├── LICENSE
├── README.md
└── contributing.md
/LICENSE:
--------------------------------------------------------------------------------
1 | CC0 1.0 Universal
2 |
3 | Statement of Purpose
4 |
5 | The laws of most jurisdictions throughout the world automatically confer
6 | exclusive Copyright and Related Rights (defined below) upon the creator and
7 | subsequent owner(s) (each and all, an "owner") of an original work of
8 | authorship and/or a database (each, a "Work").
9 |
10 | Certain owners wish to permanently relinquish those rights to a Work for the
11 | purpose of contributing to a commons of creative, cultural and scientific
12 | works ("Commons") that the public can reliably and without fear of later
13 | claims of infringement build upon, modify, incorporate in other works, reuse
14 | and redistribute as freely as possible in any form whatsoever and for any
15 | purposes, including without limitation commercial purposes. These owners may
16 | contribute to the Commons to promote the ideal of a free culture and the
17 | further production of creative, cultural and scientific works, or to gain
18 | reputation or greater distribution for their Work in part through the use and
19 | efforts of others.
20 |
21 | For these and/or other purposes and motivations, and without any expectation
22 | of additional consideration or compensation, the person associating CC0 with a
23 | Work (the "Affirmer"), to the extent that he or she is an owner of Copyright
24 | and Related Rights in the Work, voluntarily elects to apply CC0 to the Work
25 | and publicly distribute the Work under its terms, with knowledge of his or her
26 | Copyright and Related Rights in the Work and the meaning and intended legal
27 | effect of CC0 on those rights.
28 |
29 | 1. Copyright and Related Rights. A Work made available under CC0 may be
30 | protected by copyright and related or neighboring rights ("Copyright and
31 | Related Rights"). Copyright and Related Rights include, but are not limited
32 | to, the following:
33 |
34 | i. the right to reproduce, adapt, distribute, perform, display, communicate,
35 | and translate a Work;
36 |
37 | ii. moral rights retained by the original author(s) and/or performer(s);
38 |
39 | iii. publicity and privacy rights pertaining to a person's image or likeness
40 | depicted in a Work;
41 |
42 | iv. rights protecting against unfair competition in regards to a Work,
43 | subject to the limitations in paragraph 4(a), below;
44 |
45 | v. rights protecting the extraction, dissemination, use and reuse of data in
46 | a Work;
47 |
48 | vi. database rights (such as those arising under Directive 96/9/EC of the
49 | European Parliament and of the Council of 11 March 1996 on the legal
50 | protection of databases, and under any national implementation thereof,
51 | including any amended or successor version of such directive); and
52 |
53 | vii. other similar, equivalent or corresponding rights throughout the world
54 | based on applicable law or treaty, and any national implementations thereof.
55 |
56 | 2. Waiver. To the greatest extent permitted by, but not in contravention of,
57 | applicable law, Affirmer hereby overtly, fully, permanently, irrevocably and
58 | unconditionally waives, abandons, and surrenders all of Affirmer's Copyright
59 | and Related Rights and associated claims and causes of action, whether now
60 | known or unknown (including existing as well as future claims and causes of
61 | action), in the Work (i) in all territories worldwide, (ii) for the maximum
62 | duration provided by applicable law or treaty (including future time
63 | extensions), (iii) in any current or future medium and for any number of
64 | copies, and (iv) for any purpose whatsoever, including without limitation
65 | commercial, advertising or promotional purposes (the "Waiver"). Affirmer makes
66 | the Waiver for the benefit of each member of the public at large and to the
67 | detriment of Affirmer's heirs and successors, fully intending that such Waiver
68 | shall not be subject to revocation, rescission, cancellation, termination, or
69 | any other legal or equitable action to disrupt the quiet enjoyment of the Work
70 | by the public as contemplated by Affirmer's express Statement of Purpose.
71 |
72 | 3. Public License Fallback. Should any part of the Waiver for any reason be
73 | judged legally invalid or ineffective under applicable law, then the Waiver
74 | shall be preserved to the maximum extent permitted taking into account
75 | Affirmer's express Statement of Purpose. In addition, to the extent the Waiver
76 | is so judged Affirmer hereby grants to each affected person a royalty-free,
77 | non transferable, non sublicensable, non exclusive, irrevocable and
78 | unconditional license to exercise Affirmer's Copyright and Related Rights in
79 | the Work (i) in all territories worldwide, (ii) for the maximum duration
80 | provided by applicable law or treaty (including future time extensions), (iii)
81 | in any current or future medium and for any number of copies, and (iv) for any
82 | purpose whatsoever, including without limitation commercial, advertising or
83 | promotional purposes (the "License"). The License shall be deemed effective as
84 | of the date CC0 was applied by Affirmer to the Work. Should any part of the
85 | License for any reason be judged legally invalid or ineffective under
86 | applicable law, such partial invalidity or ineffectiveness shall not
87 | invalidate the remainder of the License, and in such case Affirmer hereby
88 | affirms that he or she will not (i) exercise any of his or her remaining
89 | Copyright and Related Rights in the Work or (ii) assert any associated claims
90 | and causes of action with respect to the Work, in either case contrary to
91 | Affirmer's express Statement of Purpose.
92 |
93 | 4. Limitations and Disclaimers.
94 |
95 | a. No trademark or patent rights held by Affirmer are waived, abandoned,
96 | surrendered, licensed or otherwise affected by this document.
97 |
98 | b. Affirmer offers the Work as-is and makes no representations or warranties
99 | of any kind concerning the Work, express, implied, statutory or otherwise,
100 | including without limitation warranties of title, merchantability, fitness
101 | for a particular purpose, non infringement, or the absence of latent or
102 | other defects, accuracy, or the present or absence of errors, whether or not
103 | discoverable, all to the greatest extent permissible under applicable law.
104 |
105 | c. Affirmer disclaims responsibility for clearing rights of other persons
106 | that may apply to the Work or any use thereof, including without limitation
107 | any person's Copyright and Related Rights in the Work. Further, Affirmer
108 | disclaims responsibility for obtaining any necessary consents, permissions
109 | or other rights required for any use of the Work.
110 |
111 | d. Affirmer understands and acknowledges that Creative Commons is not a
112 | party to this document and has no duty or obligation with respect to this
113 | CC0 or use of the Work.
114 |
115 | For more information, please see
116 |
117 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | # Machine Learning & Deep Learning Tutorials [](https://github.com/sindresorhus/awesome)
3 |
4 | - This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resources. Other awesome lists can be found in this [list](https://github.com/sindresorhus/awesome).
5 |
6 | - If you want to contribute to this list, please read [Contributing Guidelines](https://github.com/ujjwalkarn/Machine-Learning-Tutorials/blob/master/contributing.md).
7 |
8 | - [Curated list of R tutorials for Data Science, NLP and Machine Learning](https://github.com/ujjwalkarn/DataScienceR).
9 |
10 | - [Curated list of Python tutorials for Data Science, NLP and Machine Learning](https://github.com/ujjwalkarn/DataSciencePython).
11 |
12 |
13 | ## Contents
14 | - [Introduction](#general)
15 | - [Interview Resources](#interview)
16 | - [Artificial Intelligence](#ai)
17 | - [Genetic Algorithms](#ga)
18 | - [Statistics](#stat)
19 | - [Useful Blogs](#blogs)
20 | - [Resources on Quora](#quora)
21 | - [Resources on Kaggle](#kaggle)
22 | - [Cheat Sheets](#cs)
23 | - [Classification](#classification)
24 | - [Linear Regression](#linear)
25 | - [Logistic Regression](#logistic)
26 | - [Model Validation using Resampling](#validation)
27 | - [Cross Validation](#cross)
28 | - [Bootstraping](#boot)
29 | - [Deep Learning](#deep)
30 | - [Frameworks](#frame)
31 | - [Feed Forward Networks](#feed)
32 | - [Recurrent Neural Nets, LSTM, GRU](#rnn)
33 | - [Restricted Boltzmann Machine, DBNs](#rbm)
34 | - [Autoencoders](#auto)
35 | - [Convolutional Neural Nets](#cnn)
36 | - [Graph Representation Learning](#nrl)
37 | - [Natural Language Processing](#nlp)
38 | - [Topic Modeling, LDA](#topic)
39 | - [Word2Vec](#word2vec)
40 | - [Computer Vision](#vision)
41 | - [Support Vector Machine](#svm)
42 | - [Reinforcement Learning](#rl)
43 | - [Decision Trees](#dt)
44 | - [Random Forest / Bagging](#rf)
45 | - [Boosting](#gbm)
46 | - [Ensembles](#ensem)
47 | - [Stacking Models](#stack)
48 | - [VC Dimension](#vc)
49 | - [Bayesian Machine Learning](#bayes)
50 | - [Semi Supervised Learning](#semi)
51 | - [Optimizations](#opt)
52 | - [Other Useful Tutorials](#other)
53 |
54 |
55 |
56 | ## Introduction
57 |
58 | - [Machine Learning Course by Andrew Ng (Stanford University)](https://www.coursera.org/learn/machine-learning)
59 |
60 | - [AI/ML YouTube Courses](https://github.com/dair-ai/ML-YouTube-Courses)
61 |
62 | - [Curated List of Machine Learning Resources](https://hackr.io/tutorials/learn-machine-learning-ml)
63 |
64 | - [In-depth introduction to machine learning in 15 hours of expert videos](http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/)
65 |
66 | - [An Introduction to Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/)
67 |
68 | - [List of Machine Learning University Courses](https://github.com/prakhar1989/awesome-courses#machine-learning)
69 |
70 | - [Machine Learning for Software Engineers](https://github.com/ZuzooVn/machine-learning-for-software-engineers)
71 |
72 | - [Dive into Machine Learning](https://github.com/hangtwenty/dive-into-machine-learning)
73 |
74 | - [A curated list of awesome Machine Learning frameworks, libraries and software](https://github.com/josephmisiti/awesome-machine-learning)
75 |
76 | - [A curated list of awesome data visualization libraries and resources.](https://github.com/fasouto/awesome-dataviz)
77 |
78 | - [An awesome Data Science repository to learn and apply for real world problems](https://github.com/okulbilisim/awesome-datascience)
79 |
80 | - [The Open Source Data Science Masters](http://datasciencemasters.org/)
81 |
82 | - [Machine Learning FAQs on Cross Validated](http://stats.stackexchange.com/questions/tagged/machine-learning)
83 |
84 | - [Machine Learning algorithms that you should always have a strong understanding of](https://www.quora.com/What-are-some-Machine-Learning-algorithms-that-you-should-always-have-a-strong-understanding-of-and-why)
85 |
86 | - [Difference between Linearly Independent, Orthogonal, and Uncorrelated Variables](http://terpconnect.umd.edu/~bmomen/BIOM621/LineardepCorrOrthogonal.pdf)
87 |
88 | - [List of Machine Learning Concepts](https://en.wikipedia.org/wiki/List_of_machine_learning_concepts)
89 |
90 | - [Slides on Several Machine Learning Topics](http://www.slideshare.net/pierluca.lanzi/presentations)
91 |
92 | - [MIT Machine Learning Lecture Slides](http://www.ai.mit.edu/courses/6.867-f04/lectures.html)
93 |
94 | - [Comparison Supervised Learning Algorithms](http://www.dataschool.io/comparing-supervised-learning-algorithms/)
95 |
96 | - [Learning Data Science Fundamentals](http://www.dataschool.io/learning-data-science-fundamentals/)
97 |
98 | - [Machine Learning mistakes to avoid](https://medium.com/@nomadic_mind/new-to-machine-learning-avoid-these-three-mistakes-73258b3848a4#.lih061l3l)
99 |
100 | - [Statistical Machine Learning Course](http://www.stat.cmu.edu/~larry/=sml/)
101 |
102 | - [TheAnalyticsEdge edX Notes and Codes](https://github.com/pedrosan/TheAnalyticsEdge)
103 |
104 | - [Have Fun With Machine Learning](https://github.com/humphd/have-fun-with-machine-learning)
105 |
106 | - [Twitter's Most Shared #machineLearning Content From The Past 7 Days](http://theherdlocker.com/tweet/popularity/machinelearning)
107 |
108 | - [Grokking Machine Learning](https://www.manning.com/books/grokking-machine-learning)
109 |
110 |
111 |
112 | ## Interview Resources
113 |
114 | - [41 Essential Machine Learning Interview Questions (with answers)](https://www.springboard.com/blog/machine-learning-interview-questions/)
115 |
116 | - [How can a computer science graduate student prepare himself for data scientist interviews?](https://www.quora.com/How-can-a-computer-science-graduate-student-prepare-himself-for-data-scientist-machine-learning-intern-interviews)
117 |
118 | - [How do I learn Machine Learning?](https://www.quora.com/How-do-I-learn-machine-learning-1)
119 |
120 | - [FAQs about Data Science Interviews](https://www.quora.com/topic/Data-Science-Interviews/faq)
121 |
122 | - [What are the key skills of a data scientist?](https://www.quora.com/What-are-the-key-skills-of-a-data-scientist)
123 |
124 | - [The Big List of DS/ML Interview Resources](https://towardsdatascience.com/the-big-list-of-ds-ml-interview-resources-2db4f651bd63)
125 |
126 |
127 |
128 | ## Artificial Intelligence
129 |
130 | - [Awesome Artificial Intelligence (GitHub Repo)](https://github.com/owainlewis/awesome-artificial-intelligence)
131 |
132 | - [UC Berkeley CS188 Intro to AI](http://ai.berkeley.edu/home.html), [Lecture Videos](http://ai.berkeley.edu/lecture_videos.html), [2](https://www.youtube.com/watch?v=W1S-HSakPTM)
133 |
134 | - [Programming Community Curated Resources for learning Artificial Intelligence](https://hackr.io/tutorials/learn-artificial-intelligence-ai)
135 |
136 | - [MIT 6.034 Artificial Intelligence Lecture Videos](https://www.youtube.com/playlist?list=PLUl4u3cNGP63gFHB6xb-kVBiQHYe_4hSi), [Complete Course](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/)
137 |
138 | - [edX course | Klein & Abbeel](https://courses.edx.org/courses/BerkeleyX/CS188x_1/1T2013/info)
139 |
140 | - [Udacity Course | Norvig & Thrun](https://www.udacity.com/course/intro-to-artificial-intelligence--cs271)
141 |
142 | - [TED talks on AI](http://www.ted.com/playlists/310/talks_on_artificial_intelligen)
143 |
144 |
145 |
146 | ## Genetic Algorithms
147 |
148 | - [Genetic Algorithms Wikipedia Page](https://en.wikipedia.org/wiki/Genetic_algorithm)
149 |
150 | - [Simple Implementation of Genetic Algorithms in Python (Part 1)](http://outlace.com/miniga.html), [Part 2](http://outlace.com/miniga_addendum.html)
151 |
152 | - [Genetic Algorithms vs Artificial Neural Networks](http://stackoverflow.com/questions/1402370/when-to-use-genetic-algorithms-vs-when-to-use-neural-networks)
153 |
154 | - [Genetic Algorithms Explained in Plain English](http://www.ai-junkie.com/ga/intro/gat1.html)
155 |
156 | - [Genetic Programming](https://en.wikipedia.org/wiki/Genetic_programming)
157 |
158 | - [Genetic Programming in Python (GitHub)](https://github.com/trevorstephens/gplearn)
159 |
160 | - [Genetic Alogorithms vs Genetic Programming (Quora)](https://www.quora.com/Whats-the-difference-between-Genetic-Algorithms-and-Genetic-Programming), [StackOverflow](http://stackoverflow.com/questions/3819977/what-are-the-differences-between-genetic-algorithms-and-genetic-programming)
161 |
162 |
163 |
164 | ## Statistics
165 |
166 | - [Stat Trek Website](http://stattrek.com/) - A dedicated website to teach yourselves Statistics
167 |
168 | - [Learn Statistics Using Python](https://github.com/rouseguy/intro2stats) - Learn Statistics using an application-centric programming approach
169 |
170 | - [Statistics for Hackers | Slides | @jakevdp](https://speakerdeck.com/jakevdp/statistics-for-hackers) - Slides by Jake VanderPlas
171 |
172 | - [Online Statistics Book](http://onlinestatbook.com/2/index.html) - An Interactive Multimedia Course for Studying Statistics
173 |
174 | - [What is a Sampling Distribution?](http://stattrek.com/sampling/sampling-distribution.aspx)
175 |
176 | - Tutorials
177 |
178 | - [AP Statistics Tutorial](http://stattrek.com/tutorials/ap-statistics-tutorial.aspx)
179 |
180 | - [Statistics and Probability Tutorial](http://stattrek.com/tutorials/statistics-tutorial.aspx)
181 |
182 | - [Matrix Algebra Tutorial](http://stattrek.com/tutorials/matrix-algebra-tutorial.aspx)
183 |
184 | - [What is an Unbiased Estimator?](https://www.physicsforums.com/threads/what-is-an-unbiased-estimator.547728/)
185 |
186 | - [Goodness of Fit Explained](https://en.wikipedia.org/wiki/Goodness_of_fit)
187 |
188 | - [What are QQ Plots?](http://onlinestatbook.com/2/advanced_graphs/q-q_plots.html)
189 |
190 | - [OpenIntro Statistics](https://www.openintro.org/stat/textbook.php?stat_book=os) - Free PDF textbook
191 |
192 |
193 |
194 | ## Useful Blogs
195 |
196 | - [Edwin Chen's Blog](http://blog.echen.me/) - A blog about Math, stats, ML, crowdsourcing, data science
197 |
198 | - [The Data School Blog](http://www.dataschool.io/) - Data science for beginners!
199 |
200 | - [ML Wave](http://mlwave.com/) - A blog for Learning Machine Learning
201 |
202 | - [Andrej Karpathy](http://karpathy.github.io/) - A blog about Deep Learning and Data Science in general
203 |
204 | - [Colah's Blog](http://colah.github.io/) - Awesome Neural Networks Blog
205 |
206 | - [Alex Minnaar's Blog](http://alexminnaar.com/) - A blog about Machine Learning and Software Engineering
207 |
208 | - [Statistically Significant](http://andland.github.io/) - Andrew Landgraf's Data Science Blog
209 |
210 | - [Simply Statistics](http://simplystatistics.org/) - A blog by three biostatistics professors
211 |
212 | - [Yanir Seroussi's Blog](https://yanirseroussi.com/) - A blog about Data Science and beyond
213 |
214 | - [fastML](http://fastml.com/) - Machine learning made easy
215 |
216 | - [Trevor Stephens Blog](http://trevorstephens.com/) - Trevor Stephens Personal Page
217 |
218 | - [no free hunch | kaggle](http://blog.kaggle.com/) - The Kaggle Blog about all things Data Science
219 |
220 | - [A Quantitative Journey | outlace](http://outlace.com/) - learning quantitative applications
221 |
222 | - [r4stats](http://r4stats.com/) - analyze the world of data science, and to help people learn to use R
223 |
224 | - [Variance Explained](http://varianceexplained.org/) - David Robinson's Blog
225 |
226 | - [AI Junkie](http://www.ai-junkie.com/) - a blog about Artificial Intellingence
227 |
228 | - [Deep Learning Blog by Tim Dettmers](http://timdettmers.com/) - Making deep learning accessible
229 |
230 | - [J Alammar's Blog](http://jalammar.github.io/)- Blog posts about Machine Learning and Neural Nets
231 |
232 | - [Adam Geitgey](https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471#.f7vwrtfne) - Easiest Introduction to machine learning
233 |
234 | - [Ethen's Notebook Collection](https://github.com/ethen8181/machine-learning) - Continuously updated machine learning documentations (mainly in Python3). Contents include educational implementation of machine learning algorithms from scratch and open-source library usage
235 |
236 |
237 |
238 | ## Resources on Quora
239 |
240 | - [Most Viewed Machine Learning writers](https://www.quora.com/topic/Machine-Learning/writers)
241 |
242 | - [Data Science Topic on Quora](https://www.quora.com/Data-Science)
243 |
244 | - [William Chen's Answers](https://www.quora.com/William-Chen-6/answers)
245 |
246 | - [Michael Hochster's Answers](https://www.quora.com/Michael-Hochster/answers)
247 |
248 | - [Ricardo Vladimiro's Answers](https://www.quora.com/Ricardo-Vladimiro-1/answers)
249 |
250 | - [Storytelling with Statistics](https://datastories.quora.com/)
251 |
252 | - [Data Science FAQs on Quora](https://www.quora.com/topic/Data-Science/faq)
253 |
254 | - [Machine Learning FAQs on Quora](https://www.quora.com/topic/Machine-Learning/faq)
255 |
256 |
257 |
258 | ## Kaggle Competitions WriteUp
259 |
260 | - [How to almost win Kaggle Competitions](https://yanirseroussi.com/2014/08/24/how-to-almost-win-kaggle-competitions/)
261 |
262 | - [Convolution Neural Networks for EEG detection](http://blog.kaggle.com/2015/10/05/grasp-and-lift-eeg-detection-winners-interview-3rd-place-team-hedj/)
263 |
264 | - [Facebook Recruiting III Explained](http://alexminnaar.com/tag/kaggle-competitions.html)
265 |
266 | - [Predicting CTR with Online ML](http://mlwave.com/predicting-click-through-rates-with-online-machine-learning/)
267 |
268 | - [How to Rank 10% in Your First Kaggle Competition](https://dnc1994.com/2016/05/rank-10-percent-in-first-kaggle-competition-en/)
269 |
270 |
271 |
272 | ## Cheat Sheets
273 |
274 | - [Probability Cheat Sheet](http://static1.squarespace.com/static/54bf3241e4b0f0d81bf7ff36/t/55e9494fe4b011aed10e48e5/1441352015658/probability_cheatsheet.pdf),
275 | [Source](http://www.wzchen.com/probability-cheatsheet/)
276 |
277 | - [Machine Learning Cheat Sheet](https://github.com/soulmachine/machine-learning-cheat-sheet)
278 |
279 | - [ML Compiled](https://ml-compiled.readthedocs.io/en/latest/)
280 |
281 |
282 |
283 | ## Classification
284 |
285 | - [Does Balancing Classes Improve Classifier Performance?](http://www.win-vector.com/blog/2015/02/does-balancing-classes-improve-classifier-performance/)
286 |
287 | - [What is Deviance?](http://stats.stackexchange.com/questions/6581/what-is-deviance-specifically-in-cart-rpart)
288 |
289 | - [When to choose which machine learning classifier?](http://stackoverflow.com/questions/2595176/when-to-choose-which-machine-learning-classifier)
290 |
291 | - [What are the advantages of different classification algorithms?](https://www.quora.com/What-are-the-advantages-of-different-classification-algorithms)
292 |
293 | - [ROC and AUC Explained](http://www.dataschool.io/roc-curves-and-auc-explained/) ([related video](https://youtu.be/OAl6eAyP-yo))
294 |
295 | - [An introduction to ROC analysis](https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf)
296 |
297 | - [Simple guide to confusion matrix terminology](http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/)
298 |
299 |
300 |
301 |
302 | ## Linear Regression
303 |
304 | - [General](#general-)
305 |
306 | - [Assumptions of Linear Regression](http://pareonline.net/getvn.asp?n=2&v=8), [Stack Exchange](http://stats.stackexchange.com/questions/16381/what-is-a-complete-list-of-the-usual-assumptions-for-linear-regression)
307 |
308 | - [Linear Regression Comprehensive Resource](http://people.duke.edu/~rnau/regintro.htm)
309 |
310 | - [Applying and Interpreting Linear Regression](http://www.dataschool.io/applying-and-interpreting-linear-regression/)
311 |
312 | - [What does having constant variance in a linear regression model mean?](http://stats.stackexchange.com/questions/52089/what-does-having-constant-variance-in-a-linear-regression-model-mean/52107?stw=2#52107)
313 |
314 | - [Difference between linear regression on y with x and x with y](http://stats.stackexchange.com/questions/22718/what-is-the-difference-between-linear-regression-on-y-with-x-and-x-with-y?lq=1)
315 |
316 | - [Is linear regression valid when the dependant variable is not normally distributed?](https://www.researchgate.net/post/Is_linear_regression_valid_when_the_outcome_dependant_variable_not_normally_distributed)
317 | - Multicollinearity and VIF
318 |
319 | - [Dummy Variable Trap | Multicollinearity](https://en.wikipedia.org/wiki/Multicollinearity)
320 |
321 | - [Dealing with multicollinearity using VIFs](https://jonlefcheck.net/2012/12/28/dealing-with-multicollinearity-using-variance-inflation-factors/)
322 |
323 | - [Residual Analysis](#residuals-)
324 |
325 | - [Interpreting plot.lm() in R](http://stats.stackexchange.com/questions/58141/interpreting-plot-lm)
326 |
327 | - [How to interpret a QQ plot?](http://stats.stackexchange.com/questions/101274/how-to-interpret-a-qq-plot?lq=1)
328 |
329 | - [Interpreting Residuals vs Fitted Plot](http://stats.stackexchange.com/questions/76226/interpreting-the-residuals-vs-fitted-values-plot-for-verifying-the-assumptions)
330 |
331 | - [Outliers](#outliers-)
332 |
333 | - [How should outliers be dealt with?](http://stats.stackexchange.com/questions/175/how-should-outliers-be-dealt-with-in-linear-regression-analysis)
334 |
335 | - [Elastic Net](https://en.wikipedia.org/wiki/Elastic_net_regularization)
336 | - [Regularization and Variable Selection via the
337 | Elastic Net](https://web.stanford.edu/~hastie/Papers/elasticnet.pdf)
338 |
339 |
340 |
341 | ## Logistic Regression
342 |
343 | - [Logistic Regression Wiki](https://en.wikipedia.org/wiki/Logistic_regression)
344 |
345 | - [Geometric Intuition of Logistic Regression](http://florianhartl.com/logistic-regression-geometric-intuition.html)
346 |
347 | - [Obtaining predicted categories (choosing threshold)](http://stats.stackexchange.com/questions/25389/obtaining-predicted-values-y-1-or-0-from-a-logistic-regression-model-fit)
348 |
349 | - [Residuals in logistic regression](http://stats.stackexchange.com/questions/1432/what-do-the-residuals-in-a-logistic-regression-mean)
350 |
351 | - [Difference between logit and probit models](http://stats.stackexchange.com/questions/20523/difference-between-logit-and-probit-models#30909), [Logistic Regression Wiki](https://en.wikipedia.org/wiki/Logistic_regression), [Probit Model Wiki](https://en.wikipedia.org/wiki/Probit_model)
352 |
353 | - [Pseudo R2 for Logistic Regression](http://stats.stackexchange.com/questions/3559/which-pseudo-r2-measure-is-the-one-to-report-for-logistic-regression-cox-s), [How to calculate](http://stats.stackexchange.com/questions/8511/how-to-calculate-pseudo-r2-from-rs-logistic-regression), [Other Details](http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm)
354 |
355 | - [Guide to an in-depth understanding of logistic regression](http://www.dataschool.io/guide-to-logistic-regression/)
356 |
357 |
358 |
359 | ## Model Validation using Resampling
360 |
361 | - [Resampling Explained](https://en.wikipedia.org/wiki/Resampling_(statistics))
362 |
363 | - [Partioning data set in R](http://stackoverflow.com/questions/13536537/partitioning-data-set-in-r-based-on-multiple-classes-of-observations)
364 |
365 | - [Implementing hold-out Validaion in R](http://stackoverflow.com/questions/22972854/how-to-implement-a-hold-out-validation-in-r), [2](http://www.gettinggeneticsdone.com/2011/02/split-data-frame-into-testing-and.html)
366 |
367 |
368 |
369 | - [Cross Validation](https://en.wikipedia.org/wiki/Cross-validation_(statistics))
370 | - [How to use cross-validation in predictive modeling](http://stuartlacy.co.uk/2016/02/04/how-to-correctly-use-cross-validation-in-predictive-modelling/)
371 | - [Training with Full dataset after CV?](http://stats.stackexchange.com/questions/11602/training-with-the-full-dataset-after-cross-validation)
372 |
373 | - [Which CV method is best?](http://stats.stackexchange.com/questions/103459/how-do-i-know-which-method-of-cross-validation-is-best)
374 |
375 | - [Variance Estimates in k-fold CV](http://stats.stackexchange.com/questions/31190/variance-estimates-in-k-fold-cross-validation)
376 |
377 | - [Is CV a subsitute for Validation Set?](http://stats.stackexchange.com/questions/18856/is-cross-validation-a-proper-substitute-for-validation-set)
378 |
379 | - [Choice of k in k-fold CV](http://stats.stackexchange.com/questions/27730/choice-of-k-in-k-fold-cross-validation)
380 |
381 | - [CV for ensemble learning](http://stats.stackexchange.com/questions/102631/k-fold-cross-validation-of-ensemble-learning)
382 |
383 | - [k-fold CV in R](http://stackoverflow.com/questions/22909197/creating-folds-for-k-fold-cv-in-r-using-caret)
384 |
385 | - [Good Resources](http://www.chioka.in/tag/cross-validation/)
386 |
387 | - Overfitting and Cross Validation
388 |
389 | - [Preventing Overfitting the Cross Validation Data | Andrew Ng](http://ai.stanford.edu/~ang/papers/cv-final.pdf)
390 |
391 | - [Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf)
392 |
393 | - [CV for detecting and preventing Overfitting](http://www.autonlab.org/tutorials/overfit10.pdf)
394 |
395 | - [How does CV overcome the Overfitting Problem](http://stats.stackexchange.com/questions/9053/how-does-cross-validation-overcome-the-overfitting-problem)
396 |
397 |
398 |
399 |
400 | - [Bootstrapping](https://en.wikipedia.org/wiki/Bootstrapping_(statistics))
401 |
402 | - [Why Bootstrapping Works?](http://stats.stackexchange.com/questions/26088/explaining-to-laypeople-why-bootstrapping-works)
403 |
404 | - [Good Animation](https://www.stat.auckland.ac.nz/~wild/BootAnim/)
405 |
406 | - [Example of Bootstapping](http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm)
407 |
408 | - [Understanding Bootstapping for Validation and Model Selection](http://stats.stackexchange.com/questions/14516/understanding-bootstrapping-for-validation-and-model-selection?rq=1)
409 |
410 | - [Cross Validation vs Bootstrap to estimate prediction error](http://stats.stackexchange.com/questions/18348/differences-between-cross-validation-and-bootstrapping-to-estimate-the-predictio), [Cross-validation vs .632 bootstrapping to evaluate classification performance](http://stats.stackexchange.com/questions/71184/cross-validation-or-bootstrapping-to-evaluate-classification-performance)
411 |
412 |
413 |
414 |
415 | ## Deep Learning
416 |
417 | - [fast.ai - Practical Deep Learning For Coders](http://course.fast.ai/)
418 |
419 | - [fast.ai - Cutting Edge Deep Learning For Coders](http://course.fast.ai/part2.html)
420 |
421 | - [A curated list of awesome Deep Learning tutorials, projects and communities](https://github.com/ChristosChristofidis/awesome-deep-learning)
422 |
423 | - **[Deep Learning Papers Reading Roadmap](https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap/blob/master/README.md)**
424 |
425 | - [Lots of Deep Learning Resources](http://deeplearning4j.org/documentation.html)
426 |
427 | - [Interesting Deep Learning and NLP Projects (Stanford)](http://cs224d.stanford.edu/reports.html), [Website](http://cs224d.stanford.edu/)
428 |
429 | - [Core Concepts of Deep Learning](https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/)
430 |
431 | - [Understanding Natural Language with Deep Neural Networks Using Torch](https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
432 |
433 | - [Stanford Deep Learning Tutorial](http://ufldl.stanford.edu/tutorial/)
434 |
435 | - [Deep Learning FAQs on Quora](https://www.quora.com/topic/Deep-Learning/faq)
436 |
437 | - [Google+ Deep Learning Page](https://plus.google.com/communities/112866381580457264725)
438 |
439 | - [Recent Reddit AMAs related to Deep Learning](http://deeplearning.net/2014/11/22/recent-reddit-amas-about-deep-learning/), [Another AMA](https://www.reddit.com/r/IAmA/comments/3mdk9v/we_are_google_researchers_working_on_deep/)
440 |
441 | - [Where to Learn Deep Learning?](http://www.kdnuggets.com/2014/05/learn-deep-learning-courses-tutorials-overviews.html)
442 |
443 | - [Deep Learning nvidia concepts](http://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/)
444 |
445 | - [Introduction to Deep Learning Using Python (GitHub)](https://github.com/rouseguy/intro2deeplearning), [Good Introduction Slides](https://speakerdeck.com/bargava/introduction-to-deep-learning)
446 |
447 | - [Video Lectures Oxford 2015](https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu), [Video Lectures Summer School Montreal](http://videolectures.net/deeplearning2015_montreal/)
448 |
449 | - [Deep Learning Software List](http://deeplearning.net/software_links/)
450 |
451 | - [Hacker's guide to Neural Nets](http://karpathy.github.io/neuralnets/)
452 |
453 | - [Top arxiv Deep Learning Papers explained](http://www.kdnuggets.com/2015/10/top-arxiv-deep-learning-papers-explained.html)
454 |
455 | - [Geoff Hinton Youtube Vidoes on Deep Learning](https://www.youtube.com/watch?v=IcOMKXAw5VA)
456 |
457 | - [Awesome Deep Learning Reading List](http://deeplearning.net/reading-list/)
458 |
459 | - [Deep Learning Comprehensive Website](http://deeplearning.net/), [Software](http://deeplearning.net/software_links/)
460 |
461 | - [deeplearning Tutorials](http://deeplearning4j.org/)
462 |
463 | - [AWESOME! Deep Learning Tutorial](https://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks)
464 |
465 | - [Deep Learning Basics](http://alexminnaar.com/deep-learning-basics-neural-networks-backpropagation-and-stochastic-gradient-descent.html)
466 |
467 | - [Intuition Behind Backpropagation](https://medium.com/spidernitt/breaking-down-neural-networks-an-intuitive-approach-to-backpropagation-3b2ff958794c)
468 |
469 | - [Stanford Tutorials](http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/)
470 |
471 | - [Train, Validation & Test in Artificial Neural Networks](http://stackoverflow.com/questions/2976452/whats-is-the-difference-between-train-validation-and-test-set-in-neural-networ)
472 |
473 | - [Artificial Neural Networks Tutorials](http://stackoverflow.com/questions/478947/what-are-some-good-resources-for-learning-about-artificial-neural-networks)
474 |
475 | - [Neural Networks FAQs on Stack Overflow](http://stackoverflow.com/questions/tagged/neural-network?sort=votes&pageSize=50)
476 |
477 | - [Deep Learning Tutorials on deeplearning.net](http://deeplearning.net/tutorial/index.html)
478 |
479 | - [Neural Networks and Deep Learning Online Book](http://neuralnetworksanddeeplearning.com/)
480 |
481 | - Neural Machine Translation
482 |
483 | - **[Machine Translation Reading List](https://github.com/THUNLP-MT/MT-Reading-List#machine-translation-reading-list)**
484 |
485 | - [Introduction to Neural Machine Translation with GPUs (part 1)](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/), [Part 2](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/), [Part 3](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
486 |
487 | - [Deep Speech: Accurate Speech Recognition with GPU-Accelerated Deep Learning](https://devblogs.nvidia.com/parallelforall/deep-speech-accurate-speech-recognition-gpu-accelerated-deep-learning/)
488 |
489 |
490 |
491 | - Deep Learning Frameworks
492 |
493 | - [Torch vs. Theano](http://fastml.com/torch-vs-theano/)
494 |
495 | - [dl4j vs. torch7 vs. theano](http://deeplearning4j.org/compare-dl4j-torch7-pylearn.html)
496 |
497 | - [Deep Learning Libraries by Language](http://www.teglor.com/b/deep-learning-libraries-language-cm569/)
498 |
499 |
500 | - [Theano](https://en.wikipedia.org/wiki/Theano_(software))
501 |
502 | - [Website](http://deeplearning.net/software/theano/)
503 |
504 | - [Theano Introduction](http://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/)
505 |
506 | - [Theano Tutorial](http://outlace.com/Beginner-Tutorial-Theano/)
507 |
508 | - [Good Theano Tutorial](http://deeplearning.net/software/theano/tutorial/)
509 |
510 | - [Logistic Regression using Theano for classifying digits](http://deeplearning.net/tutorial/logreg.html#logreg)
511 |
512 | - [MLP using Theano](http://deeplearning.net/tutorial/mlp.html#mlp)
513 |
514 | - [CNN using Theano](http://deeplearning.net/tutorial/lenet.html#lenet)
515 |
516 | - [RNNs using Theano](http://deeplearning.net/tutorial/rnnslu.html#rnnslu)
517 |
518 | - [LSTM for Sentiment Analysis in Theano](http://deeplearning.net/tutorial/lstm.html#lstm)
519 |
520 | - [RBM using Theano](http://deeplearning.net/tutorial/rbm.html#rbm)
521 |
522 | - [DBNs using Theano](http://deeplearning.net/tutorial/DBN.html#dbn)
523 |
524 | - [All Codes](https://github.com/lisa-lab/DeepLearningTutorials)
525 |
526 | - [Deep Learning Implementation Tutorials - Keras and Lasagne](https://github.com/vict0rsch/deep_learning/)
527 |
528 | - [Torch](http://torch.ch/)
529 |
530 | - [Torch ML Tutorial](http://code.madbits.com/wiki/doku.php), [Code](https://github.com/torch/tutorials)
531 |
532 | - [Intro to Torch](http://ml.informatik.uni-freiburg.de/_media/teaching/ws1415/presentation_dl_lect3.pdf)
533 |
534 | - [Learning Torch GitHub Repo](https://github.com/chetannaik/learning_torch)
535 |
536 | - [Awesome-Torch (Repository on GitHub)](https://github.com/carpedm20/awesome-torch)
537 |
538 | - [Machine Learning using Torch Oxford Univ](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/), [Code](https://github.com/oxford-cs-ml-2015)
539 |
540 | - [Torch Internals Overview](https://apaszke.github.io/torch-internals.html)
541 |
542 | - [Torch Cheatsheet](https://github.com/torch/torch7/wiki/Cheatsheet)
543 |
544 | - [Understanding Natural Language with Deep Neural Networks Using Torch](http://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
545 |
546 | - Caffe
547 | - [Deep Learning for Computer Vision with Caffe and cuDNN](https://devblogs.nvidia.com/parallelforall/deep-learning-computer-vision-caffe-cudnn/)
548 |
549 | - TensorFlow
550 | - [Website](http://tensorflow.org/)
551 |
552 | - [TensorFlow Examples for Beginners](https://github.com/aymericdamien/TensorFlow-Examples)
553 |
554 | - [Stanford Tensorflow for Deep Learning Research Course](https://web.stanford.edu/class/cs20si/syllabus.html)
555 |
556 | - [GitHub Repo](https://github.com/chiphuyen/tf-stanford-tutorials)
557 |
558 | - [Simplified Scikit-learn Style Interface to TensorFlow](https://github.com/tensorflow/skflow)
559 |
560 | - [Learning TensorFlow GitHub Repo](https://github.com/chetannaik/learning_tensorflow)
561 |
562 | - [Benchmark TensorFlow GitHub](https://github.com/soumith/convnet-benchmarks/issues/66)
563 |
564 | - [Awesome TensorFlow List](https://github.com/jtoy/awesome-tensorflow)
565 |
566 | - [TensorFlow Book](https://github.com/BinRoot/TensorFlow-Book)
567 |
568 | - [Android TensorFlow Machine Learning Example](https://blog.mindorks.com/android-tensorflow-machine-learning-example-ff0e9b2654cc)
569 |
570 | - [GitHub Repo](https://github.com/MindorksOpenSource/AndroidTensorFlowMachineLearningExample)
571 | - [Creating Custom Model For Android Using TensorFlow](https://blog.mindorks.com/creating-custom-model-for-android-using-tensorflow-3f963d270bfb)
572 | - [GitHub Repo](https://github.com/MindorksOpenSource/AndroidTensorFlowMNISTExample)
573 |
574 |
575 |
576 | - Feed Forward Networks
577 |
578 | - [A Quick Introduction to Neural Networks](https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/)
579 |
580 | - [Implementing a Neural Network from scratch](http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/), [Code](https://github.com/dennybritz/nn-from-scratch)
581 |
582 | - [Speeding up your Neural Network with Theano and the gpu](http://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/), [Code](https://github.com/dennybritz/nn-theano)
583 |
584 | - [Basic ANN Theory](https://takinginitiative.wordpress.com/2008/04/03/basic-neural-network-tutorial-theory/)
585 |
586 | - [Role of Bias in Neural Networks](http://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks)
587 |
588 | - [Choosing number of hidden layers and nodes](http://stackoverflow.com/questions/3345079/estimating-the-number-of-neurons-and-number-of-layers-of-an-artificial-neural-ne),[2](http://stackoverflow.com/questions/10565868/multi-layer-perceptron-mlp-architecture-criteria-for-choosing-number-of-hidde?lq=1),[3](http://stackoverflow.com/questions/9436209/how-to-choose-number-of-hidden-layers-and-nodes-in-neural-network/2#)
589 |
590 | - [Backpropagation in Matrix Form](http://sudeepraja.github.io/Neural/)
591 |
592 | - [ANN implemented in C++ | AI Junkie](http://www.ai-junkie.com/ann/evolved/nnt6.html)
593 |
594 | - [Simple Implementation](http://stackoverflow.com/questions/15395835/simple-multi-layer-neural-network-implementation)
595 |
596 | - [NN for Beginners](http://www.codeproject.com/Articles/16419/AI-Neural-Network-for-beginners-Part-of)
597 |
598 | - [Regression and Classification with NNs (Slides)](http://www.autonlab.org/tutorials/neural13.pdf)
599 |
600 | - [Another Intro](http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html)
601 |
602 |
603 |
604 | - Recurrent and LSTM Networks
605 | - [awesome-rnn: list of resources (GitHub Repo)](https://github.com/kjw0612/awesome-rnn)
606 |
607 | - [Recurrent Neural Net Tutorial Part 1](http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/), [Part 2](http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/), [Part 3](http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/), [Code](https://github.com/dennybritz/rnn-tutorial-rnnlm/)
608 |
609 | - [NLP RNN Representations](http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/)
610 |
611 | - [The Unreasonable effectiveness of RNNs](http://karpathy.github.io/2015/05/21/rnn-effectiveness/), [Torch Code](https://github.com/karpathy/char-rnn), [Python Code](https://gist.github.com/karpathy/d4dee566867f8291f086)
612 |
613 | - [Intro to RNN](http://deeplearning4j.org/recurrentnetwork.html), [LSTM](http://deeplearning4j.org/lstm.html)
614 |
615 | - [An application of RNN](http://hackaday.com/2015/10/15/73-computer-scientists-created-a-neural-net-and-you-wont-believe-what-happened-next/)
616 |
617 | - [Optimizing RNN Performance](http://svail.github.io/)
618 |
619 | - [Simple RNN](http://outlace.com/Simple-Recurrent-Neural-Network/)
620 |
621 | - [Auto-Generating Clickbait with RNN](https://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/)
622 |
623 | - [Sequence Learning using RNN (Slides)](http://www.slideshare.net/indicods/general-sequence-learning-with-recurrent-neural-networks-for-next-ml)
624 |
625 | - [Machine Translation using RNN (Paper)](http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf)
626 |
627 | - [Music generation using RNNs (Keras)](https://github.com/MattVitelli/GRUV)
628 |
629 | - [Using RNN to create on-the-fly dialogue (Keras)](http://neuralniche.com/post/tutorial/)
630 |
631 | - Long Short Term Memory (LSTM)
632 |
633 | - [Understanding LSTM Networks](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
634 |
635 | - [LSTM explained](https://apaszke.github.io/lstm-explained.html)
636 |
637 | - [Beginner’s Guide to LSTM](http://deeplearning4j.org/lstm.html)
638 |
639 | - [Implementing LSTM from scratch](http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/), [Python/Theano code](https://github.com/dennybritz/rnn-tutorial-gru-lstm)
640 |
641 | - [Torch Code for character-level language models using LSTM](https://github.com/karpathy/char-rnn)
642 |
643 | - [LSTM for Kaggle EEG Detection competition (Torch Code)](https://github.com/apaszke/kaggle-grasp-and-lift)
644 |
645 | - [LSTM for Sentiment Analysis in Theano](http://deeplearning.net/tutorial/lstm.html#lstm)
646 |
647 | - [Deep Learning for Visual Q&A | LSTM | CNN](http://avisingh599.github.io/deeplearning/visual-qa/), [Code](https://github.com/avisingh599/visual-qa)
648 |
649 | - [Computer Responds to email using LSTM | Google](http://googleresearch.blogspot.in/2015/11/computer-respond-to-this-email.html)
650 |
651 | - [LSTM dramatically improves Google Voice Search](http://googleresearch.blogspot.ch/2015/09/google-voice-search-faster-and-more.html), [Another Article](http://deeplearning.net/2015/09/30/long-short-term-memory-dramatically-improves-google-voice-etc-now-available-to-a-billion-users/)
652 |
653 | - [Understanding Natural Language with LSTM Using Torch](http://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
654 |
655 | - [Torch code for Visual Question Answering using a CNN+LSTM model](https://github.com/abhshkdz/neural-vqa)
656 |
657 | - [LSTM for Human Activity Recognition](https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition/)
658 |
659 | - Gated Recurrent Units (GRU)
660 |
661 | - [LSTM vs GRU](http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/)
662 |
663 | - [Time series forecasting with Sequence-to-Sequence (seq2seq) rnn models](https://github.com/guillaume-chevalier/seq2seq-signal-prediction)
664 |
665 |
666 |
667 |
668 | - [Recursive Neural Network (not Recurrent)](https://en.wikipedia.org/wiki/Recursive_neural_network)
669 |
670 | - [Recursive Neural Tensor Network (RNTN)](http://deeplearning4j.org/recursiveneuraltensornetwork.html)
671 |
672 | - [word2vec, DBN, RNTN for Sentiment Analysis ](http://deeplearning4j.org/zh-sentiment_analysis_word2vec.html)
673 |
674 |
675 |
676 | - Restricted Boltzmann Machine
677 |
678 | - [Beginner's Guide about RBMs](http://deeplearning4j.org/restrictedboltzmannmachine.html)
679 |
680 | - [Another Good Tutorial](http://deeplearning.net/tutorial/rbm.html)
681 |
682 | - [Introduction to RBMs](http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/)
683 |
684 | - [Hinton's Guide to Training RBMs](https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf)
685 |
686 | - [RBMs in R](https://github.com/zachmayer/rbm)
687 |
688 | - [Deep Belief Networks Tutorial](http://deeplearning4j.org/deepbeliefnetwork.html)
689 |
690 | - [word2vec, DBN, RNTN for Sentiment Analysis ](http://deeplearning4j.org/zh-sentiment_analysis_word2vec.html)
691 |
692 |
693 |
694 | - Autoencoders: Unsupervised (applies BackProp after setting target = input)
695 |
696 | - [Andrew Ng Sparse Autoencoders pdf](https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf)
697 |
698 | - [Deep Autoencoders Tutorial](http://deeplearning4j.org/deepautoencoder.html)
699 |
700 | - [Denoising Autoencoders](http://deeplearning.net/tutorial/dA.html), [Theano Code](http://deeplearning.net/tutorial/code/dA.py)
701 |
702 | - [Stacked Denoising Autoencoders](http://deeplearning.net/tutorial/SdA.html#sda)
703 |
704 |
705 |
706 |
707 | - Convolutional Neural Networks
708 |
709 | - [An Intuitive Explanation of Convolutional Neural Networks](https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/)
710 |
711 | - [Awesome Deep Vision: List of Resources (GitHub)](https://github.com/kjw0612/awesome-deep-vision)
712 |
713 | - [Intro to CNNs](http://deeplearning4j.org/convolutionalnets.html)
714 |
715 | - [Understanding CNN for NLP](http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/)
716 |
717 | - [Stanford Notes](http://vision.stanford.edu/teaching/cs231n/), [Codes](http://cs231n.github.io/), [GitHub](https://github.com/cs231n/cs231n.github.io)
718 |
719 | - [JavaScript Library (Browser Based) for CNNs](http://cs.stanford.edu/people/karpathy/convnetjs/)
720 |
721 | - [Using CNNs to detect facial keypoints](http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/)
722 |
723 | - [Deep learning to classify business photos at Yelp](http://engineeringblog.yelp.com/2015/10/how-we-use-deep-learning-to-classify-business-photos-at-yelp.html)
724 |
725 | - [Interview with Yann LeCun | Kaggle](http://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/)
726 |
727 | - [Visualising and Understanding CNNs](https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf)
728 |
729 |
730 |
731 | - Network Representation Learning
732 |
733 | - [Awesome Graph Embedding](https://github.com/benedekrozemberczki/awesome-graph-embedding)
734 |
735 | - [Awesome Network Embedding](https://github.com/chihming/awesome-network-embedding)
736 |
737 | - [Network Representation Learning Papers](https://github.com/thunlp)
738 |
739 | - [Knowledge Representation Learning Papers](https://github.com/thunlp/KRLPapers)
740 |
741 | - [Graph Based Deep Learning Literature](https://github.com/naganandy/graph-based-deep-learning-literature)
742 |
743 |
744 |
745 | ## Natural Language Processing
746 |
747 | - [A curated list of speech and natural language processing resources](https://github.com/edobashira/speech-language-processing)
748 |
749 | - [Understanding Natural Language with Deep Neural Networks Using Torch](http://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
750 |
751 | - [tf-idf explained](http://michaelerasm.us/post/tf-idf-in-10-minutes/)
752 |
753 | - [Interesting Deep Learning NLP Projects Stanford](http://cs224d.stanford.edu/reports.html), [Website](http://cs224d.stanford.edu/)
754 |
755 | - [The Stanford NLP Group](https://nlp.stanford.edu/)
756 |
757 | - [NLP from Scratch | Google Paper](https://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/35671.pdf)
758 |
759 | - [Graph Based Semi Supervised Learning for NLP](http://graph-ssl.wdfiles.com/local--files/blog%3A_start/graph_ssl_acl12_tutorial_slides_final.pdf)
760 |
761 | - [Bag of Words](https://en.wikipedia.org/wiki/Bag-of-words_model)
762 |
763 | - [Classification text with Bag of Words](http://fastml.com/classifying-text-with-bag-of-words-a-tutorial/)
764 |
765 |
766 |
767 | - Topic Modeling
768 | - [Topic Modeling Wikipedia](https://en.wikipedia.org/wiki/Topic_model)
769 | - [**Probabilistic Topic Models Princeton PDF**](http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf)
770 |
771 | - [LDA Wikipedia](https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation), [LSA Wikipedia](https://en.wikipedia.org/wiki/Latent_semantic_analysis), [Probabilistic LSA Wikipedia](https://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis)
772 |
773 | - [What is a good explanation of Latent Dirichlet Allocation (LDA)?](https://www.quora.com/What-is-a-good-explanation-of-Latent-Dirichlet-Allocation)
774 |
775 | - [**Introduction to LDA**](http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/), [Another good explanation](http://confusedlanguagetech.blogspot.in/2012/07/jordan-boyd-graber-and-philip-resnik.html)
776 |
777 | - [The LDA Buffet - Intuitive Explanation](http://www.matthewjockers.net/2011/09/29/the-lda-buffet-is-now-open-or-latent-dirichlet-allocation-for-english-majors/)
778 |
779 | - [Your Guide to Latent Dirichlet Allocation (LDA)](https://medium.com/@lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d)
780 |
781 | - [Difference between LSI and LDA](https://www.quora.com/Whats-the-difference-between-Latent-Semantic-Indexing-LSI-and-Latent-Dirichlet-Allocation-LDA)
782 |
783 | - [Original LDA Paper](https://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf)
784 |
785 | - [alpha and beta in LDA](http://datascience.stackexchange.com/questions/199/what-does-the-alpha-and-beta-hyperparameters-contribute-to-in-latent-dirichlet-a)
786 |
787 | - [Intuitive explanation of the Dirichlet distribution](https://www.quora.com/What-is-an-intuitive-explanation-of-the-Dirichlet-distribution)
788 | - [topicmodels: An R Package for Fitting Topic Models](https://cran.r-project.org/web/packages/topicmodels/vignettes/topicmodels.pdf)
789 |
790 | - [Topic modeling made just simple enough](https://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/)
791 |
792 | - [Online LDA](http://alexminnaar.com/online-latent-dirichlet-allocation-the-best-option-for-topic-modeling-with-large-data-sets.html), [Online LDA with Spark](http://alexminnaar.com/distributed-online-latent-dirichlet-allocation-with-apache-spark.html)
793 |
794 | - [LDA in Scala](http://alexminnaar.com/latent-dirichlet-allocation-in-scala-part-i-the-theory.html), [Part 2](http://alexminnaar.com/latent-dirichlet-allocation-in-scala-part-ii-the-code.html)
795 |
796 | - [Segmentation of Twitter Timelines via Topic Modeling](https://alexisperrier.com/nlp/2015/09/16/segmentation_twitter_timelines_lda_vs_lsa.html)
797 |
798 | - [Topic Modeling of Twitter Followers](http://alexperrier.github.io/jekyll/update/2015/09/04/topic-modeling-of-twitter-followers.html)
799 |
800 | - [Multilingual Latent Dirichlet Allocation (LDA)](https://github.com/ArtificiAI/Multilingual-Latent-Dirichlet-Allocation-LDA). ([Tutorial here](https://github.com/ArtificiAI/Multilingual-Latent-Dirichlet-Allocation-LDA/blob/master/Multilingual-LDA-Pipeline-Tutorial.ipynb))
801 |
802 | - [Deep Belief Nets for Topic Modeling](https://github.com/larsmaaloee/deep-belief-nets-for-topic-modeling)
803 | - [Gaussian LDA for Topic Models with Word Embeddings](http://www.cs.cmu.edu/~rajarshd/papers/acl2015.pdf)
804 | - Python
805 | - [Series of lecture notes for probabilistic topic models written in ipython notebook](https://github.com/arongdari/topic-model-lecture-note)
806 | - [Implementation of various topic models in Python](https://github.com/arongdari/python-topic-model)
807 |
808 |
809 |
810 | - word2vec
811 |
812 | - [Google word2vec](https://code.google.com/archive/p/word2vec)
813 |
814 | - [Bag of Words Model Wiki](https://en.wikipedia.org/wiki/Bag-of-words_model)
815 |
816 | - [word2vec Tutorial](https://rare-technologies.com/word2vec-tutorial/)
817 |
818 | - [A closer look at Skip Gram Modeling](http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf)
819 |
820 | - [Skip Gram Model Tutorial](http://alexminnaar.com/word2vec-tutorial-part-i-the-skip-gram-model.html), [CBoW Model](http://alexminnaar.com/word2vec-tutorial-part-ii-the-continuous-bag-of-words-model.html)
821 |
822 | - [Word Vectors Kaggle Tutorial Python](https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-2-word-vectors), [Part 2](https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-3-more-fun-with-word-vectors)
823 |
824 | - [Making sense of word2vec](http://rare-technologies.com/making-sense-of-word2vec/)
825 |
826 | - [word2vec explained on deeplearning4j](http://deeplearning4j.org/word2vec.html)
827 |
828 | - [Quora word2vec](https://www.quora.com/How-does-word2vec-work)
829 |
830 | - [Other Quora Resources](https://www.quora.com/What-are-the-continuous-bag-of-words-and-skip-gram-architectures-in-laymans-terms), [2](https://www.quora.com/What-is-the-difference-between-the-Bag-of-Words-model-and-the-Continuous-Bag-of-Words-model), [3](https://www.quora.com/Is-skip-gram-negative-sampling-better-than-CBOW-NS-for-word2vec-If-so-why)
831 |
832 | - [word2vec, DBN, RNTN for Sentiment Analysis ](http://deeplearning4j.org/zh-sentiment_analysis_word2vec.html)
833 |
834 | - Text Clustering
835 |
836 | - [How string clustering works](http://stackoverflow.com/questions/8196371/how-clustering-works-especially-string-clustering)
837 |
838 | - [Levenshtein distance for measuring the difference between two sequences](https://en.wikipedia.org/wiki/Levenshtein_distance)
839 |
840 | - [Text clustering with Levenshtein distances](http://stackoverflow.com/questions/21511801/text-clustering-with-levenshtein-distances)
841 |
842 | - Text Classification
843 |
844 | - [Classification Text with Bag of Words](http://fastml.com/classifying-text-with-bag-of-words-a-tutorial/)
845 |
846 | - Named Entity Recognitation
847 |
848 | - [Stanford Named Entity Recognizer (NER)](https://nlp.stanford.edu/software/CRF-NER.shtml)
849 |
850 | - [Named Entity Recognition: Applications and Use Cases- Towards Data Science](https://towardsdatascience.com/named-entity-recognition-applications-and-use-cases-acdbf57d595e)
851 |
852 | - [Language learning with NLP and reinforcement learning](http://blog.dennybritz.com/2015/09/11/reimagining-language-learning-with-nlp-and-reinforcement-learning/)
853 |
854 | - [Kaggle Tutorial Bag of Words and Word vectors](https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words), [Part 2](https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-2-word-vectors), [Part 3](https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-3-more-fun-with-word-vectors)
855 |
856 | - [What would Shakespeare say (NLP Tutorial)](https://gigadom.wordpress.com/2015/10/02/natural-language-processing-what-would-shakespeare-say/)
857 |
858 | - [A closer look at Skip Gram Modeling](http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf)
859 |
860 |
861 |
862 | ## Computer Vision
863 | - [Awesome computer vision (github)](https://github.com/jbhuang0604/awesome-computer-vision)
864 |
865 | - [Awesome deep vision (github)](https://github.com/kjw0612/awesome-deep-vision)
866 |
867 |
868 |
869 |
870 | ## Support Vector Machine
871 |
872 | - [Highest Voted Questions about SVMs on Cross Validated](http://stats.stackexchange.com/questions/tagged/svm)
873 |
874 | - [Help me Understand SVMs!](http://stats.stackexchange.com/questions/3947/help-me-understand-support-vector-machines)
875 |
876 | - [SVM in Layman's terms](https://www.quora.com/What-does-support-vector-machine-SVM-mean-in-laymans-terms)
877 |
878 | - [How does SVM Work | Comparisons](http://stats.stackexchange.com/questions/23391/how-does-a-support-vector-machine-svm-work)
879 |
880 | - [A tutorial on SVMs](http://alex.smola.org/papers/2003/SmoSch03b.pdf)
881 |
882 | - [Practical Guide to SVC](http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf), [Slides](http://www.csie.ntu.edu.tw/~cjlin/talks/freiburg.pdf)
883 |
884 | - [Introductory Overview of SVMs](http://www.statsoft.com/Textbook/Support-Vector-Machines)
885 |
886 | - Comparisons
887 |
888 | - [SVMs > ANNs](http://stackoverflow.com/questions/6699222/support-vector-machines-better-than-artificial-neural-networks-in-which-learn?rq=1), [ANNs > SVMs](http://stackoverflow.com/questions/11632516/what-are-advantages-of-artificial-neural-networks-over-support-vector-machines), [Another Comparison](http://www.svms.org/anns.html)
889 |
890 | - [Trees > SVMs](http://stats.stackexchange.com/questions/57438/why-is-svm-not-so-good-as-decision-tree-on-the-same-data)
891 |
892 | - [Kernel Logistic Regression vs SVM](http://stats.stackexchange.com/questions/43996/kernel-logistic-regression-vs-svm)
893 |
894 | - [Logistic Regression vs SVM](http://stats.stackexchange.com/questions/58684/regularized-logistic-regression-and-support-vector-machine), [2](http://stats.stackexchange.com/questions/95340/svm-v-s-logistic-regression), [3](https://www.quora.com/Support-Vector-Machines/What-is-the-difference-between-Linear-SVMs-and-Logistic-Regression)
895 |
896 | - [Optimization Algorithms in Support Vector Machines](http://pages.cs.wisc.edu/~swright/talks/sjw-complearning.pdf)
897 |
898 | - [Variable Importance from SVM](http://stats.stackexchange.com/questions/2179/variable-importance-from-svm)
899 |
900 | - Software
901 |
902 | - [LIBSVM](https://www.csie.ntu.edu.tw/~cjlin/libsvm/)
903 |
904 | - [Intro to SVM in R](http://cbio.ensmp.fr/~jvert/svn/tutorials/practical/svmbasic/svmbasic_notes.pdf)
905 |
906 | - Kernels
907 | - [What are Kernels in ML and SVM?](https://www.quora.com/What-are-Kernels-in-Machine-Learning-and-SVM)
908 |
909 | - [Intuition Behind Gaussian Kernel in SVMs?](https://www.quora.com/Support-Vector-Machines/What-is-the-intuition-behind-Gaussian-kernel-in-SVM)
910 |
911 | - Probabilities post SVM
912 |
913 | - [Platt's Probabilistic Outputs for SVM](http://www.csie.ntu.edu.tw/~htlin/paper/doc/plattprob.pdf)
914 |
915 | - [Platt Calibration Wiki](https://en.wikipedia.org/wiki/Platt_scaling)
916 |
917 | - [Why use Platts Scaling](http://stats.stackexchange.com/questions/5196/why-use-platts-scaling)
918 |
919 | - [Classifier Classification with Platt's Scaling](http://fastml.com/classifier-calibration-with-platts-scaling-and-isotonic-regression/)
920 |
921 |
922 |
923 |
924 | ## Reinforcement Learning
925 |
926 | - [Awesome Reinforcement Learning (GitHub)](https://github.com/aikorea/awesome-rl)
927 |
928 | - [RL Tutorial Part 1](http://outlace.com/Reinforcement-Learning-Part-1/), [Part 2](http://outlace.com/Reinforcement-Learning-Part-2/)
929 |
930 |
931 |
932 | ## Decision Trees
933 |
934 | - [Wikipedia Page - Lots of Good Info](https://en.wikipedia.org/wiki/Decision_tree_learning)
935 |
936 | - [FAQs about Decision Trees](http://stats.stackexchange.com/questions/tagged/cart)
937 |
938 | - [Brief Tour of Trees and Forests](https://statistical-research.com/index.php/2013/04/29/a-brief-tour-of-the-trees-and-forests/)
939 |
940 | - [Tree Based Models in R](http://www.statmethods.net/advstats/cart.html)
941 |
942 | - [How Decision Trees work?](http://www.aihorizon.com/essays/generalai/decision_trees.htm)
943 |
944 | - [Weak side of Decision Trees](http://stats.stackexchange.com/questions/1292/what-is-the-weak-side-of-decision-trees)
945 |
946 | - [Thorough Explanation and different algorithms](http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf)
947 |
948 | - [What is entropy and information gain in the context of building decision trees?](http://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain)
949 |
950 | - [Slides Related to Decision Trees](http://www.slideshare.net/pierluca.lanzi/machine-learning-and-data-mining-11-decision-trees)
951 |
952 | - [How do decision tree learning algorithms deal with missing values?](http://stats.stackexchange.com/questions/96025/how-do-decision-tree-learning-algorithms-deal-with-missing-values-under-the-hoo)
953 |
954 | - [Using Surrogates to Improve Datasets with Missing Values](https://www.salford-systems.com/videos/tutorials/tips-and-tricks/using-surrogates-to-improve-datasets-with-missing-values)
955 |
956 | - [Good Article](https://www.mindtools.com/dectree.html)
957 |
958 | - [Are decision trees almost always binary trees?](http://stats.stackexchange.com/questions/12187/are-decision-trees-almost-always-binary-trees)
959 |
960 | - [Pruning Decision Trees](https://en.wikipedia.org/wiki/Pruning_(decision_trees)), [Grafting of Decision Trees](https://en.wikipedia.org/wiki/Grafting_(decision_trees))
961 |
962 | - [What is Deviance in context of Decision Trees?](http://stats.stackexchange.com/questions/6581/what-is-deviance-specifically-in-cart-rpart)
963 |
964 | - [Discover structure behind data with decision trees](http://vooban.com/en/tips-articles-geek-stuff/discover-structure-behind-data-with-decision-trees/) - Grow and plot a decision tree to automatically figure out hidden rules in your data
965 |
966 | - Comparison of Different Algorithms
967 |
968 | - [CART vs CTREE](http://stats.stackexchange.com/questions/12140/conditional-inference-trees-vs-traditional-decision-trees)
969 |
970 | - [Comparison of complexity or performance](https://stackoverflow.com/questions/9979461/different-decision-tree-algorithms-with-comparison-of-complexity-or-performance)
971 |
972 | - [CHAID vs CART](http://stats.stackexchange.com/questions/61230/chaid-vs-crt-or-cart) , [CART vs CHAID](http://www.bzst.com/2006/10/classification-trees-cart-vs-chaid.html)
973 |
974 | - [Good Article on comparison](http://www.ftpress.com/articles/article.aspx?p=2248639&seqNum=11)
975 |
976 | - CART
977 |
978 | - [Recursive Partitioning Wikipedia](https://en.wikipedia.org/wiki/Recursive_partitioning)
979 |
980 | - [CART Explained](http://documents.software.dell.com/Statistics/Textbook/Classification-and-Regression-Trees)
981 |
982 | - [How to measure/rank “variable importance” when using CART?](http://stats.stackexchange.com/questions/6478/how-to-measure-rank-variable-importance-when-using-cart-specifically-using)
983 |
984 | - [Pruning a Tree in R](http://stackoverflow.com/questions/15318409/how-to-prune-a-tree-in-r)
985 |
986 | - [Does rpart use multivariate splits by default?](http://stats.stackexchange.com/questions/4356/does-rpart-use-multivariate-splits-by-default)
987 |
988 | - [FAQs about Recursive Partitioning](http://stats.stackexchange.com/questions/tagged/rpart)
989 |
990 | - CTREE
991 |
992 | - [party package in R](https://cran.r-project.org/web/packages/party/party.pdf)
993 |
994 | - [Show volumne in each node using ctree in R](http://stackoverflow.com/questions/13772715/show-volume-in-each-node-using-ctree-plot-in-r)
995 |
996 | - [How to extract tree structure from ctree function?](http://stackoverflow.com/questions/8675664/how-to-extract-tree-structure-from-ctree-function)
997 |
998 | - CHAID
999 |
1000 | - [Wikipedia Artice on CHAID](https://en.wikipedia.org/wiki/CHAID)
1001 |
1002 | - [Basic Introduction to CHAID](https://smartdrill.com/Introduction-to-CHAID.html)
1003 |
1004 | - [Good Tutorial on CHAID](http://www.statsoft.com/Textbook/CHAID-Analysis)
1005 |
1006 | - MARS
1007 |
1008 | - [Wikipedia Article on MARS](https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines)
1009 |
1010 | - Probabilistic Decision Trees
1011 |
1012 | - [Bayesian Learning in Probabilistic Decision Trees](http://www.stats.org.uk/bayesian/Jordan.pdf)
1013 |
1014 | - [Probabilistic Trees Research Paper](http://people.stern.nyu.edu/adamodar/pdfiles/papers/probabilistic.pdf)
1015 |
1016 |
1017 |
1018 | ## Random Forest / Bagging
1019 |
1020 | - [Awesome Random Forest (GitHub)**](https://github.com/kjw0612/awesome-random-forest)
1021 |
1022 | - [How to tune RF parameters in practice?](https://www.kaggle.com/forums/f/15/kaggle-forum/t/4092/how-to-tune-rf-parameters-in-practice)
1023 |
1024 | - [Measures of variable importance in random forests](http://stats.stackexchange.com/questions/12605/measures-of-variable-importance-in-random-forests)
1025 |
1026 | - [Compare R-squared from two different Random Forest models](http://stats.stackexchange.com/questions/13869/compare-r-squared-from-two-different-random-forest-models)
1027 |
1028 | - [OOB Estimate Explained | RF vs LDA](https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v10.2.pdf)
1029 |
1030 | - [Evaluating Random Forests for Survival Analysis Using Prediction Error Curve](https://www.jstatsoft.org/index.php/jss/article/view/v050i11)
1031 |
1032 | - [Why doesn't Random Forest handle missing values in predictors?](http://stats.stackexchange.com/questions/98953/why-doesnt-random-forest-handle-missing-values-in-predictors)
1033 |
1034 | - [How to build random forests in R with missing (NA) values?](http://stackoverflow.com/questions/8370455/how-to-build-random-forests-in-r-with-missing-na-values)
1035 |
1036 | - [FAQs about Random Forest](http://stats.stackexchange.com/questions/tagged/random-forest), [More FAQs](http://stackoverflow.com/questions/tagged/random-forest)
1037 |
1038 | - [Obtaining knowledge from a random forest](http://stats.stackexchange.com/questions/21152/obtaining-knowledge-from-a-random-forest)
1039 |
1040 | - [Some Questions for R implementation](http://stackoverflow.com/questions/20537186/getting-predictions-after-rfimpute), [2](http://stats.stackexchange.com/questions/81609/whether-preprocessing-is-needed-before-prediction-using-finalmodel-of-randomfore), [3](http://stackoverflow.com/questions/17059432/random-forest-package-in-r-shows-error-during-prediction-if-there-are-new-fact)
1041 |
1042 |
1043 |
1044 | ## Boosting
1045 |
1046 | - [Boosting for Better Predictions](http://www.datasciencecentral.com/profiles/blogs/boosting-algorithms-for-better-predictions)
1047 |
1048 | - [Boosting Wikipedia Page](https://en.wikipedia.org/wiki/Boosting_(machine_learning))
1049 |
1050 | - [Introduction to Boosted Trees | Tianqi Chen](https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf)
1051 |
1052 | - Gradient Boosting Machine
1053 |
1054 | - [Gradiet Boosting Wiki](https://en.wikipedia.org/wiki/Gradient_boosting)
1055 |
1056 | - [Guidelines for GBM parameters in R](http://stats.stackexchange.com/questions/25748/what-are-some-useful-guidelines-for-gbm-parameters), [Strategy to set parameters](http://stats.stackexchange.com/questions/35984/strategy-to-set-the-gbm-parameters)
1057 |
1058 | - [Meaning of Interaction Depth](http://stats.stackexchange.com/questions/16501/what-does-interaction-depth-mean-in-gbm), [2](http://stats.stackexchange.com/questions/16501/what-does-interaction-depth-mean-in-gbm)
1059 |
1060 | - [Role of n.minobsinnode parameter of GBM in R](http://stats.stackexchange.com/questions/30645/role-of-n-minobsinnode-parameter-of-gbm-in-r)
1061 |
1062 | - [GBM in R](http://www.slideshare.net/mark_landry/gbm-package-in-r)
1063 |
1064 | - [FAQs about GBM](http://stats.stackexchange.com/tags/gbm/hot)
1065 |
1066 | - [GBM vs xgboost](https://www.kaggle.com/c/higgs-boson/forums/t/9497/r-s-gbm-vs-python-s-xgboost)
1067 |
1068 | - xgboost
1069 |
1070 | - [xgboost tuning kaggle](https://www.kaggle.com/khozzy/rossmann-store-sales/xgboost-parameter-tuning-template/log)
1071 |
1072 | - [xgboost vs gbm](https://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/13012/question-to-experienced-kagglers-and-anyone-who-wants-to-take-a-shot/68296#post68296)
1073 |
1074 | - [xgboost survey](https://www.kaggle.com/c/higgs-boson/forums/t/10335/xgboost-post-competition-survey)
1075 |
1076 | - [Practical XGBoost in Python online course (free)](http://education.parrotprediction.teachable.com/courses/practical-xgboost-in-python)
1077 |
1078 | - AdaBoost
1079 |
1080 | - [AdaBoost Wiki](https://en.wikipedia.org/wiki/AdaBoost), [Python Code](https://gist.github.com/tristanwietsma/5486024)
1081 |
1082 | - [AdaBoost Sparse Input Support](http://hamzehal.blogspot.com/2014/06/adaboost-sparse-input-support.html)
1083 |
1084 | - [adaBag R package](https://cran.r-project.org/web/packages/adabag/adabag.pdf)
1085 |
1086 | - [Tutorial](http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf)
1087 |
1088 | - CatBoost
1089 |
1090 | - [CatBoost Documentation](https://catboost.ai/docs/)
1091 |
1092 | - [Benchmarks](https://catboost.ai/#benchmark)
1093 |
1094 | - [Tutorial](https://github.com/catboost/tutorials)
1095 |
1096 | - [GitHub Project](https://github.com/catboost)
1097 |
1098 | - [CatBoost vs. Light GBM vs. XGBoost](https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db)
1099 |
1100 |
1101 |
1102 | ## Ensembles
1103 |
1104 | - [Wikipedia Article on Ensemble Learning](https://en.wikipedia.org/wiki/Ensemble_learning)
1105 |
1106 | - [Kaggle Ensembling Guide](http://mlwave.com/kaggle-ensembling-guide/)
1107 |
1108 | - [The Power of Simple Ensembles](http://www.overkillanalytics.net/more-is-always-better-the-power-of-simple-ensembles/)
1109 |
1110 | - [Ensemble Learning Intro](http://machine-learning.martinsewell.com/ensembles/)
1111 |
1112 | - [Ensemble Learning Paper](http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/springerEBR09.pdf)
1113 |
1114 | - [Ensembling models with R](http://amunategui.github.io/blending-models/), [Ensembling Regression Models in R](http://stats.stackexchange.com/questions/26790/ensembling-regression-models), [Intro to Ensembles in R](http://www.vikparuchuri.com/blog/intro-to-ensemble-learning-in-r/)
1115 |
1116 | - [Ensembling Models with caret](http://stats.stackexchange.com/questions/27361/stacking-ensembling-models-with-caret)
1117 |
1118 | - [Bagging vs Boosting vs Stacking](http://stats.stackexchange.com/questions/18891/bagging-boosting-and-stacking-in-machine-learning)
1119 |
1120 | - [Good Resources | Kaggle Africa Soil Property Prediction](https://www.kaggle.com/c/afsis-soil-properties/forums/t/10391/best-ensemble-references)
1121 |
1122 | - [Boosting vs Bagging](http://www.chioka.in/which-is-better-boosting-or-bagging/)
1123 |
1124 | - [Resources for learning how to implement ensemble methods](http://stats.stackexchange.com/questions/32703/resources-for-learning-how-to-implement-ensemble-methods)
1125 |
1126 | - [How are classifications merged in an ensemble classifier?](http://stats.stackexchange.com/questions/21502/how-are-classifications-merged-in-an-ensemble-classifier)
1127 |
1128 |
1129 |
1130 | ## Stacking Models
1131 |
1132 | - [Stacking, Blending and Stacked Generalization](http://www.chioka.in/stacking-blending-and-stacked-generalization/)
1133 |
1134 | - [Stacked Generalization (Stacking)](http://machine-learning.martinsewell.com/ensembles/stacking/)
1135 |
1136 | - [Stacked Generalization: when does it work?](http://www.ijcai.org/Proceedings/97-2/011.pdf)
1137 |
1138 | - [Stacked Generalization Paper](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1533&rep=rep1&type=pdf)
1139 |
1140 |
1141 |
1142 | ## Vapnik–Chervonenkis Dimension
1143 |
1144 | - [Wikipedia article on VC Dimension](https://en.wikipedia.org/wiki/VC_dimension)
1145 |
1146 | - [Intuitive Explanantion of VC Dimension](https://www.quora.com/Explain-VC-dimension-and-shattering-in-lucid-Way)
1147 |
1148 | - [Video explaining VC Dimension](https://www.youtube.com/watch?v=puDzy2XmR5c)
1149 |
1150 | - [Introduction to VC Dimension](http://www.svms.org/vc-dimension/)
1151 |
1152 | - [FAQs about VC Dimension](http://stats.stackexchange.com/questions/tagged/vc-dimension)
1153 |
1154 | - [Do ensemble techniques increase VC-dimension?](http://stats.stackexchange.com/questions/78076/do-ensemble-techniques-increase-vc-dimension)
1155 |
1156 |
1157 |
1158 |
1159 | ## Bayesian Machine Learning
1160 |
1161 | - [Bayesian Methods for Hackers (using pyMC)](https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers)
1162 |
1163 | - [Should all Machine Learning be Bayesian?](http://videolectures.net/bark08_ghahramani_samlbb/)
1164 |
1165 | - [Tutorial on Bayesian Optimisation for Machine Learning](http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf)
1166 |
1167 | - [Bayesian Reasoning and Deep Learning](http://blog.shakirm.com/2015/10/bayesian-reasoning-and-deep-learning/), [Slides](http://blog.shakirm.com/wp-content/uploads/2015/10/Bayes_Deep.pdf)
1168 |
1169 | - [Bayesian Statistics Made Simple](http://greenteapress.com/wp/think-bayes/)
1170 |
1171 | - [Kalman & Bayesian Filters in Python](https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python)
1172 |
1173 | - [Markov Chain Wikipedia Page](https://en.wikipedia.org/wiki/Markov_chain)
1174 |
1175 |
1176 |
1177 |
1178 | ## Semi Supervised Learning
1179 |
1180 | - [Wikipedia article on Semi Supervised Learning](https://en.wikipedia.org/wiki/Semi-supervised_learning)
1181 |
1182 | - [Tutorial on Semi Supervised Learning](http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf)
1183 |
1184 | - [Graph Based Semi Supervised Learning for NLP](http://graph-ssl.wdfiles.com/local--files/blog%3A_start/graph_ssl_acl12_tutorial_slides_final.pdf)
1185 |
1186 | - [Taxonomy](http://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/taxo_[0].pdf)
1187 |
1188 | - [Video Tutorial Weka](https://www.youtube.com/watch?v=sWxcIjZFGNM)
1189 |
1190 | - [Unsupervised, Supervised and Semi Supervised learning](http://stats.stackexchange.com/questions/517/unsupervised-supervised-and-semi-supervised-learning)
1191 |
1192 | - [Research Papers 1](http://mlg.eng.cam.ac.uk/zoubin/papers/zglactive.pdf), [2](http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf), [3](http://icml.cc/2012/papers/616.pdf)
1193 |
1194 |
1195 |
1196 |
1197 | ## Optimization
1198 |
1199 | - [Mean Variance Portfolio Optimization with R and Quadratic Programming](http://www.wdiam.com/2012/06/10/mean-variance-portfolio-optimization-with-r-and-quadratic-programming/?utm_content=buffer04c12&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer)
1200 |
1201 | - [Algorithms for Sparse Optimization and Machine Learning](http://www.ima.umn.edu/2011-2012/W3.26-30.12/activities/Wright-Steve/sjw-ima12)
1202 |
1203 | - [Optimization Algorithms in Machine Learning](http://pages.cs.wisc.edu/~swright/nips2010/sjw-nips10.pdf), [Video Lecture](http://videolectures.net/nips2010_wright_oaml/)
1204 |
1205 | - [Optimization Algorithms for Data Analysis](http://www.birs.ca/workshops/2011/11w2035/files/Wright.pdf)
1206 |
1207 | - [Video Lectures on Optimization](http://videolectures.net/stephen_j_wright/)
1208 |
1209 | - [Optimization Algorithms in Support Vector Machines](http://pages.cs.wisc.edu/~swright/talks/sjw-complearning.pdf)
1210 |
1211 | - [The Interplay of Optimization and Machine Learning Research](http://jmlr.org/papers/volume7/MLOPT-intro06a/MLOPT-intro06a.pdf)
1212 |
1213 | - [Hyperopt tutorial for Optimizing Neural Networks’ Hyperparameters](http://vooban.com/en/tips-articles-geek-stuff/hyperopt-tutorial-for-optimizing-neural-networks-hyperparameters/)
1214 |
1215 |
1216 |
1217 |
1218 | ## Other Tutorials
1219 |
1220 | - For a collection of Data Science Tutorials using R, please refer to [this list](https://github.com/ujjwalkarn/DataScienceR).
1221 |
1222 | - For a collection of Data Science Tutorials using Python, please refer to [this list](https://github.com/ujjwalkarn/DataSciencePython).
1223 |
--------------------------------------------------------------------------------
/contributing.md:
--------------------------------------------------------------------------------
1 | If you want to contribute to this list (please do), send me a pull request. Since we want this list to be useful in the long run, **please submit high quality links only**.
2 |
3 | ## Adding to this list
4 |
5 | Please ensure your pull request adheres to the following guidelines:
6 |
7 | - **Please make an individual pull request for each suggestion.**
8 | - Please only submit resources that are completly free to access.
9 | - The pull request and commit should have a useful title.
10 | - Please search previous suggestions before making a new one, as yours may be a duplicate.
11 | - Make sure your link has a useful and relevant title.
12 | - Please use [title-casing](http://titlecapitalization.com) (AP style).
13 | - Please use the following format: `[Useful Title](link)`
14 | - Link additions should be added to the bottom of the relevant category.
15 | - New categories or improvements to the existing categorization are welcome.
16 | - Please check your spelling and grammar.
17 |
18 | Thank you for your suggestions!
19 |
--------------------------------------------------------------------------------