├── .gitignore
├── LICENSE
├── MANIFEST
├── README.md
├── _config.yml
├── cytoscape_styles
├── colocalization.json
├── colocalization_style.xml
├── graph_overlap.json
├── heat_prop.json
├── heat_prop_style.xml
├── overlap_style.xml
└── visJS_style.xml
├── docs
├── README.md
├── _config.yml
├── colocalization.png
├── graph_overlap.png
└── heat_prop.png
├── notebooks
├── autism_prioritization
│ ├── gene-report.csv
│ └── validate_heat_prop_autism_2.ipynb
├── complex_params_example
│ └── visJS2Jupyter_complex_example.ipynb
├── default_params_example
│ ├── visJS2Jupyter_basic_example.ipynb
│ └── visJS2Jupyter_basic_example_zeppelin.json
├── load_from_mitab_example
│ └── load_mitab_data_example.ipynb
├── multigraph_example
│ ├── .ipynb_checkpoints
│ │ └── multigraph_example-checkpoint.ipynb
│ ├── multigraph_example.ipynb
│ └── style_file0.html
├── tcga_mutation_example
│ ├── .ipynb_checkpoints
│ │ └── TCGA_mutation_disease_drug-checkpoint.ipynb
│ ├── TCGA_mutation_disease_drug.ipynb
│ ├── drugbank.0.json.new
│ └── mutation_EL.csv
└── url_image_example
│ └── url_image_network.ipynb
├── setup.py
└── visJS2jupyter
├── __init__.py
├── scipy_heatKernel.py
├── visJS_module.py
├── visJS_module.pyc
└── visualizations.py
/.gitignore:
--------------------------------------------------------------------------------
1 | .idea/*
2 | *.pyc
3 | build/*
4 | *.egg-info/*
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2016 UC San Diego Center for Computational Biology & Bioinformatics
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/MANIFEST:
--------------------------------------------------------------------------------
1 | # file GENERATED by distutils, do NOT edit
2 | setup.cfg
3 | setup.py
4 | visJS2jupyter/__init__.py
5 | visJS2jupyter/visJS_module.py
6 | visJS2jupyter/visualizations.py
7 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # visJS2jupyter
2 |
3 | **Please note** this tool is no longer actively maintained. Users may find ipycytoscape to be a good alternative https://github.com/cytoscape/ipycytoscape
4 |
5 | visJS2jupyter is a tool to bring the interactivity of networks created with vis.js into jupyter notebook cells, authored by members of the [UCSD Center for Computational Biology & Bioinformatics](http://compbio.ucsd.edu)
6 |
7 | There's also an option to get the output in a format compatible with Zeppelin notebook, ready to save as a standalone HTML file, or code to embed in your own HTML.
8 |
9 | For full documentation of the tool, see https://ucsd-ccbb.github.io/visJS2jupyter/
10 |
11 | #### Please cite our accompanying paper:
12 | Rosenthal, S. B., Len, J., Webster, M., Gary, A., Birmingham, A., & Fisch, K. M. (2017). Interactive network visualization in Jupyter notebooks: visJS2jupyter. Bioinformatics.
13 |
14 | ## Getting Started
15 |
16 | These instructions will get you a copy of the package up and running on your local machine.
17 |
18 | ### Prerequisites
19 |
20 | You must have Jupyter notebook already installed. Visit [here](http://jupyter.org/install.html) for more information.
21 |
22 | Install matplotlib before using visJS2jupyter. Visit [here](http://matplotlib.org/users/installing.html) for more information.
23 |
24 | To use the visualizations module, install [networkX](https://networkx.github.io/) and [py2cytoscape](https://github.com/idekerlab/py2cytoscape):
25 |
26 | ```
27 | pip install networkx==1.11
28 | pip install py2cytoscape
29 | ```
30 |
31 | ### Installing
32 |
33 | visJS2jupyter supports both Python 2.7 and 3.4.
34 |
35 | You can install visJS2jupyter using pip:
36 |
37 | ```
38 | pip install visJS2jupyter
39 | ```
40 |
41 | In your Jupyter notebook, first import matplotlib:
42 |
43 | ```
44 | import matplotlib
45 | ```
46 |
47 | To import visJS_module, use the following:
48 |
49 | ```
50 | import visJS2jupyter.visJS_module
51 | ```
52 |
53 | To import visualizations, use the following:
54 |
55 | ```
56 | import visJS2jupyter.visualizations
57 | ```
58 |
59 | ## Features and Examples
60 | A simple use example with default parameters may be found here http://bl.ocks.org/m1webste/raw/be7be9d1b2c88e5549cf79b7edbc8444/ . In the example provided, we show how to display a graph created with NetworkX using visJS2jupyter. The networks displayed within Jupyter notebook cells may be dragged, clicked, and hovered on, and zooming is enabled within the window.
61 |
62 | For an example of how more complex styles may be added to a network, see http://bl.ocks.org/brinrosenthal/raw/658325f6e0db7419625a31c883313e9b/. Nodes and edges may be styled with properties available from vis.js networks (see https://visjs.github.io/vis-network/docs/network/ for a list and description of properties). The main function is 'visjs_network', which requires two inputs which describe the nodes and edges in the network- 'nodes_dict', and edges_dict'. The other arguments are optional, and apply general styles to the graph, such as sizes, highlight colors, and physics properties of the graph.
63 |
64 | An interactive use example of visJS2jupyter may be found [here](http://bl.ocks.org/brinrosenthal/raw/89ef33bebbf2d360099029666b1e8bea/) (scroll to the bottom to see the network). In this example, we display the bipartite network composed of diseases in [The Cancer Genome Atlas](http://cancergenome.nih.gov/) and the top 25 most common mutations in each disease. We also overlay information about drugs which target those mutations. Genes which have a drug targeting them are displayed with a bold black outline. The user may hover over each gene to get a list of associated drugs.
65 |
66 | For an example of how to style a multigraph using visJS2jupyter, see https://bl.ocks.org/m1webste/raw/db4aeda3f3e4a8840f08182f2e5d4608/ This notebook demonstrates how to use visJS2jupyter to visualize a NetworkX multigraph inside a jupyter notebook cell. visJS2jupyter can be used to manipulate numerous graph styling parameters (edge width, node color, node spacing, etc.). In this notebook, we exemplify manipulating a small subset of these features. Notibly, we demonstrate how to manipulate node and edge colors for a multigraph based off of node and edge attributes.
67 |
68 | #### Visualizations
69 | Supplementary module, containing frequently used network visualizations
70 |
71 | 1) **draw_graph_overlap** takes in two graphs and displays their overlap. Intersecting nodes are triangles and non-intersecting nodes are either circles or squares, depending on which graph they belong to. An interactive example may be found [here](https://bl.ocks.org/julialen/raw/d21c9d378cb09b5a7181497101996727/). In this example, we graph the union of two networks of 10 nodes each. The user can hover over each node to see the graph it belongs to and the node name.
72 |
73 | 2) **draw_heat_prop** simulates heat propagation on the network initialized from a given set of seed nodes. It takes in a graph and a list of seed nodes. An interactive example may be found [here](https://bl.ocks.org/julialen/raw/82c316048ade650effbff3fd9eaddccd/).
74 |
75 | 3) **draw_colocalization** similarly draws the heat propagation of the graph but with two sets of seed nodes. Another interactive example can be found [here](https://bl.ocks.org/julialen/raw/a82040bdc8b5ba3ca866489db795af74/).
76 |
77 | ## Authors
78 |
79 | * **Brin Rosenthal, PhD** (sbrosenthal@ucsd.edu)
80 | * **Julia Len** (jlen@ucsd.edu)
81 | * **Mikayla Webster** (m1webste@ucsd.edu)
82 | * **Aaron Gary** (agary@ucsd.edu)
83 | * **Kathleen Fisch, PhD** (kfisch@ucsd.edu)
84 |
85 | ## License
86 |
87 | This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details
88 |
--------------------------------------------------------------------------------
/_config.yml:
--------------------------------------------------------------------------------
1 | theme: jekyll-theme-cayman
--------------------------------------------------------------------------------
/cytoscape_styles/colocalization.json:
--------------------------------------------------------------------------------
1 | {"elements": {"nodes": [{"data": {"xpos": 160.24794045597633, "name": "0", "nodeColor": 1.0, "nodeLabel": 0, "ypos": 873.0194898401146, "nodeShape": "triangle", "node_heat": 0.0016404237916285021, "nodeOutline": 2, "nodeTitle": "0
heat = 0.0016404238", "id": "0"}}, {"data": {"xpos": 284.40875430723253, "name": "1", "nodeColor": 0.13082727431701674, "nodeLabel": 1, "ypos": 960.33765250347585, "nodeShape": "triangle", "node_heat": 0.00021461317673500155, "nodeOutline": 2, "nodeTitle": "1
heat = 0.0002146132", "id": "1"}}, {"data": {"xpos": 482.13369692313421, "name": "2", "nodeColor": 0.12601527336878815, "nodeLabel": 2, "ypos": 862.07732967919958, "nodeShape": "triangle", "node_heat": 0.00020671946144904313, "nodeOutline": 2, "nodeTitle": "2
heat = 0.0002067195", "id": "2"}}, {"data": {"xpos": 539.16275286019243, "name": "3", "nodeColor": 0.0080216605933677038, "nodeLabel": 3, "ypos": 999.43541238267414, "nodeShape": "dot", "node_heat": 1.3160068000945692e-05, "nodeOutline": 0, "nodeTitle": "3
heat = 1.31601e-05", "id": "3"}}, {"data": {"xpos": 751.80169317412003, "name": "4", "nodeColor": 0.0026603324347830052, "nodeLabel": 4, "ypos": 941.77125368238853, "nodeShape": "dot", "node_heat": 4.3652239238599136e-06, "nodeOutline": 0, "nodeTitle": "4
heat = 4.3652e-06", "id": "4"}}, {"data": {"xpos": 736.39178196175374, "name": "5", "nodeColor": 0.00054848833796564492, "nodeLabel": 5, "ypos": 711.71558807305325, "nodeShape": "dot", "node_heat": 9.0090706109100958e-07, "nodeOutline": 0, "nodeTitle": "5
heat = 9.009e-07", "id": "5"}}, {"data": {"xpos": 901.31081168320554, "name": "6", "nodeColor": 0.00027556301281376718, "nodeLabel": 6, "ypos": 808.61919531356637, "nodeShape": "dot", "node_heat": 4.531941794321575e-07, "nodeOutline": 0, "nodeTitle": "6
heat = 4.532e-07", "id": "6"}}, {"data": {"xpos": 879.18976873623524, "name": "7", "nodeColor": 8.4684843974497904e-05, "nodeLabel": 7, "ypos": 562.30074720905384, "nodeShape": "dot", "node_heat": 1.4007331031076662e-07, "nodeOutline": 0, "nodeTitle": "7
heat = 1.401e-07", "id": "7"}}, {"data": {"xpos": 945.35224934218581, "name": "8", "nodeColor": 0.00024967109716727697, "nodeLabel": 8, "ypos": 677.31876423558822, "nodeShape": "dot", "node_heat": 4.107204948838025e-07, "nodeOutline": 0, "nodeTitle": "8
heat = 4.107e-07", "id": "8"}}, {"data": {"xpos": 652.85178507385046, "name": "9", "nodeColor": 0.0012703702227793439, "nodeLabel": 9, "ypos": 448.49027488997763, "nodeShape": "dot", "node_heat": 2.0850984463624655e-06, "nodeOutline": 0, "nodeTitle": "9
heat = 2.0851e-06", "id": "9"}}, {"data": {"xpos": 989.55977004666238, "name": "10", "nodeColor": 8.3384726099906993e-05, "nodeLabel": 10, "ypos": 573.41938428911794, "nodeShape": "dot", "node_heat": 1.3794056751819008e-07, "nodeOutline": 0, "nodeTitle": "10
heat = 1.379e-07", "id": "10"}}, {"data": {"xpos": 999.96341150765079, "name": "11", "nodeColor": 6.7510098599503923e-05, "nodeLabel": 11, "ypos": 484.01875126123525, "nodeShape": "dot", "node_heat": 1.1189946920856546e-07, "nodeOutline": 0, "nodeTitle": "11
heat = 1.119e-07", "id": "11"}}, {"data": {"xpos": 998.512703015238, "name": "12", "nodeColor": 5.0483308138034807e-05, "nodeLabel": 12, "ypos": 413.44839272355222, "nodeShape": "dot", "node_heat": 8.3968336695803303e-08, "nodeOutline": 0, "nodeTitle": "12
heat = 8.4e-08", "id": "12"}}, {"data": {"xpos": 975.0525144371353, "name": "13", "nodeColor": 3.3795200945059621e-05, "nodeLabel": 13, "ypos": 343.63551314821063, "nodeShape": "dot", "node_heat": 5.6592787883537517e-08, "nodeOutline": 0, "nodeTitle": "13
heat = 5.66e-08", "id": "13"}}, {"data": {"xpos": 849.61802782159043, "name": "14", "nodeColor": 0.00013430278943053206, "nodeLabel": 14, "ypos": 340.78862702983901, "nodeShape": "dot", "node_heat": 2.2146771125084356e-07, "nodeOutline": 0, "nodeTitle": "14
heat = 2.215e-07", "id": "14"}}, {"data": {"xpos": 919.31980794114861, "name": "15", "nodeColor": 9.1105918318247951e-06, "nodeLabel": 15, "ypos": 472.22384213239377, "nodeShape": "dot", "node_heat": 1.6099596302438519e-08, "nodeOutline": 0, "nodeTitle": "15
heat = 1.61e-08", "id": "15"}}, {"data": {"xpos": 698.88190020975958, "name": "16", "nodeColor": 0.0014936775996397421, "nodeLabel": 16, "ypos": 574.90833260521629, "nodeShape": "dot", "node_heat": 2.4514169224299117e-06, "nodeOutline": 0, "nodeTitle": "16
heat = 2.4514e-06", "id": "16"}}, {"data": {"xpos": 928.43962394734274, "name": "17", "nodeColor": 4.7417859389519487e-06, "nodeLabel": 17, "ypos": 251.26501435094161, "nodeShape": "dot", "node_heat": 8.9329082180043753e-09, "nodeOutline": 0, "nodeTitle": "17
heat = 8.9e-09", "id": "17"}}, {"data": {"xpos": 767.02657759999215, "name": "18", "nodeColor": 0.00015923136750018986, "nodeLabel": 18, "ypos": 353.9019227200917, "nodeShape": "dot", "node_heat": 2.6236111503084587e-07, "nodeOutline": 0, "nodeTitle": "18
heat = 2.624e-07", "id": "18"}}, {"data": {"xpos": 851.90706556755254, "name": "19", "nodeColor": 3.3301204077345691e-06, "nodeLabel": 19, "ypos": 161.82313560992293, "nodeShape": "dot", "node_heat": 6.6171801243652106e-09, "nodeOutline": 0, "nodeTitle": "19
heat = 6.6e-09", "id": "19"}}, {"data": {"xpos": 794.51173316593508, "name": "20", "nodeColor": 2.6521734007875757e-06, "nodeLabel": 20, "ypos": 107.37425231167134, "nodeShape": "dot", "node_heat": 5.5050605073112565e-09, "nodeOutline": 0, "nodeTitle": "20
heat = 5.5e-09", "id": "20"}}, {"data": {"xpos": 723.29863218790024, "name": "21", "nodeColor": 0.0, "nodeLabel": 21, "ypos": 50.449494849172972, "nodeShape": "dot", "node_heat": 1.1543752227383027e-09, "nodeOutline": 0, "nodeTitle": "21
heat = 1.2e-09", "id": "21"}}, {"data": {"xpos": 750.64037407574267, "name": "22", "nodeColor": 2.8970153277104897e-06, "nodeLabel": 22, "ypos": 168.39743363289381, "nodeShape": "dot", "node_heat": 5.9067047467843177e-09, "nodeOutline": 0, "nodeTitle": "22
heat = 5.9e-09", "id": "22"}}, {"data": {"xpos": 629.65495240314203, "name": "23", "nodeColor": 3.2366230063261509e-07, "nodeLabel": 23, "ypos": 10.747419786062508, "nodeShape": "dot", "node_heat": 1.6853181875215209e-09, "nodeOutline": 0, "nodeTitle": "23
heat = 1.7e-09", "id": "23"}}, {"data": {"xpos": 567.55641480733016, "name": "24", "nodeColor": 2.6912672194089748e-06, "nodeLabel": 24, "ypos": 19.762596767525721, "nodeShape": "dot", "node_heat": 5.5691908923544736e-09, "nodeOutline": 0, "nodeTitle": "24
heat = 5.6e-09", "id": "24"}}, {"data": {"xpos": 467.84719509216063, "name": "25", "nodeColor": 9.124052075049999e-06, "nodeLabel": 25, "ypos": 0.0, "nodeShape": "dot", "node_heat": 1.6121676790128079e-08, "nodeOutline": 0, "nodeTitle": "25
heat = 1.61e-08", "id": "25"}}, {"data": {"xpos": 591.49468387164211, "name": "26", "nodeColor": 0.00010387315342944011, "nodeLabel": 26, "ypos": 250.95161934053834, "nodeShape": "dot", "node_heat": 1.7155024751127496e-07, "nodeOutline": 0, "nodeTitle": "26
heat = 1.716e-07", "id": "26"}}, {"data": {"xpos": 286.49702200687415, "name": "27", "nodeColor": 1.6214076602781841e-05, "nodeLabel": 27, "ypos": 53.503208080581935, "nodeShape": "dot", "node_heat": 2.7752313524100385e-08, "nodeOutline": 0, "nodeTitle": "27
heat = 2.78e-08", "id": "27"}}, {"data": {"xpos": 361.26744156911451, "name": "28", "nodeColor": 8.5961297352813988e-05, "nodeLabel": 28, "ypos": 44.914545954110267, "nodeShape": "dot", "node_heat": 1.4216723332795475e-07, "nodeOutline": 0, "nodeTitle": "28
heat = 1.422e-07", "id": "28"}}, {"data": {"xpos": 192.67435858534458, "name": "29", "nodeColor": 0.00024113584836196956, "nodeLabel": 29, "ypos": 103.30799961779964, "nodeShape": "dot", "node_heat": 3.9671907952898723e-07, "nodeOutline": 0, "nodeTitle": "29
heat = 3.967e-07", "id": "29"}}, {"data": {"xpos": 333.64792596476104, "name": "30", "nodeColor": 0.00032930833220935068, "nodeLabel": 30, "ypos": 202.90758145192638, "nodeShape": "dot", "node_heat": 5.4135921801508036e-07, "nodeOutline": 0, "nodeTitle": "30
heat = 5.414e-07", "id": "30"}}, {"data": {"xpos": 90.181447792667839, "name": "31", "nodeColor": 0.0077276395146726011, "nodeLabel": 31, "ypos": 214.58419823162924, "nodeShape": "dot", "node_heat": 1.2677749167624618e-05, "nodeOutline": 0, "nodeTitle": "31
heat = 1.26777e-05", "id": "31"}}, {"data": {"xpos": 220.18677149481888, "name": "32", "nodeColor": 0.044974856309914935, "nodeLabel": 32, "ypos": 404.45248718447698, "nodeShape": "dot", "node_heat": 7.3778926773220691e-05, "nodeOutline": 0, "nodeTitle": "32
heat = 7.37789e-05", "id": "32"}}, {"data": {"xpos": 5.589425687873141, "name": "33", "nodeColor": 0.11237761946200205, "nodeLabel": 33, "ypos": 409.04101735234536, "nodeShape": "dot", "node_heat": 0.00018434794526132558, "nodeOutline": 0, "nodeTitle": "33
heat = 0.0001843479", "id": "33"}}, {"data": {"xpos": 0.0, "name": "34", "nodeColor": 0.80018691735014758, "nodeLabel": 34, "ypos": 567.3794176075337, "nodeShape": "dot", "node_heat": 0.0013126458876303237, "nodeOutline": 0, "nodeTitle": "34
heat = 0.0013126459", "id": "34"}}, {"data": {"xpos": 19.820084089195305, "name": "35", "nodeColor": 0.79925809321805752, "nodeLabel": 35, "ypos": 376.09237463861092, "nodeShape": "square", "node_heat": 0.0013111222234980162, "nodeOutline": 2, "nodeTitle": "35
heat = 0.0013111222", "id": "35"}}, {"data": {"xpos": 29.544560673329705, "name": "36", "nodeColor": 0.12657268182728856, "nodeLabel": 36, "ypos": 616.92506039155899, "nodeShape": "square", "node_heat": 0.00020763384690256369, "nodeOutline": 2, "nodeTitle": "36
heat = 0.0002076338", "id": "36"}}, {"data": {"xpos": 10.265237834242333, "name": "37", "nodeColor": 0.068305946860295993, "nodeLabel": 37, "ypos": 516.03835546015034, "nodeShape": "dot", "node_heat": 0.00011205177586387186, "nodeOutline": 0, "nodeTitle": "37
heat = 0.0001120518", "id": "37"}}, {"data": {"xpos": 168.67443435183046, "name": "38", "nodeColor": 0.011053241898231789, "nodeLabel": 38, "ypos": 815.0496905410098, "nodeShape": "dot", "node_heat": 1.8133142600118573e-05, "nodeOutline": 0, "nodeTitle": "38
heat = 1.81331e-05", "id": "38"}}, {"data": {"xpos": 411.96492749451954, "name": "39", "nodeColor": 0.00037492467489682609, "nodeLabel": 39, "ypos": 991.29444399492684, "nodeShape": "dot", "node_heat": 6.1618929918831815e-07, "nodeOutline": 0, "nodeTitle": "39
heat = 6.162e-07", "id": "39"}}, {"data": {"xpos": 371.12081120640062, "name": "40", "nodeColor": 0.00058670728219302785, "nodeLabel": 40, "ypos": 988.09247354900913, "nodeShape": "dot", "node_heat": 9.6360228237352903e-07, "nodeOutline": 0, "nodeTitle": "40
heat = 9.636e-07", "id": "40"}}, {"data": {"xpos": 580.18776782181078, "name": "41", "nodeColor": 0.00025669019770049818, "nodeLabel": 41, "ypos": 1000.0, "nodeShape": "dot", "node_heat": 4.2223478629165514e-07, "nodeOutline": 0, "nodeTitle": "41
heat = 4.222e-07", "id": "41"}}, {"data": {"xpos": 642.24532689762202, "name": "42", "nodeColor": 0.00027691168622633386, "nodeLabel": 42, "ypos": 943.57733079016703, "nodeShape": "dot", "node_heat": 4.5540657382839349e-07, "nodeOutline": 0, "nodeTitle": "42
heat = 4.554e-07", "id": "42"}}, {"data": {"xpos": 559.82877931056646, "name": "43", "nodeColor": 0.00025893148045505639, "nodeLabel": 43, "ypos": 906.58887608966279, "nodeShape": "dot", "node_heat": 4.259114372587178e-07, "nodeOutline": 0, "nodeTitle": "43
heat = 4.259e-07", "id": "43"}}, {"data": {"xpos": 637.61751785326692, "name": "44", "nodeColor": 0.00031114832922836573, "nodeLabel": 44, "ypos": 676.22713091286971, "nodeShape": "dot", "node_heat": 5.1156913803248558e-07, "nodeOutline": 0, "nodeTitle": "44
heat = 5.116e-07", "id": "44"}}, {"data": {"xpos": 305.29365034590205, "name": "45", "nodeColor": 0.00022322472857746664, "nodeLabel": 45, "ypos": 866.77187262741552, "nodeShape": "dot", "node_heat": 3.6733727317593357e-07, "nodeOutline": 0, "nodeTitle": "45
heat = 3.673e-07", "id": "45"}}, {"data": {"xpos": 302.42727557885013, "name": "46", "nodeColor": 0.00078828424096728344, "nodeLabel": 46, "ypos": 726.49891056812567, "nodeShape": "dot", "node_heat": 1.2942736886954891e-06, "nodeOutline": 0, "nodeTitle": "46
heat = 1.2943e-06", "id": "46"}}, {"data": {"xpos": 123.3657516015749, "name": "47", "nodeColor": 0.0021510874980250451, "nodeLabel": 47, "ypos": 749.80984505807749, "nodeShape": "dot", "node_heat": 3.5298470016955409e-06, "nodeOutline": 0, "nodeTitle": "47
heat = 3.5298e-06", "id": "47"}}, {"data": {"xpos": 62.848367743978841, "name": "48", "nodeColor": 0.017731929512194246, "nodeLabel": 48, "ypos": 735.4736679988971, "nodeShape": "dot", "node_heat": 2.9089012949205678e-05, "nodeOutline": 0, "nodeTitle": "48
heat = 2.9089e-05", "id": "48"}}, {"data": {"xpos": 113.37281899079809, "name": "49", "nodeColor": 0.033890196847360547, "nodeLabel": 49, "ypos": 823.53511831941114, "nodeShape": "dot", "node_heat": 5.5595400464602701e-05, "nodeOutline": 0, "nodeTitle": "49
heat = 5.55954e-05", "id": "49"}}], "edges": [{"data": {"edge_weight": 0.0016404237916285021, "target": "48", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.0016404237916285021, "target": "1", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.0016404237916285021, "target": "2", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.0016404237916285021, "target": "34", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.0016404237916285021, "target": "49", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.00021461317673500155, "target": "49", "source": "1", "edgeColor": 0.13082699299848163}}, {"data": {"edge_weight": 0.00021461317673500155, "target": "2", "source": "1", "edgeColor": 0.13082699299848163}}, {"data": {"edge_weight": 0.00021461317673500155, "target": "3", "source": "1", "edgeColor": 0.13082699299848163}}, {"data": {"edge_weight": 0.00020671946144904313, "target": "3", "source": "2", "edgeColor": 0.12601499049278925}}, {"data": {"edge_weight": 0.00020671946144904313, "target": "4", "source": "2", "edgeColor": 0.12601499049278925}}, {"data": {"edge_weight": 0.00020671946144904313, "target": "16", "source": "2", "edgeColor": 0.12601499049278925}}, {"data": {"edge_weight": 1.3160068000945692e-05, "target": "4", "source": "3", "edgeColor": 0.0080213395272722768}}, {"data": {"edge_weight": 1.3160068000945692e-05, "target": "5", "source": "3", "edgeColor": 0.0080213395272722768}}, {"data": {"edge_weight": 4.3652239238599136e-06, "target": "5", "source": "4", "edgeColor": 0.0026600096334272101}}, {"data": {"edge_weight": 4.3652239238599136e-06, "target": "6", "source": "4", "edgeColor": 0.0026600096334272101}}, {"data": {"edge_weight": 9.0090706109100958e-07, "target": "26", "source": "5", "edgeColor": 0.00054816485308530971}}, {"data": {"edge_weight": 9.0090706109100958e-07, "target": "6", "source": "5", "edgeColor": 0.00054816485308530971}}, {"data": {"edge_weight": 9.0090706109100958e-07, "target": "7", "source": "5", "edgeColor": 0.00054816485308530971}}, {"data": {"edge_weight": 4.531941794321575e-07, "target": "8", "source": "6", "edgeColor": 0.0002752394395977648}}, {"data": {"edge_weight": 4.531941794321575e-07, "target": "7", "source": "6", "edgeColor": 0.0002752394395977648}}, {"data": {"edge_weight": 4.107204948838025e-07, "target": "8", "source": "7", "edgeColor": 0.00024934751557103484}}, {"data": {"edge_weight": 1.4007331031076662e-07, "target": "22", "source": "7", "edgeColor": 8.4361208978408255e-05}}, {"data": {"edge_weight": 2.0850984463624655e-06, "target": "9", "source": "8", "edgeColor": 0.001270046971545036}}, {"data": {"edge_weight": 4.107204948838025e-07, "target": "10", "source": "8", "edgeColor": 0.00024934751557103484}}, {"data": {"edge_weight": 7.3778926773220691e-05, "target": "32", "source": "9", "edgeColor": 0.044974547204179718}}, {"data": {"edge_weight": 2.0850984463624655e-06, "target": "10", "source": "9", "edgeColor": 0.001270046971545036}}, {"data": {"edge_weight": 2.0850984463624655e-06, "target": "11", "source": "9", "edgeColor": 0.001270046971545036}}, {"data": {"edge_weight": 2.0850984463624655e-06, "target": "30", "source": "9", "edgeColor": 0.001270046971545036}}, {"data": {"edge_weight": 1.3794056751819008e-07, "target": "11", "source": "10", "edgeColor": 8.3061090683018071e-05}}, {"data": {"edge_weight": 1.3794056751819008e-07, "target": "12", "source": "10", "edgeColor": 8.3061090683018071e-05}}, {"data": {"edge_weight": 1.1189946920856546e-07, "target": "12", "source": "11", "edgeColor": 6.7186458044594892e-05}}, {"data": {"edge_weight": 1.1189946920856546e-07, "target": "13", "source": "11", "edgeColor": 6.7186458044594892e-05}}, {"data": {"edge_weight": 8.3968336695803303e-08, "target": "13", "source": "12", "edgeColor": 5.015966207219382e-05}}, {"data": {"edge_weight": 2.2146771125084356e-07, "target": "14", "source": "12", "edgeColor": 0.00013397917049390599}}, {"data": {"edge_weight": 2.2146771125084356e-07, "target": "14", "source": "13", "edgeColor": 0.00013397917049390599}}, {"data": {"edge_weight": 5.6592787883537517e-08, "target": "15", "source": "13", "edgeColor": 3.3471549477905713e-05}}, {"data": {"edge_weight": 2.4514169224299117e-06, "target": "16", "source": "14", "edgeColor": 0.0014933544206816368}}, {"data": {"edge_weight": 2.2146771125084356e-07, "target": "26", "source": "14", "edgeColor": 0.00013397917049390599}}, {"data": {"edge_weight": 1.6099596302438519e-08, "target": "17", "source": "15", "edgeColor": 8.7869323751909279e-06}}, {"data": {"edge_weight": 5.1156913803248558e-07, "target": "44", "source": "15", "edgeColor": 0.00031082476752999243}}, {"data": {"edge_weight": 2.4514169224299117e-06, "target": "18", "source": "16", "edgeColor": 0.0014933544206816368}}, {"data": {"edge_weight": 2.6236111503084587e-07, "target": "18", "source": "17", "edgeColor": 0.00015890775663200733}}, {"data": {"edge_weight": 8.9329082180043753e-09, "target": "19", "source": "17", "edgeColor": 4.4181250682998573e-06}}, {"data": {"edge_weight": 2.6236111503084587e-07, "target": "19", "source": "18", "edgeColor": 0.00015890775663200733}}, {"data": {"edge_weight": 2.6236111503084587e-07, "target": "20", "source": "18", "edgeColor": 0.00015890775663200733}}, {"data": {"edge_weight": 5.1156913803248558e-07, "target": "44", "source": "18", "edgeColor": 0.00031082476752999243}}, {"data": {"edge_weight": 6.6171801243652106e-09, "target": "20", "source": "19", "edgeColor": 3.0064590801794165e-06}}, {"data": {"edge_weight": 6.6171801243652106e-09, "target": "21", "source": "19", "edgeColor": 3.0064590801794165e-06}}, {"data": {"edge_weight": 5.5050605073112565e-09, "target": "21", "source": "20", "edgeColor": 2.3285118538064642e-06}}, {"data": {"edge_weight": 5.9067047467843177e-09, "target": "22", "source": "20", "edgeColor": 2.5733538599755052e-06}}, {"data": {"edge_weight": 5.9067047467843177e-09, "target": "22", "source": "21", "edgeColor": 2.5733538599755052e-06}}, {"data": {"edge_weight": 1.6853181875215209e-09, "target": "23", "source": "21", "edgeColor": 0.0}}, {"data": {"edge_weight": 5.9067047467843177e-09, "target": "24", "source": "22", "edgeColor": 2.5733538599755052e-06}}, {"data": {"edge_weight": 5.9067047467843177e-09, "target": "23", "source": "22", "edgeColor": 2.5733538599755052e-06}}, {"data": {"edge_weight": 5.5691908923544736e-09, "target": "24", "source": "23", "edgeColor": 2.3676056850810629e-06}}, {"data": {"edge_weight": 1.6121676790128079e-08, "target": "25", "source": "23", "edgeColor": 8.8003926227727068e-06}}, {"data": {"edge_weight": 1.6121676790128079e-08, "target": "25", "source": "24", "edgeColor": 8.8003926227727068e-06}}, {"data": {"edge_weight": 1.7155024751127496e-07, "target": "26", "source": "24", "edgeColor": 0.00010354952464388486}}, {"data": {"edge_weight": 1.7155024751127496e-07, "target": "26", "source": "25", "edgeColor": 0.00010354952464388486}}, {"data": {"edge_weight": 2.7752313524100385e-08, "target": "27", "source": "25", "edgeColor": 1.5890419445278944e-05}}, {"data": {"edge_weight": 1.7155024751127496e-07, "target": "28", "source": "26", "edgeColor": 0.00010354952464388486}}, {"data": {"edge_weight": 1.4216723332795475e-07, "target": "28", "source": "27", "edgeColor": 8.563766276986432e-05}}, {"data": {"edge_weight": 3.9671907952898723e-07, "target": "29", "source": "27", "edgeColor": 0.00024081226400318831}}, {"data": {"edge_weight": 3.9671907952898723e-07, "target": "29", "source": "28", "edgeColor": 0.00024081226400318831}}, {"data": {"edge_weight": 5.4135921801508036e-07, "target": "30", "source": "28", "edgeColor": 0.0003289847763886876}}, {"data": {"edge_weight": 5.4135921801508036e-07, "target": "30", "source": "29", "edgeColor": 0.0003289847763886876}}, {"data": {"edge_weight": 1.2677749167624618e-05, "target": "31", "source": "29", "edgeColor": 0.0077273183534136043}}, {"data": {"edge_weight": 1.2677749167624618e-05, "target": "31", "source": "30", "edgeColor": 0.0077273183534136043}}, {"data": {"edge_weight": 7.3778926773220691e-05, "target": "32", "source": "31", "edgeColor": 0.044974547204179718}}, {"data": {"edge_weight": 0.00018434794526132558, "target": "33", "source": "31", "edgeColor": 0.11237733217200728}}, {"data": {"edge_weight": 0.0013126458876303237, "target": "34", "source": "32", "edgeColor": 0.80018685267816458}}, {"data": {"edge_weight": 0.00011205177586387186, "target": "37", "source": "32", "edgeColor": 0.068305645305957674}}, {"data": {"edge_weight": 0.0013126458876303237, "target": "34", "source": "33", "edgeColor": 0.80018685267816458}}, {"data": {"edge_weight": 0.0013111222234980162, "target": "35", "source": "33", "edgeColor": 0.79925802824544911}}, {"data": {"edge_weight": 0.0013126458876303237, "target": "35", "source": "34", "edgeColor": 0.80018685267816458}}, {"data": {"edge_weight": 0.0013111222234980162, "target": "36", "source": "35", "edgeColor": 0.79925802824544911}}, {"data": {"edge_weight": 0.0013111222234980162, "target": "37", "source": "35", "edgeColor": 0.79925802824544911}}, {"data": {"edge_weight": 0.00020763384690256369, "target": "37", "source": "36", "edgeColor": 0.12657239913170185}}, {"data": {"edge_weight": 0.00020763384690256369, "target": "38", "source": "36", "edgeColor": 0.12657239913170185}}, {"data": {"edge_weight": 0.00011205177586387186, "target": "38", "source": "37", "edgeColor": 0.068305645305957674}}, {"data": {"edge_weight": 1.8133142600118573e-05, "target": "40", "source": "38", "edgeColor": 0.011052921813345258}}, {"data": {"edge_weight": 1.8133142600118573e-05, "target": "39", "source": "38", "edgeColor": 0.011052921813345258}}, {"data": {"edge_weight": 9.6360228237352903e-07, "target": "40", "source": "39", "edgeColor": 0.0005863838096827282}}, {"data": {"edge_weight": 6.1618929918831815e-07, "target": "41", "source": "39", "edgeColor": 0.00037460113384045826}}, {"data": {"edge_weight": 9.6360228237352903e-07, "target": "41", "source": "40", "edgeColor": 0.0005863838096827282}}, {"data": {"edge_weight": 9.6360228237352903e-07, "target": "42", "source": "40", "edgeColor": 0.0005863838096827282}}, {"data": {"edge_weight": 4.5540657382839349e-07, "target": "42", "source": "41", "edgeColor": 0.00027658811344684635}}, {"data": {"edge_weight": 4.259114372587178e-07, "target": "43", "source": "41", "edgeColor": 0.00025860790185605219}}, {"data": {"edge_weight": 4.5540657382839349e-07, "target": "43", "source": "42", "edgeColor": 0.00027658811344684635}}, {"data": {"edge_weight": 5.1156913803248558e-07, "target": "44", "source": "42", "edgeColor": 0.00031082476752999243}}, {"data": {"edge_weight": 5.1156913803248558e-07, "target": "44", "source": "43", "edgeColor": 0.00031082476752999243}}, {"data": {"edge_weight": 4.259114372587178e-07, "target": "45", "source": "43", "edgeColor": 0.00025860790185605219}}, {"data": {"edge_weight": 1.2942736886954891e-06, "target": "46", "source": "44", "edgeColor": 0.00078796083369986716}}, {"data": {"edge_weight": 1.2942736886954891e-06, "target": "46", "source": "45", "edgeColor": 0.00078796083369986716}}, {"data": {"edge_weight": 3.5298470016955409e-06, "target": "47", "source": "45", "edgeColor": 0.002150764531845809}}, {"data": {"edge_weight": 2.9089012949205678e-05, "target": "48", "source": "46", "edgeColor": 0.017731611588947812}}, {"data": {"edge_weight": 3.5298470016955409e-06, "target": "47", "source": "46", "edgeColor": 0.002150764531845809}}, {"data": {"edge_weight": 2.9089012949205678e-05, "target": "48", "source": "47", "edgeColor": 0.017731611588947812}}, {"data": {"edge_weight": 5.5595400464602701e-05, "target": "49", "source": "47", "edgeColor": 0.033889884153937788}}, {"data": {"edge_weight": 5.5595400464602701e-05, "target": "49", "source": "48", "edgeColor": 0.033889884153937788}}]}, "data": {"name": "watts_strogatz_graph(50,5,0.1)"}}
--------------------------------------------------------------------------------
/cytoscape_styles/colocalization_style.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
--------------------------------------------------------------------------------
/cytoscape_styles/heat_prop.json:
--------------------------------------------------------------------------------
1 | {"elements": {"nodes": [{"data": {"xpos": 750.74001065190748, "name": "0", "nodeColor": 1.0, "nodeLabel": 0, "ypos": 129.36758943129715, "nodeShape": "triangle", "node_heat": 0.23932683576088892, "nodeOutline": 2, "nodeTitle": "0
heat = 0.23933", "id": "0"}}, {"data": {"xpos": 670.45891955271668, "name": "1", "nodeColor": 0.98317878461158281, "nodeLabel": 1, "ypos": 36.535757444437301, "nodeShape": "triangle", "node_heat": 0.23530139166323097, "nodeOutline": 2, "nodeTitle": "1
heat = 0.2353", "id": "1"}}, {"data": {"xpos": 555.89201122319162, "name": "2", "nodeColor": 0.97437359370631094, "nodeLabel": 2, "ypos": 25.425965965114305, "nodeShape": "triangle", "node_heat": 0.23319424286690887, "nodeOutline": 2, "nodeTitle": "2
heat = 0.23319", "id": "2"}}, {"data": {"xpos": 383.64549440666019, "name": "3", "nodeColor": 0.27315866535922734, "nodeLabel": 3, "ypos": 30.026587332012667, "nodeShape": "dot", "node_heat": 0.065388205709327948, "nodeOutline": 0, "nodeTitle": "3
heat = 0.06539", "id": "3"}}, {"data": {"xpos": 254.11247562064648, "name": "4", "nodeColor": 0.16735897311884024, "nodeLabel": 4, "ypos": 80.733792836594503, "nodeShape": "dot", "node_heat": 0.040069538964453214, "nodeOutline": 0, "nodeTitle": "4
heat = 0.04007", "id": "4"}}, {"data": {"xpos": 173.3138057415139, "name": "5", "nodeColor": 0.060680057083245233, "nodeLabel": 5, "ypos": 144.71975425408678, "nodeShape": "dot", "node_heat": 0.014540467313915298, "nodeOutline": 0, "nodeTitle": "5
heat = 0.01454", "id": "5"}}, {"data": {"xpos": 85.931273553151826, "name": "6", "nodeColor": 0.030981555453088349, "nodeLabel": 6, "ypos": 264.30475270637925, "nodeShape": "dot", "node_heat": 0.0074333911998599612, "nodeOutline": 0, "nodeTitle": "6
heat = 0.00743", "id": "6"}}, {"data": {"xpos": 65.517453478126939, "name": "7", "nodeColor": 0.014263351426655925, "nodeLabel": 7, "ypos": 340.25688865516958, "nodeShape": "dot", "node_heat": 0.0034325985004225517, "nodeOutline": 0, "nodeTitle": "7
heat = 0.00343", "id": "7"}}, {"data": {"xpos": 0.0, "name": "8", "nodeColor": 0.0058721541033570669, "nodeLabel": 8, "ypos": 483.53659073693507, "nodeShape": "dot", "node_heat": 0.0014245215001948684, "nodeOutline": 0, "nodeTitle": "8
heat = 0.00142", "id": "8"}}, {"data": {"xpos": 194.47573645653199, "name": "9", "nodeColor": 0.012651223650397203, "nodeLabel": 9, "ypos": 462.1512247252092, "nodeShape": "dot", "node_heat": 0.0030468041275569808, "nodeOutline": 0, "nodeTitle": "9
heat = 0.00305", "id": "9"}}, {"data": {"xpos": 23.620269066643257, "name": "10", "nodeColor": 0.0010678869045253809, "nodeLabel": 10, "ypos": 647.34368700793891, "nodeShape": "dot", "node_heat": 0.00027482401445757658, "nodeOutline": 0, "nodeTitle": "10
heat = 0.00027", "id": "10"}}, {"data": {"xpos": 56.038610069863012, "name": "11", "nodeColor": 0.0025055542633561005, "nodeLabel": 11, "ypos": 720.24044986552951, "nodeShape": "dot", "node_heat": 0.00061886868961140711, "nodeOutline": 0, "nodeTitle": "11
heat = 0.00062", "id": "11"}}, {"data": {"xpos": 138.31795248430194, "name": "12", "nodeColor": 0.00073015676042653796, "nodeLabel": 12, "ypos": 828.83416619558454, "nodeShape": "dot", "node_heat": 0.00019400263599166664, "nodeOutline": 0, "nodeTitle": "12
heat = 0.00019", "id": "12"}}, {"data": {"xpos": 159.94771387871157, "name": "13", "nodeColor": 0.0014526905374285218, "nodeLabel": 13, "ypos": 866.46029550821152, "nodeShape": "dot", "node_heat": 0.00036691043491289652, "nodeOutline": 0, "nodeTitle": "13
heat = 0.00037", "id": "13"}}, {"data": {"xpos": 229.54239918342253, "name": "14", "nodeColor": 0.0003854554017825432, "nodeLabel": 14, "ypos": 917.82934931162583, "nodeShape": "dot", "node_heat": 0.00011151299314673849, "nodeOutline": 0, "nodeTitle": "14
heat = 0.00011", "id": "14"}}, {"data": {"xpos": 547.91026501620297, "name": "15", "nodeColor": 0.0, "nodeLabel": 15, "ypos": 1000.0, "nodeShape": "dot", "node_heat": 1.9270599467840781e-05, "nodeOutline": 0, "nodeTitle": "15
heat = 2e-05", "id": "15"}}, {"data": {"xpos": 418.69902799605126, "name": "16", "nodeColor": 0.00019699284241713814, "nodeLabel": 16, "ypos": 993.02526398722216, "nodeShape": "dot", "node_heat": 6.6412476940913616e-05, "nodeOutline": 0, "nodeTitle": "16
heat = 7e-05", "id": "16"}}, {"data": {"xpos": 354.64732546599959, "name": "17", "nodeColor": 0.0002861702747679215, "nodeLabel": 17, "ypos": 969.8802766179499, "nodeShape": "dot", "node_heat": 8.7753311144126941e-05, "nodeOutline": 0, "nodeTitle": "17
heat = 9e-05", "id": "17"}}, {"data": {"xpos": 277.19714116888787, "name": "18", "nodeColor": 0.0014525122633154682, "nodeLabel": 18, "ypos": 791.02173238082639, "nodeShape": "dot", "node_heat": 0.00036686777256897038, "nodeOutline": 0, "nodeTitle": "18
heat = 0.00037", "id": "18"}}, {"data": {"xpos": 289.32135100776856, "name": "19", "nodeColor": 0.0015051970524405205, "nodeLabel": 19, "ypos": 671.11364898369516, "nodeShape": "dot", "node_heat": 0.00037947564117552955, "nodeOutline": 0, "nodeTitle": "19
heat = 0.00038", "id": "19"}}, {"data": {"xpos": 462.54661995213888, "name": "20", "nodeColor": 0.0026849691015232717, "nodeLabel": 20, "ypos": 698.41744887791162, "nodeShape": "dot", "node_heat": 0.00066180401768702328, "nodeOutline": 0, "nodeTitle": "20
heat = 0.00066", "id": "20"}}, {"data": {"xpos": 380.8995973120239, "name": "21", "nodeColor": 0.012767171509701475, "nodeLabel": 21, "ypos": 624.06892843427477, "nodeShape": "dot", "node_heat": 0.003074551327452765, "nodeOutline": 0, "nodeTitle": "21
heat = 0.00307", "id": "21"}}, {"data": {"xpos": 579.78652955568134, "name": "22", "nodeColor": 0.013749259940566175, "nodeLabel": 22, "ypos": 518.46954583767354, "nodeShape": "dot", "node_heat": 0.0033095725186161971, "nodeOutline": 0, "nodeTitle": "22
heat = 0.00331", "id": "22"}}, {"data": {"xpos": 501.71969168025896, "name": "23", "nodeColor": 0.10607452338532464, "nodeLabel": 23, "ypos": 356.52503798483883, "nodeShape": "dot", "node_heat": 0.025403706516468099, "nodeOutline": 0, "nodeTitle": "23
heat = 0.0254", "id": "23"}}, {"data": {"xpos": 553.59028446951311, "name": "24", "nodeColor": 0.012490822250581771, "nodeLabel": 24, "ypos": 192.52402696555222, "nodeShape": "dot", "node_heat": 0.0030084188591186661, "nodeOutline": 0, "nodeTitle": "24
heat = 0.00301", "id": "24"}}, {"data": {"xpos": 494.7189612753765, "name": "25", "nodeColor": 0.0018284032173374, "nodeLabel": 25, "ypos": 0.0, "nodeShape": "dot", "node_heat": 0.00045682132154216252, "nodeOutline": 0, "nodeTitle": "25
heat = 0.00046", "id": "25"}}, {"data": {"xpos": 422.86720283885711, "name": "26", "nodeColor": 0.0019571586350886913, "nodeLabel": 26, "ypos": 12.256512576926054, "nodeShape": "dot", "node_heat": 0.00048763346706556565, "nodeOutline": 0, "nodeTitle": "26
heat = 0.00049", "id": "26"}}, {"data": {"xpos": 293.75543820507374, "name": "27", "nodeColor": 0.00058188159484142148, "nodeLabel": 27, "ypos": 51.041929664256209, "nodeShape": "dot", "node_heat": 0.00015851926714158588, "nodeOutline": 0, "nodeTitle": "27
heat = 0.00016", "id": "27"}}, {"data": {"xpos": 269.73413273988632, "name": "28", "nodeColor": 0.00044196407371502067, "nodeLabel": 28, "ypos": 277.52187948521606, "nodeShape": "dot", "node_heat": 0.00012503594583740521, "nodeOutline": 0, "nodeTitle": "28
heat = 0.00013", "id": "28"}}, {"data": {"xpos": 89.610048819910048, "name": "29", "nodeColor": 6.486566256409694e-05, "nodeLabel": 29, "ypos": 218.396206628366, "nodeShape": "dot", "node_heat": 3.4793443238637163e-05, "nodeOutline": 0, "nodeTitle": "29
heat = 3e-05", "id": "29"}}, {"data": {"xpos": 90.990707950506206, "name": "30", "nodeColor": 0.00013073315302657821, "nodeLabel": 30, "ypos": 416.64800496267054, "nodeShape": "dot", "node_heat": 5.0556032004506679e-05, "nodeOutline": 0, "nodeTitle": "30
heat = 5e-05", "id": "30"}}, {"data": {"xpos": 60.370271763439391, "name": "31", "nodeColor": 0.00020894874601456718, "nodeLabel": 31, "ypos": 538.25394987654374, "nodeShape": "dot", "node_heat": 6.9273615120119038e-05, "nodeOutline": 0, "nodeTitle": "31
heat = 7e-05", "id": "31"}}, {"data": {"xpos": 135.34040050718795, "name": "32", "nodeColor": 0.00077480147605198785, "nodeLabel": 32, "ypos": 693.75487027216832, "nodeShape": "dot", "node_heat": 0.00020468645418531711, "nodeOutline": 0, "nodeTitle": "32
heat = 0.0002", "id": "32"}}, {"data": {"xpos": 308.59651748385392, "name": "33", "nodeColor": 6.6378192942419481e-05, "nodeLabel": 33, "ypos": 929.15698223213974, "nodeShape": "dot", "node_heat": 3.5155403200706212e-05, "nodeOutline": 0, "nodeTitle": "33
heat = 4e-05", "id": "33"}}, {"data": {"xpos": 384.34687292348195, "name": "34", "nodeColor": 0.00011281606070668603, "nodeLabel": 34, "ypos": 908.2508404683133, "nodeShape": "dot", "node_heat": 4.6268336266660884e-05, "nodeOutline": 0, "nodeTitle": "34
heat = 5e-05", "id": "34"}}, {"data": {"xpos": 606.78118917952918, "name": "35", "nodeColor": 0.00021711152678062612, "nodeLabel": 35, "ypos": 957.62195017764247, "nodeShape": "dot", "node_heat": 7.1227030310191085e-05, "nodeOutline": 0, "nodeTitle": "35
heat = 7e-05", "id": "35"}}, {"data": {"xpos": 486.71069869456414, "name": "36", "nodeColor": 0.00028844855657265554, "nodeLabel": 36, "ypos": 932.92293251701858, "nodeShape": "dot", "node_heat": 8.8298521215569403e-05, "nodeOutline": 0, "nodeTitle": "36
heat = 9e-05", "id": "36"}}, {"data": {"xpos": 812.1985530915, "name": "37", "nodeColor": 0.0011366653615874683, "nodeLabel": 37, "ypos": 832.6381623902405, "nodeShape": "dot", "node_heat": 0.00029128321955266406, "nodeOutline": 0, "nodeTitle": "37
heat = 0.00029", "id": "37"}}, {"data": {"xpos": 706.27986689668523, "name": "38", "nodeColor": 0.0017317530850977643, "nodeLabel": 38, "ypos": 805.71148558176992, "nodeShape": "dot", "node_heat": 0.00043369221372336594, "nodeOutline": 0, "nodeTitle": "38
heat = 0.00043", "id": "38"}}, {"data": {"xpos": 932.11630013834758, "name": "39", "nodeColor": 0.0094539981259670596, "nodeLabel": 39, "ypos": 563.05813044361093, "nodeShape": "dot", "node_heat": 0.0022816838720336559, "nodeOutline": 0, "nodeTitle": "39
heat = 0.00228", "id": "39"}}, {"data": {"xpos": 872.00580229791535, "name": "40", "nodeColor": 0.001361990700743481, "nodeLabel": 40, "ypos": 733.2029908067401, "nodeShape": "dot", "node_heat": 0.00034520527783526089, "nodeOutline": 0, "nodeTitle": "40
heat = 0.00035", "id": "40"}}, {"data": {"xpos": 973.1950643985125, "name": "41", "nodeColor": 0.00056064602063020342, "nodeLabel": 41, "ypos": 616.79455329832388, "nodeShape": "dot", "node_heat": 0.00015343743358229461, "nodeOutline": 0, "nodeTitle": "41
heat = 0.00015", "id": "41"}}, {"data": {"xpos": 960.96828789724805, "name": "42", "nodeColor": 0.0011648169114911607, "nodeLabel": 42, "ypos": 669.46552053382447, "nodeShape": "dot", "node_heat": 0.00029802009841563694, "nodeOutline": 0, "nodeTitle": "42
heat = 0.0003", "id": "42"}}, {"data": {"xpos": 990.95007222409856, "name": "43", "nodeColor": 0.0023609962476911551, "nodeLabel": 43, "ypos": 441.78458377160143, "nodeShape": "dot", "node_heat": 0.00058427486285806253, "nodeOutline": 0, "nodeTitle": "43
heat = 0.00058", "id": "43"}}, {"data": {"xpos": 942.8050551936949, "name": "44", "nodeColor": 0.0038373340572026731, "nodeLabel": 44, "ypos": 722.70659682091355, "nodeShape": "dot", "node_heat": 0.00093757366940800974, "nodeOutline": 0, "nodeTitle": "44
heat = 0.00094", "id": "44"}}, {"data": {"xpos": 992.36709679327373, "name": "45", "nodeColor": 0.0097237953788802539, "nodeLabel": 45, "ypos": 484.0180143992967, "nodeShape": "dot", "node_heat": 0.0023462483957155523, "nodeOutline": 0, "nodeTitle": "45
heat = 0.00235", "id": "45"}}, {"data": {"xpos": 991.73002170046971, "name": "46", "nodeColor": 0.020212691745205985, "nodeLabel": 46, "ypos": 539.21347162508027, "nodeShape": "dot", "node_heat": 0.0048563206463714398, "nodeOutline": 0, "nodeTitle": "46
heat = 0.00486", "id": "46"}}, {"data": {"xpos": 939.29096855293108, "name": "47", "nodeColor": 0.050395492822461425, "nodeLabel": 47, "ypos": 277.78942476663985, "nodeShape": "dot", "node_heat": 0.012079293281920955, "nodeOutline": 0, "nodeTitle": "47
heat = 0.01208", "id": "47"}}, {"data": {"xpos": 942.37732481702903, "name": "48", "nodeColor": 0.13960945935448324, "nodeLabel": 48, "ypos": 310.88635194603944, "nodeShape": "dot", "node_heat": 0.033428870391091603, "nodeOutline": 0, "nodeTitle": "48
heat = 0.03343", "id": "48"}}, {"data": {"xpos": 854.33883152424812, "name": "49", "nodeColor": 0.24660569232555529, "nodeLabel": 49, "ypos": 152.03620983201628, "nodeShape": "dot", "node_heat": 0.059033878384843017, "nodeOutline": 0, "nodeTitle": "49
heat = 0.05903", "id": "49"}}], "edges": [{"data": {"edge_weight": 0.23932683576088892, "target": "48", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.23932683576088892, "target": "1", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.23932683576088892, "target": "2", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.23932683576088892, "target": "23", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.23932683576088892, "target": "49", "source": "0", "edgeColor": 1.0}}, {"data": {"edge_weight": 0.23530139166323097, "target": "49", "source": "1", "edgeColor": 0.98317688669421077}}, {"data": {"edge_weight": 0.23530139166323097, "target": "2", "source": "1", "edgeColor": 0.98317688669421077}}, {"data": {"edge_weight": 0.23530139166323097, "target": "3", "source": "1", "edgeColor": 0.98317688669421077}}, {"data": {"edge_weight": 0.23319424286690887, "target": "3", "source": "2", "edgeColor": 0.97437070230990686}}, {"data": {"edge_weight": 0.23319424286690887, "target": "4", "source": "2", "edgeColor": 0.97437070230990686}}, {"data": {"edge_weight": 0.065388205709327948, "target": "4", "source": "3", "edgeColor": 0.27307665673120401}}, {"data": {"edge_weight": 0.065388205709327948, "target": "5", "source": "3", "edgeColor": 0.27307665673120401}}, {"data": {"edge_weight": 0.040069538964453214, "target": "5", "source": "4", "edgeColor": 0.16726502723960068}}, {"data": {"edge_weight": 0.040069538964453214, "target": "6", "source": "4", "edgeColor": 0.16726502723960068}}, {"data": {"edge_weight": 0.014540467313915298, "target": "6", "source": "5", "edgeColor": 0.060574074751032901}}, {"data": {"edge_weight": 0.014540467313915298, "target": "7", "source": "5", "edgeColor": 0.060574074751032901}}, {"data": {"edge_weight": 0.0074333911998599612, "target": "8", "source": "6", "edgeColor": 0.030872222274883978}}, {"data": {"edge_weight": 0.0074333911998599612, "target": "7", "source": "6", "edgeColor": 0.030872222274883978}}, {"data": {"edge_weight": 0.0034325985004225517, "target": "8", "source": "7", "edgeColor": 0.01415213195372686}}, {"data": {"edge_weight": 0.0034325985004225517, "target": "9", "source": "7", "edgeColor": 0.01415213195372686}}, {"data": {"edge_weight": 0.0014245215001948684, "target": "32", "source": "8", "edgeColor": 0.0057599878617906669}}, {"data": {"edge_weight": 0.0014245215001948684, "target": "10", "source": "8", "edgeColor": 0.0057599878617906669}}, {"data": {"edge_weight": 0.025403706516468099, "target": "23", "source": "9", "edgeColor": 0.1059736628558}}, {"data": {"edge_weight": 0.0030468041275569808, "target": "11", "source": "9", "edgeColor": 0.012539822283042453}}, {"data": {"edge_weight": 0.00061886868961140711, "target": "11", "source": "10", "edgeColor": 0.0023930081724046637}}, {"data": {"edge_weight": 0.00027482401445757658, "target": "12", "source": "10", "edgeColor": 0.00095517860330599099}}, {"data": {"edge_weight": 0.00061886868961140711, "target": "12", "source": "11", "edgeColor": 0.0023930081724046637}}, {"data": {"edge_weight": 0.00061886868961140711, "target": "13", "source": "11", "edgeColor": 0.0023930081724046637}}, {"data": {"edge_weight": 0.00019400263599166664, "target": "36", "source": "12", "edgeColor": 0.00061741035352377599}}, {"data": {"edge_weight": 0.00036691043491289652, "target": "13", "source": "12", "edgeColor": 0.0013400256531372686}}, {"data": {"edge_weight": 0.00019400263599166664, "target": "14", "source": "12", "edgeColor": 0.00061741035352377599}}, {"data": {"edge_weight": 0.003074551327452765, "target": "21", "source": "13", "edgeColor": 0.012655783224603347}}, {"data": {"edge_weight": 0.00036691043491289652, "target": "14", "source": "13", "edgeColor": 0.0013400256531372686}}, {"data": {"edge_weight": 0.00011151299314673849, "target": "16", "source": "14", "edgeColor": 0.00027267010264270979}}, {"data": {"edge_weight": 0.00037947564117552955, "target": "19", "source": "14", "edgeColor": 0.0013925380923958026}}, {"data": {"edge_weight": 6.6412476940913616e-05, "target": "16", "source": "15", "edgeColor": 8.4186279274845434e-05}}, {"data": {"edge_weight": 8.7753311144126941e-05, "target": "17", "source": "15", "edgeColor": 0.00017337377340738121}}, {"data": {"edge_weight": 8.7753311144126941e-05, "target": "17", "source": "16", "edgeColor": 0.00017337377340738121}}, {"data": {"edge_weight": 0.00036686777256897038, "target": "18", "source": "16", "edgeColor": 0.0013398473589097627}}, {"data": {"edge_weight": 0.00036686777256897038, "target": "18", "source": "17", "edgeColor": 0.0013398473589097627}}, {"data": {"edge_weight": 0.00037947564117552955, "target": "19", "source": "17", "edgeColor": 0.0013925380923958026}}, {"data": {"edge_weight": 0.00066180401768702328, "target": "20", "source": "18", "edgeColor": 0.0025724432537308629}}, {"data": {"edge_weight": 0.003074551327452765, "target": "21", "source": "18", "edgeColor": 0.012655783224603347}}, {"data": {"edge_weight": 0.00036686777256897038, "target": "31", "source": "18", "edgeColor": 0.0013398473589097627}}, {"data": {"edge_weight": 0.00066180401768702328, "target": "20", "source": "19", "edgeColor": 0.0025724432537308629}}, {"data": {"edge_weight": 0.003074551327452765, "target": "21", "source": "19", "edgeColor": 0.012655783224603347}}, {"data": {"edge_weight": 0.00037947564117552955, "target": "28", "source": "19", "edgeColor": 0.0013925380923958026}}, {"data": {"edge_weight": 0.003074551327452765, "target": "21", "source": "20", "edgeColor": 0.012655783224603347}}, {"data": {"edge_weight": 0.0033095725186161971, "target": "22", "source": "20", "edgeColor": 0.013637982463316987}}, {"data": {"edge_weight": 0.0033095725186161971, "target": "22", "source": "21", "edgeColor": 0.013637982463316987}}, {"data": {"edge_weight": 0.025403706516468099, "target": "23", "source": "21", "edgeColor": 0.1059736628558}}, {"data": {"edge_weight": 0.0033095725186161971, "target": "24", "source": "22", "edgeColor": 0.013637982463316987}}, {"data": {"edge_weight": 0.0033095725186161971, "target": "38", "source": "22", "edgeColor": 0.013637982463316987}}, {"data": {"edge_weight": 0.025403706516468099, "target": "23", "source": "22", "edgeColor": 0.1059736628558}}, {"data": {"edge_weight": 0.025403706516468099, "target": "24", "source": "23", "edgeColor": 0.1059736628558}}, {"data": {"edge_weight": 0.0030084188591186661, "target": "25", "source": "24", "edgeColor": 0.012379402785331228}}, {"data": {"edge_weight": 0.0030084188591186661, "target": "26", "source": "24", "edgeColor": 0.012379402785331228}}, {"data": {"edge_weight": 0.00048763346706556565, "target": "26", "source": "25", "edgeColor": 0.001844550669322292}}, {"data": {"edge_weight": 0.00045682132154216252, "target": "27", "source": "25", "edgeColor": 0.0017157807242530606}}, {"data": {"edge_weight": 0.00048763346706556565, "target": "27", "source": "26", "edgeColor": 0.001844550669322292}}, {"data": {"edge_weight": 0.00048763346706556565, "target": "28", "source": "26", "edgeColor": 0.001844550669322292}}, {"data": {"edge_weight": 0.00015851926714158588, "target": "28", "source": "27", "edgeColor": 0.00046911845823119786}}, {"data": {"edge_weight": 0.00015851926714158588, "target": "29", "source": "27", "edgeColor": 0.00046911845823119786}}, {"data": {"edge_weight": 0.00012503594583740521, "target": "30", "source": "28", "edgeColor": 0.0003291851503802437}}, {"data": {"edge_weight": 5.0556032004506679e-05, "target": "30", "source": "29", "edgeColor": 1.7919113883731898e-05}}, {"data": {"edge_weight": 6.9273615120119038e-05, "target": "31", "source": "29", "edgeColor": 9.614353184240603e-05}}, {"data": {"edge_weight": 0.00020468645418531711, "target": "32", "source": "30", "edgeColor": 0.00066206010635845222}}, {"data": {"edge_weight": 6.9273615120119038e-05, "target": "31", "source": "30", "edgeColor": 9.614353184240603e-05}}, {"data": {"edge_weight": 0.00020468645418531711, "target": "32", "source": "31", "edgeColor": 0.00066206010635845222}}, {"data": {"edge_weight": 0.00020468645418531711, "target": "33", "source": "32", "edgeColor": 0.00066206010635845222}}, {"data": {"edge_weight": 0.00020468645418531711, "target": "34", "source": "32", "edgeColor": 0.00066206010635845222}}, {"data": {"edge_weight": 4.6268336266660884e-05, "target": "34", "source": "33", "edgeColor": 0.0}}, {"data": {"edge_weight": 7.1227030310191085e-05, "target": "35", "source": "33", "edgeColor": 0.00010430723360513864}}, {"data": {"edge_weight": 7.1227030310191085e-05, "target": "35", "source": "34", "edgeColor": 0.00010430723360513864}}, {"data": {"edge_weight": 8.8298521215569403e-05, "target": "36", "source": "34", "edgeColor": 0.00017565231226789361}}, {"data": {"edge_weight": 8.8298521215569403e-05, "target": "36", "source": "35", "edgeColor": 0.00017565231226789361}}, {"data": {"edge_weight": 0.00029128321955266406, "target": "37", "source": "35", "edgeColor": 0.0010239648205581397}}, {"data": {"edge_weight": 0.00043369221372336594, "target": "38", "source": "36", "edgeColor": 0.0016191196870959891}}, {"data": {"edge_weight": 0.00043369221372336594, "target": "38", "source": "37", "edgeColor": 0.0016191196870959891}}, {"data": {"edge_weight": 0.0022816838720336559, "target": "39", "source": "37", "edgeColor": 0.0093422360195262906}}, {"data": {"edge_weight": 0.00043369221372336594, "target": "40", "source": "38", "edgeColor": 0.0016191196870959891}}, {"data": {"edge_weight": 0.0022816838720336559, "target": "40", "source": "39", "edgeColor": 0.0093422360195262906}}, {"data": {"edge_weight": 0.0022816838720336559, "target": "43", "source": "39", "edgeColor": 0.0093422360195262906}}, {"data": {"edge_weight": 0.0048563206463714398, "target": "46", "source": "39", "edgeColor": 0.020102143529144016}}, {"data": {"edge_weight": 0.012079293281920955, "target": "47", "source": "39", "edgeColor": 0.050288350095311928}}, {"data": {"edge_weight": 0.00034520527783526089, "target": "41", "source": "40", "edgeColor": 0.0012493155828994372}}, {"data": {"edge_weight": 0.00034520527783526089, "target": "42", "source": "40", "edgeColor": 0.0012493155828994372}}, {"data": {"edge_weight": 0.00029802009841563694, "target": "42", "source": "41", "edgeColor": 0.0010521195467671333}}, {"data": {"edge_weight": 0.00058427486285806253, "target": "43", "source": "41", "edgeColor": 0.0022484338464337831}}, {"data": {"edge_weight": 0.00058427486285806253, "target": "43", "source": "42", "edgeColor": 0.0022484338464337831}}, {"data": {"edge_weight": 0.00093757366940800974, "target": "44", "source": "42", "edgeColor": 0.0037249382293533984}}, {"data": {"edge_weight": 0.0023462483957155523, "target": "45", "source": "43", "edgeColor": 0.0096120637133369699}}, {"data": {"edge_weight": 0.0023462483957155523, "target": "45", "source": "44", "edgeColor": 0.0096120637133369699}}, {"data": {"edge_weight": 0.0048563206463714398, "target": "46", "source": "44", "edgeColor": 0.020102143529144016}}, {"data": {"edge_weight": 0.0048563206463714398, "target": "46", "source": "45", "edgeColor": 0.020102143529144016}}, {"data": {"edge_weight": 0.012079293281920955, "target": "47", "source": "45", "edgeColor": 0.050288350095311928}}, {"data": {"edge_weight": 0.033428870391091603, "target": "48", "source": "46", "edgeColor": 0.1395123825311935}}, {"data": {"edge_weight": 0.033428870391091603, "target": "48", "source": "47", "edgeColor": 0.1395123825311935}}, {"data": {"edge_weight": 0.059033878384843017, "target": "49", "source": "47", "edgeColor": 0.24652068775772412}}, {"data": {"edge_weight": 0.059033878384843017, "target": "49", "source": "48", "edgeColor": 0.24652068775772412}}]}, "data": {"name": "watts_strogatz_graph(50,4,0.1)"}}
--------------------------------------------------------------------------------
/cytoscape_styles/heat_prop_style.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
--------------------------------------------------------------------------------
/cytoscape_styles/overlap_style.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
--------------------------------------------------------------------------------
/cytoscape_styles/visJS_style.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
--------------------------------------------------------------------------------
/docs/_config.yml:
--------------------------------------------------------------------------------
1 | theme: jekyll-theme-cayman
--------------------------------------------------------------------------------
/docs/colocalization.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucsd-ccbb/visJS2jupyter/c16bcdf5fe0eed156f1a6eb789484945375452ba/docs/colocalization.png
--------------------------------------------------------------------------------
/docs/graph_overlap.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucsd-ccbb/visJS2jupyter/c16bcdf5fe0eed156f1a6eb789484945375452ba/docs/graph_overlap.png
--------------------------------------------------------------------------------
/docs/heat_prop.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucsd-ccbb/visJS2jupyter/c16bcdf5fe0eed156f1a6eb789484945375452ba/docs/heat_prop.png
--------------------------------------------------------------------------------
/notebooks/complex_params_example/visJS2Jupyter_complex_example.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# More complex network styling for visJS2jupyter\n",
8 | "\n",
9 | "------------\n",
10 | "\n",
11 | "Authors: Brin Rosenthal (sbrosenthal@ucsd.edu), Mikayla Webster (m1webste@ucsd.edu), Julia Len (jlen@ucsd.edu)\n",
12 | "\n",
13 | "-----------\n",
14 | "\n"
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "## Import packages"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 1,
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "data": {
31 | "text/plain": [
32 | ""
33 | ]
34 | },
35 | "execution_count": 1,
36 | "metadata": {},
37 | "output_type": "execute_result"
38 | }
39 | ],
40 | "source": [
41 | "import numpy as np\n",
42 | "from random import randint\n",
43 | "import math\n",
44 | "import matplotlib as mpl\n",
45 | "import networkx as nx\n",
46 | "\n",
47 | "from visJS2jupyter import visJS_module\n",
48 | "reload(visJS_module)"
49 | ]
50 | },
51 | {
52 | "cell_type": "code",
53 | "execution_count": 2,
54 | "metadata": {
55 | "collapsed": true
56 | },
57 | "outputs": [],
58 | "source": [
59 | "# create a simple graph\n",
60 | "G = nx.connected_watts_strogatz_graph(30,5,.2)\n",
61 | "nodes = list(G.nodes()) # type cast to list in order to make compatible with networkx 1.11 and 2.0\n",
62 | "edges = list(G.edges()) # for nx 2.0, returns an \"EdgeView\" object rather than an iterable"
63 | ]
64 | },
65 | {
66 | "cell_type": "markdown",
67 | "metadata": {},
68 | "source": [
69 | "# Map node attributes to visual properties, and style the nodes and edges\n",
70 | "\n",
71 | "- To map node attributes to properties, simply add the property to the graph as a node-attribute, and use the return_node_to_color function"
72 | ]
73 | },
74 | {
75 | "cell_type": "code",
76 | "execution_count": 3,
77 | "metadata": {
78 | "collapsed": true
79 | },
80 | "outputs": [],
81 | "source": [
82 | "# add a node attributes to color-code by\n",
83 | "cc = nx.clustering(G)\n",
84 | "degree = dict(G.degree()) # nx 2.0 returns a \"DegreeView\" object. Cast to dict to maintain compatibility with nx 1.11\n",
85 | "bc = nx.betweenness_centrality(G)\n",
86 | "\n",
87 | "nx.set_node_attributes(G, name = 'clustering_coefficient', values = cc) # parameter order for name and values is switched \n",
88 | "nx.set_node_attributes(G, name = 'degree', values = degree) # between networkx 1.11 and 2.0, therefore we must\n",
89 | "nx.set_node_attributes(G, name = 'betweenness_centrality', values = bc) # explicitly pass our arguments \n",
90 | " # (not implicitly through position) "
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": 4,
96 | "metadata": {},
97 | "outputs": [],
98 | "source": [
99 | "# add edge attribute weight\n",
100 | "weights=[randint(0,9) for p in range(len(edges))]\n",
101 | "edge_to_weight = dict(zip(edges, weights))\n",
102 | "nx.set_edge_attributes(G, name = 'weight', values = edge_to_weight)"
103 | ]
104 | },
105 | {
106 | "cell_type": "code",
107 | "execution_count": 5,
108 | "metadata": {
109 | "collapsed": true
110 | },
111 | "outputs": [],
112 | "source": [
113 | "# setting shape of each node using a dictionary\n",
114 | "stars = ['star']*20 # some will be stars\n",
115 | "circles = ['dot']*10 # some will be circles\n",
116 | "shapes = stars + circles\n",
117 | "node_to_shape = dict(zip(nodes, shapes))"
118 | ]
119 | },
120 | {
121 | "cell_type": "markdown",
122 | "metadata": {},
123 | "source": [
124 | "\n",
125 | "### Interactive network\n",
126 | "\n",
127 | "TIP: If you get errors running the following cell, try updating visJS2jupyter (pip install visJS2jupyter --upgrade). This cell is dependent on an update made on March 9th, 2018"
128 | ]
129 | },
130 | {
131 | "cell_type": "code",
132 | "execution_count": 6,
133 | "metadata": {},
134 | "outputs": [
135 | {
136 | "data": {
137 | "text/html": [
138 | " Network | Basic usage"
139 | ],
140 | "text/plain": [
141 | ""
142 | ]
143 | },
144 | "execution_count": 6,
145 | "metadata": {},
146 | "output_type": "execute_result"
147 | }
148 | ],
149 | "source": [
150 | "# map the betweenness centrality to the node color, using matplotlib spring_r colormap\n",
151 | "node_to_color = visJS_module.return_node_to_color(G,field_to_map='betweenness_centrality',cmap=mpl.cm.spring_r,alpha = 1,\n",
152 | " color_max_frac = .9,color_min_frac = .1, vmin = 0, vmax = 0.08)\n",
153 | "\n",
154 | "# set node initial positions using networkx's spring_layout function\n",
155 | "pos = nx.spring_layout(G)\n",
156 | "\n",
157 | "# per node attributes\n",
158 | "nodes_dict = [{\"id\":n,\n",
159 | " \"color\":node_to_color[n],\n",
160 | " \"degree\":nx.degree(G,n),\n",
161 | " \"node_shape\": node_to_shape[n],\n",
162 | " \"x\":pos[n][0]*700,\n",
163 | " \"y\":pos[n][1]*700} for n in nodes\n",
164 | " ]\n",
165 | "\n",
166 | "# map to indices for source/target in edges\n",
167 | "node_map = dict(zip(nodes,range(len(nodes)))) \n",
168 | "\n",
169 | "# map colors to edges based on degree\n",
170 | "edge_to_color = visJS_module.return_edge_to_color(G,field_to_map='weight',cmap=mpl.cm.jet,alpha = 1.0, color_vals_transform = None,ceil_val=10,\n",
171 | " vmin=0,vmax=5)\n",
172 | "\n",
173 | "# per edge attributes\n",
174 | "edges_dict = [{\"source\":node_map[edges[i][0]], \"target\":node_map[edges[i][1]], \n",
175 | " \"color\":edge_to_color[edges[i]]} for i in range(len(edges))]\n",
176 | "\n",
177 | "# set some network-wide styles\n",
178 | "visJS_module.visjs_network(nodes_dict,edges_dict,\n",
179 | " node_size_multiplier=7,\n",
180 | " node_size_transform = '',\n",
181 | " node_color_highlight_border='red',\n",
182 | " node_color_highlight_background='#D3918B',\n",
183 | " node_color_hover_border='blue',\n",
184 | " node_color_hover_background='#8BADD3',\n",
185 | " node_font_size=25,\n",
186 | " edge_arrow_to=True,\n",
187 | " physics_enabled=True,\n",
188 | " edge_color_highlight='#8A324E',\n",
189 | " edge_color_hover='#8BADD3',\n",
190 | " edge_width=3,\n",
191 | " max_velocity=15,\n",
192 | " min_velocity=1)\n",
193 | "\n"
194 | ]
195 | },
196 | {
197 | "cell_type": "code",
198 | "execution_count": null,
199 | "metadata": {
200 | "collapsed": true
201 | },
202 | "outputs": [],
203 | "source": []
204 | }
205 | ],
206 | "metadata": {
207 | "kernelspec": {
208 | "display_name": "Python 2",
209 | "language": "python",
210 | "name": "python2"
211 | },
212 | "language_info": {
213 | "codemirror_mode": {
214 | "name": "ipython",
215 | "version": 2
216 | },
217 | "file_extension": ".py",
218 | "mimetype": "text/x-python",
219 | "name": "python",
220 | "nbconvert_exporter": "python",
221 | "pygments_lexer": "ipython2",
222 | "version": "2.7.14"
223 | }
224 | },
225 | "nbformat": 4,
226 | "nbformat_minor": 1
227 | }
228 |
--------------------------------------------------------------------------------
/notebooks/default_params_example/visJS2Jupyter_basic_example.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Basic use example of visJS2jupyter\n",
8 | "\n",
9 | "------------\n",
10 | "\n",
11 | "Authors: Brin Rosenthal (sbrosenthal@ucsd.edu), Mikayla Webster (m1webste@ucsd.edu), Julia Len (ljen@ucsd.edu)\n",
12 | "\n",
13 | "-----------\n"
14 | ]
15 | },
16 | {
17 | "cell_type": "markdown",
18 | "metadata": {},
19 | "source": [
20 | "This notebook has been tested, and should work with both networkx versions 1.11 and 2.1 and both Python 2 and 3"
21 | ]
22 | },
23 | {
24 | "cell_type": "markdown",
25 | "metadata": {},
26 | "source": [
27 | "## Import packages"
28 | ]
29 | },
30 | {
31 | "cell_type": "code",
32 | "execution_count": 4,
33 | "metadata": {},
34 | "outputs": [],
35 | "source": [
36 | "import networkx as nx\n",
37 | "import visJS2jupyter.visJS_module"
38 | ]
39 | },
40 | {
41 | "cell_type": "markdown",
42 | "metadata": {},
43 | "source": [
44 | "# Draw a simple network with default parameters"
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": 7,
50 | "metadata": {},
51 | "outputs": [],
52 | "source": [
53 | "G = nx.connected_watts_strogatz_graph(30, 5, 0.2)\n",
54 | "nodes = list(G.nodes()) # must cast to list to maintain compatibility between nx 1.11 and 2.0\n",
55 | "edges = list(G.edges()) # will return an \"EdgeView\" object in nx 2.0"
56 | ]
57 | },
58 | {
59 | "cell_type": "code",
60 | "execution_count": 10,
61 | "metadata": {},
62 | "outputs": [
63 | {
64 | "data": {
65 | "text/html": [
66 | " Network | Basic usage"
67 | ],
68 | "text/plain": [
69 | ""
70 | ]
71 | },
72 | "execution_count": 10,
73 | "metadata": {},
74 | "output_type": "execute_result"
75 | }
76 | ],
77 | "source": [
78 | "# define the initial positions of the nodes using networkx's spring_layout function, and add to the nodes_dict.\n",
79 | "pos = nx.spring_layout(G)\n",
80 | "\n",
81 | "nodes_dict = [{\"id\":n,\n",
82 | " \"x\":pos[n][0]*300,\n",
83 | " \"y\":pos[n][1]*300} for n in nodes]\n",
84 | "\n",
85 | "node_map = dict(zip(nodes,range(len(nodes)))) # map to indices for source/target in edges\n",
86 | "\n",
87 | "edges_dict = [{\"source\":node_map[edges[i][0]], \"target\":node_map[edges[i][1]], \n",
88 | " \"title\":'test'} for i in range(len(edges))]\n",
89 | "\n",
90 | "visJS2jupyter.visJS_module.visjs_network(nodes_dict, edges_dict)"
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": null,
96 | "metadata": {
97 | "collapsed": true
98 | },
99 | "outputs": [],
100 | "source": []
101 | }
102 | ],
103 | "metadata": {
104 | "kernelspec": {
105 | "display_name": "Python 2",
106 | "language": "python",
107 | "name": "python2"
108 | },
109 | "language_info": {
110 | "codemirror_mode": {
111 | "name": "ipython",
112 | "version": 2
113 | },
114 | "file_extension": ".py",
115 | "mimetype": "text/x-python",
116 | "name": "python",
117 | "nbconvert_exporter": "python",
118 | "pygments_lexer": "ipython2",
119 | "version": "2.7.14"
120 | }
121 | },
122 | "nbformat": 4,
123 | "nbformat_minor": 1
124 | }
125 |
--------------------------------------------------------------------------------
/notebooks/default_params_example/visJS2Jupyter_basic_example_zeppelin.json:
--------------------------------------------------------------------------------
1 | {"paragraphs":[{"text":"import matplotlib as mpl\nimport networkx as nx\nimport visJS2jupyter.visJS_module\n\nG = nx.connected_watts_strogatz_graph(30,5,.2)\nnodes = list(G.nodes()) # must cast to list to maintain compatibility between nx 1.11 and 2.0\nedges = list(G.edges()) # will return an \"EdgeView\" object in nx 2.0\n\n# define the initial positions of the nodes using networkx's spring_layout function, and add to the nodes_dict.\npos = nx.spring_layout(G)\nnodes_dict = [{\"id\":n,\n \"x\":pos[n][0]*1000,\n \"y\":pos[n][1]*1000} for n in nodes]\nnode_map = dict(zip(nodes,range(len(nodes)))) # map to indices for source/target in edges\n\nedges_dict = [{\"source\":node_map[edges[i][0]], \"target\":node_map[edges[i][1]], \n \"title\":'test'} for i in range(len(edges))]\n\nprint visJS2jupyter.visJS_module.visjs_network(nodes_dict,edges_dict,output=\"zeppelin\")","user":"anonymous","dateUpdated":"2017-12-31T15:39:37+0800","config":{"colWidth":12,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"results":{"code":"SUCCESS","msg":[{"type":"HTML","data":" \n \n \n \n \n \n \n \n \n \n \n"}]},"apps":[],"jobName":"paragraph_1514705973715_-260140964","id":"20171231-153933_1111272938","dateCreated":"2017-12-31T15:39:33+0800","dateStarted":"2017-12-31T15:39:37+0800","dateFinished":"2017-12-31T15:39:37+0800","status":"FINISHED","progressUpdateIntervalMs":500,"focus":true,"$$hashKey":"object:1389"},{"user":"anonymous","config":{"colWidth":12,"enabled":true,"results":{},"editorSetting":{"language":"python","editOnDblClick":false},"editorMode":"ace/mode/python"},"settings":{"params":{},"forms":{}},"apps":[],"jobName":"paragraph_1514705977445_-1971287888","id":"20171231-153937_1130383652","dateCreated":"2017-12-31T15:39:37+0800","status":"READY","progressUpdateIntervalMs":500,"$$hashKey":"object:1390"}],"name":"visJS2Jupyter_basic_example","id":"2D5H8B338","angularObjects":{"2CV7CGBV9:shared_process":[],"2CW1V292C:shared_process":[],"2CY7UTQMF:shared_process":[],"2CXCWU8P9:shared_process":[],"2CUU8NPHV:shared_process":[],"2CV6VKPYF:shared_process":[],"2CUNHDUV5:shared_process":[],"2CVA4MDX7:shared_process":[],"2CUZSFCSK:shared_process":[],"2CV8RQAWT:shared_process":[],"2CVJ1PPUN:shared_process":[],"2CXN4J8A7:shared_process":[],"2CVHVHTQB:shared_process":[],"2CXWPKYS7:shared_process":[],"2CXGZYE95:shared_process":[],"2CXAQJY48:shared_process":[],"2CVXA5E8V:shared_process":[],"2CXQMGDNH:shared_process":[],"2CWKPBRHV:shared_process":[]},"config":{"looknfeel":"default","personalizedMode":"false"},"info":{}}
--------------------------------------------------------------------------------
/notebooks/multigraph_example/.ipynb_checkpoints/multigraph_example-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Multigraph Network Styling for visJS2jupyter\n",
8 | "\n",
9 | "------------\n",
10 | "\n",
11 | "Authors: Brin Rosenthal (sbrosenthal@ucsd.edu), Mikayla Webster (m1webste@ucsd.edu), Julia Len (jlen@ucsd.edu)\n",
12 | "\n",
13 | "-----------\n",
14 | "\n",
15 | "## Import packages"
16 | ]
17 | },
18 | {
19 | "cell_type": "code",
20 | "execution_count": 1,
21 | "metadata": {
22 | "collapsed": true
23 | },
24 | "outputs": [],
25 | "source": [
26 | "import matplotlib as mpl\n",
27 | "import networkx as nx\n",
28 | "import pandas as pd\n",
29 | "import random\n",
30 | "\n",
31 | "import visJS2jupyter.visJS_module "
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {},
37 | "source": [
38 | "We start by creating a randomized, single-edged graph, and convert that to a multigraph"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 2,
44 | "metadata": {
45 | "collapsed": false
46 | },
47 | "outputs": [],
48 | "source": [
49 | "G = nx.connected_watts_strogatz_graph(30,5,.2)\n",
50 | "G = nx.MultiGraph(G)\n",
51 | "edges = G.edges(keys = True) # for multigraphs every edge has to be represented by a three-tuple (source, target, key)"
52 | ]
53 | },
54 | {
55 | "cell_type": "markdown",
56 | "metadata": {},
57 | "source": [
58 | "We duplicate every edge in the graph to make it a true multigraph. \n",
59 | "\n",
60 | "Note: NetworkX does not support duplicate edges with opposite directions. NetworkX will flip any backwards edges you try to add to your graph. For example, if your graph currently contains the edges [(0,1), (1,2)] and you add the edge (1,0) to your graph, your graph will now contain edges [(0,1), (0,1), (1,2)]"
61 | ]
62 | },
63 | {
64 | "cell_type": "code",
65 | "execution_count": 3,
66 | "metadata": {
67 | "collapsed": false
68 | },
69 | "outputs": [],
70 | "source": [
71 | "sources = list(zip(*edges)[0])\n",
72 | "targets = list(zip(*edges)[1])\n",
73 | "backward_edges = list(zip(targets, sources)) # demonstarting adding backwards edges"
74 | ]
75 | },
76 | {
77 | "cell_type": "code",
78 | "execution_count": 4,
79 | "metadata": {
80 | "collapsed": false,
81 | "scrolled": true
82 | },
83 | "outputs": [],
84 | "source": [
85 | "G.add_edges_from(backward_edges)\n",
86 | "edges = list(G.edges(data = True))"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": 5,
92 | "metadata": {
93 | "collapsed": false
94 | },
95 | "outputs": [],
96 | "source": [
97 | "nodes = list(G.nodes()) # type cast to list in order to make compatible with networkx 1.11 and 2.0\n",
98 | "edges = list(G.edges(keys = True)) # for nx 2.0, returns an \"EdgeView\" object rather than an iterable"
99 | ]
100 | },
101 | {
102 | "cell_type": "markdown",
103 | "metadata": {},
104 | "source": [
105 | "## Multigraph Node and Edge Styling\n",
106 | "There is no difference between multigraph and single-edged-graph styling. Just map the node and edge attributes to some visual properties, and style the nodes and edges according to these properties (like usual!)"
107 | ]
108 | },
109 | {
110 | "cell_type": "code",
111 | "execution_count": 6,
112 | "metadata": {
113 | "collapsed": false
114 | },
115 | "outputs": [],
116 | "source": [
117 | "# add some node attributes to color-code by\n",
118 | "degree = dict(G.degree()) # nx 2.0 returns a \"DegreeView\" object. Cast to dict to maintain compatibility with nx 1.11\n",
119 | "bc = nx.betweenness_centrality(G)\n",
120 | "nx.set_node_attributes(G, name = 'degree', values = degree) # between networkx 1.11 and 2.0, therefore we must\n",
121 | "nx.set_node_attributes(G, name = 'betweenness_centrality', values = bc) # explicitly pass our arguments \n",
122 | " # (not implicitly through position)\n",
123 | "\n",
124 | "# add the edge attribute 'weight' to color-code by\n",
125 | "weights = []\n",
126 | "for i in range(len(edges)):\n",
127 | " weights.append(float(random.randint(1,5))) \n",
128 | " \n",
129 | "w_dict = dict(zip(edges, weights))\n",
130 | "nx.set_edge_attributes(G, name = 'weight', values = w_dict)\n"
131 | ]
132 | },
133 | {
134 | "cell_type": "code",
135 | "execution_count": 7,
136 | "metadata": {
137 | "collapsed": false
138 | },
139 | "outputs": [],
140 | "source": [
141 | "# map the betweenness centrality to the node color, using matplotlib spring_r colormap\n",
142 | "node_to_color = visJS_module.return_node_to_color(G,field_to_map='betweenness_centrality',cmap=mpl.cm.spring_r,alpha = 1,\n",
143 | " color_max_frac = .9,color_min_frac = .1)\n",
144 | "\n",
145 | "# map weight to edge color, using default settings\n",
146 | "edge_to_color = visJS_module.return_edge_to_color(G,field_to_map='weight')"
147 | ]
148 | },
149 | {
150 | "cell_type": "markdown",
151 | "metadata": {},
152 | "source": [
153 | "## Interactive network\n",
154 | "\n",
155 | "Note that this example is simply the multigraph version of our \"Complex Parameters\" notebook."
156 | ]
157 | },
158 | {
159 | "cell_type": "code",
160 | "execution_count": 8,
161 | "metadata": {
162 | "collapsed": false
163 | },
164 | "outputs": [
165 | {
166 | "data": {
167 | "text/html": [
168 | " Network | Basic usage"
169 | ],
170 | "text/plain": [
171 | ""
172 | ]
173 | },
174 | "execution_count": 8,
175 | "metadata": {},
176 | "output_type": "execute_result"
177 | }
178 | ],
179 | "source": [
180 | "# set node initial positions using networkx's spring_layout function\n",
181 | "pos = nx.spring_layout(G)\n",
182 | "\n",
183 | "nodes_dict = [{\"id\":n,\"color\":node_to_color[n],\n",
184 | " \"degree\":nx.degree(G,n),\n",
185 | " \"x\":pos[n][0]*1000,\n",
186 | " \"y\":pos[n][1]*1000} for n in nodes\n",
187 | " ]\n",
188 | "node_map = dict(zip(nodes,range(len(nodes)))) # map to indices for source/target in edges\n",
189 | "edges_dict = [{\"source\":node_map[edges[i][0]], \"target\":node_map[edges[i][1]], \n",
190 | " \"color\":edge_to_color[(edges[i][0],edges[i][1],edges[i][2])],\"title\":'test'} # remeber (source, target, key)\n",
191 | " for i in range(len(edges))]\n",
192 | "\n",
193 | "# set some network-wide styles\n",
194 | "visJS_module.visjs_network(nodes_dict,edges_dict,\n",
195 | " node_size_multiplier=3,\n",
196 | " node_size_transform = '',\n",
197 | " node_color_highlight_border='red',\n",
198 | " node_color_highlight_background='#D3918B',\n",
199 | " node_color_hover_border='blue',\n",
200 | " node_color_hover_background='#8BADD3',\n",
201 | " node_font_size=25,\n",
202 | " edge_arrow_to=True,\n",
203 | " physics_enabled=True,\n",
204 | " edge_color_highlight='#8A324E',\n",
205 | " edge_color_hover='#8BADD3',\n",
206 | " edge_width=3,\n",
207 | " max_velocity=15,\n",
208 | " min_velocity=1,\n",
209 | " edge_smooth_enabled = True)"
210 | ]
211 | },
212 | {
213 | "cell_type": "code",
214 | "execution_count": null,
215 | "metadata": {
216 | "collapsed": true
217 | },
218 | "outputs": [],
219 | "source": []
220 | }
221 | ],
222 | "metadata": {
223 | "kernelspec": {
224 | "display_name": "Python 2",
225 | "language": "python",
226 | "name": "python2"
227 | },
228 | "language_info": {
229 | "codemirror_mode": {
230 | "name": "ipython",
231 | "version": 2
232 | },
233 | "file_extension": ".py",
234 | "mimetype": "text/x-python",
235 | "name": "python",
236 | "nbconvert_exporter": "python",
237 | "pygments_lexer": "ipython2",
238 | "version": "2.7.11"
239 | }
240 | },
241 | "nbformat": 4,
242 | "nbformat_minor": 0
243 | }
244 |
--------------------------------------------------------------------------------
/notebooks/multigraph_example/style_file0.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | Network | Basic usage
5 |
6 |
7 |
8 |
9 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
251 |
252 |
253 |
254 |
255 |
--------------------------------------------------------------------------------
/notebooks/tcga_mutation_example/mutation_EL.csv:
--------------------------------------------------------------------------------
1 | gene1,gene2,weighted_mutation_average
2 | ZFPM1,ACC,2.333333333
3 | MUC5B,ACC,1.622222222
4 | CRIPAK,ACC,1.577777778
5 | GARS,ACC,1.577777778
6 | ZNF517,ACC,1.466666667
7 | PLEC,ACC,1.455555556
8 | LRIG1,ACC,1.377777778
9 | OBSCN,ACC,1.322222222
10 | MUC2,ACC,1.288888889
11 | LACTB,ACC,1.211111111
12 | OPRD1,ACC,1.177777778
13 | USP42,ACC,1.155555556
14 | SOWAHA,ACC,1.155555556
15 | CCDC102A,ACC,1.155555556
16 | DSPP,ACC,1.144444444
17 | TOR3A,ACC,1.111111111
18 | PODXL,ACC,1.066666667
19 | ZNF787,ACC,1.066666667
20 | TRIOBP,ACC,1.033333333
21 | MUC4,ACC,1.011111111
22 | B3GNT6,ACC,1
23 | MUC16,ACC,0.988888889
24 | OTOP1,ACC,0.955555556
25 | TPO,ACC,0.933333333
26 | IRX3,ACC,0.933333333
27 | TTN,BLCA,2.538461538
28 | TP53,BLCA,2.107692308
29 | MUC16,BLCA,1.5
30 | KMT2D,BLCA,1.307692308
31 | ARID1A,BLCA,1.284615385
32 | KDM6A,BLCA,1.069230769
33 | KMT2C,BLCA,0.907692308
34 | SYNE1,BLCA,0.846153846
35 | PIK3CA,BLCA,0.815384615
36 | HMCN1,BLCA,0.792307692
37 | FLG,BLCA,0.769230769
38 | EP300,BLCA,0.707692308
39 | RYR2,BLCA,0.692307692
40 | CDKN1A,BLCA,0.669230769
41 | CSMD3,BLCA,0.669230769
42 | ZFHX4,BLCA,0.646153846
43 | KMT2A,BLCA,0.630769231
44 | PDE4DIP,BLCA,0.615384615
45 | MACF1,BLCA,0.607692308
46 | LRP1B,BLCA,0.6
47 | CREBBP,BLCA,0.6
48 | MUC17,BLCA,0.592307692
49 | AHNAK2,BLCA,0.592307692
50 | SYNE2,BLCA,0.584615385
51 | SPTAN1,BLCA,0.584615385
52 | PIK3CA,BRCA,1.287615148
53 | TP53,BRCA,1.273285568
54 | TTN,BRCA,0.749232344
55 | CDH1,BRCA,0.522006141
56 | GATA3,BRCA,0.420675537
57 | MUC16,BRCA,0.35926305
58 | MAP3K1,BRCA,0.350051177
59 | KMT2C,BRCA,0.332650972
60 | MUC4,BRCA,0.261003071
61 | MUC12,BRCA,0.244626407
62 | RYR2,BRCA,0.205731832
63 | SYNE1,BRCA,0.203684749
64 | FLG,BRCA,0.201637666
65 | USH2A,BRCA,0.198567042
66 | MUC5B,BRCA,0.196519959
67 | RYR3,BRCA,0.18321392
68 | NCOR1,BRCA,0.178096213
69 | SPEN,BRCA,0.170931423
70 | DMD,BRCA,0.170931423
71 | SYNE2,BRCA,0.16888434
72 | HMCN1,BRCA,0.167860798
73 | OBSCN,BRCA,0.165813715
74 | FCGBP,BRCA,0.164790174
75 | HRNR,BRCA,0.164790174
76 | NEB,BRCA,0.160696008
77 | TTN,CESC,1.582474227
78 | PIK3CA,CESC,1.082474227
79 | MUC4,CESC,0.87628866
80 | Unknown,CESC,0.788659794
81 | KMT2C,CESC,0.701030928
82 | MUC16,CESC,0.644329897
83 | SYNE1,CESC,0.582474227
84 | KMT2D,CESC,0.567010309
85 | GPR98,CESC,0.536082474
86 | DST,CESC,0.510309278
87 | RYR2,CESC,0.494845361
88 | EP300,CESC,0.469072165
89 | SYNE2,CESC,0.463917526
90 | MT-ND5,CESC,0.458762887
91 | DMD,CESC,0.453608247
92 | FBXW7,CESC,0.443298969
93 | FLG,CESC,0.43814433
94 | OBSCN,CESC,0.432989691
95 | MUC5B,CESC,0.417525773
96 | MUC12,CESC,0.402061856
97 | USH2A,CESC,0.402061856
98 | NEB,CESC,0.371134021
99 | HMCN1,CESC,0.371134021
100 | ARID1A,CESC,0.365979381
101 | ABCA12,CESC,0.355670103
102 | Unknown,CHOL,2.571428571
103 | MUC4,CHOL,2
104 | TTN,CHOL,1.257142857
105 | PBRM1,CHOL,1.114285714
106 | MT-ND2,CHOL,1.028571429
107 | CDC27,CHOL,0.857142857
108 | KMT2C,CHOL,0.857142857
109 | MUC2,CHOL,0.857142857
110 | BAP1,CHOL,0.828571429
111 | DNAH5,CHOL,0.742857143
112 | ANKRD36C,CHOL,0.714285714
113 | BIRC6,CHOL,0.714285714
114 | EP400,CHOL,0.685714286
115 | ARID1A,CHOL,0.685714286
116 | MUC5B,CHOL,0.685714286
117 | TCHH,CHOL,0.685714286
118 | ABCA13,CHOL,0.657142857
119 | MUC16,CHOL,0.657142857
120 | FRG1B,CHOL,0.657142857
121 | MT-ND1,CHOL,0.628571429
122 | RYR3,CHOL,0.628571429
123 | MT-CO2,CHOL,0.628571429
124 | FMN2,CHOL,0.6
125 | TP53,CHOL,0.6
126 | LRP1B,CHOL,0.571428571
127 | APC,COAD,3.363636364
128 | TP53,COAD,2.071428571
129 | TTN,COAD,1.941558442
130 | KRAS,COAD,1.532467532
131 | SYNE1,COAD,1.155844156
132 | LRP1B,COAD,0.915584416
133 | FAT4,COAD,0.87012987
134 | MUC16,COAD,0.863636364
135 | LRP2,COAD,0.844155844
136 | DNAH5,COAD,0.818181818
137 | FBXW7,COAD,0.792207792
138 | FLG,COAD,0.746753247
139 | DMD,COAD,0.720779221
140 | USH2A,COAD,0.714285714
141 | SDK1,COAD,0.707792208
142 | ANK2,COAD,0.694805195
143 | PIK3CA,COAD,0.675324675
144 | COL6A3,COAD,0.649350649
145 | HMCN1,COAD,0.649350649
146 | RYR2,COAD,0.636363636
147 | CUBN,COAD,0.62987013
148 | PKHD1,COAD,0.62987013
149 | CSMD3,COAD,0.623376623
150 | FAT2,COAD,0.616883117
151 | MDN1,COAD,0.61038961
152 | APC,COADREAD,3.609865471
153 | TP53,COADREAD,2.278026906
154 | KRAS,COADREAD,1.730941704
155 | TTN,COADREAD,1.69058296
156 | SYNE1,COADREAD,1.035874439
157 | LRP1B,COADREAD,0.816143498
158 | MUC16,COADREAD,0.811659193
159 | FAT4,COADREAD,0.802690583
160 | FBXW7,COADREAD,0.713004484
161 | LRP2,COADREAD,0.708520179
162 | DNAH5,COADREAD,0.686098655
163 | FLG,COADREAD,0.650224215
164 | DMD,COADREAD,0.632286996
165 | CSMD3,COADREAD,0.614349776
166 | ANK2,COADREAD,0.614349776
167 | HMCN1,COADREAD,0.605381166
168 | PIK3CA,COADREAD,0.600896861
169 | USH2A,COADREAD,0.591928251
170 | CSMD1,COADREAD,0.587443946
171 | RYR2,COADREAD,0.573991031
172 | FAT2,COADREAD,0.569506726
173 | COL6A3,COADREAD,0.560538117
174 | AMER1,COADREAD,0.542600897
175 | DCHS2,COADREAD,0.538116592
176 | ZFHX4,COADREAD,0.533632287
177 | IGLL5,DLBC,1.604166667
178 | KMT2D,DLBC,1.520833333
179 | MUC4,DLBC,1.354166667
180 | MUC2,DLBC,1.25
181 | B2M,DLBC,1.229166667
182 | BTG2,DLBC,1.1875
183 | MUC16,DLBC,1
184 | TTN,DLBC,0.979166667
185 | FAT4,DLBC,0.979166667
186 | PIM1,DLBC,0.958333333
187 | SYNE1,DLBC,0.9375
188 | MUC5B,DLBC,0.875
189 | BTG1,DLBC,0.854166667
190 | HIST1H1E,DLBC,0.854166667
191 | CARD11,DLBC,0.833333333
192 | FAT1,DLBC,0.75
193 | CSMD3,DLBC,0.729166667
194 | DST,DLBC,0.729166667
195 | TNFAIP3,DLBC,0.6875
196 | PCLO,DLBC,0.6875
197 | MYD88,DLBC,0.6875
198 | TET2,DLBC,0.6875
199 | P2RY8,DLBC,0.666666667
200 | ATM,DLBC,0.666666667
201 | MUC17,DLBC,0.666666667
202 | TP53,ESCA,3.405405405
203 | TTN,ESCA,2.432432432
204 | MUC16,ESCA,1.259459459
205 | SYNE1,ESCA,1.075675676
206 | CSMD3,ESCA,0.940540541
207 | LRP1B,ESCA,0.848648649
208 | HMCN1,ESCA,0.832432432
209 | DNAH5,ESCA,0.816216216
210 | RYR2,ESCA,0.783783784
211 | MT-CO1,ESCA,0.778378378
212 | DST,ESCA,0.767567568
213 | FLG,ESCA,0.762162162
214 | KMT2D,ESCA,0.756756757
215 | MUC4,ESCA,0.740540541
216 | PCLO,ESCA,0.724324324
217 | USH2A,ESCA,0.708108108
218 | CSMD1,ESCA,0.643243243
219 | OBSCN,ESCA,0.632432432
220 | Unknown,ESCA,0.632432432
221 | XIRP2,ESCA,0.605405405
222 | RIMS2,ESCA,0.605405405
223 | FAT4,ESCA,0.605405405
224 | MUC12,ESCA,0.6
225 | SPTA1,ESCA,0.6
226 | MACF1,ESCA,0.6
227 | PTEN,GBM,1.303448276
228 | TTN,GBM,1.182758621
229 | TP53,GBM,1.155172414
230 | EGFR,GBM,1.072413793
231 | MUC16,GBM,0.775862069
232 | FLG,GBM,0.548275862
233 | NF1,GBM,0.489655172
234 | Unknown,GBM,0.465517241
235 | PIK3CA,GBM,0.444827586
236 | PIK3R1,GBM,0.437931034
237 | PCLO,GBM,0.437931034
238 | RYR2,GBM,0.434482759
239 | SPTA1,GBM,0.386206897
240 | MUC17,GBM,0.365517241
241 | RB1,GBM,0.35862069
242 | HMCN1,GBM,0.324137931
243 | AHNAK2,GBM,0.293103448
244 | ATRX,GBM,0.286206897
245 | NBPF10,GBM,0.275862069
246 | USH2A,GBM,0.272413793
247 | PKHD1,GBM,0.265517241
248 | RYR3,GBM,0.265517241
249 | FRG1B,GBM,0.25862069
250 | OBSCN,GBM,0.248275862
251 | LRP2,GBM,0.244827586
252 | IDH1,GBMLGG,1.638888889
253 | TP53,GBMLGG,1.625
254 | ATRX,GBMLGG,1.085069444
255 | TTN,GBMLGG,0.833333333
256 | PTEN,GBMLGG,0.748263889
257 | EGFR,GBMLGG,0.645833333
258 | MUC16,GBMLGG,0.519097222
259 | CIC,GBMLGG,0.434027778
260 | PIK3CA,GBMLGG,0.380208333
261 | NF1,GBMLGG,0.376736111
262 | FLG,GBMLGG,0.342013889
263 | PIK3R1,GBMLGG,0.321180556
264 | RYR2,GBMLGG,0.284722222
265 | PCLO,GBMLGG,0.262152778
266 | MUC17,GBMLGG,0.243055556
267 | Unknown,GBMLGG,0.234375
268 | HMCN1,GBMLGG,0.222222222
269 | NOTCH1,GBMLGG,0.217013889
270 | RB1,GBMLGG,0.201388889
271 | SPTA1,GBMLGG,0.201388889
272 | OBSCN,GBMLGG,0.192708333
273 | APOB,GBMLGG,0.192708333
274 | AHNAK2,GBMLGG,0.189236111
275 | PKHD1,GBMLGG,0.189236111
276 | LRP2,GBMLGG,0.178819444
277 | TP53,HNSC,3.111111111
278 | TTN,HNSC,2.035842294
279 | FAT1,HNSC,1.103942652
280 | CDKN2A,HNSC,1.035842294
281 | CSMD3,HNSC,0.992831541
282 | MUC16,HNSC,0.949820789
283 | LRP1B,HNSC,0.856630824
284 | NOTCH1,HNSC,0.831541219
285 | PIK3CA,HNSC,0.831541219
286 | KMT2D,HNSC,0.792114695
287 | SYNE1,HNSC,0.759856631
288 | FLG,HNSC,0.698924731
289 | DNAH5,HNSC,0.681003584
290 | PCLO,HNSC,0.659498208
291 | USH2A,HNSC,0.591397849
292 | PKHD1L1,HNSC,0.52688172
293 | RYR2,HNSC,0.512544803
294 | SI,HNSC,0.501792115
295 | NSD1,HNSC,0.480286738
296 | DMD,HNSC,0.476702509
297 | MUC17,HNSC,0.47311828
298 | FAM135B,HNSC,0.455197133
299 | COL11A1,HNSC,0.430107527
300 | CUBN,HNSC,0.422939068
301 | NBPF10,HNSC,0.415770609
302 | MUC4,KICH,2.893939394
303 | FRG1B,KICH,2.151515152
304 | MUC6,KICH,1.5
305 | TP53,KICH,1.348484848
306 | MUC16,KICH,1.196969697
307 | MUC2,KICH,1.166666667
308 | ANKRD30BL,KICH,1.075757576
309 | MUC5B,KICH,0.893939394
310 | FRG1,KICH,0.863636364
311 | AHNAK2,KICH,0.787878788
312 | NBPF10,KICH,0.787878788
313 | CDC27,KICH,0.712121212
314 | KMT2C,KICH,0.621212121
315 | PRB2,KICH,0.575757576
316 | MT-ND5,KICH,0.545454545
317 | PABPC1,KICH,0.53030303
318 | PABPC3,KICH,0.515151515
319 | DSPP,KICH,0.515151515
320 | Unknown,KICH,0.5
321 | PRSS3,KICH,0.484848485
322 | TTN,KICH,0.46969697
323 | RBMXL1,KICH,0.46969697
324 | HLA-C,KICH,0.454545455
325 | MT-CYB,KICH,0.439393939
326 | PCDHA8,KICH,0.424242424
327 | VHL,KIPAN,1.372670807
328 | PBRM1,KIPAN,0.939440994
329 | MUC4,KIPAN,0.902173913
330 | TTN,KIPAN,0.678571429
331 | Unknown,KIPAN,0.628881988
332 | MUC16,KIPAN,0.433229814
333 | FRG1B,KIPAN,0.414596273
334 | SETD2,KIPAN,0.389751553
335 | MUC2,KIPAN,0.372670807
336 | KMT2C,KIPAN,0.279503106
337 | MUC6,KIPAN,0.270186335
338 | AHNAK2,KIPAN,0.257763975
339 | MUC5B,KIPAN,0.242236025
340 | TVP23C,KIPAN,0.223602484
341 | KMT2D,KIPAN,0.222049689
342 | DST,KIPAN,0.215838509
343 | TP53,KIPAN,0.201863354
344 | KDM5C,KIPAN,0.198757764
345 | PTEN,KIPAN,0.192546584
346 | MTOR,KIPAN,0.189440994
347 | NEFH,KIPAN,0.183229814
348 | USH2A,KIPAN,0.183229814
349 | ANKRD30BL,KIPAN,0.178571429
350 | PABPC1,KIPAN,0.177018634
351 | HMCN1,KIPAN,0.166149068
352 | VHL,KIRC,2.088729017
353 | PBRM1,KIRC,1.376498801
354 | Unknown,KIRC,0.791366906
355 | MUC4,KIRC,0.762589928
356 | TTN,KIRC,0.695443645
357 | SETD2,KIRC,0.45323741
358 | MUC16,KIRC,0.330935252
359 | KDM5C,KIRC,0.273381295
360 | MTOR,KIRC,0.24940048
361 | BAP1,KIRC,0.215827338
362 | DST,KIRC,0.206235012
363 | USH2A,KIRC,0.191846523
364 | PABPC1,KIRC,0.184652278
365 | AHNAK2,KIRC,0.182254197
366 | PTEN,KIRC,0.177458034
367 | HMCN1,KIRC,0.177458034
368 | KMT2C,KIRC,0.172661871
369 | KMT2D,KIRC,0.158273381
370 | PCLO,KIRC,0.153477218
371 | GPR98,KIRC,0.148681055
372 | SYNE1,KIRC,0.148681055
373 | MUC6,KIRC,0.143884892
374 | LRP1B,KIRC,0.136690647
375 | COL6A6,KIRC,0.136690647
376 | FAT3,KIRC,0.136690647
377 | TVP23C,KIRP,0.869565217
378 | FRG1B,KIRP,0.726708075
379 | TTN,KIRP,0.720496894
380 | MUC2,KIRP,0.683229814
381 | MUC4,KIRP,0.447204969
382 | NEFH,KIRP,0.422360248
383 | KMT2C,KIRP,0.416149068
384 | KMT2D,KIRP,0.397515528
385 | MUC16,KIRP,0.385093168
386 | MUC5B,KIRP,0.378881988
387 | MET,KIRP,0.372670807
388 | FAT1,KIRP,0.366459627
389 | OBSCN,KIRP,0.329192547
390 | SETD2,KIRP,0.329192547
391 | SRCAP,KIRP,0.322981366
392 | CUBN,KIRP,0.279503106
393 | ZNF814,KIRP,0.273291925
394 | KIAA1109,KIRP,0.260869565
395 | ZNF598,KIRP,0.260869565
396 | Unknown,KIRP,0.260869565
397 | SMG1,KIRP,0.254658385
398 | NEB,KIRP,0.254658385
399 | DSPP,KIRP,0.248447205
400 | NF2,KIRP,0.242236025
401 | AHNAK2,KIRP,0.236024845
402 | NPM1,LAML,1.365482234
403 | FLT3,LAML,1.096446701
404 | DNMT3A,LAML,1.040609137
405 | Unknown,LAML,0.944162437
406 | TET2,LAML,0.431472081
407 | IDH2,LAML,0.406091371
408 | IDH1,LAML,0.385786802
409 | RUNX1,LAML,0.375634518
410 | TP53,LAML,0.319796954
411 | CEBPA,LAML,0.30964467
412 | NRAS,LAML,0.304568528
413 | WT1,LAML,0.263959391
414 | PTPN11,LAML,0.182741117
415 | KIT,LAML,0.16751269
416 | KRAS,LAML,0.162436548
417 | U2AF1,LAML,0.162436548
418 | TTN,LAML,0.14213198
419 | SMC3,LAML,0.137055838
420 | SMC1A,LAML,0.131979695
421 | PHF6,LAML,0.126903553
422 | ASXL1,LAML,0.111675127
423 | RAD21,LAML,0.111675127
424 | STAG2,LAML,0.106598985
425 | BRINP3,LAML,0.101522843
426 | PLCE1,LAML,0.081218274
427 | IDH1,LGG,3.090909091
428 | TP53,LGG,2.101398601
429 | ATRX,LGG,1.895104895
430 | CIC,LGG,0.856643357
431 | TTN,LGG,0.479020979
432 | NOTCH1,LGG,0.437062937
433 | FUBP1,LGG,0.34965035
434 | PIK3CA,LGG,0.314685315
435 | NF1,LGG,0.262237762
436 | MUC16,LGG,0.258741259
437 | EGFR,LGG,0.213286713
438 | PIK3R1,LGG,0.202797203
439 | SMARCA4,LGG,0.195804196
440 | ARID1A,LGG,0.195804196
441 | PTEN,LGG,0.185314685
442 | BCOR,LGG,0.171328671
443 | IDH2,LGG,0.167832168
444 | APOB,LGG,0.164335664
445 | ZBTB20,LGG,0.153846154
446 | OBSCN,LGG,0.136363636
447 | RYR2,LGG,0.132867133
448 | FLG,LGG,0.132867133
449 | FAT2,LGG,0.129370629
450 | HMCN1,LGG,0.118881119
451 | MUC17,LGG,0.118881119
452 | TTN,LIHC,1.287878788
453 | TP53,LIHC,1.272727273
454 | CTNNB1,LIHC,1.035353535
455 | MUC16,LIHC,0.873737374
456 | APOB,LIHC,0.590909091
457 | RYR2,LIHC,0.52020202
458 | CSMD3,LIHC,0.464646465
459 | ABCA13,LIHC,0.464646465
460 | OBSCN,LIHC,0.444444444
461 | USH2A,LIHC,0.419191919
462 | PCLO,LIHC,0.409090909
463 | FAT3,LIHC,0.388888889
464 | LRP1B,LIHC,0.383838384
465 | CSMD1,LIHC,0.378787879
466 | ARID1A,LIHC,0.373737374
467 | XIRP2,LIHC,0.373737374
468 | ALB,LIHC,0.373737374
469 | FLG,LIHC,0.368686869
470 | CACNA1E,LIHC,0.358585859
471 | GPR98,LIHC,0.353535354
472 | DST,LIHC,0.353535354
473 | DMD,LIHC,0.333333333
474 | FREM2,LIHC,0.318181818
475 | DNAH6,LIHC,0.318181818
476 | SYNE2,LIHC,0.313131313
477 | TTN,LUAD,2.139130435
478 | TP53,LUAD,1.934782609
479 | MUC16,LUAD,1.708695652
480 | RYR2,LUAD,1.582608696
481 | CSMD3,LUAD,1.52173913
482 | KRAS,LUAD,1.308695652
483 | USH2A,LUAD,1.295652174
484 | LRP1B,LUAD,1.291304348
485 | Unknown,LUAD,1.265217391
486 | ZFHX4,LUAD,1.204347826
487 | FLG,LUAD,1.156521739
488 | SPTA1,LUAD,1.104347826
489 | MUC17,LUAD,0.956521739
490 | FAT3,LUAD,0.934782609
491 | XIRP2,LUAD,0.934782609
492 | PCLO,LUAD,0.895652174
493 | CSMD1,LUAD,0.869565217
494 | ZNF536,LUAD,0.839130435
495 | NAV3,LUAD,0.834782609
496 | KMT2C,LUAD,0.786956522
497 | RP1L1,LUAD,0.782608696
498 | PCDH15,LUAD,0.77826087
499 | PAPPA2,LUAD,0.756521739
500 | GPR112,LUAD,0.756521739
501 | APOB,LUAD,0.743478261
502 | TP53,LUSC,3.280898876
503 | TTN,LUSC,3.162921348
504 | MUC16,LUSC,2.016853933
505 | CSMD3,LUSC,1.988764045
506 | RYR2,LUSC,1.730337079
507 | ZFHX4,LUSC,1.646067416
508 | LRP1B,LUSC,1.612359551
509 | USH2A,LUSC,1.52247191
510 | SYNE1,LUSC,1.303370787
511 | SPTA1,LUSC,1.02247191
512 | RYR3,LUSC,1.011235955
513 | FAM135B,LUSC,0.938202247
514 | FLG,LUSC,0.91011236
515 | NAV3,LUSC,0.91011236
516 | PKHD1L1,LUSC,0.91011236
517 | PKHD1,LUSC,0.904494382
518 | KMT2D,LUSC,0.893258427
519 | XIRP2,LUSC,0.882022472
520 | DNAH11,LUSC,0.865168539
521 | LRP2,LUSC,0.842696629
522 | ERICH3,LUSC,0.842696629
523 | DNAH5,LUSC,0.842696629
524 | HCN1,LUSC,0.825842697
525 | MUC17,LUSC,0.825842697
526 | SI,LUSC,0.820224719
527 | TP53,OV,3.449367089
528 | TTN,OV,0.82278481
529 | Unknown,OV,0.579113924
530 | USH2A,OV,0.272151899
531 | MUC16,OV,0.268987342
532 | CSMD3,OV,0.25
533 | FAT3,OV,0.25
534 | HMCN1,OV,0.25
535 | NF1,OV,0.202531646
536 | AHNAK2,OV,0.199367089
537 | RYR2,OV,0.196202532
538 | MUC17,OV,0.196202532
539 | DST,OV,0.183544304
540 | LRP2,OV,0.17721519
541 | DNAH5,OV,0.17721519
542 | BRCA1,OV,0.170886076
543 | APOB,OV,0.167721519
544 | LRP1B,OV,0.164556962
545 | HYDIN,OV,0.158227848
546 | FAT1,OV,0.158227848
547 | AHNAK,OV,0.158227848
548 | COL6A3,OV,0.155063291
549 | DNAH3,OV,0.155063291
550 | RYR1,OV,0.14556962
551 | MACF1,OV,0.139240506
552 | KRAS,PAAD,3.369863014
553 | TP53,PAAD,2.856164384
554 | RBM4,PAAD,1.698630137
555 | JMY,PAAD,1.520547945
556 | RIOK1,PAAD,1.506849315
557 | LCE2A,PAAD,1.260273973
558 | TTN,PAAD,1.246575342
559 | ZFHX3,PAAD,1.020547945
560 | SMAD4,PAAD,0.97260274
561 | CDKN2A,PAAD,0.952054795
562 | C1QB,PAAD,0.945205479
563 | KMT2D,PAAD,0.842465753
564 | DBR1,PAAD,0.794520548
565 | AP3S1,PAAD,0.753424658
566 | AEBP1,PAAD,0.719178082
567 | AXDND1,PAAD,0.705479452
568 | RBM47,PAAD,0.684931507
569 | RFX1,PAAD,0.664383562
570 | NCOA3,PAAD,0.636986301
571 | MUC16,PAAD,0.609589041
572 | RGPD3,PAAD,0.520547945
573 | IRS4,PAAD,0.465753425
574 | RANBP2,PAAD,0.424657534
575 | ANAPC1,PAAD,0.424657534
576 | SPTA1,PAAD,0.397260274
577 | FRG1B,PCPG,0.888268156
578 | HRAS,PCPG,0.402234637
579 | NF1,PCPG,0.379888268
580 | TTN,PCPG,0.25698324
581 | NBPF10,PCPG,0.25698324
582 | MLLT3,PCPG,0.223463687
583 | ANKRD36C,PCPG,0.217877095
584 | MUC16,PCPG,0.201117318
585 | EPAS1,PCPG,0.17877095
586 | CHEK2,PCPG,0.17877095
587 | POTEC,PCPG,0.17877095
588 | PRG4,PCPG,0.139664804
589 | NUDT11,PCPG,0.139664804
590 | MAML3,PCPG,0.134078212
591 | BCRP7,PCPG,0.134078212
592 | RET,PCPG,0.134078212
593 | RGPD8,PCPG,0.134078212
594 | ANKRD36,PCPG,0.134078212
595 | ABCA13,PCPG,0.134078212
596 | DNM1P47,PCPG,0.12849162
597 | CDC27,PCPG,0.12849162
598 | ATRX,PCPG,0.12849162
599 | NBPF1,PCPG,0.122905028
600 | RP11-156P1.2,PCPG,0.117318436
601 | ZNF844,PCPG,0.111731844
602 | TTN,PRAD,0.481927711
603 | SPOP,PRAD,0.448795181
604 | MUC16,PRAD,0.274096386
605 | TP53,PRAD,0.271084337
606 | MUC17,PRAD,0.228915663
607 | SPTA1,PRAD,0.180722892
608 | KMT2C,PRAD,0.174698795
609 | ATM,PRAD,0.168674699
610 | FOXA1,PRAD,0.165662651
611 | OBSCN,PRAD,0.162650602
612 | KMT2D,PRAD,0.162650602
613 | AHNAK2,PRAD,0.153614458
614 | FAT3,PRAD,0.147590361
615 | CSMD3,PRAD,0.144578313
616 | LRP1B,PRAD,0.138554217
617 | HMCN1,PRAD,0.138554217
618 | AHNAK,PRAD,0.135542169
619 | RP1,PRAD,0.135542169
620 | FAT4,PRAD,0.123493976
621 | FLG,PRAD,0.120481928
622 | PTEN,PRAD,0.11746988
623 | DCHS2,PRAD,0.114457831
624 | SYNE1,PRAD,0.114457831
625 | FLG2,PRAD,0.111445783
626 | GPR98,PRAD,0.111445783
627 | APC,READ,4.15942029
628 | TP53,READ,2.739130435
629 | KRAS,READ,2.173913043
630 | TTN,READ,1.130434783
631 | SYNE1,READ,0.768115942
632 | MUC16,READ,0.695652174
633 | FAT4,READ,0.652173913
634 | LRP1B,READ,0.594202899
635 | CSMD3,READ,0.594202899
636 | CSMD1,READ,0.579710145
637 | AHNAK2,READ,0.536231884
638 | FBXW7,READ,0.536231884
639 | KIAA1804,READ,0.52173913
640 | HMCN1,READ,0.507246377
641 | ZFHX4,READ,0.47826087
642 | ATP10A,READ,0.47826087
643 | FAT2,READ,0.463768116
644 | SMAD4,READ,0.463768116
645 | DNAH10,READ,0.449275362
646 | ANK2,READ,0.434782609
647 | COL12A1,READ,0.434782609
648 | DCHS2,READ,0.434782609
649 | DMD,READ,0.434782609
650 | SETX,READ,0.434782609
651 | FLG,READ,0.434782609
652 | TP53,SARC,1.329365079
653 | ATRX,SARC,0.718253968
654 | TTN,SARC,0.599206349
655 | RB1,SARC,0.436507937
656 | MUC16,SARC,0.432539683
657 | PCLO,SARC,0.353174603
658 | OBSCN,SARC,0.273809524
659 | NRXN1,SARC,0.26984127
660 | USH2A,SARC,0.265873016
661 | MUC4,SARC,0.265873016
662 | MT-CO1,SARC,0.265873016
663 | RNF212,SARC,0.261904762
664 | DNAH8,SARC,0.253968254
665 | MUC5B,SARC,0.25
666 | RYR1,SARC,0.242063492
667 | LRP1B,SARC,0.238095238
668 | MACF1,SARC,0.238095238
669 | MUC17,SARC,0.234126984
670 | MUC12,SARC,0.23015873
671 | GPR98,SARC,0.226190476
672 | DNAH5,SARC,0.226190476
673 | CSMD1,SARC,0.222222222
674 | NCOR2,SARC,0.218253968
675 | FAT1,SARC,0.214285714
676 | NEB,SARC,0.214285714
677 | TTN,SKCM,3.128279883
678 | MUC16,SKCM,2.89212828
679 | Unknown,SKCM,2.580174927
680 | DNAH5,SKCM,2.303206997
681 | BRAF,SKCM,2.04664723
682 | PCLO,SKCM,1.941690962
683 | APOB,SKCM,1.644314869
684 | LRP1B,SKCM,1.635568513
685 | GPR98,SKCM,1.586005831
686 | CSMD1,SKCM,1.586005831
687 | FAT3,SKCM,1.521865889
688 | DNAH7,SKCM,1.504373178
689 | RP1,SKCM,1.486880466
690 | XIRP2,SKCM,1.483965015
691 | ANK3,SKCM,1.481049563
692 | DSCAM,SKCM,1.463556851
693 | CSMD2,SKCM,1.44606414
694 | MGAM,SKCM,1.425655977
695 | MUC17,SKCM,1.408163265
696 | USH2A,SKCM,1.376093294
697 | DNAH3,SKCM,1.370262391
698 | PKHD1L1,SKCM,1.364431487
699 | FAT4,SKCM,1.358600583
700 | FLG,SKCM,1.358600583
701 | DNAH8,SKCM,1.358600583
702 | TTN,STAD,2.574394464
703 | TP53,STAD,1.975778547
704 | MUC16,STAD,1.553633218
705 | ARID1A,STAD,1.467128028
706 | SYNE1,STAD,1.207612457
707 | LRP1B,STAD,1.190311419
708 | FAT4,STAD,1.089965398
709 | CSMD3,STAD,1.069204152
710 | PCLO,STAD,1.031141869
711 | HMCN1,STAD,0.993079585
712 | FLG,STAD,0.979238754
713 | CSMD1,STAD,0.975778547
714 | KMT2D,STAD,0.955017301
715 | OBSCN,STAD,0.948096886
716 | FAT3,STAD,0.889273356
717 | RYR2,STAD,0.871972318
718 | SPTA1,STAD,0.871972318
719 | DNAH5,STAD,0.858131488
720 | RNF43,STAD,0.847750865
721 | ZFHX4,STAD,0.837370242
722 | PIK3CA,STAD,0.785467128
723 | BZRAP1,STAD,0.778546713
724 | PCDH15,STAD,0.764705882
725 | RYR3,STAD,0.761245675
726 | RYR1,STAD,0.757785467
727 | TP53,STES,2.533755274
728 | TTN,STES,2.518987342
729 | MUC16,STES,1.438818565
730 | SYNE1,STES,1.156118143
731 | LRP1B,STES,1.056962025
732 | ARID1A,STES,1.050632911
733 | CSMD3,STES,1.018987342
734 | HMCN1,STES,0.930379747
735 | PCLO,STES,0.911392405
736 | FAT4,STES,0.900843882
737 | FLG,STES,0.894514768
738 | KMT2D,STES,0.877637131
739 | CSMD1,STES,0.845991561
740 | DNAH5,STES,0.841772152
741 | RYR2,STES,0.837552743
742 | OBSCN,STES,0.824894515
743 | FAT3,STES,0.776371308
744 | SPTA1,STES,0.765822785
745 | USH2A,STES,0.715189873
746 | PCDH15,STES,0.687763713
747 | ZFHX4,STES,0.685654008
748 | XIRP2,STES,0.672995781
749 | RYR3,STES,0.670886076
750 | MACF1,STES,0.656118143
751 | RIMS2,STES,0.641350211
752 | Unknown,TGCT,1.570469799
753 | MUC2,TGCT,0.912751678
754 | TVP23C,TGCT,0.738255034
755 | KIT,TGCT,0.67114094
756 | MUC4,TGCT,0.67114094
757 | FRG1B,TGCT,0.617449664
758 | KRAS,TGCT,0.510067114
759 | MUC6,TGCT,0.402684564
760 | TTN,TGCT,0.348993289
761 | CDC27,TGCT,0.342281879
762 | PLEC,TGCT,0.315436242
763 | OBSCN,TGCT,0.315436242
764 | CELSR1,TGCT,0.308724832
765 | NBPF10,TGCT,0.281879195
766 | MUC17,TGCT,0.281879195
767 | LAMA5,TGCT,0.281879195
768 | DDX11,TGCT,0.248322148
769 | DSPP,TGCT,0.241610738
770 | MUC5B,TGCT,0.241610738
771 | FAM186A,TGCT,0.241610738
772 | AHNAK2,TGCT,0.241610738
773 | MT-CYB,TGCT,0.234899329
774 | ANKLE1,TGCT,0.228187919
775 | KMT2C,TGCT,0.228187919
776 | ANKRD11,TGCT,0.228187919
777 | BRAF,THCA,2.402985075
778 | NRAS,THCA,0.338308458
779 | TTN,THCA,0.156716418
780 | MUC16,THCA,0.156716418
781 | TG,THCA,0.141791045
782 | HRAS,THCA,0.139303483
783 | DNAH9,THCA,0.094527363
784 | Unknown,THCA,0.089552239
785 | ZFHX3,THCA,0.082089552
786 | KMT2A,THCA,0.069651741
787 | OTUD4,THCA,0.064676617
788 | MUC5B,THCA,0.059701493
789 | MUC17,THCA,0.059701493
790 | PPM1D,THCA,0.059701493
791 | GPR98,THCA,0.05721393
792 | OBSCN,THCA,0.05721393
793 | PRKDC,THCA,0.054726368
794 | ARID1B,THCA,0.054726368
795 | PKHD1,THCA,0.054726368
796 | JMJD1C,THCA,0.054726368
797 | CSMD2,THCA,0.054726368
798 | BDP1,THCA,0.054726368
799 | LRP1,THCA,0.054726368
800 | CHEK2,THCA,0.052238806
801 | APOB,THCA,0.052238806
802 | PTEN,UCEC,2.955645161
803 | PIK3CA,UCEC,2.108870968
804 | ARID1A,UCEC,1.596774194
805 | TTN,UCEC,1.508064516
806 | Unknown,UCEC,1.427419355
807 | PIK3R1,UCEC,1.407258065
808 | CTNNB1,UCEC,1.209677419
809 | TP53,UCEC,1.173387097
810 | MUC16,UCEC,0.903225806
811 | KRAS,UCEC,0.858870968
812 | CTCF,UCEC,0.834677419
813 | CSMD3,UCEC,0.830645161
814 | ZFHX3,UCEC,0.818548387
815 | MUC5B,UCEC,0.806451613
816 | FAT4,UCEC,0.745967742
817 | RYR2,UCEC,0.741935484
818 | FAT1,UCEC,0.737903226
819 | DST,UCEC,0.701612903
820 | ARHGAP35,UCEC,0.701612903
821 | FAT3,UCEC,0.693548387
822 | OBSCN,UCEC,0.685483871
823 | DMD,UCEC,0.685483871
824 | ZFHX4,UCEC,0.669354839
825 | FBXW7,UCEC,0.649193548
826 | USH2A,UCEC,0.641129032
827 | TP53,UCS,3.666666667
828 | FBXW7,UCS,1.578947368
829 | FRG1B,UCS,1.50877193
830 | PIK3CA,UCS,1.403508772
831 | PPP2R1A,UCS,1.122807018
832 | MUC4,UCS,1.01754386
833 | PTEN,UCS,0.824561404
834 | MT-ND5,UCS,0.771929825
835 | TTN,UCS,0.771929825
836 | CHD4,UCS,0.736842105
837 | MT-CO1,UCS,0.684210526
838 | ARID1A,UCS,0.631578947
839 | MT-CYB,UCS,0.596491228
840 | BAGE2,UCS,0.596491228
841 | NBPF10,UCS,0.526315789
842 | MT-ND2,UCS,0.526315789
843 | LRP1B,UCS,0.526315789
844 | MUC17,UCS,0.49122807
845 | KRAS,UCS,0.49122807
846 | MT-ND4,UCS,0.49122807
847 | FLNA,UCS,0.49122807
848 | MGAM,UCS,0.473684211
849 | PIK3R1,UCS,0.473684211
850 | ZBTB7B,UCS,0.456140351
851 | AHNAK,UCS,0.456140351
852 | GNAQ,UVM,2.0125
853 | GNA11,UVM,1.8
854 | SF3B1,UVM,0.9
855 | BAP1,UVM,0.85
856 | EIF1AX,UVM,0.45
857 | PHF7,UVM,0.3375
858 | TTN,UVM,0.275
859 | MUC16,UVM,0.25
860 | RYR2,UVM,0.2
861 | MYOF,UVM,0.1875
862 | CSMD3,UVM,0.175
863 | MACF1,UVM,0.15
864 | SRSF2,UVM,0.15
865 | PRKDC,UVM,0.15
866 | CYSLTR2,UVM,0.15
867 | PKHD1L1,UVM,0.15
868 | COL14A1,UVM,0.15
869 | PLCB2,UVM,0.1375
870 | SYNE1,UVM,0.1375
871 | PCDHB7,UVM,0.125
872 | MAPKAPK5,UVM,0.125
873 | UBR4,UVM,0.125
874 | NRK,UVM,0.125
875 | SYTL3,UVM,0.125
876 | ARHGEF17,UVM,0.125
--------------------------------------------------------------------------------
/notebooks/url_image_example/url_image_network.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Using a URL image in visJS2jupyter\n",
8 | "\n",
9 | "------------\n",
10 | "\n",
11 | "Authors: Brin Rosenthal (sbrosenthal@ucsd.edu), Mikayla Webster (m1webste@ucsd.edu), Julia Len (jlen@ucsd.edu)\n",
12 | "\n",
13 | "-----------"
14 | ]
15 | },
16 | {
17 | "cell_type": "markdown",
18 | "metadata": {},
19 | "source": [
20 | "## Import packages"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 1,
26 | "metadata": {},
27 | "outputs": [
28 | {
29 | "data": {
30 | "text/plain": [
31 | ""
32 | ]
33 | },
34 | "execution_count": 1,
35 | "metadata": {},
36 | "output_type": "execute_result"
37 | }
38 | ],
39 | "source": [
40 | "import matplotlib as mpl\n",
41 | "import networkx as nx\n",
42 | "import visJS2jupyter.visJS_module as visJS_module\n",
43 | "reload(visJS_module)"
44 | ]
45 | },
46 | {
47 | "cell_type": "code",
48 | "execution_count": 2,
49 | "metadata": {
50 | "collapsed": true
51 | },
52 | "outputs": [],
53 | "source": [
54 | "# create a simple graph\n",
55 | "G = nx.connected_watts_strogatz_graph(30,5,.2)\n",
56 | "nodes = list(G.nodes()) # type cast to list in order to make compatible with networkx 1.11 and 2.0\n",
57 | "edges = list(G.edges()) # for nx 2.0, returns an \"EdgeView\" object rather than an iterable"
58 | ]
59 | },
60 | {
61 | "cell_type": "markdown",
62 | "metadata": {},
63 | "source": [
64 | "# Map node attributes to visual properties, and style the nodes and edges\n",
65 | "\n",
66 | "- To map node attributes to properties, simply add the property to the graph as a node-attribute, and use the return_node_to_color function"
67 | ]
68 | },
69 | {
70 | "cell_type": "code",
71 | "execution_count": 3,
72 | "metadata": {
73 | "collapsed": true
74 | },
75 | "outputs": [],
76 | "source": [
77 | "degree = dict(G.degree())\n",
78 | "nx.set_node_attributes(G, name = 'degree', values = degree) "
79 | ]
80 | },
81 | {
82 | "cell_type": "markdown",
83 | "metadata": {},
84 | "source": [
85 | "\n",
86 | "### Interactive network"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": 4,
92 | "metadata": {},
93 | "outputs": [
94 | {
95 | "data": {
96 | "text/html": [
97 | " Network | Basic usage"
98 | ],
99 | "text/plain": [
100 | ""
101 | ]
102 | },
103 | "execution_count": 4,
104 | "metadata": {},
105 | "output_type": "execute_result"
106 | }
107 | ],
108 | "source": [
109 | "# set node initial positions using networkx's spring_layout function\n",
110 | "pos = nx.spring_layout(G)\n",
111 | "\n",
112 | "# set per-node attributes\n",
113 | "nodes_dict = [{\"id\":n,\n",
114 | " \"degree\":nx.degree(G,n),\n",
115 | " \"node_shape\": 'image', # must set node shape to \"image\"\n",
116 | " \"x\":pos[n][0]*700,\n",
117 | " \"y\":pos[n][1]*700} for n in nodes\n",
118 | " ]\n",
119 | "\n",
120 | "# map to indices for source/target in edges\n",
121 | "node_map = dict(zip(nodes,range(len(nodes))))\n",
122 | "\n",
123 | "# set per-edge attributes\n",
124 | "edges_dict = [{\"source\":node_map[edges[i][0]], \"target\":node_map[edges[i][1]], \n",
125 | " \"color\":\"gray\"} for i in range(len(edges))]\n",
126 | "\n",
127 | "# url iage to use as node shape\n",
128 | "url = 'https://cdn0.iconfinder.com/data/icons/kids-paint/512/hedgehog-512.png'\n",
129 | "\n",
130 | "# set network-wide style parameters\n",
131 | "visJS_module.visjs_network(nodes_dict,edges_dict,\n",
132 | " node_size_multiplier=10,\n",
133 | " node_size_transform = '',\n",
134 | " node_font_size=25,\n",
135 | " edge_arrow_to=True,\n",
136 | " physics_enabled=True,\n",
137 | " edge_color_highlight='#8A324E',\n",
138 | " edge_color_hover='#8BADD3',\n",
139 | " edge_width=3,\n",
140 | " max_velocity=15,\n",
141 | " node_image = url, # specify url here\n",
142 | " min_velocity=1)\n",
143 | "\n"
144 | ]
145 | },
146 | {
147 | "cell_type": "code",
148 | "execution_count": null,
149 | "metadata": {
150 | "collapsed": true
151 | },
152 | "outputs": [],
153 | "source": []
154 | }
155 | ],
156 | "metadata": {
157 | "kernelspec": {
158 | "display_name": "Python 2",
159 | "language": "python",
160 | "name": "python2"
161 | },
162 | "language_info": {
163 | "codemirror_mode": {
164 | "name": "ipython",
165 | "version": 2
166 | },
167 | "file_extension": ".py",
168 | "mimetype": "text/x-python",
169 | "name": "python",
170 | "nbconvert_exporter": "python",
171 | "pygments_lexer": "ipython2",
172 | "version": "2.7.14"
173 | }
174 | },
175 | "nbformat": 4,
176 | "nbformat_minor": 1
177 | }
178 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | setup(
4 | name = "visJS2jupyter",
5 | packages = ["visJS2jupyter"],
6 | version = "0.1.9.dev0+git",
7 | description= "visJS2jupyter is a tool to bring the interactivity of networks created with vis.js into Jupyter notebook cells",
8 | long_description="0.1.8 update: visJS2jupyter is now compatible with both networkx 1.11 and 2.0. Additionally, igraph is no longer needed to install visJS2jupyter.",
9 | url = "https://github.com/ucsd-ccbb/visJS2jupyter",
10 | author="Brin Rosenthal (sbrosenthal@ucsd.edu), Mikayla Webster (m1webste@ucsd.edu), Aaron Gary (agary@ucsd.edu), Julia Len (jlen@ucsd.edu)",
11 | author_email="sbrosenthal@ucsd.edu",
12 | keywords = ['Jupyter notebook', 'interactive', 'network'],
13 | license = 'MIT',
14 | classifiers=[
15 | 'License :: OSI Approved :: MIT License',
16 | 'Programming Language :: Python :: 2',
17 | 'Programming Language :: Python :: 3',
18 | ],
19 | install_requires=[
20 | 'networkx', 'numpy', 'scipy', 'IPython', 'matplotlib'
21 | ]
22 | )
23 |
--------------------------------------------------------------------------------
/visJS2jupyter/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucsd-ccbb/visJS2jupyter/c16bcdf5fe0eed156f1a6eb789484945375452ba/visJS2jupyter/__init__.py
--------------------------------------------------------------------------------
/visJS2jupyter/scipy_heatKernel.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | ### Heat Diffusion Kernel; Scipy implemention
4 | ### Used for the "TieDIE" algorithm, Tied Diffusion for Network Discovery 1.1
5 | ###
6 | ### Authors:
7 | ###
8 | ### Evan O. Paull
9 | ###
10 | ### Requirements:
11 | ###
12 | ### numpy 1.7+ (with pre-computed kernels)
13 | ### scipy 0.12+ (for on-the-fly kernel generation)
14 | ###
15 |
16 | import networkx as nx
17 | from numpy import genfromtxt, dot
18 | import sys
19 | import math
20 | from array import array
21 | from scipy.sparse import coo_matrix
22 | from scipy.sparse.linalg import expm
23 |
24 | class SciPYKernel:
25 |
26 | def __init__(self, G):
27 | """
28 | Input:
29 |
30 | A networkx graph G
31 |
32 | Returns:
33 |
34 | A Kernel object that implements the 'diffuse' method
35 |
36 | """
37 |
38 | self.labels = {}
39 | # The number of rows and columns for each kernel
40 | self.ncols = {}
41 | self.nrows = {}
42 |
43 | # parse the network, build indexes
44 | num_nodes = len(G.nodes())
45 | node_order = sorted(G.nodes())
46 | index2node = {}
47 | node2index = {}
48 | for i in range(0, num_nodes):
49 | index2node[i] = node_order[i]
50 | node2index[node_order[i]] = i
51 |
52 | # undirected node degree dict
53 | node_degrees = G.degree()
54 |
55 | # construct the diagonals
56 | # SCIPY uses row and column indexes to build the matrix
57 | # row and columns are just indexes: the data column stores
58 | # the actual entries of the matrix
59 | row = array('i')
60 | col = array('i')
61 | data = array('f')
62 | # build the diagonals, including the out-degree
63 | for i in range(0, num_nodes):
64 | # diag entries: out degree
65 | degree = 0
66 | if index2node[i] in node_degrees:
67 | degree = node_degrees[index2node[i]]
68 | # append to the end
69 | # array object: first argument is the index, the second is the data value
70 | # append the out-degree to the data array
71 | data.insert(len(data), degree)
72 | # build the diagonals
73 | row.insert(len(row), i)
74 | col.insert(len(col), i)
75 |
76 | # add off-diagonal edges
77 | for i in range(0, num_nodes):
78 | for j in range(0, num_nodes):
79 | if i == j:
80 | continue
81 | # treat the graph as undirected, generate a symmetric matrix
82 | if ((index2node[i], index2node[j]) not in G.edges()) and ((index2node[j], index2node[i]) not in G.edges()):
83 | continue
84 | # append index to i-th row, j-th column
85 | row.insert(len(row), i)
86 | col.insert(len(col), j)
87 | # -1 for laplacian: i.e. the negative of the adjacency matrix
88 | data.insert(len(data), -1)
89 |
90 | # Build the graph laplacian: the CSC matrix provides a sparse matrix format
91 | # that can be exponentiated efficiently
92 | L = coo_matrix((data,(row, col)), shape=(num_nodes,num_nodes)).tocsc()
93 | time_T = -0.1
94 | self.laplacian = L
95 | self.index2node = index2node
96 | # this is the matrix exponentiation calculation.
97 | # Uses the Pade approximiation for accurate approximation. Computationally expensive.
98 | # O(n^2), n= # of features, in memory as well.
99 | self.kernel = expm(time_T*L)
100 | self.labels = node_order
101 |
102 | #self.printLaplacian()
103 |
104 | def getLabels(self):
105 | """
106 | Return the set of all node/gene labels used by this kernel object
107 | """
108 | #all_labels = set()
109 | #for label in self.labels:
110 | all_labels = set(self.labels)
111 |
112 | return all_labels
113 |
114 |
115 | def printLaplacian(self):
116 | """
117 | Debug function
118 | """
119 | cx = self.laplacian.tocoo()
120 | for i,j,v in zip(cx.row, cx.col, cx.data):
121 | a = self.index2node[i]
122 | b = self.index2node[j]
123 | print ("\t".join([a,b,str(v)]))
124 |
125 | def kernelMultiplyOne(self, vector):
126 | """
127 | Multiply the specified kernel by the supplied input heat vector.
128 |
129 | Input:
130 | vector: A hash mapping gene labels to floating point values
131 | kernel: a single index for a specific kernel
132 |
133 | Returns:
134 | A hash of diffused heats, indexed by the same names as the
135 | input vector
136 | """
137 | # Have to convert to ordered array format for the input vector
138 | array = []
139 | for label in self.labels:
140 | # Input heats may not actually be in the network.
141 | # Check and initialize to zero if not
142 | if label in vector:
143 | array.append(vector[label])
144 | else:
145 | array.append(0)
146 |
147 | # take the dot product
148 | value = self.kernel*array
149 |
150 | # Convert back to a hash and return diffused heats
151 | return_vec = {}
152 | idx = 0
153 | for label in self.labels:
154 | return_vec[label] = float(value[idx])
155 | idx += 1
156 |
157 | return return_vec
158 |
159 | def diffuse(self, vector, reverse=False):
160 | """
161 | Diffuse input heats over the set of kernels, add to this object
162 |
163 | Input:
164 | {'gene1': float(heat1)
165 | 'gene2' : float(heat2)
166 | ...
167 | }
168 |
169 | Returns:
170 | Diffused heat vector
171 | """
172 |
173 | diffused_vector = self.kernelMultiplyOne(vector)
174 |
175 | return diffused_vector
176 |
177 |
178 | #
179 | # example use and test case:
180 | """
181 | G = nx.DiGraph()
182 | for line in open('pathway.sif', 'r'):
183 | edge = line.rstrip().split('\t')
184 | G.add_edge(edge[0], edge[2])
185 |
186 | input_heats = {}
187 | for line in open('upstream.input', 'r'):
188 | data = line.rstrip().split('\t')
189 | input_heats[data[0]] = float(data[1])
190 |
191 | correct_diffused_heats = {}
192 | for line in open('upstream.diffused', 'r'):
193 | data = line.rstrip().split('\t')
194 | correct_diffused_heats[data[0]] = float(data[1])
195 |
196 | heat_kernel = SciPYKernel(G)
197 | diffused_heats = heat_kernel.diffuse(input_heats)
198 |
199 | for key in diffused_heats:
200 | diff_percent = abs(diffused_heats[key] - correct_diffused_heats[key])/correct_diffused_heats[key]
201 | if (diff_percent > 0.1):
202 | print ('\t'.join([str(val) for val in [key, diffused_heats[key], correct_diffused_heats[key]]]))
203 | """
--------------------------------------------------------------------------------
/visJS2jupyter/visJS_module.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ucsd-ccbb/visJS2jupyter/c16bcdf5fe0eed156f1a6eb789484945375452ba/visJS2jupyter/visJS_module.pyc
--------------------------------------------------------------------------------