├── LICENSE
├── README.md
├── components.py
├── covisibility.py
├── dataset.py
├── feature.py
├── imgs
├── point_cloud.png
├── pose_graph.png
└── sptam_overview.png
├── loopclosing.py
├── mapping.py
├── motion.py
├── optimization.py
├── params.py
├── sptam.py
└── viewer.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # stereo_ptam
2 |
3 | This python project is a complete implementation of Stereo PTAM, based on C++ project [lrse/sptam](https://github.com/lrse/sptam) and paper "[S-PTAM: Stereo Parallel Tracking and Mapping](http://webdiis.unizar.es/~jcivera/papers/pire_etal_ras17.pdf) Taihu Pire et al. RAS17", with some modifications.
4 |
5 | > S-PTAM is a Stereo SLAM system able to compute the camera trajectory in real-time. It heavily exploits the parallel nature of the SLAM problem, separating the time-constrained pose estimation from less pressing matters such as map building and refinement tasks. On the other hand, the stereo setting allows to reconstruct a metric 3D map for each frame of stereo images, improving the accuracy of the mapping process with respect to monocular SLAM and avoiding the well-known bootstrapping problem. Also, the real scale of the environment is an essential feature for robots which have to interact with their surrounding workspace.
6 |
7 | S-PTAM system overview (from [S-PTAM paper](http://webdiis.unizar.es/~jcivera/papers/pire_etal_ras17.pdf) page 11):
8 | 
9 |
10 | As stated in the [S-PTAM paper](http://webdiis.unizar.es/~jcivera/papers/pire_etal_ras17.pdf) (page 39), S-PTAM's results on KITTI dataset is comparable to stereo version of [ORB-SLAM2](https://github.com/raulmur/ORB_SLAM2), and better than stereo LSD-SLAM. It's very inspiring, I'm trying to reproduce the results.
11 |
12 |
13 | ## Features
14 | (of this implementation)
15 | * Multithreads Tracking, Mapping, and Loop Closing;
16 | * Covisibility Graph (representing the relation between keyframes, mappoints and measurements);
17 | * Local Bundle Adjustment and Pose Graph Optimization;
18 | * Motion Model (used for pose prediction, then for reliable feature matching);
19 | * Point Clouds and Graph visualization;
20 | * Data loader for datasets [KITTI Odometry](http://www.cvlibs.net/datasets/kitti/eval_odometry.php) and [EuRoC MAV](http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets);
21 | * Reasonable speed: ~50ms per frame on EuRoC, and ~70ms per frame on KITTI.
22 |
23 | ## Requirements
24 | * Python 3.6+
25 | * numpy
26 | * cv2
27 | * [g2o](https://github.com/uoip/g2opy) (python binding of C++ library [g2o](https://github.com/RainerKuemmerle/g2o)) for optimization
28 | * [pangolin](https://github.com/uoip/pangolin) (python binding of C++ library [Pangolin](http://github.com/stevenlovegrove/Pangolin)) for visualization
29 |
30 | ## Usage
31 | `python sptam.py --dataset kitti --path path/to/your/KITTI_odometry_dataset/sequences/00`
32 | or
33 | `python sptam.py --dataset euroc --path path/to/your/EuRoC_MAV_dataset/MH_01_easy`
34 |
35 | ## Results
36 | Visual results (screenshots from my experiment) on KITTI odometry sequence 00:
37 | * graph:
38 | As shown below, all loops have been closed (loop points are marked in black).
39 | 
40 | * point cloud:
41 | 
42 |
43 |
44 | ### TODO:
45 | Exhaustive evaluation on datasets. (There seems to be a python package [MichaelGrupp/evo](https://github.com/MichaelGrupp/evo) for odometry/SLAM algorithm evaluation)
46 |
47 | ## License
48 | This python reimplementation is largely based on [sptam](https://github.com/lrse/sptam), so it's licensed under GPLv3 License.
49 |
50 | ## Contact
51 | If you have problems related to the base S-PTAM algorithm, you can contact original authors [lrse](https://github.com/lrse) (robotica@dc.uba.ar), or refer to the related papers:
52 | [1] Taihú Pire,Thomas Fischer, Gastón Castro, Pablo De Cristóforis, Javier Civera and Julio Jacobo Berlles.
53 | **S-PTAM: Stereo Parallel Tracking and Mapping**
54 | Robotics and Autonomous Systems, 2017.
55 |
56 | [2] Taihú Pire, Thomas Fischer, Javier Civera, Pablo De Cristóforis and Julio Jacobo Berlles.
57 | **Stereo Parallel Tracking and Mapping for Robot Localization**
58 | Proc. of The International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015.
59 |
60 |
61 | If you have interest in the python implementation here, just email me (Hang Qi, qihang@outlook.com);
62 |
--------------------------------------------------------------------------------
/components.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import cv2
3 | import g2o
4 |
5 | from threading import Lock, Thread
6 | from queue import Queue
7 |
8 | from enum import Enum
9 | from collections import defaultdict
10 |
11 | from covisibility import GraphKeyFrame
12 | from covisibility import GraphMapPoint
13 | from covisibility import GraphMeasurement
14 |
15 |
16 |
17 |
18 | class Camera(object):
19 | def __init__(self, fx, fy, cx, cy, width, height,
20 | frustum_near, frustum_far, baseline):
21 | self.fx = fx
22 | self.fy = fy
23 | self.cx = cx
24 | self.cy = cy
25 | self.baseline = baseline
26 |
27 | self.intrinsic = np.array([
28 | [fx, 0, cx],
29 | [0, fy, cy],
30 | [0, 0, 1]])
31 |
32 | self.frustum_near = frustum_near
33 | self.frustum_far = frustum_far
34 |
35 | self.width = width
36 | self.height = height
37 |
38 | def compute_right_camera_pose(self, pose):
39 | pos = pose * np.array([self.baseline, 0, 0])
40 | return g2o.Isometry3d(pose.orientation(), pos)
41 |
42 |
43 |
44 | class Frame(object):
45 | def __init__(self, idx, pose, feature, cam, timestamp=None,
46 | pose_covariance=np.identity(6)):
47 | self.idx = idx
48 | self.pose = pose # g2o.Isometry3d
49 | self.feature = feature
50 | self.cam = cam
51 | self.timestamp = timestamp
52 | self.image = feature.image
53 |
54 | self.orientation = pose.orientation()
55 | self.position = pose.position()
56 | self.pose_covariance = pose_covariance
57 |
58 | self.transform_matrix = pose.inverse().matrix()[:3] # shape: (3, 4)
59 | self.projection_matrix = (
60 | self.cam.intrinsic.dot(self.transform_matrix)) # from world frame to image
61 |
62 | # batch version
63 | def can_view(self, points, ground=False, margin=20): # Frustum Culling
64 | points = np.transpose(points)
65 | (u, v), depth = self.project(self.transform(points))
66 |
67 | if ground:
68 | return np.logical_and.reduce([
69 | depth >= self.cam.frustum_near,
70 | depth <= self.cam.frustum_far,
71 | u >= - margin,
72 | u <= self.cam.width + margin])
73 | else:
74 | return np.logical_and.reduce([
75 | depth >= self.cam.frustum_near,
76 | depth <= self.cam.frustum_far,
77 | u >= - margin,
78 | u <= self.cam.width + margin,
79 | v >= - margin,
80 | v <= self.cam.height + margin])
81 |
82 |
83 | def update_pose(self, pose):
84 | if isinstance(pose, g2o.SE3Quat):
85 | self.pose = g2o.Isometry3d(pose.orientation(), pose.position())
86 | else:
87 | self.pose = pose
88 | self.orientation = self.pose.orientation()
89 | self.position = self.pose.position()
90 |
91 | self.transform_matrix = self.pose.inverse().matrix()[:3]
92 | self.projection_matrix = (
93 | self.cam.intrinsic.dot(self.transform_matrix))
94 |
95 | def transform(self, points): # from world coordinates
96 | '''
97 | Transform points from world coordinates frame to camera frame.
98 | Args:
99 | points: a point or an array of points, of shape (3,) or (3, N).
100 | '''
101 | R = self.transform_matrix[:3, :3]
102 | if points.ndim == 1:
103 | t = self.transform_matrix[:3, 3]
104 | else:
105 | t = self.transform_matrix[:3, 3:]
106 | return R.dot(points) + t
107 |
108 | def project(self, points):
109 | '''
110 | Project points from camera frame to image's pixel coordinates.
111 | Args:
112 | points: a point or an array of points, of shape (3,) or (3, N).
113 | Returns:
114 | Projected pixel coordinates, and respective depth.
115 | '''
116 | projection = self.cam.intrinsic.dot(points / points[-1:])
117 | return projection[:2], points[-1]
118 |
119 | def find_matches(self, points, descriptors):
120 | '''
121 | Match to points from world frame.
122 | Args:
123 | points: a list/array of points. shape: (N, 3)
124 | descriptors: a list of feature descriptors. length: N
125 | Returns:
126 | List of successfully matched (queryIdx, trainIdx) pairs.
127 | '''
128 | points = np.transpose(points)
129 | proj, _ = self.project(self.transform(points))
130 | proj = proj.transpose()
131 | return self.feature.find_matches(proj, descriptors)
132 |
133 | def get_keypoint(self, i):
134 | return self.feature.get_keypoint(i)
135 | def get_descriptor(self, i):
136 | return self.feature.get_descriptor(i)
137 | def get_color(self, pt):
138 | return self.feature.get_color(pt)
139 | def set_matched(self, i):
140 | self.feature.set_matched(i)
141 | def get_unmatched_keypoints(self):
142 | return self.feature.get_unmatched_keypoints()
143 |
144 |
145 |
146 | class StereoFrame(Frame):
147 | def __init__(self, idx, pose, feature, right_feature, cam,
148 | right_cam=None, timestamp=None, pose_covariance=np.identity(6)):
149 |
150 | super().__init__(idx, pose, feature, cam, timestamp, pose_covariance)
151 | self.left = Frame(idx, pose, feature, cam, timestamp, pose_covariance)
152 | self.right = Frame(idx,
153 | cam.compute_right_camera_pose(pose),
154 | right_feature, right_cam or cam,
155 | timestamp, pose_covariance)
156 |
157 | def find_matches(self, source, points, descriptors):
158 |
159 | q2 = Queue()
160 | def find_right(points, descriptors, q):
161 | m = dict(self.right.find_matches(points, descriptors))
162 | q.put(m)
163 | t2 = Thread(target=find_right, args=(points, descriptors, q2))
164 | t2.start()
165 | matches_left = dict(self.left.find_matches(points, descriptors))
166 | t2.join()
167 | matches_right = q2.get()
168 |
169 | measurements = []
170 | for i, j in matches_left.items():
171 | if i in matches_right:
172 | j2 = matches_right[i]
173 |
174 | y1 = self.left.get_keypoint(j).pt[1]
175 | y2 = self.right.get_keypoint(j2).pt[1]
176 | if abs(y1 - y2) > 2.5: # epipolar constraint
177 | continue # TODO: choose one
178 |
179 | meas = Measurement(
180 | Measurement.Type.STEREO,
181 | source,
182 | [self.left.get_keypoint(j),
183 | self.right.get_keypoint(j2)],
184 | [self.left.get_descriptor(j),
185 | self.right.get_descriptor(j2)])
186 | measurements.append((i, meas))
187 | self.left.set_matched(j)
188 | self.right.set_matched(j2)
189 | else:
190 | meas = Measurement(
191 | Measurement.Type.LEFT,
192 | source,
193 | [self.left.get_keypoint(j)],
194 | [self.left.get_descriptor(j)])
195 | measurements.append((i, meas))
196 | self.left.set_matched(j)
197 |
198 | for i, j in matches_right.items():
199 | if i not in matches_left:
200 | meas = Measurement(
201 | Measurement.Type.RIGHT,
202 | source,
203 | [self.right.get_keypoint(j)],
204 | [self.right.get_descriptor(j)])
205 | measurements.append((i, meas))
206 | self.right.set_matched(j)
207 |
208 | return measurements
209 |
210 | def match_mappoints(self, mappoints, source):
211 | points = []
212 | descriptors = []
213 | for mappoint in mappoints:
214 | points.append(mappoint.position)
215 | descriptors.append(mappoint.descriptor)
216 | matched_measurements = self.find_matches(source, points, descriptors)
217 |
218 | measurements = []
219 | for i, meas in matched_measurements:
220 | meas.mappoint = mappoints[i]
221 | measurements.append(meas)
222 | return measurements
223 |
224 | def triangulate(self):
225 | kps_left, desps_left, idx_left = self.left.get_unmatched_keypoints()
226 | kps_right, desps_right, idx_right = self.right.get_unmatched_keypoints()
227 |
228 | mappoints, matches = self.triangulate_points(
229 | kps_left, desps_left, kps_right, desps_right)
230 |
231 | measurements = []
232 | for mappoint, (i, j) in zip(mappoints, matches):
233 | meas = Measurement(
234 | Measurement.Type.STEREO,
235 | Measurement.Source.TRIANGULATION,
236 | [kps_left[i], kps_right[j]],
237 | [desps_left[i], desps_right[j]])
238 | meas.mappoint = mappoint
239 | meas.view = self.transform(mappoint.position)
240 | measurements.append(meas)
241 |
242 | self.left.set_matched(idx_left[i])
243 | self.right.set_matched(idx_right[j])
244 |
245 | return mappoints, measurements
246 |
247 | def triangulate_points(self, kps_left, desps_left, kps_right, desps_right):
248 | matches = self.feature.row_match(
249 | kps_left, desps_left, kps_right, desps_right)
250 | assert len(matches) > 0
251 |
252 | px_left = np.array([kps_left[m.queryIdx].pt for m in matches])
253 | px_right = np.array([kps_right[m.trainIdx].pt for m in matches])
254 |
255 | points = cv2.triangulatePoints(
256 | self.left.projection_matrix,
257 | self.right.projection_matrix,
258 | px_left.transpose(),
259 | px_right.transpose()
260 | ).transpose() # shape: (N, 4)
261 |
262 | points = points[:, :3] / points[:, 3:]
263 |
264 | can_view = np.logical_and(
265 | self.left.can_view(points),
266 | self.right.can_view(points))
267 |
268 | mappoints = []
269 | matchs = []
270 | for i, point in enumerate(points):
271 | if not can_view[i]:
272 | continue
273 | normal = point - self.position
274 | normal = normal / np.linalg.norm(normal)
275 |
276 | color = self.left.get_color(px_left[i])
277 |
278 | mappoint = MapPoint(
279 | point, normal, desps_left[matches[i].queryIdx], color)
280 | mappoints.append(mappoint)
281 | matchs.append((matches[i].queryIdx, matches[i].trainIdx))
282 |
283 | return mappoints, matchs
284 |
285 | def update_pose(self, pose):
286 | super().update_pose(pose)
287 | self.right.update_pose(pose)
288 | self.left.update_pose(
289 | self.cam.compute_right_camera_pose(pose))
290 |
291 | # batch version
292 | def can_view(self, mappoints):
293 | points = []
294 | point_normals = []
295 | for i, p in enumerate(mappoints):
296 | points.append(p.position)
297 | point_normals.append(p.normal)
298 | points = np.asarray(points)
299 | point_normals = np.asarray(point_normals)
300 |
301 | normals = points - self.position
302 | normals /= np.linalg.norm(normals, axis=-1, keepdims=True)
303 | cos = np.clip(np.sum(point_normals * normals, axis=1), -1, 1)
304 | parallel = np.arccos(cos) < (np.pi / 4)
305 |
306 | can_view = np.logical_or(
307 | self.left.can_view(points),
308 | self.right.can_view(points))
309 |
310 | return np.logical_and(parallel, can_view)
311 |
312 | def to_keyframe(self):
313 | return KeyFrame(
314 | self.idx, self.pose,
315 | self.left.feature, self.right.feature,
316 | self.cam, self.right.cam,
317 | self.pose_covariance)
318 |
319 |
320 |
321 | class KeyFrame(GraphKeyFrame, StereoFrame):
322 | _id = 0
323 | _id_lock = Lock()
324 |
325 | def __init__(self, *args, **kwargs):
326 | GraphKeyFrame.__init__(self)
327 | StereoFrame.__init__(self, *args, **kwargs)
328 |
329 | with KeyFrame._id_lock:
330 | self.id = KeyFrame._id
331 | KeyFrame._id += 1
332 |
333 | self.reference_keyframe = None
334 | self.reference_constraint = None
335 | self.preceding_keyframe = None
336 | self.preceding_constraint = None
337 | self.loop_keyframe = None
338 | self.loop_constraint = None
339 | self.fixed = False
340 |
341 | def update_reference(self, reference=None):
342 | if reference is not None:
343 | self.reference_keyframe = reference
344 | self.reference_constraint = (
345 | self.reference_keyframe.pose.inverse() * self.pose)
346 |
347 | def update_preceding(self, preceding=None):
348 | if preceding is not None:
349 | self.preceding_keyframe = preceding
350 | self.preceding_constraint = (
351 | self.preceding_keyframe.pose.inverse() * self.pose)
352 |
353 | def set_loop(self, keyframe, constraint):
354 | self.loop_keyframe = keyframe
355 | self.loop_constraint = constraint
356 |
357 | def is_fixed(self):
358 | return self.fixed
359 |
360 | def set_fixed(self, fixed=True):
361 | self.fixed = fixed
362 |
363 |
364 |
365 | class MapPoint(GraphMapPoint):
366 | _id = 0
367 | _id_lock = Lock()
368 |
369 | def __init__(self, position, normal, descriptor,
370 | color=np.zeros(3),
371 | covariance=np.identity(3) * 1e-4):
372 | super().__init__()
373 |
374 | with MapPoint._id_lock:
375 | self.id = MapPoint._id
376 | MapPoint._id += 1
377 |
378 | self.position = position
379 | self.normal = normal
380 | self.descriptor = descriptor
381 | self.covariance = covariance
382 | self.color = color
383 | # self.owner = None
384 |
385 | self.count = defaultdict(int)
386 |
387 | def update_position(self, position):
388 | self.position = position
389 | def update_normal(self, normal):
390 | self.normal = normal
391 | def update_descriptor(self, descriptor):
392 | self.descriptor = descriptor
393 | def set_color(self, color):
394 | self.color = color
395 |
396 | def is_bad(self):
397 | with self._lock:
398 | status = (
399 | self.count['meas'] == 0
400 | or (self.count['outlier'] > 20
401 | and self.count['outlier'] > self.count['inlier'])
402 | or (self.count['proj'] > 20
403 | and self.count['proj'] > self.count['meas'] * 10))
404 | return status
405 |
406 | def increase_outlier_count(self):
407 | with self._lock:
408 | self.count['outlier'] += 1
409 | def increase_inlier_count(self):
410 | with self._lock:
411 | self.count['inlier'] += 1
412 | def increase_projection_count(self):
413 | with self._lock:
414 | self.count['proj'] += 1
415 | def increase_measurement_count(self):
416 | with self._lock:
417 | self.count['meas'] += 1
418 |
419 |
420 |
421 | class Measurement(GraphMeasurement):
422 |
423 | Source = Enum('Measurement.Source', ['TRIANGULATION', 'TRACKING', 'REFIND'])
424 | Type = Enum('Measurement.Type', ['STEREO', 'LEFT', 'RIGHT'])
425 |
426 | def __init__(self, type, source, keypoints, descriptors):
427 | super().__init__()
428 |
429 | self.type = type
430 | self.source = source
431 | self.keypoints = keypoints
432 | self.descriptors = descriptors
433 | self.view = None # mappoint's position in current coordinates frame
434 |
435 | self.xy = np.array(self.keypoints[0].pt)
436 | if self.is_stereo():
437 | self.xyx = np.array([
438 | *keypoints[0].pt, keypoints[1].pt[0]])
439 |
440 | self.triangulation = (source == self.Source.TRIANGULATION)
441 |
442 | def get_descriptor(self, i=0):
443 | return self.descriptors[i]
444 | def get_keypoint(self, i=0):
445 | return self.keypoints[i]
446 |
447 | def get_descriptors(self):
448 | return self.descriptors
449 | def get_keypoints(self):
450 | return self.keypoints
451 |
452 | def is_stereo(self):
453 | return self.type == Measurement.Type.STEREO
454 | def is_left(self):
455 | return self.type == Measurement.Type.LEFT
456 | def is_right(self):
457 | return self.type == Measurement.Type.RIGHT
458 |
459 | def from_triangulation(self):
460 | return self.triangulation
461 | def from_tracking(self):
462 | return self.source == Measurement.Source.TRACKING
463 | def from_refind(self):
464 | return self.source == Measurement.Source.REFIND
--------------------------------------------------------------------------------
/covisibility.py:
--------------------------------------------------------------------------------
1 | from threading import Lock
2 |
3 | from collections import defaultdict, Counter
4 | from itertools import chain
5 |
6 |
7 |
8 | class GraphKeyFrame(object):
9 | def __init__(self):
10 | self.id = None
11 | self.meas = dict()
12 | self.covisible = defaultdict(int)
13 | self._lock = Lock()
14 |
15 | def __hash__(self):
16 | return self.id
17 |
18 | def __eq__(self, rhs):
19 | return (isinstance(rhs, GraphKeyFrame) and
20 | self.id == rhs.id)
21 | def __lt__(self, rhs):
22 | return self.id < rhs.id # predate
23 | def __le__(self, rhs):
24 | return self.id <= rhs.id
25 |
26 | def measurements(self):
27 | with self._lock:
28 | return self.meas.keys()
29 |
30 | def mappoints(self):
31 | with self._lock:
32 | return self.meas.values()
33 |
34 | def add_measurement(self, m):
35 | with self._lock:
36 | self.meas[m] = m.mappoint
37 |
38 | def remove_measurement(self, m):
39 | with self._lock:
40 | try:
41 | del self.meas[m]
42 | except KeyError:
43 | pass
44 |
45 | def covisibility_keyframes(self):
46 | with self._lock:
47 | return self.covisible.copy() # shallow copy
48 |
49 | def add_covisibility_keyframe(self, kf):
50 | with self._lock:
51 | self.covisible[kf] += 1
52 |
53 |
54 |
55 | class GraphMapPoint(object):
56 | def __init__(self):
57 | self.id = None
58 | self.meas = dict()
59 | self._lock = Lock()
60 |
61 | def __hash__(self):
62 | return self.id
63 |
64 | def __eq__(self, rhs):
65 | return (isinstance(rhs, GraphMapPoint) and
66 | self.id == rhs.id)
67 | def __lt__(self, rhs):
68 | return self.id < rhs.id
69 | def __le__(self, rhs):
70 | return self.id <= rhs.id
71 |
72 | def measurements(self):
73 | with self._lock:
74 | return self.meas.keys()
75 |
76 | def keyframes(self):
77 | with self._lock:
78 | return self.meas.values()
79 |
80 | def add_measurement(self, m):
81 | with self._lock:
82 | self.meas[m] = m.keyframe
83 |
84 | def remove_measurement(self, m):
85 | with self._lock:
86 | try:
87 | del self.meas[m]
88 | except KeyError:
89 | pass
90 |
91 |
92 |
93 | class GraphMeasurement(object):
94 | def __init__(self):
95 | self.keyframe = None
96 | self.mappoint = None
97 |
98 | @property
99 | def id(self):
100 | return (self.keyframe.id, self.mappoint.id)
101 |
102 | def __hash__(self):
103 | return hash(self.id)
104 |
105 | def __eq__(self, rhs):
106 | return (isinstance(rhs, GraphMeasurement) and
107 | self.id == rhs.id)
108 |
109 |
110 |
111 |
112 | class CovisibilityGraph(object):
113 | def __init__(self, ):
114 | self._lock = Lock()
115 |
116 | self.kfs = []
117 | self.pts = set()
118 |
119 | self.kfs_set = set()
120 | self.meas_lookup = dict()
121 |
122 | def keyframes(self):
123 | with self._lock:
124 | return self.kfs.copy()
125 |
126 | def mappoints(self):
127 | with self._lock:
128 | return self.pts.copy()
129 |
130 | def add_keyframe(self, kf):
131 | with self._lock:
132 | self.kfs.append(kf)
133 | self.kfs_set.add(kf)
134 |
135 | def add_mappoint(self, pt):
136 | with self._lock:
137 | self.pts.add(pt)
138 |
139 | def remove_mappoint(self, pt):
140 | with self._lock:
141 | try:
142 | for m in pt.measurements():
143 | m.keyframe.remove_measurement(m)
144 | del self.meas_lookup[m.id]
145 | self.pts.remove(pt)
146 | except:
147 | pass
148 |
149 | def add_measurement(self, kf, pt, meas):
150 | with self._lock:
151 | if kf not in self.kfs_set or pt not in self.pts:
152 | return
153 |
154 | for m in pt.measurements():
155 | if m.keyframe == kf:
156 | continue
157 | kf.add_covisibility_keyframe(m.keyframe)
158 | m.keyframe.add_covisibility_keyframe(kf)
159 |
160 | meas.keyframe = kf
161 | meas.mappoint = pt
162 | kf.add_measurement(meas)
163 | pt.add_measurement(meas)
164 |
165 | self.meas_lookup[meas.id] = meas
166 |
167 | def remove_measurement(self, m):
168 | m.keyframe.remove_measurement(m)
169 | m.mappoint.remove_measurement(m)
170 | with self._lock:
171 | try:
172 | del self.meas_lookup[m.id]
173 | except:
174 | pass
175 |
176 | def has_measurement(self, *args):
177 | with self._lock:
178 | if len(args) == 1: # measurement
179 | return args[0].id in self.meas_lookup
180 | elif len(args) == 2: # keyframe, mappoint
181 | id = (args[0].id, args[1].id)
182 | return id in self.meas_lookup
183 | else:
184 | raise TypeError
185 |
186 | def get_reference_frame(self, seedpoints):
187 | assert len(seedpoints) > 0
188 | visible = [pt.keyframes() for pt in seedpoints]
189 | visible = Counter(chain(*visible))
190 | return visible.most_common(1)[0][0]
191 |
192 | def get_local_map(self, seedpoints, window_size=15):
193 | reference = self.get_reference_frame(seedpoints)
194 | covisible = chain(
195 | reference.covisibility_keyframes().items(), [(reference, float('inf'))])
196 | covisible = sorted(covisible, key=lambda _:_[1], reverse=True)
197 |
198 | local_map = [seedpoints]
199 | local_keyframes = []
200 | for kf, n in covisible[:window_size]:
201 | if n < 1:
202 | continue
203 | local_map.append(kf.mappoints())
204 | local_keyframes.append(kf)
205 | local_map = list(set(chain(*local_map)))
206 |
207 | return local_map, local_keyframes
208 |
209 | def get_local_map_v2(self, seedframes, window_size=12, loop_window_size=8):
210 | covisible = []
211 | for kf in set(seedframes):
212 | covisible.append(Counter(kf.covisibility_keyframes()))
213 | covisible = sum(covisible, Counter())
214 | for kf in set(seedframes):
215 | covisible[kf] = float('inf')
216 | local = sorted(
217 | covisible.items(), key=lambda _:_[1], reverse=True)
218 |
219 | id = max([_.id for _ in covisible])
220 | loop_frames = [_ for _ in local if _[0].id < id-50]
221 |
222 | local = local[:window_size]
223 | loop_local = []
224 | if len(loop_frames) > 0:
225 | loop_covisible = sorted(
226 | loop_frames[0][0].covisibility_keyframes().items(),
227 | key=lambda _:_[1], reverse=True)
228 |
229 | for kf, n in loop_covisible:
230 | if kf not in set([_[0] for _ in local]):
231 | loop_local.append((kf, n))
232 | if len(loop_local) >= loop_window_size:
233 | break
234 |
235 | local = chain(local, loop_local)
236 |
237 | local_map = []
238 | local_keyframes = []
239 | for kf, n in local:
240 | if n < 1:
241 | continue
242 | local_map.append(kf.mappoints())
243 | local_keyframes.append(kf)
244 | local_map = list(set(chain(*local_map)))
245 | return local_map, local_keyframes
--------------------------------------------------------------------------------
/dataset.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import cv2
3 | import os
4 | import time
5 |
6 | from collections import defaultdict, namedtuple
7 |
8 | from threading import Thread, Lock
9 | from multiprocessing import Process, Queue
10 |
11 |
12 |
13 | class ImageReader(object):
14 | def __init__(self, ids, timestamps, cam=None):
15 | self.ids = ids
16 | self.timestamps = timestamps
17 | self.cam = cam
18 | self.cache = dict()
19 | self.idx = 0
20 |
21 | self.ahead = 10 # 10 images ahead of current index
22 | self.waiting = 1.5 # waiting time
23 |
24 | self.preload_thread = Thread(target=self.preload)
25 | self.thread_started = False
26 |
27 | def read(self, path):
28 | img = cv2.imread(path, -1)
29 | if self.cam is None:
30 | return img
31 | else:
32 | return self.cam.rectify(img)
33 |
34 | def preload(self):
35 | idx = self.idx
36 | t = float('inf')
37 | while True:
38 | if time.time() - t > self.waiting:
39 | return
40 | if self.idx == idx:
41 | time.sleep(1e-2)
42 | continue
43 |
44 | for i in range(self.idx, self.idx + self.ahead):
45 | if i not in self.cache and i < len(self.ids):
46 | self.cache[i] = self.read(self.ids[i])
47 | if self.idx + self.ahead > len(self.ids):
48 | return
49 | idx = self.idx
50 | t = time.time()
51 |
52 | def __len__(self):
53 | return len(self.ids)
54 |
55 | def __getitem__(self, idx):
56 | self.idx = idx
57 | # if not self.thread_started:
58 | # self.thread_started = True
59 | # self.preload_thread.start()
60 |
61 | if idx in self.cache:
62 | img = self.cache[idx]
63 | del self.cache[idx]
64 | else:
65 | img = self.read(self.ids[idx])
66 | return img
67 |
68 | def __iter__(self):
69 | for i, timestamp in enumerate(self.timestamps):
70 | yield timestamp, self[i]
71 |
72 | @property
73 | def dtype(self):
74 | return self[0].dtype
75 | @property
76 | def shape(self):
77 | return self[0].shape
78 |
79 |
80 |
81 |
82 | class KITTIOdometry(object): # without lidar
83 | '''
84 | path example: 'path/to/your/KITTI odometry dataset/sequences/00'
85 | '''
86 | def __init__(self, path):
87 | Cam = namedtuple('cam', 'fx fy cx cy width height baseline')
88 | cam00_02 = Cam(718.856, 718.856, 607.1928, 185.2157, 1241, 376, 0.5371657)
89 | cam03 = Cam(721.5377, 721.5377, 609.5593, 172.854, 1241, 376, 0.53715)
90 | cam04_12 = Cam(707.0912, 707.0912, 601.8873, 183.1104, 1241, 376, 0.53715)
91 |
92 | path = os.path.expanduser(path)
93 | timestamps = np.loadtxt(os.path.join(path, 'times.txt'))
94 | self.left = ImageReader(self.listdir(os.path.join(path, 'image_2')),
95 | timestamps)
96 | self.right = ImageReader(self.listdir(os.path.join(path, 'image_3')),
97 | timestamps)
98 |
99 | assert len(self.left) == len(self.right)
100 | self.timestamps = self.left.timestamps
101 |
102 | sequence = int(path.strip(os.path.sep).split(os.path.sep)[-1])
103 | if sequence < 3:
104 | self.cam = cam00_02
105 | elif sequence == 3:
106 | self.cam = cam03
107 | elif sequence < 13:
108 | self.cam = cam04_12
109 |
110 | def sort(self, xs):
111 | return sorted(xs, key=lambda x:float(x[:-4]))
112 |
113 | def listdir(self, dir):
114 | files = [_ for _ in os.listdir(dir) if _.endswith('.png')]
115 | return [os.path.join(dir, _) for _ in self.sort(files)]
116 |
117 | def __len__(self):
118 | return len(self.left)
119 |
120 |
121 |
122 |
123 |
124 |
125 | class Camera(object):
126 | def __init__(self,
127 | width, height,
128 | intrinsic_matrix,
129 | undistort_rectify=False,
130 | extrinsic_matrix=None,
131 | distortion_coeffs=None,
132 | rectification_matrix=None,
133 | projection_matrix=None):
134 |
135 | self.width = width
136 | self.height = height
137 | self.intrinsic_matrix = intrinsic_matrix
138 | self.extrinsic_matrix = extrinsic_matrix
139 | self.distortion_coeffs = distortion_coeffs
140 | self.rectification_matrix = rectification_matrix
141 | self.projection_matrix = projection_matrix
142 | self.undistort_rectify = undistort_rectify
143 | self.fx = intrinsic_matrix[0, 0]
144 | self.fy = intrinsic_matrix[1, 1]
145 | self.cx = intrinsic_matrix[0, 2]
146 | self.cy = intrinsic_matrix[1, 2]
147 |
148 | if undistort_rectify:
149 | self.remap = cv2.initUndistortRectifyMap(
150 | cameraMatrix=self.intrinsic_matrix,
151 | distCoeffs=self.distortion_coeffs,
152 | R=self.rectification_matrix,
153 | newCameraMatrix=self.projection_matrix,
154 | size=(width, height),
155 | m1type=cv2.CV_8U)
156 | else:
157 | self.remap = None
158 |
159 | def rectify(self, img):
160 | if self.remap is None:
161 | return img
162 | else:
163 | return cv2.remap(img, *self.remap, cv2.INTER_LINEAR)
164 |
165 | class StereoCamera(object):
166 | def __init__(self, left_cam, right_cam):
167 | self.left_cam = left_cam
168 | self.right_cam = right_cam
169 |
170 | self.width = left_cam.width
171 | self.height = left_cam.height
172 | self.intrinsic_matrix = left_cam.intrinsic_matrix
173 | self.extrinsic_matrix = left_cam.extrinsic_matrix
174 | self.fx = left_cam.fx
175 | self.fy = left_cam.fy
176 | self.cx = left_cam.cx
177 | self.cy = left_cam.cy
178 | self.baseline = abs(right_cam.projection_matrix[0, 3] /
179 | right_cam.projection_matrix[0, 0])
180 | self.focal_baseline = self.fx * self.baseline
181 |
182 |
183 | class EuRoCDataset(object): # Stereo + IMU
184 | '''
185 | path example: 'path/to/your/EuRoC Mav dataset/MH_01_easy'
186 | '''
187 | def __init__(self, path, rectify=True):
188 | self.left_cam = Camera(
189 | width=752, height=480,
190 | intrinsic_matrix = np.array([
191 | [458.654, 0.000000, 367.215],
192 | [0.000000, 457.296, 248.375],
193 | [0.000000, 0.000000, 1.000000]]),
194 | undistort_rectify=rectify,
195 | distortion_coeffs = np.array(
196 | [-0.28340811, 0.07395907, 0.00019359, 1.76187114e-05, 0.000000]),
197 | rectification_matrix = np.array([
198 | [0.999966347530033, -0.001422739138722922, 0.008079580483432283],
199 | [0.001365741834644127, 0.9999741760894847, 0.007055629199258132],
200 | [-0.008089410156878961, -0.007044357138835809, 0.9999424675829176]]),
201 | projection_matrix = np.array([
202 | [435.2046959714599, 0, 367.4517211914062, 0],
203 | [0, 435.2046959714599, 252.2008514404297, 0],
204 | [0., 0, 1, 0]]),
205 | extrinsic_matrix = np.array([
206 | [0.0148655429818, -0.999880929698, 0.00414029679422, -0.0216401454975],
207 | [0.999557249008, 0.0149672133247, 0.025715529948, -0.064676986768],
208 | [-0.0257744366974, 0.00375618835797, 0.999660727178, 0.00981073058949],
209 | [0.0, 0.0, 0.0, 1.0]])
210 | )
211 | self.right_cam = Camera(
212 | width=752, height=480,
213 | intrinsic_matrix = np.array([
214 | [457.587, 0.000000, 379.999],
215 | [0.000000, 456.134, 255.238],
216 | [0.000000, 0.000000, 1.000000]]),
217 | undistort_rectify=rectify,
218 | distortion_coeffs = np.array(
219 | [-0.28368365, 0.07451284, -0.00010473, -3.555907e-05, 0.0]),
220 | rectification_matrix = np.array([
221 | [0.9999633526194376, -0.003625811871560086, 0.007755443660172947],
222 | [0.003680398547259526, 0.9999684752771629, -0.007035845251224894],
223 | [-0.007729688520722713, 0.007064130529506649, 0.999945173484644]]),
224 | projection_matrix = np.array([
225 | [435.2046959714599, 0, 367.4517211914062, -47.90639384423901],
226 | [0, 435.2046959714599, 252.2008514404297, 0],
227 | [0, 0, 1, 0]]),
228 | extrinsic_matrix = np.array([
229 | [0.0125552670891, -0.999755099723, 0.0182237714554, -0.0198435579556],
230 | [0.999598781151, 0.0130119051815, 0.0251588363115, 0.0453689425024],
231 | [-0.0253898008918, 0.0179005838253, 0.999517347078, 0.00786212447038],
232 | [0.0, 0.0, 0.0, 1.0]])
233 | )
234 |
235 | path = os.path.expanduser(path)
236 | self.left = ImageReader(
237 | *self.list_imgs(os.path.join(path, 'mav0', 'cam0', 'data')),
238 | self.left_cam)
239 | self.right = ImageReader(
240 | *self.list_imgs(os.path.join(path, 'mav0', 'cam1', 'data')),
241 | self.right_cam)
242 | assert len(self.left) == len(self.right)
243 | self.timestamps = self.left.timestamps
244 |
245 | self.cam = StereoCamera(self.left_cam, self.right_cam)
246 |
247 | def list_imgs(self, dir):
248 | xs = [_ for _ in os.listdir(dir) if _.endswith('.png')]
249 | xs = sorted(xs, key=lambda x:float(x[:-4]))
250 | timestamps = [float(_[:-4]) * 1e-9 for _ in xs]
251 | return [os.path.join(dir, _) for _ in xs], timestamps
252 |
253 | def __len__(self):
254 | return len(self.left)
--------------------------------------------------------------------------------
/feature.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import cv2
3 |
4 | from collections import defaultdict
5 | from numbers import Number
6 |
7 | from threading import Thread, Lock
8 | from queue import Queue
9 |
10 |
11 |
12 | class ImageFeature(object):
13 | def __init__(self, image, params):
14 | # TODO: pyramid representation
15 | self.image = image
16 | self.height, self.width = image.shape[:2]
17 |
18 | self.keypoints = [] # list of cv2.KeyPoint
19 | self.descriptors = [] # numpy.ndarray
20 |
21 | self.detector = params.feature_detector
22 | self.extractor = params.descriptor_extractor
23 | self.matcher = params.descriptor_matcher
24 |
25 | self.cell_size = params.matching_cell_size
26 | self.distance = params.matching_distance
27 | self.neighborhood = (
28 | params.matching_cell_size * params.matching_neighborhood)
29 |
30 | self._lock = Lock()
31 |
32 | def extract(self):
33 | self.keypoints = self.detector.detect(self.image)
34 | self.keypoints, self.descriptors = self.extractor.compute(
35 | self.image, self.keypoints)
36 |
37 | self.unmatched = np.ones(len(self.keypoints), dtype=bool)
38 |
39 | def draw_keypoints(self, name='keypoints', delay=1):
40 | if self.image.ndim == 2:
41 | image = np.repeat(self.image[..., np.newaxis], 3, axis=2)
42 | else:
43 | image = self.image
44 | img = cv2.drawKeypoints(image, self.keypoints, None, flags=0)
45 | cv2.imshow(name, img);cv2.waitKey(delay)
46 |
47 | def find_matches(self, predictions, descriptors):
48 | matches = dict()
49 | distances = defaultdict(lambda: float('inf'))
50 | for m, query_idx, train_idx in self.matched_by(descriptors):
51 | if m.distance > min(distances[train_idx], self.distance):
52 | continue
53 |
54 | pt1 = predictions[query_idx]
55 | pt2 = self.keypoints[train_idx].pt
56 | dx = pt1[0] - pt2[0]
57 | dy = pt1[1] - pt2[1]
58 | if np.sqrt(dx*dx + dy*dy) > self.neighborhood:
59 | continue
60 |
61 | matches[train_idx] = query_idx
62 | distances[train_idx] = m.distance
63 | matches = [(i, j) for j, i in matches.items()]
64 | return matches
65 |
66 | def matched_by(self, descriptors):
67 | with self._lock:
68 | unmatched_descriptors = self.descriptors[self.unmatched]
69 | if len(unmatched_descriptors) == 0:
70 | return []
71 | lookup = dict(zip(
72 | range(len(unmatched_descriptors)),
73 | np.where(self.unmatched)[0]))
74 |
75 | # TODO: reduce matched points by using predicted position
76 | matches = self.matcher.match(
77 | np.array(descriptors), unmatched_descriptors)
78 | return [(m, m.queryIdx, m.trainIdx) for m in matches]
79 |
80 | def row_match(self, *args, **kwargs):
81 | return row_match(self.matcher, *args, **kwargs)
82 |
83 | def circular_stereo_match(self, *args, **kwargs):
84 | return circular_stereo_match(self.matcher, *args, **kwargs)
85 |
86 | def get_keypoint(self, i):
87 | return self.keypoints[i]
88 | def get_descriptor(self, i):
89 | return self.descriptors[i]
90 |
91 | def get_color(self, pt):
92 | x = int(np.clip(pt[0], 0, self.width-1))
93 | y = int(np.clip(pt[1], 0, self.height-1))
94 | color = self.image[y, x]
95 | if isinstance(color, Number):
96 | color = np.array([color, color, color])
97 | return color[::-1] / 255.
98 |
99 | def set_matched(self, i):
100 | with self._lock:
101 | self.unmatched[i] = False
102 |
103 | def get_unmatched_keypoints(self):
104 | keypoints = []
105 | descriptors = []
106 | indices = []
107 |
108 | with self._lock:
109 | for i in np.where(self.unmatched)[0]:
110 | keypoints.append(self.keypoints[i])
111 | descriptors.append(self.descriptors[i])
112 | indices.append(i)
113 |
114 | return keypoints, descriptors, indices
115 |
116 |
117 |
118 | # TODO: only match points in neighboring rows
119 | def row_match(matcher, kps1, desps1, kps2, desps2,
120 | matching_distance=40,
121 | max_row_distance=2.5,
122 | max_disparity=100):
123 |
124 | matches = matcher.match(np.array(desps1), np.array(desps2))
125 | good = []
126 | for m in matches:
127 | pt1 = kps1[m.queryIdx].pt
128 | pt2 = kps2[m.trainIdx].pt
129 | if (m.distance < matching_distance and
130 | abs(pt1[1] - pt2[1]) < max_row_distance and
131 | abs(pt1[0] - pt2[0]) < max_disparity): # epipolar constraint
132 | good.append(m)
133 | return good
134 |
135 |
136 |
137 | def circular_stereo_match(
138 | matcher,
139 | desps1, desps2, matches12,
140 | desps3, desps4, matches34,
141 | matching_distance=30,
142 | min_matches=10, ratio=0.8):
143 |
144 | dict_m13 = dict()
145 | dict_m24 = dict()
146 | dict_m34 = dict((m.queryIdx, m) for m in matches34)
147 |
148 | ms13 = matcher.knnMatch(np.array(desps1), np.array(desps3), k=2)
149 | for (m, n) in ms13:
150 | if m.distance < min(matching_distance, n.distance * ratio):
151 | dict_m13[m.queryIdx] = m
152 |
153 | # to avoid unnecessary computation
154 | if len(dict_m13) < min_matches:
155 | return []
156 |
157 | ms24 = matcher.knnMatch(np.array(desps2), np.array(desps4), k=2)
158 | for (m, n) in ms24:
159 | if m.distance < min(matching_distance, n.distance * ratio):
160 | dict_m24[m.queryIdx] = m
161 |
162 | matches = []
163 | for m in matches12:
164 | shared13 = dict_m13.get(m.queryIdx, None)
165 | shared24 = dict_m24.get(m.trainIdx, None)
166 |
167 | if shared13 is not None and shared24 is not None:
168 | shared34 = dict_m34.get(shared13.trainIdx, None)
169 | if (shared34 is not None and
170 | shared34.trainIdx == shared24.trainIdx):
171 | matches.append((shared13, shared24))
172 | return matches
--------------------------------------------------------------------------------
/imgs/point_cloud.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uoip/stereo_ptam/294fb977a02cca6a793ed8dca193301b3aae80ec/imgs/point_cloud.png
--------------------------------------------------------------------------------
/imgs/pose_graph.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uoip/stereo_ptam/294fb977a02cca6a793ed8dca193301b3aae80ec/imgs/pose_graph.png
--------------------------------------------------------------------------------
/imgs/sptam_overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uoip/stereo_ptam/294fb977a02cca6a793ed8dca193301b3aae80ec/imgs/sptam_overview.png
--------------------------------------------------------------------------------
/loopclosing.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import cv2
3 |
4 | import g2o
5 | from g2o.contrib import SmoothEstimatePropagator
6 |
7 | import time
8 | from threading import Thread, Lock
9 | from queue import Queue
10 |
11 | from collections import defaultdict, namedtuple
12 |
13 | from optimization import PoseGraphOptimization
14 | from components import Measurement
15 |
16 |
17 |
18 | # a very simple implementation
19 | class LoopDetection(object):
20 | def __init__(self, params):
21 | self.params = params
22 | self.nns = NearestNeighbors()
23 |
24 | def add_keyframe(self, keyframe):
25 | embedding = keyframe.feature.descriptors.mean(axis=0)
26 | self.nns.add_item(embedding, keyframe)
27 |
28 | def detect(self, keyframe):
29 | embedding = keyframe.feature.descriptors.mean(axis=0)
30 | kfs, ds = self.nns.search(embedding, k=20)
31 |
32 | if len(kfs) > 0 and kfs[0] == keyframe:
33 | kfs, ds = kfs[1:], ds[1:]
34 | if len(kfs) == 0:
35 | return None
36 |
37 | min_d = np.min(ds)
38 | for kf, d in zip(kfs, ds):
39 | if abs(kf.id - keyframe.id) < self.params.lc_min_inbetween_frames:
40 | continue
41 | if (np.linalg.norm(kf.position - keyframe.position) >
42 | self.params.lc_max_inbetween_distance):
43 | break
44 | if d > self.params.lc_embedding_distance or d > min_d * 1.5:
45 | break
46 | return kf
47 | return None
48 |
49 |
50 |
51 | class LoopClosing(object):
52 | def __init__(self, system, params):
53 | self.system = system
54 | self.params = params
55 |
56 | self.loop_detector = LoopDetection(params)
57 | self.optimizer = PoseGraphOptimization()
58 |
59 | self.loops = []
60 | self.stopped = False
61 |
62 | self._queue = Queue()
63 | self.maintenance_thread = Thread(target=self.maintenance)
64 | self.maintenance_thread.start()
65 |
66 | def stop(self):
67 | self.stopped = True
68 | self._queue.put(None)
69 | self.maintenance_thread.join()
70 | print('loop closing stopped')
71 |
72 | def add_keyframe(self, keyframe):
73 | self._queue.put(keyframe)
74 | self.loop_detector.add_keyframe(keyframe)
75 |
76 | def add_keyframes(self, keyframes):
77 | for kf in keyframes:
78 | self.add_keyframe(kf)
79 |
80 | def maintenance(self):
81 | last_query_keyframe = None
82 | while not self.stopped:
83 | keyframe = self._queue.get()
84 | if keyframe is None or self.stopped:
85 | return
86 |
87 | # check if this keyframe share many mappoints with a loop keyframe
88 | covisible = sorted(
89 | keyframe.covisibility_keyframes().items(),
90 | key=lambda _:_[1], reverse=True)
91 | if any([(keyframe.id - _[0].id) > 5 for _ in covisible[:2]]):
92 | continue
93 |
94 | if (last_query_keyframe is not None and
95 | abs(last_query_keyframe.id - keyframe.id) < 3):
96 | continue
97 |
98 | detected = self.loop_detector.detect(keyframe)
99 | if detected is None:
100 | continue
101 |
102 | query_keyframe = keyframe
103 | match_keyframe = detected
104 |
105 | result = match_and_estimate(
106 | query_keyframe, match_keyframe, self.params)
107 |
108 | if result is None:
109 | continue
110 | if (result.n_inliers < max(self.params.lc_inliers_threshold,
111 | result.n_matches * self.params.lc_inliers_ratio)):
112 | continue
113 |
114 | dist = result.correction.position()
115 | if self.params.ground:
116 | dist = dist[:2]
117 | if np.abs(dist).max() > self.params.lc_distance_threshold:
118 | continue
119 |
120 | self.loops.append(
121 | (match_keyframe, query_keyframe, result.constraint))
122 | query_keyframe.set_loop(match_keyframe, result.constraint)
123 |
124 | # We have to ensure that the mapping thread is on a safe part of code,
125 | # before the selection of KFs to optimize
126 | safe_window = self.system.mapping.lock_window()
127 | safe_window.add(self.system.reference)
128 | for kf in self.system.reference.covisibility_keyframes():
129 | safe_window.add(kf)
130 |
131 |
132 | # The safe window established between the Local Mapping must be
133 | # inside the considered KFs.
134 | considered_keyframes = self.system.graph.keyframes()
135 |
136 | self.optimizer.set_data(considered_keyframes, self.loops)
137 |
138 | before_lc = [
139 | g2o.Isometry3d(kf.orientation, kf.position) for kf in safe_window]
140 |
141 | # Propagate initial estimate through 10% of total keyframes
142 | # (or at least 20 keyframes)
143 | d = max(20, len(considered_keyframes) * 0.1)
144 | propagator = SmoothEstimatePropagator(self.optimizer, d)
145 | propagator.propagate(self.optimizer.vertex(match_keyframe.id))
146 |
147 | # self.optimizer.set_verbose(True)
148 | self.optimizer.optimize(20)
149 |
150 | # Exclude KFs that may being use by the local BA.
151 | self.optimizer.update_poses_and_points(
152 | considered_keyframes, exclude=safe_window)
153 |
154 | self.system.stop_adding_keyframes()
155 |
156 | # Wait until mapper flushes everything to the map
157 | self.system.mapping.wait_until_empty_queue()
158 | while self.system.mapping.is_processing():
159 | time.sleep(1e-4)
160 |
161 | # Calculating optimization introduced by local mapping while loop was been closed
162 | for i, kf in enumerate(safe_window):
163 | after_lc = g2o.Isometry3d(kf.orientation, kf.position)
164 | corr = before_lc[i].inverse() * after_lc
165 |
166 | vertex = self.optimizer.vertex(kf.id)
167 | vertex.set_estimate(vertex.estimate() * corr)
168 |
169 | self.system.pause()
170 |
171 | for keyframe in considered_keyframes[::-1]:
172 | if keyframe in safe_window:
173 | reference = keyframe
174 | break
175 | uncorrected = g2o.Isometry3d(
176 | reference.orientation,
177 | reference.position)
178 | corrected = self.optimizer.vertex(reference.id).estimate()
179 | T = uncorrected.inverse() * corrected # close to result.correction
180 |
181 | # We need to wait for the end of the current frame tracking and ensure that we
182 | # won't interfere with the tracker.
183 | while self.system.is_tracking():
184 | time.sleep(1e-4)
185 | self.system.set_loop_correction(T)
186 |
187 | # Updating keyframes and map points on the lba zone
188 | self.optimizer.update_poses_and_points(safe_window)
189 |
190 | # keyframes after loop closing
191 | keyframes = self.system.graph.keyframes()
192 | if len(keyframes) > len(considered_keyframes):
193 | self.optimizer.update_poses_and_points(
194 | keyframes[len(considered_keyframes) - len(keyframes):],
195 | correction=T)
196 |
197 | for m13, _ in result.stereo_matches:
198 | query_meas = result.query_stereo_measurements[m13.queryIdx]
199 | match_meas = result.match_stereo_measurements[m13.trainIdx]
200 |
201 | new_query_meas = Measurement(
202 | Measurement.Type.STEREO,
203 | Measurement.Source.REFIND,
204 | query_meas.get_keypoints(),
205 | query_meas.get_descriptors())
206 | self.system.graph.add_measurement(
207 | query_keyframe, match_meas.mappoint, new_query_meas)
208 |
209 | new_match_meas = Measurement(
210 | Measurement.Type.STEREO,
211 | Measurement.Source.REFIND,
212 | match_meas.get_keypoints(),
213 | match_meas.get_descriptors())
214 | self.system.graph.add_measurement(
215 | match_keyframe, query_meas.mappoint, new_match_meas)
216 |
217 | self.system.mapping.free_window()
218 | self.system.resume_adding_keyframes()
219 | self.system.unpause()
220 |
221 | while not self._queue.empty():
222 | keyframe = self._queue.get()
223 | if keyframe is None:
224 | return
225 | last_query_keyframe = query_keyframe
226 |
227 |
228 |
229 | def match_and_estimate(query_keyframe, match_keyframe, params):
230 | query = defaultdict(list)
231 | for m in query_keyframe.measurements():
232 | if m.from_triangulation():
233 | query['measurements'].append(m)
234 | query['kps1'].append(m.get_keypoint(0))
235 | query['kps2'].append(m.get_keypoint(1))
236 | query['desps1'].append(m.get_descriptor(0))
237 | query['desps2'].append(m.get_descriptor(1))
238 | n = len(query['matches'])
239 | query['matches'].append(cv2.DMatch(n, n, 0))
240 |
241 | match = defaultdict(list)
242 | for m in match_keyframe.measurements():
243 | if m.from_triangulation():
244 | match['measurements'].append(m)
245 | match['kps1'].append(m.get_keypoint(0))
246 | match['kps2'].append(m.get_keypoint(1))
247 | match['desps1'].append(m.get_descriptor(0))
248 | match['desps2'].append(m.get_descriptor(1))
249 | n = len(match['matches'])
250 | match['matches'].append(cv2.DMatch(n, n, 0))
251 |
252 | stereo_matches = query_keyframe.feature.circular_stereo_match(
253 | query['desps1'], query['desps2'], query['matches'],
254 | match['desps1'], match['desps2'], match['matches'],
255 | params.matching_distance,
256 | params.lc_inliers_threshold)
257 |
258 | n_matches = len(stereo_matches)
259 | if n_matches < params.lc_inliers_threshold:
260 | return None
261 |
262 | for m13, _ in stereo_matches:
263 | i, j = m13.queryIdx, m13.trainIdx
264 | query['px'].append(query['kps1'][i].pt)
265 | query['pt'].append(query['measurements'][i].view)
266 | match['px'].append(match['kps1'][j].pt)
267 | match['pt'].append(match['measurements'][j].view)
268 |
269 | # query_keyframe's pose in match_keyframe's coordinates frame
270 | T13, inliers13 = solve_pnp_ransac(
271 | query['pt'], match['px'], match_keyframe.cam.intrinsic)
272 |
273 | T31, inliers31 = solve_pnp_ransac(
274 | match['pt'], query['px'], query_keyframe.cam.intrinsic)
275 |
276 | if T13 is None or T13 is None:
277 | return None
278 |
279 | delta = T31 * T13
280 | if (g2o.AngleAxis(delta.rotation()).angle() > 0.1 or
281 | np.linalg.norm(delta.translation()) > 0.5): # 5.7° or 0.5m
282 | return None
283 |
284 | n_inliers = len(set(inliers13) & set(inliers31))
285 | query_pose = g2o.Isometry3d(
286 | query_keyframe.orientation, query_keyframe.position)
287 | match_pose = g2o.Isometry3d(
288 | match_keyframe.orientation, match_keyframe.position)
289 |
290 | # TODO: combine T13 and T31
291 | constraint = T13
292 | estimated_pose = match_pose * constraint
293 | correction = query_pose.inverse() * estimated_pose
294 |
295 | return namedtuple('MatchEstimateResult',
296 | ['estimated_pose', 'constraint', 'correction', 'query_stereo_measurements',
297 | 'match_stereo_measurements', 'stereo_matches', 'n_matches', 'n_inliers'])(
298 | estimated_pose, constraint, correction, query['measurements'],
299 | match['measurements'], stereo_matches, n_matches, n_inliers)
300 |
301 |
302 | def solve_pnp_ransac(pts3d, pts, intrinsic_matrix):
303 | val, rvec, tvec, inliers = cv2.solvePnPRansac(
304 | np.array(pts3d), np.array(pts),
305 | intrinsic_matrix, None, None, None,
306 | False, 50, 2.0, 0.99, None)
307 | if inliers is None or len(inliers) < 5:
308 | return None, None
309 |
310 | T = g2o.Isometry3d(cv2.Rodrigues(rvec)[0], tvec)
311 | return T, inliers.ravel()
312 |
313 |
314 |
315 | class NearestNeighbors(object):
316 | def __init__(self, dim=None):
317 | self.n = 0
318 | self.dim = dim
319 | self.items = dict()
320 | self.data = []
321 | if dim is not None:
322 | self.data = np.zeros((1000, dim), dtype='float32')
323 |
324 | def add_item(self, vector, item):
325 | assert vector.ndim == 1
326 | if self.n >= len(self.data):
327 | if self.dim is None:
328 | self.dim = len(vector)
329 | self.data = np.zeros((1000, self.dim), dtype='float32')
330 | else:
331 | self.data.resize(
332 | (2 * len(self.data), self.dim) , refcheck=False)
333 | self.items[self.n] = item
334 | self.data[self.n] = vector
335 | self.n += 1
336 |
337 | def search(self, query, k): # searching from 100000 items consume 30ms
338 | if len(self.data) == 0:
339 | return [], []
340 |
341 | ds = np.linalg.norm(query[np.newaxis, :] - self.data[:self.n], axis=1)
342 | ns = np.argsort(ds)[:k]
343 | return [self.items[n] for n in ns], ds[ns]
--------------------------------------------------------------------------------
/mapping.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | from queue import Queue
4 | from threading import Thread, Lock, Condition
5 | import time
6 |
7 | from itertools import chain
8 | from collections import defaultdict
9 |
10 | from optimization import LocalBA
11 | from components import Measurement
12 |
13 |
14 |
15 | class Mapping(object):
16 | def __init__(self, graph, params):
17 | self.graph = graph
18 | self.params = params
19 | self.local_keyframes = []
20 |
21 | self.optimizer = LocalBA()
22 |
23 | def add_keyframe(self, keyframe, measurements):
24 | self.graph.add_keyframe(keyframe)
25 | self.create_points(keyframe)
26 |
27 | for m in measurements:
28 | self.graph.add_measurement(keyframe, m.mappoint, m)
29 |
30 | self.local_keyframes.clear()
31 | self.local_keyframes.append(keyframe)
32 |
33 | self.fill(self.local_keyframes, keyframe)
34 | self.refind(self.local_keyframes, self.get_owned_points(keyframe))
35 |
36 | self.bundle_adjust(self.local_keyframes)
37 | self.points_culling(self.local_keyframes)
38 |
39 | def fill(self, keyframes, keyframe):
40 | covisible = sorted(
41 | keyframe.covisibility_keyframes().items(),
42 | key=lambda _:_[1], reverse=True)
43 |
44 | for kf, n in covisible:
45 | if n > 0 and kf not in keyframes and self.is_safe(kf):
46 | keyframes.append(kf)
47 | if len(keyframes) >= self.params.local_window_size:
48 | return
49 |
50 | def create_points(self, keyframe):
51 | mappoints, measurements = keyframe.triangulate()
52 | self.add_measurements(keyframe, mappoints, measurements)
53 |
54 | def add_measurements(self, keyframe, mappoints, measurements):
55 | for mappoint, measurement in zip(mappoints, measurements):
56 | self.graph.add_mappoint(mappoint)
57 | self.graph.add_measurement(keyframe, mappoint, measurement)
58 | mappoint.increase_measurement_count()
59 |
60 | def bundle_adjust(self, keyframes):
61 | adjust_keyframes = set()
62 | for kf in keyframes:
63 | if not kf.is_fixed():
64 | adjust_keyframes.add(kf)
65 |
66 | fixed_keyframes = set()
67 | for kf in adjust_keyframes:
68 | for ck, n in kf.covisibility_keyframes().items():
69 | if (n > 0 and ck not in adjust_keyframes
70 | and self.is_safe(ck) and ck < kf):
71 | fixed_keyframes.add(ck)
72 |
73 | self.optimizer.set_data(adjust_keyframes, fixed_keyframes)
74 | completed = self.optimizer.optimize(self.params.ba_max_iterations)
75 |
76 | self.optimizer.update_poses()
77 | self.optimizer.update_points()
78 |
79 | if completed:
80 | self.remove_measurements(self.optimizer.get_bad_measurements())
81 | return completed
82 |
83 | def is_safe(self, keyframe):
84 | return True
85 |
86 | def get_owned_points(self, keyframe):
87 | owned = []
88 | for m in keyframe.measurements():
89 | if m.from_triangulation():
90 | owned.append(m.mappoint)
91 | return owned
92 |
93 | def filter_unmatched_points(self, keyframe, mappoints):
94 | filtered = []
95 | for i in np.where(keyframe.can_view(mappoints))[0]:
96 | pt = mappoints[i]
97 | if (not pt.is_bad() and
98 | not self.graph.has_measurement(keyframe, pt)):
99 | filtered.append(pt)
100 | return filtered
101 |
102 | def refind(self, keyframes, new_mappoints): # time consuming
103 | if len(new_mappoints) == 0:
104 | return
105 | for keyframe in keyframes:
106 | filtered = self.filter_unmatched_points(keyframe, new_mappoints)
107 | if len(filtered) == 0:
108 | continue
109 | for mappoint in filtered:
110 | mappoint.increase_projection_count()
111 |
112 | measuremets = keyframe.match_mappoints(filtered, Measurement.Source.REFIND)
113 |
114 | for m in measuremets:
115 | self.graph.add_measurement(keyframe, m.mappoint, m)
116 | m.mappoint.increase_measurement_count()
117 |
118 | def remove_measurements(self, measurements):
119 | for m in measurements:
120 | m.mappoint.increase_outlier_count()
121 | self.graph.remove_measurement(m)
122 |
123 | def points_culling(self, keyframes): # Remove bad mappoints
124 | mappoints = set(chain(*[kf.mappoints() for kf in keyframes]))
125 | for pt in mappoints:
126 | if pt.is_bad():
127 | self.graph.remove_mappoint(pt)
128 |
129 |
130 |
131 |
132 | class MappingThread(Mapping):
133 | def __init__(self, graph, params):
134 | super().__init__(graph, params)
135 |
136 | self._requests_cv = Condition()
137 | self._requests = [False, False] # requests: [LOCKWINDOW_REQUEST, PROCESS_REQUEST]
138 |
139 | self._lock = Lock()
140 | self.locked_window = set()
141 | self.status = defaultdict(bool)
142 |
143 | self._queue = Queue()
144 | self.maintenance_thread = Thread(target=self.maintenance)
145 | self.maintenance_thread.start()
146 |
147 | def add_keyframe(self, keyframe, measurements):
148 | self.graph.add_keyframe(keyframe)
149 |
150 | self.create_points(keyframe)
151 | for m in measurements:
152 | self.graph.add_measurement(keyframe, m.mappoint, m)
153 |
154 | self._queue.put(keyframe)
155 | with self._requests_cv:
156 | self._requests_cv.notify()
157 |
158 | def maintenance(self):
159 | stopped = False
160 | while not stopped:
161 | while not self._queue.empty():
162 | keyframe = self._queue.get()
163 | if keyframe is None:
164 | stopped = True
165 | self._requests[1] = True
166 | break
167 | else:
168 | self.local_keyframes.append(keyframe)
169 | if len(self.local_keyframes) >= 5:
170 | self._requests[1] = True
171 | break
172 |
173 | with self._requests_cv:
174 | if self._requests.count(True) == 0:
175 | self._requests_cv.wait()
176 |
177 | while not self._queue.empty():
178 | keyframe = self._queue.get()
179 | if keyframe is None:
180 | stopped = True
181 | self._requests[1] = True
182 | break
183 | else:
184 | self.local_keyframes.append(keyframe)
185 | if len(self.local_keyframes) >= 5:
186 | self._requests[1] = True
187 |
188 | requests = self._requests[:]
189 | self._requests[0] = False
190 | self._requests[1] = False
191 |
192 | self.status['processing'] = True
193 |
194 | if requests[1] and len(self.local_keyframes) > 0:
195 | self.fill(self.local_keyframes, self.local_keyframes[-1])
196 |
197 | if requests[0]:
198 | with self._lock:
199 | for kf in self.local_keyframes:
200 | self.locked_window.add(kf)
201 | for ck, n in kf.covisibility_keyframes().items():
202 | if n > 0:
203 | self.locked_window.add(ck)
204 | self.status['window_locked'] = True
205 |
206 | if requests[1] and len(self.local_keyframes) > 0:
207 | completed = self.bundle_adjust(self.local_keyframes)
208 | if completed:
209 | self.points_culling(self.local_keyframes)
210 | self.local_keyframes.clear()
211 |
212 | self.status['processing'] = False
213 |
214 | def stop(self):
215 | with self._requests_cv:
216 | self._requests_cv.notify()
217 |
218 | while not self._queue.empty():
219 | time.sleep(1e-4)
220 | self._queue.put(None) # sentinel value
221 | self.maintenance_thread.join()
222 | print('mapping stopped')
223 |
224 | def is_safe(self, keyframe):
225 | with self._lock:
226 | return not self.is_window_locked() or keyframe in self.locked_window
227 |
228 | def is_processing(self):
229 | return self.status['processing']
230 |
231 | def lock_window(self):
232 | with self._lock:
233 | self.status['window_locked'] = False
234 | self.locked_window.clear()
235 |
236 | with self._requests_cv:
237 | self._requests[0] = True
238 | self._requests_cv.notify()
239 |
240 | while not self.is_window_locked():
241 | time.sleep(1e-4)
242 | return self.locked_window
243 |
244 | def free_window(self):
245 | with self._lock:
246 | self.status['window_locked'] = False
247 | self.locked_window.clear()
248 |
249 | def is_window_locked(self):
250 | return self.status['window_locked']
251 |
252 | def wait_until_empty_queue(self):
253 | while not self._queue.empty():
254 | time.sleep(1e-4)
255 |
256 | def interrupt_ba(self):
257 | self.optimizer.abort()
--------------------------------------------------------------------------------
/motion.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import g2o
3 |
4 |
5 |
6 | class MotionModel(object):
7 | def __init__(self,
8 | timestamp=None,
9 | initial_position=np.zeros(3),
10 | initial_orientation=g2o.Quaternion(),
11 | initial_covariance=None):
12 |
13 | self.timestamp = timestamp
14 | self.position = initial_position
15 | self.orientation = initial_orientation
16 | self.covariance = initial_covariance # pose covariance
17 |
18 | self.v_linear = np.zeros(3) # linear velocity
19 | self.v_angular_angle = 0
20 | self.v_angular_axis = np.array([1, 0, 0])
21 |
22 | self.initialized = False
23 | # damping factor
24 | self.damp = 0.95
25 |
26 | def current_pose(self):
27 | '''
28 | Get the current camera pose.
29 | '''
30 | return (g2o.Isometry3d(self.orientation, self.position),
31 | self.covariance)
32 |
33 | def predict_pose(self, timestamp):
34 | '''
35 | Predict the next camera pose.
36 | '''
37 | if not self.initialized:
38 | return (g2o.Isometry3d(self.orientation, self.position),
39 | self.covariance)
40 |
41 | dt = timestamp - self.timestamp
42 |
43 | delta_angle = g2o.AngleAxis(
44 | self.v_angular_angle * dt * self.damp,
45 | self.v_angular_axis)
46 | delta_orientation = g2o.Quaternion(delta_angle)
47 |
48 | position = self.position + self.v_linear * dt * self.damp
49 | orientation = self.orientation * delta_orientation
50 |
51 | return (g2o.Isometry3d(orientation, position), self.covariance)
52 |
53 | def update_pose(self, timestamp,
54 | new_position, new_orientation, new_covariance=None):
55 | '''
56 | Update the motion model when given a new camera pose.
57 | '''
58 | if self.initialized:
59 | dt = timestamp - self.timestamp
60 | assert dt != 0
61 |
62 | v_linear = (new_position - self.position) / dt
63 | self.v_linear = v_linear
64 |
65 | delta_q = self.orientation.inverse() * new_orientation
66 | delta_q.normalize()
67 |
68 | delta_angle = g2o.AngleAxis(delta_q)
69 | angle = delta_angle.angle()
70 | axis = delta_angle.axis()
71 |
72 | if angle > np.pi:
73 | axis = axis * -1
74 | angle = 2 * np.pi - angle
75 |
76 | self.v_angular_axis = axis
77 | self.v_angular_angle = angle / dt
78 |
79 | self.timestamp = timestamp
80 | self.position = new_position
81 | self.orientation = new_orientation
82 | self.covariance = new_covariance
83 | self.initialized = True
84 |
85 | def apply_correction(self, correction): # corr: g2o.Isometry3d or matrix44
86 | '''
87 | Reset the model given a new camera pose.
88 | Note: This method will be called when it happens an abrupt change in the pose (LoopClosing)
89 | '''
90 | if not isinstance(correction, g2o.Isometry3d):
91 | correction = g2o.Isometry3d(correction)
92 |
93 | current = g2o.Isometry3d(self.orientation, self.position)
94 | current = current * correction
95 |
96 | self.position = current.position()
97 | self.orientation = current.orientation()
98 |
99 | self.v_linear = (
100 | correction.inverse().orientation() * self.v_linear)
101 | self.v_angular_axis = (
102 | correction.inverse().orientation() * self.v_angular_axis)
--------------------------------------------------------------------------------
/optimization.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import g2o
3 |
4 |
5 |
6 | class BundleAdjustment(g2o.SparseOptimizer):
7 | def __init__(self, ):
8 | super().__init__()
9 |
10 | # Higher confident (better than CHOLMOD, according to
11 | # paper "3-D Mapping With an RGB-D Camera")
12 | solver = g2o.BlockSolverSE3(g2o.LinearSolverCSparseSE3())
13 | solver = g2o.OptimizationAlgorithmLevenberg(solver)
14 | super().set_algorithm(solver)
15 |
16 | # Convergence Criterion
17 | terminate = g2o.SparseOptimizerTerminateAction()
18 | terminate.set_gain_threshold(1e-6)
19 | super().add_post_iteration_action(terminate)
20 |
21 | # Robust cost Function (Huber function) delta
22 | self.delta = np.sqrt(5.991)
23 | self.aborted = False
24 |
25 | def optimize(self, max_iterations=10):
26 | super().initialize_optimization()
27 | super().optimize(max_iterations)
28 | try:
29 | return not self.aborted
30 | finally:
31 | self.aborted = False
32 |
33 | def add_pose(self, pose_id, pose, cam, fixed=False):
34 | sbacam = g2o.SBACam(
35 | pose.orientation(), pose.position())
36 | sbacam.set_cam(
37 | cam.fx, cam.fy, cam.cx, cam.cy, cam.baseline)
38 |
39 | v_se3 = g2o.VertexCam()
40 | v_se3.set_id(pose_id * 2)
41 | v_se3.set_estimate(sbacam)
42 | v_se3.set_fixed(fixed)
43 | super().add_vertex(v_se3)
44 |
45 | def add_point(self, point_id, point, fixed=False, marginalized=True):
46 | v_p = g2o.VertexSBAPointXYZ()
47 | v_p.set_id(point_id * 2 + 1)
48 | v_p.set_marginalized(marginalized)
49 | v_p.set_estimate(point)
50 | v_p.set_fixed(fixed)
51 | super().add_vertex(v_p)
52 |
53 | def add_edge(self, id, point_id, pose_id, meas):
54 | if meas.is_stereo():
55 | edge = self.stereo_edge(meas.xyx)
56 | elif meas.is_left():
57 | edge = self.mono_edge(meas.xy)
58 | elif meas.is_right():
59 | edge = self.mono_edge_right(meas.xy)
60 |
61 | edge.set_id(id)
62 | edge.set_vertex(0, self.vertex(point_id * 2 + 1))
63 | edge.set_vertex(1, self.vertex(pose_id * 2))
64 | kernel = g2o.RobustKernelHuber(self.delta)
65 | edge.set_robust_kernel(kernel)
66 | super().add_edge(edge)
67 |
68 | def stereo_edge(self, projection, information=np.identity(3)):
69 | e = g2o.EdgeProjectP2SC()
70 | e.set_measurement(projection)
71 | e.set_information(information)
72 | return e
73 |
74 | def mono_edge(self, projection,
75 | information=np.identity(2) * 0.5):
76 | e = g2o.EdgeProjectP2MC()
77 | e.set_measurement(projection)
78 | e.set_information(information)
79 | return e
80 |
81 | def mono_edge_right(self, projection,
82 | information=np.identity(2) * 0.5):
83 | e = g2o.EdgeProjectP2MCRight()
84 | e.set_measurement(projection)
85 | e.set_information(information)
86 | return e
87 |
88 | def get_pose(self, id):
89 | return self.vertex(id * 2).estimate()
90 |
91 | def get_point(self, id):
92 | return self.vertex(id * 2 + 1).estimate()
93 |
94 | def abort(self):
95 | self.aborted = True
96 |
97 |
98 |
99 | class LocalBA(object):
100 | def __init__(self, ):
101 | self.optimizer = BundleAdjustment()
102 | self.measurements = []
103 | self.keyframes = []
104 | self.mappoints = set()
105 |
106 | # threshold for confidence interval of 95%
107 | self.huber_threshold = 5.991
108 |
109 | def set_data(self, adjust_keyframes, fixed_keyframes):
110 | self.clear()
111 | for kf in adjust_keyframes:
112 | self.optimizer.add_pose(kf.id, kf.pose, kf.cam, fixed=False)
113 | self.keyframes.append(kf)
114 |
115 | for m in kf.measurements():
116 | pt = m.mappoint
117 | if pt not in self.mappoints:
118 | self.optimizer.add_point(pt.id, pt.position)
119 | self.mappoints.add(pt)
120 |
121 | edge_id = len(self.measurements)
122 | self.optimizer.add_edge(edge_id, pt.id, kf.id, m)
123 | self.measurements.append(m)
124 |
125 | for kf in fixed_keyframes:
126 | self.optimizer.add_pose(kf.id, kf.pose, kf.cam, fixed=True)
127 | for m in kf.measurements():
128 | if m.mappoint in self.mappoints:
129 | edge_id = len(self.measurements)
130 | self.optimizer.add_edge(edge_id, m.mappoint.id, kf.id, m)
131 | self.measurements.append(m)
132 |
133 | def update_points(self):
134 | for mappoint in self.mappoints:
135 | mappoint.update_position(self.optimizer.get_point(mappoint.id))
136 |
137 | def update_poses(self):
138 | for keyframe in self.keyframes:
139 | keyframe.update_pose(self.optimizer.get_pose(keyframe.id))
140 | keyframe.update_reference()
141 | keyframe.update_preceding()
142 |
143 | def get_bad_measurements(self):
144 | bad_measurements = []
145 | for edge in self.optimizer.active_edges():
146 | if edge.chi2() > self.huber_threshold:
147 | bad_measurements.append(self.measurements[edge.id()])
148 | return bad_measurements
149 |
150 | def clear(self):
151 | self.optimizer.clear()
152 | self.keyframes.clear()
153 | self.mappoints.clear()
154 | self.measurements.clear()
155 |
156 | def abort(self):
157 | self.optimizer.abort()
158 |
159 | def optimize(self, max_iterations):
160 | return self.optimizer.optimize(max_iterations)
161 |
162 |
163 |
164 |
165 | class PoseGraphOptimization(g2o.SparseOptimizer):
166 | def __init__(self):
167 | super().__init__()
168 | solver = g2o.BlockSolverSE3(g2o.LinearSolverCholmodSE3())
169 | solver = g2o.OptimizationAlgorithmLevenberg(solver)
170 | super().set_algorithm(solver)
171 |
172 | def optimize(self, max_iterations=20):
173 | super().initialize_optimization()
174 | super().optimize(max_iterations)
175 |
176 | def add_vertex(self, id, pose, fixed=False):
177 | v_se3 = g2o.VertexSE3()
178 | v_se3.set_id(id)
179 | v_se3.set_estimate(pose)
180 | v_se3.set_fixed(fixed)
181 | super().add_vertex(v_se3)
182 |
183 | def add_edge(self, vertices,
184 | measurement=None,
185 | information=np.identity(6),
186 | robust_kernel=None):
187 |
188 | edge = g2o.EdgeSE3()
189 | for i, v in enumerate(vertices):
190 | if isinstance(v, int):
191 | v = self.vertex(v)
192 | edge.set_vertex(i, v)
193 |
194 | if measurement is None:
195 | measurement = (
196 | edge.vertex(0).estimate().inverse() *
197 | edge.vertex(1).estimate())
198 | edge.set_measurement(measurement)
199 | edge.set_information(information)
200 | if robust_kernel is not None:
201 | edge.set_robust_kernel(robust_kernel)
202 | super().add_edge(edge)
203 |
204 |
205 | def set_data(self, keyframes, loops):
206 | super().clear()
207 | anchor=None
208 | for kf, *_ in loops:
209 | if anchor is None or kf < anchor:
210 | anchor = kf
211 |
212 | for i, kf in enumerate(keyframes):
213 | pose = g2o.Isometry3d(
214 | kf.orientation,
215 | kf.position)
216 |
217 | fixed = i == 0
218 | if anchor is not None:
219 | fixed = kf <= anchor
220 | self.add_vertex(kf.id, pose, fixed=fixed)
221 |
222 | if kf.preceding_keyframe is not None:
223 | self.add_edge(
224 | vertices=(kf.preceding_keyframe.id, kf.id),
225 | measurement=kf.preceding_constraint)
226 |
227 | if (kf.reference_keyframe is not None and
228 | kf.reference_keyframe != kf.preceding_keyframe):
229 | self.add_edge(
230 | vertices=(kf.reference_keyframe.id, kf.id),
231 | measurement=kf.reference_constraint)
232 |
233 | for kf, kf2, meas in loops:
234 | self.add_edge((kf.id, kf2.id), measurement=meas)
235 |
236 |
237 | def update_poses_and_points(
238 | self, keyframes, correction=None, exclude=set()):
239 |
240 | for kf in keyframes:
241 | if len(exclude) > 0 and kf in exclude:
242 | continue
243 | uncorrected = g2o.Isometry3d(kf.orientation, kf.position)
244 | if correction is None:
245 | vertex = self.vertex(kf.id)
246 | if vertex.fixed():
247 | continue
248 | corrected = vertex.estimate()
249 | else:
250 | corrected = uncorrected * correction
251 |
252 | delta = uncorrected.inverse() * corrected
253 | if (g2o.AngleAxis(delta.rotation()).angle() < 0.02 and
254 | np.linalg.norm(delta.translation()) < 0.03): # 1°, 3cm
255 | continue
256 |
257 | for m in kf.measurements():
258 | if m.from_triangulation():
259 | old = m.mappoint.position
260 | new = corrected * (uncorrected.inverse() * old)
261 | m.mappoint.update_position(new)
262 | # update normal ?
263 | kf.update_pose(corrected)
--------------------------------------------------------------------------------
/params.py:
--------------------------------------------------------------------------------
1 | import cv2
2 |
3 |
4 |
5 | class Params(object):
6 | def __init__(self):
7 |
8 | self.pnp_min_measurements = 10
9 | self.pnp_max_iterations = 10
10 | self.init_min_points = 10
11 |
12 | self.local_window_size = 10
13 | self.ba_max_iterations = 10
14 |
15 | self.min_tracked_points_ratio = 0.5
16 |
17 | self.lc_min_inbetween_frames = 10 # frames
18 | self.lc_max_inbetween_distance = 3 # meters
19 | self.lc_embedding_distance = 22.0
20 | self.lc_inliers_threshold = 15
21 | self.lc_inliers_ratio = 0.5
22 | self.lc_distance_threshold = 2 # meters
23 | self.lc_max_iterations = 20
24 |
25 | self.ground = False
26 |
27 | self.view_camera_size = 1
28 |
29 |
30 |
31 | class ParamsEuroc(Params):
32 |
33 | def __init__(self, config='GFTT-BRIEF'):
34 | super().__init__()
35 |
36 | if config == 'GFTT-BRIEF':
37 | self.feature_detector = cv2.GFTTDetector_create(
38 | maxCorners=1000, minDistance=15.0,
39 | qualityLevel=0.001, useHarrisDetector=False)
40 |
41 | self.descriptor_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create(
42 | bytes=32, use_orientation=False)
43 |
44 | elif config == 'ORB-BRIEF':
45 | self.feature_detector = cv2.ORB_create(
46 | nfeatures=200, scaleFactor=1.2, nlevels=1, edgeThreshold=31)
47 |
48 | self.descriptor_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create(
49 | bytes=32, use_orientation=False)
50 |
51 | else:
52 | raise NotImplementedError
53 |
54 | self.descriptor_matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False)
55 |
56 | self.matching_cell_size = 15 # pixels
57 | self.matching_neighborhood = 2
58 | self.matching_distance = 25
59 |
60 | self.frustum_near = 0.1 # meters
61 | self.frustum_far = 50.0
62 |
63 | self.lc_max_inbetween_distance = 4 # meters
64 | self.lc_distance_threshold = 1.5
65 | self.lc_embedding_distance = 22.0
66 |
67 | self.view_image_width = 400
68 | self.view_image_height = 250
69 | self.view_camera_width = 0.1
70 | self.view_viewpoint_x = 0
71 | self.view_viewpoint_y = -1
72 | self.view_viewpoint_z = -10
73 | self.view_viewpoint_f = 2000
74 |
75 |
76 |
77 |
78 | class ParamsKITTI(Params):
79 | def __init__(self, config='GFTT-BRIEF'):
80 | super().__init__()
81 |
82 | if config == 'GFTT-BRIEF':
83 | self.feature_detector = cv2.GFTTDetector_create(
84 | maxCorners=1000, minDistance=12.0,
85 | qualityLevel=0.001, useHarrisDetector=False)
86 |
87 | self.descriptor_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create(
88 | bytes=32, use_orientation=False)
89 |
90 | elif config == 'GFTT-BRISK':
91 | self.feature_detector = cv2.GFTTDetector_create(
92 | maxCorners=2000, minDistance=15.0,
93 | qualityLevel=0.01, useHarrisDetector=False)
94 |
95 | self.descriptor_extractor = cv2.BRISK_create()
96 |
97 | elif config == 'ORB-ORB':
98 | self.feature_detector = cv2.ORB_create(
99 | nfeatures=1000, scaleFactor=1.2, nlevels=1, edgeThreshold=31)
100 | self.descriptor_extractor = self.feature_detector
101 |
102 | else:
103 | raise NotImplementedError
104 |
105 | self.descriptor_matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False)
106 |
107 | self.matching_cell_size = 15 # pixels
108 | self.matching_neighborhood = 3
109 | self.matching_distance = 30
110 |
111 | self.frustum_near = 0.1 # meters
112 | self.frustum_far = 1000.0
113 |
114 | self.ground = True
115 |
116 | self.lc_max_inbetween_distance = 50
117 | self.lc_distance_threshold = 15
118 | self.lc_embedding_distance = 20.0
119 |
120 | self.view_image_width = 400
121 | self.view_image_height = 130
122 | self.view_camera_width = 0.75
123 | self.view_viewpoint_x = 0
124 | self.view_viewpoint_y = -500 # -10
125 | self.view_viewpoint_z = -100 # -0.1
126 | self.view_viewpoint_f = 2000
--------------------------------------------------------------------------------
/sptam.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | import time
4 | from itertools import chain
5 | from collections import defaultdict
6 |
7 | from covisibility import CovisibilityGraph
8 | from optimization import BundleAdjustment
9 | from mapping import Mapping
10 | from mapping import MappingThread
11 | from components import Measurement
12 | from motion import MotionModel
13 | from loopclosing import LoopClosing
14 |
15 |
16 |
17 | class Tracking(object):
18 | def __init__(self, params):
19 | self.optimizer = BundleAdjustment()
20 | self.min_measurements = params.pnp_min_measurements
21 | self.max_iterations = params.pnp_max_iterations
22 |
23 | def refine_pose(self, pose, cam, measurements):
24 | assert len(measurements) >= self.min_measurements, (
25 | 'Not enough points')
26 |
27 | self.optimizer.clear()
28 | self.optimizer.add_pose(0, pose, cam, fixed=False)
29 |
30 | for i, m in enumerate(measurements):
31 | self.optimizer.add_point(i, m.mappoint.position, fixed=True)
32 | self.optimizer.add_edge(0, i, 0, m)
33 |
34 | self.optimizer.optimize(self.max_iterations)
35 | return self.optimizer.get_pose(0)
36 |
37 |
38 |
39 | class SPTAM(object):
40 | def __init__(self, params):
41 | self.params = params
42 |
43 | self.tracker = Tracking(params)
44 | self.motion_model = MotionModel()
45 |
46 | self.graph = CovisibilityGraph()
47 | self.mapping = MappingThread(self.graph, params)
48 |
49 | self.loop_closing = LoopClosing(self, params)
50 | self.loop_correction = None
51 |
52 | self.reference = None # reference keyframe
53 | self.preceding = None # last keyframe
54 | self.current = None # current frame
55 | self.status = defaultdict(bool)
56 |
57 | def stop(self):
58 | self.mapping.stop()
59 | if self.loop_closing is not None:
60 | self.loop_closing.stop()
61 |
62 | def initialize(self, frame):
63 | mappoints, measurements = frame.triangulate()
64 | assert len(mappoints) >= self.params.init_min_points, (
65 | 'Not enough points to initialize map.')
66 |
67 | keyframe = frame.to_keyframe()
68 | keyframe.set_fixed(True)
69 | self.graph.add_keyframe(keyframe)
70 | self.mapping.add_measurements(keyframe, mappoints, measurements)
71 | if self.loop_closing is not None:
72 | self.loop_closing.add_keyframe(keyframe)
73 |
74 | self.reference = keyframe
75 | self.preceding = keyframe
76 | self.current = keyframe
77 | self.status['initialized'] = True
78 |
79 | self.motion_model.update_pose(
80 | frame.timestamp, frame.position, frame.orientation)
81 |
82 | def track(self, frame):
83 | while self.is_paused():
84 | time.sleep(1e-4)
85 | self.set_tracking(True)
86 |
87 | self.current = frame
88 | print('Tracking:', frame.idx, ' <- ', self.reference.id, self.reference.idx)
89 |
90 | predicted_pose, _ = self.motion_model.predict_pose(frame.timestamp)
91 | frame.update_pose(predicted_pose)
92 |
93 | if self.loop_closing is not None:
94 | if self.loop_correction is not None:
95 | estimated_pose = g2o.Isometry3d(
96 | frame.orientation,
97 | frame.position)
98 | estimated_pose = estimated_pose * self.loop_correction
99 | frame.update_pose(estimated_pose)
100 | self.motion_model.apply_correction(self.loop_correction)
101 | self.loop_correction = None
102 |
103 | local_mappoints = self.filter_points(frame)
104 | measurements = frame.match_mappoints(
105 | local_mappoints, Measurement.Source.TRACKING)
106 |
107 | print('measurements:', len(measurements), ' ', len(local_mappoints))
108 |
109 | tracked_map = set()
110 | for m in measurements:
111 | mappoint = m.mappoint
112 | mappoint.update_descriptor(m.get_descriptor())
113 | mappoint.increase_measurement_count()
114 | tracked_map.add(mappoint)
115 |
116 | try:
117 | self.reference = self.graph.get_reference_frame(tracked_map)
118 |
119 | pose = self.tracker.refine_pose(frame.pose, frame.cam, measurements)
120 | frame.update_pose(pose)
121 | self.motion_model.update_pose(
122 | frame.timestamp, pose.position(), pose.orientation())
123 | tracking_is_ok = True
124 | except:
125 | tracking_is_ok = False
126 | print('tracking failed!!!')
127 |
128 | if tracking_is_ok and self.should_be_keyframe(frame, measurements):
129 | print('new keyframe', frame.idx)
130 | keyframe = frame.to_keyframe()
131 | keyframe.update_reference(self.reference)
132 | keyframe.update_preceding(self.preceding)
133 |
134 | self.mapping.add_keyframe(keyframe, measurements)
135 | if self.loop_closing is not None:
136 | self.loop_closing.add_keyframe(keyframe)
137 | self.preceding = keyframe
138 |
139 | self.set_tracking(False)
140 |
141 |
142 | def filter_points(self, frame):
143 | local_mappoints = self.graph.get_local_map_v2(
144 | [self.preceding, self.reference])[0]
145 |
146 | can_view = frame.can_view(local_mappoints)
147 | print('filter points:', len(local_mappoints), can_view.sum(),
148 | len(self.preceding.mappoints()),
149 | len(self.reference.mappoints()))
150 |
151 | checked = set()
152 | filtered = []
153 | for i in np.where(can_view)[0]:
154 | pt = local_mappoints[i]
155 | if pt.is_bad():
156 | continue
157 | pt.increase_projection_count()
158 | filtered.append(pt)
159 | checked.add(pt)
160 |
161 | for reference in set([self.preceding, self.reference]):
162 | for pt in reference.mappoints(): # neglect can_view test
163 | if pt in checked or pt.is_bad():
164 | continue
165 | pt.increase_projection_count()
166 | filtered.append(pt)
167 |
168 | return filtered
169 |
170 |
171 | def should_be_keyframe(self, frame, measurements):
172 | if self.adding_keyframes_stopped():
173 | return False
174 |
175 | n_matches = len(measurements)
176 | n_matches_ref = len(self.reference.measurements())
177 |
178 | print('keyframe check:', n_matches, ' ', n_matches_ref)
179 |
180 | return ((n_matches / n_matches_ref) <
181 | self.params.min_tracked_points_ratio) or n_matches < 20
182 |
183 |
184 | def set_loop_correction(self, T):
185 | self.loop_correction = T
186 |
187 | def is_initialized(self):
188 | return self.status['initialized']
189 |
190 | def pause(self):
191 | self.status['paused'] = True
192 |
193 | def unpause(self):
194 | self.status['paused'] = False
195 |
196 | def is_paused(self):
197 | return self.status['paused']
198 |
199 | def is_tracking(self):
200 | return self.status['tracking']
201 |
202 | def set_tracking(self, status):
203 | self.status['tracking'] = status
204 |
205 | def stop_adding_keyframes(self):
206 | self.status['adding_keyframes_stopped'] = True
207 |
208 | def resume_adding_keyframes(self):
209 | self.status['adding_keyframes_stopped'] = False
210 |
211 | def adding_keyframes_stopped(self):
212 | return self.status['adding_keyframes_stopped']
213 |
214 |
215 |
216 |
217 |
218 | if __name__ == '__main__':
219 | import cv2
220 | import g2o
221 |
222 | import os
223 | import sys
224 | import argparse
225 |
226 | from threading import Thread
227 |
228 | from components import Camera
229 | from components import StereoFrame
230 | from feature import ImageFeature
231 | from params import ParamsKITTI, ParamsEuroc
232 | from dataset import KITTIOdometry, EuRoCDataset
233 |
234 |
235 | parser = argparse.ArgumentParser()
236 | parser.add_argument('--no-viz', action='store_true', help='do not visualize')
237 | parser.add_argument('--dataset', type=str, help='dataset (KITTI/EuRoC)',
238 | default='KITTI')
239 | parser.add_argument('--path', type=str, help='dataset path',
240 | default='path/to/your/KITTI_odometry/sequences/00')
241 | args = parser.parse_args()
242 |
243 | if args.dataset.lower() == 'kitti':
244 | params = ParamsKITTI()
245 | dataset = KITTIOdometry(args.path)
246 | elif args.dataset.lower() == 'euroc':
247 | params = ParamsEuroc()
248 | dataset = EuRoCDataset(args.path)
249 |
250 | sptam = SPTAM(params)
251 |
252 | visualize = not args.no_viz
253 | if visualize:
254 | from viewer import MapViewer
255 | viewer = MapViewer(sptam, params)
256 |
257 |
258 | cam = Camera(
259 | dataset.cam.fx, dataset.cam.fy, dataset.cam.cx, dataset.cam.cy,
260 | dataset.cam.width, dataset.cam.height,
261 | params.frustum_near, params.frustum_far,
262 | dataset.cam.baseline)
263 |
264 |
265 |
266 | durations = []
267 | for i in range(len(dataset))[:100]:
268 | featurel = ImageFeature(dataset.left[i], params)
269 | featurer = ImageFeature(dataset.right[i], params)
270 | timestamp = dataset.timestamps[i]
271 |
272 | time_start = time.time()
273 |
274 | t = Thread(target=featurer.extract)
275 | t.start()
276 | featurel.extract()
277 | t.join()
278 |
279 | frame = StereoFrame(i, g2o.Isometry3d(), featurel, featurer, cam, timestamp=timestamp)
280 |
281 | if not sptam.is_initialized():
282 | sptam.initialize(frame)
283 | else:
284 | sptam.track(frame)
285 |
286 |
287 | duration = time.time() - time_start
288 | durations.append(duration)
289 | print('duration', duration)
290 | print()
291 | print()
292 |
293 | if visualize:
294 | viewer.update()
295 |
296 | print('num frames', len(durations))
297 | print('num keyframes', len(sptam.graph.keyframes()))
298 | print('average time', np.mean(durations))
299 |
300 |
301 | sptam.stop()
302 | if visualize:
303 | viewer.stop()
--------------------------------------------------------------------------------
/viewer.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import cv2
3 |
4 | import OpenGL.GL as gl
5 | import pangolin
6 |
7 | import time
8 | from multiprocessing import Process, Queue
9 |
10 |
11 |
12 | class DynamicArray(object):
13 | def __init__(self, shape=3):
14 | if isinstance(shape, int):
15 | shape = (shape,)
16 | assert isinstance(shape, tuple)
17 |
18 | self.data = np.zeros((1000, *shape))
19 | self.shape = shape
20 | self.ind = 0
21 |
22 | def clear(self):
23 | self.ind = 0
24 |
25 | def append(self, x):
26 | self.extend([x])
27 |
28 | def extend(self, xs):
29 | if len(xs) == 0:
30 | return
31 | assert np.array(xs[0]).shape == self.shape
32 |
33 | if self.ind + len(xs) >= len(self.data):
34 | self.data.resize(
35 | (2 * len(self.data), *self.shape) , refcheck=False)
36 |
37 | if isinstance(xs, np.ndarray):
38 | self.data[self.ind:self.ind+len(xs)] = xs
39 | else:
40 | for i, x in enumerate(xs):
41 | self.data[self.ind+i] = x
42 | self.ind += len(xs)
43 |
44 | def array(self):
45 | return self.data[:self.ind]
46 |
47 | def __len__(self):
48 | return self.ind
49 |
50 | def __getitem__(self, i):
51 | assert i < self.ind
52 | return self.data[i]
53 |
54 | def __iter__(self):
55 | for x in self.data[:self.ind]:
56 | yield x
57 |
58 |
59 |
60 |
61 | class MapViewer(object):
62 | def __init__(self, system=None, config=None):
63 | self.system = system
64 | self.config = config
65 |
66 | self.saved_keyframes = set()
67 |
68 | # data queue
69 | self.q_pose = Queue()
70 | self.q_active = Queue()
71 | self.q_points = Queue()
72 | self.q_colors = Queue()
73 | self.q_graph = Queue()
74 | self.q_camera = Queue()
75 | self.q_image = Queue()
76 |
77 | # message queue
78 | self.q_refresh = Queue()
79 | # self.q_quit = Queue()
80 |
81 | self.view_thread = Process(target=self.view)
82 | self.view_thread.start()
83 |
84 | def update(self, refresh=False):
85 | while not self.q_refresh.empty():
86 | refresh = self.q_refresh.get()
87 |
88 | self.q_image.put(self.system.current.image)
89 | self.q_pose.put(self.system.current.pose.matrix())
90 |
91 | points = []
92 | for m in self.system.reference.measurements():
93 | if m.from_triangulation():
94 | points.append(m.mappoint.position)
95 | self.q_active.put(points)
96 |
97 | lines = []
98 | for kf in self.system.graph.keyframes():
99 | if kf.reference_keyframe is not None:
100 | lines.append(([*kf.position, *kf.reference_keyframe.position], 0))
101 | if kf.preceding_keyframe != kf.reference_keyframe:
102 | lines.append(([*kf.position, *kf.preceding_keyframe.position], 1))
103 | if kf.loop_keyframe is not None:
104 | lines.append(([*kf.position, *kf.loop_keyframe.position], 2))
105 | self.q_graph.put(lines)
106 |
107 |
108 | if refresh:
109 | print('****************************************************************', 'refresh')
110 | cameras = []
111 | for kf in self.system.graph.keyframes():
112 | cameras.append(kf.pose.matrix())
113 | self.q_camera.put(cameras)
114 |
115 |
116 | points = []
117 | colors = []
118 | for pt in self.system.graph.mappoints():
119 | points.append(pt.position)
120 | colors.append(pt.color)
121 | if len(points) > 0:
122 | self.q_points.put((points, 0))
123 | self.q_colors.put((colors, 0))
124 | else:
125 | cameras = []
126 | points = []
127 | colors = []
128 | for kf in self.system.graph.keyframes()[-20:]:
129 | if kf.id not in self.saved_keyframes:
130 | cameras.append(kf.pose.matrix())
131 | self.saved_keyframes.add(kf.id)
132 | for m in kf.measurements():
133 | if m.from_triangulation():
134 | points.append(m.mappoint.position)
135 | colors.append(m.mappoint.color)
136 | if len(cameras) > 0:
137 | self.q_camera.put(cameras)
138 | if len(points) > 0:
139 | self.q_points.put((points, 1))
140 | self.q_colors.put((colors, 1))
141 |
142 |
143 | def stop(self):
144 | self.update(refresh=True)
145 | self.view_thread.join()
146 |
147 | qtype = type(Queue())
148 | for x in self.__dict__.values():
149 | if isinstance(x, qtype):
150 | while not x.empty():
151 | _ = x.get()
152 | print('viewer stopped')
153 |
154 |
155 | def view(self):
156 | pangolin.CreateWindowAndBind('Viewer', 1024, 768)
157 |
158 | gl.glEnable(gl.GL_DEPTH_TEST)
159 | gl.glEnable(gl.GL_BLEND)
160 | gl.glBlendFunc (gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA)
161 |
162 | panel = pangolin.CreatePanel('menu')
163 | panel.SetBounds(0.5, 1.0, 0.0, 175 / 1024.)
164 |
165 | # checkbox
166 | m_follow_camera = pangolin.VarBool('menu.Follow Camera', value=True, toggle=True)
167 | m_show_points = pangolin.VarBool('menu.Show Points', True, True)
168 | m_show_keyframes = pangolin.VarBool('menu.Show KeyFrames', True, True)
169 | m_show_graph = pangolin.VarBool('menu.Show Graph', True, True)
170 | m_show_image = pangolin.VarBool('menu.Show Image', True, True)
171 |
172 | # button
173 | m_replay = pangolin.VarBool('menu.Replay', value=False, toggle=False)
174 | m_refresh = pangolin.VarBool('menu.Refresh', False, False)
175 | m_reset = pangolin.VarBool('menu.Reset', False, False)
176 |
177 | if self.config is None:
178 | width, height = 400, 250
179 | viewpoint_x = 0
180 | viewpoint_y = -500 # -10
181 | viewpoint_z = -100 # -0.1
182 | viewpoint_f = 2000
183 | camera_width = 1.
184 | else:
185 | width = self.config.view_image_width
186 | height = self.config.view_image_height
187 | viewpoint_x = self.config.view_viewpoint_x
188 | viewpoint_y = self.config.view_viewpoint_y
189 | viewpoint_z = self.config.view_viewpoint_z
190 | viewpoint_f = self.config.view_viewpoint_f
191 | camera_width = self.config.view_camera_width
192 |
193 | proj = pangolin.ProjectionMatrix(
194 | 1024, 768, viewpoint_f, viewpoint_f, 512, 389, 0.1, 5000)
195 | look_view = pangolin.ModelViewLookAt(
196 | viewpoint_x, viewpoint_y, viewpoint_z, 0, 0, 0, 0, -1, 0)
197 |
198 | # Camera Render Object (for view / scene browsing)
199 | scam = pangolin.OpenGlRenderState(proj, look_view)
200 |
201 | # Add named OpenGL viewport to window and provide 3D Handler
202 | dcam = pangolin.CreateDisplay()
203 | dcam.SetBounds(0.0, 1.0, 175 / 1024., 1.0, -1024 / 768.)
204 | dcam.SetHandler(pangolin.Handler3D(scam))
205 |
206 |
207 | # image
208 | # width, height = 400, 130
209 | dimg = pangolin.Display('image')
210 | dimg.SetBounds(0, height / 768., 0.0, width / 1024., 1024 / 768.)
211 | dimg.SetLock(pangolin.Lock.LockLeft, pangolin.Lock.LockTop)
212 |
213 | texture = pangolin.GlTexture(width, height, gl.GL_RGB, False, 0, gl.GL_RGB, gl.GL_UNSIGNED_BYTE)
214 | image = np.ones((height, width, 3), 'uint8')
215 |
216 |
217 |
218 | pose = pangolin.OpenGlMatrix() # identity matrix
219 | following = True
220 |
221 | active = []
222 | replays = []
223 | graph = []
224 | loops = []
225 | mappoints = DynamicArray(shape=(3,))
226 | colors = DynamicArray(shape=(3,))
227 | cameras = DynamicArray(shape=(4, 4))
228 |
229 |
230 | while not pangolin.ShouldQuit():
231 |
232 | if not self.q_pose.empty():
233 | pose.m = self.q_pose.get()
234 |
235 | follow = m_follow_camera.Get()
236 | if follow and following:
237 | scam.Follow(pose, True)
238 | elif follow and not following:
239 | scam.SetModelViewMatrix(look_view)
240 | scam.Follow(pose, True)
241 | following = True
242 | elif not follow and following:
243 | following = False
244 |
245 |
246 | gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
247 | gl.glClearColor(1.0, 1.0, 1.0, 1.0)
248 | dcam.Activate(scam)
249 |
250 |
251 | # show graph
252 | if not self.q_graph.empty():
253 | graph = self.q_graph.get()
254 | loops = np.array([_[0] for _ in graph if _[1] == 2])
255 | graph = np.array([_[0] for _ in graph if _[1] < 2])
256 | if m_show_graph.Get():
257 | if len(graph) > 0:
258 | gl.glLineWidth(1)
259 | gl.glColor3f(0.0, 1.0, 0.0)
260 | pangolin.DrawLines(graph, 3)
261 | if len(loops) > 0:
262 | gl.glLineWidth(2)
263 | gl.glColor3f(0.0, 0.0, 0.0)
264 | pangolin.DrawLines(loops, 4)
265 |
266 | gl.glPointSize(4)
267 | gl.glColor3f(1.0, 0.0, 0.0)
268 | gl.glBegin(gl.GL_POINTS)
269 | gl.glVertex3d(pose[0, 3], pose[1, 3], pose[2, 3])
270 | gl.glEnd()
271 |
272 |
273 | # Show mappoints
274 | if not self.q_points.empty():
275 | pts, code = self.q_points.get()
276 | cls, code = self.q_colors.get()
277 | if code == 1: # append new points
278 | mappoints.extend(pts)
279 | colors.extend(cls)
280 | elif code == 0: # refresh all points
281 | mappoints.clear()
282 | mappoints.extend(pts)
283 | colors.clear()
284 | colors.extend(cls)
285 |
286 | if m_show_points.Get():
287 | gl.glPointSize(2)
288 | # easily draw millions of points
289 | pangolin.DrawPoints(mappoints.array(), colors.array())
290 |
291 |
292 | if not self.q_active.empty():
293 | active = self.q_active.get()
294 |
295 | gl.glPointSize(3)
296 | gl.glBegin(gl.GL_POINTS)
297 | gl.glColor3f(1.0, 0.0, 0.0)
298 | for point in active:
299 | gl.glVertex3f(*point)
300 | gl.glEnd()
301 |
302 |
303 | if len(replays) > 0:
304 | n = 300
305 | gl.glPointSize(4)
306 | gl.glColor3f(1.0, 0.0, 0.0)
307 | gl.glBegin(gl.GL_POINTS)
308 | for point in replays[:n]:
309 | gl.glVertex3f(*point)
310 | gl.glEnd()
311 | replays = replays[n:]
312 |
313 |
314 | # show cameras
315 | if not self.q_camera.empty():
316 | cams = self.q_camera.get()
317 | if len(cams) > 20:
318 | cameras.clear()
319 | cameras.extend(cams)
320 |
321 | if m_show_keyframes.Get():
322 | gl.glLineWidth(1)
323 | gl.glColor3f(0.0, 0.0, 1.0)
324 | pangolin.DrawCameras(cameras.array(), camera_width)
325 |
326 |
327 | # show image
328 | if not self.q_image.empty():
329 | image = self.q_image.get()
330 | if image.ndim == 3:
331 | image = image[::-1, :, ::-1]
332 | else:
333 | image = np.repeat(image[::-1, :, np.newaxis], 3, axis=2)
334 | image = cv2.resize(image, (width, height))
335 | if m_show_image.Get():
336 | texture.Upload(image, gl.GL_RGB, gl.GL_UNSIGNED_BYTE)
337 | dimg.Activate()
338 | gl.glColor3f(1.0, 1.0, 1.0)
339 | texture.RenderToViewport()
340 |
341 |
342 | if pangolin.Pushed(m_replay):
343 | replays = mappoints.array()
344 |
345 | if pangolin.Pushed(m_reset):
346 | m_show_graph.SetVal(True)
347 | m_show_keyframes.SetVal(True)
348 | m_show_points.SetVal(True)
349 | m_show_image.SetVal(True)
350 | m_follow_camera.SetVal(True)
351 | follow_camera = True
352 |
353 | if pangolin.Pushed(m_refresh):
354 | self.q_refresh.put(True)
355 |
356 |
357 |
358 | pangolin.FinishFrame()
--------------------------------------------------------------------------------