├── figures
├── RMU.png
├── RM-Depth.png
├── motion network.png
└── demo video thumbnail.png
├── Supplementary Material for RM-Depth Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes_CVPR22.pdf
├── LICENSE
└── README.md
/figures/RMU.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/twhui/RM-Depth/HEAD/figures/RMU.png
--------------------------------------------------------------------------------
/figures/RM-Depth.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/twhui/RM-Depth/HEAD/figures/RM-Depth.png
--------------------------------------------------------------------------------
/figures/motion network.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/twhui/RM-Depth/HEAD/figures/motion network.png
--------------------------------------------------------------------------------
/figures/demo video thumbnail.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/twhui/RM-Depth/HEAD/figures/demo video thumbnail.png
--------------------------------------------------------------------------------
/Supplementary Material for RM-Depth Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes_CVPR22.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/twhui/RM-Depth/HEAD/Supplementary Material for RM-Depth Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes_CVPR22.pdf
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Copyright (c) 2022 Tak-Wai Hui. All rights reserved.
2 |
3 | This software and the associated documentation files (the "Software"), and the research paper
4 | RM-Depth: Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes (the "Paper")
5 | including but not limited to the figures and tables are provided for non-commercial use only and
6 | without any warranty. Any commercial use requires a prior arrangement with the author (Tak-Wai Hui).
7 | When using any parts of the Software or the Paper in your work, please cite the following paper:
8 |
9 | @InProceedings{hui22rmdepth,
10 | author = {Tak-Wai Hui},
11 | title = {RM-Depth: Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes},
12 | booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
13 | pages = {1675--1684},
14 | year = {2022}
15 | }
16 |
17 | The above copyright notice and this permission notice shall be included in all copies or substantial
18 | portions of the Software.
19 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | [](https://paperswithcode.com/sota/unsupervised-monocular-depth-estimation-on?p=rm-depth-unsupervised-learning-of-recurrent-1)
2 |
3 | # RM-Depth
4 |
5 | This repository (https://github.com/twhui/RM-Depth) is the offical project page for my paper RM-Depth: Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes published in CVPR 2022. The up-to-date version of the paper is available on arXiv. The supplementary material is available here.
6 |
7 |
8 | ![]()



| 37 | | Semantic Prior | 38 |KITTI Testing Set (Eigen split) | 39 |Cityscapes Testing Set | 40 |Model Size (M) | 41 |
|---|---|---|---|---|
| Monodepth2 (ICCV19) | 44 |45 | | 0.115 | 46 |- | 47 |14.84 | 48 |
| PackNet (CVPR20) | 51 |52 | | 0.111 | 53 |- | 54 |128.29 | 55 |
| Lee et al. (ICCV21) | 58 |• | 59 |0.114 | 60 |0.116 | 61 |22.77 | 62 |
| Lee et al. (AAAI21) | 65 |• | 66 |0.112 | 67 |0.111 | 68 |14.84 | 69 |
| RM-Depth (CVPR22), updated results |
72 | 73 | | 0.107 (trained on K) (predictions), 0.105 (trained on CS+K) (predictions) |
74 | 0.090 (predictions) | 75 |2.97 | 76 |
| RM-Depth (CVPR22), 1024 x 320 |
79 | 80 | | 0.106 (predictions) | 81 |0.088 (predictions) | 82 |2.97 | 83 |
@InProceedings{hui22rmdepth,
93 | author = {Tak-Wai Hui},
94 | title = {RM-Depth: Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes},
95 | booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
96 | pages = {1675--1684},
97 | year = {2022}
98 | }
99 |
--------------------------------------------------------------------------------