├── CODEOWNERS
├── README.md
├── .github
└── workflows
│ └── manual.yml
└── Matplotlib
├── Histogram_Practice.ipynb
├── Violin_and_Box_Plot_Practice.ipynb
├── Categorical_Plot_Practice.ipynb
├── Scales_and_Transformations_Practice.ipynb
├── Scatterplot_Practice.ipynb
├── solutions_univ.py
├── Bar_Chart_Practice.ipynb
├── solutions_biv.py
├── Additional_Plot_Practice.ipynb
└── data
└── pokemon.csv
/CODEOWNERS:
--------------------------------------------------------------------------------
1 | * @udacity/active-public-content
2 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Data Visualization
2 |
3 | This repository contains code and associated files for the AI Programming with Python Nanodegree program. This repository consists of a number of tutorial notebooks for various coding exercises and programming labs that will be used to supplement the lessons of the course.
4 |
5 | ## Table Of Contents
6 |
7 | * Matplotlib folder: Notebooks containing practice exercises for the Matplotlib lesson(s)
8 |
9 | ## Dependencies
10 |
11 | Each directory has a `requirements.txt` describing the minimal dependencies required to run the notebooks in that directory.
12 |
13 | ### pip
14 |
15 | To install these dependencies with pip, you can issue `pip3 install -r requirements.txt`.
16 |
--------------------------------------------------------------------------------
/.github/workflows/manual.yml:
--------------------------------------------------------------------------------
1 | # Workflow to ensure whenever a Github PR is submitted,
2 | # a JIRA ticket gets created automatically.
3 | name: Manual Workflow
4 |
5 | # Controls when the action will run.
6 | on:
7 | # Triggers the workflow on pull request events but only for the master branch
8 | pull_request_target:
9 | types: [opened, reopened]
10 |
11 | # Allows you to run this workflow manually from the Actions tab
12 | workflow_dispatch:
13 |
14 | jobs:
15 | test-transition-issue:
16 | name: Convert Github Issue to Jira Issue
17 | runs-on: ubuntu-latest
18 | steps:
19 | - name: Checkout
20 | uses: actions/checkout@master
21 |
22 | - name: Login
23 | uses: atlassian/gajira-login@master
24 | env:
25 | JIRA_BASE_URL: ${{ secrets.JIRA_BASE_URL }}
26 | JIRA_USER_EMAIL: ${{ secrets.JIRA_USER_EMAIL }}
27 | JIRA_API_TOKEN: ${{ secrets.JIRA_API_TOKEN }}
28 |
29 | - name: Create NEW JIRA ticket
30 | id: create
31 | uses: atlassian/gajira-create@master
32 | with:
33 | project: CONUPDATE
34 | issuetype: Task
35 | summary: |
36 | Github PR [Assign the ND component] | Repo: ${{ github.repository }} | PR# ${{github.event.number}}
37 | description: |
38 | Repo link: https://github.com/${{ github.repository }}
39 | PR no. ${{ github.event.pull_request.number }}
40 | PR title: ${{ github.event.pull_request.title }}
41 | PR description: ${{ github.event.pull_request.description }}
42 | In addition, please resolve other issues, if any.
43 | fields: '{"components": [{"name":"nd013 - Self Driving Car Engineer ND"}], "customfield_16449":"https://classroom.udacity.com/", "customfield_16450":"Resolve the PR", "labels": ["github"], "priority":{"id": "4"}}'
44 |
45 | - name: Log created issue
46 | run: echo "Issue ${{ steps.create.outputs.issue }} was created"
47 |
--------------------------------------------------------------------------------
/Matplotlib/Histogram_Practice.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# prerequisite package imports\n",
10 | "import numpy as np\n",
11 | "import pandas as pd\n",
12 | "import matplotlib.pyplot as plt\n",
13 | "import seaborn as sb\n",
14 | "\n",
15 | "%matplotlib inline\n",
16 | "\n",
17 | "from solutions_univ import histogram_solution_1"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "We'll continue working with the Pokémon dataset in this workspace."
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": null,
30 | "metadata": {},
31 | "outputs": [],
32 | "source": [
33 | "pokemon = pd.read_csv('./data/pokemon.csv')\n",
34 | "pokemon.head()"
35 | ]
36 | },
37 | {
38 | "cell_type": "markdown",
39 | "metadata": {},
40 | "source": [
41 | "**Task**: Pokémon have a number of different statistics that describe their combat capabilities. Here, create a _histogram_ that depicts the distribution of 'special-defense' values taken. **Hint**: Try playing around with different bin width sizes to see what best depicts the data."
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": null,
47 | "metadata": {},
48 | "outputs": [],
49 | "source": [
50 | "# YOUR CODE HERE"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": null,
56 | "metadata": {},
57 | "outputs": [],
58 | "source": [
59 | "# run this cell to check your work against ours\n",
60 | "histogram_solution_1()"
61 | ]
62 | }
63 | ],
64 | "metadata": {
65 | "kernelspec": {
66 | "display_name": "Python 3",
67 | "language": "python",
68 | "name": "python3"
69 | },
70 | "language_info": {
71 | "codemirror_mode": {
72 | "name": "ipython",
73 | "version": 3
74 | },
75 | "file_extension": ".py",
76 | "mimetype": "text/x-python",
77 | "name": "python",
78 | "nbconvert_exporter": "python",
79 | "pygments_lexer": "ipython3",
80 | "version": "3.6.3"
81 | }
82 | },
83 | "nbformat": 4,
84 | "nbformat_minor": 2
85 | }
86 |
--------------------------------------------------------------------------------
/Matplotlib/Violin_and_Box_Plot_Practice.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# prerequisite package imports\n",
10 | "import numpy as np\n",
11 | "import pandas as pd\n",
12 | "import matplotlib.pyplot as plt\n",
13 | "import seaborn as sb\n",
14 | "\n",
15 | "%matplotlib inline\n",
16 | "\n",
17 | "from solutions_biv import violinbox_solution_1"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "We'll continue to make use of the fuel economy dataset in this workspace."
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": null,
30 | "metadata": {},
31 | "outputs": [],
32 | "source": [
33 | "fuel_econ = pd.read_csv('./data/fuel_econ.csv')\n",
34 | "fuel_econ.head()"
35 | ]
36 | },
37 | {
38 | "cell_type": "markdown",
39 | "metadata": {},
40 | "source": [
41 | "**Task**: What is the relationship between the size of a car and the size of its engine? The cars in this dataset are categorized into one of five different vehicle classes based on size. Starting from the smallest, they are: {Minicompact Cars, Subcompact Cars, Compact Cars, Midsize Cars, and Large Cars}. The vehicle classes can be found in the 'VClass' variable, while the engine sizes are in the 'displ' column (in liters). **Hint**: Make sure that the order of vehicle classes makes sense in your plot!"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": null,
47 | "metadata": {},
48 | "outputs": [],
49 | "source": [
50 | "# YOUR CODE HERE"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": null,
56 | "metadata": {},
57 | "outputs": [],
58 | "source": [
59 | "# run this cell to check your work against ours\n",
60 | "violinbox_solution_1()"
61 | ]
62 | }
63 | ],
64 | "metadata": {
65 | "kernelspec": {
66 | "display_name": "Python 3",
67 | "language": "python",
68 | "name": "python3"
69 | },
70 | "language_info": {
71 | "codemirror_mode": {
72 | "name": "ipython",
73 | "version": 3
74 | },
75 | "file_extension": ".py",
76 | "mimetype": "text/x-python",
77 | "name": "python",
78 | "nbconvert_exporter": "python",
79 | "pygments_lexer": "ipython3",
80 | "version": "3.6.3"
81 | }
82 | },
83 | "nbformat": 4,
84 | "nbformat_minor": 2
85 | }
86 |
--------------------------------------------------------------------------------
/Matplotlib/Categorical_Plot_Practice.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# prerequisite package imports\n",
10 | "import numpy as np\n",
11 | "import pandas as pd\n",
12 | "import matplotlib.pyplot as plt\n",
13 | "import seaborn as sb\n",
14 | "\n",
15 | "%matplotlib inline\n",
16 | "\n",
17 | "from solutions_biv import categorical_solution_1"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "We'll continue to make use of the fuel economy dataset in this workspace."
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": null,
30 | "metadata": {},
31 | "outputs": [],
32 | "source": [
33 | "fuel_econ = pd.read_csv('./data/fuel_econ.csv')\n",
34 | "fuel_econ.head()"
35 | ]
36 | },
37 | {
38 | "cell_type": "markdown",
39 | "metadata": {},
40 | "source": [
41 | "**Task**: Use a plot to explore whether or not there differences in recommended fuel type depending on the vehicle class. Only investigate the difference between the two main fuel types found in the 'fuelType' variable: Regular Gasoline and Premium Gasoline. (The other fuel types represented in the dataset are of much lower frequency compared to the main two, that they'll be more distracting than informative.) **Note**: The dataset as provided does not retain any of the sorting of the 'VClass' variable, so you will also need to copy over any code you used previously to sort the category levels."
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": null,
47 | "metadata": {},
48 | "outputs": [],
49 | "source": [
50 | "# YOUR CODE HERE"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": null,
56 | "metadata": {},
57 | "outputs": [],
58 | "source": [
59 | "# run this cell to check your work against ours\n",
60 | "categorical_solution_1()"
61 | ]
62 | }
63 | ],
64 | "metadata": {
65 | "kernelspec": {
66 | "display_name": "Python 3",
67 | "language": "python",
68 | "name": "python3"
69 | },
70 | "language_info": {
71 | "codemirror_mode": {
72 | "name": "ipython",
73 | "version": 3
74 | },
75 | "file_extension": ".py",
76 | "mimetype": "text/x-python",
77 | "name": "python",
78 | "nbconvert_exporter": "python",
79 | "pygments_lexer": "ipython3",
80 | "version": "3.6.3"
81 | }
82 | },
83 | "nbformat": 4,
84 | "nbformat_minor": 2
85 | }
86 |
--------------------------------------------------------------------------------
/Matplotlib/Scales_and_Transformations_Practice.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# prerequisite package imports\n",
10 | "import numpy as np\n",
11 | "import pandas as pd\n",
12 | "import matplotlib.pyplot as plt\n",
13 | "import seaborn as sb\n",
14 | "\n",
15 | "%matplotlib inline\n",
16 | "\n",
17 | "from solutions_univ import scales_solution_1, scales_solution_2"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "Once again, we make use of the Pokémon data for this exercise."
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": null,
30 | "metadata": {},
31 | "outputs": [],
32 | "source": [
33 | "pokemon = pd.read_csv('./data/pokemon.csv')\n",
34 | "pokemon.head()"
35 | ]
36 | },
37 | {
38 | "cell_type": "markdown",
39 | "metadata": {},
40 | "source": [
41 | "**Task 1**: There are also variables in the dataset that don't have anything to do with the game mechanics, and are just there for flavor. Try plotting the distribution of Pokémon heights (given in meters). For this exercise, experiment with different axis limits as well as bin widths to see what gives the clearest view of the data."
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": null,
47 | "metadata": {},
48 | "outputs": [],
49 | "source": [
50 | "# YOUR CODE HERE"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": null,
56 | "metadata": {},
57 | "outputs": [],
58 | "source": [
59 | "# run this cell to check your work against ours\n",
60 | "scales_solution_1()"
61 | ]
62 | },
63 | {
64 | "cell_type": "markdown",
65 | "metadata": {},
66 | "source": [
67 | "**Task 2**: In this task, you should plot the distribution of Pokémon weights (given in kilograms). Due to the very large range of values taken, you will probably want to perform an _axis transformation_ as part of your visualization workflow."
68 | ]
69 | },
70 | {
71 | "cell_type": "code",
72 | "execution_count": null,
73 | "metadata": {},
74 | "outputs": [],
75 | "source": [
76 | "# YOUR CODE HERE"
77 | ]
78 | },
79 | {
80 | "cell_type": "code",
81 | "execution_count": null,
82 | "metadata": {},
83 | "outputs": [],
84 | "source": [
85 | "# run this cell to check your work against ours\n",
86 | "scales_solution_2()"
87 | ]
88 | }
89 | ],
90 | "metadata": {
91 | "kernelspec": {
92 | "display_name": "Python 3",
93 | "language": "python",
94 | "name": "python3"
95 | },
96 | "language_info": {
97 | "codemirror_mode": {
98 | "name": "ipython",
99 | "version": 3
100 | },
101 | "file_extension": ".py",
102 | "mimetype": "text/x-python",
103 | "name": "python",
104 | "nbconvert_exporter": "python",
105 | "pygments_lexer": "ipython3",
106 | "version": "3.6.3"
107 | }
108 | },
109 | "nbformat": 4,
110 | "nbformat_minor": 2
111 | }
112 |
--------------------------------------------------------------------------------
/Matplotlib/Scatterplot_Practice.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# prerequisite package imports\n",
10 | "import numpy as np\n",
11 | "import pandas as pd\n",
12 | "import matplotlib.pyplot as plt\n",
13 | "import seaborn as sb\n",
14 | "\n",
15 | "%matplotlib inline\n",
16 | "\n",
17 | "from solutions_biv import scatterplot_solution_1, scatterplot_solution_2"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "In this workspace, you'll make use of this data set describing various car attributes, such as fuel efficiency. The cars in this dataset represent about 3900 sedans tested by the EPA from 2013 to 2018. This dataset is a trimmed-down version of the data found [here](https://catalog.data.gov/dataset/fuel-economy-data)."
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": null,
30 | "metadata": {},
31 | "outputs": [],
32 | "source": [
33 | "fuel_econ = pd.read_csv('./data/fuel_econ.csv')\n",
34 | "fuel_econ.head()"
35 | ]
36 | },
37 | {
38 | "cell_type": "markdown",
39 | "metadata": {},
40 | "source": [
41 | "**Task 1**: Let's look at the relationship between fuel mileage ratings for city vs. highway driving, as stored in the 'city' and 'highway' variables (in miles per gallon, or mpg). Use a _scatter plot_ to depict the data. What is the general relationship between these variables? Are there any points that appear unusual against these trends?"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": null,
47 | "metadata": {},
48 | "outputs": [],
49 | "source": [
50 | "# YOUR CODE HERE"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": null,
56 | "metadata": {},
57 | "outputs": [],
58 | "source": [
59 | "# run this cell to check your work against ours\n",
60 | "scatterplot_solution_1()"
61 | ]
62 | },
63 | {
64 | "cell_type": "markdown",
65 | "metadata": {},
66 | "source": [
67 | "**Task 2**: Let's look at the relationship between two other numeric variables. How does the engine size relate to a car's CO2 footprint? The 'displ' variable has the former (in liters), while the 'co2' variable has the latter (in grams per mile). Use a heat map to depict the data. How strong is this trend?"
68 | ]
69 | },
70 | {
71 | "cell_type": "code",
72 | "execution_count": null,
73 | "metadata": {},
74 | "outputs": [],
75 | "source": [
76 | "# YOUR CODE HERE"
77 | ]
78 | },
79 | {
80 | "cell_type": "code",
81 | "execution_count": null,
82 | "metadata": {},
83 | "outputs": [],
84 | "source": [
85 | "# run this cell to check your work against ours\n",
86 | "scatterplot_solution_2()"
87 | ]
88 | }
89 | ],
90 | "metadata": {
91 | "kernelspec": {
92 | "display_name": "Python 3",
93 | "language": "python",
94 | "name": "python3"
95 | },
96 | "language_info": {
97 | "codemirror_mode": {
98 | "name": "ipython",
99 | "version": 3
100 | },
101 | "file_extension": ".py",
102 | "mimetype": "text/x-python",
103 | "name": "python",
104 | "nbconvert_exporter": "python",
105 | "pygments_lexer": "ipython3",
106 | "version": "3.6.3"
107 | }
108 | },
109 | "nbformat": 4,
110 | "nbformat_minor": 2
111 | }
112 |
--------------------------------------------------------------------------------
/Matplotlib/solutions_univ.py:
--------------------------------------------------------------------------------
1 | """
2 | Script with solutions for all workspace assignments in the Univariate
3 | Exploration of Data lesson.
4 | """
5 |
6 | import numpy as np
7 | import pandas as pd
8 | import matplotlib.pyplot as plt
9 | import seaborn as sb
10 |
11 |
12 | def bar_chart_solution_1():
13 | """
14 | Solution for Question 1 in bar chart practice: create a bar chart of
15 | Pokemon species introduced by generation.
16 | """
17 | sol_string = ["I used seaborn's countplot function to generate this chart.",
18 | "I also added an additional argument so that each bar has the same color."]
19 | print((" ").join(sol_string))
20 |
21 | # data setup
22 | pokemon = pd.read_csv('./data/pokemon.csv')
23 |
24 | base_color = sb.color_palette()[0]
25 | sb.countplot(data = pokemon, x = 'generation_id', color = base_color)
26 |
27 |
28 | def bar_chart_solution_2():
29 | """
30 | Solution for Question 2 in bar chart practice: create a sorted bar chart of
31 | relative type frequencies.
32 | """
33 | sol_string = ["I created a horizontal bar chart since there are a lot of",
34 | "Pokemon types. The unique() method was used to get the",
35 | "number of different Pokemon species. I also added an xlabel",
36 | "call to make sure it was clear the bar length represents",
37 | "a relative frequency."]
38 | print((" ").join(sol_string))
39 |
40 | # data setup
41 | pokemon = pd.read_csv('./data/pokemon.csv')
42 | pkmn_types = pokemon.melt(id_vars = ['id','species'],
43 | value_vars = ['type_1', 'type_2'],
44 | var_name = 'type_level', value_name = 'type').dropna()
45 |
46 | # get order of bars by frequency
47 | type_counts = pkmn_types['type'].value_counts()
48 | type_order = type_counts.index
49 |
50 | # compute largest proportion
51 | n_pokemon = pkmn_types['species'].unique().shape[0]
52 | max_type_count = type_counts[0]
53 | max_prop = max_type_count / n_pokemon
54 |
55 | # establish tick locations and create plot
56 | base_color = sb.color_palette()[0]
57 | tick_props = np.arange(0, max_prop, 0.02)
58 | tick_names = ['{:0.2f}'.format(v) for v in tick_props]
59 |
60 | base_color = sb.color_palette()[0]
61 | sb.countplot(data = pkmn_types, y = 'type', color = base_color, order = type_order)
62 | plt.xticks(tick_props * n_pokemon, tick_names)
63 | plt.xlabel('proportion')
64 |
65 |
66 | def histogram_solution_1():
67 | """
68 | Solution for Question 1 in histogram practice: create a histogram of
69 | Pokemon special defense values.
70 | """
71 | sol_string = ["I've used matplotlib's hist function to plot the data.",
72 | "I have also used numpy's arange function to set the bin edges.",
73 | "A bin size of 5 hits the main cut points, revealing a smooth,",
74 | "but skewed curves. Are there similar characteristics among",
75 | "Pokemon with the highest special defenses?"]
76 | print((" ").join(sol_string))
77 |
78 | # data setup
79 | pokemon = pd.read_csv('./data/pokemon.csv')
80 |
81 | bins = np.arange(20, pokemon['special-defense'].max()+5, 5)
82 | plt.hist(pokemon['special-defense'], bins = bins)
83 |
84 |
85 | def scales_solution_1():
86 | """
87 | Solution for Question 1 in scales and transformation practice: create a
88 | histogram of Pokemon heights.
89 | """
90 | sol_string = ["There's a very long tail of Pokemon heights. Here, I've",
91 | "focused in on Pokemon of height 6 meters or less, so that I",
92 | "can use a smaller bin size to get a more detailed look at",
93 | "the main data distribution."]
94 | print((" ").join(sol_string))
95 |
96 | # data setup
97 | pokemon = pd.read_csv('./data/pokemon.csv')
98 |
99 | bins = np.arange(0, pokemon['height'].max()+0.2, 0.2)
100 | plt.hist(data = pokemon, x = 'height', bins = bins)
101 | plt.xlim((0,6))
102 |
103 |
104 | def scales_solution_2():
105 | """
106 | Solution for Question 2 in scales and transformation practice: create a
107 | histogram of Pokemon weights.
108 | """
109 | sol_string = ["Since Pokemon weights are so skewed, I used a log transformation",
110 | "on the x-axis. Bin edges are in increments of 0.1 powers of ten,",
111 | "with custom tick marks to demonstrate the log scaling."]
112 | print((" ").join(sol_string))
113 |
114 | # data setup
115 | pokemon = pd.read_csv('./data/pokemon.csv')
116 |
117 | bins = 10 ** np.arange(-1, 3.0+0.1, 0.1)
118 | ticks = [0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000]
119 | labels = ['{}'.format(val) for val in ticks]
120 |
121 | plt.hist(data = pokemon, x = 'weight', bins = bins)
122 | plt.xscale('log')
123 | plt.xticks(ticks, labels)
124 | plt.xlabel('Weight (kg)')
125 |
--------------------------------------------------------------------------------
/Matplotlib/Bar_Chart_Practice.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "In workspaces like this one, you will be able to practice visualization techniques you've seen in the course materials. In this particular workspace, you'll practice creating single-variable plots for categorical data."
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": null,
13 | "metadata": {},
14 | "outputs": [],
15 | "source": [
16 | "# prerequisite package imports\n",
17 | "import numpy as np\n",
18 | "import pandas as pd\n",
19 | "import matplotlib.pyplot as plt\n",
20 | "import seaborn as sb\n",
21 | "\n",
22 | "%matplotlib inline\n",
23 | "\n",
24 | "# solution script imports\n",
25 | "from solutions_univ import bar_chart_solution_1, bar_chart_solution_2"
26 | ]
27 | },
28 | {
29 | "cell_type": "markdown",
30 | "metadata": {},
31 | "source": [
32 | "In this workspace, you'll be working with this dataset comprised of attributes of creatures in the video game series Pokémon. The data was assembled from the database of information found in [this GitHub repository](https://github.com/veekun/pokedex/tree/master/pokedex/data/csv)."
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": null,
38 | "metadata": {},
39 | "outputs": [],
40 | "source": [
41 | "pokemon = pd.read_csv('./data/pokemon.csv')\n",
42 | "pokemon.head()"
43 | ]
44 | },
45 | {
46 | "cell_type": "markdown",
47 | "metadata": {},
48 | "source": [
49 | "**Task 1**: There have been quite a few Pokémon introduced over the series' history. How many were introduced in each generation? Create a _bar chart_ of these frequencies using the 'generation_id' column."
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": null,
55 | "metadata": {},
56 | "outputs": [],
57 | "source": [
58 | "# YOUR CODE HERE"
59 | ]
60 | },
61 | {
62 | "cell_type": "markdown",
63 | "metadata": {},
64 | "source": [
65 | "Once you've created your chart, run the cell below to check the output from our solution. Your visualization does not need to be exactly the same as ours, but it should be able to come up with the same conclusions."
66 | ]
67 | },
68 | {
69 | "cell_type": "code",
70 | "execution_count": null,
71 | "metadata": {},
72 | "outputs": [],
73 | "source": [
74 | "bar_chart_solution_1()"
75 | ]
76 | },
77 | {
78 | "cell_type": "markdown",
79 | "metadata": {},
80 | "source": [
81 | "**Task 2**: Each Pokémon species has one or two 'types' that play a part in its offensive and defensive capabilities. How frequent is each type? The code below creates a new dataframe that puts all of the type counts in a single column."
82 | ]
83 | },
84 | {
85 | "cell_type": "code",
86 | "execution_count": null,
87 | "metadata": {},
88 | "outputs": [],
89 | "source": [
90 | "pkmn_types = pokemon.melt(id_vars = ['id','species'], \n",
91 | " value_vars = ['type_1', 'type_2'], \n",
92 | " var_name = 'type_level', value_name = 'type').dropna()\n",
93 | "pkmn_types.head()"
94 | ]
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {},
99 | "source": [
100 | "Your task is to use this dataframe to create a _relative frequency_ plot of the proportion of Pokémon with each type, _sorted_ from most frequent to least. **Hint**: The sum across bars should be greater than 100%, since many Pokémon have two types. Keep this in mind when considering a denominator to compute relative frequencies."
101 | ]
102 | },
103 | {
104 | "cell_type": "code",
105 | "execution_count": null,
106 | "metadata": {},
107 | "outputs": [],
108 | "source": [
109 | "# YOUR CODE HERE"
110 | ]
111 | },
112 | {
113 | "cell_type": "code",
114 | "execution_count": null,
115 | "metadata": {},
116 | "outputs": [],
117 | "source": [
118 | "bar_chart_solution_2()"
119 | ]
120 | },
121 | {
122 | "cell_type": "markdown",
123 | "metadata": {},
124 | "source": [
125 | "If you're interested in seeing the code used to generate the solution plots, you can find it in the `solutions_univ.py` script in the workspace folder. You can navigate there by clicking on the Jupyter icon in the upper left corner of the workspace. Spoiler warning: the script contains solutions for all of the workspace exercises in this lesson, so take care not to spoil your practice!"
126 | ]
127 | }
128 | ],
129 | "metadata": {
130 | "kernelspec": {
131 | "display_name": "Python 3",
132 | "language": "python",
133 | "name": "python3"
134 | },
135 | "language_info": {
136 | "codemirror_mode": {
137 | "name": "ipython",
138 | "version": 3
139 | },
140 | "file_extension": ".py",
141 | "mimetype": "text/x-python",
142 | "name": "python",
143 | "nbconvert_exporter": "python",
144 | "pygments_lexer": "ipython3",
145 | "version": "3.6.3"
146 | }
147 | },
148 | "nbformat": 4,
149 | "nbformat_minor": 2
150 | }
151 |
--------------------------------------------------------------------------------
/Matplotlib/solutions_biv.py:
--------------------------------------------------------------------------------
1 | """
2 | Script with solutions for all workspace assignments in the Bivariate
3 | Exploration of Data lesson.
4 | """
5 |
6 | import numpy as np
7 | import pandas as pd
8 | import matplotlib.pyplot as plt
9 | import seaborn as sb
10 |
11 |
12 | def scatterplot_solution_1():
13 | """
14 | Solution for Question 1 in scatterplot practice: create a scatterplot of
15 | city vs. highway fuel mileage.
16 | """
17 | sol_string = ["Most of the data falls in a large blob between 10 and 30 mpg city",
18 | "and 20 to 40 mpg highway. Some transparency is added via 'alpha'",
19 | "to show the concentration of data. Interestingly, for most cars",
20 | "highway mileage is clearly higher than city mileage, but for those",
21 | "cars with city mileage above about 30 mpg, the distinction is less",
22 | "pronounced. In fact, most cars above 45 mpg city have better",
23 | "city mileage than highway mileage, contrary to the main trend. It",
24 | "might be good to call out this trend by adding a diagonal line to",
25 | "the figure using the `plot` function. (See the solution file for that code!)"]
26 | print((" ").join(sol_string))
27 |
28 | # data setup
29 | fuel_econ = pd.read_csv('./data/fuel_econ.csv')
30 |
31 | plt.scatter(data = fuel_econ, x = 'city', y = 'highway', alpha = 1/8)
32 | # plt.plot([10,60], [10,60]) # diagonal line from (10,10) to (60,60)
33 | plt.xlabel('City Fuel Eff. (mpg)')
34 | plt.ylabel('Highway Fuel Eff. (mpg)')
35 |
36 |
37 | def scatterplot_solution_2():
38 | """
39 | Solution for Question 2 in scatterplot practice: create a heat map of
40 | engine displacement vs. co2 production.
41 | """
42 | sol_string = ["In the heat map, I've set up a color map that goes from light",
43 | "to dark, and made it so that any cells without count don't get",
44 | "colored in. The visualization shows that most cars fall in a",
45 | "line where larger engine sizes correlate with higher emissions.",
46 | "The trend is somewhat broken by those cars with the lowest emissions,",
47 | "which still have engine sizes shared by most cars (between 1 and 3 liters)."]
48 | print((" ").join(sol_string))
49 |
50 | # data setup
51 | fuel_econ = pd.read_csv('./data/fuel_econ.csv')
52 |
53 | bins_x = np.arange(0.6, fuel_econ['displ'].max()+0.4, 0.4)
54 | bins_y = np.arange(0, fuel_econ['co2'].max()+50, 50)
55 | plt.hist2d(data = fuel_econ, x = 'displ', y = 'co2', bins = [bins_x, bins_y],
56 | cmap = 'viridis_r', cmin = 0.5)
57 | plt.colorbar()
58 | plt.xlabel('Displacement (l)')
59 | plt.ylabel('CO2 (g/mi)')
60 |
61 |
62 | def violinbox_solution_1():
63 | """
64 | Solution for Question 1 in violin and box plot practice: plot the relationship
65 | between vehicle class and engine displacement.
66 | """
67 | sol_string = ["I used a violin plot to depict the data in this case; you might",
68 | "have chosen a box plot instead. One of the interesting things",
69 | "about the relationship between variables is that it isn't consistent.",
70 | "Compact cars tend to have smaller engine sizes than the minicompact",
71 | "and subcompact cars, even though those two vehicle sizes are smaller.",
72 | "The box plot would make it easier to see that the median displacement",
73 | "for the two smallest vehicle classes is greater than the third quartile",
74 | "of the compact car class."]
75 | print((" ").join(sol_string))
76 |
77 | # data setup
78 | fuel_econ = pd.read_csv('./data/fuel_econ.csv')
79 |
80 | sedan_classes = ['Minicompact Cars', 'Subcompact Cars', 'Compact Cars', 'Midsize Cars', 'Large Cars']
81 | pd_ver = pd.__version__.split(".")
82 | if (int(pd_ver[0]) > 0) or (int(pd_ver[1]) >= 21): # v0.21 or later
83 | vclasses = pd.api.types.CategoricalDtype(ordered = True, categories = sedan_classes)
84 | fuel_econ['VClass'] = fuel_econ['VClass'].astype(vclasses)
85 | else: # pre-v0.21
86 | fuel_econ['VClass'] = fuel_econ['VClass'].astype('category', ordered = True,
87 | categories = sedan_classes)
88 |
89 | # plotting
90 | base_color = sb.color_palette()[0]
91 | sb.violinplot(data = fuel_econ, x = 'VClass', y = 'displ',
92 | color = base_color)
93 | plt.xticks(rotation = 15)
94 |
95 |
96 | def categorical_solution_1():
97 | """
98 | Solution for Question 1 in categorical plot practice: plot the relationship
99 | between vehicle class and fuel type.
100 | """
101 | sol_string = ["I chose a clustered bar chart instead of a heat map in this case",
102 | "since there weren't a lot of numbers to plot. If you chose a heat",
103 | "map, did you remember to add a color bar and include annotations?",
104 | "From this plot, you can see that more cars use premium gas over",
105 | "regular gas, and that the smaller cars are biased towards the",
106 | "premium gas grade. It is only in midsize sedans where regular",
107 | "gasoline was used in more cars than premium gasoline."]
108 | print((" ").join(sol_string))
109 |
110 | # data setup
111 | fuel_econ = pd.read_csv('./data/fuel_econ.csv')
112 |
113 | sedan_classes = ['Minicompact Cars', 'Subcompact Cars', 'Compact Cars', 'Midsize Cars', 'Large Cars']
114 | pd_ver = pd.__version__.split(".")
115 | if (int(pd_ver[0]) > 0) or (int(pd_ver[1]) >= 21): # v0.21 or later
116 | vclasses = pd.api.types.CategoricalDtype(ordered = True, categories = sedan_classes)
117 | fuel_econ['VClass'] = fuel_econ['VClass'].astype(vclasses)
118 | else: # pre-v0.21
119 | fuel_econ['VClass'] = fuel_econ['VClass'].astype('category', ordered = True,
120 | categories = sedan_classes)
121 | fuel_econ_sub = fuel_econ.loc[fuel_econ['fuelType'].isin(['Premium Gasoline', 'Regular Gasoline'])]
122 |
123 | # plotting
124 | ax = sb.countplot(data = fuel_econ_sub, x = 'VClass', hue = 'fuelType')
125 | ax.legend(loc = 4, framealpha = 1) # lower right, no transparency
126 | plt.xticks(rotation = 15)
127 |
128 |
129 | def additionalplot_solution_1():
130 | """
131 | Solution for Question 1 in additional plots practice: plot the distribution
132 | of combined fuel efficiencies for each manufacturer with at least 80 cars.
133 | """
134 | sol_string = ["Due to the large number of manufacturers to plot, I've gone",
135 | "with a faceted plot of histograms rather than a single figure",
136 | "like a box plot. As part of setting up the FacetGrid object, I",
137 | "have sorted the manufacturers by average mileage, and wrapped",
138 | "the faceting into a six column by three row grid. One interesting",
139 | "thing to note is that there are a very large number of BMW cars",
140 | "in the data, almost twice as many as the second-most prominent",
141 | "maker, Mercedes-Benz. One possible refinement could be to change",
142 | "the axes to be in terms of relative frequency or density to",
143 | "normalize the axes, making the less-frequent manufacturers",
144 | "easier to read."]
145 | print((" ").join(sol_string))
146 |
147 | # data setup
148 | fuel_econ = pd.read_csv('./data/fuel_econ.csv')
149 |
150 | most_makes = fuel_econ['make'].value_counts().index[:18]
151 | fuel_econ_sub = fuel_econ.loc[fuel_econ['make'].isin(most_makes)]
152 |
153 | make_means = fuel_econ_sub.groupby('make').mean()
154 | comb_order = make_means.sort_values('comb', ascending = False).index
155 |
156 | # plotting
157 | g = sb.FacetGrid(data = fuel_econ_sub, col = 'make', col_wrap = 6, size = 2,
158 | col_order = comb_order)
159 | # try sb.distplot instead of plt.hist to see the plot in terms of density!
160 | g.map(plt.hist, 'comb', bins = np.arange(12, fuel_econ_sub['comb'].max()+2, 2))
161 | g.set_titles('{col_name}')
162 |
163 |
164 | def additionalplot_solution_2():
165 | """
166 | Solution for Question 2 in additional plots practice: plot the average
167 | combined fuel efficiency for each manufacturer with at least 80 cars.
168 | """
169 | sol_string = ["Seaborn's barplot function makes short work of this exercise.",
170 | "Since there are a lot of 'make' levels, I've made it a horizontal",
171 | "bar chart. In addition, I've set the error bars to represent the",
172 | "standard deviation of the car mileages."]
173 | print((" ").join(sol_string))
174 |
175 | # data setup
176 | fuel_econ = pd.read_csv('./data/fuel_econ.csv')
177 |
178 | most_makes = fuel_econ['make'].value_counts().index[:18]
179 | fuel_econ_sub = fuel_econ.loc[fuel_econ['make'].isin(most_makes)]
180 |
181 | make_means = fuel_econ_sub.groupby('make').mean()
182 | comb_order = make_means.sort_values('comb', ascending = False).index
183 |
184 | # plotting
185 | base_color = sb.color_palette()[0]
186 | sb.barplot(data = fuel_econ_sub, x = 'comb', y = 'make',
187 | color = base_color, order = comb_order, ci = 'sd')
188 | plt.xlabel('Average Combined Fuel Eff. (mpg)')
--------------------------------------------------------------------------------
/Matplotlib/Additional_Plot_Practice.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# prerequisite package imports\n",
10 | "import numpy as np\n",
11 | "import pandas as pd\n",
12 | "import matplotlib.pyplot as plt\n",
13 | "import seaborn as sb\n",
14 | "\n",
15 | "%matplotlib inline\n",
16 | "\n",
17 | "from solutions_biv import additionalplot_solution_1, additionalplot_solution_2"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "We'll continue to make use of the fuel economy dataset in this workspace."
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": 2,
30 | "metadata": {},
31 | "outputs": [
32 | {
33 | "data": {
34 | "text/html": [
35 | "
\n",
36 | "\n",
49 | "
\n",
50 | " \n",
51 | " \n",
52 | " | \n",
53 | " id | \n",
54 | " make | \n",
55 | " model | \n",
56 | " year | \n",
57 | " VClass | \n",
58 | " drive | \n",
59 | " trans | \n",
60 | " fuelType | \n",
61 | " cylinders | \n",
62 | " displ | \n",
63 | " pv2 | \n",
64 | " pv4 | \n",
65 | " city | \n",
66 | " UCity | \n",
67 | " highway | \n",
68 | " UHighway | \n",
69 | " comb | \n",
70 | " co2 | \n",
71 | " feScore | \n",
72 | " ghgScore | \n",
73 | "
\n",
74 | " \n",
75 | " \n",
76 | " \n",
77 | " | 0 | \n",
78 | " 32204 | \n",
79 | " Nissan | \n",
80 | " GT-R | \n",
81 | " 2013 | \n",
82 | " Subcompact Cars | \n",
83 | " All-Wheel Drive | \n",
84 | " Automatic (AM6) | \n",
85 | " Premium Gasoline | \n",
86 | " 6 | \n",
87 | " 3.8 | \n",
88 | " 79 | \n",
89 | " 0 | \n",
90 | " 16.4596 | \n",
91 | " 20.2988 | \n",
92 | " 22.5568 | \n",
93 | " 30.1798 | \n",
94 | " 18.7389 | \n",
95 | " 471 | \n",
96 | " 4 | \n",
97 | " 4 | \n",
98 | "
\n",
99 | " \n",
100 | " | 1 | \n",
101 | " 32205 | \n",
102 | " Volkswagen | \n",
103 | " CC | \n",
104 | " 2013 | \n",
105 | " Compact Cars | \n",
106 | " Front-Wheel Drive | \n",
107 | " Automatic (AM-S6) | \n",
108 | " Premium Gasoline | \n",
109 | " 4 | \n",
110 | " 2.0 | \n",
111 | " 94 | \n",
112 | " 0 | \n",
113 | " 21.8706 | \n",
114 | " 26.9770 | \n",
115 | " 31.0367 | \n",
116 | " 42.4936 | \n",
117 | " 25.2227 | \n",
118 | " 349 | \n",
119 | " 6 | \n",
120 | " 6 | \n",
121 | "
\n",
122 | " \n",
123 | " | 2 | \n",
124 | " 32206 | \n",
125 | " Volkswagen | \n",
126 | " CC | \n",
127 | " 2013 | \n",
128 | " Compact Cars | \n",
129 | " Front-Wheel Drive | \n",
130 | " Automatic (S6) | \n",
131 | " Premium Gasoline | \n",
132 | " 6 | \n",
133 | " 3.6 | \n",
134 | " 94 | \n",
135 | " 0 | \n",
136 | " 17.4935 | \n",
137 | " 21.2000 | \n",
138 | " 26.5716 | \n",
139 | " 35.1000 | \n",
140 | " 20.6716 | \n",
141 | " 429 | \n",
142 | " 5 | \n",
143 | " 5 | \n",
144 | "
\n",
145 | " \n",
146 | " | 3 | \n",
147 | " 32207 | \n",
148 | " Volkswagen | \n",
149 | " CC 4motion | \n",
150 | " 2013 | \n",
151 | " Compact Cars | \n",
152 | " All-Wheel Drive | \n",
153 | " Automatic (S6) | \n",
154 | " Premium Gasoline | \n",
155 | " 6 | \n",
156 | " 3.6 | \n",
157 | " 94 | \n",
158 | " 0 | \n",
159 | " 16.9415 | \n",
160 | " 20.5000 | \n",
161 | " 25.2190 | \n",
162 | " 33.5000 | \n",
163 | " 19.8774 | \n",
164 | " 446 | \n",
165 | " 5 | \n",
166 | " 5 | \n",
167 | "
\n",
168 | " \n",
169 | " | 4 | \n",
170 | " 32208 | \n",
171 | " Chevrolet | \n",
172 | " Malibu eAssist | \n",
173 | " 2013 | \n",
174 | " Midsize Cars | \n",
175 | " Front-Wheel Drive | \n",
176 | " Automatic (S6) | \n",
177 | " Regular Gasoline | \n",
178 | " 4 | \n",
179 | " 2.4 | \n",
180 | " 0 | \n",
181 | " 95 | \n",
182 | " 24.7726 | \n",
183 | " 31.9796 | \n",
184 | " 35.5340 | \n",
185 | " 51.8816 | \n",
186 | " 28.6813 | \n",
187 | " 310 | \n",
188 | " 8 | \n",
189 | " 8 | \n",
190 | "
\n",
191 | " \n",
192 | "
\n",
193 | "
"
194 | ],
195 | "text/plain": [
196 | " id make model year VClass \\\n",
197 | "0 32204 Nissan GT-R 2013 Subcompact Cars \n",
198 | "1 32205 Volkswagen CC 2013 Compact Cars \n",
199 | "2 32206 Volkswagen CC 2013 Compact Cars \n",
200 | "3 32207 Volkswagen CC 4motion 2013 Compact Cars \n",
201 | "4 32208 Chevrolet Malibu eAssist 2013 Midsize Cars \n",
202 | "\n",
203 | " drive trans fuelType cylinders displ \\\n",
204 | "0 All-Wheel Drive Automatic (AM6) Premium Gasoline 6 3.8 \n",
205 | "1 Front-Wheel Drive Automatic (AM-S6) Premium Gasoline 4 2.0 \n",
206 | "2 Front-Wheel Drive Automatic (S6) Premium Gasoline 6 3.6 \n",
207 | "3 All-Wheel Drive Automatic (S6) Premium Gasoline 6 3.6 \n",
208 | "4 Front-Wheel Drive Automatic (S6) Regular Gasoline 4 2.4 \n",
209 | "\n",
210 | " pv2 pv4 city UCity highway UHighway comb co2 feScore \\\n",
211 | "0 79 0 16.4596 20.2988 22.5568 30.1798 18.7389 471 4 \n",
212 | "1 94 0 21.8706 26.9770 31.0367 42.4936 25.2227 349 6 \n",
213 | "2 94 0 17.4935 21.2000 26.5716 35.1000 20.6716 429 5 \n",
214 | "3 94 0 16.9415 20.5000 25.2190 33.5000 19.8774 446 5 \n",
215 | "4 0 95 24.7726 31.9796 35.5340 51.8816 28.6813 310 8 \n",
216 | "\n",
217 | " ghgScore \n",
218 | "0 4 \n",
219 | "1 6 \n",
220 | "2 5 \n",
221 | "3 5 \n",
222 | "4 8 "
223 | ]
224 | },
225 | "execution_count": 2,
226 | "metadata": {},
227 | "output_type": "execute_result"
228 | }
229 | ],
230 | "source": [
231 | "fuel_econ = pd.read_csv('./data/fuel_econ.csv')\n",
232 | "fuel_econ.head()"
233 | ]
234 | },
235 | {
236 | "cell_type": "markdown",
237 | "metadata": {},
238 | "source": [
239 | "**Task 1**: Plot the distribution of combined fuel mileage (column 'comb', in miles per gallon) by manufacturer (column 'make'), for all manufacturers with at least eighty cars in the dataset. Consider which manufacturer order will convey the most information when constructing your final plot. **Hint**: Completing this exercise will take multiple steps! Add additional code cells as needed in order to achieve the goal."
240 | ]
241 | },
242 | {
243 | "cell_type": "code",
244 | "execution_count": null,
245 | "metadata": {},
246 | "outputs": [],
247 | "source": [
248 | "# YOUR CODE HERE"
249 | ]
250 | },
251 | {
252 | "cell_type": "code",
253 | "execution_count": null,
254 | "metadata": {},
255 | "outputs": [],
256 | "source": [
257 | "# run this cell to check your work against ours\n",
258 | "additionalplot_solution_1()"
259 | ]
260 | },
261 | {
262 | "cell_type": "markdown",
263 | "metadata": {},
264 | "source": [
265 | "**Task 2**: Continuing on from the previous task, plot the mean fuel efficiency for each manufacturer with at least 80 cars in the dataset."
266 | ]
267 | },
268 | {
269 | "cell_type": "code",
270 | "execution_count": null,
271 | "metadata": {},
272 | "outputs": [],
273 | "source": [
274 | "# YOUR CODE HERE"
275 | ]
276 | },
277 | {
278 | "cell_type": "code",
279 | "execution_count": null,
280 | "metadata": {},
281 | "outputs": [],
282 | "source": [
283 | "# run this cell to check your work against ours\n",
284 | "additionalplot_solution_2()"
285 | ]
286 | }
287 | ],
288 | "metadata": {
289 | "kernelspec": {
290 | "display_name": "Python 3",
291 | "language": "python",
292 | "name": "python3"
293 | },
294 | "language_info": {
295 | "codemirror_mode": {
296 | "name": "ipython",
297 | "version": 3
298 | },
299 | "file_extension": ".py",
300 | "mimetype": "text/x-python",
301 | "name": "python",
302 | "nbconvert_exporter": "python",
303 | "pygments_lexer": "ipython3",
304 | "version": "3.6.6"
305 | }
306 | },
307 | "nbformat": 4,
308 | "nbformat_minor": 2
309 | }
310 |
--------------------------------------------------------------------------------
/Matplotlib/data/pokemon.csv:
--------------------------------------------------------------------------------
1 | id,species,generation_id,height,weight,base_experience,type_1,type_2,hp,attack,defense,speed,special-attack,special-defense
2 | 1,bulbasaur,1,0.7,6.9,64,grass,poison,45,49,49,45,65,65
3 | 2,ivysaur,1,1.0,13.0,142,grass,poison,60,62,63,60,80,80
4 | 3,venusaur,1,2.0,100.0,236,grass,poison,80,82,83,80,100,100
5 | 4,charmander,1,0.6,8.5,62,fire,,39,52,43,65,60,50
6 | 5,charmeleon,1,1.1,19.0,142,fire,,58,64,58,80,80,65
7 | 6,charizard,1,1.7,90.5,240,fire,flying,78,84,78,100,109,85
8 | 7,squirtle,1,0.5,9.0,63,water,,44,48,65,43,50,64
9 | 8,wartortle,1,1.0,22.5,142,water,,59,63,80,58,65,80
10 | 9,blastoise,1,1.6,85.5,239,water,,79,83,100,78,85,105
11 | 10,caterpie,1,0.3,2.9,39,bug,,45,30,35,45,20,20
12 | 11,metapod,1,0.7,9.9,72,bug,,50,20,55,30,25,25
13 | 12,butterfree,1,1.1,32.0,178,bug,flying,60,45,50,70,90,80
14 | 13,weedle,1,0.3,3.2,39,bug,poison,40,35,30,50,20,20
15 | 14,kakuna,1,0.6,10.0,72,bug,poison,45,25,50,35,25,25
16 | 15,beedrill,1,1.0,29.5,178,bug,poison,65,90,40,75,45,80
17 | 16,pidgey,1,0.3,1.8,50,normal,flying,40,45,40,56,35,35
18 | 17,pidgeotto,1,1.1,30.0,122,normal,flying,63,60,55,71,50,50
19 | 18,pidgeot,1,1.5,39.5,216,normal,flying,83,80,75,101,70,70
20 | 19,rattata,1,0.3,3.5,51,normal,,30,56,35,72,25,35
21 | 20,raticate,1,0.7,18.5,145,normal,,55,81,60,97,50,70
22 | 21,spearow,1,0.3,2.0,52,normal,flying,40,60,30,70,31,31
23 | 22,fearow,1,1.2,38.0,155,normal,flying,65,90,65,100,61,61
24 | 23,ekans,1,2.0,6.9,58,poison,,35,60,44,55,40,54
25 | 24,arbok,1,3.5,65.0,157,poison,,60,95,69,80,65,79
26 | 25,pikachu,1,0.4,6.0,112,electric,,35,55,40,90,50,50
27 | 26,raichu,1,0.8,30.0,218,electric,,60,90,55,110,90,80
28 | 27,sandshrew,1,0.6,12.0,60,ground,,50,75,85,40,20,30
29 | 28,sandslash,1,1.0,29.5,158,ground,,75,100,110,65,45,55
30 | 29,nidoran-f,1,0.4,7.0,55,poison,,55,47,52,41,40,40
31 | 30,nidorina,1,0.8,20.0,128,poison,,70,62,67,56,55,55
32 | 31,nidoqueen,1,1.3,60.0,227,poison,ground,90,92,87,76,75,85
33 | 32,nidoran-m,1,0.5,9.0,55,poison,,46,57,40,50,40,40
34 | 33,nidorino,1,0.9,19.5,128,poison,,61,72,57,65,55,55
35 | 34,nidoking,1,1.4,62.0,227,poison,ground,81,102,77,85,85,75
36 | 35,clefairy,1,0.6,7.5,113,fairy,,70,45,48,35,60,65
37 | 36,clefable,1,1.3,40.0,217,fairy,,95,70,73,60,95,90
38 | 37,vulpix,1,0.6,9.9,60,fire,,38,41,40,65,50,65
39 | 38,ninetales,1,1.1,19.9,177,fire,,73,76,75,100,81,100
40 | 39,jigglypuff,1,0.5,5.5,95,normal,fairy,115,45,20,20,45,25
41 | 40,wigglytuff,1,1.0,12.0,196,normal,fairy,140,70,45,45,85,50
42 | 41,zubat,1,0.8,7.5,49,poison,flying,40,45,35,55,30,40
43 | 42,golbat,1,1.6,55.0,159,poison,flying,75,80,70,90,65,75
44 | 43,oddish,1,0.5,5.4,64,grass,poison,45,50,55,30,75,65
45 | 44,gloom,1,0.8,8.6,138,grass,poison,60,65,70,40,85,75
46 | 45,vileplume,1,1.2,18.6,221,grass,poison,75,80,85,50,110,90
47 | 46,paras,1,0.3,5.4,57,bug,grass,35,70,55,25,45,55
48 | 47,parasect,1,1.0,29.5,142,bug,grass,60,95,80,30,60,80
49 | 48,venonat,1,1.0,30.0,61,bug,poison,60,55,50,45,40,55
50 | 49,venomoth,1,1.5,12.5,158,bug,poison,70,65,60,90,90,75
51 | 50,diglett,1,0.2,0.8,53,ground,,10,55,25,95,35,45
52 | 51,dugtrio,1,0.7,33.3,149,ground,,35,100,50,120,50,70
53 | 52,meowth,1,0.4,4.2,58,normal,,40,45,35,90,40,40
54 | 53,persian,1,1.0,32.0,154,normal,,65,70,60,115,65,65
55 | 54,psyduck,1,0.8,19.6,64,water,,50,52,48,55,65,50
56 | 55,golduck,1,1.7,76.6,175,water,,80,82,78,85,95,80
57 | 56,mankey,1,0.5,28.0,61,fighting,,40,80,35,70,35,45
58 | 57,primeape,1,1.0,32.0,159,fighting,,65,105,60,95,60,70
59 | 58,growlithe,1,0.7,19.0,70,fire,,55,70,45,60,70,50
60 | 59,arcanine,1,1.9,155.0,194,fire,,90,110,80,95,100,80
61 | 60,poliwag,1,0.6,12.4,60,water,,40,50,40,90,40,40
62 | 61,poliwhirl,1,1.0,20.0,135,water,,65,65,65,90,50,50
63 | 62,poliwrath,1,1.3,54.0,230,water,fighting,90,95,95,70,70,90
64 | 63,abra,1,0.9,19.5,62,psychic,,25,20,15,90,105,55
65 | 64,kadabra,1,1.3,56.5,140,psychic,,40,35,30,105,120,70
66 | 65,alakazam,1,1.5,48.0,225,psychic,,55,50,45,120,135,95
67 | 66,machop,1,0.8,19.5,61,fighting,,70,80,50,35,35,35
68 | 67,machoke,1,1.5,70.5,142,fighting,,80,100,70,45,50,60
69 | 68,machamp,1,1.6,130.0,227,fighting,,90,130,80,55,65,85
70 | 69,bellsprout,1,0.7,4.0,60,grass,poison,50,75,35,40,70,30
71 | 70,weepinbell,1,1.0,6.4,137,grass,poison,65,90,50,55,85,45
72 | 71,victreebel,1,1.7,15.5,221,grass,poison,80,105,65,70,100,70
73 | 72,tentacool,1,0.9,45.5,67,water,poison,40,40,35,70,50,100
74 | 73,tentacruel,1,1.6,55.0,180,water,poison,80,70,65,100,80,120
75 | 74,geodude,1,0.4,20.0,60,rock,ground,40,80,100,20,30,30
76 | 75,graveler,1,1.0,105.0,137,rock,ground,55,95,115,35,45,45
77 | 76,golem,1,1.4,300.0,223,rock,ground,80,120,130,45,55,65
78 | 77,ponyta,1,1.0,30.0,82,fire,,50,85,55,90,65,65
79 | 78,rapidash,1,1.7,95.0,175,fire,,65,100,70,105,80,80
80 | 79,slowpoke,1,1.2,36.0,63,water,psychic,90,65,65,15,40,40
81 | 80,slowbro,1,1.6,78.5,172,water,psychic,95,75,110,30,100,80
82 | 81,magnemite,1,0.3,6.0,65,electric,steel,25,35,70,45,95,55
83 | 82,magneton,1,1.0,60.0,163,electric,steel,50,60,95,70,120,70
84 | 83,farfetchd,1,0.8,15.0,132,normal,flying,52,90,55,60,58,62
85 | 84,doduo,1,1.4,39.2,62,normal,flying,35,85,45,75,35,35
86 | 85,dodrio,1,1.8,85.2,165,normal,flying,60,110,70,110,60,60
87 | 86,seel,1,1.1,90.0,65,water,,65,45,55,45,45,70
88 | 87,dewgong,1,1.7,120.0,166,water,ice,90,70,80,70,70,95
89 | 88,grimer,1,0.9,30.0,65,poison,,80,80,50,25,40,50
90 | 89,muk,1,1.2,30.0,175,poison,,105,105,75,50,65,100
91 | 90,shellder,1,0.3,4.0,61,water,,30,65,100,40,45,25
92 | 91,cloyster,1,1.5,132.5,184,water,ice,50,95,180,70,85,45
93 | 92,gastly,1,1.3,0.1,62,ghost,poison,30,35,30,80,100,35
94 | 93,haunter,1,1.6,0.1,142,ghost,poison,45,50,45,95,115,55
95 | 94,gengar,1,1.5,40.5,225,ghost,poison,60,65,60,110,130,75
96 | 95,onix,1,8.8,210.0,77,rock,ground,35,45,160,70,30,45
97 | 96,drowzee,1,1.0,32.4,66,psychic,,60,48,45,42,43,90
98 | 97,hypno,1,1.6,75.6,169,psychic,,85,73,70,67,73,115
99 | 98,krabby,1,0.4,6.5,65,water,,30,105,90,50,25,25
100 | 99,kingler,1,1.3,60.0,166,water,,55,130,115,75,50,50
101 | 100,voltorb,1,0.5,10.4,66,electric,,40,30,50,100,55,55
102 | 101,electrode,1,1.2,66.6,172,electric,,60,50,70,150,80,80
103 | 102,exeggcute,1,0.4,2.5,65,grass,psychic,60,40,80,40,60,45
104 | 103,exeggutor,1,2.0,120.0,186,grass,psychic,95,95,85,55,125,75
105 | 104,cubone,1,0.4,6.5,64,ground,,50,50,95,35,40,50
106 | 105,marowak,1,1.0,45.0,149,ground,,60,80,110,45,50,80
107 | 106,hitmonlee,1,1.5,49.8,159,fighting,,50,120,53,87,35,110
108 | 107,hitmonchan,1,1.4,50.2,159,fighting,,50,105,79,76,35,110
109 | 108,lickitung,1,1.2,65.5,77,normal,,90,55,75,30,60,75
110 | 109,koffing,1,0.6,1.0,68,poison,,40,65,95,35,60,45
111 | 110,weezing,1,1.2,9.5,172,poison,,65,90,120,60,85,70
112 | 111,rhyhorn,1,1.0,115.0,69,ground,rock,80,85,95,25,30,30
113 | 112,rhydon,1,1.9,120.0,170,ground,rock,105,130,120,40,45,45
114 | 113,chansey,1,1.1,34.6,395,normal,,250,5,5,50,35,105
115 | 114,tangela,1,1.0,35.0,87,grass,,65,55,115,60,100,40
116 | 115,kangaskhan,1,2.2,80.0,172,normal,,105,95,80,90,40,80
117 | 116,horsea,1,0.4,8.0,59,water,,30,40,70,60,70,25
118 | 117,seadra,1,1.2,25.0,154,water,,55,65,95,85,95,45
119 | 118,goldeen,1,0.6,15.0,64,water,,45,67,60,63,35,50
120 | 119,seaking,1,1.3,39.0,158,water,,80,92,65,68,65,80
121 | 120,staryu,1,0.8,34.5,68,water,,30,45,55,85,70,55
122 | 121,starmie,1,1.1,80.0,182,water,psychic,60,75,85,115,100,85
123 | 122,mr-mime,1,1.3,54.5,161,psychic,fairy,40,45,65,90,100,120
124 | 123,scyther,1,1.5,56.0,100,bug,flying,70,110,80,105,55,80
125 | 124,jynx,1,1.4,40.6,159,ice,psychic,65,50,35,95,115,95
126 | 125,electabuzz,1,1.1,30.0,172,electric,,65,83,57,105,95,85
127 | 126,magmar,1,1.3,44.5,173,fire,,65,95,57,93,100,85
128 | 127,pinsir,1,1.5,55.0,175,bug,,65,125,100,85,55,70
129 | 128,tauros,1,1.4,88.4,172,normal,,75,100,95,110,40,70
130 | 129,magikarp,1,0.9,10.0,40,water,,20,10,55,80,15,20
131 | 130,gyarados,1,6.5,235.0,189,water,flying,95,125,79,81,60,100
132 | 131,lapras,1,2.5,220.0,187,water,ice,130,85,80,60,85,95
133 | 132,ditto,1,0.3,4.0,101,normal,,48,48,48,48,48,48
134 | 133,eevee,1,0.3,6.5,65,normal,,55,55,50,55,45,65
135 | 134,vaporeon,1,1.0,29.0,184,water,,130,65,60,65,110,95
136 | 135,jolteon,1,0.8,24.5,184,electric,,65,65,60,130,110,95
137 | 136,flareon,1,0.9,25.0,184,fire,,65,130,60,65,95,110
138 | 137,porygon,1,0.8,36.5,79,normal,,65,60,70,40,85,75
139 | 138,omanyte,1,0.4,7.5,71,rock,water,35,40,100,35,90,55
140 | 139,omastar,1,1.0,35.0,173,rock,water,70,60,125,55,115,70
141 | 140,kabuto,1,0.5,11.5,71,rock,water,30,80,90,55,55,45
142 | 141,kabutops,1,1.3,40.5,173,rock,water,60,115,105,80,65,70
143 | 142,aerodactyl,1,1.8,59.0,180,rock,flying,80,105,65,130,60,75
144 | 143,snorlax,1,2.1,460.0,189,normal,,160,110,65,30,65,110
145 | 144,articuno,1,1.7,55.4,261,ice,flying,90,85,100,85,95,125
146 | 145,zapdos,1,1.6,52.6,261,electric,flying,90,90,85,100,125,90
147 | 146,moltres,1,2.0,60.0,261,fire,flying,90,100,90,90,125,85
148 | 147,dratini,1,1.8,3.3,60,dragon,,41,64,45,50,50,50
149 | 148,dragonair,1,4.0,16.5,147,dragon,,61,84,65,70,70,70
150 | 149,dragonite,1,2.2,210.0,270,dragon,flying,91,134,95,80,100,100
151 | 150,mewtwo,1,2.0,122.0,306,psychic,,106,110,90,130,154,90
152 | 151,mew,1,0.4,4.0,270,psychic,,100,100,100,100,100,100
153 | 152,chikorita,2,0.9,6.4,64,grass,,45,49,65,45,49,65
154 | 153,bayleef,2,1.2,15.8,142,grass,,60,62,80,60,63,80
155 | 154,meganium,2,1.8,100.5,236,grass,,80,82,100,80,83,100
156 | 155,cyndaquil,2,0.5,7.9,62,fire,,39,52,43,65,60,50
157 | 156,quilava,2,0.9,19.0,142,fire,,58,64,58,80,80,65
158 | 157,typhlosion,2,1.7,79.5,240,fire,,78,84,78,100,109,85
159 | 158,totodile,2,0.6,9.5,63,water,,50,65,64,43,44,48
160 | 159,croconaw,2,1.1,25.0,142,water,,65,80,80,58,59,63
161 | 160,feraligatr,2,2.3,88.8,239,water,,85,105,100,78,79,83
162 | 161,sentret,2,0.8,6.0,43,normal,,35,46,34,20,35,45
163 | 162,furret,2,1.8,32.5,145,normal,,85,76,64,90,45,55
164 | 163,hoothoot,2,0.7,21.2,52,normal,flying,60,30,30,50,36,56
165 | 164,noctowl,2,1.6,40.8,158,normal,flying,100,50,50,70,86,96
166 | 165,ledyba,2,1.0,10.8,53,bug,flying,40,20,30,55,40,80
167 | 166,ledian,2,1.4,35.6,137,bug,flying,55,35,50,85,55,110
168 | 167,spinarak,2,0.5,8.5,50,bug,poison,40,60,40,30,40,40
169 | 168,ariados,2,1.1,33.5,140,bug,poison,70,90,70,40,60,70
170 | 169,crobat,2,1.8,75.0,241,poison,flying,85,90,80,130,70,80
171 | 170,chinchou,2,0.5,12.0,66,water,electric,75,38,38,67,56,56
172 | 171,lanturn,2,1.2,22.5,161,water,electric,125,58,58,67,76,76
173 | 172,pichu,2,0.3,2.0,41,electric,,20,40,15,60,35,35
174 | 173,cleffa,2,0.3,3.0,44,fairy,,50,25,28,15,45,55
175 | 174,igglybuff,2,0.3,1.0,42,normal,fairy,90,30,15,15,40,20
176 | 175,togepi,2,0.3,1.5,49,fairy,,35,20,65,20,40,65
177 | 176,togetic,2,0.6,3.2,142,fairy,flying,55,40,85,40,80,105
178 | 177,natu,2,0.2,2.0,64,psychic,flying,40,50,45,70,70,45
179 | 178,xatu,2,1.5,15.0,165,psychic,flying,65,75,70,95,95,70
180 | 179,mareep,2,0.6,7.8,56,electric,,55,40,40,35,65,45
181 | 180,flaaffy,2,0.8,13.3,128,electric,,70,55,55,45,80,60
182 | 181,ampharos,2,1.4,61.5,230,electric,,90,75,85,55,115,90
183 | 182,bellossom,2,0.4,5.8,221,grass,,75,80,95,50,90,100
184 | 183,marill,2,0.4,8.5,88,water,fairy,70,20,50,40,20,50
185 | 184,azumarill,2,0.8,28.5,189,water,fairy,100,50,80,50,60,80
186 | 185,sudowoodo,2,1.2,38.0,144,rock,,70,100,115,30,30,65
187 | 186,politoed,2,1.1,33.9,225,water,,90,75,75,70,90,100
188 | 187,hoppip,2,0.4,0.5,50,grass,flying,35,35,40,50,35,55
189 | 188,skiploom,2,0.6,1.0,119,grass,flying,55,45,50,80,45,65
190 | 189,jumpluff,2,0.8,3.0,207,grass,flying,75,55,70,110,55,95
191 | 190,aipom,2,0.8,11.5,72,normal,,55,70,55,85,40,55
192 | 191,sunkern,2,0.3,1.8,36,grass,,30,30,30,30,30,30
193 | 192,sunflora,2,0.8,8.5,149,grass,,75,75,55,30,105,85
194 | 193,yanma,2,1.2,38.0,78,bug,flying,65,65,45,95,75,45
195 | 194,wooper,2,0.4,8.5,42,water,ground,55,45,45,15,25,25
196 | 195,quagsire,2,1.4,75.0,151,water,ground,95,85,85,35,65,65
197 | 196,espeon,2,0.9,26.5,184,psychic,,65,65,60,110,130,95
198 | 197,umbreon,2,1.0,27.0,184,dark,,95,65,110,65,60,130
199 | 198,murkrow,2,0.5,2.1,81,dark,flying,60,85,42,91,85,42
200 | 199,slowking,2,2.0,79.5,172,water,psychic,95,75,80,30,100,110
201 | 200,misdreavus,2,0.7,1.0,87,ghost,,60,60,60,85,85,85
202 | 201,unown,2,0.5,5.0,118,psychic,,48,72,48,48,72,48
203 | 202,wobbuffet,2,1.3,28.5,142,psychic,,190,33,58,33,33,58
204 | 203,girafarig,2,1.5,41.5,159,normal,psychic,70,80,65,85,90,65
205 | 204,pineco,2,0.6,7.2,58,bug,,50,65,90,15,35,35
206 | 205,forretress,2,1.2,125.8,163,bug,steel,75,90,140,40,60,60
207 | 206,dunsparce,2,1.5,14.0,145,normal,,100,70,70,45,65,65
208 | 207,gligar,2,1.1,64.8,86,ground,flying,65,75,105,85,35,65
209 | 208,steelix,2,9.2,400.0,179,steel,ground,75,85,200,30,55,65
210 | 209,snubbull,2,0.6,7.8,60,fairy,,60,80,50,30,40,40
211 | 210,granbull,2,1.4,48.7,158,fairy,,90,120,75,45,60,60
212 | 211,qwilfish,2,0.5,3.9,88,water,poison,65,95,85,85,55,55
213 | 212,scizor,2,1.8,118.0,175,bug,steel,70,130,100,65,55,80
214 | 213,shuckle,2,0.6,20.5,177,bug,rock,20,10,230,5,10,230
215 | 214,heracross,2,1.5,54.0,175,bug,fighting,80,125,75,85,40,95
216 | 215,sneasel,2,0.9,28.0,86,dark,ice,55,95,55,115,35,75
217 | 216,teddiursa,2,0.6,8.8,66,normal,,60,80,50,40,50,50
218 | 217,ursaring,2,1.8,125.8,175,normal,,90,130,75,55,75,75
219 | 218,slugma,2,0.7,35.0,50,fire,,40,40,40,20,70,40
220 | 219,magcargo,2,0.8,55.0,151,fire,rock,60,50,120,30,90,80
221 | 220,swinub,2,0.4,6.5,50,ice,ground,50,50,40,50,30,30
222 | 221,piloswine,2,1.1,55.8,158,ice,ground,100,100,80,50,60,60
223 | 222,corsola,2,0.6,5.0,144,water,rock,65,55,95,35,65,95
224 | 223,remoraid,2,0.6,12.0,60,water,,35,65,35,65,65,35
225 | 224,octillery,2,0.9,28.5,168,water,,75,105,75,45,105,75
226 | 225,delibird,2,0.9,16.0,116,ice,flying,45,55,45,75,65,45
227 | 226,mantine,2,2.1,220.0,170,water,flying,85,40,70,70,80,140
228 | 227,skarmory,2,1.7,50.5,163,steel,flying,65,80,140,70,40,70
229 | 228,houndour,2,0.6,10.8,66,dark,fire,45,60,30,65,80,50
230 | 229,houndoom,2,1.4,35.0,175,dark,fire,75,90,50,95,110,80
231 | 230,kingdra,2,1.8,152.0,243,water,dragon,75,95,95,85,95,95
232 | 231,phanpy,2,0.5,33.5,66,ground,,90,60,60,40,40,40
233 | 232,donphan,2,1.1,120.0,175,ground,,90,120,120,50,60,60
234 | 233,porygon2,2,0.6,32.5,180,normal,,85,80,90,60,105,95
235 | 234,stantler,2,1.4,71.2,163,normal,,73,95,62,85,85,65
236 | 235,smeargle,2,1.2,58.0,88,normal,,55,20,35,75,20,45
237 | 236,tyrogue,2,0.7,21.0,42,fighting,,35,35,35,35,35,35
238 | 237,hitmontop,2,1.4,48.0,159,fighting,,50,95,95,70,35,110
239 | 238,smoochum,2,0.4,6.0,61,ice,psychic,45,30,15,65,85,65
240 | 239,elekid,2,0.6,23.5,72,electric,,45,63,37,95,65,55
241 | 240,magby,2,0.7,21.4,73,fire,,45,75,37,83,70,55
242 | 241,miltank,2,1.2,75.5,172,normal,,95,80,105,100,40,70
243 | 242,blissey,2,1.5,46.8,608,normal,,255,10,10,55,75,135
244 | 243,raikou,2,1.9,178.0,261,electric,,90,85,75,115,115,100
245 | 244,entei,2,2.1,198.0,261,fire,,115,115,85,100,90,75
246 | 245,suicune,2,2.0,187.0,261,water,,100,75,115,85,90,115
247 | 246,larvitar,2,0.6,72.0,60,rock,ground,50,64,50,41,45,50
248 | 247,pupitar,2,1.2,152.0,144,rock,ground,70,84,70,51,65,70
249 | 248,tyranitar,2,2.0,202.0,270,rock,dark,100,134,110,61,95,100
250 | 249,lugia,2,5.2,216.0,306,psychic,flying,106,90,130,110,90,154
251 | 250,ho-oh,2,3.8,199.0,306,fire,flying,106,130,90,90,110,154
252 | 251,celebi,2,0.6,5.0,270,psychic,grass,100,100,100,100,100,100
253 | 252,treecko,3,0.5,5.0,62,grass,,40,45,35,70,65,55
254 | 253,grovyle,3,0.9,21.6,142,grass,,50,65,45,95,85,65
255 | 254,sceptile,3,1.7,52.2,239,grass,,70,85,65,120,105,85
256 | 255,torchic,3,0.4,2.5,62,fire,,45,60,40,45,70,50
257 | 256,combusken,3,0.9,19.5,142,fire,fighting,60,85,60,55,85,60
258 | 257,blaziken,3,1.9,52.0,239,fire,fighting,80,120,70,80,110,70
259 | 258,mudkip,3,0.4,7.6,62,water,,50,70,50,40,50,50
260 | 259,marshtomp,3,0.7,28.0,142,water,ground,70,85,70,50,60,70
261 | 260,swampert,3,1.5,81.9,241,water,ground,100,110,90,60,85,90
262 | 261,poochyena,3,0.5,13.6,56,dark,,35,55,35,35,30,30
263 | 262,mightyena,3,1.0,37.0,147,dark,,70,90,70,70,60,60
264 | 263,zigzagoon,3,0.4,17.5,56,normal,,38,30,41,60,30,41
265 | 264,linoone,3,0.5,32.5,147,normal,,78,70,61,100,50,61
266 | 265,wurmple,3,0.3,3.6,56,bug,,45,45,35,20,20,30
267 | 266,silcoon,3,0.6,10.0,72,bug,,50,35,55,15,25,25
268 | 267,beautifly,3,1.0,28.4,178,bug,flying,60,70,50,65,100,50
269 | 268,cascoon,3,0.7,11.5,72,bug,,50,35,55,15,25,25
270 | 269,dustox,3,1.2,31.6,173,bug,poison,60,50,70,65,50,90
271 | 270,lotad,3,0.5,2.6,44,water,grass,40,30,30,30,40,50
272 | 271,lombre,3,1.2,32.5,119,water,grass,60,50,50,50,60,70
273 | 272,ludicolo,3,1.5,55.0,216,water,grass,80,70,70,70,90,100
274 | 273,seedot,3,0.5,4.0,44,grass,,40,40,50,30,30,30
275 | 274,nuzleaf,3,1.0,28.0,119,grass,dark,70,70,40,60,60,40
276 | 275,shiftry,3,1.3,59.6,216,grass,dark,90,100,60,80,90,60
277 | 276,taillow,3,0.3,2.3,54,normal,flying,40,55,30,85,30,30
278 | 277,swellow,3,0.7,19.8,159,normal,flying,60,85,60,125,75,50
279 | 278,wingull,3,0.6,9.5,54,water,flying,40,30,30,85,55,30
280 | 279,pelipper,3,1.2,28.0,154,water,flying,60,50,100,65,95,70
281 | 280,ralts,3,0.4,6.6,40,psychic,fairy,28,25,25,40,45,35
282 | 281,kirlia,3,0.8,20.2,97,psychic,fairy,38,35,35,50,65,55
283 | 282,gardevoir,3,1.6,48.4,233,psychic,fairy,68,65,65,80,125,115
284 | 283,surskit,3,0.5,1.7,54,bug,water,40,30,32,65,50,52
285 | 284,masquerain,3,0.8,3.6,159,bug,flying,70,60,62,80,100,82
286 | 285,shroomish,3,0.4,4.5,59,grass,,60,40,60,35,40,60
287 | 286,breloom,3,1.2,39.2,161,grass,fighting,60,130,80,70,60,60
288 | 287,slakoth,3,0.8,24.0,56,normal,,60,60,60,30,35,35
289 | 288,vigoroth,3,1.4,46.5,154,normal,,80,80,80,90,55,55
290 | 289,slaking,3,2.0,130.5,252,normal,,150,160,100,100,95,65
291 | 290,nincada,3,0.5,5.5,53,bug,ground,31,45,90,40,30,30
292 | 291,ninjask,3,0.8,12.0,160,bug,flying,61,90,45,160,50,50
293 | 292,shedinja,3,0.8,1.2,83,bug,ghost,1,90,45,40,30,30
294 | 293,whismur,3,0.6,16.3,48,normal,,64,51,23,28,51,23
295 | 294,loudred,3,1.0,40.5,126,normal,,84,71,43,48,71,43
296 | 295,exploud,3,1.5,84.0,221,normal,,104,91,63,68,91,73
297 | 296,makuhita,3,1.0,86.4,47,fighting,,72,60,30,25,20,30
298 | 297,hariyama,3,2.3,253.8,166,fighting,,144,120,60,50,40,60
299 | 298,azurill,3,0.2,2.0,38,normal,fairy,50,20,40,20,20,40
300 | 299,nosepass,3,1.0,97.0,75,rock,,30,45,135,30,45,90
301 | 300,skitty,3,0.6,11.0,52,normal,,50,45,45,50,35,35
302 | 301,delcatty,3,1.1,32.6,140,normal,,70,65,65,90,55,55
303 | 302,sableye,3,0.5,11.0,133,dark,ghost,50,75,75,50,65,65
304 | 303,mawile,3,0.6,11.5,133,steel,fairy,50,85,85,50,55,55
305 | 304,aron,3,0.4,60.0,66,steel,rock,50,70,100,30,40,40
306 | 305,lairon,3,0.9,120.0,151,steel,rock,60,90,140,40,50,50
307 | 306,aggron,3,2.1,360.0,239,steel,rock,70,110,180,50,60,60
308 | 307,meditite,3,0.6,11.2,56,fighting,psychic,30,40,55,60,40,55
309 | 308,medicham,3,1.3,31.5,144,fighting,psychic,60,60,75,80,60,75
310 | 309,electrike,3,0.6,15.2,59,electric,,40,45,40,65,65,40
311 | 310,manectric,3,1.5,40.2,166,electric,,70,75,60,105,105,60
312 | 311,plusle,3,0.4,4.2,142,electric,,60,50,40,95,85,75
313 | 312,minun,3,0.4,4.2,142,electric,,60,40,50,95,75,85
314 | 313,volbeat,3,0.7,17.7,151,bug,,65,73,75,85,47,85
315 | 314,illumise,3,0.6,17.7,151,bug,,65,47,75,85,73,85
316 | 315,roselia,3,0.3,2.0,140,grass,poison,50,60,45,65,100,80
317 | 316,gulpin,3,0.4,10.3,60,poison,,70,43,53,40,43,53
318 | 317,swalot,3,1.7,80.0,163,poison,,100,73,83,55,73,83
319 | 318,carvanha,3,0.8,20.8,61,water,dark,45,90,20,65,65,20
320 | 319,sharpedo,3,1.8,88.8,161,water,dark,70,120,40,95,95,40
321 | 320,wailmer,3,2.0,130.0,80,water,,130,70,35,60,70,35
322 | 321,wailord,3,14.5,398.0,175,water,,170,90,45,60,90,45
323 | 322,numel,3,0.7,24.0,61,fire,ground,60,60,40,35,65,45
324 | 323,camerupt,3,1.9,220.0,161,fire,ground,70,100,70,40,105,75
325 | 324,torkoal,3,0.5,80.4,165,fire,,70,85,140,20,85,70
326 | 325,spoink,3,0.7,30.6,66,psychic,,60,25,35,60,70,80
327 | 326,grumpig,3,0.9,71.5,165,psychic,,80,45,65,80,90,110
328 | 327,spinda,3,1.1,5.0,126,normal,,60,60,60,60,60,60
329 | 328,trapinch,3,0.7,15.0,58,ground,,45,100,45,10,45,45
330 | 329,vibrava,3,1.1,15.3,119,ground,dragon,50,70,50,70,50,50
331 | 330,flygon,3,2.0,82.0,234,ground,dragon,80,100,80,100,80,80
332 | 331,cacnea,3,0.4,51.3,67,grass,,50,85,40,35,85,40
333 | 332,cacturne,3,1.3,77.4,166,grass,dark,70,115,60,55,115,60
334 | 333,swablu,3,0.4,1.2,62,normal,flying,45,40,60,50,40,75
335 | 334,altaria,3,1.1,20.6,172,dragon,flying,75,70,90,80,70,105
336 | 335,zangoose,3,1.3,40.3,160,normal,,73,115,60,90,60,60
337 | 336,seviper,3,2.7,52.5,160,poison,,73,100,60,65,100,60
338 | 337,lunatone,3,1.0,168.0,161,rock,psychic,90,55,65,70,95,85
339 | 338,solrock,3,1.2,154.0,161,rock,psychic,90,95,85,70,55,65
340 | 339,barboach,3,0.4,1.9,58,water,ground,50,48,43,60,46,41
341 | 340,whiscash,3,0.9,23.6,164,water,ground,110,78,73,60,76,71
342 | 341,corphish,3,0.6,11.5,62,water,,43,80,65,35,50,35
343 | 342,crawdaunt,3,1.1,32.8,164,water,dark,63,120,85,55,90,55
344 | 343,baltoy,3,0.5,21.5,60,ground,psychic,40,40,55,55,40,70
345 | 344,claydol,3,1.5,108.0,175,ground,psychic,60,70,105,75,70,120
346 | 345,lileep,3,1.0,23.8,71,rock,grass,66,41,77,23,61,87
347 | 346,cradily,3,1.5,60.4,173,rock,grass,86,81,97,43,81,107
348 | 347,anorith,3,0.7,12.5,71,rock,bug,45,95,50,75,40,50
349 | 348,armaldo,3,1.5,68.2,173,rock,bug,75,125,100,45,70,80
350 | 349,feebas,3,0.6,7.4,40,water,,20,15,20,80,10,55
351 | 350,milotic,3,6.2,162.0,189,water,,95,60,79,81,100,125
352 | 351,castform,3,0.3,0.8,147,normal,,70,70,70,70,70,70
353 | 352,kecleon,3,1.0,22.0,154,normal,,60,90,70,40,60,120
354 | 353,shuppet,3,0.6,2.3,59,ghost,,44,75,35,45,63,33
355 | 354,banette,3,1.1,12.5,159,ghost,,64,115,65,65,83,63
356 | 355,duskull,3,0.8,15.0,59,ghost,,20,40,90,25,30,90
357 | 356,dusclops,3,1.6,30.6,159,ghost,,40,70,130,25,60,130
358 | 357,tropius,3,2.0,100.0,161,grass,flying,99,68,83,51,72,87
359 | 358,chimecho,3,0.6,1.0,159,psychic,,75,50,80,65,95,90
360 | 359,absol,3,1.2,47.0,163,dark,,65,130,60,75,75,60
361 | 360,wynaut,3,0.6,14.0,52,psychic,,95,23,48,23,23,48
362 | 361,snorunt,3,0.7,16.8,60,ice,,50,50,50,50,50,50
363 | 362,glalie,3,1.5,256.5,168,ice,,80,80,80,80,80,80
364 | 363,spheal,3,0.8,39.5,58,ice,water,70,40,50,25,55,50
365 | 364,sealeo,3,1.1,87.6,144,ice,water,90,60,70,45,75,70
366 | 365,walrein,3,1.4,150.6,239,ice,water,110,80,90,65,95,90
367 | 366,clamperl,3,0.4,52.5,69,water,,35,64,85,32,74,55
368 | 367,huntail,3,1.7,27.0,170,water,,55,104,105,52,94,75
369 | 368,gorebyss,3,1.8,22.6,170,water,,55,84,105,52,114,75
370 | 369,relicanth,3,1.0,23.4,170,water,rock,100,90,130,55,45,65
371 | 370,luvdisc,3,0.6,8.7,116,water,,43,30,55,97,40,65
372 | 371,bagon,3,0.6,42.1,60,dragon,,45,75,60,50,40,30
373 | 372,shelgon,3,1.1,110.5,147,dragon,,65,95,100,50,60,50
374 | 373,salamence,3,1.5,102.6,270,dragon,flying,95,135,80,100,110,80
375 | 374,beldum,3,0.6,95.2,60,steel,psychic,40,55,80,30,35,60
376 | 375,metang,3,1.2,202.5,147,steel,psychic,60,75,100,50,55,80
377 | 376,metagross,3,1.6,550.0,270,steel,psychic,80,135,130,70,95,90
378 | 377,regirock,3,1.7,230.0,261,rock,,80,100,200,50,50,100
379 | 378,regice,3,1.8,175.0,261,ice,,80,50,100,50,100,200
380 | 379,registeel,3,1.9,205.0,261,steel,,80,75,150,50,75,150
381 | 380,latias,3,1.4,40.0,270,dragon,psychic,80,80,90,110,110,130
382 | 381,latios,3,2.0,60.0,270,dragon,psychic,80,90,80,110,130,110
383 | 382,kyogre,3,4.5,352.0,302,water,,100,100,90,90,150,140
384 | 383,groudon,3,3.5,950.0,302,ground,,100,150,140,90,100,90
385 | 384,rayquaza,3,7.0,206.5,306,dragon,flying,105,150,90,95,150,90
386 | 385,jirachi,3,0.3,1.1,270,steel,psychic,100,100,100,100,100,100
387 | 386,deoxys,3,1.7,60.8,270,psychic,,50,150,50,150,150,50
388 | 387,turtwig,4,0.4,10.2,64,grass,,55,68,64,31,45,55
389 | 388,grotle,4,1.1,97.0,142,grass,,75,89,85,36,55,65
390 | 389,torterra,4,2.2,310.0,236,grass,ground,95,109,105,56,75,85
391 | 390,chimchar,4,0.5,6.2,62,fire,,44,58,44,61,58,44
392 | 391,monferno,4,0.9,22.0,142,fire,fighting,64,78,52,81,78,52
393 | 392,infernape,4,1.2,55.0,240,fire,fighting,76,104,71,108,104,71
394 | 393,piplup,4,0.4,5.2,63,water,,53,51,53,40,61,56
395 | 394,prinplup,4,0.8,23.0,142,water,,64,66,68,50,81,76
396 | 395,empoleon,4,1.7,84.5,239,water,steel,84,86,88,60,111,101
397 | 396,starly,4,0.3,2.0,49,normal,flying,40,55,30,60,30,30
398 | 397,staravia,4,0.6,15.5,119,normal,flying,55,75,50,80,40,40
399 | 398,staraptor,4,1.2,24.9,218,normal,flying,85,120,70,100,50,60
400 | 399,bidoof,4,0.5,20.0,50,normal,,59,45,40,31,35,40
401 | 400,bibarel,4,1.0,31.5,144,normal,water,79,85,60,71,55,60
402 | 401,kricketot,4,0.3,2.2,39,bug,,37,25,41,25,25,41
403 | 402,kricketune,4,1.0,25.5,134,bug,,77,85,51,65,55,51
404 | 403,shinx,4,0.5,9.5,53,electric,,45,65,34,45,40,34
405 | 404,luxio,4,0.9,30.5,127,electric,,60,85,49,60,60,49
406 | 405,luxray,4,1.4,42.0,235,electric,,80,120,79,70,95,79
407 | 406,budew,4,0.2,1.2,56,grass,poison,40,30,35,55,50,70
408 | 407,roserade,4,0.9,14.5,232,grass,poison,60,70,65,90,125,105
409 | 408,cranidos,4,0.9,31.5,70,rock,,67,125,40,58,30,30
410 | 409,rampardos,4,1.6,102.5,173,rock,,97,165,60,58,65,50
411 | 410,shieldon,4,0.5,57.0,70,rock,steel,30,42,118,30,42,88
412 | 411,bastiodon,4,1.3,149.5,173,rock,steel,60,52,168,30,47,138
413 | 412,burmy,4,0.2,3.4,45,bug,,40,29,45,36,29,45
414 | 413,wormadam,4,0.5,6.5,148,bug,grass,60,59,85,36,79,105
415 | 414,mothim,4,0.9,23.3,148,bug,flying,70,94,50,66,94,50
416 | 415,combee,4,0.3,5.5,49,bug,flying,30,30,42,70,30,42
417 | 416,vespiquen,4,1.2,38.5,166,bug,flying,70,80,102,40,80,102
418 | 417,pachirisu,4,0.4,3.9,142,electric,,60,45,70,95,45,90
419 | 418,buizel,4,0.7,29.5,66,water,,55,65,35,85,60,30
420 | 419,floatzel,4,1.1,33.5,173,water,,85,105,55,115,85,50
421 | 420,cherubi,4,0.4,3.3,55,grass,,45,35,45,35,62,53
422 | 421,cherrim,4,0.5,9.3,158,grass,,70,60,70,85,87,78
423 | 422,shellos,4,0.3,6.3,65,water,,76,48,48,34,57,62
424 | 423,gastrodon,4,0.9,29.9,166,water,ground,111,83,68,39,92,82
425 | 424,ambipom,4,1.2,20.3,169,normal,,75,100,66,115,60,66
426 | 425,drifloon,4,0.4,1.2,70,ghost,flying,90,50,34,70,60,44
427 | 426,drifblim,4,1.2,15.0,174,ghost,flying,150,80,44,80,90,54
428 | 427,buneary,4,0.4,5.5,70,normal,,55,66,44,85,44,56
429 | 428,lopunny,4,1.2,33.3,168,normal,,65,76,84,105,54,96
430 | 429,mismagius,4,0.9,4.4,173,ghost,,60,60,60,105,105,105
431 | 430,honchkrow,4,0.9,27.3,177,dark,flying,100,125,52,71,105,52
432 | 431,glameow,4,0.5,3.9,62,normal,,49,55,42,85,42,37
433 | 432,purugly,4,1.0,43.8,158,normal,,71,82,64,112,64,59
434 | 433,chingling,4,0.2,0.6,57,psychic,,45,30,50,45,65,50
435 | 434,stunky,4,0.4,19.2,66,poison,dark,63,63,47,74,41,41
436 | 435,skuntank,4,1.0,38.0,168,poison,dark,103,93,67,84,71,61
437 | 436,bronzor,4,0.5,60.5,60,steel,psychic,57,24,86,23,24,86
438 | 437,bronzong,4,1.3,187.0,175,steel,psychic,67,89,116,33,79,116
439 | 438,bonsly,4,0.5,15.0,58,rock,,50,80,95,10,10,45
440 | 439,mime-jr,4,0.6,13.0,62,psychic,fairy,20,25,45,60,70,90
441 | 440,happiny,4,0.6,24.4,110,normal,,100,5,5,30,15,65
442 | 441,chatot,4,0.5,1.9,144,normal,flying,76,65,45,91,92,42
443 | 442,spiritomb,4,1.0,108.0,170,ghost,dark,50,92,108,35,92,108
444 | 443,gible,4,0.7,20.5,60,dragon,ground,58,70,45,42,40,45
445 | 444,gabite,4,1.4,56.0,144,dragon,ground,68,90,65,82,50,55
446 | 445,garchomp,4,1.9,95.0,270,dragon,ground,108,130,95,102,80,85
447 | 446,munchlax,4,0.6,105.0,78,normal,,135,85,40,5,40,85
448 | 447,riolu,4,0.7,20.2,57,fighting,,40,70,40,60,35,40
449 | 448,lucario,4,1.2,54.0,184,fighting,steel,70,110,70,90,115,70
450 | 449,hippopotas,4,0.8,49.5,66,ground,,68,72,78,32,38,42
451 | 450,hippowdon,4,2.0,300.0,184,ground,,108,112,118,47,68,72
452 | 451,skorupi,4,0.8,12.0,66,poison,bug,40,50,90,65,30,55
453 | 452,drapion,4,1.3,61.5,175,poison,dark,70,90,110,95,60,75
454 | 453,croagunk,4,0.7,23.0,60,poison,fighting,48,61,40,50,61,40
455 | 454,toxicroak,4,1.3,44.4,172,poison,fighting,83,106,65,85,86,65
456 | 455,carnivine,4,1.4,27.0,159,grass,,74,100,72,46,90,72
457 | 456,finneon,4,0.4,7.0,66,water,,49,49,56,66,49,61
458 | 457,lumineon,4,1.2,24.0,161,water,,69,69,76,91,69,86
459 | 458,mantyke,4,1.0,65.0,69,water,flying,45,20,50,50,60,120
460 | 459,snover,4,1.0,50.5,67,grass,ice,60,62,50,40,62,60
461 | 460,abomasnow,4,2.2,135.5,173,grass,ice,90,92,75,60,92,85
462 | 461,weavile,4,1.1,34.0,179,dark,ice,70,120,65,125,45,85
463 | 462,magnezone,4,1.2,180.0,241,electric,steel,70,70,115,60,130,90
464 | 463,lickilicky,4,1.7,140.0,180,normal,,110,85,95,50,80,95
465 | 464,rhyperior,4,2.4,282.8,241,ground,rock,115,140,130,40,55,55
466 | 465,tangrowth,4,2.0,128.6,187,grass,,100,100,125,50,110,50
467 | 466,electivire,4,1.8,138.6,243,electric,,75,123,67,95,95,85
468 | 467,magmortar,4,1.6,68.0,243,fire,,75,95,67,83,125,95
469 | 468,togekiss,4,1.5,38.0,245,fairy,flying,85,50,95,80,120,115
470 | 469,yanmega,4,1.9,51.5,180,bug,flying,86,76,86,95,116,56
471 | 470,leafeon,4,1.0,25.5,184,grass,,65,110,130,95,60,65
472 | 471,glaceon,4,0.8,25.9,184,ice,,65,60,110,65,130,95
473 | 472,gliscor,4,2.0,42.5,179,ground,flying,75,95,125,95,45,75
474 | 473,mamoswine,4,2.5,291.0,239,ice,ground,110,130,80,80,70,60
475 | 474,porygon-z,4,0.9,34.0,241,normal,,85,80,70,90,135,75
476 | 475,gallade,4,1.6,52.0,233,psychic,fighting,68,125,65,80,65,115
477 | 476,probopass,4,1.4,340.0,184,rock,steel,60,55,145,40,75,150
478 | 477,dusknoir,4,2.2,106.6,236,ghost,,45,100,135,45,65,135
479 | 478,froslass,4,1.3,26.6,168,ice,ghost,70,80,70,110,80,70
480 | 479,rotom,4,0.3,0.3,154,electric,ghost,50,50,77,91,95,77
481 | 480,uxie,4,0.3,0.3,261,psychic,,75,75,130,95,75,130
482 | 481,mesprit,4,0.3,0.3,261,psychic,,80,105,105,80,105,105
483 | 482,azelf,4,0.3,0.3,261,psychic,,75,125,70,115,125,70
484 | 483,dialga,4,5.4,683.0,306,steel,dragon,100,120,120,90,150,100
485 | 484,palkia,4,4.2,336.0,306,water,dragon,90,120,100,100,150,120
486 | 485,heatran,4,1.7,430.0,270,fire,steel,91,90,106,77,130,106
487 | 486,regigigas,4,3.7,420.0,302,normal,,110,160,110,100,80,110
488 | 487,giratina,4,4.5,750.0,306,ghost,dragon,150,100,120,90,100,120
489 | 488,cresselia,4,1.5,85.6,270,psychic,,120,70,120,85,75,130
490 | 489,phione,4,0.4,3.1,216,water,,80,80,80,80,80,80
491 | 490,manaphy,4,0.3,1.4,270,water,,100,100,100,100,100,100
492 | 491,darkrai,4,1.5,50.5,270,dark,,70,90,90,125,135,90
493 | 492,shaymin,4,0.2,2.1,270,grass,,100,100,100,100,100,100
494 | 493,arceus,4,3.2,320.0,324,normal,,120,120,120,120,120,120
495 | 494,victini,5,0.4,4.0,270,psychic,fire,100,100,100,100,100,100
496 | 495,snivy,5,0.6,8.1,62,grass,,45,45,55,63,45,55
497 | 496,servine,5,0.8,16.0,145,grass,,60,60,75,83,60,75
498 | 497,serperior,5,3.3,63.0,238,grass,,75,75,95,113,75,95
499 | 498,tepig,5,0.5,9.9,62,fire,,65,63,45,45,45,45
500 | 499,pignite,5,1.0,55.5,146,fire,fighting,90,93,55,55,70,55
501 | 500,emboar,5,1.6,150.0,238,fire,fighting,110,123,65,65,100,65
502 | 501,oshawott,5,0.5,5.9,62,water,,55,55,45,45,63,45
503 | 502,dewott,5,0.8,24.5,145,water,,75,75,60,60,83,60
504 | 503,samurott,5,1.5,94.6,238,water,,95,100,85,70,108,70
505 | 504,patrat,5,0.5,11.6,51,normal,,45,55,39,42,35,39
506 | 505,watchog,5,1.1,27.0,147,normal,,60,85,69,77,60,69
507 | 506,lillipup,5,0.4,4.1,55,normal,,45,60,45,55,25,45
508 | 507,herdier,5,0.9,14.7,130,normal,,65,80,65,60,35,65
509 | 508,stoutland,5,1.2,61.0,225,normal,,85,110,90,80,45,90
510 | 509,purrloin,5,0.4,10.1,56,dark,,41,50,37,66,50,37
511 | 510,liepard,5,1.1,37.5,156,dark,,64,88,50,106,88,50
512 | 511,pansage,5,0.6,10.5,63,grass,,50,53,48,64,53,48
513 | 512,simisage,5,1.1,30.5,174,grass,,75,98,63,101,98,63
514 | 513,pansear,5,0.6,11.0,63,fire,,50,53,48,64,53,48
515 | 514,simisear,5,1.0,28.0,174,fire,,75,98,63,101,98,63
516 | 515,panpour,5,0.6,13.5,63,water,,50,53,48,64,53,48
517 | 516,simipour,5,1.0,29.0,174,water,,75,98,63,101,98,63
518 | 517,munna,5,0.6,23.3,58,psychic,,76,25,45,24,67,55
519 | 518,musharna,5,1.1,60.5,170,psychic,,116,55,85,29,107,95
520 | 519,pidove,5,0.3,2.1,53,normal,flying,50,55,50,43,36,30
521 | 520,tranquill,5,0.6,15.0,125,normal,flying,62,77,62,65,50,42
522 | 521,unfezant,5,1.2,29.0,220,normal,flying,80,115,80,93,65,55
523 | 522,blitzle,5,0.8,29.8,59,electric,,45,60,32,76,50,32
524 | 523,zebstrika,5,1.6,79.5,174,electric,,75,100,63,116,80,63
525 | 524,roggenrola,5,0.4,18.0,56,rock,,55,75,85,15,25,25
526 | 525,boldore,5,0.9,102.0,137,rock,,70,105,105,20,50,40
527 | 526,gigalith,5,1.7,260.0,232,rock,,85,135,130,25,60,80
528 | 527,woobat,5,0.4,2.1,65,psychic,flying,65,45,43,72,55,43
529 | 528,swoobat,5,0.9,10.5,149,psychic,flying,67,57,55,114,77,55
530 | 529,drilbur,5,0.3,8.5,66,ground,,60,85,40,68,30,45
531 | 530,excadrill,5,0.7,40.4,178,ground,steel,110,135,60,88,50,65
532 | 531,audino,5,1.1,31.0,390,normal,,103,60,86,50,60,86
533 | 532,timburr,5,0.6,12.5,61,fighting,,75,80,55,35,25,35
534 | 533,gurdurr,5,1.2,40.0,142,fighting,,85,105,85,40,40,50
535 | 534,conkeldurr,5,1.4,87.0,227,fighting,,105,140,95,45,55,65
536 | 535,tympole,5,0.5,4.5,59,water,,50,50,40,64,50,40
537 | 536,palpitoad,5,0.8,17.0,134,water,ground,75,65,55,69,65,55
538 | 537,seismitoad,5,1.5,62.0,229,water,ground,105,95,75,74,85,75
539 | 538,throh,5,1.3,55.5,163,fighting,,120,100,85,45,30,85
540 | 539,sawk,5,1.4,51.0,163,fighting,,75,125,75,85,30,75
541 | 540,sewaddle,5,0.3,2.5,62,bug,grass,45,53,70,42,40,60
542 | 541,swadloon,5,0.5,7.3,133,bug,grass,55,63,90,42,50,80
543 | 542,leavanny,5,1.2,20.5,225,bug,grass,75,103,80,92,70,80
544 | 543,venipede,5,0.4,5.3,52,bug,poison,30,45,59,57,30,39
545 | 544,whirlipede,5,1.2,58.5,126,bug,poison,40,55,99,47,40,79
546 | 545,scolipede,5,2.5,200.5,218,bug,poison,60,100,89,112,55,69
547 | 546,cottonee,5,0.3,0.6,56,grass,fairy,40,27,60,66,37,50
548 | 547,whimsicott,5,0.7,6.6,168,grass,fairy,60,67,85,116,77,75
549 | 548,petilil,5,0.5,6.6,56,grass,,45,35,50,30,70,50
550 | 549,lilligant,5,1.1,16.3,168,grass,,70,60,75,90,110,75
551 | 550,basculin,5,1.0,18.0,161,water,,70,92,65,98,80,55
552 | 551,sandile,5,0.7,15.2,58,ground,dark,50,72,35,65,35,35
553 | 552,krokorok,5,1.0,33.4,123,ground,dark,60,82,45,74,45,45
554 | 553,krookodile,5,1.5,96.3,234,ground,dark,95,117,80,92,65,70
555 | 554,darumaka,5,0.6,37.5,63,fire,,70,90,45,50,15,45
556 | 555,darmanitan,5,1.3,92.9,168,fire,,105,140,55,95,30,55
557 | 556,maractus,5,1.0,28.0,161,grass,,75,86,67,60,106,67
558 | 557,dwebble,5,0.3,14.5,65,bug,rock,50,65,85,55,35,35
559 | 558,crustle,5,1.4,200.0,170,bug,rock,70,105,125,45,65,75
560 | 559,scraggy,5,0.6,11.8,70,dark,fighting,50,75,70,48,35,70
561 | 560,scrafty,5,1.1,30.0,171,dark,fighting,65,90,115,58,45,115
562 | 561,sigilyph,5,1.4,14.0,172,psychic,flying,72,58,80,97,103,80
563 | 562,yamask,5,0.5,1.5,61,ghost,,38,30,85,30,55,65
564 | 563,cofagrigus,5,1.7,76.5,169,ghost,,58,50,145,30,95,105
565 | 564,tirtouga,5,0.7,16.5,71,water,rock,54,78,103,22,53,45
566 | 565,carracosta,5,1.2,81.0,173,water,rock,74,108,133,32,83,65
567 | 566,archen,5,0.5,9.5,71,rock,flying,55,112,45,70,74,45
568 | 567,archeops,5,1.4,32.0,177,rock,flying,75,140,65,110,112,65
569 | 568,trubbish,5,0.6,31.0,66,poison,,50,50,62,65,40,62
570 | 569,garbodor,5,1.9,107.3,166,poison,,80,95,82,75,60,82
571 | 570,zorua,5,0.7,12.5,66,dark,,40,65,40,65,80,40
572 | 571,zoroark,5,1.6,81.1,179,dark,,60,105,60,105,120,60
573 | 572,minccino,5,0.4,5.8,60,normal,,55,50,40,75,40,40
574 | 573,cinccino,5,0.5,7.5,165,normal,,75,95,60,115,65,60
575 | 574,gothita,5,0.4,5.8,58,psychic,,45,30,50,45,55,65
576 | 575,gothorita,5,0.7,18.0,137,psychic,,60,45,70,55,75,85
577 | 576,gothitelle,5,1.5,44.0,221,psychic,,70,55,95,65,95,110
578 | 577,solosis,5,0.3,1.0,58,psychic,,45,30,40,20,105,50
579 | 578,duosion,5,0.6,8.0,130,psychic,,65,40,50,30,125,60
580 | 579,reuniclus,5,1.0,20.1,221,psychic,,110,65,75,30,125,85
581 | 580,ducklett,5,0.5,5.5,61,water,flying,62,44,50,55,44,50
582 | 581,swanna,5,1.3,24.2,166,water,flying,75,87,63,98,87,63
583 | 582,vanillite,5,0.4,5.7,61,ice,,36,50,50,44,65,60
584 | 583,vanillish,5,1.1,41.0,138,ice,,51,65,65,59,80,75
585 | 584,vanilluxe,5,1.3,57.5,241,ice,,71,95,85,79,110,95
586 | 585,deerling,5,0.6,19.5,67,normal,grass,60,60,50,75,40,50
587 | 586,sawsbuck,5,1.9,92.5,166,normal,grass,80,100,70,95,60,70
588 | 587,emolga,5,0.4,5.0,150,electric,flying,55,75,60,103,75,60
589 | 588,karrablast,5,0.5,5.9,63,bug,,50,75,45,60,40,45
590 | 589,escavalier,5,1.0,33.0,173,bug,steel,70,135,105,20,60,105
591 | 590,foongus,5,0.2,1.0,59,grass,poison,69,55,45,15,55,55
592 | 591,amoonguss,5,0.6,10.5,162,grass,poison,114,85,70,30,85,80
593 | 592,frillish,5,1.2,33.0,67,water,ghost,55,40,50,40,65,85
594 | 593,jellicent,5,2.2,135.0,168,water,ghost,100,60,70,60,85,105
595 | 594,alomomola,5,1.2,31.6,165,water,,165,75,80,65,40,45
596 | 595,joltik,5,0.1,0.6,64,bug,electric,50,47,50,65,57,50
597 | 596,galvantula,5,0.8,14.3,165,bug,electric,70,77,60,108,97,60
598 | 597,ferroseed,5,0.6,18.8,61,grass,steel,44,50,91,10,24,86
599 | 598,ferrothorn,5,1.0,110.0,171,grass,steel,74,94,131,20,54,116
600 | 599,klink,5,0.3,21.0,60,steel,,40,55,70,30,45,60
601 | 600,klang,5,0.6,51.0,154,steel,,60,80,95,50,70,85
602 | 601,klinklang,5,0.6,81.0,234,steel,,60,100,115,90,70,85
603 | 602,tynamo,5,0.2,0.3,55,electric,,35,55,40,60,45,40
604 | 603,eelektrik,5,1.2,22.0,142,electric,,65,85,70,40,75,70
605 | 604,eelektross,5,2.1,80.5,232,electric,,85,115,80,50,105,80
606 | 605,elgyem,5,0.5,9.0,67,psychic,,55,55,55,30,85,55
607 | 606,beheeyem,5,1.0,34.5,170,psychic,,75,75,75,40,125,95
608 | 607,litwick,5,0.3,3.1,55,ghost,fire,50,30,55,20,65,55
609 | 608,lampent,5,0.6,13.0,130,ghost,fire,60,40,60,55,95,60
610 | 609,chandelure,5,1.0,34.3,234,ghost,fire,60,55,90,80,145,90
611 | 610,axew,5,0.6,18.0,64,dragon,,46,87,60,57,30,40
612 | 611,fraxure,5,1.0,36.0,144,dragon,,66,117,70,67,40,50
613 | 612,haxorus,5,1.8,105.5,243,dragon,,76,147,90,97,60,70
614 | 613,cubchoo,5,0.5,8.5,61,ice,,55,70,40,40,60,40
615 | 614,beartic,5,2.6,260.0,177,ice,,95,130,80,50,70,80
616 | 615,cryogonal,5,1.1,148.0,180,ice,,80,50,50,105,95,135
617 | 616,shelmet,5,0.4,7.7,61,bug,,50,40,85,25,40,65
618 | 617,accelgor,5,0.8,25.3,173,bug,,80,70,40,145,100,60
619 | 618,stunfisk,5,0.7,11.0,165,ground,electric,109,66,84,32,81,99
620 | 619,mienfoo,5,0.9,20.0,70,fighting,,45,85,50,65,55,50
621 | 620,mienshao,5,1.4,35.5,179,fighting,,65,125,60,105,95,60
622 | 621,druddigon,5,1.6,139.0,170,dragon,,77,120,90,48,60,90
623 | 622,golett,5,1.0,92.0,61,ground,ghost,59,74,50,35,35,50
624 | 623,golurk,5,2.8,330.0,169,ground,ghost,89,124,80,55,55,80
625 | 624,pawniard,5,0.5,10.2,68,dark,steel,45,85,70,60,40,40
626 | 625,bisharp,5,1.6,70.0,172,dark,steel,65,125,100,70,60,70
627 | 626,bouffalant,5,1.6,94.6,172,normal,,95,110,95,55,40,95
628 | 627,rufflet,5,0.5,10.5,70,normal,flying,70,83,50,60,37,50
629 | 628,braviary,5,1.5,41.0,179,normal,flying,100,123,75,80,57,75
630 | 629,vullaby,5,0.5,9.0,74,dark,flying,70,55,75,60,45,65
631 | 630,mandibuzz,5,1.2,39.5,179,dark,flying,110,65,105,80,55,95
632 | 631,heatmor,5,1.4,58.0,169,fire,,85,97,66,65,105,66
633 | 632,durant,5,0.3,33.0,169,bug,steel,58,109,112,109,48,48
634 | 633,deino,5,0.8,17.3,60,dark,dragon,52,65,50,38,45,50
635 | 634,zweilous,5,1.4,50.0,147,dark,dragon,72,85,70,58,65,70
636 | 635,hydreigon,5,1.8,160.0,270,dark,dragon,92,105,90,98,125,90
637 | 636,larvesta,5,1.1,28.8,72,bug,fire,55,85,55,60,50,55
638 | 637,volcarona,5,1.6,46.0,248,bug,fire,85,60,65,100,135,105
639 | 638,cobalion,5,2.1,250.0,261,steel,fighting,91,90,129,108,90,72
640 | 639,terrakion,5,1.9,260.0,261,rock,fighting,91,129,90,108,72,90
641 | 640,virizion,5,2.0,200.0,261,grass,fighting,91,90,72,108,90,129
642 | 641,tornadus,5,1.5,63.0,261,flying,,79,115,70,111,125,80
643 | 642,thundurus,5,1.5,61.0,261,electric,flying,79,115,70,111,125,80
644 | 643,reshiram,5,3.2,330.0,306,dragon,fire,100,120,100,90,150,120
645 | 644,zekrom,5,2.9,345.0,306,dragon,electric,100,150,120,90,120,100
646 | 645,landorus,5,1.5,68.0,270,ground,flying,89,125,90,101,115,80
647 | 646,kyurem,5,3.0,325.0,297,dragon,ice,125,130,90,95,130,90
648 | 647,keldeo,5,1.4,48.5,261,water,fighting,91,72,90,108,129,90
649 | 648,meloetta,5,0.6,6.5,270,normal,psychic,100,77,77,90,128,128
650 | 649,genesect,5,1.5,82.5,270,bug,steel,71,120,95,99,120,95
651 | 650,chespin,6,0.4,9.0,63,grass,,56,61,65,38,48,45
652 | 651,quilladin,6,0.7,29.0,142,grass,,61,78,95,57,56,58
653 | 652,chesnaught,6,1.6,90.0,239,grass,fighting,88,107,122,64,74,75
654 | 653,fennekin,6,0.4,9.4,61,fire,,40,45,40,60,62,60
655 | 654,braixen,6,1.0,14.5,143,fire,,59,59,58,73,90,70
656 | 655,delphox,6,1.5,39.0,240,fire,psychic,75,69,72,104,114,100
657 | 656,froakie,6,0.3,7.0,63,water,,41,56,40,71,62,44
658 | 657,frogadier,6,0.6,10.9,142,water,,54,63,52,97,83,56
659 | 658,greninja,6,1.5,40.0,239,water,dark,72,95,67,122,103,71
660 | 659,bunnelby,6,0.4,5.0,47,normal,,38,36,38,57,32,36
661 | 660,diggersby,6,1.0,42.4,148,normal,ground,85,56,77,78,50,77
662 | 661,fletchling,6,0.3,1.7,56,normal,flying,45,50,43,62,40,38
663 | 662,fletchinder,6,0.7,16.0,134,fire,flying,62,73,55,84,56,52
664 | 663,talonflame,6,1.2,24.5,175,fire,flying,78,81,71,126,74,69
665 | 664,scatterbug,6,0.3,2.5,40,bug,,38,35,40,35,27,25
666 | 665,spewpa,6,0.3,8.4,75,bug,,45,22,60,29,27,30
667 | 666,vivillon,6,1.2,17.0,185,bug,flying,80,52,50,89,90,50
668 | 667,litleo,6,0.6,13.5,74,fire,normal,62,50,58,72,73,54
669 | 668,pyroar,6,1.5,81.5,177,fire,normal,86,68,72,106,109,66
670 | 669,flabebe,6,0.1,0.1,61,fairy,,44,38,39,42,61,79
671 | 670,floette,6,0.2,0.9,130,fairy,,54,45,47,52,75,98
672 | 671,florges,6,1.1,10.0,248,fairy,,78,65,68,75,112,154
673 | 672,skiddo,6,0.9,31.0,70,grass,,66,65,48,52,62,57
674 | 673,gogoat,6,1.7,91.0,186,grass,,123,100,62,68,97,81
675 | 674,pancham,6,0.6,8.0,70,fighting,,67,82,62,43,46,48
676 | 675,pangoro,6,2.1,136.0,173,fighting,dark,95,124,78,58,69,71
677 | 676,furfrou,6,1.2,28.0,165,normal,,75,80,60,102,65,90
678 | 677,espurr,6,0.3,3.5,71,psychic,,62,48,54,68,63,60
679 | 678,meowstic,6,0.6,8.5,163,psychic,,74,48,76,104,83,81
680 | 679,honedge,6,0.8,2.0,65,steel,ghost,45,80,100,28,35,37
681 | 680,doublade,6,0.8,4.5,157,steel,ghost,59,110,150,35,45,49
682 | 681,aegislash,6,1.7,53.0,234,steel,ghost,60,50,150,60,50,150
683 | 682,spritzee,6,0.2,0.5,68,fairy,,78,52,60,23,63,65
684 | 683,aromatisse,6,0.8,15.5,162,fairy,,101,72,72,29,99,89
685 | 684,swirlix,6,0.4,3.5,68,fairy,,62,48,66,49,59,57
686 | 685,slurpuff,6,0.8,5.0,168,fairy,,82,80,86,72,85,75
687 | 686,inkay,6,0.4,3.5,58,dark,psychic,53,54,53,45,37,46
688 | 687,malamar,6,1.5,47.0,169,dark,psychic,86,92,88,73,68,75
689 | 688,binacle,6,0.5,31.0,61,rock,water,42,52,67,50,39,56
690 | 689,barbaracle,6,1.3,96.0,175,rock,water,72,105,115,68,54,86
691 | 690,skrelp,6,0.5,7.3,64,poison,water,50,60,60,30,60,60
692 | 691,dragalge,6,1.8,81.5,173,poison,dragon,65,75,90,44,97,123
693 | 692,clauncher,6,0.5,8.3,66,water,,50,53,62,44,58,63
694 | 693,clawitzer,6,1.3,35.3,100,water,,71,73,88,59,120,89
695 | 694,helioptile,6,0.5,6.0,58,electric,normal,44,38,33,70,61,43
696 | 695,heliolisk,6,1.0,21.0,168,electric,normal,62,55,52,109,109,94
697 | 696,tyrunt,6,0.8,26.0,72,rock,dragon,58,89,77,48,45,45
698 | 697,tyrantrum,6,2.5,270.0,182,rock,dragon,82,121,119,71,69,59
699 | 698,amaura,6,1.3,25.2,72,rock,ice,77,59,50,46,67,63
700 | 699,aurorus,6,2.7,225.0,104,rock,ice,123,77,72,58,99,92
701 | 700,sylveon,6,1.0,23.5,184,fairy,,95,65,65,60,110,130
702 | 701,hawlucha,6,0.8,21.5,175,fighting,flying,78,92,75,118,74,63
703 | 702,dedenne,6,0.2,2.2,151,electric,fairy,67,58,57,101,81,67
704 | 703,carbink,6,0.3,5.7,100,rock,fairy,50,50,150,50,50,150
705 | 704,goomy,6,0.3,2.8,60,dragon,,45,50,35,40,55,75
706 | 705,sliggoo,6,0.8,17.5,158,dragon,,68,75,53,60,83,113
707 | 706,goodra,6,2.0,150.5,270,dragon,,90,100,70,80,110,150
708 | 707,klefki,6,0.2,3.0,165,steel,fairy,57,80,91,75,80,87
709 | 708,phantump,6,0.4,7.0,62,ghost,grass,43,70,48,38,50,60
710 | 709,trevenant,6,1.5,71.0,166,ghost,grass,85,110,76,56,65,82
711 | 710,pumpkaboo,6,0.4,5.0,67,ghost,grass,49,66,70,51,44,55
712 | 711,gourgeist,6,0.9,12.5,173,ghost,grass,65,90,122,84,58,75
713 | 712,bergmite,6,1.0,99.5,61,ice,,55,69,85,28,32,35
714 | 713,avalugg,6,2.0,505.0,180,ice,,95,117,184,28,44,46
715 | 714,noibat,6,0.5,8.0,49,flying,dragon,40,30,35,55,45,40
716 | 715,noivern,6,1.5,85.0,187,flying,dragon,85,70,80,123,97,80
717 | 716,xerneas,6,3.0,215.0,306,fairy,,126,131,95,99,131,98
718 | 717,yveltal,6,5.8,203.0,306,dark,flying,126,131,95,99,131,98
719 | 718,zygarde,6,5.0,305.0,270,dragon,ground,108,100,121,95,81,95
720 | 719,diancie,6,0.7,8.8,270,rock,fairy,50,100,150,50,100,150
721 | 720,hoopa,6,0.5,9.0,270,psychic,ghost,80,110,60,70,150,130
722 | 721,volcanion,6,1.7,195.0,270,fire,water,80,110,120,70,130,90
723 | 722,rowlet,7,0.3,1.5,64,grass,flying,68,55,55,42,50,50
724 | 723,dartrix,7,0.7,16.0,147,grass,flying,78,75,75,52,70,70
725 | 724,decidueye,7,1.6,36.6,239,grass,ghost,78,107,75,70,100,100
726 | 725,litten,7,0.4,4.3,64,fire,,45,65,40,70,60,40
727 | 726,torracat,7,0.7,25.0,147,fire,,65,85,50,90,80,50
728 | 727,incineroar,7,1.8,83.0,239,fire,dark,95,115,90,60,80,90
729 | 728,popplio,7,0.4,7.5,64,water,,50,54,54,40,66,56
730 | 729,brionne,7,0.6,17.5,147,water,,60,69,69,50,91,81
731 | 730,primarina,7,1.8,44.0,239,water,fairy,80,74,74,60,126,116
732 | 731,pikipek,7,0.3,1.2,53,normal,flying,35,75,30,65,30,30
733 | 732,trumbeak,7,0.6,14.8,124,normal,flying,55,85,50,75,40,50
734 | 733,toucannon,7,1.1,26.0,218,normal,flying,80,120,75,60,75,75
735 | 734,yungoos,7,0.4,6.0,51,normal,,48,70,30,45,30,30
736 | 735,gumshoos,7,0.7,14.2,146,normal,,88,110,60,45,55,60
737 | 736,grubbin,7,0.4,4.4,60,bug,,47,62,45,46,55,45
738 | 737,charjabug,7,0.5,10.5,140,bug,electric,57,82,95,36,55,75
739 | 738,vikavolt,7,1.5,45.0,225,bug,electric,77,70,90,43,145,75
740 | 739,crabrawler,7,0.6,7.0,68,fighting,,47,82,57,63,42,47
741 | 740,crabominable,7,1.7,180.0,167,fighting,ice,97,132,77,43,62,67
742 | 741,oricorio,7,0.6,3.4,167,fire,flying,75,70,70,93,98,70
743 | 742,cutiefly,7,0.1,0.2,61,bug,fairy,40,45,40,84,55,40
744 | 743,ribombee,7,0.2,0.5,162,bug,fairy,60,55,60,124,95,70
745 | 744,rockruff,7,0.5,9.2,56,rock,,45,65,40,60,30,40
746 | 745,lycanroc,7,0.8,25.0,170,rock,,75,115,65,112,55,65
747 | 746,wishiwashi,7,0.2,0.3,61,water,,45,20,20,40,25,25
748 | 747,mareanie,7,0.4,8.0,61,poison,water,50,53,62,45,43,52
749 | 748,toxapex,7,0.7,14.5,173,poison,water,50,63,152,35,53,142
750 | 749,mudbray,7,1.0,110.0,77,ground,,70,100,70,45,45,55
751 | 750,mudsdale,7,2.5,920.0,175,ground,,100,125,100,35,55,85
752 | 751,dewpider,7,0.3,4.0,54,water,bug,38,40,52,27,40,72
753 | 752,araquanid,7,1.8,82.0,159,water,bug,68,70,92,42,50,132
754 | 753,fomantis,7,0.3,1.5,50,grass,,40,55,35,35,50,35
755 | 754,lurantis,7,0.9,18.5,168,grass,,70,105,90,45,80,90
756 | 755,morelull,7,0.2,1.5,57,grass,fairy,40,35,55,15,65,75
757 | 756,shiinotic,7,1.0,11.5,142,grass,fairy,60,45,80,30,90,100
758 | 757,salandit,7,0.6,4.8,64,poison,fire,48,44,40,77,71,40
759 | 758,salazzle,7,1.2,22.2,168,poison,fire,68,64,60,117,111,60
760 | 759,stufful,7,0.5,6.8,68,normal,fighting,70,75,50,50,45,50
761 | 760,bewear,7,2.1,135.0,175,normal,fighting,120,125,80,60,55,60
762 | 761,bounsweet,7,0.3,3.2,42,grass,,42,30,38,32,30,38
763 | 762,steenee,7,0.7,8.2,102,grass,,52,40,48,62,40,48
764 | 763,tsareena,7,1.2,21.4,230,grass,,72,120,98,72,50,98
765 | 764,comfey,7,0.1,0.3,170,fairy,,51,52,90,100,82,110
766 | 765,oranguru,7,1.5,76.0,172,normal,psychic,90,60,80,60,90,110
767 | 766,passimian,7,2.0,82.8,172,fighting,,100,120,90,80,40,60
768 | 767,wimpod,7,0.5,12.0,46,bug,water,25,35,40,80,20,30
769 | 768,golisopod,7,2.0,108.0,186,bug,water,75,125,140,40,60,90
770 | 769,sandygast,7,0.5,70.0,64,ghost,ground,55,55,80,15,70,45
771 | 770,palossand,7,1.3,250.0,168,ghost,ground,85,75,110,35,100,75
772 | 771,pyukumuku,7,0.3,1.2,144,water,,55,60,130,5,30,130
773 | 772,type-null,7,1.9,120.5,107,normal,,95,95,95,59,95,95
774 | 773,silvally,7,2.3,100.5,257,normal,,95,95,95,95,95,95
775 | 774,minior,7,0.3,40.0,154,rock,flying,60,60,100,60,60,100
776 | 775,komala,7,0.4,19.9,168,normal,,65,115,65,65,75,95
777 | 776,turtonator,7,2.0,212.0,170,fire,dragon,60,78,135,36,91,85
778 | 777,togedemaru,7,0.3,3.3,152,electric,steel,65,98,63,96,40,73
779 | 778,mimikyu,7,0.2,0.7,167,ghost,fairy,55,90,80,96,50,105
780 | 779,bruxish,7,0.9,19.0,166,water,psychic,68,105,70,92,70,70
781 | 780,drampa,7,3.0,185.0,170,normal,dragon,78,60,85,36,135,91
782 | 781,dhelmise,7,3.9,210.0,181,ghost,grass,70,131,100,40,86,90
783 | 782,jangmo-o,7,0.6,29.7,60,dragon,,45,55,65,45,45,45
784 | 783,hakamo-o,7,1.2,47.0,147,dragon,fighting,55,75,90,65,65,70
785 | 784,kommo-o,7,1.6,78.2,270,dragon,fighting,75,110,125,85,100,105
786 | 785,tapu-koko,7,1.8,20.5,257,electric,fairy,70,115,85,130,95,75
787 | 786,tapu-lele,7,1.2,18.6,257,psychic,fairy,70,85,75,95,130,115
788 | 787,tapu-bulu,7,1.9,45.5,257,grass,fairy,70,130,115,75,85,95
789 | 788,tapu-fini,7,1.3,21.2,257,water,fairy,70,75,115,85,95,130
790 | 789,cosmog,7,0.2,0.1,40,psychic,,43,29,31,37,29,31
791 | 790,cosmoem,7,0.1,999.9,140,psychic,,43,29,131,37,29,131
792 | 791,solgaleo,7,3.4,230.0,306,psychic,steel,137,137,107,97,113,89
793 | 792,lunala,7,4.0,120.0,306,psychic,ghost,137,113,89,97,137,107
794 | 793,nihilego,7,1.2,55.5,257,rock,poison,109,53,47,103,127,131
795 | 794,buzzwole,7,2.4,333.6,257,bug,fighting,107,139,139,79,53,53
796 | 795,pheromosa,7,1.8,25.0,257,bug,fighting,71,137,37,151,137,37
797 | 796,xurkitree,7,3.8,100.0,257,electric,,83,89,71,83,173,71
798 | 797,celesteela,7,9.2,999.9,257,steel,flying,97,101,103,61,107,101
799 | 798,kartana,7,0.3,0.1,257,grass,steel,59,181,131,109,59,31
800 | 799,guzzlord,7,5.5,888.0,257,dark,dragon,223,101,53,43,97,53
801 | 800,necrozma,7,2.4,230.0,270,psychic,,97,107,101,79,127,89
802 | 801,magearna,7,1.0,80.5,270,steel,fairy,80,95,115,65,130,115
803 | 802,marshadow,7,0.7,22.2,270,fighting,ghost,90,125,80,125,90,90
804 | 803,poipole,7,0.6,1.8,189,poison,,67,73,67,73,73,67
805 | 804,naganadel,7,3.6,150.0,243,poison,dragon,73,73,73,121,127,73
806 | 805,stakataka,7,5.5,820.0,257,rock,steel,61,131,211,13,53,101
807 | 806,blacephalon,7,1.8,13.0,257,fire,ghost,53,127,53,107,151,79
808 | 807,zeraora,7,1.5,44.5,270,electric,,88,112,75,143,102,80
809 |
--------------------------------------------------------------------------------