├── .github
└── FUNDING.yml
├── .gitignore
├── LICENSE.md
├── README.md
├── icon.png
├── pyAudioAnalysis
├── MidTermFeatures.py
├── ShortTermFeatures.py
├── __init__.py
├── audacityAnnotation2WAVs.py
├── audioAnalysis.py
├── audioBasicIO.py
├── audioSegmentation.py
├── audioTrainTest.py
├── audioVisualization.py
├── convertToWav.py
├── data
│ ├── 3WORDS.wav
│ ├── beat
│ │ ├── 100 BPM - Rhythm patterns - Salsa.mp3
│ │ ├── 120 BPM Techno Drum Loop.mp3
│ │ ├── 170 BPM - Simple Straight Beat - Drum Track.mp3
│ │ ├── 200 BPM (goa psy trance).mp3
│ │ └── small.wav
│ ├── computational.sh
│ ├── count.segments
│ ├── count.wav
│ ├── count2.segments
│ ├── count2.wav
│ ├── diarizationExample.segments
│ ├── diarizationExample.wav
│ ├── diarizationExample2.segments
│ ├── diarizationExample2.wav
│ ├── diarizationResults.xls
│ ├── doremi.wav
│ ├── hmmRadioSM
│ ├── matSegToCSV.m
│ ├── matSegToCSV_dir.m
│ ├── models
│ │ ├── knnMusicGenre6
│ │ ├── knnSM
│ │ ├── knn_4class
│ │ ├── knn_movie8class
│ │ ├── knn_musical_genre_6
│ │ ├── knn_sm
│ │ ├── knn_speaker_10
│ │ ├── knn_speaker_male_female
│ │ ├── svm_rbf_4class
│ │ ├── svm_rbf_4classMEANS
│ │ ├── svm_rbf_movie8class
│ │ ├── svm_rbf_movie8classMEANS
│ │ ├── svm_rbf_musical_genre_6
│ │ ├── svm_rbf_musical_genre_6MEANS
│ │ ├── svm_rbf_sm
│ │ ├── svm_rbf_smMEANS
│ │ ├── svm_rbf_speaker_10
│ │ ├── svm_rbf_speaker_10MEANS
│ │ ├── svm_rbf_speaker_male_female
│ │ └── svm_rbf_speaker_male_femaleMEANS
│ ├── recordRadio.py
│ ├── recording1.wav
│ ├── recording2.wav
│ ├── recording3.wav
│ ├── scottish.segments
│ ├── scottish.wav
│ ├── similarities.html
│ ├── speechEmotion
│ │ ├── 00.wav
│ │ ├── 01.wav
│ │ ├── 02.wav
│ │ ├── 03.wav
│ │ ├── 04.wav
│ │ ├── 05.wav
│ │ ├── 06.wav
│ │ ├── 07.wav
│ │ ├── 08.wav
│ │ ├── 09.wav
│ │ ├── 10.wav
│ │ ├── 11.wav
│ │ ├── 12.wav
│ │ ├── 13.wav
│ │ ├── 14.wav
│ │ ├── 15.wav
│ │ ├── 16.wav
│ │ ├── 17.wav
│ │ ├── 18.wav
│ │ ├── 19.wav
│ │ ├── 20.wav
│ │ ├── 21.wav
│ │ ├── 22.wav
│ │ ├── 23.wav
│ │ ├── 24.wav
│ │ ├── 25.wav
│ │ ├── 26.wav
│ │ ├── 27.wav
│ │ ├── 28.wav
│ │ ├── 29.wav
│ │ ├── 30.wav
│ │ ├── 31.wav
│ │ ├── 32.wav
│ │ ├── 33.wav
│ │ ├── 34.wav
│ │ ├── 35.wav
│ │ ├── 36.wav
│ │ ├── 37.wav
│ │ ├── 38.wav
│ │ ├── 39.wav
│ │ ├── 40.wav
│ │ ├── 41.wav
│ │ ├── 42.wav
│ │ ├── 43.wav
│ │ ├── 44.wav
│ │ ├── 45.wav
│ │ ├── 46.wav
│ │ ├── arousal.csv
│ │ └── valence.csv
│ ├── speech_music_sample.wav
│ ├── style.css
│ ├── svm5ClassesMEANS
│ ├── svmSpeakerFemaleMale
│ ├── svmSpeakerFemaleMaleMEANS
│ ├── testComputational.py
│ └── trsToSegmentsFile.m
└── utilities.py
├── pytests
├── test_data
│ ├── 1_sec_wav.wav
│ ├── 3_class
│ │ ├── music
│ │ │ ├── m_65745_0.0_1.0.wav
│ │ │ ├── m_65795_0.0_1.0.wav
│ │ │ ├── m_66851_0.0_1.0.wav
│ │ │ ├── m_66860_0.0_1.0.wav
│ │ │ ├── m_66866_0.0_1.0.wav
│ │ │ ├── m_69588_0.0_1.0.wav
│ │ │ ├── m_99094_0.0_1.0.wav
│ │ │ ├── m_ACDC20-20Thunderstruck1_0.0_1.0.wav
│ │ │ ├── m_Abigail_Lapell-Dress_Rehearsal_0.0_1.0.wav
│ │ │ ├── m_Accept20-20Breaker20-200920-20Breaking20Up20Again_0.0_1.0.wav
│ │ │ ├── m_Accept20-20Metal20heart_0.0_1.0.wav
│ │ │ ├── m_Alex_Niedt-But_I_Love_You____0.0_1.0.wav
│ │ │ ├── m_Alvin202620The20Chipmunks20-20Play20That20Funky20Music2028remake29_0.0_1.0.wav
│ │ │ ├── m_Amorphis20-20Alone_0.0_1.0.wav
│ │ │ ├── m_Amorphis20-20Summer27s20End_0.0_1.0.wav
│ │ │ ├── m_Anders_Tengdahl-I_came_here_to_see_you_0.0_1.0.wav
│ │ │ ├── m_Arch20Enemy20-20Heart20of20Darkness_0.0_1.0.wav
│ │ │ ├── m_Arch20Enemy20-20Savage20Messiah_0.0_1.0.wav
│ │ │ ├── m_Arch20Enemy20-20We20Will20Rise_0.0_1.0.wav
│ │ │ ├── m_At20The20Gates20-20Suicide20Nation_0.0_1.0.wav
│ │ │ ├── m_BB_CHUNG_KING_AND_THE_BUDDAHEADS-LITTLE_GIRL_0.0_1.0.wav
│ │ │ ├── m_Barry20White20-20Can27t20Get20Enough20Of20Your20Love20Baby_0.0_1.0.wav
│ │ │ ├── m_Bee20Gees20-20Jive20Talkin27_0.0_1.0.wav
│ │ │ ├── m_Bee20Gees20-20Tragedy_0.0_1.0.wav
│ │ │ ├── m_Bee20Gees20-20You20Should20Be20Dancing_0.0_1.0.wav
│ │ │ ├── m_Blondie20-20Heart20Of20Glass_0.0_1.0.wav
│ │ │ ├── m_Bloodhound20Gang20-20I20Hope20You20Die_0.0_1.0.wav
│ │ │ ├── m_Bloodhound20Gang20-20The20Roof20Is20On20Fire_0.0_1.0.wav
│ │ │ ├── m_Blue_Steele-We_re_Gonna_Move_0.0_1.0.wav
│ │ │ ├── m_Bohannon20-20Foot20Stompin2720Music_0.0_1.0.wav
│ │ │ ├── m_Bullet20For20My20Valentine20-20Spit20You20Out_0.0_1.0.wav
│ │ │ ├── m_Cabrini-Winter_2000_0.0_1.0.wav
│ │ │ ├── m_Canibal20Corpse20-20Execution_0.0_1.0.wav
│ │ │ ├── m_Carcass20-20Death20Certificate_0.0_1.0.wav
│ │ │ ├── m_Cassidy-Love_You_Like_My_Radio_0.0_1.0.wav
│ │ │ ├── m_Celtic20Frost20-20Eternal20summer_0.0_1.0.wav
│ │ │ ├── m_Chevelle20-20The20Red_0.0_1.0.wav
│ │ │ ├── m_Dan20Hartman20-20Instant20Replay_0.0_1.0.wav
│ │ │ ├── m_David_Rotundo_and_the_Blue_Canadians-Butt_Bustin__Boogie_0.0_1.0.wav
│ │ │ └── m_Deathstars20-20Damn20Me_0.0_1.0.wav
│ │ ├── silence
│ │ │ ├── n_IJI9R1NTO9_57.0_58.0.wav
│ │ │ ├── n_IMBOEI4DBL_374.0_375.0.wav
│ │ │ ├── n_IOBEWT1S55_174.0_175.0.wav
│ │ │ ├── n_J950HTM138_56.0_57.0.wav
│ │ │ ├── n_JK5EBWE26L_307.0_308.0.wav
│ │ │ ├── n_JL9T5RK51P_90.0_91.0.wav
│ │ │ ├── n_JMO0MW96YK_129.0_130.0.wav
│ │ │ ├── n_JOL1SORBQE_2.0_3.0.wav
│ │ │ ├── n_JQZM71SOHD_113.0_114.0.wav
│ │ │ ├── n_JVT4IZI0WD_403.0_404.0.wav
│ │ │ ├── n_JX26LM126I_153.0_154.0.wav
│ │ │ ├── n_JYE9UKU6B8_47.0_48.0.wav
│ │ │ ├── n_JZI5ZT251L_119.0_120.0.wav
│ │ │ ├── n_K094QM69ZL_25.0_26.0.wav
│ │ │ ├── n_K0WN1TQD95_217.0_218.0.wav
│ │ │ ├── n_K15S0Q9XTR_375.0_376.0.wav
│ │ │ ├── n_K47XMX5QV1_25.0_26.0.wav
│ │ │ ├── n_K8X4X6NSK0_78.0_79.0.wav
│ │ │ ├── n_KB8KYXVZP6_3.0_4.0.wav
│ │ │ ├── n_KI9HV9W9LE_9.0_10.0.wav
│ │ │ ├── n_KIQ8MRMBOX_0.0_1.0.wav
│ │ │ ├── n_KKH1W0BIUJ_6.0_7.0.wav
│ │ │ ├── n_KL7R0JYSI0_9.0_10.0.wav
│ │ │ ├── n_KLYQ9WXH97_398.0_399.0.wav
│ │ │ ├── n_KOY1L5KERV_1555.0_1556.0.wav
│ │ │ ├── n_KQMH26JWBU_40.0_41.0.wav
│ │ │ ├── n_KS0DKSI1I4_70.0_71.0.wav
│ │ │ ├── n_KTZ1HTYTKZ_254.0_255.0.wav
│ │ │ ├── n_KUMBL580ZV_353.0_354.0.wav
│ │ │ ├── n_KXPT7Z0VVM_368.0_369.0.wav
│ │ │ ├── n_KYV66B9WJ1_73.0_74.0.wav
│ │ │ ├── n_KZQTZJRU9X_190.0_191.0.wav
│ │ │ ├── n_KZVLBPHKXP_644.0_645.0.wav
│ │ │ ├── n_L1JBOS8KT9_2.0_3.0.wav
│ │ │ ├── n_L46L6RQU69_133.0_134.0.wav
│ │ │ ├── n_L89ISQUOUL_144.0_145.0.wav
│ │ │ ├── n_L8E31PV819_280.0_281.0.wav
│ │ │ ├── n_L8X7K5HJ7E_348.0_349.0.wav
│ │ │ ├── n_LB0Q98WT4D_149.0_150.0.wav
│ │ │ └── n_LBSPUNWMJH_54.0_55.0.wav
│ │ └── speech
│ │ │ ├── s_WOSUYWSZ8W_8.0_9.0.wav
│ │ │ ├── s_WQRJ6E7JTT_15.0_16.0.wav
│ │ │ ├── s_WRZ6T95JN4_124.0_125.0.wav
│ │ │ ├── s_X57TS62DN9_8.0_9.0.wav
│ │ │ ├── s_X619ELD02H_19.0_20.0.wav
│ │ │ ├── s_X8JF9RZMZ2_112.0_113.0.wav
│ │ │ ├── s_XBD7QTOBY8_46.0_47.0.wav
│ │ │ ├── s_XMY3DWQZVE_97.0_98.0.wav
│ │ │ ├── s_XOWT3I8BS0_13.0_14.0.wav
│ │ │ ├── s_XROYOHT6H9_26.0_27.0.wav
│ │ │ ├── s_XT9W5UOSN9_586.0_587.0.wav
│ │ │ ├── s_XWUIVH8D66_115.0_116.0.wav
│ │ │ ├── s_XYJDI1HX0D_11.0_12.0.wav
│ │ │ ├── s_Y1VOJ37M96_14.0_15.0.wav
│ │ │ ├── s_Y3YTM0E9JT_231.0_232.0.wav
│ │ │ ├── s_YEO5SB93T7_303.0_304.0.wav
│ │ │ ├── s_YJ7M0500S4_84.0_85.0.wav
│ │ │ ├── s_YR283WBWFN_222.0_223.0.wav
│ │ │ ├── s_YTVB8DBH77_63.0_64.0.wav
│ │ │ ├── s_YVT841J6D3_272.0_273.0.wav
│ │ │ ├── s_YY61TWWN19_35.0_36.0.wav
│ │ │ ├── s_Z1QTV2DXNV_942.0_943.0.wav
│ │ │ ├── s_Z35XHX8ITY_22.0_23.0.wav
│ │ │ ├── s_Z3H3HRYSNT_24.0_25.0.wav
│ │ │ ├── s_Z5ZYNSTY3Y_69.0_70.0.wav
│ │ │ ├── s_Z7N2VJ86N1_6.0_7.0.wav
│ │ │ ├── s_Z8594V8SWQ_65.0_66.0.wav
│ │ │ ├── s_Z8UQZR43T8_175.0_176.0.wav
│ │ │ ├── s_Z9ZMEVVYJN_682.0_683.0.wav
│ │ │ ├── s_ZDQ20R9I2T_12.0_13.0.wav
│ │ │ ├── s_ZI8RH203IZ_33.0_34.0.wav
│ │ │ ├── s_ZJ9NT05R04_85.0_86.0.wav
│ │ │ ├── s_ZND7Q77JR3_137.0_138.0.wav
│ │ │ ├── s_ZR4I5R4ZHS_25.0_26.0.wav
│ │ │ ├── s_ZSTX9X681O_328.0_329.0.wav
│ │ │ ├── s_ZU8JUIWZ5J_356.0_357.0.wav
│ │ │ ├── s_ZUVDE5SEJ7_41.0_42.0.wav
│ │ │ ├── s_ZV86T57WRX_17.0_18.0.wav
│ │ │ ├── s_ZW67WQ8DTQ_192.0_193.0.wav
│ │ │ └── s_ZWYNTU6HBR_29.0_30.0.wav
│ ├── 5_sec_wav.wav
│ ├── count.wav
│ ├── diarizationExample.segments
│ ├── diarizationExample.wav
│ ├── scottish.segments
│ ├── scottish.wav
│ ├── svm_rbf_sm
│ └── svm_rbf_smMEANS
├── test_feature_extraction.py
└── test_segmentation.py
├── requirements.txt
├── setup.py
└── tests
├── README.md
├── cmd_test_00.sh
├── cmd_test_01.sh
├── cmd_test_02.sh
├── cmd_test_02_B.sh
├── cmd_test_02_C.sh
├── cmd_test_03.sh
├── cmd_test_04.sh
├── cmd_test_05.sh
├── cmd_test_06.sh
├── cmd_test_07.sh
├── cmd_test_08.sh
├── cmd_test_09.sh
├── cmd_test_10.sh
├── cmd_test_11.sh
├── cmd_test_12_1.sh
├── cmd_test_12_2.sh
├── cmd_test_12_3.sh
├── cmd_test_12_4.sh
├── cmd_test_12_5.sh
├── cmd_test_12_6.sh
├── script_test_classifier.py
├── script_tests.py
└── script_train_classifiers_all.py
/.github/FUNDING.yml:
--------------------------------------------------------------------------------
1 | # These are supported funding model platforms
2 |
3 | github: tyiannak
4 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *~
2 | *.pyc
3 | *.npy
4 | .idea
5 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "{}"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright {yyyy} {name of copyright owner}
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | #
A Python library for audio feature extraction, classification, segmentation and applications
3 |
4 | *This is general info. Click [here](https://github.com/tyiannak/pyAudioAnalysis/wiki) for the complete wiki and [here](https://hackernoon.com/audio-handling-basics-how-to-process-audio-files-using-python-cli-jo283u3y) for a more generic intro to audio data handling*
5 |
6 | ## News
7 | * [2025-03-29] Check [oliver api repo](https://github.com/BehavioralSignalTechnologies/oliver_api) that demonstrates how to use [Behavioral Signals' Oliver API](https://oliver.behavioralsignals.com) to send speech data and retrieve predictions related to emotions and behaviors using Python code. Now [Behavioral Signals' Oliver API](https://oliver.behavioralsignals.com) also supports a Speaker Agnostic Deep Fake Detector.
8 | * [2021-08-06] [deep-audio-features](https://github.com/tyiannak/deep_audio_features) deep audio classification and feature extraction using CNNs and Pytorch
9 | * Check out [paura](https://github.com/tyiannak/paura) a Python script for realtime recording and analysis of audio data
10 |
11 | ## General
12 | pyAudioAnalysis is a Python library covering a wide range of audio analysis tasks. Through pyAudioAnalysis you can:
13 | * Extract audio *features* and representations (e.g. mfccs, spectrogram, chromagram)
14 | * *Train*, parameter tune and *evaluate* classifiers of audio segments
15 | * *Classify* unknown sounds
16 | * *Detect* audio events and exclude silence periods from long recordings
17 | * Perform *supervised segmentation* (joint segmentation - classification)
18 | * Perform *unsupervised segmentation* (e.g. speaker diarization) and extract audio *thumbnails*
19 | * Train and use *audio regression* models (example application: emotion recognition)
20 | * Apply dimensionality reduction to *visualize* audio data and content similarities
21 |
22 | ## Installation
23 | * Clone the source of this library: `git clone https://github.com/tyiannak/pyAudioAnalysis.git`
24 | * Install dependencies: `pip install -r ./requirements.txt `
25 | * Install using pip: `pip install -e .`
26 |
27 | ## An audio classification example
28 | > More examples and detailed tutorials can be found [at the wiki](https://github.com/tyiannak/pyAudioAnalysis/wiki)
29 |
30 | pyAudioAnalysis provides easy-to-call wrappers to execute audio analysis tasks. Eg, this code first trains an audio segment classifier, given a set of WAV files stored in folders (each folder representing a different class) and then the trained classifier is used to classify an unknown audio WAV file
31 |
32 | ```python
33 | from pyAudioAnalysis import audioTrainTest as aT
34 | aT.extract_features_and_train(["classifierData/music","classifierData/speech"], 1.0, 1.0, aT.shortTermWindow, aT.shortTermStep, "svm", "svmSMtemp", False)
35 | aT.file_classification("data/doremi.wav", "svmSMtemp","svm")
36 | ```
37 |
38 | >Result:
39 | (0.0, array([ 0.90156761, 0.09843239]), ['music', 'speech'])
40 |
41 | In addition, command-line support is provided for all functionalities. E.g. the following command extracts the spectrogram of an audio signal stored in a WAV file: `python audioAnalysis.py fileSpectrogram -i data/doremi.wav`
42 |
43 | ## Further reading
44 |
45 | Apart from this README file, to bettern understand how to use this library one should read the following:
46 | * [Audio Handling Basics: Process Audio Files In Command-Line or Python](https://hackernoon.com/audio-handling-basics-how-to-process-audio-files-using-python-cli-jo283u3y), if you want to learn how to handle audio files from command line, and some basic programming on audio signal processing. Start with that if you don't know anything about audio.
47 | * [Intro to Audio Analysis: Recognizing Sounds Using Machine Learning](https://hackernoon.com/intro-to-audio-analysis-recognizing-sounds-using-machine-learning-qy2r3ufl) This goes a bit deeper than the previous article, by providing a complete intro to theory and practice of audio feature extraction, classification and segmentation (includes many Python examples).
48 | * [The library's wiki](https://github.com/tyiannak/pyAudioAnalysis/wiki)
49 | * [How to Use Machine Learning to Color Your Lighting Based on Music Mood](https://hackernoon.com/how-to-use-machine-learning-to-color-your-lighting-based-on-music-mood-bi163u8l). An interesting use-case of using this lib to train a real-time music mood estimator.
50 | * A more general and theoretic description of the adopted methods (along with several experiments on particular use-cases) is presented [in this publication](http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144610). *Please use the following citation when citing pyAudioAnalysis in your research work*:
51 | ```python
52 | @article{giannakopoulos2015pyaudioanalysis,
53 | title={pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis},
54 | author={Giannakopoulos, Theodoros},
55 | journal={PloS one},
56 | volume={10},
57 | number={12},
58 | year={2015},
59 | publisher={Public Library of Science}
60 | }
61 | ```
62 |
63 | For Matlab-related audio analysis material check [this book](http://www.amazon.com/Introduction-Audio-Analysis-MATLAB%C2%AE-Approach/dp/0080993885).
64 |
65 | ## Author
66 |
67 |
68 | [Theodoros Giannakopoulos](https://tyiannak.github.io),
69 | Principal Researcher of Multimodal Machine Learning at the [Multimedia Analysis Group of the Computational Intelligence Lab (MagCIL)](https://labs-repos.iit.demokritos.gr/MagCIL/index.html) of the Institute of Informatics and Telecommunications, of the National Center for Scientific Research "Demokritos"
70 |
71 |
--------------------------------------------------------------------------------
/icon.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/tyiannak/pyAudioAnalysis/a246ebf4c553db49ed4400e3a902d39c89ec0043/icon.png
--------------------------------------------------------------------------------
/pyAudioAnalysis/MidTermFeatures.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import os
3 | import time
4 | import glob
5 | import numpy as np
6 | import matplotlib.pyplot as plt
7 | import sys
8 | sys.path.insert(0, os.path.join(
9 | os.path.dirname(os.path.realpath(__file__)), "../"))
10 | from pyAudioAnalysis import utilities
11 | from pyAudioAnalysis import audioBasicIO
12 | from pyAudioAnalysis import ShortTermFeatures
13 | eps = 0.00000001
14 |
15 | """ Time-domain audio features """
16 |
17 |
18 | def beat_extraction(short_features, window_size, plot=False):
19 | """
20 | This function extracts an estimate of the beat rate for a musical signal.
21 | ARGUMENTS:
22 | - short_features: a np array (n_feats x numOfShortTermWindows)
23 | - window_size: window size in seconds
24 | RETURNS:
25 | - bpm: estimates of beats per minute
26 | - ratio: a confidence measure
27 | """
28 |
29 | # Features that are related to the beat tracking task:
30 | selected_features = [0, 1, 3, 4, 5, 6, 7, 8, 9, 10,
31 | 11, 12, 13, 14, 15, 16, 17, 18]
32 |
33 | max_beat_time = int(round(2.0 / window_size))
34 | hist_all = np.zeros((max_beat_time,))
35 | # for each feature
36 | for ii, i in enumerate(selected_features):
37 | # dif threshold (3 x Mean of Difs)
38 | dif_threshold = 2.0 * (np.abs(short_features[i, 0:-1] -
39 | short_features[i, 1::])).mean()
40 | if dif_threshold <= 0:
41 | dif_threshold = 0.0000000000000001
42 | # detect local maxima
43 | [pos1, _] = utilities.peakdet(short_features[i, :], dif_threshold)
44 | position_diffs = []
45 | # compute histograms of local maxima changes
46 | for j in range(len(pos1)-1):
47 | position_diffs.append(pos1[j+1]-pos1[j])
48 | histogram_times, histogram_edges = \
49 | np.histogram(position_diffs, np.arange(0.5, max_beat_time + 1.5))
50 | hist_centers = (histogram_edges[0:-1] + histogram_edges[1::]) / 2.0
51 | histogram_times = \
52 | histogram_times.astype(float) / short_features.shape[1]
53 | hist_all += histogram_times
54 | if plot:
55 | plt.subplot(9, 2, ii + 1)
56 | plt.plot(short_features[i, :], 'k')
57 | for k in pos1:
58 | plt.plot(k, short_features[i, k], 'k*')
59 | f1 = plt.gca()
60 | f1.axes.get_xaxis().set_ticks([])
61 | f1.axes.get_yaxis().set_ticks([])
62 |
63 | if plot:
64 | plt.show(block=False)
65 | plt.figure()
66 |
67 | # Get beat as the argmax of the agregated histogram:
68 | max_indices = np.argmax(hist_all)
69 | bpms = 60 / (hist_centers * window_size)
70 | bpm = bpms[max_indices]
71 | # ... and the beat ratio:
72 | ratio = hist_all[max_indices] / (hist_all.sum() + eps)
73 |
74 | if plot:
75 | # filter out >500 beats from plotting:
76 | hist_all = hist_all[bpms < 500]
77 | bpms = bpms[bpms < 500]
78 |
79 | plt.plot(bpms, hist_all, 'k')
80 | plt.xlabel('Beats per minute')
81 | plt.ylabel('Freq Count')
82 | plt.show(block=True)
83 |
84 | return bpm, ratio
85 |
86 |
87 | def mid_feature_extraction(signal, sampling_rate, mid_window, mid_step,
88 | short_window, short_step):
89 | """
90 | Mid-term feature extraction
91 | """
92 |
93 | short_features, short_feature_names = \
94 | ShortTermFeatures.feature_extraction(signal, sampling_rate,
95 | short_window, short_step)
96 |
97 | n_stats = 2
98 | n_feats = len(short_features)
99 | #mid_window_ratio = int(round(mid_window / short_step))
100 | mid_window_ratio = round((mid_window -
101 | (short_window - short_step)) / short_step)
102 | mt_step_ratio = int(round(mid_step / short_step))
103 |
104 | mid_features, mid_feature_names = [], []
105 | for i in range(n_stats * n_feats):
106 | mid_features.append([])
107 | mid_feature_names.append("")
108 |
109 | # for each of the short-term features:
110 | for i in range(n_feats):
111 | cur_position = 0
112 | num_short_features = len(short_features[i])
113 | mid_feature_names[i] = short_feature_names[i] + "_" + "mean"
114 | mid_feature_names[i + n_feats] = short_feature_names[i] + "_" + "std"
115 |
116 | while cur_position < num_short_features:
117 | end = cur_position + mid_window_ratio
118 | if end > num_short_features:
119 | end = num_short_features
120 | cur_st_feats = short_features[i][cur_position:end]
121 |
122 | mid_features[i].append(np.mean(cur_st_feats))
123 | mid_features[i + n_feats].append(np.std(cur_st_feats))
124 | cur_position += mt_step_ratio
125 | mid_features = np.array(mid_features)
126 | mid_features = np.nan_to_num(mid_features)
127 | return mid_features, short_features, mid_feature_names
128 |
129 |
130 | """ Feature Extraction Wrappers
131 | - The first two feature extraction wrappers are used to extract
132 | long-term averaged audio features for a list of WAV files stored in a
133 | given category.
134 | It is important to note that, one single feature is extracted per WAV
135 | file (not the whole sequence of feature vectors)
136 |
137 | """
138 |
139 |
140 | def directory_feature_extraction(folder_path, mid_window, mid_step,
141 | short_window, short_step,
142 | compute_beat=True):
143 | """
144 | This function extracts the mid-term features of the WAVE files of a
145 | particular folder.
146 |
147 | The resulting feature vector is extracted by long-term averaging the
148 | mid-term features.
149 | Therefore ONE FEATURE VECTOR is extracted for each WAV file.
150 |
151 | ARGUMENTS:
152 | - folder_path: the path of the WAVE directory
153 | - mid_window, mid_step: mid-term window and step (in seconds)
154 | - short_window, short_step: short-term window and step (in seconds)
155 | """
156 |
157 | mid_term_features = np.array([])
158 | process_times = []
159 |
160 | types = ('*.wav', '*.aif', '*.aiff', '*.mp3', '*.au', '*.ogg')
161 | wav_file_list = []
162 | for files in types:
163 | wav_file_list.extend(glob.glob(os.path.join(folder_path, files)))
164 |
165 | wav_file_list = sorted(wav_file_list)
166 | wav_file_list2, mid_feature_names = [], []
167 | for i, file_path in enumerate(wav_file_list):
168 | print("Analyzing file {0:d} of {1:d}: {2:s}".format(i + 1,
169 | len(wav_file_list),
170 | file_path))
171 | if os.stat(file_path).st_size == 0:
172 | print(" (EMPTY FILE -- SKIPPING)")
173 | continue
174 | sampling_rate, signal = audioBasicIO.read_audio_file(file_path)
175 | if sampling_rate == 0:
176 | continue
177 |
178 | t1 = time.time()
179 | signal = audioBasicIO.stereo_to_mono(signal)
180 | if signal.shape[0] < float(sampling_rate)/5:
181 | print(" (AUDIO FILE TOO SMALL - SKIPPING)")
182 | continue
183 | wav_file_list2.append(file_path)
184 | if compute_beat:
185 | mid_features, short_features, mid_feature_names = \
186 | mid_feature_extraction(signal, sampling_rate,
187 | round(mid_window * sampling_rate),
188 | round(mid_step * sampling_rate),
189 | round(sampling_rate * short_window),
190 | round(sampling_rate * short_step))
191 | beat, beat_conf = beat_extraction(short_features, short_step)
192 | else:
193 | mid_features, _, mid_feature_names = \
194 | mid_feature_extraction(signal, sampling_rate,
195 | round(mid_window * sampling_rate),
196 | round(mid_step * sampling_rate),
197 | round(sampling_rate * short_window),
198 | round(sampling_rate * short_step))
199 |
200 | mid_features = np.transpose(mid_features)
201 | mid_features = mid_features.mean(axis=0)
202 | # long term averaging of mid-term statistics
203 | if (not np.isnan(mid_features).any()) and \
204 | (not np.isinf(mid_features).any()):
205 | if compute_beat:
206 | mid_features = np.append(mid_features, beat)
207 | mid_features = np.append(mid_features, beat_conf)
208 | mid_feature_names += ["bpm","ratio"]
209 | if len(mid_term_features) == 0:
210 | # append feature vector
211 | mid_term_features = mid_features
212 | else:
213 | mid_term_features = np.vstack((mid_term_features, mid_features))
214 | t2 = time.time()
215 | duration = float(len(signal)) / sampling_rate
216 | process_times.append((t2 - t1) / duration)
217 | if len(process_times) > 0:
218 | print("Feature extraction complexity ratio: "
219 | "{0:.1f} x realtime".format((1.0 /
220 | np.mean(np.array(process_times)))))
221 | return mid_term_features, wav_file_list2, mid_feature_names
222 |
223 |
224 | def multiple_directory_feature_extraction(path_list, mid_window, mid_step,
225 | short_window, short_step,
226 | compute_beat=False):
227 | """
228 | Same as dirWavFeatureExtraction, but instead of a single dir it
229 | takes a list of paths as input and returns a list of feature matrices.
230 | EXAMPLE:
231 | [features, classNames] =
232 | a.dirsWavFeatureExtraction(['audioData/classSegmentsRec/noise',
233 | 'audioData/classSegmentsRec/speech',
234 | 'audioData/classSegmentsRec/brush-teeth',
235 | 'audioData/classSegmentsRec/shower'], 1,
236 | 1, 0.02, 0.02);
237 |
238 | It can be used during the training process of a classification model ,
239 | in order to get feature matrices from various audio classes (each stored in
240 | a separate path)
241 | """
242 |
243 | # feature extraction for each class:
244 | features = []
245 | class_names = []
246 | file_names = []
247 | for i, d in enumerate(path_list):
248 | f, fn, feature_names = \
249 | directory_feature_extraction(d, mid_window, mid_step,
250 | short_window, short_step,
251 | compute_beat=compute_beat)
252 | if f.shape[0] > 0:
253 | # if at least one audio file has been found in the provided folder:
254 | features.append(f)
255 | file_names.append(fn)
256 | if d[-1] == os.sep:
257 | class_names.append(d.split(os.sep)[-2])
258 | else:
259 | class_names.append(d.split(os.sep)[-1])
260 | return features, class_names, file_names
261 |
262 |
263 | def directory_feature_extraction_no_avg(folder_path, mid_window, mid_step,
264 | short_window, short_step):
265 | """
266 | This function extracts the mid-term features of the WAVE
267 | files of a particular folder without averaging each file.
268 |
269 | ARGUMENTS:
270 | - folder_path: the path of the WAVE directory
271 | - mid_window, mid_step: mid-term window and step (in seconds)
272 | - short_window, short_step: short-term window and step (in seconds)
273 | RETURNS:
274 | - X: A feature matrix
275 | - Y: A matrix of file labels
276 | - filenames:
277 | """
278 |
279 | wav_file_list = []
280 | signal_idx = np.array([])
281 | mid_features = np.array([])
282 | types = ('*.wav', '*.aif', '*.aiff', '*.ogg')
283 | for files in types:
284 | wav_file_list.extend(glob.glob(os.path.join(folder_path, files)))
285 |
286 | wav_file_list = sorted(wav_file_list)
287 |
288 | for i, file_path in enumerate(wav_file_list):
289 | sampling_rate, signal = audioBasicIO.read_audio_file(file_path)
290 | if sampling_rate == 0:
291 | continue
292 | signal = audioBasicIO.stereo_to_mono(signal)
293 | mid_feature_vector, _, _ = \
294 | mid_feature_extraction(signal, sampling_rate,
295 | round(mid_window * sampling_rate),
296 | round(mid_step * sampling_rate),
297 | round(sampling_rate * short_window),
298 | round(sampling_rate * short_step))
299 |
300 | mid_feature_vector = np.transpose(mid_feature_vector)
301 | if len(mid_features) == 0: # append feature vector
302 | mid_features = mid_feature_vector
303 | signal_idx = np.zeros((mid_feature_vector.shape[0], ))
304 | else:
305 | mid_features = np.vstack((mid_features, mid_feature_vector))
306 | signal_idx = np.append(signal_idx, i *
307 | np.ones((mid_feature_vector.shape[0], )))
308 |
309 | return mid_features, signal_idx, wav_file_list
310 |
311 |
312 | """
313 | The following two feature extraction wrappers extract features for given audio
314 | files, however NO LONG-TERM AVERAGING is performed. Therefore, the output for
315 | each audio file is NOT A SINGLE FEATURE VECTOR but a whole feature matrix.
316 |
317 | Also, another difference between the following two wrappers and the previous
318 | is that they NO LONG-TERM AVERAGING IS PERFORMED. In other words, the WAV
319 | files in these functions are not used as uniform samples that need to be
320 | averaged but as sequences
321 | """
322 |
323 |
324 | def mid_feature_extraction_to_file(file_path, mid_window, mid_step,
325 | short_window, short_step, output_file,
326 | store_short_features=False, store_csv=False,
327 | plot=False):
328 | """
329 | This function is used as a wrapper to:
330 | a) read the content of a WAV file
331 | b) perform mid-term feature extraction on that signal
332 | c) write the mid-term feature sequences to a np file
333 | d) optionally write contents to csv file as well
334 | e) optionally write short-term features in csv and np file
335 | """
336 | sampling_rate, signal = audioBasicIO.read_audio_file(file_path)
337 | signal = audioBasicIO.stereo_to_mono(signal)
338 | mid_features, short_features, _ = \
339 | mid_feature_extraction(signal, sampling_rate,
340 | round(sampling_rate * mid_window),
341 | round(sampling_rate * mid_step),
342 | round(sampling_rate * short_window),
343 | round(sampling_rate * short_step))
344 | if store_short_features:
345 | # save st features to np file
346 | np.save(output_file + "_st", short_features)
347 | if plot:
348 | print("Short-term np file: " + output_file + "_st.npy saved")
349 | if store_csv:
350 | # store st features to CSV file
351 | np.savetxt(output_file + "_st.csv", short_features.T, delimiter=",")
352 | if plot:
353 | print("Short-term CSV file: " + output_file + "_st.csv saved")
354 |
355 | # save mt features to np file
356 | np.save(output_file + "_mt", mid_features)
357 | if plot:
358 | print("Mid-term np file: " + output_file + "_mt.npy saved")
359 | if store_csv:
360 | np.savetxt(output_file + "_mt.csv", mid_features.T, delimiter=",")
361 | if plot:
362 | print("Mid-term CSV file: " + output_file + "_mt.csv saved")
363 |
364 |
365 | def mid_feature_extraction_file_dir(folder_path, mid_window, mid_step,
366 | short_window, short_step,
367 | store_short_features=False, store_csv=False,
368 | plot=False):
369 | types = (folder_path + os.sep + '*.wav',)
370 | files_list = []
371 | for t in types:
372 | files_list.extend(glob.glob(t))
373 | for f in files_list:
374 | output_path = f
375 | mid_feature_extraction_to_file(f, mid_window, mid_step, short_window,
376 | short_step, output_path,
377 | store_short_features, store_csv, plot)
378 |
--------------------------------------------------------------------------------
/pyAudioAnalysis/ShortTermFeatures.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import math
3 | import numpy as np
4 | import sys
5 | from scipy.fftpack import fft
6 | import matplotlib.pyplot as plt
7 | from scipy.signal import lfilter
8 | from scipy.fftpack.realtransforms import dct
9 | from tqdm import tqdm
10 |
11 | eps = sys.float_info.epsilon
12 |
13 |
14 | def dc_normalize(sig_array):
15 | """Removes DC and normalizes to -1, 1 range"""
16 | sig_array_norm = sig_array.copy()
17 | sig_array_norm -= sig_array_norm.mean()
18 | sig_array_norm /= abs(sig_array_norm).max() + 1e-10
19 | return sig_array_norm
20 |
21 |
22 | def zero_crossing_rate(frame):
23 | """Computes zero crossing rate of frame"""
24 | count = len(frame)
25 | count_zero = np.sum(np.abs(np.diff(np.sign(frame)))) / 2
26 | return np.float64(count_zero) / np.float64(count - 1.0)
27 |
28 |
29 | def energy(frame):
30 | """Computes signal energy of frame"""
31 | return np.sum(frame ** 2) / np.float64(len(frame))
32 |
33 |
34 | def energy_entropy(frame, n_short_blocks=10):
35 | """Computes entropy of energy"""
36 | # total frame energy
37 | frame_energy = np.sum(frame ** 2)
38 | frame_length = len(frame)
39 | sub_win_len = int(np.floor(frame_length / n_short_blocks))
40 | if frame_length != sub_win_len * n_short_blocks:
41 | frame = frame[0:sub_win_len * n_short_blocks]
42 |
43 | # sub_wins is of size [n_short_blocks x L]
44 | sub_wins = frame.reshape(sub_win_len, n_short_blocks, order='F').copy()
45 |
46 | # Compute normalized sub-frame energies:
47 | s = np.sum(sub_wins ** 2, axis=0) / (frame_energy + eps)
48 |
49 | # Compute entropy of the normalized sub-frame energies:
50 | entropy = -np.sum(s * np.log2(s + eps))
51 | return entropy
52 |
53 |
54 | """ Frequency-domain audio features """
55 |
56 |
57 | def spectral_centroid_spread(fft_magnitude, sampling_rate):
58 | """Computes spectral centroid of frame (given abs(FFT))"""
59 | ind = (np.arange(1, len(fft_magnitude) + 1)) * \
60 | (sampling_rate / (2.0 * len(fft_magnitude)))
61 |
62 | Xt = fft_magnitude.copy()
63 | Xt_max = Xt.max()
64 | if Xt_max == 0:
65 | Xt = Xt / eps
66 | else:
67 | Xt = Xt / Xt_max
68 |
69 | NUM = np.sum(ind * Xt)
70 | DEN = np.sum(Xt) + eps
71 |
72 | # Centroid:
73 | centroid = (NUM / DEN)
74 |
75 | # Spread:
76 | spread = np.sqrt(np.sum(((ind - centroid) ** 2) * Xt) / DEN)
77 |
78 | # Normalize:
79 | centroid = centroid / (sampling_rate / 2.0)
80 | spread = spread / (sampling_rate / 2.0)
81 |
82 | return centroid, spread
83 |
84 |
85 | def spectral_entropy(signal, n_short_blocks=10):
86 | """Computes the spectral entropy"""
87 | # number of frame samples
88 | num_frames = len(signal)
89 |
90 | # total spectral energy
91 | total_energy = np.sum(signal ** 2)
92 |
93 | # length of sub-frame
94 | sub_win_len = int(np.floor(num_frames / n_short_blocks))
95 | if num_frames != sub_win_len * n_short_blocks:
96 | signal = signal[0:sub_win_len * n_short_blocks]
97 |
98 | # define sub-frames (using matrix reshape)
99 | sub_wins = signal.reshape(sub_win_len, n_short_blocks, order='F').copy()
100 |
101 | # compute spectral sub-energies
102 | s = np.sum(sub_wins ** 2, axis=0) / (total_energy + eps)
103 |
104 | # compute spectral entropy
105 | entropy = -np.sum(s * np.log2(s + eps))
106 |
107 | return entropy
108 |
109 |
110 | def spectral_flux(fft_magnitude, previous_fft_magnitude):
111 | """
112 | Computes the spectral flux feature of the current frame
113 | ARGUMENTS:
114 | fft_magnitude: the abs(fft) of the current frame
115 | previous_fft_magnitude: the abs(fft) of the previous frame
116 | """
117 | # compute the spectral flux as the sum of square distances:
118 | fft_sum = np.sum(fft_magnitude + eps)
119 | previous_fft_sum = np.sum(previous_fft_magnitude + eps)
120 | sp_flux = np.sum(
121 | (fft_magnitude / fft_sum - previous_fft_magnitude /
122 | previous_fft_sum) ** 2)
123 |
124 | return sp_flux
125 |
126 |
127 | def spectral_rolloff(signal, c):
128 | """Computes spectral roll-off"""
129 | energy = np.sum(signal ** 2)
130 | fft_length = len(signal)
131 | threshold = c * energy
132 | # Ffind the spectral rolloff as the frequency position
133 | # where the respective spectral energy is equal to c*totalEnergy
134 | cumulative_sum = np.cumsum(signal ** 2) + eps
135 | a = np.nonzero(cumulative_sum > threshold)[0]
136 | if len(a) > 0:
137 | sp_rolloff = np.float64(a[0]) / (float(fft_length))
138 | else:
139 | sp_rolloff = 0.0
140 | return sp_rolloff
141 |
142 |
143 | def harmonic(frame, sampling_rate):
144 | """
145 | Computes harmonic ratio and pitch
146 | """
147 | m = np.round(0.016 * sampling_rate) - 1
148 | r = np.correlate(frame, frame, mode='full')
149 |
150 | g = r[len(frame) - 1]
151 | r = r[len(frame):-1]
152 |
153 | # estimate m0 (as the first zero crossing of R)
154 | [a, ] = np.nonzero(np.diff(np.sign(r)))
155 |
156 | if len(a) == 0:
157 | m0 = len(r) - 1
158 | else:
159 | m0 = a[0]
160 | if m > len(r):
161 | m = len(r) - 1
162 |
163 | gamma = np.zeros((m), dtype=np.float64)
164 | cumulative_sum = np.cumsum(frame ** 2)
165 | gamma[m0:m] = r[m0:m] / (np.sqrt((g * cumulative_sum[m:m0:-1])) + eps)
166 |
167 | zcr = zero_crossing_rate(gamma)
168 |
169 | if zcr > 0.15:
170 | hr = 0.0
171 | f0 = 0.0
172 | else:
173 | if len(gamma) == 0:
174 | hr = 1.0
175 | blag = 0.0
176 | gamma = np.zeros((m), dtype=np.float64)
177 | else:
178 | hr = np.max(gamma)
179 | blag = np.argmax(gamma)
180 |
181 | # Get fundamental frequency:
182 | f0 = sampling_rate / (blag + eps)
183 | if f0 > 5000:
184 | f0 = 0.0
185 | if hr < 0.1:
186 | f0 = 0.0
187 |
188 | return hr, f0
189 |
190 |
191 | def mfcc_filter_banks(sampling_rate, num_fft, lowfreq=133.33, linc=200 / 3,
192 | logsc=1.0711703, num_lin_filt=13, num_log_filt=27):
193 | """
194 | Computes the triangular filterbank for MFCC computation
195 | (used in the stFeatureExtraction function before the stMFCC function call)
196 | This function is taken from the scikits.talkbox library (MIT Licence):
197 | https://pypi.python.org/pypi/scikits.talkbox
198 | """
199 |
200 | if sampling_rate < 8000:
201 | nlogfil = 5
202 |
203 | # Total number of filters
204 | num_filt_total = num_lin_filt + num_log_filt
205 |
206 | # Compute frequency points of the triangle:
207 | frequencies = np.zeros(num_filt_total + 2)
208 | frequencies[:num_lin_filt] = lowfreq + np.arange(num_lin_filt) * linc
209 | frequencies[num_lin_filt:] = frequencies[num_lin_filt - 1] * logsc ** \
210 | np.arange(1, num_log_filt + 3)
211 | heights = 2. / (frequencies[2:] - frequencies[0:-2])
212 |
213 | # Compute filterbank coeff (in fft domain, in bins)
214 | fbank = np.zeros((num_filt_total, num_fft))
215 | nfreqs = np.arange(num_fft) / (1. * num_fft) * sampling_rate
216 |
217 | for i in range(num_filt_total):
218 | low_freqs = frequencies[i]
219 | cent_freqs = frequencies[i + 1]
220 | high_freqs = frequencies[i + 2]
221 |
222 | lid = np.arange(np.floor(low_freqs * num_fft / sampling_rate) + 1,
223 | np.floor(cent_freqs * num_fft / sampling_rate) + 1,
224 | dtype=int)
225 | lslope = heights[i] / (cent_freqs - low_freqs)
226 | rid = np.arange(np.floor(cent_freqs * num_fft / sampling_rate) + 1,
227 | np.floor(high_freqs * num_fft / sampling_rate) + 1,
228 | dtype=int)
229 | rslope = heights[i] / (high_freqs - cent_freqs)
230 | fbank[i][lid] = lslope * (nfreqs[lid] - low_freqs)
231 | fbank[i][rid] = rslope * (high_freqs - nfreqs[rid])
232 |
233 | return fbank, frequencies
234 |
235 |
236 | def mfcc(fft_magnitude, fbank, num_mfcc_feats):
237 | """
238 | Computes the MFCCs of a frame, given the fft mag
239 |
240 | ARGUMENTS:
241 | fft_magnitude: fft magnitude abs(FFT)
242 | fbank: filter bank (see mfccInitFilterBanks)
243 | RETURN
244 | ceps: MFCCs (13 element vector)
245 |
246 | Note: MFCC calculation is, in general, taken from the
247 | scikits.talkbox library (MIT Licence),
248 | # with a small number of modifications to make it more
249 | compact and suitable for the pyAudioAnalysis Lib
250 | """
251 |
252 | mspec = np.log10(np.dot(fft_magnitude, fbank.T) + eps)
253 | ceps = dct(mspec, type=2, norm='ortho', axis=-1)[:num_mfcc_feats]
254 | return ceps
255 |
256 |
257 | def chroma_features_init(num_fft, sampling_rate):
258 | """
259 | This function initializes the chroma matrices used in the calculation
260 | of the chroma features
261 | """
262 | freqs = np.array([((f + 1) * sampling_rate) /
263 | (2 * num_fft) for f in range(num_fft)])
264 | cp = 27.50
265 | num_chroma = np.round(12.0 * np.log2(freqs / cp)).astype(int)
266 |
267 | num_freqs_per_chroma = np.zeros((num_chroma.shape[0],))
268 |
269 | unique_chroma = np.unique(num_chroma)
270 | for u in unique_chroma:
271 | idx = np.nonzero(num_chroma == u)
272 | num_freqs_per_chroma[idx] = idx[0].shape
273 |
274 | return num_chroma, num_freqs_per_chroma
275 |
276 |
277 | def chroma_features(signal, sampling_rate, num_fft):
278 | # TODO: 1 complexity
279 | # TODO: 2 bug with large windows
280 |
281 | num_chroma, num_freqs_per_chroma = \
282 | chroma_features_init(num_fft, sampling_rate)
283 | chroma_names = ['A', 'A#', 'B', 'C', 'C#', 'D',
284 | 'D#', 'E', 'F', 'F#', 'G', 'G#']
285 | spec = signal ** 2
286 | if num_chroma.max() < num_chroma.shape[0]:
287 | C = np.zeros((num_chroma.shape[0],))
288 | C[num_chroma] = spec
289 | C /= num_freqs_per_chroma[num_chroma]
290 | else:
291 | I = np.nonzero(num_chroma > num_chroma.shape[0])[0][0]
292 | C = np.zeros((num_chroma.shape[0],))
293 | C[num_chroma[0:I - 1]] = spec
294 | C /= num_freqs_per_chroma
295 | final_matrix = np.zeros((12, 1))
296 | newD = int(np.ceil(C.shape[0] / 12.0) * 12)
297 | C2 = np.zeros((newD,))
298 | C2[0:C.shape[0]] = C
299 | C2 = C2.reshape(int(C2.shape[0] / 12), 12)
300 | # for i in range(12):
301 | # finalC[i] = np.sum(C[i:C.shape[0]:12])
302 | final_matrix = np.sum(C2, axis=0).reshape(1, -1).T
303 |
304 | spec_sum = spec.sum()
305 | if spec_sum == 0:
306 | final_matrix /= eps
307 | else:
308 | final_matrix /= spec_sum
309 |
310 | # ax = plt.gca()
311 | # plt.hold(False)
312 | # plt.plot(finalC)
313 | # ax.set_xticks(range(len(chromaNames)))
314 | # ax.set_xticklabels(chromaNames)
315 | # xaxis = np.arange(0, 0.02, 0.01);
316 | # ax.set_yticks(range(len(xaxis)))
317 | # ax.set_yticklabels(xaxis)
318 | # plt.show(block=False)
319 | # plt.draw()
320 |
321 | return chroma_names, final_matrix
322 |
323 |
324 | def chromagram(signal, sampling_rate, window, step, plot=False,
325 | show_progress=False):
326 | """
327 | Short-term FFT mag for spectogram estimation:
328 | Returns:
329 | a np array (num_fft x numOfShortTermWindows)
330 | ARGUMENTS:
331 | signal: the input signal samples
332 | sampling_rate: the sampling freq (in Hz)
333 | window: the short-term window size (in samples)
334 | step: the short-term window step (in samples)
335 | plot: flag, 1 if results are to be ploted
336 | RETURNS:
337 | """
338 | window = int(window)
339 | step = int(step)
340 | signal = np.double(signal)
341 | signal = signal / (2.0 ** 15)
342 | signal = dc_normalize(signal)
343 |
344 | num_samples = len(signal) # total number of signals
345 | count_fr = 0
346 | num_fft = int(window / 2)
347 | chromogram = np.zeros((int((num_samples-step-window) / step) + 1, 12),
348 | dtype=np.float64)
349 | for cur_p in tqdm(range(window, num_samples - step, step),
350 | disable=not show_progress):
351 | count_fr += 1
352 | x = signal[cur_p:cur_p + window]
353 | X = abs(fft(x))
354 | X = X[0:num_fft]
355 | X = X / len(X)
356 | chroma_names, chroma_feature_matrix = chroma_features(X, sampling_rate,
357 | num_fft)
358 | chroma_feature_matrix = chroma_feature_matrix[:, 0]
359 | chromogram[count_fr-1, :] = chroma_feature_matrix.T
360 | freq_axis = chroma_names
361 | time_axis = [(t * step) / sampling_rate
362 | for t in range(chromogram.shape[0])]
363 |
364 | if plot:
365 | fig, ax = plt.subplots()
366 | chromogram_plot = chromogram.transpose()[::-1, :]
367 | ratio = int(chromogram_plot.shape[1] / (3 * chromogram_plot.shape[0]))
368 | if ratio < 1:
369 | ratio = 1
370 | chromogram_plot = np.repeat(chromogram_plot, ratio, axis=0)
371 | imgplot = plt.imshow(chromogram_plot)
372 |
373 | ax.set_yticks(range(int(ratio / 2), len(freq_axis) * ratio, ratio))
374 | ax.set_yticklabels(freq_axis[::-1])
375 | t_step = int(count_fr / 3)
376 | time_ticks = range(0, count_fr, t_step)
377 | time_ticks_labels = ['%.2f' % (float(t * step) / sampling_rate)
378 | for t in time_ticks]
379 | ax.set_xticks(time_ticks)
380 | ax.set_xticklabels(time_ticks_labels)
381 | ax.set_xlabel('time (secs)')
382 | imgplot.set_cmap('jet')
383 | plt.colorbar()
384 | plt.show()
385 |
386 | return chromogram, time_axis, freq_axis
387 |
388 |
389 | def spectrogram(signal, sampling_rate, window, step, plot=False,
390 | show_progress=False):
391 | """
392 | Short-term FFT mag for spectogram estimation:
393 | Returns:
394 | a np array (numOfShortTermWindows x num_fft)
395 | ARGUMENTS:
396 | signal: the input signal samples
397 | sampling_rate: the sampling freq (in Hz)
398 | window: the short-term window size (in samples)
399 | step: the short-term window step (in samples)
400 | plot: flag, 1 if results are to be ploted
401 | show_progress flag for showing progress using tqdm
402 | RETURNS:
403 | """
404 | window = int(window)
405 | step = int(step)
406 | signal = np.double(signal)
407 | signal = signal / (2.0 ** 15)
408 | signal = dc_normalize(signal)
409 |
410 | num_samples = len(signal) # total number of signals
411 | count_fr = 0
412 | num_fft = int(window / 2)
413 | specgram = np.zeros((int((num_samples-window) / step) + 1, num_fft),
414 | dtype=np.float64)
415 | for cur_p in tqdm(range(window, num_samples - window + 1, step),
416 | disable=not show_progress):
417 | count_fr += 1
418 | x = signal[cur_p:cur_p + window]
419 | X = abs(fft(x))
420 | X = X[0:num_fft]
421 | X = X / len(X)
422 | specgram[count_fr-1, :] = X
423 |
424 | freq_axis = [float((f + 1) * sampling_rate) / (2 * num_fft)
425 | for f in range(specgram.shape[1])]
426 | time_axis = [float(t * step) / sampling_rate
427 | for t in range(specgram.shape[0])]
428 |
429 | if plot:
430 | fig, ax = plt.subplots()
431 | imgplot = plt.imshow(specgram.transpose()[::-1, :])
432 | fstep = int(num_fft / 5.0)
433 | frequency_ticks = range(0, int(num_fft) + fstep, fstep)
434 | frequency_tick_labels = \
435 | [str(sampling_rate / 2 -
436 | int((f * sampling_rate) / (2 * num_fft)))
437 | for f in frequency_ticks]
438 | ax.set_yticks(frequency_ticks)
439 | ax.set_yticklabels(frequency_tick_labels)
440 | t_step = int(count_fr / 3)
441 | time_ticks = range(0, count_fr, t_step)
442 | time_ticks_labels = \
443 | ['%.2f' % (float(t * step) / sampling_rate) for t in time_ticks]
444 | ax.set_xticks(time_ticks)
445 | ax.set_xticklabels(time_ticks_labels)
446 | ax.set_xlabel('time (secs)')
447 | ax.set_ylabel('freq (Hz)')
448 | imgplot.set_cmap('jet')
449 | plt.colorbar()
450 | plt.show()
451 | print(specgram.shape)
452 | return specgram, time_axis, freq_axis
453 |
454 |
455 | # TODO
456 | def speed_feature(signal, sampling_rate, window, step):
457 | signal = np.double(signal)
458 | signal = signal / (2.0 ** 15)
459 | signal = dc_normalize(signal)
460 |
461 | num_samples = len(signal) # total number of signals
462 | cur_p = 0
463 | count_fr = 0
464 |
465 | lowfreq = 133.33
466 | linsc = 200 / 3.
467 | logsc = 1.0711703
468 | nlinfil = 13
469 | nlogfil = 27
470 | n_mfcc_feats = 13
471 | nfil = nlinfil + nlogfil
472 | num_fft = window / 2
473 | if sampling_rate < 8000:
474 | nlogfil = 5
475 | nfil = nlinfil + nlogfil
476 | num_fft = window / 2
477 |
478 | # compute filter banks for mfcc:
479 | fbank, freqs = mfcc_filter_banks(sampling_rate, num_fft, lowfreq, linsc,
480 | logsc, nlinfil, nlogfil)
481 |
482 | n_time_spectral_feats = 8
483 | n_harmonic_feats = 1
484 | n_total_feats = n_time_spectral_feats + n_mfcc_feats + n_harmonic_feats
485 | # st_features = np.array([], dtype=np.float64)
486 | st_features = []
487 |
488 | while cur_p + window - 1 < num_samples:
489 | count_fr += 1
490 | x = signal[cur_p:cur_p + window]
491 | cur_p = cur_p + step
492 | fft_magnitude = abs(fft(x))
493 | fft_magnitude = fft_magnitude[0:num_fft]
494 | fft_magnitude = fft_magnitude / len(fft_magnitude)
495 | Ex = 0.0
496 | El = 0.0
497 | fft_magnitude[0:4] = 0
498 | # M = np.round(0.016 * fs) - 1
499 | # R = np.correlate(frame, frame, mode='full')
500 | st_features.append(harmonic(x, sampling_rate))
501 | # for i in range(len(X)):
502 | # if (i < (len(X) / 8)) and (i > (len(X)/40)):
503 | # Ex += X[i]*X[i]
504 | # El += X[i]*X[i]
505 | # st_features.append(Ex / El)
506 | # st_features.append(np.argmax(X))
507 | # if curFV[n_time_spectral_feats+n_mfcc_feats+1]>0:
508 | # print curFV[n_time_spectral_feats+n_mfcc_feats],
509 | # curFV[n_time_
510 | # spectral_feats+n_mfcc_feats+1]
511 | return np.array(st_features)
512 |
513 |
514 | def phormants(x, sampling_rate):
515 | N = len(x)
516 | w = np.hamming(N)
517 |
518 | # Apply window and high pass filter.
519 | x1 = x * w
520 | x1 = lfilter([1], [1., 0.63], x1)
521 |
522 | # Get LPC.
523 | ncoeff = 2 + sampling_rate / 1000
524 | A, e, k = lpc(x1, ncoeff)
525 | # A, e, k = lpc(x1, 8)
526 |
527 | # Get roots.
528 | rts = np.roots(A)
529 | rts = [r for r in rts if np.imag(r) >= 0]
530 |
531 | # Get angles.
532 | angz = np.arctan2(np.imag(rts), np.real(rts))
533 |
534 | # Get frequencies.
535 | frqs = sorted(angz * (sampling_rate / (2 * math.pi)))
536 |
537 | return frqs
538 |
539 |
540 | """ Windowing and feature extraction """
541 |
542 |
543 | def feature_extraction(signal, sampling_rate, window, step, deltas=True):
544 | """
545 | This function implements the shor-term windowing process.
546 | For each short-term window a set of features is extracted.
547 | This results to a sequence of feature vectors, stored in a np matrix.
548 |
549 | ARGUMENTS
550 | signal: the input signal samples
551 | sampling_rate: the sampling freq (in Hz)
552 | window: the short-term window size (in samples)
553 | step: the short-term window step (in samples)
554 | deltas: (opt) True/False if delta features are to be
555 | computed
556 | RETURNS
557 | features (numpy.ndarray): contains features
558 | (n_feats x numOfShortTermWindows)
559 | feature_names (python list): contains feature names
560 | (n_feats x numOfShortTermWindows)
561 | """
562 |
563 | window = int(window)
564 | step = int(step)
565 |
566 | # signal normalization
567 | signal = np.double(signal)
568 | signal = signal / (2.0 ** 15)
569 |
570 | signal = dc_normalize(signal)
571 |
572 | number_of_samples = len(signal) # total number of samples
573 | current_position = 0
574 | count_fr = 0
575 | num_fft = int(window / 2)
576 |
577 | # compute the triangular filter banks used in the mfcc calculation
578 | fbank, freqs = mfcc_filter_banks(sampling_rate, num_fft)
579 |
580 | n_time_spectral_feats = 8
581 | n_harmonic_feats = 0
582 | n_mfcc_feats = 13
583 | n_chroma_feats = 13
584 | n_total_feats = n_time_spectral_feats + n_mfcc_feats + n_harmonic_feats + \
585 | n_chroma_feats
586 | # n_total_feats = n_time_spectral_feats + n_mfcc_feats +
587 | # n_harmonic_feats
588 |
589 | # define list of feature names
590 | feature_names = ["zcr", "energy", "energy_entropy"]
591 | feature_names += ["spectral_centroid", "spectral_spread"]
592 | feature_names.append("spectral_entropy")
593 | feature_names.append("spectral_flux")
594 | feature_names.append("spectral_rolloff")
595 | feature_names += ["mfcc_{0:d}".format(mfcc_i)
596 | for mfcc_i in range(1, n_mfcc_feats + 1)]
597 | feature_names += ["chroma_{0:d}".format(chroma_i)
598 | for chroma_i in range(1, n_chroma_feats)]
599 | feature_names.append("chroma_std")
600 |
601 | # add names for delta features:
602 | if deltas:
603 | feature_names_2 = feature_names + ["delta " + f for f in feature_names]
604 | feature_names = feature_names_2
605 |
606 | features = []
607 | # for each short-term window to end of signal
608 | while current_position + window - 1 < number_of_samples:
609 | count_fr += 1
610 | # get current window
611 | x = signal[current_position:current_position + window]
612 |
613 | # update window position
614 | current_position = current_position + step
615 |
616 | # get fft magnitude
617 | fft_magnitude = abs(fft(x))
618 |
619 | # normalize fft
620 | fft_magnitude = fft_magnitude[0:num_fft]
621 | fft_magnitude = fft_magnitude / len(fft_magnitude)
622 |
623 | # keep previous fft mag (used in spectral flux)
624 | if count_fr == 1:
625 | fft_magnitude_previous = fft_magnitude.copy()
626 | feature_vector = np.zeros((n_total_feats, 1))
627 |
628 | # zero crossing rate
629 | feature_vector[0] = zero_crossing_rate(x)
630 |
631 | # short-term energy
632 | feature_vector[1] = energy(x)
633 |
634 | # short-term entropy of energy
635 | feature_vector[2] = energy_entropy(x)
636 |
637 | # sp centroid/spread
638 | [feature_vector[3], feature_vector[4]] = \
639 | spectral_centroid_spread(fft_magnitude,
640 | sampling_rate)
641 |
642 | # spectral entropy
643 | feature_vector[5] = \
644 | spectral_entropy(fft_magnitude)
645 |
646 | # spectral flux
647 | feature_vector[6] = \
648 | spectral_flux(fft_magnitude,
649 | fft_magnitude_previous)
650 |
651 | # spectral rolloff
652 | feature_vector[7] = \
653 | spectral_rolloff(fft_magnitude, 0.90)
654 |
655 | # MFCCs
656 | mffc_feats_end = n_time_spectral_feats + n_mfcc_feats
657 | feature_vector[n_time_spectral_feats:mffc_feats_end, 0] = \
658 | mfcc(fft_magnitude, fbank, n_mfcc_feats).copy()
659 |
660 | # chroma features
661 | chroma_names, chroma_feature_matrix = \
662 | chroma_features(fft_magnitude, sampling_rate, num_fft)
663 | chroma_features_end = n_time_spectral_feats + n_mfcc_feats + \
664 | n_chroma_feats - 1
665 | feature_vector[mffc_feats_end:chroma_features_end] = \
666 | chroma_feature_matrix
667 | feature_vector[chroma_features_end] = chroma_feature_matrix.std()
668 | if not deltas:
669 | features.append(feature_vector)
670 | else:
671 | # delta features
672 | if count_fr > 1:
673 | delta = feature_vector - feature_vector_prev
674 | feature_vector_2 = np.concatenate((feature_vector, delta))
675 | else:
676 | feature_vector_2 = np.concatenate((feature_vector,
677 | np.zeros(feature_vector.
678 | shape)))
679 | feature_vector_prev = feature_vector
680 | features.append(feature_vector_2)
681 |
682 | fft_magnitude_previous = fft_magnitude.copy()
683 |
684 | features = np.concatenate(features, 1)
685 | return features, feature_names
686 |
--------------------------------------------------------------------------------
/pyAudioAnalysis/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/tyiannak/pyAudioAnalysis/a246ebf4c553db49ed4400e3a902d39c89ec0043/pyAudioAnalysis/__init__.py
--------------------------------------------------------------------------------
/pyAudioAnalysis/audacityAnnotation2WAVs.py:
--------------------------------------------------------------------------------
1 | import glob
2 | import os
3 | import audioBasicIO
4 | import sys
5 | import csv
6 | import scipy.io.wavfile as wavfile
7 |
8 |
9 | def annotation2files(wavFile, csvFile):
10 | """
11 | Break an audio stream to segments of interest,
12 | defined by a csv file
13 |
14 | - wavFile: path to input wavfile
15 | - csvFile: path to csvFile of segment limits
16 |
17 | Input CSV file must be of the format \t\t