort_confidence_topk.permute(1,0)[...,None].expand(-1,-1,c))
87 | mask_sampled = mask_topk
88 |
89 | src = torch.cat([src_sampled, abs_unsampled_points])
90 | pos_embed = torch.cat([pos_embed_sampled,abs_unsampled_pos_embed])
91 | mask = torch.cat([mask_sampled, abs_unsampled_mask],dim=1)
92 | assert ((~mask).sum(1)==sample_lens+self.unsample_abstract_number).all()
93 | return src, sample_reg_loss, sort_confidence_topk, mask, pos_embed
--------------------------------------------------------------------------------
/datasets/sample_coco.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import json
3 | import os
4 | from collections import defaultdict
5 |
6 | from random import sample
7 | # import random
8 | import numpy as np
9 | import tqdm
10 |
11 | import matplotlib.pyplot as plt
12 | if __name__ == "__main__":
13 | ann_file = './data/coco/annotations/instances_train2017.json'
14 | PER_CAT_THR = 1000
15 | output_filename = './data/coco/annotations/instances_train2017_sampled_PER_CAT_THR_{}.json'.format(PER_CAT_THR)
16 |
17 | with open(ann_file, "r") as f:
18 | dataset = json.load(f)
19 |
20 | catToImgs = defaultdict(list)
21 | for ann in dataset['annotations']:
22 | catToImgs[ann['category_id']].append(ann['image_id'])
23 |
24 | ## remove duplicate imgs
25 | for cat_id in catToImgs.keys():
26 | catToImgs[cat_id] = list(set(catToImgs[cat_id]))
27 |
28 | per_cat_img_number = [len(catToImgs[cat_id]) for cat_id in catToImgs.keys()]
29 | sorting_order_imgnumber = np.argsort(per_cat_img_number).tolist()
30 | sorted_catid = [list(catToImgs.keys())[i] for i in sorting_order_imgnumber]
31 |
32 | catToImgs_list = [{cat_id:catToImgs[cat_id]}for cat_id in catToImgs.keys()]
33 | catToImgs_sampled = copy.deepcopy(catToImgs)
34 | sampled_img_ids = []
35 |
36 | for cat_id in tqdm.tqdm(sorted_catid):## starting from cat with least imgs
37 | if len(catToImgs[cat_id])>PER_CAT_THR: # only sample categories with more than 2000 training imgs
38 | in_sampled = [img_id for img_id in catToImgs[cat_id] if img_id in sampled_img_ids]
39 | not_in_sampled = [img_id for img_id in catToImgs[cat_id] if img_id not in sampled_img_ids]
40 |
41 | catToImgs_sampled[cat_id] = in_sampled + sample(not_in_sampled, PER_CAT_THR-len(in_sampled)) if len(in_sampled)PER_CAT_THR: # only sample categories with more than 2000 training imgs
51 | # in_sampled = [img_id for img_id in catToImgs[cat_id] if img_id in sampled_img_ids]
52 | # not_in_sampled = [img_id for img_id in catToImgs[cat_id] if img_id not in sampled_img_ids]
53 | #
54 | # catToImgs_sampled_2000[cat_id] = in_sampled + sample(not_in_sampled, PER_CAT_THR-len(in_sampled)) if len(in_sampled)PER_CAT_THR: # only sample categories with more than 2000 training imgs
65 | # in_sampled = [img_id for img_id in catToImgs[cat_id] if img_id in sampled_img_ids]
66 | # not_in_sampled = [img_id for img_id in catToImgs[cat_id] if img_id not in sampled_img_ids]
67 | #
68 | # catToImgs_sampled_1000[cat_id] = in_sampled + sample(not_in_sampled, PER_CAT_THR-len(in_sampled)) if len(in_sampled)PER_CAT_THR: # only sample categories with more than 2000 training imgs
79 | # in_sampled = [img_id for img_id in catToImgs[cat_id] if img_id in sampled_img_ids]
80 | # not_in_sampled = [img_id for img_id in catToImgs[cat_id] if img_id not in sampled_img_ids]
81 | #
82 | # catToImgs_sampled_500[cat_id] = in_sampled + sample(not_in_sampled, PER_CAT_THR-len(in_sampled)) if len(in_sampled) boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
87 | boxes = boxes[keep]
88 | classes = classes[keep]
89 | if self.return_masks:
90 | masks = masks[keep]
91 | if keypoints is not None:
92 | keypoints = keypoints[keep]
93 |
94 | target = {}
95 | target["boxes"] = boxes
96 | target["labels"] = classes
97 | if self.return_masks:
98 | target["masks"] = masks
99 | target["image_id"] = image_id
100 | if keypoints is not None:
101 | target["keypoints"] = keypoints
102 |
103 | # for conversion to coco api
104 | area = torch.tensor([obj["area"] for obj in anno])
105 | iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
106 | target["area"] = area[keep]
107 | target["iscrowd"] = iscrowd[keep]
108 |
109 | target["orig_size"] = torch.as_tensor([int(h), int(w)])
110 | target["size"] = torch.as_tensor([int(h), int(w)])
111 |
112 | return image, target
113 |
114 |
115 | def make_coco_transforms(image_set):
116 |
117 | normalize = T.Compose([
118 | T.ToTensor(),
119 | T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
120 | ])
121 |
122 | scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
123 |
124 | if image_set == 'train' or 'sampled_PER_CAT_THR' in image_set:
125 | return T.Compose([
126 | T.RandomHorizontalFlip(),
127 | T.RandomSelect(
128 | T.RandomResize(scales, max_size=1333),
129 | T.Compose([
130 | T.RandomResize([400, 500, 600]),
131 | T.RandomSizeCrop(384, 600),
132 | T.RandomResize(scales, max_size=1333),
133 | ])
134 | ),
135 | normalize,
136 | ])
137 |
138 | if image_set == 'val':
139 | return T.Compose([
140 | T.RandomResize([800], max_size=1333),
141 | normalize,
142 | ])
143 |
144 | raise ValueError(f'unknown {image_set}')
145 |
146 |
147 | def build(image_set, args):
148 | root = Path(args.coco_path)
149 | assert root.exists(), f'provided COCO path {root} does not exist'
150 | mode = 'instances'
151 | PATHS = {
152 | "train": (root / "train2017", root / "annotations" / f'{mode}_train2017.json'),
153 | "val": (root / "val2017", root / "annotations" / f'{mode}_val2017.json'),
154 | "train_sampled_PER_CAT_THR_500": (root / "train2017", root / "annotations" / f'{mode}_train2017_sampled_PER_CAT_THR_500.json'),
155 | "train_sampled_PER_CAT_THR_1000": (
156 | root / "train2017", root / "annotations" / f'{mode}_train2017_sampled_PER_CAT_THR_1000.json'),
157 | "train_sampled_PER_CAT_THR_2000": (
158 | root / "train2017", root / "annotations" / f'{mode}_train2017_sampled_PER_CAT_THR_2000.json')
159 | }
160 |
161 | img_folder, ann_file = PATHS[image_set]
162 | dataset = CocoDetection(img_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks)
163 | return dataset
164 |
--------------------------------------------------------------------------------
/hubconf.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | import torch
3 |
4 | from models.backbone import Backbone, Joiner
5 | from models.detr import DETR, PostProcess
6 | from models.position_encoding import PositionEmbeddingSine
7 | from models.segmentation import DETRsegm, PostProcessPanoptic
8 | from models.transformer import Transformer
9 |
10 | dependencies = ["torch", "torchvision"]
11 |
12 |
13 | def _make_detr(backbone_name: str, dilation=False, num_classes=91, mask=False):
14 | hidden_dim = 256
15 | backbone = Backbone(backbone_name, train_backbone=True, return_interm_layers=mask, dilation=dilation)
16 | pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
17 | backbone_with_pos_enc = Joiner(backbone, pos_enc)
18 | backbone_with_pos_enc.num_channels = backbone.num_channels
19 | transformer = Transformer(d_model=hidden_dim, return_intermediate_dec=True)
20 | detr = DETR(backbone_with_pos_enc, transformer, num_classes=num_classes, num_queries=100)
21 | if mask:
22 | return DETRsegm(detr)
23 | return detr
24 |
25 |
26 | def detr_resnet50(pretrained=False, num_classes=91, return_postprocessor=False):
27 | """
28 | DETR R50 with 6 encoder and 6 decoder layers.
29 |
30 | Achieves 42/62.4 AP/AP50 on COCO val5k.
31 | """
32 | model = _make_detr("resnet50", dilation=False, num_classes=num_classes)
33 | if pretrained:
34 | checkpoint = torch.hub.load_state_dict_from_url(
35 | url="https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth", map_location="cpu", check_hash=True
36 | )
37 | model.load_state_dict(checkpoint["model"])
38 | if return_postprocessor:
39 | return model, PostProcess()
40 | return model
41 |
42 |
43 | def detr_resnet50_dc5(pretrained=False, num_classes=91, return_postprocessor=False):
44 | """
45 | DETR-DC5 R50 with 6 encoder and 6 decoder layers.
46 |
47 | The last block of ResNet-50 has dilation to increase
48 | output resolution.
49 | Achieves 43.3/63.1 AP/AP50 on COCO val5k.
50 | """
51 | model = _make_detr("resnet50", dilation=True, num_classes=num_classes)
52 | if pretrained:
53 | checkpoint = torch.hub.load_state_dict_from_url(
54 | url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-f0fb7ef5.pth", map_location="cpu", check_hash=True
55 | )
56 | model.load_state_dict(checkpoint["model"])
57 | if return_postprocessor:
58 | return model, PostProcess()
59 | return model
60 |
61 |
62 | def detr_resnet101(pretrained=False, num_classes=91, return_postprocessor=False):
63 | """
64 | DETR-DC5 R101 with 6 encoder and 6 decoder layers.
65 |
66 | Achieves 43.5/63.8 AP/AP50 on COCO val5k.
67 | """
68 | model = _make_detr("resnet101", dilation=False, num_classes=num_classes)
69 | if pretrained:
70 | checkpoint = torch.hub.load_state_dict_from_url(
71 | url="https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth", map_location="cpu", check_hash=True
72 | )
73 | model.load_state_dict(checkpoint["model"])
74 | if return_postprocessor:
75 | return model, PostProcess()
76 | return model
77 |
78 |
79 | def detr_resnet101_dc5(pretrained=False, num_classes=91, return_postprocessor=False):
80 | """
81 | DETR-DC5 R101 with 6 encoder and 6 decoder layers.
82 |
83 | The last block of ResNet-101 has dilation to increase
84 | output resolution.
85 | Achieves 44.9/64.7 AP/AP50 on COCO val5k.
86 | """
87 | model = _make_detr("resnet101", dilation=True, num_classes=num_classes)
88 | if pretrained:
89 | checkpoint = torch.hub.load_state_dict_from_url(
90 | url="https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pth", map_location="cpu", check_hash=True
91 | )
92 | model.load_state_dict(checkpoint["model"])
93 | if return_postprocessor:
94 | return model, PostProcess()
95 | return model
96 |
97 |
98 | def detr_resnet50_panoptic(
99 | pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False
100 | ):
101 | """
102 | DETR R50 with 6 encoder and 6 decoder layers.
103 | Achieves 43.4 PQ on COCO val5k.
104 |
105 | threshold is the minimum confidence required for keeping segments in the prediction
106 | """
107 | model = _make_detr("resnet50", dilation=False, num_classes=num_classes, mask=True)
108 | is_thing_map = {i: i <= 90 for i in range(250)}
109 | if pretrained:
110 | checkpoint = torch.hub.load_state_dict_from_url(
111 | url="https://dl.fbaipublicfiles.com/detr/detr-r50-panoptic-00ce5173.pth",
112 | map_location="cpu",
113 | check_hash=True,
114 | )
115 | model.load_state_dict(checkpoint["model"])
116 | if return_postprocessor:
117 | return model, PostProcessPanoptic(is_thing_map, threshold=threshold)
118 | return model
119 |
120 |
121 | def detr_resnet50_dc5_panoptic(
122 | pretrained=False, num_classes=91, threshold=0.85, return_postprocessor=False
123 | ):
124 | """
125 | DETR-DC5 R50 with 6 encoder and 6 decoder layers.
126 |
127 | The last block of ResNet-50 has dilation to increase
128 | output resolution.
129 | Achieves 44.6 on COCO val5k.
130 |
131 | threshold is the minimum confidence required for keeping segments in the prediction
132 | """
133 | model = _make_detr("resnet50", dilation=True, num_classes=num_classes, mask=True)
134 | is_thing_map = {i: i <= 90 for i in range(250)}
135 | if pretrained:
136 | checkpoint = torch.hub.load_state_dict_from_url(
137 | url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-panoptic-da08f1b1.pth",
138 | map_location="cpu",
139 | check_hash=True,
140 | )
141 | model.load_state_dict(checkpoint["model"])
142 | if return_postprocessor:
143 | return model, PostProcessPanoptic(is_thing_map, threshold=threshold)
144 | return model
145 |
146 |
147 | def detr_resnet101_panoptic(
148 | pretrained=False, num_classes=91, threshold=0.85, return_postprocessor=False
149 | ):
150 | """
151 | DETR-DC5 R101 with 6 encoder and 6 decoder layers.
152 |
153 | Achieves 45.1 PQ on COCO val5k.
154 |
155 | threshold is the minimum confidence required for keeping segments in the prediction
156 | """
157 | model = _make_detr("resnet101", dilation=False, num_classes=num_classes, mask=True)
158 | is_thing_map = {i: i <= 90 for i in range(250)}
159 | if pretrained:
160 | checkpoint = torch.hub.load_state_dict_from_url(
161 | url="https://dl.fbaipublicfiles.com/detr/detr-r101-panoptic-40021d53.pth",
162 | map_location="cpu",
163 | check_hash=True,
164 | )
165 | model.load_state_dict(checkpoint["model"])
166 | if return_postprocessor:
167 | return model, PostProcessPanoptic(is_thing_map, threshold=threshold)
168 | return model
169 |
--------------------------------------------------------------------------------
/engine.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | Train and eval functions used in main.py
4 | """
5 | import math
6 | import os
7 | import sys
8 | from typing import Iterable
9 |
10 | import torch
11 |
12 | import util.misc as utils
13 | from datasets.coco_eval import CocoEvaluator
14 | from datasets.panoptic_eval import PanopticEvaluator
15 |
16 | import random
17 |
18 | def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
19 | data_loader: Iterable, optimizer: torch.optim.Optimizer,
20 | device: torch.device, epoch: int, sample_ratio_lower_bound, sample_ratio_higher_bound, max_norm: float = 0):
21 | model.train()
22 | criterion.train()
23 | metric_logger = utils.MetricLogger(delimiter=" ")
24 | metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
25 | metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
26 | header = 'Epoch: [{}]'.format(epoch)
27 | print_freq = 100
28 |
29 | for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
30 | samples = samples.to(device)
31 | targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
32 | sample_ratio = random.uniform(sample_ratio_lower_bound, sample_ratio_higher_bound)
33 | outputs = model(samples,sample_ratio)
34 | loss_dict = criterion(outputs, targets)
35 | loss_dict['sample_reg_loss']=outputs['sample_reg_loss']
36 | weight_dict = criterion.weight_dict
37 | losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
38 | # reduce losses over all GPUs for logging purposes
39 | loss_dict_reduced = utils.reduce_dict(loss_dict)
40 | loss_dict_reduced_unscaled = {f'{k}_unscaled': v
41 | for k, v in loss_dict_reduced.items()}
42 | loss_dict_reduced_scaled = {k: v * weight_dict[k]
43 | for k, v in loss_dict_reduced.items() if k in weight_dict}
44 | losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
45 |
46 | loss_value = losses_reduced_scaled.item()
47 |
48 | if not math.isfinite(loss_value):
49 | print("Loss is {}, stopping training".format(loss_value))
50 | print(loss_dict_reduced)
51 | sys.exit(1)
52 |
53 | optimizer.zero_grad()
54 | losses.backward()
55 | if max_norm > 0:
56 | torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
57 | optimizer.step()
58 |
59 | metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
60 | metric_logger.update(class_error=loss_dict_reduced['class_error'])
61 | metric_logger.update(lr=optimizer.param_groups[0]["lr"])
62 | # gather the stats from all processes
63 | metric_logger.synchronize_between_processes()
64 | print("Averaged stats:", metric_logger)
65 | return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
66 |
67 |
68 | @torch.no_grad()
69 | def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir, sample_ratio):
70 | model.eval()
71 | criterion.eval()
72 |
73 | metric_logger = utils.MetricLogger(delimiter=" ")
74 | metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
75 | header = 'Test:'
76 |
77 | iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys())
78 | coco_evaluator = CocoEvaluator(base_ds, iou_types)
79 | # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
80 |
81 | panoptic_evaluator = None
82 | if 'panoptic' in postprocessors.keys():
83 | panoptic_evaluator = PanopticEvaluator(
84 | data_loader.dataset.ann_file,
85 | data_loader.dataset.ann_folder,
86 | output_dir=os.path.join(output_dir, "panoptic_eval"),
87 | )
88 |
89 | for samples, targets in metric_logger.log_every(data_loader, 10, header):
90 | samples = samples.to(device)
91 | targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
92 |
93 | outputs = model(samples, sample_ratio)
94 | loss_dict = criterion(outputs, targets)
95 | weight_dict = criterion.weight_dict
96 |
97 | # reduce losses over all GPUs for logging purposes
98 | loss_dict_reduced = utils.reduce_dict(loss_dict)
99 | loss_dict_reduced_scaled = {k: v * weight_dict[k]
100 | for k, v in loss_dict_reduced.items() if k in weight_dict}
101 | loss_dict_reduced_unscaled = {f'{k}_unscaled': v
102 | for k, v in loss_dict_reduced.items()}
103 | metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
104 | **loss_dict_reduced_scaled,
105 | **loss_dict_reduced_unscaled)
106 | metric_logger.update(class_error=loss_dict_reduced['class_error'])
107 |
108 | orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
109 | results = postprocessors['bbox'](outputs, orig_target_sizes)
110 | if 'segm' in postprocessors.keys():
111 | target_sizes = torch.stack([t["size"] for t in targets], dim=0)
112 | results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes)
113 | res = {target['image_id'].item(): output for target, output in zip(targets, results)}
114 | if coco_evaluator is not None:
115 | coco_evaluator.update(res)
116 |
117 | if panoptic_evaluator is not None:
118 | res_pano = postprocessors["panoptic"](outputs, target_sizes, orig_target_sizes)
119 | for i, target in enumerate(targets):
120 | image_id = target["image_id"].item()
121 | file_name = f"{image_id:012d}.png"
122 | res_pano[i]["image_id"] = image_id
123 | res_pano[i]["file_name"] = file_name
124 |
125 | panoptic_evaluator.update(res_pano)
126 |
127 | # gather the stats from all processes
128 | metric_logger.synchronize_between_processes()
129 | print("Averaged stats:", metric_logger)
130 | if coco_evaluator is not None:
131 | coco_evaluator.synchronize_between_processes()
132 | if panoptic_evaluator is not None:
133 | panoptic_evaluator.synchronize_between_processes()
134 |
135 | # accumulate predictions from all images
136 | if coco_evaluator is not None:
137 | coco_evaluator.accumulate()
138 | coco_evaluator.summarize()
139 | panoptic_res = None
140 | if panoptic_evaluator is not None:
141 | panoptic_res = panoptic_evaluator.summarize()
142 | stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
143 | if coco_evaluator is not None:
144 | if 'bbox' in postprocessors.keys():
145 | stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
146 | if 'segm' in postprocessors.keys():
147 | stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist()
148 | if panoptic_res is not None:
149 | stats['PQ_all'] = panoptic_res["All"]
150 | stats['PQ_th'] = panoptic_res["Things"]
151 | stats['PQ_st'] = panoptic_res["Stuff"]
152 | return stats, coco_evaluator
153 |
--------------------------------------------------------------------------------
/analyze_grad.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """autograd_tutorial.ipynb
3 |
4 | Automatically generated by Colaboratory.
5 |
6 | Original file is located at
7 | https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/009cea8b0f40dfcb55e3280f73b06cc2/autograd_tutorial.ipynb
8 | """
9 |
10 | # Commented out IPython magic to ensure Python compatibility.
11 | # %matplotlib inline
12 |
13 |
14 |
15 | """Autograd: Automatic Differentiation
16 | ===================================
17 |
18 | Central to all neural networks in PyTorch is the ``autograd`` package.
19 | Let’s first briefly visit this, and we will then go to training our
20 | first neural network.
21 |
22 |
23 | The ``autograd`` package provides automatic differentiation for all operations
24 | on Tensors. It is a define-by-run framework, which means that your backprop is
25 | defined by how your code is run, and that every single iteration can be
26 | different.
27 |
28 | Let us see this in more simple terms with some examples.
29 |
30 | Tensor
31 | --------
32 |
33 | ``torch.Tensor`` is the central class of the package. If you set its attribute
34 | ``.requires_grad`` as ``True``, it starts to track all operations on it. When
35 | you finish your computation you can call ``.backward()`` and have all the
36 | gradients computed automatically. The gradient for this tensor will be
37 | accumulated into ``.grad`` attribute.
38 |
39 | To stop a tensor from tracking history, you can call ``.detach()`` to detach
40 | it from the computation history, and to prevent future computation from being
41 | tracked.
42 |
43 | To prevent tracking history (and using memory), you can also wrap the code block
44 | in ``with torch.no_grad():``. This can be particularly helpful when evaluating a
45 | model because the model may have trainable parameters with
46 | ``requires_grad=True``, but for which we don't need the gradients.
47 |
48 | There’s one more class which is very important for autograd
49 | implementation - a ``Function``.
50 |
51 | ``Tensor`` and ``Function`` are interconnected and build up an acyclic
52 | graph, that encodes a complete history of computation. Each tensor has
53 | a ``.grad_fn`` attribute that references a ``Function`` that has created
54 | the ``Tensor`` (except for Tensors created by the user - their
55 | ``grad_fn is None``).
56 |
57 | If you want to compute the derivatives, you can call ``.backward()`` on
58 | a ``Tensor``. If ``Tensor`` is a scalar (i.e. it holds a one element
59 | data), you don’t need to specify any arguments to ``backward()``,
60 | however if it has more elements, you need to specify a ``gradient``
61 | argument that is a tensor of matching shape.
62 | """
63 |
64 | import torch
65 | torch.manual_seed(123)
66 | torch.cuda.manual_seed(123)
67 | """Create a tensor and set ``requires_grad=True`` to track computation with it"""
68 |
69 | x = torch.ones(2, 2, requires_grad=True)
70 | print(x)
71 |
72 | """Do a tensor operation:"""
73 |
74 | y = x + 2
75 | print(y)
76 |
77 | """``y`` was created as a result of an operation, so it has a ``grad_fn``."""
78 |
79 | print(y.grad_fn)
80 |
81 | """Do more operations on ``y``"""
82 |
83 | z = y * y * 3
84 | out = z.mean()
85 |
86 | print(z, out)
87 |
88 | """``.requires_grad_( ... )`` changes an existing Tensor's ``requires_grad``
89 | flag in-place. The input flag defaults to ``False`` if not given.
90 | """
91 |
92 | a = torch.randn(2, 2)
93 | a = ((a * 3) / (a - 1))
94 | print(a.requires_grad)
95 | a.requires_grad_(True)
96 | print(a.requires_grad)
97 | b = (a * a).sum()
98 | print(b.grad_fn)
99 |
100 | """Gradients
101 | ---------
102 | Let's backprop now.
103 | Because ``out`` contains a single scalar, ``out.backward()`` is
104 | equivalent to ``out.backward(torch.tensor(1.))``.
105 | """
106 |
107 | def set_grad(var):
108 | def hook(grad):
109 | var.grad = grad
110 | return hook
111 |
112 | import matplotlib.pyplot as plt
113 | q = k = torch.randn(500, 256, requires_grad=True)
114 | w_q = torch.randn(256, 256)
115 | w_k = torch.randn(256, 256)
116 | q_proj = torch.matmul(q, w_q)
117 | k_proj = torch.matmul(k, w_k)
118 | q_proj = q_proj.softmax(-1)
119 | k_proj = k_proj.transpose(1,0).softmax(-1)
120 | q_proj.register_hook(set_grad(q_proj))
121 | k_proj.register_hook(set_grad(k_proj))
122 | double_attn = torch.matmul(q_proj, k_proj)
123 | double_attn.backward(torch.eye(500))
124 | plt.imshow(double_attn.cpu().detach())
125 | plt.show()
126 | plt.imshow(q.grad)
127 | plt.show()
128 |
129 | q_proj = torch.matmul(q, w_q)
130 | k_proj = torch.matmul(k, w_k)
131 | q_proj.register_hook(set_grad(q_proj))
132 | k_proj.register_hook(set_grad(k_proj))
133 | self_attn = (torch.matmul(q_proj, k_proj.transpose(1,0))/256**0.5).softmax(-1)
134 | self_attn.backward(torch.ones(500, 500))
135 | plt.imshow(self_attn.cpu().detach())
136 | plt.show()
137 | plt.imshow(q.grad)
138 | plt.show()
139 |
140 | """Print gradients d(out)/dx"""
141 |
142 | print(x.grad)
143 |
144 | """You should have got a matrix of ``4.5``. Let’s call the ``out``
145 | *Tensor* “$o$”.
146 | We have that $o = \frac{1}{4}\sum_i z_i$,
147 | $z_i = 3(x_i+2)^2$ and $z_i\bigr\rvert_{x_i=1} = 27$.
148 | Therefore,
149 | $\frac{\partial o}{\partial x_i} = \frac{3}{2}(x_i+2)$, hence
150 | $\frac{\partial o}{\partial x_i}\bigr\rvert_{x_i=1} = \frac{9}{2} = 4.5$.
151 |
152 | Mathematically, if you have a vector valued function $\vec{y}=f(\vec{x})$,
153 | then the gradient of $\vec{y}$ with respect to $\vec{x}$
154 | is a Jacobian matrix:
155 |
156 | \begin{align}J=\left(\begin{array}{ccc}
157 | \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}}\\
158 | \vdots & \ddots & \vdots\\
159 | \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
160 | \end{array}\right)\end{align}
161 |
162 | Generally speaking, ``torch.autograd`` is an engine for computing
163 | vector-Jacobian product. That is, given any vector
164 | $v=\left(\begin{array}{cccc} v_{1} & v_{2} & \cdots & v_{m}\end{array}\right)^{T}$,
165 | compute the product $v^{T}\cdot J$. If $v$ happens to be
166 | the gradient of a scalar function $l=g\left(\vec{y}\right)$,
167 | that is,
168 | $v=\left(\begin{array}{ccc}\frac{\partial l}{\partial y_{1}} & \cdots & \frac{\partial l}{\partial y_{m}}\end{array}\right)^{T}$,
169 | then by the chain rule, the vector-Jacobian product would be the
170 | gradient of $l$ with respect to $\vec{x}$:
171 |
172 | \begin{align}J^{T}\cdot v=\left(\begin{array}{ccc}
173 | \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}}\\
174 | \vdots & \ddots & \vdots\\
175 | \frac{\partial y_{1}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
176 | \end{array}\right)\left(\begin{array}{c}
177 | \frac{\partial l}{\partial y_{1}}\\
178 | \vdots\\
179 | \frac{\partial l}{\partial y_{m}}
180 | \end{array}\right)=\left(\begin{array}{c}
181 | \frac{\partial l}{\partial x_{1}}\\
182 | \vdots\\
183 | \frac{\partial l}{\partial x_{n}}
184 | \end{array}\right)\end{align}
185 |
186 | (Note that $v^{T}\cdot J$ gives a row vector which can be
187 | treated as a column vector by taking $J^{T}\cdot v$.)
188 |
189 | This characteristic of vector-Jacobian product makes it very
190 | convenient to feed external gradients into a model that has
191 | non-scalar output.
192 |
193 | Now let's take a look at an example of vector-Jacobian product:
194 | """
195 |
196 | x = torch.randn(3, requires_grad=True)
197 |
198 | y = x * 2
199 | while y.data.norm() < 1000:
200 | y = y * 2
201 |
202 | print(y)
203 |
204 | """Now in this case ``y`` is no longer a scalar. ``torch.autograd``
205 | could not compute the full Jacobian directly, but if we just
206 | want the vector-Jacobian product, simply pass the vector to
207 | ``backward`` as argument:
208 | """
209 |
210 | v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
211 | y.backward(v)
212 |
213 | print(x.grad)
214 |
215 | """You can also stop autograd from tracking history on Tensors
216 | with ``.requires_grad=True`` either by wrapping the code block in
217 | ``with torch.no_grad():``
218 | """
219 |
220 | print(x.requires_grad)
221 | print((x ** 2).requires_grad)
222 |
223 | with torch.no_grad():
224 | print((x ** 2).requires_grad)
225 |
226 | """Or by using ``.detach()`` to get a new Tensor with the same
227 | content but that does not require gradients:
228 | """
229 |
230 | print(x.requires_grad)
231 | y = x.detach()
232 | print(y.requires_grad)
233 | print(x.eq(y).all())
234 |
235 | """**Read Later:**
236 |
237 | Document about ``autograd.Function`` is at
238 | https://pytorch.org/docs/stable/autograd.html#function
239 | """
--------------------------------------------------------------------------------
/compute_flops.py:
--------------------------------------------------------------------------------
1 | # this is the main entrypoint
2 | # as we describe in the paper, we compute the flops over the first 100 images
3 | # on COCO val2017, and report the average result
4 | import torch
5 | import time
6 | import torchvision
7 | import argparse
8 |
9 | import numpy as np
10 | import tqdm
11 |
12 | from models import build_model
13 | from datasets import build_dataset
14 |
15 | from flop_count import flop_count
16 |
17 |
18 | def get_args_parser():
19 | parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
20 | parser.add_argument('--lr', default=1e-4, type=float)
21 | parser.add_argument('--lr_backbone', default=1e-5, type=float)
22 | parser.add_argument('--batch_size', default=2, type=int)
23 | parser.add_argument('--weight_decay', default=1e-4, type=float)
24 | parser.add_argument('--epochs', default=300, type=int)
25 | parser.add_argument('--lr_drop', default=200, type=int)
26 | parser.add_argument('--clip_max_norm', default=0.1, type=float,
27 | help='gradient clipping max norm')
28 |
29 | # Model parameters
30 | parser.add_argument('--frozen_weights', type=str, default=None,
31 | help="Path to the pretrained model. If set, only the mask head will be trained")
32 | # * Backbone
33 | parser.add_argument('--backbone', default='resnet50', type=str,
34 | help="Name of the convolutional backbone to use")
35 | parser.add_argument('--dilation', action='store_true',
36 | help="If true, we replace stride with dilation in the last convolutional block (DC5)")
37 | parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
38 | help="Type of positional embedding to use on top of the image features")
39 |
40 | # * Transformer
41 | parser.add_argument('--enc_layers', default=6, type=int,
42 | help="Number of encoding layers in the transformer")
43 | parser.add_argument('--dec_layers', default=6, type=int,
44 | help="Number of decoding layers in the transformer")
45 | parser.add_argument('--dim_feedforward', default=2048, type=int,
46 | help="Intermediate size of the feedforward layers in the transformer blocks")
47 | parser.add_argument('--hidden_dim', default=256, type=int,
48 | help="Size of the embeddings (dimension of the transformer)")
49 | parser.add_argument('--dropout', default=0.1, type=float,
50 | help="Dropout applied in the transformer")
51 | parser.add_argument('--nheads', default=8, type=int,
52 | help="Number of attention heads inside the transformer's attentions")
53 | parser.add_argument('--num_queries', default=100, type=int,
54 | help="Number of query slots")
55 | parser.add_argument('--pre_norm', action='store_true')
56 |
57 | # * Segmentation
58 | parser.add_argument('--masks', action='store_true',
59 | help="Train segmentation head if the flag is provided")
60 |
61 | # Loss
62 | parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
63 | help="Disables auxiliary decoding losses (loss at each layer)")
64 | # * Matcher
65 | parser.add_argument('--set_cost_class', default=1, type=float,
66 | help="Class coefficient in the matching cost")
67 | parser.add_argument('--set_cost_bbox', default=5, type=float,
68 | help="L1 box coefficient in the matching cost")
69 | parser.add_argument('--set_cost_giou', default=2, type=float,
70 | help="giou box coefficient in the matching cost")
71 | # * Loss coefficients
72 | parser.add_argument('--mask_loss_coef', default=1, type=float)
73 | parser.add_argument('--dice_loss_coef', default=1, type=float)
74 | parser.add_argument('--bbox_loss_coef', default=5, type=float)
75 | parser.add_argument('--giou_loss_coef', default=2, type=float)
76 | parser.add_argument('--eos_coef', default=0.1, type=float,
77 | help="Relative classification weight of the no-object class")
78 |
79 | # dataset parameters
80 | parser.add_argument('--train_image_set', default='train')## add for train on sampled set, train_sampled_PER_CAT_THR_500, ...
81 | parser.add_argument('--dataset_file', default='coco')
82 | parser.add_argument('--coco_path', type=str)
83 | parser.add_argument('--coco_panoptic_path', type=str)
84 | parser.add_argument('--remove_difficult', action='store_true')
85 |
86 | parser.add_argument('--output_dir', default='',
87 | help='path where to save, empty for no saving')
88 | parser.add_argument('--device', default='cuda',
89 | help='device to use for training / testing')
90 | parser.add_argument('--seed', default=42, type=int)
91 | parser.add_argument('--resume', default='', help='resume from checkpoint')
92 | parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
93 | help='start epoch')
94 | parser.add_argument('--eval', action='store_true')
95 | parser.add_argument('--num_workers', default=2, type=int)
96 |
97 | # distributed training parameters
98 | parser.add_argument('--world_size', default=1, type=int,
99 | help='number of distributed processes')
100 | parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
101 | parser.add_argument('--sample_reg_loss', default=1e-4, type=float,
102 | help="sample_reg_loss")
103 | parser.add_argument('--sample_topk_ratio', default=1/3., type=float)
104 | parser.add_argument('--score_pred_net', type=str, default='2layer-fc-256')
105 | parser.add_argument('--unsample_abstract_number', default=100, type=int,
106 | help='unsample_abstract_number')
107 | parser.add_argument('--pos_embed_kproj', action='store_true',
108 | help="add pos embeding for predicting unsampled aggregation attention")
109 | parser.add_argument('--sampler_lr_drop_epoch', default=1e5, type=int,
110 | help='default is not drop')
111 | parser.add_argument('--reshape_param_group', action='store_true',
112 | help="reshape_param_group of loaded state_dict to match with the 3 group setting")
113 | parser.add_argument('--notload_lr_scheduler', action='store_true',
114 | help="notload_lr_scheduler")
115 | return parser
116 |
117 | def get_dataset(coco_path):
118 | """
119 | Gets the COCO dataset used for computing the flops on
120 | """
121 | class DummyArgs:
122 | pass
123 | args = DummyArgs()
124 | args.dataset_file = "coco"
125 | args.coco_path = coco_path
126 | args.masks = False
127 | dataset = build_dataset(image_set='val', args=args)
128 | return dataset
129 |
130 |
131 | def warmup(model, inputs, N=10):
132 | for i in range(N):
133 | out = model(inputs)
134 | torch.cuda.synchronize()
135 |
136 |
137 | def measure_time(model, inputs, N=10):
138 | warmup(model, inputs)
139 | s = time.time()
140 | for i in range(N):
141 | out = model(inputs)
142 | torch.cuda.synchronize()
143 | t = (time.time() - s) / N
144 | return t
145 |
146 |
147 | def fmt_res(data):
148 | return data.mean(), data.std(), data.min(), data.max()
149 |
150 |
151 | # get the first 100 images of COCO val2017
152 | PATH_TO_COCO = "./data/coco/"
153 | dataset = get_dataset(PATH_TO_COCO)
154 | images = []
155 | for idx in range(100):
156 | img, t = dataset[idx]
157 | images.append(img)
158 |
159 | device = torch.device('cuda')
160 | results = {}
161 |
162 | parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
163 | args = parser.parse_args()
164 |
165 | model, criterion, postprocessors = build_model(args)
166 | model.to(device)
167 |
168 | model_name = 'detr_resnet50'
169 |
170 | with torch.no_grad():
171 | tmp = []
172 | tmp2 = []
173 | measure_scopes = ['encoder','decoder','backbone','SortSampler']
174 | measure_scopes_res = {k:[] for k in measure_scopes}
175 | for img in tqdm.tqdm(images):
176 | inputs = [img.to(device)]
177 | res = flop_count(model, (inputs,))
178 | [measure_scopes_res[k].append(sum(flop_count(model, (inputs,), measure_scope=k).values())) for k in measure_scopes]
179 | # t = measure_time(model, inputs)
180 | tmp.append(sum(res.values()))
181 | # tmp2.append(t)
182 | results[model_name] = {'flops': fmt_res(np.array(tmp)),
183 | 'flops_backbone': np.mean(measure_scopes_res['backbone']),
184 | 'flops_encoder': np.mean(measure_scopes_res['encoder']),
185 | 'flops_decoder': np.mean(measure_scopes_res['decoder']),
186 | 'flops_sampler': np.mean(measure_scopes_res['SortSampler']),
187 | }
188 |
189 |
190 | print('=============================')
191 | print('')
192 | for r in results:
193 | print(r)
194 | for k, v in results[r].items():
195 | print(' ', k, ':', v)
--------------------------------------------------------------------------------
/datasets/transforms.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | Transforms and data augmentation for both image + bbox.
4 | """
5 | import random
6 |
7 | import PIL
8 | import torch
9 | import torchvision.transforms as T
10 | import torchvision.transforms.functional as F
11 |
12 | from util.box_ops import box_xyxy_to_cxcywh
13 | from util.misc import interpolate
14 |
15 |
16 | def crop(image, target, region):
17 | cropped_image = F.crop(image, *region)
18 |
19 | target = target.copy()
20 | i, j, h, w = region
21 |
22 | # should we do something wrt the original size?
23 | target["size"] = torch.tensor([h, w])
24 |
25 | fields = ["labels", "area", "iscrowd"]
26 |
27 | if "boxes" in target:
28 | boxes = target["boxes"]
29 | max_size = torch.as_tensor([w, h], dtype=torch.float32)
30 | cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
31 | cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
32 | cropped_boxes = cropped_boxes.clamp(min=0)
33 | area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
34 | target["boxes"] = cropped_boxes.reshape(-1, 4)
35 | target["area"] = area
36 | fields.append("boxes")
37 |
38 | if "masks" in target:
39 | # FIXME should we update the area here if there are no boxes?
40 | target['masks'] = target['masks'][:, i:i + h, j:j + w]
41 | fields.append("masks")
42 |
43 | # remove elements for which the boxes or masks that have zero area
44 | if "boxes" in target or "masks" in target:
45 | # favor boxes selection when defining which elements to keep
46 | # this is compatible with previous implementation
47 | if "boxes" in target:
48 | cropped_boxes = target['boxes'].reshape(-1, 2, 2)
49 | keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
50 | else:
51 | keep = target['masks'].flatten(1).any(1)
52 |
53 | for field in fields:
54 | target[field] = target[field][keep]
55 |
56 | return cropped_image, target
57 |
58 |
59 | def hflip(image, target):
60 | flipped_image = F.hflip(image)
61 |
62 | w, h = image.size
63 |
64 | target = target.copy()
65 | if "boxes" in target:
66 | boxes = target["boxes"]
67 | boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
68 | target["boxes"] = boxes
69 |
70 | if "masks" in target:
71 | target['masks'] = target['masks'].flip(-1)
72 |
73 | return flipped_image, target
74 |
75 |
76 | def resize(image, target, size, max_size=None):
77 | # size can be min_size (scalar) or (w, h) tuple
78 |
79 | def get_size_with_aspect_ratio(image_size, size, max_size=None):
80 | w, h = image_size
81 | if max_size is not None:
82 | min_original_size = float(min((w, h)))
83 | max_original_size = float(max((w, h)))
84 | if max_original_size / min_original_size * size > max_size:
85 | size = int(round(max_size * min_original_size / max_original_size))
86 |
87 | if (w <= h and w == size) or (h <= w and h == size):
88 | return (h, w)
89 |
90 | if w < h:
91 | ow = size
92 | oh = int(size * h / w)
93 | else:
94 | oh = size
95 | ow = int(size * w / h)
96 |
97 | return (oh, ow)
98 |
99 | def get_size(image_size, size, max_size=None):
100 | if isinstance(size, (list, tuple)):
101 | return size[::-1]
102 | else:
103 | return get_size_with_aspect_ratio(image_size, size, max_size)
104 |
105 | size = get_size(image.size, size, max_size)
106 | rescaled_image = F.resize(image, size)
107 |
108 | if target is None:
109 | return rescaled_image, None
110 |
111 | ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
112 | ratio_width, ratio_height = ratios
113 |
114 | target = target.copy()
115 | if "boxes" in target:
116 | boxes = target["boxes"]
117 | scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
118 | target["boxes"] = scaled_boxes
119 |
120 | if "area" in target:
121 | area = target["area"]
122 | scaled_area = area * (ratio_width * ratio_height)
123 | target["area"] = scaled_area
124 |
125 | h, w = size
126 | target["size"] = torch.tensor([h, w])
127 |
128 | if "masks" in target:
129 | target['masks'] = interpolate(
130 | target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
131 |
132 | return rescaled_image, target
133 |
134 |
135 | def pad(image, target, padding):
136 | # assumes that we only pad on the bottom right corners
137 | padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
138 | if target is None:
139 | return padded_image, None
140 | target = target.copy()
141 | # should we do something wrt the original size?
142 | target["size"] = torch.tensor(padded_image[::-1])
143 | if "masks" in target:
144 | target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
145 | return padded_image, target
146 |
147 |
148 | class RandomCrop(object):
149 | def __init__(self, size):
150 | self.size = size
151 |
152 | def __call__(self, img, target):
153 | region = T.RandomCrop.get_params(img, self.size)
154 | return crop(img, target, region)
155 |
156 |
157 | class RandomSizeCrop(object):
158 | def __init__(self, min_size: int, max_size: int):
159 | self.min_size = min_size
160 | self.max_size = max_size
161 |
162 | def __call__(self, img: PIL.Image.Image, target: dict):
163 | w = random.randint(self.min_size, min(img.width, self.max_size))
164 | h = random.randint(self.min_size, min(img.height, self.max_size))
165 | region = T.RandomCrop.get_params(img, [h, w])
166 | return crop(img, target, region)
167 |
168 |
169 | class CenterCrop(object):
170 | def __init__(self, size):
171 | self.size = size
172 |
173 | def __call__(self, img, target):
174 | image_width, image_height = img.size
175 | crop_height, crop_width = self.size
176 | crop_top = int(round((image_height - crop_height) / 2.))
177 | crop_left = int(round((image_width - crop_width) / 2.))
178 | return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
179 |
180 |
181 | class RandomHorizontalFlip(object):
182 | def __init__(self, p=0.5):
183 | self.p = p
184 |
185 | def __call__(self, img, target):
186 | if random.random() < self.p:
187 | return hflip(img, target)
188 | return img, target
189 |
190 |
191 | class RandomResize(object):
192 | def __init__(self, sizes, max_size=None):
193 | assert isinstance(sizes, (list, tuple))
194 | self.sizes = sizes
195 | self.max_size = max_size
196 |
197 | def __call__(self, img, target=None):
198 | size = random.choice(self.sizes)
199 | return resize(img, target, size, self.max_size)
200 |
201 |
202 | class RandomPad(object):
203 | def __init__(self, max_pad):
204 | self.max_pad = max_pad
205 |
206 | def __call__(self, img, target):
207 | pad_x = random.randint(0, self.max_pad)
208 | pad_y = random.randint(0, self.max_pad)
209 | return pad(img, target, (pad_x, pad_y))
210 |
211 |
212 | class RandomSelect(object):
213 | """
214 | Randomly selects between transforms1 and transforms2,
215 | with probability p for transforms1 and (1 - p) for transforms2
216 | """
217 | def __init__(self, transforms1, transforms2, p=0.5):
218 | self.transforms1 = transforms1
219 | self.transforms2 = transforms2
220 | self.p = p
221 |
222 | def __call__(self, img, target):
223 | if random.random() < self.p:
224 | return self.transforms1(img, target)
225 | return self.transforms2(img, target)
226 |
227 |
228 | class ToTensor(object):
229 | def __call__(self, img, target):
230 | return F.to_tensor(img), target
231 |
232 |
233 | class RandomErasing(object):
234 |
235 | def __init__(self, *args, **kwargs):
236 | self.eraser = T.RandomErasing(*args, **kwargs)
237 |
238 | def __call__(self, img, target):
239 | return self.eraser(img), target
240 |
241 |
242 | class Normalize(object):
243 | def __init__(self, mean, std):
244 | self.mean = mean
245 | self.std = std
246 |
247 | def __call__(self, image, target=None):
248 | image = F.normalize(image, mean=self.mean, std=self.std)
249 | if target is None:
250 | return image, None
251 | target = target.copy()
252 | h, w = image.shape[-2:]
253 | if "boxes" in target:
254 | boxes = target["boxes"]
255 | boxes = box_xyxy_to_cxcywh(boxes)
256 | boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
257 | target["boxes"] = boxes
258 | return image, target
259 |
260 |
261 | class Compose(object):
262 | def __init__(self, transforms):
263 | self.transforms = transforms
264 |
265 | def __call__(self, image, target):
266 | for t in self.transforms:
267 | image, target = t(image, target)
268 | return image, target
269 |
270 | def __repr__(self):
271 | format_string = self.__class__.__name__ + "("
272 | for t in self.transforms:
273 | format_string += "\n"
274 | format_string += " {0}".format(t)
275 | format_string += "\n)"
276 | return format_string
277 |
--------------------------------------------------------------------------------
/datasets/coco_eval.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | COCO evaluator that works in distributed mode.
4 |
5 | Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
6 | The difference is that there is less copy-pasting from pycocotools
7 | in the end of the file, as python3 can suppress prints with contextlib
8 | """
9 | import os
10 | import contextlib
11 | import copy
12 | import numpy as np
13 | import torch
14 |
15 | from pycocotools.cocoeval import COCOeval
16 | from pycocotools.coco import COCO
17 | import pycocotools.mask as mask_util
18 |
19 | from util.misc import all_gather
20 |
21 |
22 | class CocoEvaluator(object):
23 | def __init__(self, coco_gt, iou_types):
24 | assert isinstance(iou_types, (list, tuple))
25 | coco_gt = copy.deepcopy(coco_gt)
26 | self.coco_gt = coco_gt
27 |
28 | self.iou_types = iou_types
29 | self.coco_eval = {}
30 | for iou_type in iou_types:
31 | self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
32 |
33 | self.img_ids = []
34 | self.eval_imgs = {k: [] for k in iou_types}
35 |
36 | def update(self, predictions):
37 | img_ids = list(np.unique(list(predictions.keys())))
38 | self.img_ids.extend(img_ids)
39 |
40 | for iou_type in self.iou_types:
41 | results = self.prepare(predictions, iou_type)
42 |
43 | # suppress pycocotools prints
44 | with open(os.devnull, 'w') as devnull:
45 | with contextlib.redirect_stdout(devnull):
46 | coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
47 | coco_eval = self.coco_eval[iou_type]
48 |
49 | coco_eval.cocoDt = coco_dt
50 | coco_eval.params.imgIds = list(img_ids)
51 | img_ids, eval_imgs = evaluate(coco_eval)
52 |
53 | self.eval_imgs[iou_type].append(eval_imgs)
54 |
55 | def synchronize_between_processes(self):
56 | for iou_type in self.iou_types:
57 | self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
58 | create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
59 |
60 | def accumulate(self):
61 | for coco_eval in self.coco_eval.values():
62 | coco_eval.accumulate()
63 |
64 | def summarize(self):
65 | for iou_type, coco_eval in self.coco_eval.items():
66 | print("IoU metric: {}".format(iou_type))
67 | coco_eval.summarize()
68 |
69 | def prepare(self, predictions, iou_type):
70 | if iou_type == "bbox":
71 | return self.prepare_for_coco_detection(predictions)
72 | elif iou_type == "segm":
73 | return self.prepare_for_coco_segmentation(predictions)
74 | elif iou_type == "keypoints":
75 | return self.prepare_for_coco_keypoint(predictions)
76 | else:
77 | raise ValueError("Unknown iou type {}".format(iou_type))
78 |
79 | def prepare_for_coco_detection(self, predictions):
80 | coco_results = []
81 | for original_id, prediction in predictions.items():
82 | if len(prediction) == 0:
83 | continue
84 |
85 | boxes = prediction["boxes"]
86 | boxes = convert_to_xywh(boxes).tolist()
87 | scores = prediction["scores"].tolist()
88 | labels = prediction["labels"].tolist()
89 |
90 | coco_results.extend(
91 | [
92 | {
93 | "image_id": original_id,
94 | "category_id": labels[k],
95 | "bbox": box,
96 | "score": scores[k],
97 | }
98 | for k, box in enumerate(boxes)
99 | ]
100 | )
101 | return coco_results
102 |
103 | def prepare_for_coco_segmentation(self, predictions):
104 | coco_results = []
105 | for original_id, prediction in predictions.items():
106 | if len(prediction) == 0:
107 | continue
108 |
109 | scores = prediction["scores"]
110 | labels = prediction["labels"]
111 | masks = prediction["masks"]
112 |
113 | masks = masks > 0.5
114 |
115 | scores = prediction["scores"].tolist()
116 | labels = prediction["labels"].tolist()
117 |
118 | rles = [
119 | mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
120 | for mask in masks
121 | ]
122 | for rle in rles:
123 | rle["counts"] = rle["counts"].decode("utf-8")
124 |
125 | coco_results.extend(
126 | [
127 | {
128 | "image_id": original_id,
129 | "category_id": labels[k],
130 | "segmentation": rle,
131 | "score": scores[k],
132 | }
133 | for k, rle in enumerate(rles)
134 | ]
135 | )
136 | return coco_results
137 |
138 | def prepare_for_coco_keypoint(self, predictions):
139 | coco_results = []
140 | for original_id, prediction in predictions.items():
141 | if len(prediction) == 0:
142 | continue
143 |
144 | boxes = prediction["boxes"]
145 | boxes = convert_to_xywh(boxes).tolist()
146 | scores = prediction["scores"].tolist()
147 | labels = prediction["labels"].tolist()
148 | keypoints = prediction["keypoints"]
149 | keypoints = keypoints.flatten(start_dim=1).tolist()
150 |
151 | coco_results.extend(
152 | [
153 | {
154 | "image_id": original_id,
155 | "category_id": labels[k],
156 | 'keypoints': keypoint,
157 | "score": scores[k],
158 | }
159 | for k, keypoint in enumerate(keypoints)
160 | ]
161 | )
162 | return coco_results
163 |
164 |
165 | def convert_to_xywh(boxes):
166 | xmin, ymin, xmax, ymax = boxes.unbind(1)
167 | return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
168 |
169 |
170 | def merge(img_ids, eval_imgs):
171 | all_img_ids = all_gather(img_ids)
172 | all_eval_imgs = all_gather(eval_imgs)
173 |
174 | merged_img_ids = []
175 | for p in all_img_ids:
176 | merged_img_ids.extend(p)
177 |
178 | merged_eval_imgs = []
179 | for p in all_eval_imgs:
180 | merged_eval_imgs.append(p)
181 |
182 | merged_img_ids = np.array(merged_img_ids)
183 | merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
184 |
185 | # keep only unique (and in sorted order) images
186 | merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
187 | merged_eval_imgs = merged_eval_imgs[..., idx]
188 |
189 | return merged_img_ids, merged_eval_imgs
190 |
191 |
192 | def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
193 | img_ids, eval_imgs = merge(img_ids, eval_imgs)
194 | img_ids = list(img_ids)
195 | eval_imgs = list(eval_imgs.flatten())
196 |
197 | coco_eval.evalImgs = eval_imgs
198 | coco_eval.params.imgIds = img_ids
199 | coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
200 |
201 |
202 | #################################################################
203 | # From pycocotools, just removed the prints and fixed
204 | # a Python3 bug about unicode not defined
205 | #################################################################
206 |
207 |
208 | def evaluate(self):
209 | '''
210 | Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
211 | :return: None
212 | '''
213 | # tic = time.time()
214 | # print('Running per image evaluation...')
215 | p = self.params
216 | # add backward compatibility if useSegm is specified in params
217 | if p.useSegm is not None:
218 | p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
219 | print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
220 | # print('Evaluate annotation type *{}*'.format(p.iouType))
221 | p.imgIds = list(np.unique(p.imgIds))
222 | if p.useCats:
223 | p.catIds = list(np.unique(p.catIds))
224 | p.maxDets = sorted(p.maxDets)
225 | self.params = p
226 |
227 | self._prepare()
228 | # loop through images, area range, max detection number
229 | catIds = p.catIds if p.useCats else [-1]
230 |
231 | if p.iouType == 'segm' or p.iouType == 'bbox':
232 | computeIoU = self.computeIoU
233 | elif p.iouType == 'keypoints':
234 | computeIoU = self.computeOks
235 | self.ious = {
236 | (imgId, catId): computeIoU(imgId, catId)
237 | for imgId in p.imgIds
238 | for catId in catIds}
239 |
240 | evaluateImg = self.evaluateImg
241 | maxDet = p.maxDets[-1]
242 | evalImgs = [
243 | evaluateImg(imgId, catId, areaRng, maxDet)
244 | for catId in catIds
245 | for areaRng in p.areaRng
246 | for imgId in p.imgIds
247 | ]
248 | # this is NOT in the pycocotools code, but could be done outside
249 | evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
250 | self._paramsEval = copy.deepcopy(self.params)
251 | # toc = time.time()
252 | # print('DONE (t={:0.2f}s).'.format(toc-tic))
253 | return p.imgIds, evalImgs
254 |
255 | #################################################################
256 | # end of straight copy from pycocotools, just removing the prints
257 | #################################################################
258 |
--------------------------------------------------------------------------------
/jit_handles.py:
--------------------------------------------------------------------------------
1 | # taken from detectron2 / fvcore with a few modifications
2 | # https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/analysis.py
3 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
4 |
5 | import typing
6 | from collections import Counter, OrderedDict
7 | import numpy as np
8 | from numpy import prod
9 | from itertools import zip_longest
10 |
11 |
12 | def get_shape(val: object) -> typing.List[int]:
13 | """
14 | Get the shapes from a jit value object.
15 | Args:
16 | val (torch._C.Value): jit value object.
17 | Returns:
18 | list(int): return a list of ints.
19 | """
20 | if val.isCompleteTensor(): # pyre-ignore
21 | r = val.type().sizes() # pyre-ignore
22 | if not r:
23 | r = [1]
24 | return r
25 | elif val.type().kind() in ("IntType", "FloatType"):
26 | return [1]
27 | else:
28 | raise ValueError()
29 |
30 |
31 | def addmm_flop_jit(
32 | inputs: typing.List[object], outputs: typing.List[object]
33 | ) -> typing.Counter[str]:
34 | """
35 | This method counts the flops for fully connected layers with torch script.
36 | Args:
37 | inputs (list(torch._C.Value)): The input shape in the form of a list of
38 | jit object.
39 | outputs (list(torch._C.Value)): The output shape in the form of a list
40 | of jit object.
41 | Returns:
42 | Counter: A Counter dictionary that records the number of flops for each
43 | operation.
44 | """
45 | # Count flop for nn.Linear
46 | # inputs is a list of length 3.
47 | input_shapes = [get_shape(v) for v in inputs[1:3]]
48 | # input_shapes[0]: [batch size, input feature dimension]
49 | # input_shapes[1]: [batch size, output feature dimension]
50 | assert len(input_shapes[0]) == 2
51 | assert len(input_shapes[1]) == 2
52 | batch_size, input_dim = input_shapes[0]
53 | output_dim = input_shapes[1][1]
54 | flop = batch_size * input_dim * output_dim
55 | flop_counter = Counter({"addmm": flop})
56 | return flop_counter
57 |
58 |
59 | def bmm_flop_jit(inputs, outputs):
60 | # Count flop for nn.Linear
61 | # inputs is a list of length 3.
62 | input_shapes = [get_shape(v) for v in inputs]
63 | # input_shapes[0]: [batch size, input feature dimension]
64 | # input_shapes[1]: [batch size, output feature dimension]
65 | assert len(input_shapes[0]) == 3
66 | assert len(input_shapes[1]) == 3
67 | T, batch_size, input_dim = input_shapes[0]
68 | output_dim = input_shapes[1][2]
69 | flop = T * batch_size * input_dim * output_dim
70 | flop_counter = Counter({"bmm": flop})
71 | return flop_counter
72 |
73 |
74 | def basic_binary_op_flop_jit(inputs, outputs, name):
75 | input_shapes = [get_shape(v) for v in inputs]
76 | # for broadcasting
77 | input_shapes = [s[::-1] for s in input_shapes]
78 | max_shape = np.array(list(zip_longest(*input_shapes, fillvalue=1))).max(1)
79 | flop = prod(max_shape)
80 | flop_counter = Counter({name: flop})
81 | return flop_counter
82 |
83 |
84 | def rsqrt_flop_jit(inputs, outputs):
85 | input_shapes = [get_shape(v) for v in inputs]
86 | flop = prod(input_shapes[0]) * 2
87 | flop_counter = Counter({"rsqrt": flop})
88 | return flop_counter
89 |
90 | def dropout_flop_jit(inputs, outputs):
91 | input_shapes = [get_shape(v) for v in inputs[:1]]
92 | flop = prod(input_shapes[0])
93 | flop_counter = Counter({"dropout": flop})
94 | return flop_counter
95 |
96 | def softmax_flop_jit(inputs, outputs):
97 | # from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/profiler/internal/flops_registry.py
98 | input_shapes = [get_shape(v) for v in inputs[:1]]
99 | flop = prod(input_shapes[0]) * 5
100 | flop_counter = Counter({'softmax': flop})
101 | return flop_counter
102 |
103 | def _reduction_op_flop_jit(inputs, outputs, reduce_flops=1, finalize_flops=0):
104 | input_shapes = [get_shape(v) for v in inputs]
105 | output_shapes = [get_shape(v) for v in outputs]
106 |
107 | in_elements = prod(input_shapes[0])
108 | out_elements = prod(output_shapes[0])
109 |
110 | num_flops = (in_elements * reduce_flops
111 | + out_elements * (finalize_flops - reduce_flops))
112 |
113 | return num_flops
114 |
115 |
116 | def conv_flop_count(
117 | x_shape: typing.List[int],
118 | w_shape: typing.List[int],
119 | out_shape: typing.List[int],
120 | ) -> typing.Counter[str]:
121 | """
122 | This method counts the flops for convolution. Note only multiplication is
123 | counted. Computation for addition and bias is ignored.
124 | Args:
125 | x_shape (list(int)): The input shape before convolution.
126 | w_shape (list(int)): The filter shape.
127 | out_shape (list(int)): The output shape after convolution.
128 | Returns:
129 | Counter: A Counter dictionary that records the number of flops for each
130 | operation.
131 | """
132 | batch_size, Cin_dim, Cout_dim = x_shape[0], w_shape[1], out_shape[1]
133 | out_size = prod(out_shape[2:])
134 | kernel_size = prod(w_shape[2:])
135 | flop = batch_size * out_size * Cout_dim * Cin_dim * kernel_size
136 | flop_counter = Counter({"conv": flop})
137 | return flop_counter
138 |
139 |
140 | def conv_flop_jit(
141 | inputs: typing.List[object], outputs: typing.List[object]
142 | ) -> typing.Counter[str]:
143 | """
144 | This method counts the flops for convolution using torch script.
145 | Args:
146 | inputs (list(torch._C.Value)): The input shape in the form of a list of
147 | jit object before convolution.
148 | outputs (list(torch._C.Value)): The output shape in the form of a list
149 | of jit object after convolution.
150 | Returns:
151 | Counter: A Counter dictionary that records the number of flops for each
152 | operation.
153 | """
154 | # Inputs of Convolution should be a list of length 12. They represent:
155 | # 0) input tensor, 1) convolution filter, 2) bias, 3) stride, 4) padding,
156 | # 5) dilation, 6) transposed, 7) out_pad, 8) groups, 9) benchmark_cudnn,
157 | # 10) deterministic_cudnn and 11) user_enabled_cudnn.
158 | assert len(inputs) == 12
159 | x, w = inputs[:2]
160 | x_shape, w_shape, out_shape = (
161 | get_shape(x),
162 | get_shape(w),
163 | get_shape(outputs[0]),
164 | )
165 | return conv_flop_count(x_shape, w_shape, out_shape)
166 |
167 |
168 | def einsum_flop_jit(
169 | inputs: typing.List[object], outputs: typing.List[object]
170 | ) -> typing.Counter[str]:
171 | """
172 | This method counts the flops for the einsum operation. We currently support
173 | two einsum operations: "nct,ncp->ntp" and "ntg,ncg->nct".
174 | Args:
175 | inputs (list(torch._C.Value)): The input shape in the form of a list of
176 | jit object before einsum.
177 | outputs (list(torch._C.Value)): The output shape in the form of a list
178 | of jit object after einsum.
179 | Returns:
180 | Counter: A Counter dictionary that records the number of flops for each
181 | operation.
182 | """
183 | # Inputs of einsum should be a list of length 2.
184 | # Inputs[0] stores the equation used for einsum.
185 | # Inputs[1] stores the list of input shapes.
186 | assert len(inputs) == 2
187 | equation = inputs[0].toIValue() # pyre-ignore
188 | # Get rid of white space in the equation string.
189 | equation = equation.replace(" ", "")
190 | # Re-map equation so that same equation with different alphabet
191 | # representations will look the same.
192 | letter_order = OrderedDict((k, 0) for k in equation if k.isalpha()).keys()
193 | mapping = {ord(x): 97 + i for i, x in enumerate(letter_order)}
194 | equation = equation.translate(mapping)
195 | input_shapes_jit = inputs[1].node().inputs() # pyre-ignore
196 | input_shapes = [get_shape(v) for v in input_shapes_jit]
197 |
198 | if equation == "abc,abd->acd":
199 | n, c, t = input_shapes[0]
200 | p = input_shapes[-1][-1]
201 | flop = n * c * t * p
202 | flop_counter = Counter({"einsum": flop})
203 | return flop_counter
204 |
205 | elif equation == "abc,adc->adb":
206 | n, t, g = input_shapes[0]
207 | c = input_shapes[-1][1]
208 | flop = n * t * g * c
209 | flop_counter = Counter({"einsum": flop})
210 | return flop_counter
211 |
212 | else:
213 | raise NotImplementedError("Unsupported einsum operation.")
214 |
215 |
216 | def matmul_flop_jit(
217 | inputs: typing.List[object], outputs: typing.List[object]
218 | ) -> typing.Counter[str]:
219 | """
220 | This method counts the flops for matmul.
221 | Args:
222 | inputs (list(torch._C.Value)): The input shape in the form of a list of
223 | jit object before matmul.
224 | outputs (list(torch._C.Value)): The output shape in the form of a list
225 | of jit object after matmul.
226 | Returns:
227 | Counter: A Counter dictionary that records the number of flops for each
228 | operation.
229 | """
230 | # Inputs should be a list of length 2.
231 | # Inputs contains the shapes of two matrices.
232 | input_shapes = [get_shape(v) for v in inputs]
233 | assert len(input_shapes) == 2
234 | assert len(input_shapes[1]) == 2
235 | assert input_shapes[0][-1] == input_shapes[1][0]
236 | batch_dim = input_shapes[0][0]
237 | m1_dim, m2_dim = input_shapes[1]
238 | flop = m1_dim * m2_dim * batch_dim
239 | flop_counter = Counter({"matmul": flop})
240 | return flop_counter
241 |
242 |
243 | def batchnorm_flop_jit(
244 | inputs: typing.List[object], outputs: typing.List[object]
245 | ) -> typing.Counter[str]:
246 | """
247 | This method counts the flops for batch norm.
248 | Args:
249 | inputs (list(torch._C.Value)): The input shape in the form of a list of
250 | jit object before batch norm.
251 | outputs (list(torch._C.Value)): The output shape in the form of a list
252 | of jit object after batch norm.
253 | Returns:
254 | Counter: A Counter dictionary that records the number of flops for each
255 | operation.
256 | """
257 | # Inputs[0] contains the shape of the input.
258 | input_shape = get_shape(inputs[0])
259 | assert 2 <= len(input_shape) <= 5
260 | flop = prod(input_shape) * 4
261 | flop_counter = Counter({"batchnorm": flop})
262 | return flop_counter
--------------------------------------------------------------------------------
/flop_count.py:
--------------------------------------------------------------------------------
1 | # taken from detectron2 with a few modifications
2 | # to include bmm and a few other ops
3 | # https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/analysis.py
4 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
5 |
6 | import logging
7 | import typing
8 | from collections import Counter, defaultdict
9 | import torch
10 | import torch.nn as nn
11 | from functools import partial
12 |
13 | from jit_handles import (
14 | addmm_flop_jit,
15 | batchnorm_flop_jit,
16 | conv_flop_jit,
17 | einsum_flop_jit,
18 | matmul_flop_jit,
19 | bmm_flop_jit,
20 | basic_binary_op_flop_jit,
21 | rsqrt_flop_jit,
22 | softmax_flop_jit,
23 | dropout_flop_jit,
24 | )
25 |
26 | # A dictionary that maps supported operations to their flop count jit handles.
27 | _SUPPORTED_OPS: typing.Dict[str, typing.Callable] = {
28 | "aten::addmm": addmm_flop_jit,
29 | "aten::_convolution": conv_flop_jit,
30 | "aten::einsum": einsum_flop_jit,
31 | "aten::matmul": matmul_flop_jit,
32 | "aten::batch_norm": batchnorm_flop_jit,
33 | "aten::bmm": bmm_flop_jit,
34 | "aten::add": partial(basic_binary_op_flop_jit, name='aten::add'),
35 | "aten::add_": partial(basic_binary_op_flop_jit, name='aten::add_'),
36 | "aten::mul": partial(basic_binary_op_flop_jit, name='aten::mul'),
37 | "aten::sub": partial(basic_binary_op_flop_jit, name='aten::sub'),
38 | "aten::div": partial(basic_binary_op_flop_jit, name='aten::div'),
39 | "aten::floor_divide": partial(basic_binary_op_flop_jit, name='aten::floor_divide'),
40 | "aten::relu": partial(basic_binary_op_flop_jit, name='aten::relu'),
41 | "aten::relu_": partial(basic_binary_op_flop_jit, name='aten::relu_'),
42 | "aten::rsqrt": rsqrt_flop_jit,
43 | "aten::softmax": softmax_flop_jit,
44 | "aten::dropout": dropout_flop_jit,
45 | }
46 |
47 | # A list that contains ignored operations.
48 | _IGNORED_OPS: typing.List[str] = [
49 | "aten::Int",
50 | "aten::__and__",
51 | "aten::arange",
52 | "aten::cat",
53 | "aten::clamp",
54 | "aten::clamp_",
55 | "aten::contiguous",
56 | "aten::copy_",
57 | "aten::detach",
58 | "aten::empty",
59 | "aten::eq",
60 | "aten::expand",
61 | "aten::flatten",
62 | "aten::floor",
63 | "aten::full",
64 | "aten::gt",
65 | "aten::index",
66 | "aten::index_put_",
67 | "aten::max",
68 | "aten::nonzero",
69 | "aten::permute",
70 | "aten::remainder",
71 | "aten::reshape",
72 | "aten::select",
73 | "aten::size",
74 | "aten::slice",
75 | "aten::split_with_sizes",
76 | "aten::squeeze",
77 | "aten::t",
78 | "aten::to",
79 | "aten::transpose",
80 | "aten::unsqueeze",
81 | "aten::view",
82 | "aten::zeros",
83 | "aten::zeros_like",
84 | "prim::Constant",
85 | "prim::Int",
86 | "prim::ListConstruct",
87 | "prim::ListUnpack",
88 | "prim::NumToTensor",
89 | "prim::TupleConstruct",
90 | ]
91 |
92 | _HAS_ALREADY_SKIPPED = False
93 |
94 |
95 | def flop_count(
96 | model: nn.Module,
97 | inputs: typing.Tuple[object, ...],
98 | whitelist: typing.Union[typing.List[str], None] = None,
99 | customized_ops: typing.Union[
100 | typing.Dict[str, typing.Callable], None
101 | ] = None,
102 | measure_scope=None,
103 | ) -> typing.DefaultDict[str, float]:
104 | """
105 | Given a model and an input to the model, compute the Gflops of the given
106 | model. Note the input should have a batch size of 1.
107 | Args:
108 | model (nn.Module): The model to compute flop counts.
109 | inputs (tuple): Inputs that are passed to `model` to count flops.
110 | Inputs need to be in a tuple.
111 | whitelist (list(str)): Whitelist of operations that will be counted. It
112 | needs to be a subset of _SUPPORTED_OPS. By default, the function
113 | computes flops for all supported operations.
114 | customized_ops (dict(str,Callable)) : A dictionary contains customized
115 | operations and their flop handles. If customized_ops contains an
116 | operation in _SUPPORTED_OPS, then the default handle in
117 | _SUPPORTED_OPS will be overwritten.
118 | Returns:
119 | defaultdict: A dictionary that records the number of gflops for each
120 | operation.
121 | """
122 | # Copy _SUPPORTED_OPS to flop_count_ops.
123 | # If customized_ops is provided, update _SUPPORTED_OPS.
124 | flop_count_ops = _SUPPORTED_OPS.copy()
125 | if customized_ops:
126 | flop_count_ops.update(customized_ops)
127 |
128 | # If whitelist is None, count flops for all suported operations.
129 | if whitelist is None:
130 | whitelist_set = set(flop_count_ops.keys())
131 | else:
132 | whitelist_set = set(whitelist)
133 |
134 | # Torch script does not support parallell torch models.
135 | if isinstance(
136 | model,
137 | (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel),
138 | ):
139 | model = model.module # pyre-ignore
140 |
141 | assert set(whitelist_set).issubset(
142 | flop_count_ops
143 | ), "whitelist needs to be a subset of _SUPPORTED_OPS and customized_ops."
144 | assert isinstance(inputs, tuple), "Inputs need to be in a tuple."
145 |
146 | # Compatibility with torch.jit.
147 | if hasattr(torch.jit, "get_trace_graph"):
148 | trace, _ = torch.jit.get_trace_graph(model, inputs)
149 | trace_nodes = trace.graph().nodes()
150 | else:
151 | with scope_name_workaround():
152 | trace, _ = torch.jit._get_trace_graph(model, inputs)
153 | # graph=torch.onnx._optimize_trace(trace, torch.onnx.OperatorExportTypes.ONNX)
154 | trace_nodes = trace.nodes()
155 |
156 | skipped_ops = Counter()
157 | total_flop_counter = Counter()
158 | if measure_scope is not None:
159 | for node in trace_nodes:
160 | if measure_scope in node.scopeName():
161 | kind = node.kind()
162 | if kind not in whitelist_set:
163 | # If the operation is not in _IGNORED_OPS, count skipped operations.
164 | if kind not in _IGNORED_OPS:
165 | skipped_ops[kind] += 1
166 | continue
167 |
168 | handle_count = flop_count_ops.get(kind, None)
169 | if handle_count is None:
170 | continue
171 |
172 | inputs, outputs = list(node.inputs()), list(node.outputs())
173 | flops_counter = handle_count(inputs, outputs)
174 | total_flop_counter += flops_counter
175 | else:
176 | for node in trace_nodes:
177 | kind = node.kind()
178 | if kind not in whitelist_set:
179 | # If the operation is not in _IGNORED_OPS, count skipped operations.
180 | if kind not in _IGNORED_OPS:
181 | skipped_ops[kind] += 1
182 | continue
183 |
184 | handle_count = flop_count_ops.get(kind, None)
185 | if handle_count is None:
186 | continue
187 |
188 | inputs, outputs = list(node.inputs()), list(node.outputs())
189 | flops_counter = handle_count(inputs, outputs)
190 | total_flop_counter += flops_counter
191 |
192 | global _HAS_ALREADY_SKIPPED
193 | if len(skipped_ops) > 0 and not _HAS_ALREADY_SKIPPED:
194 | _HAS_ALREADY_SKIPPED = True
195 | for op, freq in skipped_ops.items():
196 | logging.warning("Skipped operation {} {} time(s)".format(op, freq))
197 |
198 | # Convert flop count to gigaflops.
199 | final_count = defaultdict(float)
200 | for op in total_flop_counter:
201 | final_count[op] = total_flop_counter[op] / 1e9
202 |
203 | return final_count
204 |
205 |
206 | def print_table(rows, header=['Operation', 'OPS']):
207 | r"""Simple helper function to print a list of lists as a table
208 |
209 | :param rows: a :class:`list` of :class:`list` containing the data to be printed. Each entry in the list
210 | represents an individual row
211 | :param input: (optional) a :class:`list` containing the header of the table
212 | """
213 | if len(rows) == 0:
214 | return
215 | col_max = [max([len(str(val[i])) for val in rows]) + 3 for i in range(len(rows[0]))]
216 | row_format = ''.join(["{:<" + str(length) + "}" for length in col_max])
217 |
218 | if len(header) > 0:
219 | print(row_format.format(*header))
220 | print(row_format.format(*['-' * (val - 2) for val in col_max]))
221 |
222 | for row in rows:
223 | print(row_format.format(*row))
224 | print(row_format.format(*['-' * (val - 3) for val in col_max]))
225 |
226 | # Workaround for scopename in pytorch 1.4 and newer
227 | # see: https://github.com/pytorch/pytorch/issues/33463
228 |
229 |
230 | class scope_name_workaround(object):
231 | def __init__(self):
232 | self.backup = None
233 |
234 | def __enter__(self):
235 | def _tracing_name(self_, tracing_state):
236 | if not tracing_state._traced_module_stack:
237 | return None
238 | module = tracing_state._traced_module_stack[-1]
239 | for name, child in module.named_children():
240 | if child is self_:
241 | return name
242 | return None
243 |
244 | def _slow_forward(self_, *input, **kwargs):
245 | tracing_state = torch._C._get_tracing_state()
246 | if not tracing_state or isinstance(self_.forward, torch._C.ScriptMethod):
247 | return self_.forward(*input, **kwargs)
248 | if not hasattr(tracing_state, '_traced_module_stack'):
249 | tracing_state._traced_module_stack = []
250 | name = _tracing_name(self_, tracing_state)
251 | if name:
252 | tracing_state.push_scope('%s[%s]' % (self_._get_name(), name))
253 | else:
254 | tracing_state.push_scope(self_._get_name())
255 | tracing_state._traced_module_stack.append(self_)
256 | try:
257 | result = self_.forward(*input, **kwargs)
258 | finally:
259 | tracing_state.pop_scope()
260 | tracing_state._traced_module_stack.pop()
261 | return result
262 |
263 | self.backup = torch.nn.Module._slow_forward
264 | setattr(torch.nn.Module, '_slow_forward', _slow_forward)
265 |
266 | def __exit__(self, type, value, tb):
267 | setattr(torch.nn.Module, '_slow_forward', self.backup)
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright 2020 - present, Facebook, Inc
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/util/misc.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | Misc functions, including distributed helpers.
4 |
5 | Mostly copy-paste from torchvision references.
6 | """
7 | import os
8 | import subprocess
9 | import time
10 | from collections import defaultdict, deque
11 | import datetime
12 | import pickle
13 | from typing import Optional, List
14 |
15 | import torch
16 | import torch.distributed as dist
17 | from torch import Tensor
18 |
19 | # needed due to empty tensor bug in pytorch and torchvision 0.5
20 | import torchvision
21 | if float(torchvision.__version__[:3]) < 0.7:
22 | from torchvision.ops import _new_empty_tensor
23 | from torchvision.ops.misc import _output_size
24 |
25 |
26 | class SmoothedValue(object):
27 | """Track a series of values and provide access to smoothed values over a
28 | window or the global series average.
29 | """
30 |
31 | def __init__(self, window_size=20, fmt=None):
32 | if fmt is None:
33 | fmt = "{median:.4f} ({global_avg:.4f})"
34 | self.deque = deque(maxlen=window_size)
35 | self.total = 0.0
36 | self.count = 0
37 | self.fmt = fmt
38 |
39 | def update(self, value, n=1):
40 | self.deque.append(value)
41 | self.count += n
42 | self.total += value * n
43 |
44 | def synchronize_between_processes(self):
45 | """
46 | Warning: does not synchronize the deque!
47 | """
48 | if not is_dist_avail_and_initialized():
49 | return
50 | t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
51 | dist.barrier()
52 | dist.all_reduce(t)
53 | t = t.tolist()
54 | self.count = int(t[0])
55 | self.total = t[1]
56 |
57 | @property
58 | def median(self):
59 | d = torch.tensor(list(self.deque))
60 | return d.median().item()
61 |
62 | @property
63 | def avg(self):
64 | d = torch.tensor(list(self.deque), dtype=torch.float32)
65 | return d.mean().item()
66 |
67 | @property
68 | def global_avg(self):
69 | return self.total / self.count
70 |
71 | @property
72 | def max(self):
73 | return max(self.deque)
74 |
75 | @property
76 | def value(self):
77 | return self.deque[-1]
78 |
79 | def __str__(self):
80 | return self.fmt.format(
81 | median=self.median,
82 | avg=self.avg,
83 | global_avg=self.global_avg,
84 | max=self.max,
85 | value=self.value)
86 |
87 |
88 | def all_gather(data):
89 | """
90 | Run all_gather on arbitrary picklable data (not necessarily tensors)
91 | Args:
92 | data: any picklable object
93 | Returns:
94 | list[data]: list of data gathered from each rank
95 | """
96 | world_size = get_world_size()
97 | if world_size == 1:
98 | return [data]
99 |
100 | # serialized to a Tensor
101 | buffer = pickle.dumps(data)
102 | storage = torch.ByteStorage.from_buffer(buffer)
103 | tensor = torch.ByteTensor(storage).to("cuda")
104 |
105 | # obtain Tensor size of each rank
106 | local_size = torch.tensor([tensor.numel()], device="cuda")
107 | size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
108 | dist.all_gather(size_list, local_size)
109 | size_list = [int(size.item()) for size in size_list]
110 | max_size = max(size_list)
111 |
112 | # receiving Tensor from all ranks
113 | # we pad the tensor because torch all_gather does not support
114 | # gathering tensors of different shapes
115 | tensor_list = []
116 | for _ in size_list:
117 | tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
118 | if local_size != max_size:
119 | padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
120 | tensor = torch.cat((tensor, padding), dim=0)
121 | dist.all_gather(tensor_list, tensor)
122 |
123 | data_list = []
124 | for size, tensor in zip(size_list, tensor_list):
125 | buffer = tensor.cpu().numpy().tobytes()[:size]
126 | data_list.append(pickle.loads(buffer))
127 |
128 | return data_list
129 |
130 |
131 | def reduce_dict(input_dict, average=True):
132 | """
133 | Args:
134 | input_dict (dict): all the values will be reduced
135 | average (bool): whether to do average or sum
136 | Reduce the values in the dictionary from all processes so that all processes
137 | have the averaged results. Returns a dict with the same fields as
138 | input_dict, after reduction.
139 | """
140 | world_size = get_world_size()
141 | if world_size < 2:
142 | return input_dict
143 | with torch.no_grad():
144 | names = []
145 | values = []
146 | # sort the keys so that they are consistent across processes
147 | for k in sorted(input_dict.keys()):
148 | names.append(k)
149 | values.append(input_dict[k])
150 | values = torch.stack(values, dim=0)
151 | dist.all_reduce(values)
152 | if average:
153 | values /= world_size
154 | reduced_dict = {k: v for k, v in zip(names, values)}
155 | return reduced_dict
156 |
157 |
158 | class MetricLogger(object):
159 | def __init__(self, delimiter="\t"):
160 | self.meters = defaultdict(SmoothedValue)
161 | self.delimiter = delimiter
162 |
163 | def update(self, **kwargs):
164 | for k, v in kwargs.items():
165 | if isinstance(v, torch.Tensor):
166 | v = v.item()
167 | assert isinstance(v, (float, int))
168 | self.meters[k].update(v)
169 |
170 | def __getattr__(self, attr):
171 | if attr in self.meters:
172 | return self.meters[attr]
173 | if attr in self.__dict__:
174 | return self.__dict__[attr]
175 | raise AttributeError("'{}' object has no attribute '{}'".format(
176 | type(self).__name__, attr))
177 |
178 | def __str__(self):
179 | loss_str = []
180 | for name, meter in self.meters.items():
181 | loss_str.append(
182 | "{}: {}".format(name, str(meter))
183 | )
184 | return self.delimiter.join(loss_str)
185 |
186 | def synchronize_between_processes(self):
187 | for meter in self.meters.values():
188 | meter.synchronize_between_processes()
189 |
190 | def add_meter(self, name, meter):
191 | self.meters[name] = meter
192 |
193 | def log_every(self, iterable, print_freq, header=None):
194 | i = 0
195 | if not header:
196 | header = ''
197 | start_time = time.time()
198 | end = time.time()
199 | iter_time = SmoothedValue(fmt='{avg:.4f}')
200 | data_time = SmoothedValue(fmt='{avg:.4f}')
201 | space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
202 | if torch.cuda.is_available():
203 | log_msg = self.delimiter.join([
204 | header,
205 | '[{0' + space_fmt + '}/{1}]',
206 | 'eta: {eta}',
207 | '{meters}',
208 | 'time: {time}',
209 | 'data: {data}',
210 | 'max mem: {memory:.0f}'
211 | ])
212 | else:
213 | log_msg = self.delimiter.join([
214 | header,
215 | '[{0' + space_fmt + '}/{1}]',
216 | 'eta: {eta}',
217 | '{meters}',
218 | 'time: {time}',
219 | 'data: {data}'
220 | ])
221 | MB = 1024.0 * 1024.0
222 | for obj in iterable:
223 | data_time.update(time.time() - end)
224 | yield obj
225 | iter_time.update(time.time() - end)
226 | if i % print_freq == 0 or i == len(iterable) - 1:
227 | eta_seconds = iter_time.global_avg * (len(iterable) - i)
228 | eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
229 | if torch.cuda.is_available():
230 | print(log_msg.format(
231 | i, len(iterable), eta=eta_string,
232 | meters=str(self),
233 | time=str(iter_time), data=str(data_time),
234 | memory=torch.cuda.max_memory_allocated() / MB))
235 | else:
236 | print(log_msg.format(
237 | i, len(iterable), eta=eta_string,
238 | meters=str(self),
239 | time=str(iter_time), data=str(data_time)))
240 | i += 1
241 | end = time.time()
242 | total_time = time.time() - start_time
243 | total_time_str = str(datetime.timedelta(seconds=int(total_time)))
244 | print('{} Total time: {} ({:.4f} s / it)'.format(
245 | header, total_time_str, total_time / len(iterable)))
246 |
247 |
248 | def get_sha():
249 | cwd = os.path.dirname(os.path.abspath(__file__))
250 |
251 | def _run(command):
252 | return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
253 | sha = 'N/A'
254 | diff = "clean"
255 | branch = 'N/A'
256 | try:
257 | sha = _run(['git', 'rev-parse', 'HEAD'])
258 | subprocess.check_output(['git', 'diff'], cwd=cwd)
259 | diff = _run(['git', 'diff-index', 'HEAD'])
260 | diff = "has uncommited changes" if diff else "clean"
261 | branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
262 | except Exception:
263 | pass
264 | message = f"sha: {sha}, status: {diff}, branch: {branch}"
265 | return message
266 |
267 |
268 | def collate_fn(batch):
269 | batch = list(zip(*batch))
270 | batch[0] = nested_tensor_from_tensor_list(batch[0])
271 | return tuple(batch)
272 |
273 |
274 | def _max_by_axis(the_list):
275 | # type: (List[List[int]]) -> List[int]
276 | maxes = the_list[0]
277 | for sublist in the_list[1:]:
278 | for index, item in enumerate(sublist):
279 | maxes[index] = max(maxes[index], item)
280 | return maxes
281 |
282 |
283 | def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
284 | # TODO make this more general
285 | if tensor_list[0].ndim == 3:
286 | # TODO make it support different-sized images
287 | max_size = _max_by_axis([list(img.shape) for img in tensor_list])
288 | # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
289 | batch_shape = [len(tensor_list)] + max_size
290 | b, c, h, w = batch_shape
291 | dtype = tensor_list[0].dtype
292 | device = tensor_list[0].device
293 | tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
294 | mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
295 | for img, pad_img, m in zip(tensor_list, tensor, mask):
296 | pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
297 | m[: img.shape[1], :img.shape[2]] = False
298 | else:
299 | raise ValueError('not supported')
300 | return NestedTensor(tensor, mask)
301 |
302 |
303 | class NestedTensor(object):
304 | def __init__(self, tensors, mask: Optional[Tensor]):
305 | self.tensors = tensors
306 | self.mask = mask
307 |
308 | def to(self, device):
309 | # type: (Device) -> NestedTensor # noqa
310 | cast_tensor = self.tensors.to(device)
311 | mask = self.mask
312 | if mask is not None:
313 | assert mask is not None
314 | cast_mask = mask.to(device)
315 | else:
316 | cast_mask = None
317 | return NestedTensor(cast_tensor, cast_mask)
318 |
319 | def decompose(self):
320 | return self.tensors, self.mask
321 |
322 | def __repr__(self):
323 | return str(self.tensors)
324 |
325 |
326 | def setup_for_distributed(is_master):
327 | """
328 | This function disables printing when not in master process
329 | """
330 | import builtins as __builtin__
331 | builtin_print = __builtin__.print
332 |
333 | def print(*args, **kwargs):
334 | force = kwargs.pop('force', False)
335 | if is_master or force:
336 | builtin_print(*args, **kwargs)
337 |
338 | __builtin__.print = print
339 |
340 |
341 | def is_dist_avail_and_initialized():
342 | if not dist.is_available():
343 | return False
344 | if not dist.is_initialized():
345 | return False
346 | return True
347 |
348 |
349 | def get_world_size():
350 | if not is_dist_avail_and_initialized():
351 | return 1
352 | return dist.get_world_size()
353 |
354 |
355 | def get_rank():
356 | if not is_dist_avail_and_initialized():
357 | return 0
358 | return dist.get_rank()
359 |
360 |
361 | def is_main_process():
362 | return get_rank() == 0
363 |
364 |
365 | def save_on_master(*args, **kwargs):
366 | if is_main_process():
367 | torch.save(*args, **kwargs)
368 |
369 |
370 | def init_distributed_mode(args):
371 | if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
372 | args.rank = int(os.environ["RANK"])
373 | args.world_size = int(os.environ['WORLD_SIZE'])
374 | args.gpu = int(os.environ['LOCAL_RANK'])
375 | elif 'SLURM_PROCID' in os.environ:
376 | args.rank = int(os.environ['SLURM_PROCID'])
377 | args.gpu = args.rank % torch.cuda.device_count()
378 | else:
379 | print('Not using distributed mode')
380 | args.distributed = False
381 | return
382 |
383 | args.distributed = True
384 |
385 | torch.cuda.set_device(args.gpu)
386 | args.dist_backend = 'nccl'
387 | print('| distributed init (rank {}): {}'.format(
388 | args.rank, args.dist_url), flush=True)
389 | torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
390 | world_size=args.world_size, rank=args.rank)
391 | torch.distributed.barrier()
392 | setup_for_distributed(args.rank == 0)
393 |
394 |
395 | @torch.no_grad()
396 | def accuracy(output, target, topk=(1,)):
397 | """Computes the precision@k for the specified values of k"""
398 | if target.numel() == 0:
399 | return [torch.zeros([], device=output.device)]
400 | maxk = max(topk)
401 | batch_size = target.size(0)
402 |
403 | _, pred = output.topk(maxk, 1, True, True)
404 | pred = pred.t()
405 | correct = pred.eq(target.view(1, -1).expand_as(pred))
406 |
407 | res = []
408 | for k in topk:
409 | correct_k = correct[:k].view(-1).float().sum(0)
410 | res.append(correct_k.mul_(100.0 / batch_size))
411 | return res
412 |
413 |
414 | def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
415 | # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
416 | """
417 | Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
418 | This will eventually be supported natively by PyTorch, and this
419 | class can go away.
420 | """
421 | if float(torchvision.__version__[:3]) < 0.7:
422 | if input.numel() > 0:
423 | return torch.nn.functional.interpolate(
424 | input, size, scale_factor, mode, align_corners
425 | )
426 |
427 | output_shape = _output_size(2, input, size, scale_factor)
428 | output_shape = list(input.shape[:-2]) + list(output_shape)
429 | return _new_empty_tensor(input, output_shape)
430 | else:
431 | return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
432 |
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | import argparse
3 | import datetime
4 | import json
5 | import random
6 | import time
7 | from pathlib import Path
8 |
9 | import numpy as np
10 | import torch
11 | from torch.utils.data import DataLoader, DistributedSampler
12 |
13 | import datasets
14 | import util.misc as utils
15 | from datasets import build_dataset, get_coco_api_from_dataset
16 | from engine import evaluate, train_one_epoch
17 | from models import build_model
18 |
19 | from torch.nn.parameter import Parameter
20 |
21 | import tqdm
22 |
23 | from getpass import getuser
24 | from socket import gethostname
25 |
26 | # this is a fake commit
27 | def get_args_parser():
28 | parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
29 | parser.add_argument('--lr', default=1e-4, type=float)
30 | parser.add_argument('--lr_backbone', default=1e-5, type=float)
31 | parser.add_argument('--batch_size', default=2, type=int)
32 | parser.add_argument('--weight_decay', default=1e-4, type=float)
33 | parser.add_argument('--epochs', default=300, type=int)
34 | parser.add_argument('--lr_drop', default=200, type=int)
35 | parser.add_argument('--clip_max_norm', default=0.1, type=float,
36 | help='gradient clipping max norm')
37 |
38 | # Model parameters
39 | parser.add_argument('--frozen_weights', type=str, default=None,
40 | help="Path to the pretrained model. If set, only the mask head will be trained")
41 | # * Backbone
42 | parser.add_argument('--backbone', default='resnet50', type=str,
43 | help="Name of the convolutional backbone to use")
44 | parser.add_argument('--dilation', action='store_true',
45 | help="If true, we replace stride with dilation in the last convolutional block (DC5)")
46 | parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
47 | help="Type of positional embedding to use on top of the image features")
48 |
49 | # * Transformer
50 | parser.add_argument('--enc_layers', default=6, type=int,
51 | help="Number of encoding layers in the transformer")
52 | parser.add_argument('--dec_layers', default=6, type=int,
53 | help="Number of decoding layers in the transformer")
54 | parser.add_argument('--dim_feedforward', default=2048, type=int,
55 | help="Intermediate size of the feedforward layers in the transformer blocks")
56 | parser.add_argument('--hidden_dim', default=256, type=int,
57 | help="Size of the embeddings (dimension of the transformer)")
58 | parser.add_argument('--dropout', default=0.1, type=float,
59 | help="Dropout applied in the transformer")
60 | parser.add_argument('--nheads', default=8, type=int,
61 | help="Number of attention heads inside the transformer's attentions")
62 | parser.add_argument('--num_queries', default=100, type=int,
63 | help="Number of query slots")
64 | parser.add_argument('--pre_norm', action='store_true')
65 |
66 | # * Segmentation
67 | parser.add_argument('--masks', action='store_true',
68 | help="Train segmentation head if the flag is provided")
69 |
70 | # Loss
71 | parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
72 | help="Disables auxiliary decoding losses (loss at each layer)")
73 | # * Matcher
74 | parser.add_argument('--set_cost_class', default=1, type=float,
75 | help="Class coefficient in the matching cost")
76 | parser.add_argument('--set_cost_bbox', default=5, type=float,
77 | help="L1 box coefficient in the matching cost")
78 | parser.add_argument('--set_cost_giou', default=2, type=float,
79 | help="giou box coefficient in the matching cost")
80 | # * Loss coefficients
81 | parser.add_argument('--mask_loss_coef', default=1, type=float)
82 | parser.add_argument('--dice_loss_coef', default=1, type=float)
83 | parser.add_argument('--bbox_loss_coef', default=5, type=float)
84 | parser.add_argument('--giou_loss_coef', default=2, type=float)
85 | parser.add_argument('--eos_coef', default=0.1, type=float,
86 | help="Relative classification weight of the no-object class")
87 |
88 | # dataset parameters
89 | parser.add_argument('--train_image_set', default='train')## add for train on sampled set, train_sampled_PER_CAT_THR_500, ...
90 | parser.add_argument('--dataset_file', default='coco')
91 | parser.add_argument('--coco_path', type=str)
92 | parser.add_argument('--coco_panoptic_path', type=str)
93 | parser.add_argument('--remove_difficult', action='store_true')
94 |
95 | parser.add_argument('--output_dir', default='',
96 | help='path where to save, empty for no saving')
97 | parser.add_argument('--device', default='cuda',
98 | help='device to use for training / testing')
99 | parser.add_argument('--seed', default=42, type=int)
100 | parser.add_argument('--resume', default='', help='resume from checkpoint')
101 | parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
102 | help='start epoch')
103 | parser.add_argument('--eval', action='store_true')
104 | parser.add_argument('--num_workers', default=2, type=int)
105 |
106 | # distributed training parameters
107 | parser.add_argument('--world_size', default=1, type=int,
108 | help='number of distributed processes')
109 | parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
110 | parser.add_argument('--sample_reg_loss', default=1e-4, type=float,
111 | help="sample_reg_loss")
112 | parser.add_argument('--sample_topk_ratio', default=1/3., type=float)
113 | parser.add_argument('--score_pred_net', type=str, default='2layer-fc-256')
114 | parser.add_argument('--kproj_net', type=str, default='1layer-fc')
115 | parser.add_argument('--unsample_abstract_number', default=0, type=int,
116 | help='unsample_abstract_number')
117 | parser.add_argument('--pos_embed_kproj', action='store_true',
118 | help="add pos embeding for predicting unsampled aggregation attention")
119 | parser.add_argument('--sampler_lr_drop_epoch', default=1e5, type=int,
120 | help='default is not drop')
121 | parser.add_argument('--reshape_param_group', action='store_true',
122 | help="reshape_param_group of loaded state_dict to match with the 3 group setting")
123 | parser.add_argument('--notload_lr_scheduler', action='store_true',
124 | help="notload_lr_scheduler")
125 | parser.add_argument('--sample_ratio_lower_bound', default=1/3., type=float)
126 | parser.add_argument('--sample_ratio_higher_bound', default=0.8, type=float)
127 |
128 | return parser
129 |
130 | def get_host_info():
131 | return '{}@{}'.format(getuser(), gethostname())
132 |
133 | def main(args):
134 | utils.init_distributed_mode(args)
135 | print("git:\n {}\n".format(utils.get_sha()))
136 |
137 | if args.frozen_weights is not None:
138 | assert args.masks, "Frozen training is meant for segmentation only"
139 | print(args)
140 | print(get_host_info())
141 | device = torch.device(args.device)
142 |
143 | # fix the seed for reproducibility
144 | seed = args.seed + utils.get_rank()
145 | torch.manual_seed(seed)
146 | np.random.seed(seed)
147 | random.seed(seed)
148 | if args.unsample_abstract_number==0:# unsample_abstract_number not set
149 | if args.dilation:
150 | args.unsample_abstract_number=100
151 | else:
152 | args.unsample_abstract_number = 30
153 |
154 | model, criterion, postprocessors = build_model(args)
155 | model.to(device)
156 | criterion.weight_dict['sample_reg_loss'] = args.sample_reg_loss
157 |
158 | model_without_ddp = model
159 | if args.distributed:
160 | model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
161 | model_without_ddp = model.module
162 | n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
163 | print('number of params:', n_parameters)
164 |
165 | param_dicts = [
166 | {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
167 | {
168 | "params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
169 | "lr": args.lr_backbone,
170 | },
171 | ]
172 | optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
173 | weight_decay=args.weight_decay)
174 | lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
175 |
176 | # dataset_train = build_dataset(image_set='train', args=args)
177 | dataset_train = build_dataset(image_set=args.train_image_set, args=args)
178 | dataset_val = build_dataset(image_set='val', args=args)
179 | # dataset_train.ids = dataset_train.ids[:100]
180 | # dataset_val.ids = dataset_val.ids[:100]
181 |
182 | if args.distributed:
183 | sampler_train = DistributedSampler(dataset_train)
184 | sampler_val = DistributedSampler(dataset_val, shuffle=False)
185 | else:
186 | sampler_train = torch.utils.data.RandomSampler(dataset_train)
187 | sampler_val = torch.utils.data.SequentialSampler(dataset_val)
188 |
189 | batch_sampler_train = torch.utils.data.BatchSampler(
190 | sampler_train, args.batch_size, drop_last=True)
191 |
192 | data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
193 | collate_fn=utils.collate_fn, num_workers=args.num_workers)
194 | data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
195 | drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
196 |
197 | if args.dataset_file == "coco_panoptic":
198 | # We also evaluate AP during panoptic training, on original coco DS
199 | coco_val = datasets.coco.build("val", args)
200 | base_ds = get_coco_api_from_dataset(coco_val)
201 | else:
202 | base_ds = get_coco_api_from_dataset(dataset_val)
203 |
204 | if args.frozen_weights is not None:
205 | checkpoint = torch.load(args.frozen_weights, map_location='cpu')
206 | model_without_ddp.detr.load_state_dict(checkpoint['model'])
207 |
208 | output_dir = Path(args.output_dir)
209 | if args.resume:
210 | if args.resume.startswith('https'):
211 | checkpoint = torch.hub.load_state_dict_from_url(
212 | args.resume, map_location='cpu', check_hash=True)
213 | elif not args.resume.endswith('pth'):
214 | checkpoint = torch.load(args.output_dir+'/checkpoint.pth', map_location='cpu')
215 | else:
216 | checkpoint = torch.load(args.resume, map_location='cpu')
217 |
218 | def load_my_state_dict(module, state_dict):
219 |
220 | own_state = module.state_dict()
221 | for name, param in state_dict.items():
222 | if name not in own_state:
223 | continue
224 | if isinstance(param, Parameter):
225 | # backwards compatibility for serialized parameters
226 | param = param.data
227 | own_state[name].copy_(param)
228 |
229 |
230 | # model_without_ddp.load_state_dict(checkpoint['model'])
231 | load_my_state_dict(model_without_ddp, checkpoint['model'])
232 | if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
233 | try:
234 | optimizer.load_state_dict(checkpoint['optimizer'])
235 | if not args.notload_lr_scheduler:
236 | lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
237 | args.start_epoch = checkpoint['epoch'] + 1
238 | except:
239 | print('skip loading optimizer and other training settings, supposed to be initing from trained model, but not resuming training')
240 |
241 |
242 | if args.eval:
243 | test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
244 | data_loader_val, base_ds, device, args.output_dir, args.sample_topk_ratio)
245 | if args.output_dir:
246 | utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
247 | return
248 |
249 | print("Start training")
250 | start_time = time.time()
251 | best_ap = 0.
252 | lr_scheduler.step(epoch=args.start_epoch)
253 | for epoch in tqdm.tqdm(range(args.start_epoch, args.epochs)):
254 | if args.distributed:
255 | sampler_train.set_epoch(epoch)
256 | lr_scheduler.step(epoch=epoch)
257 | if epoch >= args.sampler_lr_drop_epoch:
258 | optimizer.param_groups[0]['lr'] *= 0.1
259 | train_stats = train_one_epoch(
260 | model, criterion, data_loader_train, optimizer, device, epoch, args.sample_ratio_lower_bound,args.sample_ratio_higher_bound,
261 | args.clip_max_norm)
262 |
263 | test_stats_all_sample_ratio = []
264 | sample_ratios = [0.333, 0.5, 0.65, 0.8]
265 | for sample_ratio in sample_ratios:
266 | test_stats, coco_evaluator = evaluate(
267 | model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, sample_ratio
268 | )
269 | test_stats_all_sample_ratio.append(test_stats)
270 | log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
271 | **{f'test_ratio_{sample_ratios[0]}_{k}': v for k, v in test_stats_all_sample_ratio[0].items()},
272 | **{f'test_ratio_{sample_ratios[1]}_{k}': v for k, v in test_stats_all_sample_ratio[1].items()},
273 | **{f'test_ratio_{sample_ratios[2]}_{k}': v for k, v in test_stats_all_sample_ratio[2].items()},
274 | **{f'test_ratio_{sample_ratios[3]}_{k}': v for k, v in test_stats_all_sample_ratio[3].items()},
275 | 'epoch': epoch,
276 | 'n_parameters': n_parameters,
277 | 'lrs':[optimizer.param_groups[i]['lr']for i in range(len(optimizer.param_groups))]}
278 |
279 | if args.output_dir:
280 | checkpoint_paths = [output_dir / 'checkpoint.pth']
281 | # extra checkpoint before LR drop and every 100 epochs
282 | if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
283 | checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
284 | if test_stats_all_sample_ratio[2]['coco_eval_bbox'][0] > best_ap:
285 | best_ap = test_stats['coco_eval_bbox'][0]
286 | checkpoint_paths.append(output_dir / f'checkpoint_best.pth')
287 | for checkpoint_path in checkpoint_paths:
288 | utils.save_on_master({
289 | 'model': model_without_ddp.state_dict(),
290 | 'optimizer': optimizer.state_dict(),
291 | 'lr_scheduler': lr_scheduler.state_dict(),
292 | 'epoch': epoch,
293 | 'args': args,
294 | }, checkpoint_path)
295 |
296 | if args.output_dir and utils.is_main_process():
297 | with (output_dir / "log.txt").open("a") as f:
298 | f.write(json.dumps(log_stats) + "\n")
299 |
300 | # for evaluation logs
301 | if coco_evaluator is not None:
302 | (output_dir / 'eval').mkdir(exist_ok=True)
303 | if "bbox" in coco_evaluator.coco_eval:
304 | filenames = ['latest.pth']
305 | if epoch % 50 == 0:
306 | filenames.append(f'{epoch:03}.pth')
307 | for name in filenames:
308 | torch.save(coco_evaluator.coco_eval["bbox"].eval,
309 | output_dir / "eval" / name)
310 |
311 | total_time = time.time() - start_time
312 | total_time_str = str(datetime.timedelta(seconds=int(total_time)))
313 | print('Training time {}'.format(total_time_str))
314 |
315 |
316 | if __name__ == '__main__':
317 | parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
318 | args = parser.parse_args()
319 | if args.output_dir:
320 | Path(args.output_dir).mkdir(parents=True, exist_ok=True)
321 | main(args)
322 |
--------------------------------------------------------------------------------
/models/segmentation.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | This file provides the definition of the convolutional heads used to predict masks, as well as the losses
4 | """
5 | import io
6 | from collections import defaultdict
7 | from typing import List, Optional
8 |
9 | import torch
10 | import torch.nn as nn
11 | import torch.nn.functional as F
12 | from torch import Tensor
13 | from PIL import Image
14 |
15 | import util.box_ops as box_ops
16 | from util.misc import NestedTensor, interpolate, nested_tensor_from_tensor_list
17 |
18 | try:
19 | from panopticapi.utils import id2rgb, rgb2id
20 | except ImportError:
21 | pass
22 |
23 |
24 | class DETRsegm(nn.Module):
25 | def __init__(self, detr, freeze_detr=False):
26 | super().__init__()
27 | self.detr = detr
28 |
29 | if freeze_detr:
30 | for p in self.parameters():
31 | p.requires_grad_(False)
32 |
33 | hidden_dim, nheads = detr.transformer.d_model, detr.transformer.nhead
34 | self.bbox_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0.0)
35 | self.mask_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim)
36 |
37 | def forward(self, samples: NestedTensor):
38 | if not isinstance(samples, NestedTensor):
39 | samples = nested_tensor_from_tensor_list(samples)
40 | features, pos = self.detr.backbone(samples)
41 |
42 | bs = features[-1].tensors.shape[0]
43 |
44 | src, mask = features[-1].decompose()
45 | assert mask is not None
46 | src_proj = self.detr.input_proj(src)
47 | hs, memory = self.detr.transformer(src_proj, mask, self.detr.query_embed.weight, pos[-1])
48 |
49 | outputs_class = self.detr.class_embed(hs)
50 | outputs_coord = self.detr.bbox_embed(hs).sigmoid()
51 | out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]}
52 | if self.detr.aux_loss:
53 | out['aux_outputs'] = self.detr._set_aux_loss(outputs_class, outputs_coord)
54 |
55 | # FIXME h_boxes takes the last one computed, keep this in mind
56 | bbox_mask = self.bbox_attention(hs[-1], memory, mask=mask)
57 |
58 | seg_masks = self.mask_head(src_proj, bbox_mask, [features[2].tensors, features[1].tensors, features[0].tensors])
59 | outputs_seg_masks = seg_masks.view(bs, self.detr.num_queries, seg_masks.shape[-2], seg_masks.shape[-1])
60 |
61 | out["pred_masks"] = outputs_seg_masks
62 | return out
63 |
64 |
65 | def _expand(tensor, length: int):
66 | return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1)
67 |
68 |
69 | class MaskHeadSmallConv(nn.Module):
70 | """
71 | Simple convolutional head, using group norm.
72 | Upsampling is done using a FPN approach
73 | """
74 |
75 | def __init__(self, dim, fpn_dims, context_dim):
76 | super().__init__()
77 |
78 | inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
79 | self.lay1 = torch.nn.Conv2d(dim, dim, 3, padding=1)
80 | self.gn1 = torch.nn.GroupNorm(8, dim)
81 | self.lay2 = torch.nn.Conv2d(dim, inter_dims[1], 3, padding=1)
82 | self.gn2 = torch.nn.GroupNorm(8, inter_dims[1])
83 | self.lay3 = torch.nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
84 | self.gn3 = torch.nn.GroupNorm(8, inter_dims[2])
85 | self.lay4 = torch.nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
86 | self.gn4 = torch.nn.GroupNorm(8, inter_dims[3])
87 | self.lay5 = torch.nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
88 | self.gn5 = torch.nn.GroupNorm(8, inter_dims[4])
89 | self.out_lay = torch.nn.Conv2d(inter_dims[4], 1, 3, padding=1)
90 |
91 | self.dim = dim
92 |
93 | self.adapter1 = torch.nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
94 | self.adapter2 = torch.nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
95 | self.adapter3 = torch.nn.Conv2d(fpn_dims[2], inter_dims[3], 1)
96 |
97 | for m in self.modules():
98 | if isinstance(m, nn.Conv2d):
99 | nn.init.kaiming_uniform_(m.weight, a=1)
100 | nn.init.constant_(m.bias, 0)
101 |
102 | def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]):
103 | x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)
104 |
105 | x = self.lay1(x)
106 | x = self.gn1(x)
107 | x = F.relu(x)
108 | x = self.lay2(x)
109 | x = self.gn2(x)
110 | x = F.relu(x)
111 |
112 | cur_fpn = self.adapter1(fpns[0])
113 | if cur_fpn.size(0) != x.size(0):
114 | cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
115 | x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
116 | x = self.lay3(x)
117 | x = self.gn3(x)
118 | x = F.relu(x)
119 |
120 | cur_fpn = self.adapter2(fpns[1])
121 | if cur_fpn.size(0) != x.size(0):
122 | cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
123 | x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
124 | x = self.lay4(x)
125 | x = self.gn4(x)
126 | x = F.relu(x)
127 |
128 | cur_fpn = self.adapter3(fpns[2])
129 | if cur_fpn.size(0) != x.size(0):
130 | cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
131 | x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
132 | x = self.lay5(x)
133 | x = self.gn5(x)
134 | x = F.relu(x)
135 |
136 | x = self.out_lay(x)
137 | return x
138 |
139 |
140 | class MHAttentionMap(nn.Module):
141 | """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""
142 |
143 | def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True):
144 | super().__init__()
145 | self.num_heads = num_heads
146 | self.hidden_dim = hidden_dim
147 | self.dropout = nn.Dropout(dropout)
148 |
149 | self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
150 | self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
151 |
152 | nn.init.zeros_(self.k_linear.bias)
153 | nn.init.zeros_(self.q_linear.bias)
154 | nn.init.xavier_uniform_(self.k_linear.weight)
155 | nn.init.xavier_uniform_(self.q_linear.weight)
156 | self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5
157 |
158 | def forward(self, q, k, mask: Optional[Tensor] = None):
159 | q = self.q_linear(q)
160 | k = F.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
161 | qh = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
162 | kh = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
163 | weights = torch.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh)
164 |
165 | if mask is not None:
166 | weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), float("-inf"))
167 | weights = F.softmax(weights.flatten(2), dim=-1).view_as(weights)
168 | weights = self.dropout(weights)
169 | return weights
170 |
171 |
172 | def dice_loss(inputs, targets, num_boxes):
173 | """
174 | Compute the DICE loss, similar to generalized IOU for masks
175 | Args:
176 | inputs: A float tensor of arbitrary shape.
177 | The predictions for each example.
178 | targets: A float tensor with the same shape as inputs. Stores the binary
179 | classification label for each element in inputs
180 | (0 for the negative class and 1 for the positive class).
181 | """
182 | inputs = inputs.sigmoid()
183 | inputs = inputs.flatten(1)
184 | numerator = 2 * (inputs * targets).sum(1)
185 | denominator = inputs.sum(-1) + targets.sum(-1)
186 | loss = 1 - (numerator + 1) / (denominator + 1)
187 | return loss.sum() / num_boxes
188 |
189 |
190 | def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
191 | """
192 | Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
193 | Args:
194 | inputs: A float tensor of arbitrary shape.
195 | The predictions for each example.
196 | targets: A float tensor with the same shape as inputs. Stores the binary
197 | classification label for each element in inputs
198 | (0 for the negative class and 1 for the positive class).
199 | alpha: (optional) Weighting factor in range (0,1) to balance
200 | positive vs negative examples. Default = -1 (no weighting).
201 | gamma: Exponent of the modulating factor (1 - p_t) to
202 | balance easy vs hard examples.
203 | Returns:
204 | Loss tensor
205 | """
206 | prob = inputs.sigmoid()
207 | ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
208 | p_t = prob * targets + (1 - prob) * (1 - targets)
209 | loss = ce_loss * ((1 - p_t) ** gamma)
210 |
211 | if alpha >= 0:
212 | alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
213 | loss = alpha_t * loss
214 |
215 | return loss.mean(1).sum() / num_boxes
216 |
217 |
218 | class PostProcessSegm(nn.Module):
219 | def __init__(self, threshold=0.5):
220 | super().__init__()
221 | self.threshold = threshold
222 |
223 | @torch.no_grad()
224 | def forward(self, results, outputs, orig_target_sizes, max_target_sizes):
225 | assert len(orig_target_sizes) == len(max_target_sizes)
226 | max_h, max_w = max_target_sizes.max(0)[0].tolist()
227 | outputs_masks = outputs["pred_masks"].squeeze(2)
228 | outputs_masks = F.interpolate(outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False)
229 | outputs_masks = (outputs_masks.sigmoid() > self.threshold).cpu()
230 |
231 | for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
232 | img_h, img_w = t[0], t[1]
233 | results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
234 | results[i]["masks"] = F.interpolate(
235 | results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
236 | ).byte()
237 |
238 | return results
239 |
240 |
241 | class PostProcessPanoptic(nn.Module):
242 | """This class converts the output of the model to the final panoptic result, in the format expected by the
243 | coco panoptic API """
244 |
245 | def __init__(self, is_thing_map, threshold=0.85):
246 | """
247 | Parameters:
248 | is_thing_map: This is a whose keys are the class ids, and the values a boolean indicating whether
249 | the class is a thing (True) or a stuff (False) class
250 | threshold: confidence threshold: segments with confidence lower than this will be deleted
251 | """
252 | super().__init__()
253 | self.threshold = threshold
254 | self.is_thing_map = is_thing_map
255 |
256 | def forward(self, outputs, processed_sizes, target_sizes=None):
257 | """ This function computes the panoptic prediction from the model's predictions.
258 | Parameters:
259 | outputs: This is a dict coming directly from the model. See the model doc for the content.
260 | processed_sizes: This is a list of tuples (or torch tensors) of sizes of the images that were passed to the
261 | model, ie the size after data augmentation but before batching.
262 | target_sizes: This is a list of tuples (or torch tensors) corresponding to the requested final size
263 | of each prediction. If left to None, it will default to the processed_sizes
264 | """
265 | if target_sizes is None:
266 | target_sizes = processed_sizes
267 | assert len(processed_sizes) == len(target_sizes)
268 | out_logits, raw_masks, raw_boxes = outputs["pred_logits"], outputs["pred_masks"], outputs["pred_boxes"]
269 | assert len(out_logits) == len(raw_masks) == len(target_sizes)
270 | preds = []
271 |
272 | def to_tuple(tup):
273 | if isinstance(tup, tuple):
274 | return tup
275 | return tuple(tup.cpu().tolist())
276 |
277 | for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
278 | out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
279 | ):
280 | # we filter empty queries and detection below threshold
281 | scores, labels = cur_logits.softmax(-1).max(-1)
282 | keep = labels.ne(outputs["pred_logits"].shape[-1] - 1) & (scores > self.threshold)
283 | cur_scores, cur_classes = cur_logits.softmax(-1).max(-1)
284 | cur_scores = cur_scores[keep]
285 | cur_classes = cur_classes[keep]
286 | cur_masks = cur_masks[keep]
287 | cur_masks = interpolate(cur_masks[None], to_tuple(size), mode="bilinear").squeeze(0)
288 | cur_boxes = box_ops.box_cxcywh_to_xyxy(cur_boxes[keep])
289 |
290 | h, w = cur_masks.shape[-2:]
291 | assert len(cur_boxes) == len(cur_classes)
292 |
293 | # It may be that we have several predicted masks for the same stuff class.
294 | # In the following, we track the list of masks ids for each stuff class (they are merged later on)
295 | cur_masks = cur_masks.flatten(1)
296 | stuff_equiv_classes = defaultdict(lambda: [])
297 | for k, label in enumerate(cur_classes):
298 | if not self.is_thing_map[label.item()]:
299 | stuff_equiv_classes[label.item()].append(k)
300 |
301 | def get_ids_area(masks, scores, dedup=False):
302 | # This helper function creates the final panoptic segmentation image
303 | # It also returns the area of the masks that appears on the image
304 |
305 | m_id = masks.transpose(0, 1).softmax(-1)
306 |
307 | if m_id.shape[-1] == 0:
308 | # We didn't detect any mask :(
309 | m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
310 | else:
311 | m_id = m_id.argmax(-1).view(h, w)
312 |
313 | if dedup:
314 | # Merge the masks corresponding to the same stuff class
315 | for equiv in stuff_equiv_classes.values():
316 | if len(equiv) > 1:
317 | for eq_id in equiv:
318 | m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
319 |
320 | final_h, final_w = to_tuple(target_size)
321 |
322 | seg_img = Image.fromarray(id2rgb(m_id.view(h, w).cpu().numpy()))
323 | seg_img = seg_img.resize(size=(final_w, final_h), resample=Image.NEAREST)
324 |
325 | np_seg_img = (
326 | torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())).view(final_h, final_w, 3).numpy()
327 | )
328 | m_id = torch.from_numpy(rgb2id(np_seg_img))
329 |
330 | area = []
331 | for i in range(len(scores)):
332 | area.append(m_id.eq(i).sum().item())
333 | return area, seg_img
334 |
335 | area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
336 | if cur_classes.numel() > 0:
337 | # We know filter empty masks as long as we find some
338 | while True:
339 | filtered_small = torch.as_tensor(
340 | [area[i] <= 4 for i, c in enumerate(cur_classes)], dtype=torch.bool, device=keep.device
341 | )
342 | if filtered_small.any().item():
343 | cur_scores = cur_scores[~filtered_small]
344 | cur_classes = cur_classes[~filtered_small]
345 | cur_masks = cur_masks[~filtered_small]
346 | area, seg_img = get_ids_area(cur_masks, cur_scores)
347 | else:
348 | break
349 |
350 | else:
351 | cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device)
352 |
353 | segments_info = []
354 | for i, a in enumerate(area):
355 | cat = cur_classes[i].item()
356 | segments_info.append({"id": i, "isthing": self.is_thing_map[cat], "category_id": cat, "area": a})
357 | del cur_classes
358 |
359 | with io.BytesIO() as out:
360 | seg_img.save(out, format="PNG")
361 | predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
362 | preds.append(predictions)
363 | return preds
364 |
--------------------------------------------------------------------------------
/models/detr.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 | """
3 | DETR model and criterion classes.
4 | """
5 | import torch
6 | import torch.nn.functional as F
7 | from torch import nn
8 |
9 | from util import box_ops
10 | from util.misc import (NestedTensor, nested_tensor_from_tensor_list,
11 | accuracy, get_world_size, interpolate,
12 | is_dist_avail_and_initialized)
13 |
14 | from .backbone import build_backbone
15 | from .matcher import build_matcher
16 | from .segmentation import (DETRsegm, PostProcessPanoptic, PostProcessSegm,
17 | dice_loss, sigmoid_focal_loss)
18 | from .transformer import build_transformer
19 |
20 |
21 | class DETR(nn.Module):
22 | """ This is the DETR module that performs object detection """
23 | def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False):
24 | """ Initializes the model.
25 | Parameters:
26 | backbone: torch module of the backbone to be used. See backbone.py
27 | transformer: torch module of the transformer architecture. See transformer.py
28 | num_classes: number of object classes
29 | num_queries: number of object queries, ie detection slot. This is the maximal number of objects
30 | DETR can detect in a single image. For COCO, we recommend 100 queries.
31 | aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
32 | """
33 | super().__init__()
34 | self.num_queries = num_queries
35 | self.transformer = transformer
36 | hidden_dim = transformer.d_model
37 | self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
38 | self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
39 | self.query_embed = nn.Embedding(num_queries, hidden_dim)
40 | self.input_proj = nn.Conv2d(backbone.num_channels, hidden_dim, kernel_size=1)
41 | self.backbone = backbone
42 | self.aux_loss = aux_loss
43 |
44 | def forward(self, samples: NestedTensor, sample_ratio=None):
45 | """ The forward expects a NestedTensor, which consists of:
46 | - samples.tensor: batched images, of shape [batch_size x 3 x H x W]
47 | - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
48 |
49 | It returns a dict with the following elements:
50 | - "pred_logits": the classification logits (including no-object) for all queries.
51 | Shape= [batch_size x num_queries x (num_classes + 1)]
52 | - "pred_boxes": The normalized boxes coordinates for all queries, represented as
53 | (center_x, center_y, height, width). These values are normalized in [0, 1],
54 | relative to the size of each individual image (disregarding possible padding).
55 | See PostProcess for information on how to retrieve the unnormalized bounding box.
56 | - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
57 | dictionnaries containing the two above keys for each decoder layer.
58 | """
59 | if not isinstance(samples, NestedTensor):
60 | samples = nested_tensor_from_tensor_list(samples)
61 | features, pos = self.backbone(samples)
62 |
63 | src, mask = features[-1].decompose()
64 | assert mask is not None
65 | hs, sample_reg_loss = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1],sample_ratio)
66 |
67 | outputs_class = self.class_embed(hs)
68 | outputs_coord = self.bbox_embed(hs).sigmoid()
69 | out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
70 | if self.aux_loss:
71 | out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
72 | out['sample_reg_loss'] = sample_reg_loss
73 | return out
74 |
75 | @torch.jit.unused
76 | def _set_aux_loss(self, outputs_class, outputs_coord):
77 | # this is a workaround to make torchscript happy, as torchscript
78 | # doesn't support dictionary with non-homogeneous values, such
79 | # as a dict having both a Tensor and a list.
80 | return [{'pred_logits': a, 'pred_boxes': b}
81 | for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
82 |
83 |
84 | class SetCriterion(nn.Module):
85 | """ This class computes the loss for DETR.
86 | The process happens in two steps:
87 | 1) we compute hungarian assignment between ground truth boxes and the outputs of the model
88 | 2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
89 | """
90 | def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses):
91 | """ Create the criterion.
92 | Parameters:
93 | num_classes: number of object categories, omitting the special no-object category
94 | matcher: module able to compute a matching between targets and proposals
95 | weight_dict: dict containing as key the names of the losses and as values their relative weight.
96 | eos_coef: relative classification weight applied to the no-object category
97 | losses: list of all the losses to be applied. See get_loss for list of available losses.
98 | """
99 | super().__init__()
100 | self.num_classes = num_classes
101 | self.matcher = matcher
102 | self.weight_dict = weight_dict
103 | self.eos_coef = eos_coef
104 | self.losses = losses
105 | empty_weight = torch.ones(self.num_classes + 1)
106 | empty_weight[-1] = self.eos_coef
107 | self.register_buffer('empty_weight', empty_weight)
108 |
109 | def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
110 | """Classification loss (NLL)
111 | targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
112 | """
113 | assert 'pred_logits' in outputs
114 | src_logits = outputs['pred_logits']
115 |
116 | idx = self._get_src_permutation_idx(indices)
117 | target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
118 | target_classes = torch.full(src_logits.shape[:2], self.num_classes,
119 | dtype=torch.int64, device=src_logits.device)
120 | target_classes[idx] = target_classes_o
121 |
122 | loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
123 | losses = {'loss_ce': loss_ce}
124 |
125 | if log:
126 | # TODO this should probably be a separate loss, not hacked in this one here
127 | losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
128 | return losses
129 |
130 | @torch.no_grad()
131 | def loss_cardinality(self, outputs, targets, indices, num_boxes):
132 | """ Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
133 | This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
134 | """
135 | pred_logits = outputs['pred_logits']
136 | device = pred_logits.device
137 | tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device)
138 | # Count the number of predictions that are NOT "no-object" (which is the last class)
139 | card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
140 | card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
141 | losses = {'cardinality_error': card_err}
142 | return losses
143 |
144 | def loss_boxes(self, outputs, targets, indices, num_boxes):
145 | """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
146 | targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
147 | The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
148 | """
149 | assert 'pred_boxes' in outputs
150 | idx = self._get_src_permutation_idx(indices)
151 | src_boxes = outputs['pred_boxes'][idx]
152 | target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
153 |
154 | loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
155 |
156 | losses = {}
157 | losses['loss_bbox'] = loss_bbox.sum() / num_boxes
158 |
159 | loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
160 | box_ops.box_cxcywh_to_xyxy(src_boxes),
161 | box_ops.box_cxcywh_to_xyxy(target_boxes)))
162 | losses['loss_giou'] = loss_giou.sum() / num_boxes
163 | return losses
164 |
165 | def loss_masks(self, outputs, targets, indices, num_boxes):
166 | """Compute the losses related to the masks: the focal loss and the dice loss.
167 | targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
168 | """
169 | assert "pred_masks" in outputs
170 |
171 | src_idx = self._get_src_permutation_idx(indices)
172 | tgt_idx = self._get_tgt_permutation_idx(indices)
173 |
174 | src_masks = outputs["pred_masks"]
175 |
176 | # TODO use valid to mask invalid areas due to padding in loss
177 | target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets]).decompose()
178 | target_masks = target_masks.to(src_masks)
179 |
180 | src_masks = src_masks[src_idx]
181 | # upsample predictions to the target size
182 | src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:],
183 | mode="bilinear", align_corners=False)
184 | src_masks = src_masks[:, 0].flatten(1)
185 |
186 | target_masks = target_masks[tgt_idx].flatten(1)
187 |
188 | losses = {
189 | "loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes),
190 | "loss_dice": dice_loss(src_masks, target_masks, num_boxes),
191 | }
192 | return losses
193 |
194 | def _get_src_permutation_idx(self, indices):
195 | # permute predictions following indices
196 | batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
197 | src_idx = torch.cat([src for (src, _) in indices])
198 | return batch_idx, src_idx
199 |
200 | def _get_tgt_permutation_idx(self, indices):
201 | # permute targets following indices
202 | batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
203 | tgt_idx = torch.cat([tgt for (_, tgt) in indices])
204 | return batch_idx, tgt_idx
205 |
206 | def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
207 | loss_map = {
208 | 'labels': self.loss_labels,
209 | 'cardinality': self.loss_cardinality,
210 | 'boxes': self.loss_boxes,
211 | 'masks': self.loss_masks
212 | }
213 | assert loss in loss_map, f'do you really want to compute {loss} loss?'
214 | return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
215 |
216 | def forward(self, outputs, targets):
217 | """ This performs the loss computation.
218 | Parameters:
219 | outputs: dict of tensors, see the output specification of the model for the format
220 | targets: list of dicts, such that len(targets) == batch_size.
221 | The expected keys in each dict depends on the losses applied, see each loss' doc
222 | """
223 | outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
224 |
225 | # Retrieve the matching between the outputs of the last layer and the targets
226 | indices = self.matcher(outputs_without_aux, targets)
227 |
228 | # Compute the average number of target boxes accross all nodes, for normalization purposes
229 | num_boxes = sum(len(t["labels"]) for t in targets)
230 | num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
231 | if is_dist_avail_and_initialized():
232 | torch.distributed.all_reduce(num_boxes)
233 | num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
234 |
235 | # Compute all the requested losses
236 | losses = {}
237 | for loss in self.losses:
238 | losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
239 |
240 | # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
241 | if 'aux_outputs' in outputs:
242 | for i, aux_outputs in enumerate(outputs['aux_outputs']):
243 | indices = self.matcher(aux_outputs, targets)
244 | for loss in self.losses:
245 | if loss == 'masks':
246 | # Intermediate masks losses are too costly to compute, we ignore them.
247 | continue
248 | kwargs = {}
249 | if loss == 'labels':
250 | # Logging is enabled only for the last layer
251 | kwargs = {'log': False}
252 | l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
253 | l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
254 | losses.update(l_dict)
255 |
256 | return losses
257 |
258 |
259 | class PostProcess(nn.Module):
260 | """ This module converts the model's output into the format expected by the coco api"""
261 | @torch.no_grad()
262 | def forward(self, outputs, target_sizes):
263 | """ Perform the computation
264 | Parameters:
265 | outputs: raw outputs of the model
266 | target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
267 | For evaluation, this must be the original image size (before any data augmentation)
268 | For visualization, this should be the image size after data augment, but before padding
269 | """
270 | out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
271 |
272 | assert len(out_logits) == len(target_sizes)
273 | assert target_sizes.shape[1] == 2
274 |
275 | prob = F.softmax(out_logits, -1)
276 | scores, labels = prob[..., :-1].max(-1)
277 |
278 | # convert to [x0, y0, x1, y1] format
279 | boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
280 | # and from relative [0, 1] to absolute [0, height] coordinates
281 | img_h, img_w = target_sizes.unbind(1)
282 | scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
283 | boxes = boxes * scale_fct[:, None, :]
284 |
285 | results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)]
286 |
287 | return results
288 |
289 |
290 | class MLP(nn.Module):
291 | """ Very simple multi-layer perceptron (also called FFN)"""
292 |
293 | def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
294 | super().__init__()
295 | self.num_layers = num_layers
296 | h = [hidden_dim] * (num_layers - 1)
297 | self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
298 |
299 | def forward(self, x):
300 | for i, layer in enumerate(self.layers):
301 | x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
302 | return x
303 |
304 |
305 | def build(args):
306 | num_classes = 20 if args.dataset_file != 'coco' else 91
307 | if args.dataset_file == "coco_panoptic":
308 | num_classes = 250
309 | device = torch.device(args.device)
310 |
311 | backbone = build_backbone(args)
312 |
313 | transformer = build_transformer(args)
314 |
315 | model = DETR(
316 | backbone,
317 | transformer,
318 | num_classes=num_classes,
319 | num_queries=args.num_queries,
320 | aux_loss=args.aux_loss,
321 | )
322 | if args.masks:
323 | model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
324 | matcher = build_matcher(args)
325 | weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef}
326 | weight_dict['loss_giou'] = args.giou_loss_coef
327 | if args.masks:
328 | weight_dict["loss_mask"] = args.mask_loss_coef
329 | weight_dict["loss_dice"] = args.dice_loss_coef
330 | # TODO this is a hack
331 | if args.aux_loss:
332 | aux_weight_dict = {}
333 | for i in range(args.dec_layers - 1):
334 | aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
335 | weight_dict.update(aux_weight_dict)
336 |
337 | losses = ['labels', 'boxes', 'cardinality']
338 | if args.masks:
339 | losses += ["masks"]
340 | criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict,
341 | eos_coef=args.eos_coef, losses=losses)
342 | criterion.to(device)
343 | postprocessors = {'bbox': PostProcess()}
344 | if args.masks:
345 | postprocessors['segm'] = PostProcessSegm()
346 | if args.dataset_file == "coco_panoptic":
347 | is_thing_map = {i: i <= 90 for i in range(201)}
348 | postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85)
349 |
350 | return model, criterion, postprocessors
351 |
--------------------------------------------------------------------------------