├── distbelief
├── __init__.py
├── utils
│ ├── __init__.py
│ ├── serialization.py
│ └── messaging.py
├── optim
│ ├── __init__.py
│ └── downpour_sgd.py
└── server.py
├── docs
├── no_min_lr
│ ├── server.log
│ ├── first.log
│ └── second.log
├── diagram.jpg
├── test_time.png
├── train_time.png
└── experiment
│ ├── process_0.png
│ ├── process_1.png
│ └── process_2.png
├── requirements-dev.txt
├── requirements.txt
├── .gitignore
├── setup.py
├── Makefile
├── example
├── graph.py
├── models.py
└── main.py
├── README.md
└── LICENSE.md
/distbelief/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/distbelief/utils/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/docs/no_min_lr/server.log:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/distbelief/optim/__init__.py:
--------------------------------------------------------------------------------
1 | from .downpour_sgd import DownpourSGD
2 |
--------------------------------------------------------------------------------
/requirements-dev.txt:
--------------------------------------------------------------------------------
1 | twine==1.11.0
2 | setuptools==40.2.0
3 | wheel==0.31.0
4 |
--------------------------------------------------------------------------------
/docs/diagram.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucla-labx/distbelief/HEAD/docs/diagram.jpg
--------------------------------------------------------------------------------
/docs/test_time.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucla-labx/distbelief/HEAD/docs/test_time.png
--------------------------------------------------------------------------------
/docs/train_time.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucla-labx/distbelief/HEAD/docs/train_time.png
--------------------------------------------------------------------------------
/docs/experiment/process_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucla-labx/distbelief/HEAD/docs/experiment/process_0.png
--------------------------------------------------------------------------------
/docs/experiment/process_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucla-labx/distbelief/HEAD/docs/experiment/process_1.png
--------------------------------------------------------------------------------
/docs/experiment/process_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucla-labx/distbelief/HEAD/docs/experiment/process_2.png
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy==1.14.5
2 | six==1.11.0
3 | torch==0.4.0
4 | torchvision==0.2.1
5 | matplotlib
6 | pandas
7 | sklearn
8 | scipy
9 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | data
2 | __pycache__/
3 | .pyc*
4 | train.log
5 | env/
6 | venv/
7 | .idea/
8 | .ipynb_checkpoints/*
9 | log/*
10 | build/*
11 | dist/*
12 | pytorch_distbelief.egg-info/*
13 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | import setuptools
2 |
3 | with open("README.md", "r") as fh:
4 | long_description = fh.read()
5 |
6 | setuptools.setup(
7 | name="pytorch-distbelief",
8 | version="0.1.0",
9 | author="Jesse Cai",
10 | author_email="jcjessecai@gmail.com",
11 | description="Distributed training for pytorch",
12 | long_description=long_description,
13 | long_description_content_type="text/markdown",
14 | url="https://github.com/ucla-labx/distbelief",
15 | packages=setuptools.find_packages(),
16 | classifiers=(
17 | "Programming Language :: Python :: 3",
18 | "License :: OSI Approved :: MIT License",
19 | "Operating System :: OS Independent",
20 | ),
21 | )
22 |
--------------------------------------------------------------------------------
/Makefile:
--------------------------------------------------------------------------------
1 | setup:
2 | -sudo apt-get -y virtualenv
3 | virtualenv -p python3 venv
4 | . venv/bin/activate && pip install -r requirements.txt && pip install .
5 |
6 | install:
7 | pip install .
8 |
9 | graph:
10 | python example/graph.py
11 | mv train_time.png test_time.png docs
12 |
13 | first:
14 | python example/main.py --rank 1 --world-size 3
15 |
16 | second:
17 | python example/main.py --rank 2 --world-size 3
18 |
19 | server:
20 | python example/main.py --rank 0 --world-size 3 --server
21 |
22 | single:
23 | python example/main.py --no-distributed
24 |
25 | gpu:
26 | python example/main.py --no-distributed --cuda
27 |
28 | dist:
29 | python3 setup.py sdist bdist_wheel
30 |
31 | upload: dist
32 | twine upload dist/*
33 |
34 | upload-test: dist
35 | twine upload --repository-url https://test.pypi.org/legacy/ dist/*
36 |
37 | install-test:
38 | python3 -m pip install --index-url https://test.pypi.org/simple/ pytorch-distbelief
39 |
40 |
--------------------------------------------------------------------------------
/distbelief/utils/serialization.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def ravel_model_params(model, grads=False):
5 | """
6 | Squash model parameters or gradients into a single tensor.
7 | """
8 | m_parameter = torch.Tensor([0])
9 | for parameter in list(model.parameters()):
10 | if grads:
11 | m_parameter = torch.cat((m_parameter, parameter.grad.view(-1)))
12 | else:
13 | m_parameter = torch.cat((m_parameter, parameter.data.view(-1)))
14 | return m_parameter[1:]
15 |
16 |
17 | def unravel_model_params(model, parameter_update):
18 | """
19 | Assigns parameter_update params to model.parameters.
20 | This is done by iterating through model.parameters() and assigning the relevant params in parameter_update.
21 | NOTE: this function manipulates model.parameters.
22 | """
23 | current_index = 0 # keep track of where to read from parameter_update
24 | for parameter in model.parameters():
25 | numel = parameter.data.numel()
26 | size = parameter.data.size()
27 | parameter.data.copy_(parameter_update[current_index:current_index+numel].view(size))
28 | current_index += numel
29 |
30 |
--------------------------------------------------------------------------------
/distbelief/server.py:
--------------------------------------------------------------------------------
1 | #
2 | """
3 | Parameter server for distbelief
4 | """
5 | import logging
6 | import torch
7 | import torch.optim
8 | from distbelief.utils.messaging import MessageCode, MessageListener, send_message
9 | from distbelief.utils.serialization import ravel_model_params, unravel_model_params
10 |
11 | _LOGGER = logging.getLogger(__name__)
12 |
13 | class ParameterServer(MessageListener):
14 | """ParameterServer"""
15 | def __init__(self, model):
16 | _LOGGER.info("Creating ParameterServer")
17 | self.parameter_shard = torch.rand(ravel_model_params(model).numel())
18 | self.model = model
19 | #init superclass
20 | super().__init__(model)
21 |
22 | def receive(self, sender, message_code, parameter):
23 | print("Processing message: {} from sender {}".format(message_code.name, sender))
24 |
25 | if message_code == MessageCode.ParameterUpdate:
26 | #be sure to clone here
27 | self.parameter_shard = parameter.clone()
28 |
29 | elif message_code == MessageCode.ParameterRequest:
30 | send_message(MessageCode.ParameterUpdate, self.parameter_shard, dst=sender)
31 |
32 | elif message_code == MessageCode.GradientUpdate:
33 | self.parameter_shard.add_(parameter)
34 |
--------------------------------------------------------------------------------
/example/graph.py:
--------------------------------------------------------------------------------
1 | """
2 | plots accuracy (test and train) vs. time
3 | """
4 | import matplotlib as mpl
5 | mpl.use('TkAgg')
6 |
7 | import matplotlib.pyplot as plt
8 | import pandas as pd
9 |
10 | colors = ['blue', 'green', 'red', 'orange', 'magenta']
11 | files_to_read = ['log/single.csv', 'log/gpu.csv', 'log/node1.csv', 'log/node2.csv', 'log/node3.csv']
12 | log_dataframes = list(map(pd.read_csv, files_to_read))
13 |
14 | for df in log_dataframes:
15 | df['timestamp'] = pd.to_datetime(df['timestamp'])
16 | df['timestamp'] -= df['timestamp'].min()
17 |
18 |
19 | def plot_train(df, label, color):
20 | plt.plot(df['timestamp'].dt.seconds / 3600.0,
21 | df['training_accuracy'].rolling(50).mean(),
22 | label=label,
23 | color=color)
24 |
25 | def plot_test(df, label, color):
26 | plt.plot(df.dropna()['timestamp'].dt.seconds / 3600.0,
27 | df.dropna()['test_accuracy'].rolling(5).mean(),
28 | label=label,
29 | color=color)
30 |
31 |
32 | fig1 = plt.figure(figsize=(20, 10))
33 |
34 | for color, filename, df in zip(colors, files_to_read, log_dataframes):
35 | plot_train(df, filename, color)
36 |
37 | plt.ylabel('Training Accuracy')
38 | plt.xlabel('Time (hours)')
39 | plt.legend()
40 | plt.title("Training Accuracy vs. Time (50 iteration rolling average, freq: 3, lr: 0.1)")
41 | plt.savefig('train_time.png')
42 |
43 | fig = plt.figure(figsize=(20, 10))
44 |
45 | for color, filename, df in zip(colors, files_to_read, log_dataframes):
46 | plot_test(df, filename, color)
47 |
48 | plt.ylabel('Test Accuracy')
49 | plt.xlabel('Time (hours)')
50 | plt.legend()
51 | plt.title("Test Accuracy vs. Time (5 iteration rolling average, freq: 3, lr: 0.1)")
52 | plt.savefig('test_time.png')
53 |
--------------------------------------------------------------------------------
/example/models.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | class LeNet(nn.Module):
6 | def __init__(self):
7 | super(LeNet, self).__init__()
8 | self.conv1 = nn.Conv2d(3, 6, kernel_size=5)
9 | self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
10 | self.conv2_drop = nn.Dropout2d()
11 | self.fc1 = nn.Linear(16 * 5 * 5, 120)
12 | self.fc2 = nn.Linear(120, 84)
13 | self.fc3 = nn.Linear(84, 10)
14 |
15 | def forward(self, x):
16 | x = F.relu(F.max_pool2d(self.conv1(x), 2))
17 | x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
18 | x = x.view(-1, 16* 5* 5)
19 | x = F.relu(self.fc1(x))
20 | x = F.dropout(x, training=self.training)
21 | x = F.relu(self.fc2(x))
22 | x = self.fc3(x)
23 | return x
24 |
25 | class AlexNet(nn.Module):
26 | def __init__(self, num_classes=10):
27 | super(AlexNet, self).__init__()
28 | self.features = nn.Sequential(
29 | nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=5),
30 | nn.ReLU(inplace=True),
31 | nn.MaxPool2d(kernel_size=2, stride=2),
32 | nn.Conv2d(64, 192, kernel_size=5, padding=2),
33 | nn.ReLU(inplace=True),
34 | nn.MaxPool2d(kernel_size=2, stride=2),
35 | nn.Conv2d(192, 384, kernel_size=3, padding=1),
36 | nn.ReLU(inplace=True),
37 | nn.Conv2d(384, 256, kernel_size=3, padding=1),
38 | nn.ReLU(inplace=True),
39 | nn.Conv2d(256, 256, kernel_size=3, padding=1),
40 | nn.ReLU(inplace=True),
41 | nn.MaxPool2d(kernel_size=2, stride=2),
42 | )
43 | self.classifier = nn.Linear(256, num_classes)
44 |
45 | def forward(self, x):
46 | x = self.features(x)
47 | x = x.view(x.size(0), -1)
48 | x = self.classifier(x)
49 | return x
50 |
--------------------------------------------------------------------------------
/distbelief/utils/messaging.py:
--------------------------------------------------------------------------------
1 | from enum import Enum
2 | import logging
3 | import torch
4 | import torch.distributed as dist
5 | from threading import Thread
6 | from distbelief.utils.serialization import ravel_model_params
7 |
8 | _LOGGER = logging.getLogger(__name__)
9 |
10 |
11 | class MessageCode(Enum):
12 | """Different types of messages between client and server that we support go here."""
13 | ParameterRequest = 0
14 | GradientUpdate = 1
15 | ParameterUpdate = 2
16 | EvaluateParams = 3
17 |
18 |
19 | class MessageListener(Thread):
20 | """MessageListener
21 |
22 | base class for message listeners, extends pythons threading Thread
23 | """
24 | def __init__(self, model):
25 | """__init__
26 |
27 | :param model: nn.Module to be defined by the user
28 | """
29 | self.model = model
30 | _LOGGER.info("Setting m_parameter")
31 | self.m_parameter = torch.zeros(ravel_model_params(model).numel() + 2)
32 | super(MessageListener, self).__init__()
33 |
34 | def receive(self, sender, message_code, parameter):
35 | """receive
36 |
37 | :param sender: rank id of the sender
38 | :param message_code: Enum code
39 | :param parameter: the data payload
40 | """
41 | raise NotImplementedError()
42 |
43 | def run(self):
44 | _LOGGER.info("Started Running!")
45 | self.running = True
46 | while self.running:
47 | _LOGGER.info("Polling for message...")
48 | dist.recv(tensor=self.m_parameter)
49 | self.receive(int(self.m_parameter[0].item()),
50 | MessageCode(self.m_parameter[1].item()),
51 | self.m_parameter[2:])
52 |
53 |
54 | def send_message(message_code, payload, dst=0):
55 | """Sends a message to a destination
56 | Concatenates both the message code and destination with the payload into a single tensor and then sends that as a tensor
57 | """
58 | _LOGGER.info("SENDING MESSAGE: {} RANK: {}".format(message_code, dist.get_rank()))
59 | m_parameter = torch.Tensor([dist.get_rank(), message_code.value])
60 | m_parameter = torch.cat((m_parameter, payload))
61 | dist.isend(tensor=m_parameter, dst=dst)
62 |
63 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # distbelief
2 | Implementing Google's DistBelief paper.
3 |
4 | Check out the [blog post](https://jcaip.github.io/Distbelief/)!
5 | ## Installation/Development instructions
6 |
7 | To install the latest stable version (pytorch-distbelief 0.1.0), run `pip install pytorch-distbelief`
8 |
9 | Otherwise, you can build and run the latest master with the instructions below.
10 |
11 | You'll want to create a python3 virtualenv first by running `make setup`, after which, you should run `make install`.
12 |
13 | You'll then be able to use distbelief by importing distbelief
14 | ```python
15 |
16 | from distbelief.optim import DownpourSGD
17 |
18 | optimizer = DownpourSGD(net.parameters(), lr=0.1, n_push=5, n_pull=5, model=net)
19 |
20 | ```
21 |
22 | As an example, you can see our implementation running by using the script provided in `example/main.py`.
23 |
24 | To run a 2-training node setup locally, open up three terminal windows, source the `venv` and then run `make first`, `make second`, and `make server`.
25 | This will begin training AlexNet on CIFAR10 locally with all default params.
26 |
27 | ## Benchmarking
28 |
29 | **NOTE:** we graph the train/test accuracy of each node, hence node1, node2, node3. A better comparison would be to evaluate the parameter server's params and use that value.
30 | However we can see that the accuracy between the three nodes is fairly consistent, and adding an evaluator might put too much stress on our server.
31 |
32 | We scale the learning rate of the nodes to be learning_rate/freq (.03) .
33 |
34 | 
35 |
36 | 
37 |
38 | We used AWS c4.xlarge instances to compare the CPU runs, and a GTX 1060 for the GPU run.
39 |
40 | ## DownpourSGD for PyTorch
41 |
42 | ### Diagram
43 |
44 |
45 |
46 | Here **2** and **3** happen concurrently.
47 |
48 | You can read more about our implementation [here](https://jcaip.github.io/Distbelief/).
49 |
50 | ### References
51 | - [Pytorch distributed tutorial](http://pytorch.org/tutorials/intermediate/dist_tuto.html)
52 | - [Akka implementation of distbelief](http://alexminnaar.com/implementing-the-distbelief-deep-neural-network-training-framework-with-akka.html)
53 | - [gevent actor tutorial](http://sdiehl.github.io/gevent-tutorial/#actors)
54 | - [DistBelief paper](https://static.googleusercontent.com/media/research.google.com/en//archive/large_deep_networks_nips2012.pdf)
55 | - [Analysis of delayed grad problem](https://openreview.net/pdf?id=BJLSGcywG)
56 |
--------------------------------------------------------------------------------
/distbelief/optim/downpour_sgd.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import torch
3 | from torch.optim.optimizer import Optimizer, required
4 | from distbelief.utils.serialization import ravel_model_params, unravel_model_params
5 | from distbelief.utils.messaging import MessageCode, MessageListener, send_message
6 |
7 | _LOGGER = logging.getLogger(__name__)
8 |
9 | class DownpourListener(MessageListener):
10 | """DownpourListener"""
11 | def __init__(self, model):
12 | super().__init__(model)
13 |
14 | def receive(self, sender, message_code, parameter):
15 | """receive parameter updates from the server and reflect them into the client's model."""
16 | _LOGGER.info("Processing message: {}".format(message_code.name))
17 | if message_code == MessageCode.ParameterUpdate:
18 | unravel_model_params(self.model, parameter)
19 |
20 | class DownpourSGD(Optimizer):
21 | """DownpourSGD"""
22 |
23 | def __init__(self, params, lr=required, n_push=required, n_pull=required, model=required):
24 | """__init__
25 |
26 | :param params:
27 | :param lr:
28 | :param freq:
29 | :param model:
30 | """
31 | if lr is not required and lr < 0.0:
32 | raise ValueError("Invalid learning rate: {}".format(lr))
33 |
34 | defaults = dict(lr=lr,)
35 | self.accumulated_gradients = torch.zeros(ravel_model_params(model).size())
36 | self.n_pull = n_pull
37 | self.n_push = n_push
38 |
39 | self.model = model
40 | # this sets the initial model parameters
41 | send_message(MessageCode.ParameterUpdate, ravel_model_params(self.model))
42 | self.idx = 0
43 |
44 | listener = DownpourListener(self.model)
45 | listener.start()
46 |
47 | super(DownpourSGD, self).__init__(params, defaults)
48 |
49 | def step(self, closure=None):
50 | """Performs a single optimization step.
51 |
52 | Arguments:
53 | closure (callable, optional): A closure that reevaluates the model
54 | and returns the loss.
55 | """
56 | loss = None
57 | if closure is not None:
58 | loss = closure()
59 |
60 | # send parameter request every N iterations
61 | if self.idx % self.n_pull == 0:
62 | send_message(MessageCode.ParameterRequest, self.accumulated_gradients) # dummy val
63 |
64 | #get the lr
65 | lr = self.param_groups[0]['lr']
66 | # keep track of accumulated gradients so that we can send
67 | gradients = ravel_model_params(self.model, grads=True)
68 | self.accumulated_gradients.add_(-lr, gradients)
69 |
70 | # send gradient update every N iterations
71 | if self.idx % self.n_push == 0:
72 | send_message(MessageCode.GradientUpdate, self.accumulated_gradients) # send gradients to the server
73 | self.accumulated_gradients.zero_()
74 |
75 | # internal sgd update
76 | for group in self.param_groups:
77 | for p in group['params']:
78 | if p.grad is None:
79 | continue
80 | d_p = p.grad.data
81 | p.data.add_(-group['lr'], d_p)
82 |
83 | self.idx += 1
84 | return loss
85 |
--------------------------------------------------------------------------------
/example/main.py:
--------------------------------------------------------------------------------
1 | import os
2 | import logging
3 | import argparse
4 | import csv
5 | import torch
6 | import torchvision
7 | import torchvision.transforms as transforms
8 | import numpy as np
9 | import torch.nn as nn
10 | import torch.nn.functional as F
11 | import torch.distributed as dist
12 |
13 | from datetime import datetime
14 | from models import LeNet, AlexNet
15 | from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
16 | import pandas as pd
17 |
18 | import torch.optim as optim
19 | from distbelief.optim import DownpourSGD
20 | from distbelief.server import ParameterServer
21 |
22 | def get_dataset(args, transform):
23 | """
24 | :param dataset_name:
25 | :param transform:
26 | :param batch_size:
27 | :return: iterators for the dataset
28 | """
29 | if args.dataset == 'MNIST':
30 | trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
31 | testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
32 | else:
33 | trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
34 | testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
35 |
36 | trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=1)
37 | testloader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, num_workers=1)
38 | return trainloader, testloader
39 |
40 | def main(args):
41 |
42 | logs = []
43 |
44 | transform = transforms.Compose([
45 | transforms.ToTensor(),
46 | transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
47 | ])
48 |
49 | trainloader, testloader = get_dataset(args, transform)
50 | net = AlexNet()
51 |
52 | if args.no_distributed:
53 | optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.0)
54 | else:
55 | optimizer = DownpourSGD(net.parameters(), lr=args.lr, n_push=args.num_push, n_pull=args.num_pull, model=net)
56 | scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=1, verbose=True, min_lr=1e-3)
57 |
58 | # train
59 | net.train()
60 | if args.cuda:
61 | net = net.cuda()
62 |
63 | for epoch in range(args.epochs): # loop over the dataset multiple times
64 | print("Training for epoch {}".format(epoch))
65 | for i, data in enumerate(trainloader, 0):
66 | # get the inputs
67 | inputs, labels = data
68 |
69 | if args.cuda:
70 | inputs, labels = inputs.cuda(), labels.cuda()
71 |
72 | # zero the parameter gradients
73 | optimizer.zero_grad()
74 | # forward + backward + optimize
75 | outputs = net(inputs)
76 | loss = F.cross_entropy(outputs, labels)
77 | loss.backward()
78 | optimizer.step()
79 |
80 | _, predicted = torch.max(outputs, 1)
81 | accuracy = accuracy_score(predicted, labels)
82 |
83 | log_obj = {
84 | 'timestamp': datetime.now(),
85 | 'iteration': i,
86 | 'training_loss': loss.item(),
87 | 'training_accuracy': accuracy,
88 | }
89 |
90 | if i % args.log_interval == 0 and i > 0: # print every n mini-batches
91 | log_obj['test_loss'], log_obj['test_accuracy']= evaluate( net, testloader, args)
92 | print("Timestamp: {timestamp} | "
93 | "Iteration: {iteration:6} | "
94 | "Loss: {training_loss:6.4f} | "
95 | "Accuracy : {training_accuracy:6.4f} | "
96 | "Test Loss: {test_loss:6.4f} | "
97 | "Test Accuracy: {test_accuracy:6.4f}".format(**log_obj))
98 |
99 | logs.append(log_obj)
100 |
101 | val_loss, val_accuracy = evaluate(net, testloader, args, verbose=True)
102 | scheduler.step(val_loss)
103 |
104 | df = pd.DataFrame(logs)
105 | print(df)
106 | if args.no_distributed:
107 | if args.cuda:
108 | df.to_csv('log/gpu.csv', index_label='index')
109 | else:
110 | df.to_csv('log/single.csv', index_label='index')
111 | else:
112 | df.to_csv('log/node{}.csv'.format(dist.get_rank()), index_label='index')
113 |
114 | print('Finished Training')
115 |
116 |
117 | def evaluate(net, testloader, args, verbose=False):
118 | if args.dataset == 'MNIST':
119 | classes = [str(i) for i in range(10)]
120 | else:
121 | classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
122 | net.eval()
123 |
124 | test_loss = 0
125 | with torch.no_grad():
126 | for data in testloader:
127 | images, labels = data
128 |
129 | if args.cuda:
130 | images, labels = images.cuda(), labels.cuda()
131 |
132 | outputs = net(images)
133 | _, predicted = torch.max(outputs, 1)
134 | test_loss += F.cross_entropy(outputs, labels).item()
135 |
136 | test_accuracy = accuracy_score(predicted, labels)
137 | if verbose:
138 | print('Loss: {:.3f}'.format(test_loss))
139 | print('Accuracy: {:.3f}'.format(test_accuracy))
140 | print(classification_report(predicted, labels, target_names=classes))
141 |
142 | return test_loss, test_accuracy
143 |
144 | def init_server():
145 | model = AlexNet()
146 | server = ParameterServer(model=model)
147 | server.run()
148 |
149 | if __name__ == "__main__":
150 | parser = argparse.ArgumentParser(description='Distbelief training example')
151 | parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)')
152 | parser.add_argument('--test-batch-size', type=int, default=10000, metavar='N', help='input batch size for testing (default: 10000)')
153 | parser.add_argument('--epochs', type=int, default=20, metavar='N', help='number of epochs to train (default: 20)')
154 | parser.add_argument('--lr', type=float, default=0.003, metavar='LR', help='learning rate (default: 0.1)')
155 | parser.add_argument('--num-pull', type=int, default=5, metavar='N', help='how often to pull params (default: 5)')
156 | parser.add_argument('--num-push', type=int, default=5, metavar='N', help='how often to push grads (default: 5)')
157 | parser.add_argument('--cuda', action='store_true', default=False, help='use CUDA for training')
158 | parser.add_argument('--log-interval', type=int, default=20, metavar='N', help='how often to evaluate and print out')
159 | parser.add_argument('--no-distributed', action='store_true', default=False, help='whether to use DownpourSGD or normal SGD')
160 | parser.add_argument('--rank', type=int, metavar='N', help='rank of current process (0 is server, 1+ is training node)')
161 | parser.add_argument('--world-size', type=int, default=3, metavar='N', help='size of the world')
162 | parser.add_argument('--server', action='store_true', default=False, help='server node?')
163 | parser.add_argument('--dataset', type=str, default='CIFAR10', help='which dataset to train on')
164 | parser.add_argument('--master', type=str, default='localhost', help='ip address of the master (server) node')
165 | parser.add_argument('--port', type=str, default='29500', help='port on master node to communicate with')
166 | args = parser.parse_args()
167 | print(args)
168 |
169 | if not args.no_distributed:
170 | """ Initialize the distributed environment.
171 | Server and clients must call this as an entry point.
172 | """
173 | os.environ['MASTER_ADDR'] = args.master
174 | os.environ['MASTER_PORT'] = args.port
175 | dist.init_process_group('tcp', rank=args.rank, world_size=args.world_size)
176 | if args.server:
177 | init_server()
178 | main(args)
179 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/docs/no_min_lr/first.log:
--------------------------------------------------------------------------------
1 | Files already downloaded and verified
2 | Files already downloaded and verified
3 | Epoch: 0, Iteration: 0 loss: 0.115
4 | Epoch: 0, Iteration: 20 loss: 2.303
5 | Epoch: 0, Iteration: 40 loss: 2.302
6 | Epoch: 0, Iteration: 60 loss: 2.302
7 | Epoch: 0, Iteration: 80 loss: 2.301
8 | Epoch: 0, Iteration: 100 loss: 2.301
9 | Epoch: 0, Iteration: 120 loss: 2.300
10 | Epoch: 0, Iteration: 140 loss: 2.298
11 | Epoch: 0, Iteration: 160 loss: 2.290
12 | Epoch: 0, Iteration: 180 loss: 2.263
13 | Epoch: 0, Iteration: 200 loss: 2.177
14 | Epoch: 0, Iteration: 220 loss: 2.158
15 | Epoch: 0, Iteration: 240 loss: 2.173
16 | Epoch: 0, Iteration: 260 loss: 2.147
17 | Epoch: 0, Iteration: 280 loss: 2.099
18 | Epoch: 0, Iteration: 300 loss: 2.102
19 | Epoch: 0, Iteration: 320 loss: 2.174
20 | Epoch: 0, Iteration: 340 loss: 2.217
21 | Epoch: 0, Iteration: 360 loss: 2.149
22 | Epoch: 0, Iteration: 380 loss: 2.102
23 | Epoch: 0, Iteration: 400 loss: 2.096
24 | Epoch: 0, Iteration: 420 loss: 2.212
25 | Epoch: 0, Iteration: 440 loss: 2.194
26 | Epoch: 0, Iteration: 460 loss: 2.116
27 | Epoch: 0, Iteration: 480 loss: 2.128
28 | Epoch: 0, Iteration: 500 loss: 2.103
29 | Epoch: 0, Iteration: 520 loss: 2.151
30 | Epoch: 0, Iteration: 540 loss: 2.161
31 | Epoch: 0, Iteration: 560 loss: 2.059
32 | Epoch: 0, Iteration: 580 loss: 2.080
33 | Epoch: 0, Iteration: 600 loss: 2.178
34 | Epoch: 0, Iteration: 620 loss: 2.140
35 | Epoch: 0, Iteration: 640 loss: 2.012
36 | Epoch: 0, Iteration: 660 loss: 2.040
37 | Epoch: 0, Iteration: 680 loss: 1.978
38 | Epoch: 0, Iteration: 700 loss: 2.053
39 | Epoch: 0, Iteration: 720 loss: 2.068
40 | Epoch: 0, Iteration: 740 loss: 2.082
41 | Epoch: 0, Iteration: 760 loss: 2.138
42 | Epoch: 0, Iteration: 780 loss: 1.964
43 | Loss: 2.256
44 | Accuracy of the network on the 10000 test images: 22 %
45 | Accuracy of plane : 37 %
46 | Accuracy of car : 0 %
47 | Accuracy of bird : 24 %
48 | Accuracy of cat : 0 %
49 | Accuracy of deer : 0 %
50 | Accuracy of dog : 79 %
51 | Accuracy of frog : 0 %
52 | Accuracy of horse : 31 %
53 | Accuracy of ship : 41 %
54 | Accuracy of truck : 16 %
55 | Epoch: 1, Iteration: 0 loss: 0.113
56 | Epoch: 1, Iteration: 20 loss: 1.982
57 | Epoch: 1, Iteration: 40 loss: 1.984
58 | Epoch: 1, Iteration: 60 loss: 2.033
59 | Epoch: 1, Iteration: 80 loss: 2.000
60 | Epoch: 1, Iteration: 100 loss: 1.986
61 | Epoch: 1, Iteration: 120 loss: 1.988
62 | Epoch: 1, Iteration: 140 loss: 2.003
63 | Epoch: 1, Iteration: 160 loss: 1.976
64 | Epoch: 1, Iteration: 180 loss: 1.894
65 | Epoch: 1, Iteration: 200 loss: 1.952
66 | Epoch: 1, Iteration: 220 loss: 1.953
67 | Epoch: 1, Iteration: 240 loss: 1.972
68 | Epoch: 1, Iteration: 260 loss: 1.927
69 | Epoch: 1, Iteration: 280 loss: 1.937
70 | Epoch: 1, Iteration: 300 loss: 1.919
71 | Epoch: 1, Iteration: 320 loss: 1.935
72 | Epoch: 1, Iteration: 340 loss: 1.918
73 | Epoch: 1, Iteration: 360 loss: 1.879
74 | Epoch: 1, Iteration: 380 loss: 1.897
75 | Epoch: 1, Iteration: 400 loss: 1.944
76 | Epoch: 1, Iteration: 420 loss: 1.929
77 | Epoch: 1, Iteration: 440 loss: 1.913
78 | Epoch: 1, Iteration: 460 loss: 1.943
79 | Epoch: 1, Iteration: 480 loss: 1.937
80 | Epoch: 1, Iteration: 500 loss: 1.896
81 | Epoch: 1, Iteration: 520 loss: 1.858
82 | Epoch: 1, Iteration: 540 loss: 1.808
83 | Epoch: 1, Iteration: 560 loss: 1.883
84 | Epoch: 1, Iteration: 580 loss: 1.853
85 | Epoch: 1, Iteration: 600 loss: 1.849
86 | Epoch: 1, Iteration: 620 loss: 1.845
87 | Epoch: 1, Iteration: 640 loss: 1.933
88 | Epoch: 1, Iteration: 660 loss: 1.794
89 | Epoch: 1, Iteration: 680 loss: 1.871
90 | Epoch: 1, Iteration: 700 loss: 1.837
91 | Epoch: 1, Iteration: 720 loss: 1.822
92 | Epoch: 1, Iteration: 740 loss: 1.820
93 | Epoch: 1, Iteration: 760 loss: 1.752
94 | Epoch: 1, Iteration: 780 loss: 1.907
95 | Loss: 1.773
96 | Accuracy of the network on the 10000 test images: 32 %
97 | Accuracy of plane : 8 %
98 | Accuracy of car : 72 %
99 | Accuracy of bird : 0 %
100 | Accuracy of cat : 45 %
101 | Accuracy of deer : 16 %
102 | Accuracy of dog : 35 %
103 | Accuracy of frog : 14 %
104 | Accuracy of horse : 48 %
105 | Accuracy of ship : 74 %
106 | Accuracy of truck : 21 %
107 | Epoch: 2, Iteration: 0 loss: 0.092
108 | Epoch: 2, Iteration: 20 loss: 1.783
109 | Epoch: 2, Iteration: 40 loss: 1.830
110 | Epoch: 2, Iteration: 60 loss: 1.820
111 | Epoch: 2, Iteration: 80 loss: 1.793
112 | Epoch: 2, Iteration: 100 loss: 1.822
113 | Epoch: 2, Iteration: 120 loss: 1.797
114 | Epoch: 2, Iteration: 140 loss: 1.897
115 | Epoch: 2, Iteration: 160 loss: 1.761
116 | Epoch: 2, Iteration: 180 loss: 1.880
117 | Epoch: 2, Iteration: 200 loss: 1.827
118 | Epoch: 2, Iteration: 220 loss: 1.903
119 | Epoch: 2, Iteration: 240 loss: 1.948
120 | Epoch: 2, Iteration: 260 loss: 1.830
121 | Epoch: 2, Iteration: 280 loss: 1.780
122 | Epoch: 2, Iteration: 300 loss: 1.839
123 | Epoch: 2, Iteration: 320 loss: 1.845
124 | Epoch: 2, Iteration: 340 loss: 1.858
125 | Epoch: 2, Iteration: 360 loss: 1.799
126 | Epoch: 2, Iteration: 380 loss: 1.750
127 | Epoch: 2, Iteration: 400 loss: 1.805
128 | Epoch: 2, Iteration: 420 loss: 1.807
129 | Epoch: 2, Iteration: 440 loss: 1.712
130 | Epoch: 2, Iteration: 460 loss: 1.677
131 | Epoch: 2, Iteration: 480 loss: 1.672
132 | Epoch: 2, Iteration: 500 loss: 1.696
133 | Epoch: 2, Iteration: 520 loss: 1.676
134 | Epoch: 2, Iteration: 540 loss: 1.654
135 | Epoch: 2, Iteration: 560 loss: 1.626
136 | Epoch: 2, Iteration: 580 loss: 1.710
137 | Epoch: 2, Iteration: 600 loss: 1.691
138 | Epoch: 2, Iteration: 620 loss: 1.696
139 | Epoch: 2, Iteration: 640 loss: 1.682
140 | Epoch: 2, Iteration: 660 loss: 1.696
141 | Epoch: 2, Iteration: 680 loss: 1.651
142 | Epoch: 2, Iteration: 700 loss: 1.732
143 | Epoch: 2, Iteration: 720 loss: 1.723
144 | Epoch: 2, Iteration: 740 loss: 1.690
145 | Epoch: 2, Iteration: 760 loss: 1.676
146 | Epoch: 2, Iteration: 780 loss: 1.678
147 | Loss: 1.605
148 | Accuracy of the network on the 10000 test images: 42 %
149 | Accuracy of plane : 64 %
150 | Accuracy of car : 24 %
151 | Accuracy of bird : 27 %
152 | Accuracy of cat : 23 %
153 | Accuracy of deer : 23 %
154 | Accuracy of dog : 50 %
155 | Accuracy of frog : 55 %
156 | Accuracy of horse : 60 %
157 | Accuracy of ship : 58 %
158 | Accuracy of truck : 38 %
159 | Epoch: 3, Iteration: 0 loss: 0.082
160 | Epoch: 3, Iteration: 20 loss: 1.708
161 | Epoch: 3, Iteration: 40 loss: 1.733
162 | Epoch: 3, Iteration: 60 loss: 1.810
163 | Epoch: 3, Iteration: 80 loss: 1.855
164 | Epoch: 3, Iteration: 100 loss: 1.678
165 | Epoch: 3, Iteration: 120 loss: 1.794
166 | Epoch: 3, Iteration: 140 loss: 1.848
167 | Epoch: 3, Iteration: 160 loss: 1.771
168 | Epoch: 3, Iteration: 180 loss: 1.675
169 | Epoch: 3, Iteration: 200 loss: 1.618
170 | Epoch: 3, Iteration: 220 loss: 1.613
171 | Epoch: 3, Iteration: 240 loss: 1.705
172 | Epoch: 3, Iteration: 260 loss: 1.635
173 | Epoch: 3, Iteration: 280 loss: 1.595
174 | Epoch: 3, Iteration: 300 loss: 1.576
175 | Epoch: 3, Iteration: 320 loss: 1.593
176 | Epoch: 3, Iteration: 340 loss: 1.564
177 | Epoch: 3, Iteration: 360 loss: 1.517
178 | Epoch: 3, Iteration: 380 loss: 1.608
179 | Epoch: 3, Iteration: 400 loss: 1.602
180 | Epoch: 3, Iteration: 420 loss: 1.584
181 | Epoch: 3, Iteration: 440 loss: 1.598
182 | Epoch: 3, Iteration: 460 loss: 1.559
183 | Epoch: 3, Iteration: 480 loss: 1.496
184 | Epoch: 3, Iteration: 500 loss: 1.542
185 | Epoch: 3, Iteration: 520 loss: 1.538
186 | Epoch: 3, Iteration: 540 loss: 1.429
187 | Epoch: 3, Iteration: 560 loss: 1.507
188 | Epoch: 3, Iteration: 580 loss: 1.528
189 | Epoch: 3, Iteration: 600 loss: 1.527
190 | Epoch: 3, Iteration: 620 loss: 1.519
191 | Epoch: 3, Iteration: 640 loss: 1.547
192 | Epoch: 3, Iteration: 660 loss: 1.530
193 | Epoch: 3, Iteration: 680 loss: 1.580
194 | Epoch: 3, Iteration: 700 loss: 1.542
195 | Epoch: 3, Iteration: 720 loss: 1.655
196 | Epoch: 3, Iteration: 740 loss: 1.523
197 | Epoch: 3, Iteration: 760 loss: 1.617
198 | Epoch: 3, Iteration: 780 loss: 1.591
199 | Loss: 1.621
200 | Accuracy of the network on the 10000 test images: 37 %
201 | Accuracy of plane : 57 %
202 | Accuracy of car : 64 %
203 | Accuracy of bird : 25 %
204 | Accuracy of cat : 50 %
205 | Accuracy of deer : 27 %
206 | Accuracy of dog : 54 %
207 | Accuracy of frog : 12 %
208 | Accuracy of horse : 9 %
209 | Accuracy of ship : 84 %
210 | Accuracy of truck : 5 %
211 | Epoch: 4, Iteration: 0 loss: 0.078
212 | Epoch: 4, Iteration: 20 loss: 1.631
213 | Epoch: 4, Iteration: 40 loss: 1.547
214 | Epoch: 4, Iteration: 60 loss: 1.434
215 | Epoch: 4, Iteration: 80 loss: 1.406
216 | Epoch: 4, Iteration: 100 loss: 1.409
217 | Epoch: 4, Iteration: 120 loss: 1.450
218 | Epoch: 4, Iteration: 140 loss: 1.577
219 | Epoch: 4, Iteration: 160 loss: 1.458
220 | Epoch: 4, Iteration: 180 loss: 1.472
221 | Epoch: 4, Iteration: 200 loss: 1.391
222 | Epoch: 4, Iteration: 220 loss: 1.436
223 | Epoch: 4, Iteration: 240 loss: 1.487
224 | Epoch: 4, Iteration: 260 loss: 1.442
225 | Epoch: 4, Iteration: 280 loss: 1.449
226 | Epoch: 4, Iteration: 300 loss: 1.420
227 | Epoch: 4, Iteration: 320 loss: 1.410
228 | Epoch: 4, Iteration: 340 loss: 1.403
229 | Epoch: 4, Iteration: 360 loss: 1.427
230 | Epoch: 4, Iteration: 380 loss: 1.448
231 | Epoch: 4, Iteration: 400 loss: 1.437
232 | Epoch: 4, Iteration: 420 loss: 1.403
233 | Epoch: 4, Iteration: 440 loss: 1.403
234 | Epoch: 4, Iteration: 460 loss: 1.364
235 | Epoch: 4, Iteration: 480 loss: 1.357
236 | Epoch: 4, Iteration: 500 loss: 1.399
237 | Epoch: 4, Iteration: 520 loss: 1.460
238 | Epoch: 4, Iteration: 540 loss: 1.385
239 | Epoch: 4, Iteration: 560 loss: 1.384
240 | Epoch: 4, Iteration: 580 loss: 1.358
241 | Epoch: 4, Iteration: 600 loss: 1.477
242 | Epoch: 4, Iteration: 620 loss: 1.477
243 | Epoch: 4, Iteration: 640 loss: 1.447
244 | Epoch: 4, Iteration: 660 loss: 1.343
245 | Epoch: 4, Iteration: 680 loss: 1.318
246 | Epoch: 4, Iteration: 700 loss: 1.351
247 | Epoch: 4, Iteration: 720 loss: 1.392
248 | Epoch: 4, Iteration: 740 loss: 1.380
249 | Epoch: 4, Iteration: 760 loss: 1.366
250 | Epoch: 4, Iteration: 780 loss: 1.317
251 | Loss: 1.293
252 | Accuracy of the network on the 10000 test images: 53 %
253 | Accuracy of plane : 53 %
254 | Accuracy of car : 68 %
255 | Accuracy of bird : 41 %
256 | Accuracy of cat : 43 %
257 | Accuracy of deer : 25 %
258 | Accuracy of dog : 35 %
259 | Accuracy of frog : 80 %
260 | Accuracy of horse : 59 %
261 | Accuracy of ship : 68 %
262 | Accuracy of truck : 66 %
263 | Epoch: 5, Iteration: 0 loss: 0.067
264 | Epoch: 5, Iteration: 20 loss: 1.354
265 | Epoch: 5, Iteration: 40 loss: 1.315
266 | Epoch: 5, Iteration: 60 loss: 1.290
267 | Epoch: 5, Iteration: 80 loss: 1.347
268 | Epoch: 5, Iteration: 100 loss: 1.354
269 | Epoch: 5, Iteration: 120 loss: 1.428
270 | Epoch: 5, Iteration: 140 loss: 1.356
271 | Epoch: 5, Iteration: 160 loss: 1.363
272 | Epoch: 5, Iteration: 180 loss: 1.389
273 | Epoch: 5, Iteration: 200 loss: 1.408
274 | Epoch: 5, Iteration: 220 loss: 1.365
275 | Epoch: 5, Iteration: 240 loss: 1.329
276 | Epoch: 5, Iteration: 260 loss: 1.309
277 | Epoch: 5, Iteration: 280 loss: 1.393
278 | Epoch: 5, Iteration: 300 loss: 1.313
279 | Epoch: 5, Iteration: 320 loss: 1.298
280 | Epoch: 5, Iteration: 340 loss: 1.395
281 | Epoch: 5, Iteration: 360 loss: 1.329
282 | Epoch: 5, Iteration: 380 loss: 1.240
283 | Epoch: 5, Iteration: 400 loss: 1.295
284 | Epoch: 5, Iteration: 420 loss: 1.237
285 | Epoch: 5, Iteration: 440 loss: 1.267
286 | Epoch: 5, Iteration: 460 loss: 1.318
287 | Epoch: 5, Iteration: 480 loss: 1.175
288 | Epoch: 5, Iteration: 500 loss: 1.256
289 | Epoch: 5, Iteration: 520 loss: 1.243
290 | Epoch: 5, Iteration: 540 loss: 1.319
291 | Epoch: 5, Iteration: 560 loss: 1.240
292 | Epoch: 5, Iteration: 580 loss: 1.259
293 | Epoch: 5, Iteration: 600 loss: 1.267
294 | Epoch: 5, Iteration: 620 loss: 1.321
295 | Epoch: 5, Iteration: 640 loss: 1.351
296 | Epoch: 5, Iteration: 660 loss: 1.307
297 | Epoch: 5, Iteration: 680 loss: 1.290
298 | Epoch: 5, Iteration: 700 loss: 1.241
299 | Epoch: 5, Iteration: 720 loss: 1.270
300 | Epoch: 5, Iteration: 740 loss: 1.241
301 | Epoch: 5, Iteration: 760 loss: 1.276
302 | Epoch: 5, Iteration: 780 loss: 1.239
303 | Loss: 1.539
304 | Accuracy of the network on the 10000 test images: 45 %
305 | Accuracy of plane : 51 %
306 | Accuracy of car : 8 %
307 | Accuracy of bird : 45 %
308 | Accuracy of cat : 6 %
309 | Accuracy of deer : 32 %
310 | Accuracy of dog : 66 %
311 | Accuracy of frog : 16 %
312 | Accuracy of horse : 71 %
313 | Accuracy of ship : 82 %
314 | Accuracy of truck : 65 %
315 | Epoch: 6, Iteration: 0 loss: 0.077
316 | Epoch: 6, Iteration: 20 loss: 1.317
317 | Epoch: 6, Iteration: 40 loss: 1.283
318 | Epoch: 6, Iteration: 60 loss: 1.202
319 | Epoch: 6, Iteration: 80 loss: 1.204
320 | Epoch: 6, Iteration: 100 loss: 1.209
321 | Epoch: 6, Iteration: 120 loss: 1.199
322 | Epoch: 6, Iteration: 140 loss: 1.304
323 | Epoch: 6, Iteration: 160 loss: 1.231
324 | Epoch: 6, Iteration: 180 loss: 1.139
325 | Epoch: 6, Iteration: 200 loss: 1.185
326 | Epoch: 6, Iteration: 220 loss: 1.230
327 | Epoch: 6, Iteration: 240 loss: 1.217
328 | Epoch: 6, Iteration: 260 loss: 1.163
329 | Epoch: 6, Iteration: 280 loss: 1.159
330 | Epoch: 6, Iteration: 300 loss: 1.159
331 | Epoch: 6, Iteration: 320 loss: 1.156
332 | Epoch: 6, Iteration: 340 loss: 1.247
333 | Epoch: 6, Iteration: 360 loss: 1.252
334 | Epoch: 6, Iteration: 380 loss: 1.182
335 | Epoch: 6, Iteration: 400 loss: 1.182
336 | Epoch: 6, Iteration: 420 loss: 1.146
337 | Epoch: 6, Iteration: 440 loss: 1.188
338 | Epoch: 6, Iteration: 460 loss: 1.223
339 | Epoch: 6, Iteration: 480 loss: 1.165
340 | Epoch: 6, Iteration: 500 loss: 1.206
341 | Epoch: 6, Iteration: 520 loss: 1.163
342 | Epoch: 6, Iteration: 540 loss: 1.116
343 | Epoch: 6, Iteration: 560 loss: 1.162
344 | Epoch: 6, Iteration: 580 loss: 1.183
345 | Epoch: 6, Iteration: 600 loss: 1.170
346 | Epoch: 6, Iteration: 620 loss: 1.189
347 | Epoch: 6, Iteration: 640 loss: 1.188
348 | Epoch: 6, Iteration: 660 loss: 1.143
349 | Epoch: 6, Iteration: 680 loss: 1.124
350 | Epoch: 6, Iteration: 700 loss: 1.079
351 | Epoch: 6, Iteration: 720 loss: 1.169
352 | Epoch: 6, Iteration: 740 loss: 1.164
353 | Epoch: 6, Iteration: 760 loss: 1.083
354 | Epoch: 6, Iteration: 780 loss: 1.124
355 | Loss: 1.336
356 | Accuracy of the network on the 10000 test images: 51 %
357 | Accuracy of plane : 85 %
358 | Accuracy of car : 74 %
359 | Accuracy of bird : 31 %
360 | Accuracy of cat : 42 %
361 | Accuracy of deer : 16 %
362 | Accuracy of dog : 52 %
363 | Accuracy of frog : 39 %
364 | Accuracy of horse : 81 %
365 | Accuracy of ship : 37 %
366 | Accuracy of truck : 62 %
367 | Epoch 6: reducing learning rate of group 0 to 1.0000e-02.
368 | Epoch: 7, Iteration: 0 loss: 0.060
369 | Epoch: 7, Iteration: 20 loss: 1.291
370 | Epoch: 7, Iteration: 40 loss: 1.127
371 | Epoch: 7, Iteration: 60 loss: 0.935
372 | Epoch: 7, Iteration: 80 loss: 0.923
373 | Epoch: 7, Iteration: 100 loss: 0.917
374 | Epoch: 7, Iteration: 120 loss: 0.916
375 | Epoch: 7, Iteration: 140 loss: 0.835
376 | Epoch: 7, Iteration: 160 loss: 0.850
377 | Epoch: 7, Iteration: 180 loss: 0.871
378 | Epoch: 7, Iteration: 200 loss: 0.861
379 | Epoch: 7, Iteration: 220 loss: 0.843
380 | Epoch: 7, Iteration: 240 loss: 0.877
381 | Epoch: 7, Iteration: 260 loss: 0.817
382 | Epoch: 7, Iteration: 280 loss: 0.832
383 | Epoch: 7, Iteration: 300 loss: 0.775
384 | Epoch: 7, Iteration: 320 loss: 0.830
385 | Epoch: 7, Iteration: 340 loss: 0.795
386 | Epoch: 7, Iteration: 360 loss: 0.794
387 | Epoch: 7, Iteration: 380 loss: 0.789
388 | Epoch: 7, Iteration: 400 loss: 0.860
389 | Epoch: 7, Iteration: 420 loss: 0.790
390 | Epoch: 7, Iteration: 440 loss: 0.781
391 | Epoch: 7, Iteration: 460 loss: 0.812
392 | Epoch: 7, Iteration: 480 loss: 0.759
393 | Epoch: 7, Iteration: 500 loss: 0.742
394 | Epoch: 7, Iteration: 520 loss: 0.832
395 | Epoch: 7, Iteration: 540 loss: 0.815
396 | Epoch: 7, Iteration: 560 loss: 0.809
397 | Epoch: 7, Iteration: 580 loss: 0.747
398 | Epoch: 7, Iteration: 600 loss: 0.819
399 | Epoch: 7, Iteration: 620 loss: 0.794
400 | Epoch: 7, Iteration: 640 loss: 0.800
401 | Epoch: 7, Iteration: 660 loss: 0.793
402 | Epoch: 7, Iteration: 680 loss: 0.732
403 | Epoch: 7, Iteration: 700 loss: 0.779
404 | Epoch: 7, Iteration: 720 loss: 0.771
405 | Epoch: 7, Iteration: 740 loss: 0.736
406 | Epoch: 7, Iteration: 760 loss: 0.801
407 | Epoch: 7, Iteration: 780 loss: 0.774
408 | Loss: 1.079
409 | Accuracy of the network on the 10000 test images: 61 %
410 | Accuracy of plane : 73 %
411 | Accuracy of car : 74 %
412 | Accuracy of bird : 55 %
413 | Accuracy of cat : 49 %
414 | Accuracy of deer : 41 %
415 | Accuracy of dog : 49 %
416 | Accuracy of frog : 75 %
417 | Accuracy of horse : 62 %
418 | Accuracy of ship : 72 %
419 | Accuracy of truck : 69 %
420 | Epoch: 8, Iteration: 0 loss: 0.044
421 | Epoch: 8, Iteration: 20 loss: 0.751
422 | Epoch: 8, Iteration: 40 loss: 0.745
423 | Epoch: 8, Iteration: 60 loss: 0.745
424 | Epoch: 8, Iteration: 80 loss: 0.722
425 | Epoch: 8, Iteration: 100 loss: 0.756
426 | Epoch: 8, Iteration: 120 loss: 0.757
427 | Epoch: 8, Iteration: 140 loss: 0.721
428 | Epoch: 8, Iteration: 160 loss: 0.725
429 | Epoch: 8, Iteration: 180 loss: 0.721
430 | Epoch: 8, Iteration: 200 loss: 0.747
431 | Epoch: 8, Iteration: 220 loss: 0.699
432 | Epoch: 8, Iteration: 240 loss: 0.684
433 | Epoch: 8, Iteration: 260 loss: 0.665
434 | Epoch: 8, Iteration: 280 loss: 0.731
435 | Epoch: 8, Iteration: 300 loss: 0.703
436 | Epoch: 8, Iteration: 320 loss: 0.717
437 | Epoch: 8, Iteration: 340 loss: 0.727
438 | Epoch: 8, Iteration: 360 loss: 0.743
439 | Epoch: 8, Iteration: 380 loss: 0.775
440 | Epoch: 8, Iteration: 400 loss: 0.648
441 | Epoch: 8, Iteration: 420 loss: 0.720
442 | Epoch: 8, Iteration: 440 loss: 0.750
443 | Epoch: 8, Iteration: 460 loss: 0.739
444 | Epoch: 8, Iteration: 480 loss: 0.716
445 | Epoch: 8, Iteration: 500 loss: 0.643
446 | Epoch: 8, Iteration: 520 loss: 0.721
447 | Epoch: 8, Iteration: 540 loss: 0.663
448 | Epoch: 8, Iteration: 560 loss: 0.756
449 | Epoch: 8, Iteration: 580 loss: 0.748
450 | Epoch: 8, Iteration: 600 loss: 0.704
451 | Epoch: 8, Iteration: 620 loss: 0.687
452 | Epoch: 8, Iteration: 640 loss: 0.666
453 | Epoch: 8, Iteration: 660 loss: 0.666
454 | Epoch: 8, Iteration: 680 loss: 0.701
455 | Epoch: 8, Iteration: 700 loss: 0.717
456 | Epoch: 8, Iteration: 720 loss: 0.741
457 | Epoch: 8, Iteration: 740 loss: 0.727
458 | Epoch: 8, Iteration: 760 loss: 0.694
459 | Epoch: 8, Iteration: 780 loss: 0.720
460 | Loss: 1.085
461 | Accuracy of the network on the 10000 test images: 64 %
462 | Accuracy of plane : 75 %
463 | Accuracy of car : 78 %
464 | Accuracy of bird : 60 %
465 | Accuracy of cat : 45 %
466 | Accuracy of deer : 49 %
467 | Accuracy of dog : 55 %
468 | Accuracy of frog : 76 %
469 | Accuracy of horse : 62 %
470 | Accuracy of ship : 79 %
471 | Accuracy of truck : 65 %
472 | Epoch: 9, Iteration: 0 loss: 0.040
473 | Epoch: 9, Iteration: 20 loss: 0.636
474 | Epoch: 9, Iteration: 40 loss: 0.729
475 | Epoch: 9, Iteration: 60 loss: 0.639
476 | Epoch: 9, Iteration: 80 loss: 0.625
477 | Epoch: 9, Iteration: 100 loss: 0.628
478 | Epoch: 9, Iteration: 120 loss: 0.583
479 | Epoch: 9, Iteration: 140 loss: 0.628
480 | Epoch: 9, Iteration: 160 loss: 0.652
481 | Epoch: 9, Iteration: 180 loss: 0.638
482 | Epoch: 9, Iteration: 200 loss: 0.678
483 | Epoch: 9, Iteration: 220 loss: 0.656
484 | Epoch: 9, Iteration: 240 loss: 0.687
485 | Epoch: 9, Iteration: 260 loss: 0.580
486 | Epoch: 9, Iteration: 280 loss: 0.670
487 | Epoch: 9, Iteration: 300 loss: 0.636
488 | Epoch: 9, Iteration: 320 loss: 0.675
489 | Epoch: 9, Iteration: 340 loss: 0.633
490 | Epoch: 9, Iteration: 360 loss: 0.650
491 | Epoch: 9, Iteration: 380 loss: 0.649
492 | Epoch: 9, Iteration: 400 loss: 0.636
493 | Epoch: 9, Iteration: 420 loss: 0.658
494 | Epoch: 9, Iteration: 440 loss: 0.612
495 | Epoch: 9, Iteration: 460 loss: 0.643
496 | Epoch: 9, Iteration: 480 loss: 0.622
497 | Epoch: 9, Iteration: 500 loss: 0.631
498 | Epoch: 9, Iteration: 520 loss: 0.616
499 | Epoch: 9, Iteration: 540 loss: 0.618
500 | Epoch: 9, Iteration: 560 loss: 0.656
501 | Epoch: 9, Iteration: 580 loss: 0.623
502 | Epoch: 9, Iteration: 600 loss: 0.670
503 | Epoch: 9, Iteration: 620 loss: 0.627
504 | Epoch: 9, Iteration: 640 loss: 0.613
505 | Epoch: 9, Iteration: 660 loss: 0.613
506 | Epoch: 9, Iteration: 680 loss: 0.577
507 | Epoch: 9, Iteration: 700 loss: 0.695
508 | Epoch: 9, Iteration: 720 loss: 0.625
509 | Epoch: 9, Iteration: 740 loss: 0.662
510 | Epoch: 9, Iteration: 760 loss: 0.679
511 | Epoch: 9, Iteration: 780 loss: 0.627
512 | Loss: 1.094
513 | Accuracy of the network on the 10000 test images: 62 %
514 | Accuracy of plane : 73 %
515 | Accuracy of car : 74 %
516 | Accuracy of bird : 50 %
517 | Accuracy of cat : 49 %
518 | Accuracy of deer : 50 %
519 | Accuracy of dog : 52 %
520 | Accuracy of frog : 71 %
521 | Accuracy of horse : 64 %
522 | Accuracy of ship : 79 %
523 | Accuracy of truck : 64 %
524 | Epoch 9: reducing learning rate of group 0 to 1.0000e-03.
525 | Epoch: 10, Iteration: 0 loss: 0.030
526 | Epoch: 10, Iteration: 20 loss: 0.587
527 | Epoch: 10, Iteration: 40 loss: 0.563
528 | Epoch: 10, Iteration: 60 loss: 0.563
529 | Epoch: 10, Iteration: 80 loss: 0.593
530 | Epoch: 10, Iteration: 100 loss: 0.597
531 | Epoch: 10, Iteration: 120 loss: 0.568
532 | Epoch: 10, Iteration: 140 loss: 0.597
533 | Epoch: 10, Iteration: 160 loss: 0.559
534 | Epoch: 10, Iteration: 180 loss: 0.564
535 | Epoch: 10, Iteration: 200 loss: 0.614
536 | Epoch: 10, Iteration: 220 loss: 0.579
537 | Epoch: 10, Iteration: 240 loss: 0.577
538 | Epoch: 10, Iteration: 260 loss: 0.553
539 | Epoch: 10, Iteration: 280 loss: 0.574
540 | Epoch: 10, Iteration: 300 loss: 0.544
541 | Epoch: 10, Iteration: 320 loss: 0.592
542 | Epoch: 10, Iteration: 340 loss: 0.525
543 | Epoch: 10, Iteration: 360 loss: 0.556
544 | Epoch: 10, Iteration: 380 loss: 0.608
545 | Epoch: 10, Iteration: 400 loss: 0.581
546 | Epoch: 10, Iteration: 420 loss: 0.549
547 | Epoch: 10, Iteration: 440 loss: 0.525
548 | Epoch: 10, Iteration: 460 loss: 0.606
549 | Epoch: 10, Iteration: 480 loss: 0.577
550 | Epoch: 10, Iteration: 500 loss: 0.534
551 | Epoch: 10, Iteration: 520 loss: 0.616
552 | Epoch: 10, Iteration: 540 loss: 0.554
553 | Epoch: 10, Iteration: 560 loss: 0.600
554 | Epoch: 10, Iteration: 580 loss: 0.542
555 | Epoch: 10, Iteration: 600 loss: 0.596
556 | Epoch: 10, Iteration: 620 loss: 0.599
557 | Epoch: 10, Iteration: 640 loss: 0.563
558 | Epoch: 10, Iteration: 660 loss: 0.566
559 | Epoch: 10, Iteration: 680 loss: 0.590
560 | Epoch: 10, Iteration: 700 loss: 0.558
561 | Epoch: 10, Iteration: 720 loss: 0.565
562 | Epoch: 10, Iteration: 740 loss: 0.592
563 | Epoch: 10, Iteration: 760 loss: 0.645
564 | Epoch: 10, Iteration: 780 loss: 0.546
565 | Loss: 1.101
566 | Accuracy of the network on the 10000 test images: 63 %
567 | Accuracy of plane : 75 %
568 | Accuracy of car : 76 %
569 | Accuracy of bird : 55 %
570 | Accuracy of cat : 49 %
571 | Accuracy of deer : 49 %
572 | Accuracy of dog : 52 %
573 | Accuracy of frog : 73 %
574 | Accuracy of horse : 60 %
575 | Accuracy of ship : 81 %
576 | Accuracy of truck : 65 %
577 | Epoch: 11, Iteration: 0 loss: 0.032
578 | Epoch: 11, Iteration: 20 loss: 0.578
579 | Epoch: 11, Iteration: 40 loss: 0.523
580 | Epoch: 11, Iteration: 60 loss: 0.597
581 | Epoch: 11, Iteration: 80 loss: 0.560
582 | Epoch: 11, Iteration: 100 loss: 0.592
583 | Epoch: 11, Iteration: 120 loss: 0.547
584 | Epoch: 11, Iteration: 140 loss: 0.552
585 | Epoch: 11, Iteration: 160 loss: 0.574
586 | Epoch: 11, Iteration: 180 loss: 0.564
587 | Epoch: 11, Iteration: 200 loss: 0.558
588 | Epoch: 11, Iteration: 220 loss: 0.610
589 | Epoch: 11, Iteration: 240 loss: 0.515
590 | Epoch: 11, Iteration: 260 loss: 0.570
591 | Epoch: 11, Iteration: 280 loss: 0.595
592 | Epoch: 11, Iteration: 300 loss: 0.539
593 | Epoch: 11, Iteration: 320 loss: 0.533
594 | Epoch: 11, Iteration: 340 loss: 0.607
595 | Epoch: 11, Iteration: 360 loss: 0.536
596 | Epoch: 11, Iteration: 380 loss: 0.536
597 | Epoch: 11, Iteration: 400 loss: 0.561
598 | Epoch: 11, Iteration: 420 loss: 0.545
599 | Epoch: 11, Iteration: 440 loss: 0.557
600 | Epoch: 11, Iteration: 460 loss: 0.559
601 | Epoch: 11, Iteration: 480 loss: 0.583
602 | Epoch: 11, Iteration: 500 loss: 0.563
603 | Epoch: 11, Iteration: 520 loss: 0.545
604 | Epoch: 11, Iteration: 540 loss: 0.553
605 | Epoch: 11, Iteration: 560 loss: 0.608
606 | Epoch: 11, Iteration: 580 loss: 0.574
607 | Epoch: 11, Iteration: 600 loss: 0.577
608 | Epoch: 11, Iteration: 620 loss: 0.588
609 | Epoch: 11, Iteration: 640 loss: 0.565
610 | Epoch: 11, Iteration: 660 loss: 0.565
611 | Epoch: 11, Iteration: 680 loss: 0.566
612 | Epoch: 11, Iteration: 700 loss: 0.554
613 | Epoch: 11, Iteration: 720 loss: 0.547
614 | Epoch: 11, Iteration: 740 loss: 0.583
615 | Epoch: 11, Iteration: 760 loss: 0.541
616 | Epoch: 11, Iteration: 780 loss: 0.539
617 | Loss: 1.107
618 | Accuracy of the network on the 10000 test images: 63 %
619 | Accuracy of plane : 75 %
620 | Accuracy of car : 76 %
621 | Accuracy of bird : 55 %
622 | Accuracy of cat : 49 %
623 | Accuracy of deer : 50 %
624 | Accuracy of dog : 55 %
625 | Accuracy of frog : 73 %
626 | Accuracy of horse : 60 %
627 | Accuracy of ship : 81 %
628 | Accuracy of truck : 65 %
629 | Epoch 11: reducing learning rate of group 0 to 1.0000e-04.
630 | Epoch: 12, Iteration: 0 loss: 0.023
631 | Epoch: 12, Iteration: 20 loss: 0.578
632 | Epoch: 12, Iteration: 40 loss: 0.558
633 | Epoch: 12, Iteration: 60 loss: 0.571
634 | Epoch: 12, Iteration: 80 loss: 0.551
635 | Epoch: 12, Iteration: 100 loss: 0.583
636 | Epoch: 12, Iteration: 120 loss: 0.565
637 | Epoch: 12, Iteration: 140 loss: 0.584
638 | Epoch: 12, Iteration: 160 loss: 0.549
639 | Epoch: 12, Iteration: 180 loss: 0.618
640 | Epoch: 12, Iteration: 200 loss: 0.569
641 | Epoch: 12, Iteration: 220 loss: 0.553
642 | Epoch: 12, Iteration: 240 loss: 0.539
643 | Epoch: 12, Iteration: 260 loss: 0.554
644 | Epoch: 12, Iteration: 280 loss: 0.538
645 | Epoch: 12, Iteration: 300 loss: 0.535
646 | Epoch: 12, Iteration: 320 loss: 0.573
647 | Epoch: 12, Iteration: 340 loss: 0.531
648 | Epoch: 12, Iteration: 360 loss: 0.571
649 | Epoch: 12, Iteration: 380 loss: 0.542
650 | Epoch: 12, Iteration: 400 loss: 0.545
651 | Epoch: 12, Iteration: 420 loss: 0.518
652 | Epoch: 12, Iteration: 440 loss: 0.579
653 | Epoch: 12, Iteration: 460 loss: 0.532
654 | Epoch: 12, Iteration: 480 loss: 0.520
655 | Epoch: 12, Iteration: 500 loss: 0.534
656 | Epoch: 12, Iteration: 520 loss: 0.541
657 | Epoch: 12, Iteration: 540 loss: 0.554
658 | Epoch: 12, Iteration: 560 loss: 0.564
659 | Epoch: 12, Iteration: 580 loss: 0.550
660 | Epoch: 12, Iteration: 600 loss: 0.544
661 | Epoch: 12, Iteration: 620 loss: 0.529
662 | Epoch: 12, Iteration: 640 loss: 0.535
663 | Epoch: 12, Iteration: 660 loss: 0.565
664 | Epoch: 12, Iteration: 680 loss: 0.582
665 | Epoch: 12, Iteration: 700 loss: 0.584
666 | Epoch: 12, Iteration: 720 loss: 0.542
667 | Epoch: 12, Iteration: 740 loss: 0.596
668 | Epoch: 12, Iteration: 760 loss: 0.537
669 | Epoch: 12, Iteration: 780 loss: 0.532
670 | Loss: 1.108
671 | Accuracy of the network on the 10000 test images: 63 %
672 | Accuracy of plane : 75 %
673 | Accuracy of car : 76 %
674 | Accuracy of bird : 55 %
675 | Accuracy of cat : 49 %
676 | Accuracy of deer : 50 %
677 | Accuracy of dog : 54 %
678 | Accuracy of frog : 73 %
679 | Accuracy of horse : 60 %
680 | Accuracy of ship : 81 %
681 | Accuracy of truck : 65 %
682 | Epoch: 13, Iteration: 0 loss: 0.019
683 | Epoch: 13, Iteration: 20 loss: 0.547
684 | Epoch: 13, Iteration: 40 loss: 0.577
685 | Epoch: 13, Iteration: 60 loss: 0.551
686 | Epoch: 13, Iteration: 80 loss: 0.570
687 | Epoch: 13, Iteration: 100 loss: 0.547
688 | Epoch: 13, Iteration: 120 loss: 0.516
689 | Epoch: 13, Iteration: 140 loss: 0.553
690 | Epoch: 13, Iteration: 160 loss: 0.547
691 | Epoch: 13, Iteration: 180 loss: 0.538
692 | Epoch: 13, Iteration: 200 loss: 0.550
693 | Epoch: 13, Iteration: 220 loss: 0.557
694 | Epoch: 13, Iteration: 240 loss: 0.533
695 | Epoch: 13, Iteration: 260 loss: 0.555
696 | Epoch: 13, Iteration: 280 loss: 0.543
697 | Epoch: 13, Iteration: 300 loss: 0.578
698 | Epoch: 13, Iteration: 320 loss: 0.565
699 | Epoch: 13, Iteration: 340 loss: 0.560
700 | Epoch: 13, Iteration: 360 loss: 0.531
701 | Epoch: 13, Iteration: 380 loss: 0.560
702 | Epoch: 13, Iteration: 400 loss: 0.548
703 | Epoch: 13, Iteration: 420 loss: 0.552
704 | Epoch: 13, Iteration: 440 loss: 0.560
705 | Epoch: 13, Iteration: 460 loss: 0.571
706 | Epoch: 13, Iteration: 480 loss: 0.524
707 | Epoch: 13, Iteration: 500 loss: 0.554
708 | Epoch: 13, Iteration: 520 loss: 0.512
709 | Epoch: 13, Iteration: 540 loss: 0.550
710 | Epoch: 13, Iteration: 560 loss: 0.587
711 | Epoch: 13, Iteration: 580 loss: 0.567
712 | Epoch: 13, Iteration: 600 loss: 0.554
713 | Epoch: 13, Iteration: 620 loss: 0.539
714 | Epoch: 13, Iteration: 640 loss: 0.594
715 | Epoch: 13, Iteration: 660 loss: 0.562
716 | Epoch: 13, Iteration: 680 loss: 0.539
717 | Epoch: 13, Iteration: 700 loss: 0.529
718 | Epoch: 13, Iteration: 720 loss: 0.597
719 | Epoch: 13, Iteration: 740 loss: 0.577
720 | Epoch: 13, Iteration: 760 loss: 0.569
721 | Epoch: 13, Iteration: 780 loss: 0.554
722 | Loss: 1.108
723 | Accuracy of the network on the 10000 test images: 63 %
724 | Accuracy of plane : 75 %
725 | Accuracy of car : 76 %
726 | Accuracy of bird : 55 %
727 | Accuracy of cat : 49 %
728 | Accuracy of deer : 50 %
729 | Accuracy of dog : 54 %
730 | Accuracy of frog : 73 %
731 | Accuracy of horse : 60 %
732 | Accuracy of ship : 81 %
733 | Accuracy of truck : 65 %
734 | Epoch 13: reducing learning rate of group 0 to 1.0000e-05.
735 | Epoch: 14, Iteration: 0 loss: 0.036
736 | Epoch: 14, Iteration: 20 loss: 0.511
737 | Epoch: 14, Iteration: 40 loss: 0.577
738 | Epoch: 14, Iteration: 60 loss: 0.588
739 | Epoch: 14, Iteration: 80 loss: 0.582
740 | Epoch: 14, Iteration: 100 loss: 0.573
741 | Epoch: 14, Iteration: 120 loss: 0.560
742 | Epoch: 14, Iteration: 140 loss: 0.539
743 | Epoch: 14, Iteration: 160 loss: 0.528
744 | Epoch: 14, Iteration: 180 loss: 0.572
745 | Epoch: 14, Iteration: 200 loss: 0.580
746 | Epoch: 14, Iteration: 220 loss: 0.518
747 | Epoch: 14, Iteration: 240 loss: 0.568
748 | Epoch: 14, Iteration: 260 loss: 0.546
749 | Epoch: 14, Iteration: 280 loss: 0.564
750 | Epoch: 14, Iteration: 300 loss: 0.545
751 | Epoch: 14, Iteration: 320 loss: 0.531
752 | Epoch: 14, Iteration: 340 loss: 0.544
753 | Epoch: 14, Iteration: 360 loss: 0.608
754 | Epoch: 14, Iteration: 380 loss: 0.549
755 | Epoch: 14, Iteration: 400 loss: 0.549
756 | Epoch: 14, Iteration: 420 loss: 0.504
757 | Epoch: 14, Iteration: 440 loss: 0.537
758 | Epoch: 14, Iteration: 460 loss: 0.538
759 | Epoch: 14, Iteration: 480 loss: 0.544
760 | Epoch: 14, Iteration: 500 loss: 0.561
761 | Epoch: 14, Iteration: 520 loss: 0.585
762 | Epoch: 14, Iteration: 540 loss: 0.586
763 | Epoch: 14, Iteration: 560 loss: 0.519
764 | Epoch: 14, Iteration: 580 loss: 0.610
765 | Epoch: 14, Iteration: 600 loss: 0.550
766 | Epoch: 14, Iteration: 620 loss: 0.534
767 | Epoch: 14, Iteration: 640 loss: 0.529
768 | Epoch: 14, Iteration: 660 loss: 0.570
769 | Epoch: 14, Iteration: 680 loss: 0.497
770 | Epoch: 14, Iteration: 700 loss: 0.555
771 | Epoch: 14, Iteration: 720 loss: 0.525
772 | Epoch: 14, Iteration: 740 loss: 0.589
773 | Epoch: 14, Iteration: 760 loss: 0.573
774 | Epoch: 14, Iteration: 780 loss: 0.524
775 | Loss: 1.108
776 | Accuracy of the network on the 10000 test images: 63 %
777 | Accuracy of plane : 75 %
778 | Accuracy of car : 76 %
779 | Accuracy of bird : 55 %
780 | Accuracy of cat : 49 %
781 | Accuracy of deer : 50 %
782 | Accuracy of dog : 54 %
783 | Accuracy of frog : 73 %
784 | Accuracy of horse : 60 %
785 | Accuracy of ship : 81 %
786 | Accuracy of truck : 65 %
787 | Epoch: 15, Iteration: 0 loss: 0.027
788 | Epoch: 15, Iteration: 20 loss: 0.528
789 | Epoch: 15, Iteration: 40 loss: 0.561
790 | Epoch: 15, Iteration: 60 loss: 0.546
791 | Epoch: 15, Iteration: 80 loss: 0.553
792 | Epoch: 15, Iteration: 100 loss: 0.569
793 | Epoch: 15, Iteration: 120 loss: 0.590
794 | Epoch: 15, Iteration: 140 loss: 0.538
795 | Epoch: 15, Iteration: 160 loss: 0.516
796 | Epoch: 15, Iteration: 180 loss: 0.569
797 | Epoch: 15, Iteration: 200 loss: 0.531
798 | Epoch: 15, Iteration: 220 loss: 0.565
799 | Epoch: 15, Iteration: 240 loss: 0.559
800 | Epoch: 15, Iteration: 260 loss: 0.552
801 | Epoch: 15, Iteration: 280 loss: 0.506
802 | Epoch: 15, Iteration: 300 loss: 0.564
803 | Epoch: 15, Iteration: 320 loss: 0.529
804 | Epoch: 15, Iteration: 340 loss: 0.527
805 | Epoch: 15, Iteration: 360 loss: 0.575
806 | Epoch: 15, Iteration: 380 loss: 0.543
807 | Epoch: 15, Iteration: 400 loss: 0.513
808 | Epoch: 15, Iteration: 420 loss: 0.583
809 | Epoch: 15, Iteration: 440 loss: 0.552
810 | Epoch: 15, Iteration: 460 loss: 0.540
811 | Epoch: 15, Iteration: 480 loss: 0.563
812 | Epoch: 15, Iteration: 500 loss: 0.534
813 | Epoch: 15, Iteration: 520 loss: 0.544
814 | Epoch: 15, Iteration: 540 loss: 0.544
815 | Epoch: 15, Iteration: 560 loss: 0.568
816 | Epoch: 15, Iteration: 580 loss: 0.563
817 | Epoch: 15, Iteration: 600 loss: 0.587
818 | Epoch: 15, Iteration: 620 loss: 0.530
819 | Epoch: 15, Iteration: 640 loss: 0.563
820 | Epoch: 15, Iteration: 660 loss: 0.573
821 | Epoch: 15, Iteration: 680 loss: 0.560
822 | Epoch: 15, Iteration: 700 loss: 0.536
823 | Epoch: 15, Iteration: 720 loss: 0.552
824 | Epoch: 15, Iteration: 740 loss: 0.570
825 | Epoch: 15, Iteration: 760 loss: 0.588
826 | Epoch: 15, Iteration: 780 loss: 0.578
827 | Loss: 1.108
828 | Accuracy of the network on the 10000 test images: 63 %
829 | Accuracy of plane : 75 %
830 | Accuracy of car : 76 %
831 | Accuracy of bird : 55 %
832 | Accuracy of cat : 49 %
833 | Accuracy of deer : 50 %
834 | Accuracy of dog : 54 %
835 | Accuracy of frog : 73 %
836 | Accuracy of horse : 60 %
837 | Accuracy of ship : 81 %
838 | Accuracy of truck : 65 %
839 | Epoch 15: reducing learning rate of group 0 to 1.0000e-06.
840 | Epoch: 16, Iteration: 0 loss: 0.027
841 | Epoch: 16, Iteration: 20 loss: 0.584
842 | Epoch: 16, Iteration: 40 loss: 0.580
843 | Epoch: 16, Iteration: 60 loss: 0.542
844 | Epoch: 16, Iteration: 80 loss: 0.563
845 | Epoch: 16, Iteration: 100 loss: 0.535
846 | Epoch: 16, Iteration: 120 loss: 0.544
847 | Epoch: 16, Iteration: 140 loss: 0.534
848 | Epoch: 16, Iteration: 160 loss: 0.564
849 | Epoch: 16, Iteration: 180 loss: 0.556
850 | Epoch: 16, Iteration: 200 loss: 0.554
851 | Epoch: 16, Iteration: 220 loss: 0.540
852 | Epoch: 16, Iteration: 240 loss: 0.532
853 | Epoch: 16, Iteration: 260 loss: 0.564
854 | Epoch: 16, Iteration: 280 loss: 0.566
855 | Epoch: 16, Iteration: 300 loss: 0.508
856 | Epoch: 16, Iteration: 320 loss: 0.544
857 | Epoch: 16, Iteration: 340 loss: 0.561
858 | Epoch: 16, Iteration: 360 loss: 0.536
859 | Epoch: 16, Iteration: 380 loss: 0.560
860 | Epoch: 16, Iteration: 400 loss: 0.579
861 | Epoch: 16, Iteration: 420 loss: 0.510
862 | Epoch: 16, Iteration: 440 loss: 0.549
863 | Epoch: 16, Iteration: 460 loss: 0.575
864 | Epoch: 16, Iteration: 480 loss: 0.562
865 | Epoch: 16, Iteration: 500 loss: 0.584
866 | Epoch: 16, Iteration: 520 loss: 0.520
867 | Epoch: 16, Iteration: 540 loss: 0.566
868 | Epoch: 16, Iteration: 560 loss: 0.587
869 | Epoch: 16, Iteration: 580 loss: 0.543
870 | Epoch: 16, Iteration: 600 loss: 0.518
871 | Epoch: 16, Iteration: 620 loss: 0.533
872 | Epoch: 16, Iteration: 640 loss: 0.555
873 | Epoch: 16, Iteration: 660 loss: 0.562
874 | Epoch: 16, Iteration: 680 loss: 0.537
875 | Epoch: 16, Iteration: 700 loss: 0.553
876 | Epoch: 16, Iteration: 720 loss: 0.558
877 | Epoch: 16, Iteration: 740 loss: 0.564
878 | Epoch: 16, Iteration: 760 loss: 0.548
879 | Epoch: 16, Iteration: 780 loss: 0.597
880 | Loss: 1.108
881 | Accuracy of the network on the 10000 test images: 63 %
882 | Accuracy of plane : 75 %
883 | Accuracy of car : 76 %
884 | Accuracy of bird : 55 %
885 | Accuracy of cat : 49 %
886 | Accuracy of deer : 50 %
887 | Accuracy of dog : 54 %
888 | Accuracy of frog : 73 %
889 | Accuracy of horse : 60 %
890 | Accuracy of ship : 81 %
891 | Accuracy of truck : 65 %
892 | Epoch: 17, Iteration: 0 loss: 0.020
893 | Epoch: 17, Iteration: 20 loss: 0.555
894 | Epoch: 17, Iteration: 40 loss: 0.559
895 | Epoch: 17, Iteration: 60 loss: 0.551
896 | Epoch: 17, Iteration: 80 loss: 0.581
897 | Epoch: 17, Iteration: 100 loss: 0.522
898 | Epoch: 17, Iteration: 120 loss: 0.559
899 | Epoch: 17, Iteration: 140 loss: 0.555
900 | Epoch: 17, Iteration: 160 loss: 0.549
901 | Epoch: 17, Iteration: 180 loss: 0.560
902 | Epoch: 17, Iteration: 200 loss: 0.561
903 | Epoch: 17, Iteration: 220 loss: 0.536
904 | Epoch: 17, Iteration: 240 loss: 0.541
905 | Epoch: 17, Iteration: 260 loss: 0.553
906 | Epoch: 17, Iteration: 280 loss: 0.508
907 | Epoch: 17, Iteration: 300 loss: 0.519
908 | Epoch: 17, Iteration: 320 loss: 0.547
909 | Epoch: 17, Iteration: 340 loss: 0.536
910 | Epoch: 17, Iteration: 360 loss: 0.550
911 | Epoch: 17, Iteration: 380 loss: 0.547
912 | Epoch: 17, Iteration: 400 loss: 0.540
913 | Epoch: 17, Iteration: 420 loss: 0.570
914 | Epoch: 17, Iteration: 440 loss: 0.541
915 | Epoch: 17, Iteration: 460 loss: 0.573
916 | Epoch: 17, Iteration: 480 loss: 0.556
917 | Epoch: 17, Iteration: 500 loss: 0.519
918 | Epoch: 17, Iteration: 520 loss: 0.588
919 | Epoch: 17, Iteration: 540 loss: 0.527
920 | Epoch: 17, Iteration: 560 loss: 0.544
921 | Epoch: 17, Iteration: 580 loss: 0.533
922 | Epoch: 17, Iteration: 600 loss: 0.587
923 | Epoch: 17, Iteration: 620 loss: 0.583
924 | Epoch: 17, Iteration: 640 loss: 0.576
925 | Epoch: 17, Iteration: 660 loss: 0.551
926 | Epoch: 17, Iteration: 680 loss: 0.584
927 | Epoch: 17, Iteration: 700 loss: 0.548
928 | Epoch: 17, Iteration: 720 loss: 0.567
929 | Epoch: 17, Iteration: 740 loss: 0.563
930 | Epoch: 17, Iteration: 760 loss: 0.576
931 | Epoch: 17, Iteration: 780 loss: 0.559
932 | Loss: 1.108
933 | Accuracy of the network on the 10000 test images: 63 %
934 | Accuracy of plane : 75 %
935 | Accuracy of car : 76 %
936 | Accuracy of bird : 55 %
937 | Accuracy of cat : 49 %
938 | Accuracy of deer : 50 %
939 | Accuracy of dog : 54 %
940 | Accuracy of frog : 73 %
941 | Accuracy of horse : 60 %
942 | Accuracy of ship : 81 %
943 | Accuracy of truck : 65 %
944 | Epoch 17: reducing learning rate of group 0 to 1.0000e-07.
945 | Epoch: 18, Iteration: 0 loss: 0.025
946 | Epoch: 18, Iteration: 20 loss: 0.549
947 | Epoch: 18, Iteration: 40 loss: 0.500
948 | Epoch: 18, Iteration: 60 loss: 0.538
949 | Epoch: 18, Iteration: 80 loss: 0.614
950 | Epoch: 18, Iteration: 100 loss: 0.529
951 | Epoch: 18, Iteration: 120 loss: 0.568
952 | Epoch: 18, Iteration: 140 loss: 0.557
953 | Epoch: 18, Iteration: 160 loss: 0.527
954 | Epoch: 18, Iteration: 180 loss: 0.588
955 | Epoch: 18, Iteration: 200 loss: 0.548
956 | Epoch: 18, Iteration: 220 loss: 0.571
957 | Epoch: 18, Iteration: 240 loss: 0.523
958 | Epoch: 18, Iteration: 260 loss: 0.592
959 | Epoch: 18, Iteration: 280 loss: 0.565
960 | Epoch: 18, Iteration: 300 loss: 0.526
961 | Epoch: 18, Iteration: 320 loss: 0.574
962 | Epoch: 18, Iteration: 340 loss: 0.524
963 | Epoch: 18, Iteration: 360 loss: 0.555
964 | Epoch: 18, Iteration: 380 loss: 0.567
965 | Epoch: 18, Iteration: 400 loss: 0.550
966 | Epoch: 18, Iteration: 420 loss: 0.529
967 | Epoch: 18, Iteration: 440 loss: 0.544
968 | Epoch: 18, Iteration: 460 loss: 0.568
969 | Epoch: 18, Iteration: 480 loss: 0.547
970 | Epoch: 18, Iteration: 500 loss: 0.554
971 | Epoch: 18, Iteration: 520 loss: 0.554
972 | Epoch: 18, Iteration: 540 loss: 0.536
973 | Epoch: 18, Iteration: 560 loss: 0.574
974 | Epoch: 18, Iteration: 580 loss: 0.579
975 | Epoch: 18, Iteration: 600 loss: 0.559
976 | Epoch: 18, Iteration: 620 loss: 0.537
977 | Epoch: 18, Iteration: 640 loss: 0.545
978 | Epoch: 18, Iteration: 660 loss: 0.565
979 | Epoch: 18, Iteration: 680 loss: 0.538
980 | Epoch: 18, Iteration: 700 loss: 0.571
981 | Epoch: 18, Iteration: 720 loss: 0.550
982 | Epoch: 18, Iteration: 740 loss: 0.578
983 | Epoch: 18, Iteration: 760 loss: 0.511
984 | Epoch: 18, Iteration: 780 loss: 0.564
985 | Loss: 1.108
986 | Accuracy of the network on the 10000 test images: 63 %
987 | Accuracy of plane : 75 %
988 | Accuracy of car : 76 %
989 | Accuracy of bird : 55 %
990 | Accuracy of cat : 49 %
991 | Accuracy of deer : 50 %
992 | Accuracy of dog : 54 %
993 | Accuracy of frog : 73 %
994 | Accuracy of horse : 60 %
995 | Accuracy of ship : 81 %
996 | Accuracy of truck : 65 %
997 | Epoch: 19, Iteration: 0 loss: 0.021
998 | Epoch: 19, Iteration: 20 loss: 0.527
999 | Epoch: 19, Iteration: 40 loss: 0.558
1000 | Epoch: 19, Iteration: 60 loss: 0.578
1001 | Epoch: 19, Iteration: 80 loss: 0.566
1002 | Epoch: 19, Iteration: 100 loss: 0.556
1003 | Epoch: 19, Iteration: 120 loss: 0.500
1004 | Epoch: 19, Iteration: 140 loss: 0.564
1005 | Epoch: 19, Iteration: 160 loss: 0.561
1006 | Epoch: 19, Iteration: 180 loss: 0.567
1007 | Epoch: 19, Iteration: 200 loss: 0.569
1008 | Epoch: 19, Iteration: 220 loss: 0.549
1009 | Epoch: 19, Iteration: 240 loss: 0.508
1010 | Epoch: 19, Iteration: 260 loss: 0.564
1011 | Epoch: 19, Iteration: 280 loss: 0.587
1012 | Epoch: 19, Iteration: 300 loss: 0.544
1013 | Epoch: 19, Iteration: 320 loss: 0.548
1014 | Epoch: 19, Iteration: 340 loss: 0.538
1015 | Epoch: 19, Iteration: 360 loss: 0.525
1016 | Epoch: 19, Iteration: 380 loss: 0.525
1017 | Epoch: 19, Iteration: 400 loss: 0.606
1018 | Epoch: 19, Iteration: 420 loss: 0.530
1019 | Epoch: 19, Iteration: 440 loss: 0.548
1020 | Epoch: 19, Iteration: 460 loss: 0.510
1021 | Epoch: 19, Iteration: 480 loss: 0.533
1022 | Epoch: 19, Iteration: 500 loss: 0.560
1023 | Epoch: 19, Iteration: 520 loss: 0.590
1024 | Epoch: 19, Iteration: 540 loss: 0.642
1025 | Epoch: 19, Iteration: 560 loss: 0.516
1026 | Epoch: 19, Iteration: 580 loss: 0.567
1027 | Epoch: 19, Iteration: 600 loss: 0.566
1028 | Epoch: 19, Iteration: 620 loss: 0.548
1029 | Epoch: 19, Iteration: 640 loss: 0.564
1030 | Epoch: 19, Iteration: 660 loss: 0.535
1031 | Epoch: 19, Iteration: 680 loss: 0.533
1032 | Epoch: 19, Iteration: 700 loss: 0.544
1033 | Epoch: 19, Iteration: 720 loss: 0.581
1034 | Epoch: 19, Iteration: 740 loss: 0.561
1035 | Epoch: 19, Iteration: 760 loss: 0.548
1036 | Epoch: 19, Iteration: 780 loss: 0.551
1037 | Loss: 1.108
1038 | Accuracy of the network on the 10000 test images: 63 %
1039 | Accuracy of plane : 75 %
1040 | Accuracy of car : 76 %
1041 | Accuracy of bird : 55 %
1042 | Accuracy of cat : 49 %
1043 | Accuracy of deer : 50 %
1044 | Accuracy of dog : 54 %
1045 | Accuracy of frog : 73 %
1046 | Accuracy of horse : 60 %
1047 | Accuracy of ship : 81 %
1048 | Accuracy of truck : 65 %
1049 | Epoch 19: reducing learning rate of group 0 to 1.0000e-08.
1050 | Epoch: 20, Iteration: 0 loss: 0.020
1051 | Epoch: 20, Iteration: 20 loss: 0.595
1052 | Epoch: 20, Iteration: 40 loss: 0.552
1053 | Epoch: 20, Iteration: 60 loss: 0.589
1054 | Epoch: 20, Iteration: 80 loss: 0.552
1055 | Epoch: 20, Iteration: 100 loss: 0.557
1056 | Epoch: 20, Iteration: 120 loss: 0.575
1057 | Epoch: 20, Iteration: 140 loss: 0.573
1058 | Epoch: 20, Iteration: 160 loss: 0.515
1059 | Epoch: 20, Iteration: 180 loss: 0.532
1060 | Epoch: 20, Iteration: 200 loss: 0.537
1061 | Epoch: 20, Iteration: 220 loss: 0.568
1062 | Epoch: 20, Iteration: 240 loss: 0.533
1063 | Epoch: 20, Iteration: 260 loss: 0.514
1064 | Epoch: 20, Iteration: 280 loss: 0.550
1065 | Epoch: 20, Iteration: 300 loss: 0.552
1066 | Epoch: 20, Iteration: 320 loss: 0.523
1067 | Epoch: 20, Iteration: 340 loss: 0.570
1068 | Epoch: 20, Iteration: 360 loss: 0.578
1069 | Epoch: 20, Iteration: 380 loss: 0.546
1070 | Epoch: 20, Iteration: 400 loss: 0.549
1071 | Epoch: 20, Iteration: 420 loss: 0.533
1072 | Epoch: 20, Iteration: 440 loss: 0.531
1073 | Epoch: 20, Iteration: 460 loss: 0.614
1074 | Epoch: 20, Iteration: 480 loss: 0.562
1075 | Epoch: 20, Iteration: 500 loss: 0.546
1076 | Epoch: 20, Iteration: 520 loss: 0.534
1077 | Epoch: 20, Iteration: 540 loss: 0.544
1078 | Epoch: 20, Iteration: 560 loss: 0.594
1079 | Epoch: 20, Iteration: 580 loss: 0.586
1080 | Epoch: 20, Iteration: 600 loss: 0.543
1081 | Epoch: 20, Iteration: 620 loss: 0.550
1082 | Epoch: 20, Iteration: 640 loss: 0.542
1083 | Epoch: 20, Iteration: 660 loss: 0.559
1084 | Epoch: 20, Iteration: 680 loss: 0.516
1085 | Epoch: 20, Iteration: 700 loss: 0.530
1086 | Epoch: 20, Iteration: 720 loss: 0.539
1087 | Epoch: 20, Iteration: 740 loss: 0.569
1088 | Epoch: 20, Iteration: 760 loss: 0.555
1089 | Epoch: 20, Iteration: 780 loss: 0.563
1090 | Loss: 1.108
1091 | Accuracy of the network on the 10000 test images: 63 %
1092 | Accuracy of plane : 75 %
1093 | Accuracy of car : 76 %
1094 | Accuracy of bird : 55 %
1095 | Accuracy of cat : 49 %
1096 | Accuracy of deer : 50 %
1097 | Accuracy of dog : 54 %
1098 | Accuracy of frog : 73 %
1099 | Accuracy of horse : 60 %
1100 | Accuracy of ship : 81 %
1101 | Accuracy of truck : 65 %
1102 | Epoch: 21, Iteration: 0 loss: 0.021
1103 | Epoch: 21, Iteration: 20 loss: 0.524
1104 | Epoch: 21, Iteration: 40 loss: 0.557
1105 | Epoch: 21, Iteration: 60 loss: 0.582
1106 | Epoch: 21, Iteration: 80 loss: 0.508
1107 | Epoch: 21, Iteration: 100 loss: 0.559
1108 | Epoch: 21, Iteration: 120 loss: 0.535
1109 | Epoch: 21, Iteration: 140 loss: 0.565
1110 | Epoch: 21, Iteration: 160 loss: 0.546
1111 | Epoch: 21, Iteration: 180 loss: 0.554
1112 | Epoch: 21, Iteration: 200 loss: 0.548
1113 | Epoch: 21, Iteration: 220 loss: 0.536
1114 | Epoch: 21, Iteration: 240 loss: 0.528
1115 | Epoch: 21, Iteration: 260 loss: 0.541
1116 | Epoch: 21, Iteration: 280 loss: 0.559
1117 | Epoch: 21, Iteration: 300 loss: 0.594
1118 | Epoch: 21, Iteration: 320 loss: 0.563
1119 | Epoch: 21, Iteration: 340 loss: 0.574
1120 | Epoch: 21, Iteration: 360 loss: 0.565
1121 | Epoch: 21, Iteration: 380 loss: 0.550
1122 | Epoch: 21, Iteration: 400 loss: 0.520
1123 | Epoch: 21, Iteration: 420 loss: 0.519
1124 | Epoch: 21, Iteration: 440 loss: 0.543
1125 | Epoch: 21, Iteration: 460 loss: 0.565
1126 | Epoch: 21, Iteration: 480 loss: 0.508
1127 | Epoch: 21, Iteration: 500 loss: 0.605
1128 | Epoch: 21, Iteration: 520 loss: 0.583
1129 | Epoch: 21, Iteration: 540 loss: 0.578
1130 | Epoch: 21, Iteration: 560 loss: 0.563
1131 | Epoch: 21, Iteration: 580 loss: 0.606
1132 | Epoch: 21, Iteration: 600 loss: 0.518
1133 | Epoch: 21, Iteration: 620 loss: 0.510
1134 | Epoch: 21, Iteration: 640 loss: 0.554
1135 | Epoch: 21, Iteration: 660 loss: 0.557
1136 | Epoch: 21, Iteration: 680 loss: 0.538
1137 | Epoch: 21, Iteration: 700 loss: 0.588
1138 | Epoch: 21, Iteration: 720 loss: 0.563
1139 | Epoch: 21, Iteration: 740 loss: 0.570
1140 | Epoch: 21, Iteration: 760 loss: 0.541
1141 | Epoch: 21, Iteration: 780 loss: 0.548
1142 | Loss: 1.108
1143 | Accuracy of the network on the 10000 test images: 63 %
1144 | Accuracy of plane : 75 %
1145 | Accuracy of car : 76 %
1146 | Accuracy of bird : 55 %
1147 | Accuracy of cat : 49 %
1148 | Accuracy of deer : 50 %
1149 | Accuracy of dog : 54 %
1150 | Accuracy of frog : 73 %
1151 | Accuracy of horse : 60 %
1152 | Accuracy of ship : 81 %
1153 | Accuracy of truck : 65 %
1154 | Epoch: 22, Iteration: 0 loss: 0.028
1155 | Epoch: 22, Iteration: 20 loss: 0.587
1156 | Epoch: 22, Iteration: 40 loss: 0.550
1157 | Epoch: 22, Iteration: 60 loss: 0.551
1158 | Epoch: 22, Iteration: 80 loss: 0.534
1159 | Epoch: 22, Iteration: 100 loss: 0.567
1160 | Epoch: 22, Iteration: 120 loss: 0.579
1161 | Epoch: 22, Iteration: 140 loss: 0.525
1162 | Epoch: 22, Iteration: 160 loss: 0.551
1163 | Epoch: 22, Iteration: 180 loss: 0.494
1164 | Epoch: 22, Iteration: 200 loss: 0.517
1165 | Epoch: 22, Iteration: 220 loss: 0.555
1166 | Epoch: 22, Iteration: 240 loss: 0.534
1167 | Epoch: 22, Iteration: 260 loss: 0.552
1168 | Epoch: 22, Iteration: 280 loss: 0.580
1169 | Epoch: 22, Iteration: 300 loss: 0.542
1170 | Epoch: 22, Iteration: 320 loss: 0.546
1171 | Epoch: 22, Iteration: 340 loss: 0.548
1172 | Epoch: 22, Iteration: 360 loss: 0.562
1173 | Epoch: 22, Iteration: 380 loss: 0.586
1174 | Epoch: 22, Iteration: 400 loss: 0.546
1175 | Epoch: 22, Iteration: 420 loss: 0.565
1176 | Epoch: 22, Iteration: 440 loss: 0.571
1177 | Epoch: 22, Iteration: 460 loss: 0.583
1178 | Epoch: 22, Iteration: 480 loss: 0.560
1179 | Epoch: 22, Iteration: 500 loss: 0.551
1180 | Epoch: 22, Iteration: 520 loss: 0.544
1181 | Epoch: 22, Iteration: 540 loss: 0.576
1182 | Epoch: 22, Iteration: 560 loss: 0.530
1183 | Epoch: 22, Iteration: 580 loss: 0.522
1184 | Epoch: 22, Iteration: 600 loss: 0.528
1185 | Epoch: 22, Iteration: 620 loss: 0.575
1186 | Epoch: 22, Iteration: 640 loss: 0.567
1187 | Epoch: 22, Iteration: 660 loss: 0.566
1188 | Epoch: 22, Iteration: 680 loss: 0.542
1189 | Epoch: 22, Iteration: 700 loss: 0.542
1190 | Epoch: 22, Iteration: 720 loss: 0.559
1191 | Epoch: 22, Iteration: 740 loss: 0.536
1192 | Epoch: 22, Iteration: 760 loss: 0.566
1193 | Epoch: 22, Iteration: 780 loss: 0.568
1194 | Loss: 1.108
1195 | Accuracy of the network on the 10000 test images: 63 %
1196 | Accuracy of plane : 75 %
1197 | Accuracy of car : 76 %
1198 | Accuracy of bird : 55 %
1199 | Accuracy of cat : 49 %
1200 | Accuracy of deer : 50 %
1201 | Accuracy of dog : 54 %
1202 | Accuracy of frog : 73 %
1203 | Accuracy of horse : 60 %
1204 | Accuracy of ship : 81 %
1205 | Accuracy of truck : 65 %
1206 | Epoch: 23, Iteration: 0 loss: 0.028
1207 | Epoch: 23, Iteration: 20 loss: 0.535
1208 | Epoch: 23, Iteration: 40 loss: 0.499
1209 | Epoch: 23, Iteration: 60 loss: 0.497
1210 | Epoch: 23, Iteration: 80 loss: 0.518
1211 | Epoch: 23, Iteration: 100 loss: 0.588
1212 | Epoch: 23, Iteration: 120 loss: 0.575
1213 | Epoch: 23, Iteration: 140 loss: 0.563
1214 | Epoch: 23, Iteration: 160 loss: 0.550
1215 | Epoch: 23, Iteration: 180 loss: 0.543
1216 | Epoch: 23, Iteration: 200 loss: 0.559
1217 | Epoch: 23, Iteration: 220 loss: 0.513
1218 | Epoch: 23, Iteration: 240 loss: 0.596
1219 | Epoch: 23, Iteration: 260 loss: 0.559
1220 | Epoch: 23, Iteration: 280 loss: 0.614
1221 | Epoch: 23, Iteration: 300 loss: 0.565
1222 | Epoch: 23, Iteration: 320 loss: 0.539
1223 | Epoch: 23, Iteration: 340 loss: 0.570
1224 | Epoch: 23, Iteration: 360 loss: 0.576
1225 | Epoch: 23, Iteration: 380 loss: 0.541
1226 | Epoch: 23, Iteration: 400 loss: 0.555
1227 | Epoch: 23, Iteration: 420 loss: 0.541
1228 | Epoch: 23, Iteration: 440 loss: 0.558
1229 | Epoch: 23, Iteration: 460 loss: 0.547
1230 | Epoch: 23, Iteration: 480 loss: 0.581
1231 | Epoch: 23, Iteration: 500 loss: 0.525
1232 | Epoch: 23, Iteration: 520 loss: 0.544
1233 | Epoch: 23, Iteration: 540 loss: 0.563
1234 | Epoch: 23, Iteration: 560 loss: 0.568
1235 | Epoch: 23, Iteration: 580 loss: 0.585
1236 | Epoch: 23, Iteration: 600 loss: 0.517
1237 | Epoch: 23, Iteration: 620 loss: 0.541
1238 | Epoch: 23, Iteration: 640 loss: 0.521
1239 | Epoch: 23, Iteration: 660 loss: 0.539
1240 | Epoch: 23, Iteration: 680 loss: 0.595
1241 | Epoch: 23, Iteration: 700 loss: 0.525
1242 | Epoch: 23, Iteration: 720 loss: 0.531
1243 | Epoch: 23, Iteration: 740 loss: 0.578
1244 | Epoch: 23, Iteration: 760 loss: 0.577
1245 | Epoch: 23, Iteration: 780 loss: 0.575
1246 | Loss: 1.108
1247 | Accuracy of the network on the 10000 test images: 63 %
1248 | Accuracy of plane : 75 %
1249 | Accuracy of car : 76 %
1250 | Accuracy of bird : 55 %
1251 | Accuracy of cat : 49 %
1252 | Accuracy of deer : 50 %
1253 | Accuracy of dog : 54 %
1254 | Accuracy of frog : 73 %
1255 | Accuracy of horse : 60 %
1256 | Accuracy of ship : 81 %
1257 | Accuracy of truck : 65 %
1258 | Epoch: 24, Iteration: 0 loss: 0.025
1259 | Epoch: 24, Iteration: 20 loss: 0.549
1260 | Epoch: 24, Iteration: 40 loss: 0.560
1261 | Epoch: 24, Iteration: 60 loss: 0.583
1262 | Epoch: 24, Iteration: 80 loss: 0.540
1263 | Epoch: 24, Iteration: 100 loss: 0.552
1264 | Epoch: 24, Iteration: 120 loss: 0.546
1265 | Epoch: 24, Iteration: 140 loss: 0.606
1266 | Epoch: 24, Iteration: 160 loss: 0.565
1267 | Epoch: 24, Iteration: 180 loss: 0.563
1268 | Epoch: 24, Iteration: 200 loss: 0.528
1269 | Epoch: 24, Iteration: 220 loss: 0.510
1270 | Epoch: 24, Iteration: 240 loss: 0.521
1271 | Epoch: 24, Iteration: 260 loss: 0.538
1272 | Epoch: 24, Iteration: 280 loss: 0.529
1273 | Epoch: 24, Iteration: 300 loss: 0.599
1274 | Epoch: 24, Iteration: 320 loss: 0.544
1275 | Epoch: 24, Iteration: 340 loss: 0.593
1276 | Epoch: 24, Iteration: 360 loss: 0.628
1277 | Epoch: 24, Iteration: 380 loss: 0.552
1278 | Epoch: 24, Iteration: 400 loss: 0.567
1279 | Epoch: 24, Iteration: 420 loss: 0.481
1280 | Epoch: 24, Iteration: 440 loss: 0.559
1281 | Epoch: 24, Iteration: 460 loss: 0.577
1282 | Epoch: 24, Iteration: 480 loss: 0.567
1283 | Epoch: 24, Iteration: 500 loss: 0.555
1284 | Epoch: 24, Iteration: 520 loss: 0.573
1285 | Epoch: 24, Iteration: 540 loss: 0.543
1286 | Epoch: 24, Iteration: 560 loss: 0.563
1287 | Epoch: 24, Iteration: 580 loss: 0.526
1288 | Epoch: 24, Iteration: 600 loss: 0.607
1289 | Epoch: 24, Iteration: 620 loss: 0.510
1290 | Epoch: 24, Iteration: 640 loss: 0.504
1291 | Epoch: 24, Iteration: 660 loss: 0.580
1292 | Epoch: 24, Iteration: 680 loss: 0.574
1293 | Epoch: 24, Iteration: 700 loss: 0.560
1294 | Epoch: 24, Iteration: 720 loss: 0.549
1295 | Epoch: 24, Iteration: 740 loss: 0.542
1296 | Epoch: 24, Iteration: 760 loss: 0.546
1297 | Epoch: 24, Iteration: 780 loss: 0.473
1298 | Loss: 1.108
1299 | Accuracy of the network on the 10000 test images: 63 %
1300 | Accuracy of plane : 75 %
1301 | Accuracy of car : 76 %
1302 | Accuracy of bird : 55 %
1303 | Accuracy of cat : 49 %
1304 | Accuracy of deer : 50 %
1305 | Accuracy of dog : 54 %
1306 | Accuracy of frog : 73 %
1307 | Accuracy of horse : 60 %
1308 | Accuracy of ship : 81 %
1309 | Accuracy of truck : 65 %
1310 | Finished Training
1311 |
--------------------------------------------------------------------------------
/docs/no_min_lr/second.log:
--------------------------------------------------------------------------------
1 | Files already downloaded and verified
2 | Files already downloaded and verified
3 | Epoch: 0, Iteration: 0 loss: 0.115
4 | Epoch: 0, Iteration: 20 loss: 2.304
5 | Epoch: 0, Iteration: 40 loss: 2.304
6 | Epoch: 0, Iteration: 60 loss: 2.304
7 | Epoch: 0, Iteration: 80 loss: 2.302
8 | Epoch: 0, Iteration: 100 loss: 2.300
9 | Epoch: 0, Iteration: 120 loss: 2.297
10 | Epoch: 0, Iteration: 140 loss: 2.296
11 | Epoch: 0, Iteration: 160 loss: 2.284
12 | Epoch: 0, Iteration: 180 loss: 2.255
13 | Epoch: 0, Iteration: 200 loss: 2.146
14 | Epoch: 0, Iteration: 220 loss: 2.134
15 | Epoch: 0, Iteration: 240 loss: 2.136
16 | Epoch: 0, Iteration: 260 loss: 2.114
17 | Epoch: 0, Iteration: 280 loss: 2.096
18 | Epoch: 0, Iteration: 300 loss: 2.130
19 | Epoch: 0, Iteration: 320 loss: 2.167
20 | Epoch: 0, Iteration: 340 loss: 2.201
21 | Epoch: 0, Iteration: 360 loss: 2.111
22 | Epoch: 0, Iteration: 380 loss: 2.092
23 | Epoch: 0, Iteration: 400 loss: 2.054
24 | Epoch: 0, Iteration: 420 loss: 2.211
25 | Epoch: 0, Iteration: 440 loss: 2.192
26 | Epoch: 0, Iteration: 460 loss: 2.125
27 | Epoch: 0, Iteration: 480 loss: 2.062
28 | Epoch: 0, Iteration: 500 loss: 2.128
29 | Epoch: 0, Iteration: 520 loss: 2.152
30 | Epoch: 0, Iteration: 540 loss: 2.170
31 | Epoch: 0, Iteration: 560 loss: 2.132
32 | Epoch: 0, Iteration: 580 loss: 2.122
33 | Epoch: 0, Iteration: 600 loss: 2.147
34 | Epoch: 0, Iteration: 620 loss: 2.142
35 | Epoch: 0, Iteration: 640 loss: 2.000
36 | Epoch: 0, Iteration: 660 loss: 2.050
37 | Epoch: 0, Iteration: 680 loss: 1.988
38 | Epoch: 0, Iteration: 700 loss: 2.025
39 | Epoch: 0, Iteration: 720 loss: 2.076
40 | Epoch: 0, Iteration: 740 loss: 2.122
41 | Epoch: 0, Iteration: 760 loss: 2.139
42 | Epoch: 0, Iteration: 780 loss: 1.990
43 | Loss: 1.935
44 | Accuracy of the network on the 10000 test images: 24 %
45 | Accuracy of plane : 67 %
46 | Accuracy of car : 0 %
47 | Accuracy of bird : 0 %
48 | Accuracy of cat : 0 %
49 | Accuracy of deer : 20 %
50 | Accuracy of dog : 61 %
51 | Accuracy of frog : 32 %
52 | Accuracy of horse : 32 %
53 | Accuracy of ship : 32 %
54 | Accuracy of truck : 16 %
55 | Epoch: 1, Iteration: 0 loss: 0.094
56 | Epoch: 1, Iteration: 20 loss: 2.025
57 | Epoch: 1, Iteration: 40 loss: 1.955
58 | Epoch: 1, Iteration: 60 loss: 2.046
59 | Epoch: 1, Iteration: 80 loss: 1.964
60 | Epoch: 1, Iteration: 100 loss: 1.985
61 | Epoch: 1, Iteration: 120 loss: 2.057
62 | Epoch: 1, Iteration: 140 loss: 1.997
63 | Epoch: 1, Iteration: 160 loss: 1.959
64 | Epoch: 1, Iteration: 180 loss: 1.914
65 | Epoch: 1, Iteration: 200 loss: 1.912
66 | Epoch: 1, Iteration: 220 loss: 1.967
67 | Epoch: 1, Iteration: 240 loss: 1.995
68 | Epoch: 1, Iteration: 260 loss: 1.942
69 | Epoch: 1, Iteration: 280 loss: 1.981
70 | Epoch: 1, Iteration: 300 loss: 1.955
71 | Epoch: 1, Iteration: 320 loss: 1.899
72 | Epoch: 1, Iteration: 340 loss: 1.879
73 | Epoch: 1, Iteration: 360 loss: 1.880
74 | Epoch: 1, Iteration: 380 loss: 1.912
75 | Epoch: 1, Iteration: 400 loss: 1.908
76 | Epoch: 1, Iteration: 420 loss: 1.866
77 | Epoch: 1, Iteration: 440 loss: 1.970
78 | Epoch: 1, Iteration: 460 loss: 1.904
79 | Epoch: 1, Iteration: 480 loss: 1.931
80 | Epoch: 1, Iteration: 500 loss: 1.935
81 | Epoch: 1, Iteration: 520 loss: 1.811
82 | Epoch: 1, Iteration: 540 loss: 1.830
83 | Epoch: 1, Iteration: 560 loss: 1.846
84 | Epoch: 1, Iteration: 580 loss: 1.857
85 | Epoch: 1, Iteration: 600 loss: 1.866
86 | Epoch: 1, Iteration: 620 loss: 1.850
87 | Epoch: 1, Iteration: 640 loss: 1.834
88 | Epoch: 1, Iteration: 660 loss: 1.830
89 | Epoch: 1, Iteration: 680 loss: 1.879
90 | Epoch: 1, Iteration: 700 loss: 1.841
91 | Epoch: 1, Iteration: 720 loss: 1.811
92 | Epoch: 1, Iteration: 740 loss: 1.781
93 | Epoch: 1, Iteration: 760 loss: 1.831
94 | Epoch: 1, Iteration: 780 loss: 1.974
95 | Loss: 1.810
96 | Accuracy of the network on the 10000 test images: 29 %
97 | Accuracy of plane : 1 %
98 | Accuracy of car : 78 %
99 | Accuracy of bird : 0 %
100 | Accuracy of cat : 34 %
101 | Accuracy of deer : 20 %
102 | Accuracy of dog : 37 %
103 | Accuracy of frog : 28 %
104 | Accuracy of horse : 64 %
105 | Accuracy of ship : 25 %
106 | Accuracy of truck : 16 %
107 | Epoch: 2, Iteration: 0 loss: 0.096
108 | Epoch: 2, Iteration: 20 loss: 1.823
109 | Epoch: 2, Iteration: 40 loss: 1.829
110 | Epoch: 2, Iteration: 60 loss: 1.773
111 | Epoch: 2, Iteration: 80 loss: 1.772
112 | Epoch: 2, Iteration: 100 loss: 1.797
113 | Epoch: 2, Iteration: 120 loss: 1.843
114 | Epoch: 2, Iteration: 140 loss: 1.791
115 | Epoch: 2, Iteration: 160 loss: 1.811
116 | Epoch: 2, Iteration: 180 loss: 1.806
117 | Epoch: 2, Iteration: 200 loss: 1.851
118 | Epoch: 2, Iteration: 220 loss: 1.935
119 | Epoch: 2, Iteration: 240 loss: 1.929
120 | Epoch: 2, Iteration: 260 loss: 1.894
121 | Epoch: 2, Iteration: 280 loss: 1.816
122 | Epoch: 2, Iteration: 300 loss: 1.898
123 | Epoch: 2, Iteration: 320 loss: 1.915
124 | Epoch: 2, Iteration: 340 loss: 1.815
125 | Epoch: 2, Iteration: 360 loss: 1.843
126 | Epoch: 2, Iteration: 380 loss: 1.839
127 | Epoch: 2, Iteration: 400 loss: 1.697
128 | Epoch: 2, Iteration: 420 loss: 1.720
129 | Epoch: 2, Iteration: 440 loss: 1.679
130 | Epoch: 2, Iteration: 460 loss: 1.719
131 | Epoch: 2, Iteration: 480 loss: 1.679
132 | Epoch: 2, Iteration: 500 loss: 1.612
133 | Epoch: 2, Iteration: 520 loss: 1.672
134 | Epoch: 2, Iteration: 540 loss: 1.628
135 | Epoch: 2, Iteration: 560 loss: 1.637
136 | Epoch: 2, Iteration: 580 loss: 1.675
137 | Epoch: 2, Iteration: 600 loss: 1.773
138 | Epoch: 2, Iteration: 620 loss: 1.754
139 | Epoch: 2, Iteration: 640 loss: 1.664
140 | Epoch: 2, Iteration: 660 loss: 1.656
141 | Epoch: 2, Iteration: 680 loss: 1.677
142 | Epoch: 2, Iteration: 700 loss: 1.656
143 | Epoch: 2, Iteration: 720 loss: 1.708
144 | Epoch: 2, Iteration: 740 loss: 1.686
145 | Epoch: 2, Iteration: 760 loss: 1.656
146 | Epoch: 2, Iteration: 780 loss: 1.691
147 | Loss: 1.668
148 | Accuracy of the network on the 10000 test images: 38 %
149 | Accuracy of plane : 53 %
150 | Accuracy of car : 52 %
151 | Accuracy of bird : 12 %
152 | Accuracy of cat : 9 %
153 | Accuracy of deer : 7 %
154 | Accuracy of dog : 67 %
155 | Accuracy of frog : 10 %
156 | Accuracy of horse : 56 %
157 | Accuracy of ship : 63 %
158 | Accuracy of truck : 56 %
159 | Epoch: 3, Iteration: 0 loss: 0.074
160 | Epoch: 3, Iteration: 20 loss: 1.717
161 | Epoch: 3, Iteration: 40 loss: 1.806
162 | Epoch: 3, Iteration: 60 loss: 1.762
163 | Epoch: 3, Iteration: 80 loss: 1.798
164 | Epoch: 3, Iteration: 100 loss: 1.782
165 | Epoch: 3, Iteration: 120 loss: 1.871
166 | Epoch: 3, Iteration: 140 loss: 1.878
167 | Epoch: 3, Iteration: 160 loss: 1.674
168 | Epoch: 3, Iteration: 180 loss: 1.587
169 | Epoch: 3, Iteration: 200 loss: 1.631
170 | Epoch: 3, Iteration: 220 loss: 1.682
171 | Epoch: 3, Iteration: 240 loss: 1.673
172 | Epoch: 3, Iteration: 260 loss: 1.676
173 | Epoch: 3, Iteration: 280 loss: 1.550
174 | Epoch: 3, Iteration: 300 loss: 1.523
175 | Epoch: 3, Iteration: 320 loss: 1.669
176 | Epoch: 3, Iteration: 340 loss: 1.568
177 | Epoch: 3, Iteration: 360 loss: 1.510
178 | Epoch: 3, Iteration: 380 loss: 1.510
179 | Epoch: 3, Iteration: 400 loss: 1.625
180 | Epoch: 3, Iteration: 420 loss: 1.632
181 | Epoch: 3, Iteration: 440 loss: 1.573
182 | Epoch: 3, Iteration: 460 loss: 1.550
183 | Epoch: 3, Iteration: 480 loss: 1.491
184 | Epoch: 3, Iteration: 500 loss: 1.478
185 | Epoch: 3, Iteration: 520 loss: 1.505
186 | Epoch: 3, Iteration: 540 loss: 1.490
187 | Epoch: 3, Iteration: 560 loss: 1.453
188 | Epoch: 3, Iteration: 580 loss: 1.557
189 | Epoch: 3, Iteration: 600 loss: 1.544
190 | Epoch: 3, Iteration: 620 loss: 1.546
191 | Epoch: 3, Iteration: 640 loss: 1.548
192 | Epoch: 3, Iteration: 660 loss: 1.517
193 | Epoch: 3, Iteration: 680 loss: 1.571
194 | Epoch: 3, Iteration: 700 loss: 1.527
195 | Epoch: 3, Iteration: 720 loss: 1.594
196 | Epoch: 3, Iteration: 740 loss: 1.606
197 | Epoch: 3, Iteration: 760 loss: 1.576
198 | Epoch: 3, Iteration: 780 loss: 1.711
199 | Loss: 1.696
200 | Accuracy of the network on the 10000 test images: 38 %
201 | Accuracy of plane : 25 %
202 | Accuracy of car : 90 %
203 | Accuracy of bird : 40 %
204 | Accuracy of cat : 71 %
205 | Accuracy of deer : 1 %
206 | Accuracy of dog : 44 %
207 | Accuracy of frog : 0 %
208 | Accuracy of horse : 7 %
209 | Accuracy of ship : 63 %
210 | Accuracy of truck : 34 %
211 | Epoch: 4, Iteration: 0 loss: 0.080
212 | Epoch: 4, Iteration: 20 loss: 1.616
213 | Epoch: 4, Iteration: 40 loss: 1.483
214 | Epoch: 4, Iteration: 60 loss: 1.451
215 | Epoch: 4, Iteration: 80 loss: 1.427
216 | Epoch: 4, Iteration: 100 loss: 1.417
217 | Epoch: 4, Iteration: 120 loss: 1.487
218 | Epoch: 4, Iteration: 140 loss: 1.539
219 | Epoch: 4, Iteration: 160 loss: 1.535
220 | Epoch: 4, Iteration: 180 loss: 1.451
221 | Epoch: 4, Iteration: 200 loss: 1.387
222 | Epoch: 4, Iteration: 220 loss: 1.503
223 | Epoch: 4, Iteration: 240 loss: 1.449
224 | Epoch: 4, Iteration: 260 loss: 1.429
225 | Epoch: 4, Iteration: 280 loss: 1.446
226 | Epoch: 4, Iteration: 300 loss: 1.409
227 | Epoch: 4, Iteration: 320 loss: 1.362
228 | Epoch: 4, Iteration: 340 loss: 1.435
229 | Epoch: 4, Iteration: 360 loss: 1.388
230 | Epoch: 4, Iteration: 380 loss: 1.430
231 | Epoch: 4, Iteration: 400 loss: 1.441
232 | Epoch: 4, Iteration: 420 loss: 1.398
233 | Epoch: 4, Iteration: 440 loss: 1.358
234 | Epoch: 4, Iteration: 460 loss: 1.316
235 | Epoch: 4, Iteration: 480 loss: 1.384
236 | Epoch: 4, Iteration: 500 loss: 1.381
237 | Epoch: 4, Iteration: 520 loss: 1.469
238 | Epoch: 4, Iteration: 540 loss: 1.420
239 | Epoch: 4, Iteration: 560 loss: 1.465
240 | Epoch: 4, Iteration: 580 loss: 1.417
241 | Epoch: 4, Iteration: 600 loss: 1.362
242 | Epoch: 4, Iteration: 620 loss: 1.446
243 | Epoch: 4, Iteration: 640 loss: 1.436
244 | Epoch: 4, Iteration: 660 loss: 1.351
245 | Epoch: 4, Iteration: 680 loss: 1.275
246 | Epoch: 4, Iteration: 700 loss: 1.394
247 | Epoch: 4, Iteration: 720 loss: 1.361
248 | Epoch: 4, Iteration: 740 loss: 1.361
249 | Epoch: 4, Iteration: 760 loss: 1.385
250 | Epoch: 4, Iteration: 780 loss: 1.355
251 | Loss: 1.280
252 | Accuracy of the network on the 10000 test images: 57 %
253 | Accuracy of plane : 67 %
254 | Accuracy of car : 72 %
255 | Accuracy of bird : 45 %
256 | Accuracy of cat : 43 %
257 | Accuracy of deer : 23 %
258 | Accuracy of dog : 40 %
259 | Accuracy of frog : 78 %
260 | Accuracy of horse : 65 %
261 | Accuracy of ship : 68 %
262 | Accuracy of truck : 67 %
263 | Epoch: 5, Iteration: 0 loss: 0.057
264 | Epoch: 5, Iteration: 20 loss: 1.336
265 | Epoch: 5, Iteration: 40 loss: 1.338
266 | Epoch: 5, Iteration: 60 loss: 1.369
267 | Epoch: 5, Iteration: 80 loss: 1.334
268 | Epoch: 5, Iteration: 100 loss: 1.407
269 | Epoch: 5, Iteration: 120 loss: 1.410
270 | Epoch: 5, Iteration: 140 loss: 1.305
271 | Epoch: 5, Iteration: 160 loss: 1.365
272 | Epoch: 5, Iteration: 180 loss: 1.435
273 | Epoch: 5, Iteration: 200 loss: 1.422
274 | Epoch: 5, Iteration: 220 loss: 1.375
275 | Epoch: 5, Iteration: 240 loss: 1.332
276 | Epoch: 5, Iteration: 260 loss: 1.264
277 | Epoch: 5, Iteration: 280 loss: 1.334
278 | Epoch: 5, Iteration: 300 loss: 1.349
279 | Epoch: 5, Iteration: 320 loss: 1.323
280 | Epoch: 5, Iteration: 340 loss: 1.344
281 | Epoch: 5, Iteration: 360 loss: 1.317
282 | Epoch: 5, Iteration: 380 loss: 1.285
283 | Epoch: 5, Iteration: 400 loss: 1.227
284 | Epoch: 5, Iteration: 420 loss: 1.281
285 | Epoch: 5, Iteration: 440 loss: 1.268
286 | Epoch: 5, Iteration: 460 loss: 1.259
287 | Epoch: 5, Iteration: 480 loss: 1.246
288 | Epoch: 5, Iteration: 500 loss: 1.233
289 | Epoch: 5, Iteration: 520 loss: 1.243
290 | Epoch: 5, Iteration: 540 loss: 1.259
291 | Epoch: 5, Iteration: 560 loss: 1.257
292 | Epoch: 5, Iteration: 580 loss: 1.181
293 | Epoch: 5, Iteration: 600 loss: 1.328
294 | Epoch: 5, Iteration: 620 loss: 1.376
295 | Epoch: 5, Iteration: 640 loss: 1.312
296 | Epoch: 5, Iteration: 660 loss: 1.267
297 | Epoch: 5, Iteration: 680 loss: 1.255
298 | Epoch: 5, Iteration: 700 loss: 1.347
299 | Epoch: 5, Iteration: 720 loss: 1.300
300 | Epoch: 5, Iteration: 740 loss: 1.267
301 | Epoch: 5, Iteration: 760 loss: 1.293
302 | Epoch: 5, Iteration: 780 loss: 1.269
303 | Loss: 1.540
304 | Accuracy of the network on the 10000 test images: 44 %
305 | Accuracy of plane : 41 %
306 | Accuracy of car : 14 %
307 | Accuracy of bird : 37 %
308 | Accuracy of cat : 27 %
309 | Accuracy of deer : 16 %
310 | Accuracy of dog : 76 %
311 | Accuracy of frog : 32 %
312 | Accuracy of horse : 35 %
313 | Accuracy of ship : 82 %
314 | Accuracy of truck : 75 %
315 | Epoch: 6, Iteration: 0 loss: 0.076
316 | Epoch: 6, Iteration: 20 loss: 1.309
317 | Epoch: 6, Iteration: 40 loss: 1.249
318 | Epoch: 6, Iteration: 60 loss: 1.215
319 | Epoch: 6, Iteration: 80 loss: 1.251
320 | Epoch: 6, Iteration: 100 loss: 1.220
321 | Epoch: 6, Iteration: 120 loss: 1.200
322 | Epoch: 6, Iteration: 140 loss: 1.200
323 | Epoch: 6, Iteration: 160 loss: 1.244
324 | Epoch: 6, Iteration: 180 loss: 1.214
325 | Epoch: 6, Iteration: 200 loss: 1.157
326 | Epoch: 6, Iteration: 220 loss: 1.221
327 | Epoch: 6, Iteration: 240 loss: 1.190
328 | Epoch: 6, Iteration: 260 loss: 1.163
329 | Epoch: 6, Iteration: 280 loss: 1.143
330 | Epoch: 6, Iteration: 300 loss: 1.206
331 | Epoch: 6, Iteration: 320 loss: 1.193
332 | Epoch: 6, Iteration: 340 loss: 1.136
333 | Epoch: 6, Iteration: 360 loss: 1.229
334 | Epoch: 6, Iteration: 380 loss: 1.198
335 | Epoch: 6, Iteration: 400 loss: 1.188
336 | Epoch: 6, Iteration: 420 loss: 1.130
337 | Epoch: 6, Iteration: 440 loss: 1.199
338 | Epoch: 6, Iteration: 460 loss: 1.202
339 | Epoch: 6, Iteration: 480 loss: 1.165
340 | Epoch: 6, Iteration: 500 loss: 1.183
341 | Epoch: 6, Iteration: 520 loss: 1.202
342 | Epoch: 6, Iteration: 540 loss: 1.129
343 | Epoch: 6, Iteration: 560 loss: 1.171
344 | Epoch: 6, Iteration: 580 loss: 1.228
345 | Epoch: 6, Iteration: 600 loss: 1.171
346 | Epoch: 6, Iteration: 620 loss: 1.172
347 | Epoch: 6, Iteration: 640 loss: 1.138
348 | Epoch: 6, Iteration: 660 loss: 1.154
349 | Epoch: 6, Iteration: 680 loss: 1.111
350 | Epoch: 6, Iteration: 700 loss: 1.153
351 | Epoch: 6, Iteration: 720 loss: 1.119
352 | Epoch: 6, Iteration: 740 loss: 1.119
353 | Epoch: 6, Iteration: 760 loss: 1.116
354 | Epoch: 6, Iteration: 780 loss: 1.161
355 | Loss: 1.349
356 | Accuracy of the network on the 10000 test images: 50 %
357 | Accuracy of plane : 80 %
358 | Accuracy of car : 90 %
359 | Accuracy of bird : 34 %
360 | Accuracy of cat : 34 %
361 | Accuracy of deer : 9 %
362 | Accuracy of dog : 66 %
363 | Accuracy of frog : 50 %
364 | Accuracy of horse : 64 %
365 | Accuracy of ship : 55 %
366 | Accuracy of truck : 38 %
367 | Epoch 6: reducing learning rate of group 0 to 1.0000e-02.
368 | Epoch: 7, Iteration: 0 loss: 0.056
369 | Epoch: 7, Iteration: 20 loss: 1.191
370 | Epoch: 7, Iteration: 40 loss: 1.073
371 | Epoch: 7, Iteration: 60 loss: 0.949
372 | Epoch: 7, Iteration: 80 loss: 0.972
373 | Epoch: 7, Iteration: 100 loss: 0.923
374 | Epoch: 7, Iteration: 120 loss: 0.881
375 | Epoch: 7, Iteration: 140 loss: 0.890
376 | Epoch: 7, Iteration: 160 loss: 0.868
377 | Epoch: 7, Iteration: 180 loss: 0.899
378 | Epoch: 7, Iteration: 200 loss: 0.856
379 | Epoch: 7, Iteration: 220 loss: 0.926
380 | Epoch: 7, Iteration: 240 loss: 0.798
381 | Epoch: 7, Iteration: 260 loss: 0.808
382 | Epoch: 7, Iteration: 280 loss: 0.838
383 | Epoch: 7, Iteration: 300 loss: 0.770
384 | Epoch: 7, Iteration: 320 loss: 0.805
385 | Epoch: 7, Iteration: 340 loss: 0.778
386 | Epoch: 7, Iteration: 360 loss: 0.868
387 | Epoch: 7, Iteration: 380 loss: 0.840
388 | Epoch: 7, Iteration: 400 loss: 0.851
389 | Epoch: 7, Iteration: 420 loss: 0.811
390 | Epoch: 7, Iteration: 440 loss: 0.821
391 | Epoch: 7, Iteration: 460 loss: 0.740
392 | Epoch: 7, Iteration: 480 loss: 0.813
393 | Epoch: 7, Iteration: 500 loss: 0.787
394 | Epoch: 7, Iteration: 520 loss: 0.768
395 | Epoch: 7, Iteration: 540 loss: 0.775
396 | Epoch: 7, Iteration: 560 loss: 0.807
397 | Epoch: 7, Iteration: 580 loss: 0.831
398 | Epoch: 7, Iteration: 600 loss: 0.803
399 | Epoch: 7, Iteration: 620 loss: 0.778
400 | Epoch: 7, Iteration: 640 loss: 0.771
401 | Epoch: 7, Iteration: 660 loss: 0.728
402 | Epoch: 7, Iteration: 680 loss: 0.757
403 | Epoch: 7, Iteration: 700 loss: 0.727
404 | Epoch: 7, Iteration: 720 loss: 0.789
405 | Epoch: 7, Iteration: 740 loss: 0.774
406 | Epoch: 7, Iteration: 760 loss: 0.720
407 | Epoch: 7, Iteration: 780 loss: 0.773
408 | Loss: 1.080
409 | Accuracy of the network on the 10000 test images: 62 %
410 | Accuracy of plane : 75 %
411 | Accuracy of car : 76 %
412 | Accuracy of bird : 54 %
413 | Accuracy of cat : 49 %
414 | Accuracy of deer : 49 %
415 | Accuracy of dog : 50 %
416 | Accuracy of frog : 75 %
417 | Accuracy of horse : 62 %
418 | Accuracy of ship : 72 %
419 | Accuracy of truck : 67 %
420 | Epoch: 8, Iteration: 0 loss: 0.046
421 | Epoch: 8, Iteration: 20 loss: 0.764
422 | Epoch: 8, Iteration: 40 loss: 0.760
423 | Epoch: 8, Iteration: 60 loss: 0.747
424 | Epoch: 8, Iteration: 80 loss: 0.762
425 | Epoch: 8, Iteration: 100 loss: 0.725
426 | Epoch: 8, Iteration: 120 loss: 0.745
427 | Epoch: 8, Iteration: 140 loss: 0.695
428 | Epoch: 8, Iteration: 160 loss: 0.694
429 | Epoch: 8, Iteration: 180 loss: 0.743
430 | Epoch: 8, Iteration: 200 loss: 0.755
431 | Epoch: 8, Iteration: 220 loss: 0.715
432 | Epoch: 8, Iteration: 240 loss: 0.726
433 | Epoch: 8, Iteration: 260 loss: 0.697
434 | Epoch: 8, Iteration: 280 loss: 0.725
435 | Epoch: 8, Iteration: 300 loss: 0.674
436 | Epoch: 8, Iteration: 320 loss: 0.701
437 | Epoch: 8, Iteration: 340 loss: 0.734
438 | Epoch: 8, Iteration: 360 loss: 0.751
439 | Epoch: 8, Iteration: 380 loss: 0.736
440 | Epoch: 8, Iteration: 400 loss: 0.714
441 | Epoch: 8, Iteration: 420 loss: 0.706
442 | Epoch: 8, Iteration: 440 loss: 0.727
443 | Epoch: 8, Iteration: 460 loss: 0.735
444 | Epoch: 8, Iteration: 480 loss: 0.737
445 | Epoch: 8, Iteration: 500 loss: 0.721
446 | Epoch: 8, Iteration: 520 loss: 0.652
447 | Epoch: 8, Iteration: 540 loss: 0.661
448 | Epoch: 8, Iteration: 560 loss: 0.703
449 | Epoch: 8, Iteration: 580 loss: 0.697
450 | Epoch: 8, Iteration: 600 loss: 0.726
451 | Epoch: 8, Iteration: 620 loss: 0.735
452 | Epoch: 8, Iteration: 640 loss: 0.704
453 | Epoch: 8, Iteration: 660 loss: 0.716
454 | Epoch: 8, Iteration: 680 loss: 0.717
455 | Epoch: 8, Iteration: 700 loss: 0.700
456 | Epoch: 8, Iteration: 720 loss: 0.680
457 | Epoch: 8, Iteration: 740 loss: 0.731
458 | Epoch: 8, Iteration: 760 loss: 0.650
459 | Epoch: 8, Iteration: 780 loss: 0.675
460 | Loss: 1.085
461 | Accuracy of the network on the 10000 test images: 64 %
462 | Accuracy of plane : 75 %
463 | Accuracy of car : 76 %
464 | Accuracy of bird : 60 %
465 | Accuracy of cat : 41 %
466 | Accuracy of deer : 52 %
467 | Accuracy of dog : 55 %
468 | Accuracy of frog : 75 %
469 | Accuracy of horse : 64 %
470 | Accuracy of ship : 79 %
471 | Accuracy of truck : 69 %
472 | Epoch: 9, Iteration: 0 loss: 0.031
473 | Epoch: 9, Iteration: 20 loss: 0.627
474 | Epoch: 9, Iteration: 40 loss: 0.637
475 | Epoch: 9, Iteration: 60 loss: 0.711
476 | Epoch: 9, Iteration: 80 loss: 0.696
477 | Epoch: 9, Iteration: 100 loss: 0.674
478 | Epoch: 9, Iteration: 120 loss: 0.680
479 | Epoch: 9, Iteration: 140 loss: 0.596
480 | Epoch: 9, Iteration: 160 loss: 0.681
481 | Epoch: 9, Iteration: 180 loss: 0.648
482 | Epoch: 9, Iteration: 200 loss: 0.669
483 | Epoch: 9, Iteration: 220 loss: 0.580
484 | Epoch: 9, Iteration: 240 loss: 0.610
485 | Epoch: 9, Iteration: 260 loss: 0.688
486 | Epoch: 9, Iteration: 280 loss: 0.709
487 | Epoch: 9, Iteration: 300 loss: 0.675
488 | Epoch: 9, Iteration: 320 loss: 0.627
489 | Epoch: 9, Iteration: 340 loss: 0.596
490 | Epoch: 9, Iteration: 360 loss: 0.681
491 | Epoch: 9, Iteration: 380 loss: 0.660
492 | Epoch: 9, Iteration: 400 loss: 0.672
493 | Epoch: 9, Iteration: 420 loss: 0.628
494 | Epoch: 9, Iteration: 440 loss: 0.594
495 | Epoch: 9, Iteration: 460 loss: 0.638
496 | Epoch: 9, Iteration: 480 loss: 0.640
497 | Epoch: 9, Iteration: 500 loss: 0.626
498 | Epoch: 9, Iteration: 520 loss: 0.643
499 | Epoch: 9, Iteration: 540 loss: 0.625
500 | Epoch: 9, Iteration: 560 loss: 0.648
501 | Epoch: 9, Iteration: 580 loss: 0.610
502 | Epoch: 9, Iteration: 600 loss: 0.578
503 | Epoch: 9, Iteration: 620 loss: 0.638
504 | Epoch: 9, Iteration: 640 loss: 0.587
505 | Epoch: 9, Iteration: 660 loss: 0.628
506 | Epoch: 9, Iteration: 680 loss: 0.636
507 | Epoch: 9, Iteration: 700 loss: 0.649
508 | Epoch: 9, Iteration: 720 loss: 0.639
509 | Epoch: 9, Iteration: 740 loss: 0.640
510 | Epoch: 9, Iteration: 760 loss: 0.630
511 | Epoch: 9, Iteration: 780 loss: 0.598
512 | Loss: 1.100
513 | Accuracy of the network on the 10000 test images: 63 %
514 | Accuracy of plane : 73 %
515 | Accuracy of car : 72 %
516 | Accuracy of bird : 53 %
517 | Accuracy of cat : 53 %
518 | Accuracy of deer : 43 %
519 | Accuracy of dog : 52 %
520 | Accuracy of frog : 73 %
521 | Accuracy of horse : 65 %
522 | Accuracy of ship : 81 %
523 | Accuracy of truck : 69 %
524 | Epoch 9: reducing learning rate of group 0 to 1.0000e-03.
525 | Epoch: 10, Iteration: 0 loss: 0.035
526 | Epoch: 10, Iteration: 20 loss: 0.600
527 | Epoch: 10, Iteration: 40 loss: 0.549
528 | Epoch: 10, Iteration: 60 loss: 0.573
529 | Epoch: 10, Iteration: 80 loss: 0.581
530 | Epoch: 10, Iteration: 100 loss: 0.567
531 | Epoch: 10, Iteration: 120 loss: 0.609
532 | Epoch: 10, Iteration: 140 loss: 0.589
533 | Epoch: 10, Iteration: 160 loss: 0.555
534 | Epoch: 10, Iteration: 180 loss: 0.602
535 | Epoch: 10, Iteration: 200 loss: 0.550
536 | Epoch: 10, Iteration: 220 loss: 0.595
537 | Epoch: 10, Iteration: 240 loss: 0.581
538 | Epoch: 10, Iteration: 260 loss: 0.549
539 | Epoch: 10, Iteration: 280 loss: 0.531
540 | Epoch: 10, Iteration: 300 loss: 0.605
541 | Epoch: 10, Iteration: 320 loss: 0.607
542 | Epoch: 10, Iteration: 340 loss: 0.624
543 | Epoch: 10, Iteration: 360 loss: 0.584
544 | Epoch: 10, Iteration: 380 loss: 0.591
545 | Epoch: 10, Iteration: 400 loss: 0.552
546 | Epoch: 10, Iteration: 420 loss: 0.589
547 | Epoch: 10, Iteration: 440 loss: 0.564
548 | Epoch: 10, Iteration: 460 loss: 0.553
549 | Epoch: 10, Iteration: 480 loss: 0.581
550 | Epoch: 10, Iteration: 500 loss: 0.607
551 | Epoch: 10, Iteration: 520 loss: 0.524
552 | Epoch: 10, Iteration: 540 loss: 0.626
553 | Epoch: 10, Iteration: 560 loss: 0.557
554 | Epoch: 10, Iteration: 580 loss: 0.577
555 | Epoch: 10, Iteration: 600 loss: 0.587
556 | Epoch: 10, Iteration: 620 loss: 0.547
557 | Epoch: 10, Iteration: 640 loss: 0.588
558 | Epoch: 10, Iteration: 660 loss: 0.542
559 | Epoch: 10, Iteration: 680 loss: 0.603
560 | Epoch: 10, Iteration: 700 loss: 0.564
561 | Epoch: 10, Iteration: 720 loss: 0.576
562 | Epoch: 10, Iteration: 740 loss: 0.511
563 | Epoch: 10, Iteration: 760 loss: 0.573
564 | Epoch: 10, Iteration: 780 loss: 0.535
565 | Loss: 1.101
566 | Accuracy of the network on the 10000 test images: 62 %
567 | Accuracy of plane : 75 %
568 | Accuracy of car : 76 %
569 | Accuracy of bird : 54 %
570 | Accuracy of cat : 49 %
571 | Accuracy of deer : 49 %
572 | Accuracy of dog : 52 %
573 | Accuracy of frog : 73 %
574 | Accuracy of horse : 60 %
575 | Accuracy of ship : 81 %
576 | Accuracy of truck : 65 %
577 | Epoch: 11, Iteration: 0 loss: 0.024
578 | Epoch: 11, Iteration: 20 loss: 0.586
579 | Epoch: 11, Iteration: 40 loss: 0.552
580 | Epoch: 11, Iteration: 60 loss: 0.567
581 | Epoch: 11, Iteration: 80 loss: 0.550
582 | Epoch: 11, Iteration: 100 loss: 0.546
583 | Epoch: 11, Iteration: 120 loss: 0.555
584 | Epoch: 11, Iteration: 140 loss: 0.555
585 | Epoch: 11, Iteration: 160 loss: 0.596
586 | Epoch: 11, Iteration: 180 loss: 0.560
587 | Epoch: 11, Iteration: 200 loss: 0.589
588 | Epoch: 11, Iteration: 220 loss: 0.582
589 | Epoch: 11, Iteration: 240 loss: 0.610
590 | Epoch: 11, Iteration: 260 loss: 0.568
591 | Epoch: 11, Iteration: 280 loss: 0.560
592 | Epoch: 11, Iteration: 300 loss: 0.557
593 | Epoch: 11, Iteration: 320 loss: 0.548
594 | Epoch: 11, Iteration: 340 loss: 0.530
595 | Epoch: 11, Iteration: 360 loss: 0.553
596 | Epoch: 11, Iteration: 380 loss: 0.588
597 | Epoch: 11, Iteration: 400 loss: 0.584
598 | Epoch: 11, Iteration: 420 loss: 0.567
599 | Epoch: 11, Iteration: 440 loss: 0.565
600 | Epoch: 11, Iteration: 460 loss: 0.560
601 | Epoch: 11, Iteration: 480 loss: 0.504
602 | Epoch: 11, Iteration: 500 loss: 0.519
603 | Epoch: 11, Iteration: 520 loss: 0.537
604 | Epoch: 11, Iteration: 540 loss: 0.555
605 | Epoch: 11, Iteration: 560 loss: 0.542
606 | Epoch: 11, Iteration: 580 loss: 0.568
607 | Epoch: 11, Iteration: 600 loss: 0.553
608 | Epoch: 11, Iteration: 620 loss: 0.531
609 | Epoch: 11, Iteration: 640 loss: 0.571
610 | Epoch: 11, Iteration: 660 loss: 0.551
611 | Epoch: 11, Iteration: 680 loss: 0.561
612 | Epoch: 11, Iteration: 700 loss: 0.576
613 | Epoch: 11, Iteration: 720 loss: 0.605
614 | Epoch: 11, Iteration: 740 loss: 0.596
615 | Epoch: 11, Iteration: 760 loss: 0.593
616 | Epoch: 11, Iteration: 780 loss: 0.572
617 | Loss: 1.107
618 | Accuracy of the network on the 10000 test images: 63 %
619 | Accuracy of plane : 75 %
620 | Accuracy of car : 76 %
621 | Accuracy of bird : 55 %
622 | Accuracy of cat : 49 %
623 | Accuracy of deer : 50 %
624 | Accuracy of dog : 54 %
625 | Accuracy of frog : 73 %
626 | Accuracy of horse : 60 %
627 | Accuracy of ship : 81 %
628 | Accuracy of truck : 65 %
629 | Epoch 11: reducing learning rate of group 0 to 1.0000e-04.
630 | Epoch: 12, Iteration: 0 loss: 0.033
631 | Epoch: 12, Iteration: 20 loss: 0.583
632 | Epoch: 12, Iteration: 40 loss: 0.570
633 | Epoch: 12, Iteration: 60 loss: 0.556
634 | Epoch: 12, Iteration: 80 loss: 0.583
635 | Epoch: 12, Iteration: 100 loss: 0.577
636 | Epoch: 12, Iteration: 120 loss: 0.529
637 | Epoch: 12, Iteration: 140 loss: 0.523
638 | Epoch: 12, Iteration: 160 loss: 0.520
639 | Epoch: 12, Iteration: 180 loss: 0.528
640 | Epoch: 12, Iteration: 200 loss: 0.548
641 | Epoch: 12, Iteration: 220 loss: 0.567
642 | Epoch: 12, Iteration: 240 loss: 0.563
643 | Epoch: 12, Iteration: 260 loss: 0.548
644 | Epoch: 12, Iteration: 280 loss: 0.585
645 | Epoch: 12, Iteration: 300 loss: 0.551
646 | Epoch: 12, Iteration: 320 loss: 0.556
647 | Epoch: 12, Iteration: 340 loss: 0.526
648 | Epoch: 12, Iteration: 360 loss: 0.552
649 | Epoch: 12, Iteration: 380 loss: 0.541
650 | Epoch: 12, Iteration: 400 loss: 0.504
651 | Epoch: 12, Iteration: 420 loss: 0.524
652 | Epoch: 12, Iteration: 440 loss: 0.529
653 | Epoch: 12, Iteration: 460 loss: 0.544
654 | Epoch: 12, Iteration: 480 loss: 0.574
655 | Epoch: 12, Iteration: 500 loss: 0.556
656 | Epoch: 12, Iteration: 520 loss: 0.581
657 | Epoch: 12, Iteration: 540 loss: 0.573
658 | Epoch: 12, Iteration: 560 loss: 0.595
659 | Epoch: 12, Iteration: 580 loss: 0.556
660 | Epoch: 12, Iteration: 600 loss: 0.556
661 | Epoch: 12, Iteration: 620 loss: 0.521
662 | Epoch: 12, Iteration: 640 loss: 0.526
663 | Epoch: 12, Iteration: 660 loss: 0.572
664 | Epoch: 12, Iteration: 680 loss: 0.561
665 | Epoch: 12, Iteration: 700 loss: 0.560
666 | Epoch: 12, Iteration: 720 loss: 0.586
667 | Epoch: 12, Iteration: 740 loss: 0.594
668 | Epoch: 12, Iteration: 760 loss: 0.575
669 | Epoch: 12, Iteration: 780 loss: 0.547
670 | Loss: 1.108
671 | Accuracy of the network on the 10000 test images: 63 %
672 | Accuracy of plane : 75 %
673 | Accuracy of car : 76 %
674 | Accuracy of bird : 55 %
675 | Accuracy of cat : 49 %
676 | Accuracy of deer : 50 %
677 | Accuracy of dog : 54 %
678 | Accuracy of frog : 73 %
679 | Accuracy of horse : 60 %
680 | Accuracy of ship : 81 %
681 | Accuracy of truck : 65 %
682 | Epoch: 13, Iteration: 0 loss: 0.020
683 | Epoch: 13, Iteration: 20 loss: 0.549
684 | Epoch: 13, Iteration: 40 loss: 0.525
685 | Epoch: 13, Iteration: 60 loss: 0.541
686 | Epoch: 13, Iteration: 80 loss: 0.546
687 | Epoch: 13, Iteration: 100 loss: 0.536
688 | Epoch: 13, Iteration: 120 loss: 0.584
689 | Epoch: 13, Iteration: 140 loss: 0.588
690 | Epoch: 13, Iteration: 160 loss: 0.538
691 | Epoch: 13, Iteration: 180 loss: 0.580
692 | Epoch: 13, Iteration: 200 loss: 0.568
693 | Epoch: 13, Iteration: 220 loss: 0.565
694 | Epoch: 13, Iteration: 240 loss: 0.564
695 | Epoch: 13, Iteration: 260 loss: 0.553
696 | Epoch: 13, Iteration: 280 loss: 0.494
697 | Epoch: 13, Iteration: 300 loss: 0.571
698 | Epoch: 13, Iteration: 320 loss: 0.557
699 | Epoch: 13, Iteration: 340 loss: 0.579
700 | Epoch: 13, Iteration: 360 loss: 0.580
701 | Epoch: 13, Iteration: 380 loss: 0.544
702 | Epoch: 13, Iteration: 400 loss: 0.573
703 | Epoch: 13, Iteration: 420 loss: 0.501
704 | Epoch: 13, Iteration: 440 loss: 0.533
705 | Epoch: 13, Iteration: 460 loss: 0.581
706 | Epoch: 13, Iteration: 480 loss: 0.574
707 | Epoch: 13, Iteration: 500 loss: 0.555
708 | Epoch: 13, Iteration: 520 loss: 0.563
709 | Epoch: 13, Iteration: 540 loss: 0.551
710 | Epoch: 13, Iteration: 560 loss: 0.533
711 | Epoch: 13, Iteration: 580 loss: 0.621
712 | Epoch: 13, Iteration: 600 loss: 0.540
713 | Epoch: 13, Iteration: 620 loss: 0.538
714 | Epoch: 13, Iteration: 640 loss: 0.521
715 | Epoch: 13, Iteration: 660 loss: 0.567
716 | Epoch: 13, Iteration: 680 loss: 0.544
717 | Epoch: 13, Iteration: 700 loss: 0.521
718 | Epoch: 13, Iteration: 720 loss: 0.539
719 | Epoch: 13, Iteration: 740 loss: 0.585
720 | Epoch: 13, Iteration: 760 loss: 0.567
721 | Epoch: 13, Iteration: 780 loss: 0.543
722 | Loss: 1.108
723 | Accuracy of the network on the 10000 test images: 63 %
724 | Accuracy of plane : 75 %
725 | Accuracy of car : 76 %
726 | Accuracy of bird : 55 %
727 | Accuracy of cat : 49 %
728 | Accuracy of deer : 50 %
729 | Accuracy of dog : 54 %
730 | Accuracy of frog : 73 %
731 | Accuracy of horse : 60 %
732 | Accuracy of ship : 81 %
733 | Accuracy of truck : 65 %
734 | Epoch 13: reducing learning rate of group 0 to 1.0000e-05.
735 | Epoch: 14, Iteration: 0 loss: 0.027
736 | Epoch: 14, Iteration: 20 loss: 0.540
737 | Epoch: 14, Iteration: 40 loss: 0.544
738 | Epoch: 14, Iteration: 60 loss: 0.540
739 | Epoch: 14, Iteration: 80 loss: 0.541
740 | Epoch: 14, Iteration: 100 loss: 0.567
741 | Epoch: 14, Iteration: 120 loss: 0.550
742 | Epoch: 14, Iteration: 140 loss: 0.572
743 | Epoch: 14, Iteration: 160 loss: 0.514
744 | Epoch: 14, Iteration: 180 loss: 0.591
745 | Epoch: 14, Iteration: 200 loss: 0.530
746 | Epoch: 14, Iteration: 220 loss: 0.546
747 | Epoch: 14, Iteration: 240 loss: 0.599
748 | Epoch: 14, Iteration: 260 loss: 0.540
749 | Epoch: 14, Iteration: 280 loss: 0.545
750 | Epoch: 14, Iteration: 300 loss: 0.532
751 | Epoch: 14, Iteration: 320 loss: 0.520
752 | Epoch: 14, Iteration: 340 loss: 0.527
753 | Epoch: 14, Iteration: 360 loss: 0.538
754 | Epoch: 14, Iteration: 380 loss: 0.568
755 | Epoch: 14, Iteration: 400 loss: 0.567
756 | Epoch: 14, Iteration: 420 loss: 0.575
757 | Epoch: 14, Iteration: 440 loss: 0.563
758 | Epoch: 14, Iteration: 460 loss: 0.548
759 | Epoch: 14, Iteration: 480 loss: 0.575
760 | Epoch: 14, Iteration: 500 loss: 0.550
761 | Epoch: 14, Iteration: 520 loss: 0.575
762 | Epoch: 14, Iteration: 540 loss: 0.537
763 | Epoch: 14, Iteration: 560 loss: 0.539
764 | Epoch: 14, Iteration: 580 loss: 0.553
765 | Epoch: 14, Iteration: 600 loss: 0.567
766 | Epoch: 14, Iteration: 620 loss: 0.554
767 | Epoch: 14, Iteration: 640 loss: 0.544
768 | Epoch: 14, Iteration: 660 loss: 0.546
769 | Epoch: 14, Iteration: 680 loss: 0.570
770 | Epoch: 14, Iteration: 700 loss: 0.549
771 | Epoch: 14, Iteration: 720 loss: 0.609
772 | Epoch: 14, Iteration: 740 loss: 0.581
773 | Epoch: 14, Iteration: 760 loss: 0.565
774 | Epoch: 14, Iteration: 780 loss: 0.502
775 | Loss: 1.108
776 | Accuracy of the network on the 10000 test images: 63 %
777 | Accuracy of plane : 75 %
778 | Accuracy of car : 76 %
779 | Accuracy of bird : 55 %
780 | Accuracy of cat : 49 %
781 | Accuracy of deer : 50 %
782 | Accuracy of dog : 54 %
783 | Accuracy of frog : 73 %
784 | Accuracy of horse : 60 %
785 | Accuracy of ship : 81 %
786 | Accuracy of truck : 65 %
787 | Epoch: 15, Iteration: 0 loss: 0.026
788 | Epoch: 15, Iteration: 20 loss: 0.513
789 | Epoch: 15, Iteration: 40 loss: 0.566
790 | Epoch: 15, Iteration: 60 loss: 0.563
791 | Epoch: 15, Iteration: 80 loss: 0.531
792 | Epoch: 15, Iteration: 100 loss: 0.566
793 | Epoch: 15, Iteration: 120 loss: 0.529
794 | Epoch: 15, Iteration: 140 loss: 0.563
795 | Epoch: 15, Iteration: 160 loss: 0.579
796 | Epoch: 15, Iteration: 180 loss: 0.579
797 | Epoch: 15, Iteration: 200 loss: 0.544
798 | Epoch: 15, Iteration: 220 loss: 0.596
799 | Epoch: 15, Iteration: 240 loss: 0.561
800 | Epoch: 15, Iteration: 260 loss: 0.561
801 | Epoch: 15, Iteration: 280 loss: 0.578
802 | Epoch: 15, Iteration: 300 loss: 0.587
803 | Epoch: 15, Iteration: 320 loss: 0.586
804 | Epoch: 15, Iteration: 340 loss: 0.550
805 | Epoch: 15, Iteration: 360 loss: 0.573
806 | Epoch: 15, Iteration: 380 loss: 0.534
807 | Epoch: 15, Iteration: 400 loss: 0.555
808 | Epoch: 15, Iteration: 420 loss: 0.591
809 | Epoch: 15, Iteration: 440 loss: 0.555
810 | Epoch: 15, Iteration: 460 loss: 0.536
811 | Epoch: 15, Iteration: 480 loss: 0.550
812 | Epoch: 15, Iteration: 500 loss: 0.506
813 | Epoch: 15, Iteration: 520 loss: 0.552
814 | Epoch: 15, Iteration: 540 loss: 0.584
815 | Epoch: 15, Iteration: 560 loss: 0.522
816 | Epoch: 15, Iteration: 580 loss: 0.562
817 | Epoch: 15, Iteration: 600 loss: 0.549
818 | Epoch: 15, Iteration: 620 loss: 0.516
819 | Epoch: 15, Iteration: 640 loss: 0.539
820 | Epoch: 15, Iteration: 660 loss: 0.549
821 | Epoch: 15, Iteration: 680 loss: 0.531
822 | Epoch: 15, Iteration: 700 loss: 0.536
823 | Epoch: 15, Iteration: 720 loss: 0.556
824 | Epoch: 15, Iteration: 740 loss: 0.549
825 | Epoch: 15, Iteration: 760 loss: 0.533
826 | Epoch: 15, Iteration: 780 loss: 0.540
827 | Loss: 1.108
828 | Accuracy of the network on the 10000 test images: 63 %
829 | Accuracy of plane : 75 %
830 | Accuracy of car : 76 %
831 | Accuracy of bird : 55 %
832 | Accuracy of cat : 49 %
833 | Accuracy of deer : 50 %
834 | Accuracy of dog : 54 %
835 | Accuracy of frog : 73 %
836 | Accuracy of horse : 60 %
837 | Accuracy of ship : 81 %
838 | Accuracy of truck : 65 %
839 | Epoch 15: reducing learning rate of group 0 to 1.0000e-06.
840 | Epoch: 16, Iteration: 0 loss: 0.034
841 | Epoch: 16, Iteration: 20 loss: 0.551
842 | Epoch: 16, Iteration: 40 loss: 0.549
843 | Epoch: 16, Iteration: 60 loss: 0.516
844 | Epoch: 16, Iteration: 80 loss: 0.542
845 | Epoch: 16, Iteration: 100 loss: 0.576
846 | Epoch: 16, Iteration: 120 loss: 0.541
847 | Epoch: 16, Iteration: 140 loss: 0.525
848 | Epoch: 16, Iteration: 160 loss: 0.527
849 | Epoch: 16, Iteration: 180 loss: 0.550
850 | Epoch: 16, Iteration: 200 loss: 0.553
851 | Epoch: 16, Iteration: 220 loss: 0.595
852 | Epoch: 16, Iteration: 240 loss: 0.561
853 | Epoch: 16, Iteration: 260 loss: 0.572
854 | Epoch: 16, Iteration: 280 loss: 0.575
855 | Epoch: 16, Iteration: 300 loss: 0.533
856 | Epoch: 16, Iteration: 320 loss: 0.578
857 | Epoch: 16, Iteration: 340 loss: 0.511
858 | Epoch: 16, Iteration: 360 loss: 0.525
859 | Epoch: 16, Iteration: 380 loss: 0.504
860 | Epoch: 16, Iteration: 400 loss: 0.523
861 | Epoch: 16, Iteration: 420 loss: 0.505
862 | Epoch: 16, Iteration: 440 loss: 0.555
863 | Epoch: 16, Iteration: 460 loss: 0.571
864 | Epoch: 16, Iteration: 480 loss: 0.618
865 | Epoch: 16, Iteration: 500 loss: 0.575
866 | Epoch: 16, Iteration: 520 loss: 0.569
867 | Epoch: 16, Iteration: 540 loss: 0.574
868 | Epoch: 16, Iteration: 560 loss: 0.556
869 | Epoch: 16, Iteration: 580 loss: 0.562
870 | Epoch: 16, Iteration: 600 loss: 0.535
871 | Epoch: 16, Iteration: 620 loss: 0.587
872 | Epoch: 16, Iteration: 640 loss: 0.494
873 | Epoch: 16, Iteration: 660 loss: 0.588
874 | Epoch: 16, Iteration: 680 loss: 0.603
875 | Epoch: 16, Iteration: 700 loss: 0.568
876 | Epoch: 16, Iteration: 720 loss: 0.546
877 | Epoch: 16, Iteration: 740 loss: 0.507
878 | Epoch: 16, Iteration: 760 loss: 0.574
879 | Epoch: 16, Iteration: 780 loss: 0.562
880 | Loss: 1.108
881 | Accuracy of the network on the 10000 test images: 63 %
882 | Accuracy of plane : 75 %
883 | Accuracy of car : 76 %
884 | Accuracy of bird : 55 %
885 | Accuracy of cat : 49 %
886 | Accuracy of deer : 50 %
887 | Accuracy of dog : 54 %
888 | Accuracy of frog : 73 %
889 | Accuracy of horse : 60 %
890 | Accuracy of ship : 81 %
891 | Accuracy of truck : 65 %
892 | Epoch: 17, Iteration: 0 loss: 0.022
893 | Epoch: 17, Iteration: 20 loss: 0.531
894 | Epoch: 17, Iteration: 40 loss: 0.556
895 | Epoch: 17, Iteration: 60 loss: 0.545
896 | Epoch: 17, Iteration: 80 loss: 0.563
897 | Epoch: 17, Iteration: 100 loss: 0.515
898 | Epoch: 17, Iteration: 120 loss: 0.549
899 | Epoch: 17, Iteration: 140 loss: 0.548
900 | Epoch: 17, Iteration: 160 loss: 0.541
901 | Epoch: 17, Iteration: 180 loss: 0.516
902 | Epoch: 17, Iteration: 200 loss: 0.544
903 | Epoch: 17, Iteration: 220 loss: 0.567
904 | Epoch: 17, Iteration: 240 loss: 0.554
905 | Epoch: 17, Iteration: 260 loss: 0.576
906 | Epoch: 17, Iteration: 280 loss: 0.615
907 | Epoch: 17, Iteration: 300 loss: 0.555
908 | Epoch: 17, Iteration: 320 loss: 0.534
909 | Epoch: 17, Iteration: 340 loss: 0.530
910 | Epoch: 17, Iteration: 360 loss: 0.542
911 | Epoch: 17, Iteration: 380 loss: 0.569
912 | Epoch: 17, Iteration: 400 loss: 0.566
913 | Epoch: 17, Iteration: 420 loss: 0.552
914 | Epoch: 17, Iteration: 440 loss: 0.545
915 | Epoch: 17, Iteration: 460 loss: 0.573
916 | Epoch: 17, Iteration: 480 loss: 0.547
917 | Epoch: 17, Iteration: 500 loss: 0.585
918 | Epoch: 17, Iteration: 520 loss: 0.550
919 | Epoch: 17, Iteration: 540 loss: 0.569
920 | Epoch: 17, Iteration: 560 loss: 0.577
921 | Epoch: 17, Iteration: 580 loss: 0.568
922 | Epoch: 17, Iteration: 600 loss: 0.540
923 | Epoch: 17, Iteration: 620 loss: 0.535
924 | Epoch: 17, Iteration: 640 loss: 0.550
925 | Epoch: 17, Iteration: 660 loss: 0.521
926 | Epoch: 17, Iteration: 680 loss: 0.555
927 | Epoch: 17, Iteration: 700 loss: 0.544
928 | Epoch: 17, Iteration: 720 loss: 0.546
929 | Epoch: 17, Iteration: 740 loss: 0.576
930 | Epoch: 17, Iteration: 760 loss: 0.564
931 | Epoch: 17, Iteration: 780 loss: 0.558
932 | Loss: 1.108
933 | Accuracy of the network on the 10000 test images: 63 %
934 | Accuracy of plane : 75 %
935 | Accuracy of car : 76 %
936 | Accuracy of bird : 55 %
937 | Accuracy of cat : 49 %
938 | Accuracy of deer : 50 %
939 | Accuracy of dog : 54 %
940 | Accuracy of frog : 73 %
941 | Accuracy of horse : 60 %
942 | Accuracy of ship : 81 %
943 | Accuracy of truck : 65 %
944 | Epoch 17: reducing learning rate of group 0 to 1.0000e-07.
945 | Epoch: 18, Iteration: 0 loss: 0.028
946 | Epoch: 18, Iteration: 20 loss: 0.542
947 | Epoch: 18, Iteration: 40 loss: 0.533
948 | Epoch: 18, Iteration: 60 loss: 0.569
949 | Epoch: 18, Iteration: 80 loss: 0.528
950 | Epoch: 18, Iteration: 100 loss: 0.554
951 | Epoch: 18, Iteration: 120 loss: 0.496
952 | Epoch: 18, Iteration: 140 loss: 0.554
953 | Epoch: 18, Iteration: 160 loss: 0.607
954 | Epoch: 18, Iteration: 180 loss: 0.560
955 | Epoch: 18, Iteration: 200 loss: 0.557
956 | Epoch: 18, Iteration: 220 loss: 0.528
957 | Epoch: 18, Iteration: 240 loss: 0.516
958 | Epoch: 18, Iteration: 260 loss: 0.543
959 | Epoch: 18, Iteration: 280 loss: 0.544
960 | Epoch: 18, Iteration: 300 loss: 0.571
961 | Epoch: 18, Iteration: 320 loss: 0.554
962 | Epoch: 18, Iteration: 340 loss: 0.560
963 | Epoch: 18, Iteration: 360 loss: 0.525
964 | Epoch: 18, Iteration: 380 loss: 0.548
965 | Epoch: 18, Iteration: 400 loss: 0.572
966 | Epoch: 18, Iteration: 420 loss: 0.532
967 | Epoch: 18, Iteration: 440 loss: 0.555
968 | Epoch: 18, Iteration: 460 loss: 0.576
969 | Epoch: 18, Iteration: 480 loss: 0.530
970 | Epoch: 18, Iteration: 500 loss: 0.604
971 | Epoch: 18, Iteration: 520 loss: 0.572
972 | Epoch: 18, Iteration: 540 loss: 0.545
973 | Epoch: 18, Iteration: 560 loss: 0.511
974 | Epoch: 18, Iteration: 580 loss: 0.564
975 | Epoch: 18, Iteration: 600 loss: 0.561
976 | Epoch: 18, Iteration: 620 loss: 0.544
977 | Epoch: 18, Iteration: 640 loss: 0.527
978 | Epoch: 18, Iteration: 660 loss: 0.592
979 | Epoch: 18, Iteration: 680 loss: 0.573
980 | Epoch: 18, Iteration: 700 loss: 0.525
981 | Epoch: 18, Iteration: 720 loss: 0.583
982 | Epoch: 18, Iteration: 740 loss: 0.555
983 | Epoch: 18, Iteration: 760 loss: 0.584
984 | Epoch: 18, Iteration: 780 loss: 0.573
985 | Loss: 1.108
986 | Accuracy of the network on the 10000 test images: 63 %
987 | Accuracy of plane : 75 %
988 | Accuracy of car : 76 %
989 | Accuracy of bird : 55 %
990 | Accuracy of cat : 49 %
991 | Accuracy of deer : 50 %
992 | Accuracy of dog : 54 %
993 | Accuracy of frog : 73 %
994 | Accuracy of horse : 60 %
995 | Accuracy of ship : 81 %
996 | Accuracy of truck : 65 %
997 | Epoch: 19, Iteration: 0 loss: 0.021
998 | Epoch: 19, Iteration: 20 loss: 0.552
999 | Epoch: 19, Iteration: 40 loss: 0.545
1000 | Epoch: 19, Iteration: 60 loss: 0.540
1001 | Epoch: 19, Iteration: 80 loss: 0.578
1002 | Epoch: 19, Iteration: 100 loss: 0.547
1003 | Epoch: 19, Iteration: 120 loss: 0.569
1004 | Epoch: 19, Iteration: 140 loss: 0.569
1005 | Epoch: 19, Iteration: 160 loss: 0.554
1006 | Epoch: 19, Iteration: 180 loss: 0.505
1007 | Epoch: 19, Iteration: 200 loss: 0.527
1008 | Epoch: 19, Iteration: 220 loss: 0.527
1009 | Epoch: 19, Iteration: 240 loss: 0.608
1010 | Epoch: 19, Iteration: 260 loss: 0.495
1011 | Epoch: 19, Iteration: 280 loss: 0.551
1012 | Epoch: 19, Iteration: 300 loss: 0.513
1013 | Epoch: 19, Iteration: 320 loss: 0.517
1014 | Epoch: 19, Iteration: 340 loss: 0.529
1015 | Epoch: 19, Iteration: 360 loss: 0.566
1016 | Epoch: 19, Iteration: 380 loss: 0.585
1017 | Epoch: 19, Iteration: 400 loss: 0.543
1018 | Epoch: 19, Iteration: 420 loss: 0.563
1019 | Epoch: 19, Iteration: 440 loss: 0.596
1020 | Epoch: 19, Iteration: 460 loss: 0.565
1021 | Epoch: 19, Iteration: 480 loss: 0.595
1022 | Epoch: 19, Iteration: 500 loss: 0.540
1023 | Epoch: 19, Iteration: 520 loss: 0.577
1024 | Epoch: 19, Iteration: 540 loss: 0.568
1025 | Epoch: 19, Iteration: 560 loss: 0.538
1026 | Epoch: 19, Iteration: 580 loss: 0.532
1027 | Epoch: 19, Iteration: 600 loss: 0.572
1028 | Epoch: 19, Iteration: 620 loss: 0.592
1029 | Epoch: 19, Iteration: 640 loss: 0.586
1030 | Epoch: 19, Iteration: 660 loss: 0.528
1031 | Epoch: 19, Iteration: 680 loss: 0.568
1032 | Epoch: 19, Iteration: 700 loss: 0.531
1033 | Epoch: 19, Iteration: 720 loss: 0.555
1034 | Epoch: 19, Iteration: 740 loss: 0.580
1035 | Epoch: 19, Iteration: 760 loss: 0.548
1036 | Epoch: 19, Iteration: 780 loss: 0.521
1037 | Loss: 1.108
1038 | Accuracy of the network on the 10000 test images: 63 %
1039 | Accuracy of plane : 75 %
1040 | Accuracy of car : 76 %
1041 | Accuracy of bird : 55 %
1042 | Accuracy of cat : 49 %
1043 | Accuracy of deer : 50 %
1044 | Accuracy of dog : 54 %
1045 | Accuracy of frog : 73 %
1046 | Accuracy of horse : 60 %
1047 | Accuracy of ship : 81 %
1048 | Accuracy of truck : 65 %
1049 | Epoch 19: reducing learning rate of group 0 to 1.0000e-08.
1050 | Epoch: 20, Iteration: 0 loss: 0.028
1051 | Epoch: 20, Iteration: 20 loss: 0.546
1052 | Epoch: 20, Iteration: 40 loss: 0.523
1053 | Epoch: 20, Iteration: 60 loss: 0.582
1054 | Epoch: 20, Iteration: 80 loss: 0.577
1055 | Epoch: 20, Iteration: 100 loss: 0.540
1056 | Epoch: 20, Iteration: 120 loss: 0.526
1057 | Epoch: 20, Iteration: 140 loss: 0.571
1058 | Epoch: 20, Iteration: 160 loss: 0.591
1059 | Epoch: 20, Iteration: 180 loss: 0.508
1060 | Epoch: 20, Iteration: 200 loss: 0.559
1061 | Epoch: 20, Iteration: 220 loss: 0.556
1062 | Epoch: 20, Iteration: 240 loss: 0.572
1063 | Epoch: 20, Iteration: 260 loss: 0.552
1064 | Epoch: 20, Iteration: 280 loss: 0.519
1065 | Epoch: 20, Iteration: 300 loss: 0.569
1066 | Epoch: 20, Iteration: 320 loss: 0.558
1067 | Epoch: 20, Iteration: 340 loss: 0.558
1068 | Epoch: 20, Iteration: 360 loss: 0.559
1069 | Epoch: 20, Iteration: 380 loss: 0.491
1070 | Epoch: 20, Iteration: 400 loss: 0.536
1071 | Epoch: 20, Iteration: 420 loss: 0.528
1072 | Epoch: 20, Iteration: 440 loss: 0.539
1073 | Epoch: 20, Iteration: 460 loss: 0.597
1074 | Epoch: 20, Iteration: 480 loss: 0.580
1075 | Epoch: 20, Iteration: 500 loss: 0.525
1076 | Epoch: 20, Iteration: 520 loss: 0.545
1077 | Epoch: 20, Iteration: 540 loss: 0.543
1078 | Epoch: 20, Iteration: 560 loss: 0.587
1079 | Epoch: 20, Iteration: 580 loss: 0.573
1080 | Epoch: 20, Iteration: 600 loss: 0.522
1081 | Epoch: 20, Iteration: 620 loss: 0.568
1082 | Epoch: 20, Iteration: 640 loss: 0.558
1083 | Epoch: 20, Iteration: 660 loss: 0.559
1084 | Epoch: 20, Iteration: 680 loss: 0.568
1085 | Epoch: 20, Iteration: 700 loss: 0.558
1086 | Epoch: 20, Iteration: 720 loss: 0.520
1087 | Epoch: 20, Iteration: 740 loss: 0.590
1088 | Epoch: 20, Iteration: 760 loss: 0.539
1089 | Epoch: 20, Iteration: 780 loss: 0.572
1090 | Loss: 1.108
1091 | Accuracy of the network on the 10000 test images: 63 %
1092 | Accuracy of plane : 75 %
1093 | Accuracy of car : 76 %
1094 | Accuracy of bird : 55 %
1095 | Accuracy of cat : 49 %
1096 | Accuracy of deer : 50 %
1097 | Accuracy of dog : 54 %
1098 | Accuracy of frog : 73 %
1099 | Accuracy of horse : 60 %
1100 | Accuracy of ship : 81 %
1101 | Accuracy of truck : 65 %
1102 | Epoch: 21, Iteration: 0 loss: 0.032
1103 | Epoch: 21, Iteration: 20 loss: 0.555
1104 | Epoch: 21, Iteration: 40 loss: 0.575
1105 | Epoch: 21, Iteration: 60 loss: 0.566
1106 | Epoch: 21, Iteration: 80 loss: 0.577
1107 | Epoch: 21, Iteration: 100 loss: 0.539
1108 | Epoch: 21, Iteration: 120 loss: 0.512
1109 | Epoch: 21, Iteration: 140 loss: 0.543
1110 | Epoch: 21, Iteration: 160 loss: 0.574
1111 | Epoch: 21, Iteration: 180 loss: 0.562
1112 | Epoch: 21, Iteration: 200 loss: 0.533
1113 | Epoch: 21, Iteration: 220 loss: 0.525
1114 | Epoch: 21, Iteration: 240 loss: 0.565
1115 | Epoch: 21, Iteration: 260 loss: 0.518
1116 | Epoch: 21, Iteration: 280 loss: 0.575
1117 | Epoch: 21, Iteration: 300 loss: 0.556
1118 | Epoch: 21, Iteration: 320 loss: 0.544
1119 | Epoch: 21, Iteration: 340 loss: 0.561
1120 | Epoch: 21, Iteration: 360 loss: 0.567
1121 | Epoch: 21, Iteration: 380 loss: 0.540
1122 | Epoch: 21, Iteration: 400 loss: 0.554
1123 | Epoch: 21, Iteration: 420 loss: 0.520
1124 | Epoch: 21, Iteration: 440 loss: 0.561
1125 | Epoch: 21, Iteration: 460 loss: 0.552
1126 | Epoch: 21, Iteration: 480 loss: 0.535
1127 | Epoch: 21, Iteration: 500 loss: 0.605
1128 | Epoch: 21, Iteration: 520 loss: 0.559
1129 | Epoch: 21, Iteration: 540 loss: 0.594
1130 | Epoch: 21, Iteration: 560 loss: 0.533
1131 | Epoch: 21, Iteration: 580 loss: 0.542
1132 | Epoch: 21, Iteration: 600 loss: 0.561
1133 | Epoch: 21, Iteration: 620 loss: 0.545
1134 | Epoch: 21, Iteration: 640 loss: 0.545
1135 | Epoch: 21, Iteration: 660 loss: 0.534
1136 | Epoch: 21, Iteration: 680 loss: 0.593
1137 | Epoch: 21, Iteration: 700 loss: 0.574
1138 | Epoch: 21, Iteration: 720 loss: 0.534
1139 | Epoch: 21, Iteration: 740 loss: 0.562
1140 | Epoch: 21, Iteration: 760 loss: 0.518
1141 | Epoch: 21, Iteration: 780 loss: 0.552
1142 | Loss: 1.108
1143 | Accuracy of the network on the 10000 test images: 63 %
1144 | Accuracy of plane : 75 %
1145 | Accuracy of car : 76 %
1146 | Accuracy of bird : 55 %
1147 | Accuracy of cat : 49 %
1148 | Accuracy of deer : 50 %
1149 | Accuracy of dog : 54 %
1150 | Accuracy of frog : 73 %
1151 | Accuracy of horse : 60 %
1152 | Accuracy of ship : 81 %
1153 | Accuracy of truck : 65 %
1154 | Epoch: 22, Iteration: 0 loss: 0.035
1155 | Epoch: 22, Iteration: 20 loss: 0.547
1156 | Epoch: 22, Iteration: 40 loss: 0.573
1157 | Epoch: 22, Iteration: 60 loss: 0.570
1158 | Epoch: 22, Iteration: 80 loss: 0.529
1159 | Epoch: 22, Iteration: 100 loss: 0.591
1160 | Epoch: 22, Iteration: 120 loss: 0.530
1161 | Epoch: 22, Iteration: 140 loss: 0.583
1162 | Epoch: 22, Iteration: 160 loss: 0.528
1163 | Epoch: 22, Iteration: 180 loss: 0.579
1164 | Epoch: 22, Iteration: 200 loss: 0.493
1165 | Epoch: 22, Iteration: 220 loss: 0.554
1166 | Epoch: 22, Iteration: 240 loss: 0.547
1167 | Epoch: 22, Iteration: 260 loss: 0.546
1168 | Epoch: 22, Iteration: 280 loss: 0.584
1169 | Epoch: 22, Iteration: 300 loss: 0.493
1170 | Epoch: 22, Iteration: 320 loss: 0.519
1171 | Epoch: 22, Iteration: 340 loss: 0.619
1172 | Epoch: 22, Iteration: 360 loss: 0.570
1173 | Epoch: 22, Iteration: 380 loss: 0.533
1174 | Epoch: 22, Iteration: 400 loss: 0.581
1175 | Epoch: 22, Iteration: 420 loss: 0.573
1176 | Epoch: 22, Iteration: 440 loss: 0.566
1177 | Epoch: 22, Iteration: 460 loss: 0.546
1178 | Epoch: 22, Iteration: 480 loss: 0.540
1179 | Epoch: 22, Iteration: 500 loss: 0.534
1180 | Epoch: 22, Iteration: 520 loss: 0.535
1181 | Epoch: 22, Iteration: 540 loss: 0.549
1182 | Epoch: 22, Iteration: 560 loss: 0.563
1183 | Epoch: 22, Iteration: 580 loss: 0.597
1184 | Epoch: 22, Iteration: 600 loss: 0.531
1185 | Epoch: 22, Iteration: 620 loss: 0.519
1186 | Epoch: 22, Iteration: 640 loss: 0.542
1187 | Epoch: 22, Iteration: 660 loss: 0.563
1188 | Epoch: 22, Iteration: 680 loss: 0.527
1189 | Epoch: 22, Iteration: 700 loss: 0.531
1190 | Epoch: 22, Iteration: 720 loss: 0.602
1191 | Epoch: 22, Iteration: 740 loss: 0.568
1192 | Epoch: 22, Iteration: 760 loss: 0.545
1193 | Epoch: 22, Iteration: 780 loss: 0.559
1194 | Loss: 1.108
1195 | Accuracy of the network on the 10000 test images: 63 %
1196 | Accuracy of plane : 75 %
1197 | Accuracy of car : 76 %
1198 | Accuracy of bird : 55 %
1199 | Accuracy of cat : 49 %
1200 | Accuracy of deer : 50 %
1201 | Accuracy of dog : 54 %
1202 | Accuracy of frog : 73 %
1203 | Accuracy of horse : 60 %
1204 | Accuracy of ship : 81 %
1205 | Accuracy of truck : 65 %
1206 | Epoch: 23, Iteration: 0 loss: 0.026
1207 | Epoch: 23, Iteration: 20 loss: 0.548
1208 | Epoch: 23, Iteration: 40 loss: 0.571
1209 | Epoch: 23, Iteration: 60 loss: 0.526
1210 | Epoch: 23, Iteration: 80 loss: 0.586
1211 | Epoch: 23, Iteration: 100 loss: 0.541
1212 | Epoch: 23, Iteration: 120 loss: 0.588
1213 | Epoch: 23, Iteration: 140 loss: 0.521
1214 | Epoch: 23, Iteration: 160 loss: 0.569
1215 | Epoch: 23, Iteration: 180 loss: 0.565
1216 | Epoch: 23, Iteration: 200 loss: 0.552
1217 | Epoch: 23, Iteration: 220 loss: 0.546
1218 | Epoch: 23, Iteration: 240 loss: 0.536
1219 | Epoch: 23, Iteration: 260 loss: 0.533
1220 | Epoch: 23, Iteration: 280 loss: 0.549
1221 | Epoch: 23, Iteration: 300 loss: 0.625
1222 | Epoch: 23, Iteration: 320 loss: 0.565
1223 | Epoch: 23, Iteration: 340 loss: 0.564
1224 | Epoch: 23, Iteration: 360 loss: 0.580
1225 | Epoch: 23, Iteration: 380 loss: 0.527
1226 | Epoch: 23, Iteration: 400 loss: 0.578
1227 | Epoch: 23, Iteration: 420 loss: 0.571
1228 | Epoch: 23, Iteration: 440 loss: 0.518
1229 | Epoch: 23, Iteration: 460 loss: 0.537
1230 | Epoch: 23, Iteration: 480 loss: 0.564
1231 | Epoch: 23, Iteration: 500 loss: 0.543
1232 | Epoch: 23, Iteration: 520 loss: 0.580
1233 | Epoch: 23, Iteration: 540 loss: 0.547
1234 | Epoch: 23, Iteration: 560 loss: 0.581
1235 | Epoch: 23, Iteration: 580 loss: 0.545
1236 | Epoch: 23, Iteration: 600 loss: 0.526
1237 | Epoch: 23, Iteration: 620 loss: 0.528
1238 | Epoch: 23, Iteration: 640 loss: 0.541
1239 | Epoch: 23, Iteration: 660 loss: 0.532
1240 | Epoch: 23, Iteration: 680 loss: 0.528
1241 | Epoch: 23, Iteration: 700 loss: 0.543
1242 | Epoch: 23, Iteration: 720 loss: 0.535
1243 | Epoch: 23, Iteration: 740 loss: 0.569
1244 | Epoch: 23, Iteration: 760 loss: 0.545
1245 | Epoch: 23, Iteration: 780 loss: 0.566
1246 | Loss: 1.108
1247 | Accuracy of the network on the 10000 test images: 63 %
1248 | Accuracy of plane : 75 %
1249 | Accuracy of car : 76 %
1250 | Accuracy of bird : 55 %
1251 | Accuracy of cat : 49 %
1252 | Accuracy of deer : 50 %
1253 | Accuracy of dog : 54 %
1254 | Accuracy of frog : 73 %
1255 | Accuracy of horse : 60 %
1256 | Accuracy of ship : 81 %
1257 | Accuracy of truck : 65 %
1258 | Epoch: 24, Iteration: 0 loss: 0.029
1259 | Epoch: 24, Iteration: 20 loss: 0.552
1260 | Epoch: 24, Iteration: 40 loss: 0.599
1261 | Epoch: 24, Iteration: 60 loss: 0.565
1262 | Epoch: 24, Iteration: 80 loss: 0.529
1263 | Epoch: 24, Iteration: 100 loss: 0.563
1264 | Epoch: 24, Iteration: 120 loss: 0.550
1265 | Epoch: 24, Iteration: 140 loss: 0.571
1266 | Epoch: 24, Iteration: 160 loss: 0.575
1267 | Epoch: 24, Iteration: 180 loss: 0.557
1268 | Epoch: 24, Iteration: 200 loss: 0.502
1269 | Epoch: 24, Iteration: 220 loss: 0.552
1270 | Epoch: 24, Iteration: 240 loss: 0.541
1271 | Epoch: 24, Iteration: 260 loss: 0.569
1272 | Epoch: 24, Iteration: 280 loss: 0.566
1273 | Epoch: 24, Iteration: 300 loss: 0.555
1274 | Epoch: 24, Iteration: 320 loss: 0.535
1275 | Epoch: 24, Iteration: 340 loss: 0.588
1276 | Epoch: 24, Iteration: 360 loss: 0.586
1277 | Epoch: 24, Iteration: 380 loss: 0.563
1278 | Epoch: 24, Iteration: 400 loss: 0.542
1279 | Epoch: 24, Iteration: 420 loss: 0.573
1280 | Epoch: 24, Iteration: 440 loss: 0.545
1281 | Epoch: 24, Iteration: 460 loss: 0.539
1282 | Epoch: 24, Iteration: 480 loss: 0.555
1283 | Epoch: 24, Iteration: 500 loss: 0.506
1284 | Epoch: 24, Iteration: 520 loss: 0.535
1285 | Epoch: 24, Iteration: 540 loss: 0.570
1286 | Epoch: 24, Iteration: 560 loss: 0.579
1287 | Epoch: 24, Iteration: 580 loss: 0.524
1288 | Epoch: 24, Iteration: 600 loss: 0.574
1289 | Epoch: 24, Iteration: 620 loss: 0.534
1290 | Epoch: 24, Iteration: 640 loss: 0.541
1291 | Epoch: 24, Iteration: 660 loss: 0.522
1292 | Epoch: 24, Iteration: 680 loss: 0.578
1293 | Epoch: 24, Iteration: 700 loss: 0.540
1294 | Epoch: 24, Iteration: 720 loss: 0.546
1295 | Epoch: 24, Iteration: 740 loss: 0.548
1296 | Epoch: 24, Iteration: 760 loss: 0.556
1297 | Epoch: 24, Iteration: 780 loss: 0.534
1298 | Loss: 1.108
1299 | Accuracy of the network on the 10000 test images: 63 %
1300 | Accuracy of plane : 75 %
1301 | Accuracy of car : 76 %
1302 | Accuracy of bird : 55 %
1303 | Accuracy of cat : 49 %
1304 | Accuracy of deer : 50 %
1305 | Accuracy of dog : 54 %
1306 | Accuracy of frog : 73 %
1307 | Accuracy of horse : 60 %
1308 | Accuracy of ship : 81 %
1309 | Accuracy of truck : 65 %
1310 | Finished Training
1311 |
--------------------------------------------------------------------------------