├── .DS_Store
├── fig1.png
├── fig2.png
├── logo.png
└── README.md
/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ualsg/Visual-soundscapes/HEAD/.DS_Store
--------------------------------------------------------------------------------
/fig1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ualsg/Visual-soundscapes/HEAD/fig1.png
--------------------------------------------------------------------------------
/fig2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ualsg/Visual-soundscapes/HEAD/fig2.png
--------------------------------------------------------------------------------
/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ualsg/Visual-soundscapes/HEAD/logo.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Sensing soundscapes from street view imagery
2 |
3 | ## Introduction
4 | The acoustic environment is an essential component of healthy and sustainable cities. We present a machine-learning framework for portraying large-area high-resolution urban soundscapes using ubiquitous street view imagery(SVI), without ground measurements. This dataset includes two parts: (1) SVI visual features and soundscape indicators data; (2) field-measured SVI and noise intensity data.
5 |
6 | ### SVI visual features and soundscape indicators data
7 | We also extract a total of 482 visual features from each imagery using computer vision algorithms and deep learning model. The extraction of visual features including: Object Detection(by [Faster R-CNN](https://pytorch.org/vision/stable/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html#torchvision.models.detection.fasterrcnn_resnet50_fpn)), Semantic Segmentation(by [DeepLabV3P](https://github.com/PaddlePaddle/PaddleSeg)), and Scenes Classification(by [ResNet](https://pytorch.org/vision/stable/generated/torchvision.models.resnet50.html?highlight=resnet#torchvision.models.resnet50)
8 | ) features and low-level features by the algorithms from the [OpenCV](https://opencv.org/) library. Each imagery was labeled a total of **15 soundscape indicators** are divided into four categories:
9 | * Noise intensity
10 | * Sound quality
11 | * Sound sources: traffic noise, human sounds, natural sounds, mechanical noise, and music noise
12 | * Perceptual emotion: pleasant, chaotic, vibrant, uneventful, calm, annoying, eventful, and monotonous
13 |
14 |
15 |

16 |
17 |
18 | We invited a total of 338 people to participate in the survey via [Amazon Mechanical Turk](https://www.mturk.com/) and social media.
19 |
20 | ### Field-measured SVI and noise intensity data
21 | The devices used in the collection include a Sound Level Meter(UT353BT) for noise intensity recording and a smartphone for the shooting of videos and street view imagery. Each investigation points include:
22 | * Three-minute video clips
23 | * 4-10 street view imageries
24 | * Three-minute recording of variations in sound intensity
25 |
26 |
27 |

28 |
29 |
30 | ## Access
31 |
32 | The raw SVI data can be dowmloaded at [figshare](https://figshare.com/s/2e7e23a20be112d828ea). The SVI visual features and soundscape indicators data can be found at *Label_Features*. The Field-measured SVI and noise intensity data can be downloaded at [figshare](https://figshare.com/s/2e7e23a20be112d828ea).
33 |
34 | ## Paper
35 |
36 | A [paper](https://doi.org/10.1016/j.compenvurbsys.2022.101915) about the work was published in _Computers, Environment and Urban Systems_ and it is available open access [here](https://ual.sg/publication/2023-ceus-soundscapes/2023-ceus-soundscapes.pdf).
37 |
38 | If you use this work in a scientific context, please cite this article.
39 |
40 | Zhao T, Liang X, Tu W, Huang Z, Biljecki F (2023): Sensing urban soundscapes from street view imagery. Computers, Environment and Urban Systems, 99: 101915. doi:10.1016/j.compenvurbsys.2022.101915
41 |
42 | ```
43 | @article{2023_ceus_soundscapes,
44 | author = {Zhao, Tianhong and Liang, Xiucheng and Tu, Wei and Huang, Zhengdong and Biljecki, Filip},
45 | doi = {10.1016/j.compenvurbsys.2022.101915},
46 | journal = {Computers, Environment and Urban Systems},
47 | pages = {101915},
48 | title = {Sensing urban soundscapes from street view imagery},
49 | volume = {99},
50 | year = {2023}
51 | }
52 | ```
53 |
54 | ## License
55 | This dataset is released under the [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license.
56 |
57 | ## Contact
58 | Feel free to contact [Tianhong Zhao](https://ual.sg/authors/tianhong/) or [Filip Biljecki](https://ual.sg/authors/filip/) should you have any questions.
59 | For more information, please visit the website of the [Urban Analytics Lab](https://ual.sg/), National University of Singapore.
60 |
61 | ## Acknowledgements
62 | We gratefully acknowledge the participants of the survey and the input data. We thank the members of the NUS Urban Analytics Lab for the discussions. The Institutional Review Board of the National University of Singapore has reviewed and approved the ethical aspects of this research (reference code NUS-IRB-2021-906).
63 |
64 |
--------------------------------------------------------------------------------