├── expected_outputs ├── count.png ├── blurriness.png ├── num-months.png ├── num-years.png ├── first-avail.png ├── most-recent.png ├── time-elapsed.png ├── spatial-coverage.png └── spatial-continuity.png └── README.md /expected_outputs/count.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/count.png -------------------------------------------------------------------------------- /expected_outputs/blurriness.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/blurriness.png -------------------------------------------------------------------------------- /expected_outputs/num-months.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/num-months.png -------------------------------------------------------------------------------- /expected_outputs/num-years.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/num-years.png -------------------------------------------------------------------------------- /expected_outputs/first-avail.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/first-avail.png -------------------------------------------------------------------------------- /expected_outputs/most-recent.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/most-recent.png -------------------------------------------------------------------------------- /expected_outputs/time-elapsed.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/time-elapsed.png -------------------------------------------------------------------------------- /expected_outputs/spatial-coverage.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/spatial-coverage.png -------------------------------------------------------------------------------- /expected_outputs/spatial-continuity.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ualsg/SVI-Quality-Checker/HEAD/expected_outputs/spatial-continuity.png -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Street View Imagery Quality Checker 2 | 3 | ## Introduction 4 | It is crucial to understand the quality of a street view imagery (SVI) dataset to assess its ’fitness for purpose’. In this repository, we present: (1) a Jupyter notebook to quickly assess the quality of a SVI dataset by **9 quality elements**, each at its relevant **hierarchical levels** - image, street, or grid; (2) a sample dataset for running the notebook. 5 | 6 | ### Quality elements 7 | A total of 9 quality elements are evaluated in the notebook with their spatial variations visualised: 8 | * Spatial coverage 9 | * Spatial continuity 10 | * Count 11 | * Age of the most recent coverage 12 | * Age of the first available coverage 13 | * Number of years covered 14 | * Number of months covered 15 | * Time elapsed between coverage 16 | * Image blurriness 17 | 18 | ### Sample dataset 19 | For demonstration, we provide a set of Mapillary SVI data from a 2 km x 2 km area in Kowloon, Hong Kong for running the notebook. This includes: 20 | * A metadata file, obtained from the [Mapillary API](https://www.mapillary.com/developer/api-documentation) 21 | * A zip file of sample images, obtained from [Mapillary](https://www.mapillary.com/) 22 | 23 | Apart from the SVI data, we also provide a raster file that enables the grid-based analysis, obtained from [WorldPop](https://www.worldpop.org/). 24 | 25 | All data in the sample dataset was obtained under the [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. 26 | 27 | ## Expected outputs 28 | 29 | The expected output for each quality element, if the sample dataset is used: 30 | 31 | 1. Spatial coverage 32 |
33 | 34 |
35 | 36 | 2. Spatial continuity 37 |
38 | 39 |
40 | 41 | 3. Count 42 |
43 | 44 |
45 | 46 | 4. Age of the most recent coverage 47 |
48 | 49 |
50 | 51 | 5. Age of the first available coverage 52 |
53 | 54 |
55 | 56 | 6. Number of years covered 57 |
58 | 59 |
60 | 61 | 7. Number of months covered 62 |
63 | 64 |
65 | 66 | 8. Time elapsed between coverage 67 |
68 | 69 |
70 | 71 | 9. Image blurriness 72 |
73 | 74 |
75 | 76 | 77 | ## Access 78 | The sample dataset can be downloaded from [Google drive](https://drive.google.com/file/d/1UtAKOO5cgtqEQ7e4T4RiFkETmnLKO4El/view?usp=sharing). 79 | 80 | ## Reference, citation, and documentation 81 | 82 | A [paper](https://doi.org/10.1016/j.jag.2022.103094) about the work was published in the _International Journal of Applied Earth Observation and Geoinformation_ and it is available open access. 83 | 84 | If you use this work in a scientific context, please cite this article. 85 | 86 | Hou Y, Biljecki F (2022): A comprehensive framework for evaluating the quality of street view imagery. International Journal of Applied Earth Observation and Geoinformation, 115: 103094. doi:10.1016/j.jag.2022.103094 87 | 88 | ``` 89 | @article{2022_jag_svi_quality, 90 | year = {2022}, 91 | title = {{A comprehensive framework for evaluating the quality of street view imagery}}, 92 | author = {Hou, Yujun and Biljecki, Filip}, 93 | journal = {International Journal of Applied Earth Observation and Geoinformation}, 94 | doi = {10.1016/j.jag.2022.103094}, 95 | pages = {103094}, 96 | volume = {115} 97 | } 98 | ``` 99 | 100 | ## License 101 | This dataset is released under the [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. 102 | 103 | ## Contact 104 | Feel free to contact [Yujun Hou](https://ual.sg/authors/yujun/) or [Filip Biljecki](https://ual.sg/authors/filip/) should you have any questions. 105 | For more information, please visit [Urban Analytics Lab](https://ual.sg/), National University of Singapore. 106 | 107 | ## Acknowledgements 108 | We appreciate the valuable contributions of the VGI community. 109 | 110 | We thank our colleagues at the NUS Urban Analytics Lab for the discussions. 111 | 112 | This research is part of the project Large-scale 3D Geospatial Data for Urban Analytics, which is supported by the National University of Singapore under the Start Up Grant R-295-000-171-133. 113 | --------------------------------------------------------------------------------