├── README.md ├── LICENSE └── PositionEmbedding_Discussion.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # Position-Embedding-Discussion -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /PositionEmbedding_Discussion.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "gpuType": "T4" 8 | }, 9 | "kernelspec": { 10 | "name": "python3", 11 | "display_name": "Python 3" 12 | }, 13 | "language_info": { 14 | "name": "python" 15 | }, 16 | "accelerator": "GPU", 17 | "gpuClass": "standard", 18 | "widgets": { 19 | "application/vnd.jupyter.widget-state+json": { 20 | "8fc3ffd3192e410690bfb1c15cc91df8": { 21 | "model_module": "@jupyter-widgets/controls", 22 | "model_name": "HBoxModel", 23 | "model_module_version": "1.5.0", 24 | "state": { 25 | "_dom_classes": [], 26 | "_model_module": "@jupyter-widgets/controls", 27 | "_model_module_version": "1.5.0", 28 | "_model_name": "HBoxModel", 29 | "_view_count": null, 30 | "_view_module": "@jupyter-widgets/controls", 31 | "_view_module_version": "1.5.0", 32 | "_view_name": "HBoxView", 33 | "box_style": "", 34 | "children": [ 35 | "IPY_MODEL_194715023f574cb6945498787a28599e", 36 | "IPY_MODEL_e6ca529399674745849418cb0cc9d63e", 37 | "IPY_MODEL_d33de86165ae4bbab6185ac13a4a7169" 38 | ], 39 | "layout": "IPY_MODEL_6437b891ad8f4433bf59f112a1446b26" 40 | } 41 | }, 42 | "194715023f574cb6945498787a28599e": { 43 | "model_module": "@jupyter-widgets/controls", 44 | "model_name": "HTMLModel", 45 | "model_module_version": "1.5.0", 46 | "state": { 47 | "_dom_classes": [], 48 | "_model_module": "@jupyter-widgets/controls", 49 | "_model_module_version": "1.5.0", 50 | "_model_name": "HTMLModel", 51 | "_view_count": null, 52 | "_view_module": "@jupyter-widgets/controls", 53 | "_view_module_version": "1.5.0", 54 | "_view_name": "HTMLView", 55 | "description": "", 56 | "description_tooltip": null, 57 | "layout": "IPY_MODEL_0b0696c421c24b719a9e0d3ac48a264f", 58 | "placeholder": "​", 59 | "style": "IPY_MODEL_b4bbefacd57644149fc055dc2ba8809a", 60 | "value": "Dl Completed...: 100%" 61 | } 62 | }, 63 | "e6ca529399674745849418cb0cc9d63e": { 64 | "model_module": "@jupyter-widgets/controls", 65 | "model_name": "FloatProgressModel", 66 | "model_module_version": "1.5.0", 67 | "state": { 68 | "_dom_classes": [], 69 | "_model_module": "@jupyter-widgets/controls", 70 | "_model_module_version": "1.5.0", 71 | "_model_name": "FloatProgressModel", 72 | "_view_count": null, 73 | "_view_module": "@jupyter-widgets/controls", 74 | "_view_module_version": "1.5.0", 75 | "_view_name": "ProgressView", 76 | "bar_style": "success", 77 | "description": "", 78 | "description_tooltip": null, 79 | "layout": "IPY_MODEL_773075570214465f90615fc25895a6f8", 80 | "max": 1, 81 | "min": 0, 82 | "orientation": "horizontal", 83 | "style": "IPY_MODEL_9cba2aed6b6c40eeb15fc09adfcee5d2", 84 | "value": 1 85 | } 86 | }, 87 | "d33de86165ae4bbab6185ac13a4a7169": { 88 | "model_module": "@jupyter-widgets/controls", 89 | "model_name": "HTMLModel", 90 | "model_module_version": "1.5.0", 91 | "state": { 92 | "_dom_classes": [], 93 | "_model_module": "@jupyter-widgets/controls", 94 | "_model_module_version": "1.5.0", 95 | "_model_name": "HTMLModel", 96 | "_view_count": null, 97 | "_view_module": "@jupyter-widgets/controls", 98 | "_view_module_version": "1.5.0", 99 | "_view_name": "HTMLView", 100 | "description": "", 101 | "description_tooltip": null, 102 | "layout": "IPY_MODEL_061391e9db9f4edd8d2b33aef1aca202", 103 | "placeholder": "​", 104 | "style": "IPY_MODEL_44cf3199fd5c4ea7bbfeff15de48dadd", 105 | "value": " 1/1 [00:01<00:00, 1.55s/ url]" 106 | } 107 | }, 108 | "6437b891ad8f4433bf59f112a1446b26": { 109 | "model_module": "@jupyter-widgets/base", 110 | "model_name": "LayoutModel", 111 | "model_module_version": "1.2.0", 112 | "state": { 113 | "_model_module": "@jupyter-widgets/base", 114 | "_model_module_version": "1.2.0", 115 | "_model_name": "LayoutModel", 116 | "_view_count": null, 117 | "_view_module": "@jupyter-widgets/base", 118 | "_view_module_version": "1.2.0", 119 | "_view_name": "LayoutView", 120 | "align_content": null, 121 | "align_items": null, 122 | "align_self": null, 123 | "border": null, 124 | "bottom": null, 125 | "display": null, 126 | "flex": null, 127 | "flex_flow": null, 128 | "grid_area": null, 129 | "grid_auto_columns": null, 130 | "grid_auto_flow": null, 131 | "grid_auto_rows": null, 132 | "grid_column": null, 133 | "grid_gap": null, 134 | "grid_row": null, 135 | "grid_template_areas": null, 136 | "grid_template_columns": null, 137 | "grid_template_rows": null, 138 | "height": null, 139 | "justify_content": null, 140 | "justify_items": null, 141 | "left": null, 142 | "margin": null, 143 | "max_height": null, 144 | "max_width": null, 145 | "min_height": null, 146 | "min_width": null, 147 | "object_fit": null, 148 | "object_position": null, 149 | "order": null, 150 | "overflow": null, 151 | "overflow_x": null, 152 | "overflow_y": null, 153 | "padding": null, 154 | "right": null, 155 | "top": null, 156 | "visibility": null, 157 | "width": null 158 | } 159 | }, 160 | "0b0696c421c24b719a9e0d3ac48a264f": { 161 | "model_module": "@jupyter-widgets/base", 162 | "model_name": "LayoutModel", 163 | "model_module_version": "1.2.0", 164 | "state": { 165 | "_model_module": "@jupyter-widgets/base", 166 | "_model_module_version": "1.2.0", 167 | "_model_name": "LayoutModel", 168 | "_view_count": null, 169 | "_view_module": "@jupyter-widgets/base", 170 | "_view_module_version": "1.2.0", 171 | "_view_name": "LayoutView", 172 | "align_content": null, 173 | "align_items": null, 174 | "align_self": null, 175 | "border": null, 176 | "bottom": null, 177 | "display": null, 178 | "flex": null, 179 | "flex_flow": null, 180 | "grid_area": null, 181 | "grid_auto_columns": null, 182 | "grid_auto_flow": null, 183 | "grid_auto_rows": null, 184 | "grid_column": null, 185 | "grid_gap": null, 186 | "grid_row": null, 187 | "grid_template_areas": null, 188 | "grid_template_columns": null, 189 | "grid_template_rows": null, 190 | "height": null, 191 | "justify_content": null, 192 | "justify_items": null, 193 | "left": null, 194 | "margin": null, 195 | "max_height": null, 196 | "max_width": null, 197 | "min_height": null, 198 | "min_width": null, 199 | "object_fit": null, 200 | "object_position": null, 201 | "order": null, 202 | "overflow": null, 203 | "overflow_x": null, 204 | "overflow_y": null, 205 | "padding": null, 206 | "right": null, 207 | "top": null, 208 | "visibility": null, 209 | "width": null 210 | } 211 | }, 212 | "b4bbefacd57644149fc055dc2ba8809a": { 213 | "model_module": "@jupyter-widgets/controls", 214 | "model_name": "DescriptionStyleModel", 215 | "model_module_version": "1.5.0", 216 | "state": { 217 | "_model_module": "@jupyter-widgets/controls", 218 | "_model_module_version": "1.5.0", 219 | "_model_name": "DescriptionStyleModel", 220 | "_view_count": null, 221 | "_view_module": "@jupyter-widgets/base", 222 | "_view_module_version": "1.2.0", 223 | "_view_name": "StyleView", 224 | "description_width": "" 225 | } 226 | }, 227 | "773075570214465f90615fc25895a6f8": { 228 | "model_module": "@jupyter-widgets/base", 229 | "model_name": "LayoutModel", 230 | "model_module_version": "1.2.0", 231 | "state": { 232 | "_model_module": "@jupyter-widgets/base", 233 | "_model_module_version": "1.2.0", 234 | "_model_name": "LayoutModel", 235 | "_view_count": null, 236 | "_view_module": "@jupyter-widgets/base", 237 | "_view_module_version": "1.2.0", 238 | "_view_name": "LayoutView", 239 | "align_content": null, 240 | "align_items": null, 241 | "align_self": null, 242 | "border": null, 243 | "bottom": null, 244 | "display": null, 245 | "flex": null, 246 | "flex_flow": null, 247 | "grid_area": null, 248 | "grid_auto_columns": null, 249 | "grid_auto_flow": null, 250 | "grid_auto_rows": null, 251 | "grid_column": null, 252 | "grid_gap": null, 253 | "grid_row": null, 254 | "grid_template_areas": null, 255 | "grid_template_columns": null, 256 | "grid_template_rows": null, 257 | "height": null, 258 | "justify_content": null, 259 | "justify_items": null, 260 | "left": null, 261 | "margin": null, 262 | "max_height": null, 263 | "max_width": null, 264 | "min_height": null, 265 | "min_width": null, 266 | "object_fit": null, 267 | "object_position": null, 268 | "order": null, 269 | "overflow": null, 270 | "overflow_x": null, 271 | "overflow_y": null, 272 | "padding": null, 273 | "right": null, 274 | "top": null, 275 | "visibility": null, 276 | "width": "20px" 277 | } 278 | }, 279 | "9cba2aed6b6c40eeb15fc09adfcee5d2": { 280 | "model_module": "@jupyter-widgets/controls", 281 | "model_name": "ProgressStyleModel", 282 | "model_module_version": "1.5.0", 283 | "state": { 284 | "_model_module": "@jupyter-widgets/controls", 285 | "_model_module_version": "1.5.0", 286 | "_model_name": "ProgressStyleModel", 287 | "_view_count": null, 288 | "_view_module": "@jupyter-widgets/base", 289 | "_view_module_version": "1.2.0", 290 | "_view_name": "StyleView", 291 | "bar_color": null, 292 | "description_width": "" 293 | } 294 | }, 295 | "061391e9db9f4edd8d2b33aef1aca202": { 296 | "model_module": "@jupyter-widgets/base", 297 | "model_name": "LayoutModel", 298 | "model_module_version": "1.2.0", 299 | "state": { 300 | "_model_module": "@jupyter-widgets/base", 301 | "_model_module_version": "1.2.0", 302 | "_model_name": "LayoutModel", 303 | "_view_count": null, 304 | "_view_module": "@jupyter-widgets/base", 305 | "_view_module_version": "1.2.0", 306 | "_view_name": "LayoutView", 307 | "align_content": null, 308 | "align_items": null, 309 | "align_self": null, 310 | "border": null, 311 | "bottom": null, 312 | "display": null, 313 | "flex": null, 314 | "flex_flow": null, 315 | "grid_area": null, 316 | "grid_auto_columns": null, 317 | "grid_auto_flow": null, 318 | "grid_auto_rows": null, 319 | "grid_column": null, 320 | "grid_gap": null, 321 | "grid_row": null, 322 | "grid_template_areas": null, 323 | "grid_template_columns": null, 324 | "grid_template_rows": null, 325 | "height": null, 326 | "justify_content": null, 327 | "justify_items": null, 328 | "left": null, 329 | "margin": null, 330 | "max_height": null, 331 | "max_width": null, 332 | "min_height": null, 333 | "min_width": null, 334 | "object_fit": null, 335 | "object_position": null, 336 | "order": null, 337 | "overflow": null, 338 | "overflow_x": null, 339 | "overflow_y": null, 340 | "padding": null, 341 | "right": null, 342 | "top": null, 343 | "visibility": null, 344 | "width": null 345 | } 346 | }, 347 | "44cf3199fd5c4ea7bbfeff15de48dadd": { 348 | "model_module": "@jupyter-widgets/controls", 349 | "model_name": "DescriptionStyleModel", 350 | "model_module_version": "1.5.0", 351 | "state": { 352 | "_model_module": "@jupyter-widgets/controls", 353 | "_model_module_version": "1.5.0", 354 | "_model_name": "DescriptionStyleModel", 355 | "_view_count": null, 356 | "_view_module": "@jupyter-widgets/base", 357 | "_view_module_version": "1.2.0", 358 | "_view_name": "StyleView", 359 | "description_width": "" 360 | } 361 | }, 362 | "63117fcc267e4d9b9d83c81448ec891a": { 363 | "model_module": "@jupyter-widgets/controls", 364 | "model_name": "HBoxModel", 365 | "model_module_version": "1.5.0", 366 | "state": { 367 | "_dom_classes": [], 368 | "_model_module": "@jupyter-widgets/controls", 369 | "_model_module_version": "1.5.0", 370 | "_model_name": "HBoxModel", 371 | "_view_count": null, 372 | "_view_module": "@jupyter-widgets/controls", 373 | "_view_module_version": "1.5.0", 374 | "_view_name": "HBoxView", 375 | "box_style": "", 376 | "children": [ 377 | "IPY_MODEL_eef23369bd3643fbac4d9daedd35bf8e", 378 | "IPY_MODEL_10c2178666304d40900ec1aa7ed81a2a", 379 | "IPY_MODEL_5e4072737287496da4921b5cf8500a7c" 380 | ], 381 | "layout": "IPY_MODEL_20f744e4872e4400a1cce33c5b5e093d" 382 | } 383 | }, 384 | "eef23369bd3643fbac4d9daedd35bf8e": { 385 | "model_module": "@jupyter-widgets/controls", 386 | "model_name": "HTMLModel", 387 | "model_module_version": "1.5.0", 388 | "state": { 389 | "_dom_classes": [], 390 | "_model_module": "@jupyter-widgets/controls", 391 | "_model_module_version": "1.5.0", 392 | "_model_name": "HTMLModel", 393 | "_view_count": null, 394 | "_view_module": "@jupyter-widgets/controls", 395 | "_view_module_version": "1.5.0", 396 | "_view_name": "HTMLView", 397 | "description": "", 398 | "description_tooltip": null, 399 | "layout": "IPY_MODEL_f9f72195acc44f4692eff40af44809c3", 400 | "placeholder": "​", 401 | "style": "IPY_MODEL_1a9a4c298f2449319e2137f35c2a6f42", 402 | "value": "Dl Size...: 100%" 403 | } 404 | }, 405 | "10c2178666304d40900ec1aa7ed81a2a": { 406 | "model_module": "@jupyter-widgets/controls", 407 | "model_name": "FloatProgressModel", 408 | "model_module_version": "1.5.0", 409 | "state": { 410 | "_dom_classes": [], 411 | "_model_module": "@jupyter-widgets/controls", 412 | "_model_module_version": "1.5.0", 413 | "_model_name": "FloatProgressModel", 414 | "_view_count": null, 415 | "_view_module": "@jupyter-widgets/controls", 416 | "_view_module_version": "1.5.0", 417 | "_view_name": "ProgressView", 418 | "bar_style": "success", 419 | "description": "", 420 | "description_tooltip": null, 421 | "layout": "IPY_MODEL_dcd3e61974f145d684ae05df73cafc89", 422 | "max": 1, 423 | "min": 0, 424 | "orientation": "horizontal", 425 | "style": "IPY_MODEL_10f73b7c2aec4eed92a0d41d0e8bede1", 426 | "value": 1 427 | } 428 | }, 429 | "5e4072737287496da4921b5cf8500a7c": { 430 | "model_module": "@jupyter-widgets/controls", 431 | "model_name": "HTMLModel", 432 | "model_module_version": "1.5.0", 433 | "state": { 434 | "_dom_classes": [], 435 | "_model_module": "@jupyter-widgets/controls", 436 | "_model_module_version": "1.5.0", 437 | "_model_name": "HTMLModel", 438 | "_view_count": null, 439 | "_view_module": "@jupyter-widgets/controls", 440 | "_view_module_version": "1.5.0", 441 | "_view_name": "HTMLView", 442 | "description": "", 443 | "description_tooltip": null, 444 | "layout": "IPY_MODEL_2a857876349e44f09119067f8c3ecd45", 445 | "placeholder": "​", 446 | "style": "IPY_MODEL_6bffef1006cf4e5fb962296a9f436cff", 447 | "value": " 80/80 [00:01<00:00, 75.48 MiB/s]" 448 | } 449 | }, 450 | "20f744e4872e4400a1cce33c5b5e093d": { 451 | "model_module": "@jupyter-widgets/base", 452 | "model_name": "LayoutModel", 453 | "model_module_version": "1.2.0", 454 | "state": { 455 | "_model_module": "@jupyter-widgets/base", 456 | "_model_module_version": "1.2.0", 457 | "_model_name": "LayoutModel", 458 | "_view_count": null, 459 | "_view_module": "@jupyter-widgets/base", 460 | "_view_module_version": "1.2.0", 461 | "_view_name": "LayoutView", 462 | "align_content": null, 463 | "align_items": null, 464 | "align_self": null, 465 | "border": null, 466 | "bottom": null, 467 | "display": null, 468 | "flex": null, 469 | "flex_flow": null, 470 | "grid_area": null, 471 | "grid_auto_columns": null, 472 | "grid_auto_flow": null, 473 | "grid_auto_rows": null, 474 | "grid_column": null, 475 | "grid_gap": null, 476 | "grid_row": null, 477 | "grid_template_areas": null, 478 | "grid_template_columns": null, 479 | "grid_template_rows": null, 480 | "height": null, 481 | "justify_content": null, 482 | "justify_items": null, 483 | "left": null, 484 | "margin": null, 485 | "max_height": null, 486 | "max_width": null, 487 | "min_height": null, 488 | "min_width": null, 489 | "object_fit": null, 490 | "object_position": null, 491 | "order": null, 492 | "overflow": null, 493 | "overflow_x": null, 494 | "overflow_y": null, 495 | "padding": null, 496 | "right": null, 497 | "top": null, 498 | "visibility": null, 499 | "width": null 500 | } 501 | }, 502 | "f9f72195acc44f4692eff40af44809c3": { 503 | "model_module": "@jupyter-widgets/base", 504 | "model_name": "LayoutModel", 505 | "model_module_version": "1.2.0", 506 | "state": { 507 | "_model_module": "@jupyter-widgets/base", 508 | "_model_module_version": "1.2.0", 509 | "_model_name": "LayoutModel", 510 | "_view_count": null, 511 | "_view_module": "@jupyter-widgets/base", 512 | "_view_module_version": "1.2.0", 513 | "_view_name": "LayoutView", 514 | "align_content": null, 515 | "align_items": null, 516 | "align_self": null, 517 | "border": null, 518 | "bottom": null, 519 | "display": null, 520 | "flex": null, 521 | "flex_flow": null, 522 | "grid_area": null, 523 | "grid_auto_columns": null, 524 | "grid_auto_flow": null, 525 | "grid_auto_rows": null, 526 | "grid_column": null, 527 | "grid_gap": null, 528 | "grid_row": null, 529 | "grid_template_areas": null, 530 | "grid_template_columns": null, 531 | "grid_template_rows": null, 532 | "height": null, 533 | "justify_content": null, 534 | "justify_items": null, 535 | "left": null, 536 | "margin": null, 537 | "max_height": null, 538 | "max_width": null, 539 | "min_height": null, 540 | "min_width": null, 541 | "object_fit": null, 542 | "object_position": null, 543 | "order": null, 544 | "overflow": null, 545 | "overflow_x": null, 546 | "overflow_y": null, 547 | "padding": null, 548 | "right": null, 549 | "top": null, 550 | "visibility": null, 551 | "width": null 552 | } 553 | }, 554 | "1a9a4c298f2449319e2137f35c2a6f42": { 555 | "model_module": "@jupyter-widgets/controls", 556 | "model_name": "DescriptionStyleModel", 557 | "model_module_version": "1.5.0", 558 | "state": { 559 | "_model_module": "@jupyter-widgets/controls", 560 | "_model_module_version": "1.5.0", 561 | "_model_name": "DescriptionStyleModel", 562 | "_view_count": null, 563 | "_view_module": "@jupyter-widgets/base", 564 | "_view_module_version": "1.2.0", 565 | "_view_name": "StyleView", 566 | "description_width": "" 567 | } 568 | }, 569 | "dcd3e61974f145d684ae05df73cafc89": { 570 | "model_module": "@jupyter-widgets/base", 571 | "model_name": "LayoutModel", 572 | "model_module_version": "1.2.0", 573 | "state": { 574 | "_model_module": "@jupyter-widgets/base", 575 | "_model_module_version": "1.2.0", 576 | "_model_name": "LayoutModel", 577 | "_view_count": null, 578 | "_view_module": "@jupyter-widgets/base", 579 | "_view_module_version": "1.2.0", 580 | "_view_name": "LayoutView", 581 | "align_content": null, 582 | "align_items": null, 583 | "align_self": null, 584 | "border": null, 585 | "bottom": null, 586 | "display": null, 587 | "flex": null, 588 | "flex_flow": null, 589 | "grid_area": null, 590 | "grid_auto_columns": null, 591 | "grid_auto_flow": null, 592 | "grid_auto_rows": null, 593 | "grid_column": null, 594 | "grid_gap": null, 595 | "grid_row": null, 596 | "grid_template_areas": null, 597 | "grid_template_columns": null, 598 | "grid_template_rows": null, 599 | "height": null, 600 | "justify_content": null, 601 | "justify_items": null, 602 | "left": null, 603 | "margin": null, 604 | "max_height": null, 605 | "max_width": null, 606 | "min_height": null, 607 | "min_width": null, 608 | "object_fit": null, 609 | "object_position": null, 610 | "order": null, 611 | "overflow": null, 612 | "overflow_x": null, 613 | "overflow_y": null, 614 | "padding": null, 615 | "right": null, 616 | "top": null, 617 | "visibility": null, 618 | "width": "20px" 619 | } 620 | }, 621 | "10f73b7c2aec4eed92a0d41d0e8bede1": { 622 | "model_module": "@jupyter-widgets/controls", 623 | "model_name": "ProgressStyleModel", 624 | "model_module_version": "1.5.0", 625 | "state": { 626 | "_model_module": "@jupyter-widgets/controls", 627 | "_model_module_version": "1.5.0", 628 | "_model_name": "ProgressStyleModel", 629 | "_view_count": null, 630 | "_view_module": "@jupyter-widgets/base", 631 | "_view_module_version": "1.2.0", 632 | "_view_name": "StyleView", 633 | "bar_color": null, 634 | "description_width": "" 635 | } 636 | }, 637 | "2a857876349e44f09119067f8c3ecd45": { 638 | "model_module": "@jupyter-widgets/base", 639 | "model_name": "LayoutModel", 640 | "model_module_version": "1.2.0", 641 | "state": { 642 | "_model_module": "@jupyter-widgets/base", 643 | "_model_module_version": "1.2.0", 644 | "_model_name": "LayoutModel", 645 | "_view_count": null, 646 | "_view_module": "@jupyter-widgets/base", 647 | "_view_module_version": "1.2.0", 648 | "_view_name": "LayoutView", 649 | "align_content": null, 650 | "align_items": null, 651 | "align_self": null, 652 | "border": null, 653 | "bottom": null, 654 | "display": null, 655 | "flex": null, 656 | "flex_flow": null, 657 | "grid_area": null, 658 | "grid_auto_columns": null, 659 | "grid_auto_flow": null, 660 | "grid_auto_rows": null, 661 | "grid_column": null, 662 | "grid_gap": null, 663 | "grid_row": null, 664 | "grid_template_areas": null, 665 | "grid_template_columns": null, 666 | "grid_template_rows": null, 667 | "height": null, 668 | "justify_content": null, 669 | "justify_items": null, 670 | "left": null, 671 | "margin": null, 672 | "max_height": null, 673 | "max_width": null, 674 | "min_height": null, 675 | "min_width": null, 676 | "object_fit": null, 677 | "object_position": null, 678 | "order": null, 679 | "overflow": null, 680 | "overflow_x": null, 681 | "overflow_y": null, 682 | "padding": null, 683 | "right": null, 684 | "top": null, 685 | "visibility": null, 686 | "width": null 687 | } 688 | }, 689 | "6bffef1006cf4e5fb962296a9f436cff": { 690 | "model_module": "@jupyter-widgets/controls", 691 | "model_name": "DescriptionStyleModel", 692 | "model_module_version": "1.5.0", 693 | "state": { 694 | "_model_module": "@jupyter-widgets/controls", 695 | "_model_module_version": "1.5.0", 696 | "_model_name": "DescriptionStyleModel", 697 | "_view_count": null, 698 | "_view_module": "@jupyter-widgets/base", 699 | "_view_module_version": "1.2.0", 700 | "_view_name": "StyleView", 701 | "description_width": "" 702 | } 703 | }, 704 | "cd666a0c2b2e48b995cc54ca36fccdf3": { 705 | "model_module": "@jupyter-widgets/controls", 706 | "model_name": "HBoxModel", 707 | "model_module_version": "1.5.0", 708 | "state": { 709 | "_dom_classes": [], 710 | "_model_module": "@jupyter-widgets/controls", 711 | "_model_module_version": "1.5.0", 712 | "_model_name": "HBoxModel", 713 | "_view_count": null, 714 | "_view_module": "@jupyter-widgets/controls", 715 | "_view_module_version": "1.5.0", 716 | "_view_name": "HBoxView", 717 | "box_style": "", 718 | "children": [ 719 | "IPY_MODEL_e89b1d933be84497b573d2d898b48951", 720 | "IPY_MODEL_223f0c3e7d0243eea7889b07b4ef9b1f", 721 | "IPY_MODEL_c61a98a2d1434686a1359a2bdcbaf4aa" 722 | ], 723 | "layout": "IPY_MODEL_6a2def4fcd044b869970ca1925a775d8" 724 | } 725 | }, 726 | "e89b1d933be84497b573d2d898b48951": { 727 | "model_module": "@jupyter-widgets/controls", 728 | "model_name": "HTMLModel", 729 | "model_module_version": "1.5.0", 730 | "state": { 731 | "_dom_classes": [], 732 | "_model_module": "@jupyter-widgets/controls", 733 | "_model_module_version": "1.5.0", 734 | "_model_name": "HTMLModel", 735 | "_view_count": null, 736 | "_view_module": "@jupyter-widgets/controls", 737 | "_view_module_version": "1.5.0", 738 | "_view_name": "HTMLView", 739 | "description": "", 740 | "description_tooltip": null, 741 | "layout": "IPY_MODEL_1c2f4629a1454ab6a363069fb418a117", 742 | "placeholder": "​", 743 | "style": "IPY_MODEL_c63ecefd70b14c268e4cfb113b1dc4eb", 744 | "value": "Generating splits...: 100%" 745 | } 746 | }, 747 | "223f0c3e7d0243eea7889b07b4ef9b1f": { 748 | "model_module": "@jupyter-widgets/controls", 749 | "model_name": "FloatProgressModel", 750 | "model_module_version": "1.5.0", 751 | "state": { 752 | "_dom_classes": [], 753 | "_model_module": "@jupyter-widgets/controls", 754 | "_model_module_version": "1.5.0", 755 | "_model_name": "FloatProgressModel", 756 | "_view_count": null, 757 | "_view_module": "@jupyter-widgets/controls", 758 | "_view_module_version": "1.5.0", 759 | "_view_name": "ProgressView", 760 | "bar_style": "", 761 | "description": "", 762 | "description_tooltip": null, 763 | "layout": "IPY_MODEL_a336071f42d94b77aeac4f9d185ccc0c", 764 | "max": 3, 765 | "min": 0, 766 | "orientation": "horizontal", 767 | "style": "IPY_MODEL_0d7bd5d5cfba4aaabf64589d054b9d56", 768 | "value": 3 769 | } 770 | }, 771 | "c61a98a2d1434686a1359a2bdcbaf4aa": { 772 | "model_module": "@jupyter-widgets/controls", 773 | "model_name": "HTMLModel", 774 | "model_module_version": "1.5.0", 775 | "state": { 776 | "_dom_classes": [], 777 | "_model_module": "@jupyter-widgets/controls", 778 | "_model_module_version": "1.5.0", 779 | "_model_name": "HTMLModel", 780 | "_view_count": null, 781 | "_view_module": "@jupyter-widgets/controls", 782 | "_view_module_version": "1.5.0", 783 | "_view_name": "HTMLView", 784 | "description": "", 785 | "description_tooltip": null, 786 | "layout": "IPY_MODEL_77c25dd467f249f2a349af3261032aac", 787 | "placeholder": "​", 788 | "style": "IPY_MODEL_48db30e6f6e0407297c83738a5c6fa13", 789 | "value": " 3/3 [00:57<00:00, 18.77s/ splits]" 790 | } 791 | }, 792 | "6a2def4fcd044b869970ca1925a775d8": { 793 | "model_module": "@jupyter-widgets/base", 794 | "model_name": "LayoutModel", 795 | "model_module_version": "1.2.0", 796 | "state": { 797 | "_model_module": "@jupyter-widgets/base", 798 | "_model_module_version": "1.2.0", 799 | "_model_name": "LayoutModel", 800 | "_view_count": null, 801 | "_view_module": "@jupyter-widgets/base", 802 | "_view_module_version": "1.2.0", 803 | "_view_name": "LayoutView", 804 | "align_content": null, 805 | "align_items": null, 806 | "align_self": null, 807 | "border": null, 808 | "bottom": null, 809 | "display": null, 810 | "flex": null, 811 | "flex_flow": null, 812 | "grid_area": null, 813 | "grid_auto_columns": null, 814 | "grid_auto_flow": null, 815 | "grid_auto_rows": null, 816 | "grid_column": null, 817 | "grid_gap": null, 818 | "grid_row": null, 819 | "grid_template_areas": null, 820 | "grid_template_columns": null, 821 | "grid_template_rows": null, 822 | "height": null, 823 | "justify_content": null, 824 | "justify_items": null, 825 | "left": null, 826 | "margin": null, 827 | "max_height": null, 828 | "max_width": null, 829 | "min_height": null, 830 | "min_width": null, 831 | "object_fit": null, 832 | "object_position": null, 833 | "order": null, 834 | "overflow": null, 835 | "overflow_x": null, 836 | "overflow_y": null, 837 | "padding": null, 838 | "right": null, 839 | "top": null, 840 | "visibility": "hidden", 841 | "width": null 842 | } 843 | }, 844 | "1c2f4629a1454ab6a363069fb418a117": { 845 | "model_module": "@jupyter-widgets/base", 846 | "model_name": "LayoutModel", 847 | "model_module_version": "1.2.0", 848 | "state": { 849 | "_model_module": "@jupyter-widgets/base", 850 | "_model_module_version": "1.2.0", 851 | "_model_name": "LayoutModel", 852 | "_view_count": null, 853 | "_view_module": "@jupyter-widgets/base", 854 | "_view_module_version": "1.2.0", 855 | "_view_name": "LayoutView", 856 | "align_content": null, 857 | "align_items": null, 858 | "align_self": null, 859 | "border": null, 860 | "bottom": null, 861 | "display": null, 862 | "flex": null, 863 | "flex_flow": null, 864 | "grid_area": null, 865 | "grid_auto_columns": null, 866 | "grid_auto_flow": null, 867 | "grid_auto_rows": null, 868 | "grid_column": null, 869 | "grid_gap": null, 870 | "grid_row": null, 871 | "grid_template_areas": null, 872 | "grid_template_columns": null, 873 | "grid_template_rows": null, 874 | "height": null, 875 | "justify_content": null, 876 | "justify_items": null, 877 | "left": null, 878 | "margin": null, 879 | "max_height": null, 880 | "max_width": null, 881 | "min_height": null, 882 | "min_width": null, 883 | "object_fit": null, 884 | "object_position": null, 885 | "order": null, 886 | "overflow": null, 887 | "overflow_x": null, 888 | "overflow_y": null, 889 | "padding": null, 890 | "right": null, 891 | "top": null, 892 | "visibility": null, 893 | "width": null 894 | } 895 | }, 896 | "c63ecefd70b14c268e4cfb113b1dc4eb": { 897 | "model_module": "@jupyter-widgets/controls", 898 | "model_name": "DescriptionStyleModel", 899 | "model_module_version": "1.5.0", 900 | "state": { 901 | "_model_module": "@jupyter-widgets/controls", 902 | "_model_module_version": "1.5.0", 903 | "_model_name": "DescriptionStyleModel", 904 | "_view_count": null, 905 | "_view_module": "@jupyter-widgets/base", 906 | "_view_module_version": "1.2.0", 907 | "_view_name": "StyleView", 908 | "description_width": "" 909 | } 910 | }, 911 | "a336071f42d94b77aeac4f9d185ccc0c": { 912 | "model_module": "@jupyter-widgets/base", 913 | "model_name": "LayoutModel", 914 | "model_module_version": "1.2.0", 915 | "state": { 916 | "_model_module": "@jupyter-widgets/base", 917 | "_model_module_version": "1.2.0", 918 | "_model_name": "LayoutModel", 919 | "_view_count": null, 920 | "_view_module": "@jupyter-widgets/base", 921 | "_view_module_version": "1.2.0", 922 | "_view_name": "LayoutView", 923 | "align_content": null, 924 | "align_items": null, 925 | "align_self": null, 926 | "border": null, 927 | "bottom": null, 928 | "display": null, 929 | "flex": null, 930 | "flex_flow": null, 931 | "grid_area": null, 932 | "grid_auto_columns": null, 933 | "grid_auto_flow": null, 934 | "grid_auto_rows": null, 935 | "grid_column": null, 936 | "grid_gap": null, 937 | "grid_row": null, 938 | "grid_template_areas": null, 939 | "grid_template_columns": null, 940 | "grid_template_rows": null, 941 | "height": null, 942 | "justify_content": null, 943 | "justify_items": null, 944 | "left": null, 945 | "margin": null, 946 | "max_height": null, 947 | "max_width": null, 948 | "min_height": null, 949 | "min_width": null, 950 | "object_fit": null, 951 | "object_position": null, 952 | "order": null, 953 | "overflow": null, 954 | "overflow_x": null, 955 | "overflow_y": null, 956 | "padding": null, 957 | "right": null, 958 | "top": null, 959 | "visibility": null, 960 | "width": null 961 | } 962 | }, 963 | "0d7bd5d5cfba4aaabf64589d054b9d56": { 964 | "model_module": "@jupyter-widgets/controls", 965 | "model_name": "ProgressStyleModel", 966 | "model_module_version": "1.5.0", 967 | "state": { 968 | "_model_module": "@jupyter-widgets/controls", 969 | "_model_module_version": "1.5.0", 970 | "_model_name": "ProgressStyleModel", 971 | "_view_count": null, 972 | "_view_module": "@jupyter-widgets/base", 973 | "_view_module_version": "1.2.0", 974 | "_view_name": "StyleView", 975 | "bar_color": null, 976 | "description_width": "" 977 | } 978 | }, 979 | "77c25dd467f249f2a349af3261032aac": { 980 | "model_module": "@jupyter-widgets/base", 981 | "model_name": "LayoutModel", 982 | "model_module_version": "1.2.0", 983 | "state": { 984 | "_model_module": "@jupyter-widgets/base", 985 | "_model_module_version": "1.2.0", 986 | "_model_name": "LayoutModel", 987 | "_view_count": null, 988 | "_view_module": "@jupyter-widgets/base", 989 | "_view_module_version": "1.2.0", 990 | "_view_name": "LayoutView", 991 | "align_content": null, 992 | "align_items": null, 993 | "align_self": null, 994 | "border": null, 995 | "bottom": null, 996 | "display": null, 997 | "flex": null, 998 | "flex_flow": null, 999 | "grid_area": null, 1000 | "grid_auto_columns": null, 1001 | "grid_auto_flow": null, 1002 | "grid_auto_rows": null, 1003 | "grid_column": null, 1004 | "grid_gap": null, 1005 | "grid_row": null, 1006 | "grid_template_areas": null, 1007 | "grid_template_columns": null, 1008 | "grid_template_rows": null, 1009 | "height": null, 1010 | "justify_content": null, 1011 | "justify_items": null, 1012 | "left": null, 1013 | "margin": null, 1014 | "max_height": null, 1015 | "max_width": null, 1016 | "min_height": null, 1017 | "min_width": null, 1018 | "object_fit": null, 1019 | "object_position": null, 1020 | "order": null, 1021 | "overflow": null, 1022 | "overflow_x": null, 1023 | "overflow_y": null, 1024 | "padding": null, 1025 | "right": null, 1026 | "top": null, 1027 | "visibility": null, 1028 | "width": null 1029 | } 1030 | }, 1031 | "48db30e6f6e0407297c83738a5c6fa13": { 1032 | "model_module": "@jupyter-widgets/controls", 1033 | "model_name": "DescriptionStyleModel", 1034 | "model_module_version": "1.5.0", 1035 | "state": { 1036 | "_model_module": "@jupyter-widgets/controls", 1037 | "_model_module_version": "1.5.0", 1038 | "_model_name": "DescriptionStyleModel", 1039 | "_view_count": null, 1040 | "_view_module": "@jupyter-widgets/base", 1041 | "_view_module_version": "1.2.0", 1042 | "_view_name": "StyleView", 1043 | "description_width": "" 1044 | } 1045 | }, 1046 | "149bab124f4c4f44b59ef4d63a07f02d": { 1047 | "model_module": "@jupyter-widgets/controls", 1048 | "model_name": "HBoxModel", 1049 | "model_module_version": "1.5.0", 1050 | "state": { 1051 | "_dom_classes": [], 1052 | "_model_module": "@jupyter-widgets/controls", 1053 | "_model_module_version": "1.5.0", 1054 | "_model_name": "HBoxModel", 1055 | "_view_count": null, 1056 | "_view_module": "@jupyter-widgets/controls", 1057 | "_view_module_version": "1.5.0", 1058 | "_view_name": "HBoxView", 1059 | "box_style": "", 1060 | "children": [ 1061 | "IPY_MODEL_06efa4a5c87e463690f87c9b67e3f44a", 1062 | "IPY_MODEL_3630b3350dc548549631ceb2b46130b6", 1063 | "IPY_MODEL_4acc59eee6f74cfc80b831d0ef177bc6" 1064 | ], 1065 | "layout": "IPY_MODEL_09ccfba66baa407ca46b82e4238d1ed2" 1066 | } 1067 | }, 1068 | "06efa4a5c87e463690f87c9b67e3f44a": { 1069 | "model_module": "@jupyter-widgets/controls", 1070 | "model_name": "HTMLModel", 1071 | "model_module_version": "1.5.0", 1072 | "state": { 1073 | "_dom_classes": [], 1074 | "_model_module": "@jupyter-widgets/controls", 1075 | "_model_module_version": "1.5.0", 1076 | "_model_name": "HTMLModel", 1077 | "_view_count": null, 1078 | "_view_module": "@jupyter-widgets/controls", 1079 | "_view_module_version": "1.5.0", 1080 | "_view_name": "HTMLView", 1081 | "description": "", 1082 | "description_tooltip": null, 1083 | "layout": "IPY_MODEL_1c16f6e380f843ce8e59fff0d1cad88b", 1084 | "placeholder": "​", 1085 | "style": "IPY_MODEL_727d0a9eea1143fb97e37e5722e2adb5", 1086 | "value": "Generating train examples...: 100%" 1087 | } 1088 | }, 1089 | "3630b3350dc548549631ceb2b46130b6": { 1090 | "model_module": "@jupyter-widgets/controls", 1091 | "model_name": "FloatProgressModel", 1092 | "model_module_version": "1.5.0", 1093 | "state": { 1094 | "_dom_classes": [], 1095 | "_model_module": "@jupyter-widgets/controls", 1096 | "_model_module_version": "1.5.0", 1097 | "_model_name": "FloatProgressModel", 1098 | "_view_count": null, 1099 | "_view_module": "@jupyter-widgets/controls", 1100 | "_view_module_version": "1.5.0", 1101 | "_view_name": "ProgressView", 1102 | "bar_style": "", 1103 | "description": "", 1104 | "description_tooltip": null, 1105 | "layout": "IPY_MODEL_c333de07fea040338b250efe6de5bd15", 1106 | "max": 25000, 1107 | "min": 0, 1108 | "orientation": "horizontal", 1109 | "style": "IPY_MODEL_b43d812de0b24b25bd4bf12e33d642ad", 1110 | "value": 25000 1111 | } 1112 | }, 1113 | "4acc59eee6f74cfc80b831d0ef177bc6": { 1114 | "model_module": "@jupyter-widgets/controls", 1115 | "model_name": "HTMLModel", 1116 | "model_module_version": "1.5.0", 1117 | "state": { 1118 | "_dom_classes": [], 1119 | "_model_module": "@jupyter-widgets/controls", 1120 | "_model_module_version": "1.5.0", 1121 | "_model_name": "HTMLModel", 1122 | "_view_count": null, 1123 | "_view_module": "@jupyter-widgets/controls", 1124 | "_view_module_version": "1.5.0", 1125 | "_view_name": "HTMLView", 1126 | "description": "", 1127 | "description_tooltip": null, 1128 | "layout": "IPY_MODEL_21fed1f71da44f21b2fb0814b4de58c5", 1129 | "placeholder": "​", 1130 | "style": "IPY_MODEL_593709e37e36407da8612ad3f101c0be", 1131 | "value": " 24941/25000 [00:13<00:00, 2307.16 examples/s]" 1132 | } 1133 | }, 1134 | "09ccfba66baa407ca46b82e4238d1ed2": { 1135 | "model_module": "@jupyter-widgets/base", 1136 | "model_name": "LayoutModel", 1137 | "model_module_version": "1.2.0", 1138 | "state": { 1139 | "_model_module": "@jupyter-widgets/base", 1140 | "_model_module_version": "1.2.0", 1141 | "_model_name": "LayoutModel", 1142 | "_view_count": null, 1143 | "_view_module": "@jupyter-widgets/base", 1144 | "_view_module_version": "1.2.0", 1145 | "_view_name": "LayoutView", 1146 | "align_content": null, 1147 | "align_items": null, 1148 | "align_self": null, 1149 | "border": null, 1150 | "bottom": null, 1151 | "display": null, 1152 | "flex": null, 1153 | "flex_flow": null, 1154 | "grid_area": null, 1155 | "grid_auto_columns": null, 1156 | "grid_auto_flow": null, 1157 | "grid_auto_rows": null, 1158 | "grid_column": null, 1159 | "grid_gap": null, 1160 | "grid_row": null, 1161 | "grid_template_areas": null, 1162 | "grid_template_columns": null, 1163 | "grid_template_rows": null, 1164 | "height": null, 1165 | "justify_content": null, 1166 | "justify_items": null, 1167 | "left": null, 1168 | "margin": null, 1169 | "max_height": null, 1170 | "max_width": null, 1171 | "min_height": null, 1172 | "min_width": null, 1173 | "object_fit": null, 1174 | "object_position": null, 1175 | "order": null, 1176 | "overflow": null, 1177 | "overflow_x": null, 1178 | "overflow_y": null, 1179 | "padding": null, 1180 | "right": null, 1181 | "top": null, 1182 | "visibility": "hidden", 1183 | "width": null 1184 | } 1185 | }, 1186 | "1c16f6e380f843ce8e59fff0d1cad88b": { 1187 | "model_module": "@jupyter-widgets/base", 1188 | "model_name": "LayoutModel", 1189 | "model_module_version": "1.2.0", 1190 | "state": { 1191 | "_model_module": "@jupyter-widgets/base", 1192 | "_model_module_version": "1.2.0", 1193 | "_model_name": "LayoutModel", 1194 | "_view_count": null, 1195 | "_view_module": "@jupyter-widgets/base", 1196 | "_view_module_version": "1.2.0", 1197 | "_view_name": "LayoutView", 1198 | "align_content": null, 1199 | "align_items": null, 1200 | "align_self": null, 1201 | "border": null, 1202 | "bottom": null, 1203 | "display": null, 1204 | "flex": null, 1205 | "flex_flow": null, 1206 | "grid_area": null, 1207 | "grid_auto_columns": null, 1208 | "grid_auto_flow": null, 1209 | "grid_auto_rows": null, 1210 | "grid_column": null, 1211 | "grid_gap": null, 1212 | "grid_row": null, 1213 | "grid_template_areas": null, 1214 | "grid_template_columns": null, 1215 | "grid_template_rows": null, 1216 | "height": null, 1217 | "justify_content": null, 1218 | "justify_items": null, 1219 | "left": null, 1220 | "margin": null, 1221 | "max_height": null, 1222 | "max_width": null, 1223 | "min_height": null, 1224 | "min_width": null, 1225 | "object_fit": null, 1226 | "object_position": null, 1227 | "order": null, 1228 | "overflow": null, 1229 | "overflow_x": null, 1230 | "overflow_y": null, 1231 | "padding": null, 1232 | "right": null, 1233 | "top": null, 1234 | "visibility": null, 1235 | "width": null 1236 | } 1237 | }, 1238 | "727d0a9eea1143fb97e37e5722e2adb5": { 1239 | "model_module": "@jupyter-widgets/controls", 1240 | "model_name": "DescriptionStyleModel", 1241 | "model_module_version": "1.5.0", 1242 | "state": { 1243 | "_model_module": "@jupyter-widgets/controls", 1244 | "_model_module_version": "1.5.0", 1245 | "_model_name": "DescriptionStyleModel", 1246 | "_view_count": null, 1247 | "_view_module": "@jupyter-widgets/base", 1248 | "_view_module_version": "1.2.0", 1249 | "_view_name": "StyleView", 1250 | "description_width": "" 1251 | } 1252 | }, 1253 | "c333de07fea040338b250efe6de5bd15": { 1254 | "model_module": "@jupyter-widgets/base", 1255 | "model_name": "LayoutModel", 1256 | "model_module_version": "1.2.0", 1257 | "state": { 1258 | "_model_module": "@jupyter-widgets/base", 1259 | "_model_module_version": "1.2.0", 1260 | "_model_name": "LayoutModel", 1261 | "_view_count": null, 1262 | "_view_module": "@jupyter-widgets/base", 1263 | "_view_module_version": "1.2.0", 1264 | "_view_name": "LayoutView", 1265 | "align_content": null, 1266 | "align_items": null, 1267 | "align_self": null, 1268 | "border": null, 1269 | "bottom": null, 1270 | "display": null, 1271 | "flex": null, 1272 | "flex_flow": null, 1273 | "grid_area": null, 1274 | "grid_auto_columns": null, 1275 | "grid_auto_flow": null, 1276 | "grid_auto_rows": null, 1277 | "grid_column": null, 1278 | "grid_gap": null, 1279 | "grid_row": null, 1280 | "grid_template_areas": null, 1281 | "grid_template_columns": null, 1282 | "grid_template_rows": null, 1283 | "height": null, 1284 | "justify_content": null, 1285 | "justify_items": null, 1286 | "left": null, 1287 | "margin": null, 1288 | "max_height": null, 1289 | "max_width": null, 1290 | "min_height": null, 1291 | "min_width": null, 1292 | "object_fit": null, 1293 | "object_position": null, 1294 | "order": null, 1295 | "overflow": null, 1296 | "overflow_x": null, 1297 | "overflow_y": null, 1298 | "padding": null, 1299 | "right": null, 1300 | "top": null, 1301 | "visibility": null, 1302 | "width": null 1303 | } 1304 | }, 1305 | "b43d812de0b24b25bd4bf12e33d642ad": { 1306 | "model_module": "@jupyter-widgets/controls", 1307 | "model_name": "ProgressStyleModel", 1308 | "model_module_version": "1.5.0", 1309 | "state": { 1310 | "_model_module": "@jupyter-widgets/controls", 1311 | "_model_module_version": "1.5.0", 1312 | "_model_name": "ProgressStyleModel", 1313 | "_view_count": null, 1314 | "_view_module": "@jupyter-widgets/base", 1315 | "_view_module_version": "1.2.0", 1316 | "_view_name": "StyleView", 1317 | "bar_color": null, 1318 | "description_width": "" 1319 | } 1320 | }, 1321 | "21fed1f71da44f21b2fb0814b4de58c5": { 1322 | "model_module": "@jupyter-widgets/base", 1323 | "model_name": "LayoutModel", 1324 | "model_module_version": "1.2.0", 1325 | "state": { 1326 | "_model_module": "@jupyter-widgets/base", 1327 | "_model_module_version": "1.2.0", 1328 | "_model_name": "LayoutModel", 1329 | "_view_count": null, 1330 | "_view_module": "@jupyter-widgets/base", 1331 | "_view_module_version": "1.2.0", 1332 | "_view_name": "LayoutView", 1333 | "align_content": null, 1334 | "align_items": null, 1335 | "align_self": null, 1336 | "border": null, 1337 | "bottom": null, 1338 | "display": null, 1339 | "flex": null, 1340 | "flex_flow": null, 1341 | "grid_area": null, 1342 | "grid_auto_columns": null, 1343 | "grid_auto_flow": null, 1344 | "grid_auto_rows": null, 1345 | "grid_column": null, 1346 | "grid_gap": null, 1347 | "grid_row": null, 1348 | "grid_template_areas": null, 1349 | "grid_template_columns": null, 1350 | "grid_template_rows": null, 1351 | "height": null, 1352 | "justify_content": null, 1353 | "justify_items": null, 1354 | "left": null, 1355 | "margin": null, 1356 | "max_height": null, 1357 | "max_width": null, 1358 | "min_height": null, 1359 | "min_width": null, 1360 | "object_fit": null, 1361 | "object_position": null, 1362 | "order": null, 1363 | "overflow": null, 1364 | "overflow_x": null, 1365 | "overflow_y": null, 1366 | "padding": null, 1367 | "right": null, 1368 | "top": null, 1369 | "visibility": null, 1370 | "width": null 1371 | } 1372 | }, 1373 | "593709e37e36407da8612ad3f101c0be": { 1374 | "model_module": "@jupyter-widgets/controls", 1375 | "model_name": "DescriptionStyleModel", 1376 | "model_module_version": "1.5.0", 1377 | "state": { 1378 | "_model_module": "@jupyter-widgets/controls", 1379 | "_model_module_version": "1.5.0", 1380 | "_model_name": "DescriptionStyleModel", 1381 | "_view_count": null, 1382 | "_view_module": "@jupyter-widgets/base", 1383 | "_view_module_version": "1.2.0", 1384 | "_view_name": "StyleView", 1385 | "description_width": "" 1386 | } 1387 | }, 1388 | "40a1e79a8fac4ff4ba1c8f186ac47340": { 1389 | "model_module": "@jupyter-widgets/controls", 1390 | "model_name": "HBoxModel", 1391 | "model_module_version": "1.5.0", 1392 | "state": { 1393 | "_dom_classes": [], 1394 | "_model_module": "@jupyter-widgets/controls", 1395 | "_model_module_version": "1.5.0", 1396 | "_model_name": "HBoxModel", 1397 | "_view_count": null, 1398 | "_view_module": "@jupyter-widgets/controls", 1399 | "_view_module_version": "1.5.0", 1400 | "_view_name": "HBoxView", 1401 | "box_style": "", 1402 | "children": [ 1403 | "IPY_MODEL_a6d2b1e5f7ff46a8a18a37f2a1a0f526", 1404 | "IPY_MODEL_85b941ee509f411b8e3bd978b3d1cff5", 1405 | "IPY_MODEL_2c800664c8d043db892e40e07fce2f96" 1406 | ], 1407 | "layout": "IPY_MODEL_317410e8927a49ba8ba968e32269a08f" 1408 | } 1409 | }, 1410 | "a6d2b1e5f7ff46a8a18a37f2a1a0f526": { 1411 | "model_module": "@jupyter-widgets/controls", 1412 | "model_name": "HTMLModel", 1413 | "model_module_version": "1.5.0", 1414 | "state": { 1415 | "_dom_classes": [], 1416 | "_model_module": "@jupyter-widgets/controls", 1417 | "_model_module_version": "1.5.0", 1418 | "_model_name": "HTMLModel", 1419 | "_view_count": null, 1420 | "_view_module": "@jupyter-widgets/controls", 1421 | "_view_module_version": "1.5.0", 1422 | "_view_name": "HTMLView", 1423 | "description": "", 1424 | "description_tooltip": null, 1425 | "layout": "IPY_MODEL_3fb33e76f8104b04aa18dfc464b72a1b", 1426 | "placeholder": "​", 1427 | "style": "IPY_MODEL_d6315fd8422541a8bfa04cbabb976e94", 1428 | "value": "Shuffling /root/tensorflow_datasets/imdb_reviews/plain_text/1.0.0.incompleteSAD0T3/imdb_reviews-train.tfrecord*...: 70%" 1429 | } 1430 | }, 1431 | "85b941ee509f411b8e3bd978b3d1cff5": { 1432 | "model_module": "@jupyter-widgets/controls", 1433 | "model_name": "FloatProgressModel", 1434 | "model_module_version": "1.5.0", 1435 | "state": { 1436 | "_dom_classes": [], 1437 | "_model_module": "@jupyter-widgets/controls", 1438 | "_model_module_version": "1.5.0", 1439 | "_model_name": "FloatProgressModel", 1440 | "_view_count": null, 1441 | "_view_module": "@jupyter-widgets/controls", 1442 | "_view_module_version": "1.5.0", 1443 | "_view_name": "ProgressView", 1444 | "bar_style": "", 1445 | "description": "", 1446 | "description_tooltip": null, 1447 | "layout": "IPY_MODEL_58c7d4ffceb44332a3b362737e6a3554", 1448 | "max": 25000, 1449 | "min": 0, 1450 | "orientation": "horizontal", 1451 | "style": "IPY_MODEL_5212b25a72474677b638478932d87425", 1452 | "value": 25000 1453 | } 1454 | }, 1455 | "2c800664c8d043db892e40e07fce2f96": { 1456 | "model_module": "@jupyter-widgets/controls", 1457 | "model_name": "HTMLModel", 1458 | "model_module_version": "1.5.0", 1459 | "state": { 1460 | "_dom_classes": [], 1461 | "_model_module": "@jupyter-widgets/controls", 1462 | "_model_module_version": "1.5.0", 1463 | "_model_name": "HTMLModel", 1464 | "_view_count": null, 1465 | "_view_module": "@jupyter-widgets/controls", 1466 | "_view_module_version": "1.5.0", 1467 | "_view_name": "HTMLView", 1468 | "description": "", 1469 | "description_tooltip": null, 1470 | "layout": "IPY_MODEL_0d891a5143fa42bfb9b106391eb91939", 1471 | "placeholder": "​", 1472 | "style": "IPY_MODEL_ed5f5d0280354ac9961fd05488548091", 1473 | "value": " 17517/25000 [00:00<00:00, 46400.19 examples/s]" 1474 | } 1475 | }, 1476 | "317410e8927a49ba8ba968e32269a08f": { 1477 | "model_module": "@jupyter-widgets/base", 1478 | "model_name": "LayoutModel", 1479 | "model_module_version": "1.2.0", 1480 | "state": { 1481 | "_model_module": "@jupyter-widgets/base", 1482 | "_model_module_version": "1.2.0", 1483 | "_model_name": "LayoutModel", 1484 | "_view_count": null, 1485 | "_view_module": "@jupyter-widgets/base", 1486 | "_view_module_version": "1.2.0", 1487 | "_view_name": "LayoutView", 1488 | "align_content": null, 1489 | "align_items": null, 1490 | "align_self": null, 1491 | "border": null, 1492 | "bottom": null, 1493 | "display": null, 1494 | "flex": null, 1495 | "flex_flow": null, 1496 | "grid_area": null, 1497 | "grid_auto_columns": null, 1498 | "grid_auto_flow": null, 1499 | "grid_auto_rows": null, 1500 | "grid_column": null, 1501 | "grid_gap": null, 1502 | "grid_row": null, 1503 | "grid_template_areas": null, 1504 | "grid_template_columns": null, 1505 | "grid_template_rows": null, 1506 | "height": null, 1507 | "justify_content": null, 1508 | "justify_items": null, 1509 | "left": null, 1510 | "margin": null, 1511 | "max_height": null, 1512 | "max_width": null, 1513 | "min_height": null, 1514 | "min_width": null, 1515 | "object_fit": null, 1516 | "object_position": null, 1517 | "order": null, 1518 | "overflow": null, 1519 | "overflow_x": null, 1520 | "overflow_y": null, 1521 | "padding": null, 1522 | "right": null, 1523 | "top": null, 1524 | "visibility": "hidden", 1525 | "width": null 1526 | } 1527 | }, 1528 | "3fb33e76f8104b04aa18dfc464b72a1b": { 1529 | "model_module": "@jupyter-widgets/base", 1530 | "model_name": "LayoutModel", 1531 | "model_module_version": "1.2.0", 1532 | "state": { 1533 | "_model_module": "@jupyter-widgets/base", 1534 | "_model_module_version": "1.2.0", 1535 | "_model_name": "LayoutModel", 1536 | "_view_count": null, 1537 | "_view_module": "@jupyter-widgets/base", 1538 | "_view_module_version": "1.2.0", 1539 | "_view_name": "LayoutView", 1540 | "align_content": null, 1541 | "align_items": null, 1542 | "align_self": null, 1543 | "border": null, 1544 | "bottom": null, 1545 | "display": null, 1546 | "flex": null, 1547 | "flex_flow": null, 1548 | "grid_area": null, 1549 | "grid_auto_columns": null, 1550 | "grid_auto_flow": null, 1551 | "grid_auto_rows": null, 1552 | "grid_column": null, 1553 | "grid_gap": null, 1554 | "grid_row": null, 1555 | "grid_template_areas": null, 1556 | "grid_template_columns": null, 1557 | "grid_template_rows": null, 1558 | "height": null, 1559 | "justify_content": null, 1560 | "justify_items": null, 1561 | "left": null, 1562 | "margin": null, 1563 | "max_height": null, 1564 | "max_width": null, 1565 | "min_height": null, 1566 | "min_width": null, 1567 | "object_fit": null, 1568 | "object_position": null, 1569 | "order": null, 1570 | "overflow": null, 1571 | "overflow_x": null, 1572 | "overflow_y": null, 1573 | "padding": null, 1574 | "right": null, 1575 | "top": null, 1576 | "visibility": null, 1577 | "width": null 1578 | } 1579 | }, 1580 | "d6315fd8422541a8bfa04cbabb976e94": { 1581 | "model_module": "@jupyter-widgets/controls", 1582 | "model_name": "DescriptionStyleModel", 1583 | "model_module_version": "1.5.0", 1584 | "state": { 1585 | "_model_module": "@jupyter-widgets/controls", 1586 | "_model_module_version": "1.5.0", 1587 | "_model_name": "DescriptionStyleModel", 1588 | "_view_count": null, 1589 | "_view_module": "@jupyter-widgets/base", 1590 | "_view_module_version": "1.2.0", 1591 | "_view_name": "StyleView", 1592 | "description_width": "" 1593 | } 1594 | }, 1595 | "58c7d4ffceb44332a3b362737e6a3554": { 1596 | "model_module": "@jupyter-widgets/base", 1597 | "model_name": "LayoutModel", 1598 | "model_module_version": "1.2.0", 1599 | "state": { 1600 | "_model_module": "@jupyter-widgets/base", 1601 | "_model_module_version": "1.2.0", 1602 | "_model_name": "LayoutModel", 1603 | "_view_count": null, 1604 | "_view_module": "@jupyter-widgets/base", 1605 | "_view_module_version": "1.2.0", 1606 | "_view_name": "LayoutView", 1607 | "align_content": null, 1608 | "align_items": null, 1609 | "align_self": null, 1610 | "border": null, 1611 | "bottom": null, 1612 | "display": null, 1613 | "flex": null, 1614 | "flex_flow": null, 1615 | "grid_area": null, 1616 | "grid_auto_columns": null, 1617 | "grid_auto_flow": null, 1618 | "grid_auto_rows": null, 1619 | "grid_column": null, 1620 | "grid_gap": null, 1621 | "grid_row": null, 1622 | "grid_template_areas": null, 1623 | "grid_template_columns": null, 1624 | "grid_template_rows": null, 1625 | "height": null, 1626 | "justify_content": null, 1627 | "justify_items": null, 1628 | "left": null, 1629 | "margin": null, 1630 | "max_height": null, 1631 | "max_width": null, 1632 | "min_height": null, 1633 | "min_width": null, 1634 | "object_fit": null, 1635 | "object_position": null, 1636 | "order": null, 1637 | "overflow": null, 1638 | "overflow_x": null, 1639 | "overflow_y": null, 1640 | "padding": null, 1641 | "right": null, 1642 | "top": null, 1643 | "visibility": null, 1644 | "width": null 1645 | } 1646 | }, 1647 | "5212b25a72474677b638478932d87425": { 1648 | "model_module": "@jupyter-widgets/controls", 1649 | "model_name": "ProgressStyleModel", 1650 | "model_module_version": "1.5.0", 1651 | "state": { 1652 | "_model_module": "@jupyter-widgets/controls", 1653 | "_model_module_version": "1.5.0", 1654 | "_model_name": "ProgressStyleModel", 1655 | "_view_count": null, 1656 | "_view_module": "@jupyter-widgets/base", 1657 | "_view_module_version": "1.2.0", 1658 | "_view_name": "StyleView", 1659 | "bar_color": null, 1660 | "description_width": "" 1661 | } 1662 | }, 1663 | "0d891a5143fa42bfb9b106391eb91939": { 1664 | "model_module": "@jupyter-widgets/base", 1665 | "model_name": "LayoutModel", 1666 | "model_module_version": "1.2.0", 1667 | "state": { 1668 | "_model_module": "@jupyter-widgets/base", 1669 | "_model_module_version": "1.2.0", 1670 | "_model_name": "LayoutModel", 1671 | "_view_count": null, 1672 | "_view_module": "@jupyter-widgets/base", 1673 | "_view_module_version": "1.2.0", 1674 | "_view_name": "LayoutView", 1675 | "align_content": null, 1676 | "align_items": null, 1677 | "align_self": null, 1678 | "border": null, 1679 | "bottom": null, 1680 | "display": null, 1681 | "flex": null, 1682 | "flex_flow": null, 1683 | "grid_area": null, 1684 | "grid_auto_columns": null, 1685 | "grid_auto_flow": null, 1686 | "grid_auto_rows": null, 1687 | "grid_column": null, 1688 | "grid_gap": null, 1689 | "grid_row": null, 1690 | "grid_template_areas": null, 1691 | "grid_template_columns": null, 1692 | "grid_template_rows": null, 1693 | "height": null, 1694 | "justify_content": null, 1695 | "justify_items": null, 1696 | "left": null, 1697 | "margin": null, 1698 | "max_height": null, 1699 | "max_width": null, 1700 | "min_height": null, 1701 | "min_width": null, 1702 | "object_fit": null, 1703 | "object_position": null, 1704 | "order": null, 1705 | "overflow": null, 1706 | "overflow_x": null, 1707 | "overflow_y": null, 1708 | "padding": null, 1709 | "right": null, 1710 | "top": null, 1711 | "visibility": null, 1712 | "width": null 1713 | } 1714 | }, 1715 | "ed5f5d0280354ac9961fd05488548091": { 1716 | "model_module": "@jupyter-widgets/controls", 1717 | "model_name": "DescriptionStyleModel", 1718 | "model_module_version": "1.5.0", 1719 | "state": { 1720 | "_model_module": "@jupyter-widgets/controls", 1721 | "_model_module_version": "1.5.0", 1722 | "_model_name": "DescriptionStyleModel", 1723 | "_view_count": null, 1724 | "_view_module": "@jupyter-widgets/base", 1725 | "_view_module_version": "1.2.0", 1726 | "_view_name": "StyleView", 1727 | "description_width": "" 1728 | } 1729 | }, 1730 | "7cd65bceb9cb4944aeb30c186a9bc90e": { 1731 | "model_module": "@jupyter-widgets/controls", 1732 | "model_name": "HBoxModel", 1733 | "model_module_version": "1.5.0", 1734 | "state": { 1735 | "_dom_classes": [], 1736 | "_model_module": "@jupyter-widgets/controls", 1737 | "_model_module_version": "1.5.0", 1738 | "_model_name": "HBoxModel", 1739 | "_view_count": null, 1740 | "_view_module": "@jupyter-widgets/controls", 1741 | "_view_module_version": "1.5.0", 1742 | "_view_name": "HBoxView", 1743 | "box_style": "", 1744 | "children": [ 1745 | "IPY_MODEL_0dc894352c154805ba2d3596f43c9e4f", 1746 | "IPY_MODEL_ef3e7f7b90d24a39a535963ca42ca0a3", 1747 | "IPY_MODEL_d8a83f84c41d436d9f6c6866527cf7c0" 1748 | ], 1749 | "layout": "IPY_MODEL_5e9a252ecc7041afafeb4527f214b2fd" 1750 | } 1751 | }, 1752 | "0dc894352c154805ba2d3596f43c9e4f": { 1753 | "model_module": "@jupyter-widgets/controls", 1754 | "model_name": "HTMLModel", 1755 | "model_module_version": "1.5.0", 1756 | "state": { 1757 | "_dom_classes": [], 1758 | "_model_module": "@jupyter-widgets/controls", 1759 | "_model_module_version": "1.5.0", 1760 | "_model_name": "HTMLModel", 1761 | "_view_count": null, 1762 | "_view_module": "@jupyter-widgets/controls", 1763 | "_view_module_version": "1.5.0", 1764 | "_view_name": "HTMLView", 1765 | "description": "", 1766 | "description_tooltip": null, 1767 | "layout": "IPY_MODEL_a78402b082574cbbbeeeca72584496ec", 1768 | "placeholder": "​", 1769 | "style": "IPY_MODEL_01688391d2ea438db0388c43408de598", 1770 | "value": "Generating test examples...: 99%" 1771 | } 1772 | }, 1773 | "ef3e7f7b90d24a39a535963ca42ca0a3": { 1774 | "model_module": "@jupyter-widgets/controls", 1775 | "model_name": "FloatProgressModel", 1776 | "model_module_version": "1.5.0", 1777 | "state": { 1778 | "_dom_classes": [], 1779 | "_model_module": "@jupyter-widgets/controls", 1780 | "_model_module_version": "1.5.0", 1781 | "_model_name": "FloatProgressModel", 1782 | "_view_count": null, 1783 | "_view_module": "@jupyter-widgets/controls", 1784 | "_view_module_version": "1.5.0", 1785 | "_view_name": "ProgressView", 1786 | "bar_style": "", 1787 | "description": "", 1788 | "description_tooltip": null, 1789 | "layout": "IPY_MODEL_1186620e299d45819962a4aadc384935", 1790 | "max": 25000, 1791 | "min": 0, 1792 | "orientation": "horizontal", 1793 | "style": "IPY_MODEL_31f86ffde7e84dfea6ef496a07a8bac7", 1794 | "value": 25000 1795 | } 1796 | }, 1797 | "d8a83f84c41d436d9f6c6866527cf7c0": { 1798 | "model_module": "@jupyter-widgets/controls", 1799 | "model_name": "HTMLModel", 1800 | "model_module_version": "1.5.0", 1801 | "state": { 1802 | "_dom_classes": [], 1803 | "_model_module": "@jupyter-widgets/controls", 1804 | "_model_module_version": "1.5.0", 1805 | "_model_name": "HTMLModel", 1806 | "_view_count": null, 1807 | "_view_module": "@jupyter-widgets/controls", 1808 | "_view_module_version": "1.5.0", 1809 | "_view_name": "HTMLView", 1810 | "description": "", 1811 | "description_tooltip": null, 1812 | "layout": "IPY_MODEL_52eb4b36d34c4cac84395dc3d7a2e531", 1813 | "placeholder": "​", 1814 | "style": "IPY_MODEL_a0f11fe12e104dd284054dc9e11c372d", 1815 | "value": " 24770/25000 [00:07<00:00, 2729.13 examples/s]" 1816 | } 1817 | }, 1818 | "5e9a252ecc7041afafeb4527f214b2fd": { 1819 | "model_module": "@jupyter-widgets/base", 1820 | "model_name": "LayoutModel", 1821 | "model_module_version": "1.2.0", 1822 | "state": { 1823 | "_model_module": "@jupyter-widgets/base", 1824 | "_model_module_version": "1.2.0", 1825 | "_model_name": "LayoutModel", 1826 | "_view_count": null, 1827 | "_view_module": "@jupyter-widgets/base", 1828 | "_view_module_version": "1.2.0", 1829 | "_view_name": "LayoutView", 1830 | "align_content": null, 1831 | "align_items": null, 1832 | "align_self": null, 1833 | "border": null, 1834 | "bottom": null, 1835 | "display": null, 1836 | "flex": null, 1837 | "flex_flow": null, 1838 | "grid_area": null, 1839 | "grid_auto_columns": null, 1840 | "grid_auto_flow": null, 1841 | "grid_auto_rows": null, 1842 | "grid_column": null, 1843 | "grid_gap": null, 1844 | "grid_row": null, 1845 | "grid_template_areas": null, 1846 | "grid_template_columns": null, 1847 | "grid_template_rows": null, 1848 | "height": null, 1849 | "justify_content": null, 1850 | "justify_items": null, 1851 | "left": null, 1852 | "margin": null, 1853 | "max_height": null, 1854 | "max_width": null, 1855 | "min_height": null, 1856 | "min_width": null, 1857 | "object_fit": null, 1858 | "object_position": null, 1859 | "order": null, 1860 | "overflow": null, 1861 | "overflow_x": null, 1862 | "overflow_y": null, 1863 | "padding": null, 1864 | "right": null, 1865 | "top": null, 1866 | "visibility": "hidden", 1867 | "width": null 1868 | } 1869 | }, 1870 | "a78402b082574cbbbeeeca72584496ec": { 1871 | "model_module": "@jupyter-widgets/base", 1872 | "model_name": "LayoutModel", 1873 | "model_module_version": "1.2.0", 1874 | "state": { 1875 | "_model_module": "@jupyter-widgets/base", 1876 | "_model_module_version": "1.2.0", 1877 | "_model_name": "LayoutModel", 1878 | "_view_count": null, 1879 | "_view_module": "@jupyter-widgets/base", 1880 | "_view_module_version": "1.2.0", 1881 | "_view_name": "LayoutView", 1882 | "align_content": null, 1883 | "align_items": null, 1884 | "align_self": null, 1885 | "border": null, 1886 | "bottom": null, 1887 | "display": null, 1888 | "flex": null, 1889 | "flex_flow": null, 1890 | "grid_area": null, 1891 | "grid_auto_columns": null, 1892 | "grid_auto_flow": null, 1893 | "grid_auto_rows": null, 1894 | "grid_column": null, 1895 | "grid_gap": null, 1896 | "grid_row": null, 1897 | "grid_template_areas": null, 1898 | "grid_template_columns": null, 1899 | "grid_template_rows": null, 1900 | "height": null, 1901 | "justify_content": null, 1902 | "justify_items": null, 1903 | "left": null, 1904 | "margin": null, 1905 | "max_height": null, 1906 | "max_width": null, 1907 | "min_height": null, 1908 | "min_width": null, 1909 | "object_fit": null, 1910 | "object_position": null, 1911 | "order": null, 1912 | "overflow": null, 1913 | "overflow_x": null, 1914 | "overflow_y": null, 1915 | "padding": null, 1916 | "right": null, 1917 | "top": null, 1918 | "visibility": null, 1919 | "width": null 1920 | } 1921 | }, 1922 | "01688391d2ea438db0388c43408de598": { 1923 | "model_module": "@jupyter-widgets/controls", 1924 | "model_name": "DescriptionStyleModel", 1925 | "model_module_version": "1.5.0", 1926 | "state": { 1927 | "_model_module": "@jupyter-widgets/controls", 1928 | "_model_module_version": "1.5.0", 1929 | "_model_name": "DescriptionStyleModel", 1930 | "_view_count": null, 1931 | "_view_module": "@jupyter-widgets/base", 1932 | "_view_module_version": "1.2.0", 1933 | "_view_name": "StyleView", 1934 | "description_width": "" 1935 | } 1936 | }, 1937 | "1186620e299d45819962a4aadc384935": { 1938 | "model_module": "@jupyter-widgets/base", 1939 | "model_name": "LayoutModel", 1940 | "model_module_version": "1.2.0", 1941 | "state": { 1942 | "_model_module": "@jupyter-widgets/base", 1943 | "_model_module_version": "1.2.0", 1944 | "_model_name": "LayoutModel", 1945 | "_view_count": null, 1946 | "_view_module": "@jupyter-widgets/base", 1947 | "_view_module_version": "1.2.0", 1948 | "_view_name": "LayoutView", 1949 | "align_content": null, 1950 | "align_items": null, 1951 | "align_self": null, 1952 | "border": null, 1953 | "bottom": null, 1954 | "display": null, 1955 | "flex": null, 1956 | "flex_flow": null, 1957 | "grid_area": null, 1958 | "grid_auto_columns": null, 1959 | "grid_auto_flow": null, 1960 | "grid_auto_rows": null, 1961 | "grid_column": null, 1962 | "grid_gap": null, 1963 | "grid_row": null, 1964 | "grid_template_areas": null, 1965 | "grid_template_columns": null, 1966 | "grid_template_rows": null, 1967 | "height": null, 1968 | "justify_content": null, 1969 | "justify_items": null, 1970 | "left": null, 1971 | "margin": null, 1972 | "max_height": null, 1973 | "max_width": null, 1974 | "min_height": null, 1975 | "min_width": null, 1976 | "object_fit": null, 1977 | "object_position": null, 1978 | "order": null, 1979 | "overflow": null, 1980 | "overflow_x": null, 1981 | "overflow_y": null, 1982 | "padding": null, 1983 | "right": null, 1984 | "top": null, 1985 | "visibility": null, 1986 | "width": null 1987 | } 1988 | }, 1989 | "31f86ffde7e84dfea6ef496a07a8bac7": { 1990 | "model_module": "@jupyter-widgets/controls", 1991 | "model_name": "ProgressStyleModel", 1992 | "model_module_version": "1.5.0", 1993 | "state": { 1994 | "_model_module": "@jupyter-widgets/controls", 1995 | "_model_module_version": "1.5.0", 1996 | "_model_name": "ProgressStyleModel", 1997 | "_view_count": null, 1998 | "_view_module": "@jupyter-widgets/base", 1999 | "_view_module_version": "1.2.0", 2000 | "_view_name": "StyleView", 2001 | "bar_color": null, 2002 | "description_width": "" 2003 | } 2004 | }, 2005 | "52eb4b36d34c4cac84395dc3d7a2e531": { 2006 | "model_module": "@jupyter-widgets/base", 2007 | "model_name": "LayoutModel", 2008 | "model_module_version": "1.2.0", 2009 | "state": { 2010 | "_model_module": "@jupyter-widgets/base", 2011 | "_model_module_version": "1.2.0", 2012 | "_model_name": "LayoutModel", 2013 | "_view_count": null, 2014 | "_view_module": "@jupyter-widgets/base", 2015 | "_view_module_version": "1.2.0", 2016 | "_view_name": "LayoutView", 2017 | "align_content": null, 2018 | "align_items": null, 2019 | "align_self": null, 2020 | "border": null, 2021 | "bottom": null, 2022 | "display": null, 2023 | "flex": null, 2024 | "flex_flow": null, 2025 | "grid_area": null, 2026 | "grid_auto_columns": null, 2027 | "grid_auto_flow": null, 2028 | "grid_auto_rows": null, 2029 | "grid_column": null, 2030 | "grid_gap": null, 2031 | "grid_row": null, 2032 | "grid_template_areas": null, 2033 | "grid_template_columns": null, 2034 | "grid_template_rows": null, 2035 | "height": null, 2036 | "justify_content": null, 2037 | "justify_items": null, 2038 | "left": null, 2039 | "margin": null, 2040 | "max_height": null, 2041 | "max_width": null, 2042 | "min_height": null, 2043 | "min_width": null, 2044 | "object_fit": null, 2045 | "object_position": null, 2046 | "order": null, 2047 | "overflow": null, 2048 | "overflow_x": null, 2049 | "overflow_y": null, 2050 | "padding": null, 2051 | "right": null, 2052 | "top": null, 2053 | "visibility": null, 2054 | "width": null 2055 | } 2056 | }, 2057 | "a0f11fe12e104dd284054dc9e11c372d": { 2058 | "model_module": "@jupyter-widgets/controls", 2059 | "model_name": "DescriptionStyleModel", 2060 | "model_module_version": "1.5.0", 2061 | "state": { 2062 | "_model_module": "@jupyter-widgets/controls", 2063 | "_model_module_version": "1.5.0", 2064 | "_model_name": "DescriptionStyleModel", 2065 | "_view_count": null, 2066 | "_view_module": "@jupyter-widgets/base", 2067 | "_view_module_version": "1.2.0", 2068 | "_view_name": "StyleView", 2069 | "description_width": "" 2070 | } 2071 | }, 2072 | "c53d7572399a4e32804c6b353f055030": { 2073 | "model_module": "@jupyter-widgets/controls", 2074 | "model_name": "HBoxModel", 2075 | "model_module_version": "1.5.0", 2076 | "state": { 2077 | "_dom_classes": [], 2078 | "_model_module": "@jupyter-widgets/controls", 2079 | "_model_module_version": "1.5.0", 2080 | "_model_name": "HBoxModel", 2081 | "_view_count": null, 2082 | "_view_module": "@jupyter-widgets/controls", 2083 | "_view_module_version": "1.5.0", 2084 | "_view_name": "HBoxView", 2085 | "box_style": "", 2086 | "children": [ 2087 | "IPY_MODEL_9a51db6daeb74ac590d120b6a74ce6a3", 2088 | "IPY_MODEL_62afcb8f9fc242a0bf3fb455e0304f96", 2089 | "IPY_MODEL_d444e4552f2c4d35a202e457bf8efd0b" 2090 | ], 2091 | "layout": "IPY_MODEL_f6ed3a1763d144fcadd5ff7c83966b80" 2092 | } 2093 | }, 2094 | "9a51db6daeb74ac590d120b6a74ce6a3": { 2095 | "model_module": "@jupyter-widgets/controls", 2096 | "model_name": "HTMLModel", 2097 | "model_module_version": "1.5.0", 2098 | "state": { 2099 | "_dom_classes": [], 2100 | "_model_module": "@jupyter-widgets/controls", 2101 | "_model_module_version": "1.5.0", 2102 | "_model_name": "HTMLModel", 2103 | "_view_count": null, 2104 | "_view_module": "@jupyter-widgets/controls", 2105 | "_view_module_version": "1.5.0", 2106 | "_view_name": "HTMLView", 2107 | "description": "", 2108 | "description_tooltip": null, 2109 | "layout": "IPY_MODEL_f5fedede8bec441d82804ab9918f5b24", 2110 | "placeholder": "​", 2111 | "style": "IPY_MODEL_a183da90da714155811e0e0143e316eb", 2112 | "value": "Shuffling /root/tensorflow_datasets/imdb_reviews/plain_text/1.0.0.incompleteSAD0T3/imdb_reviews-test.tfrecord*...: 61%" 2113 | } 2114 | }, 2115 | "62afcb8f9fc242a0bf3fb455e0304f96": { 2116 | "model_module": "@jupyter-widgets/controls", 2117 | "model_name": "FloatProgressModel", 2118 | "model_module_version": "1.5.0", 2119 | "state": { 2120 | "_dom_classes": [], 2121 | "_model_module": "@jupyter-widgets/controls", 2122 | "_model_module_version": "1.5.0", 2123 | "_model_name": "FloatProgressModel", 2124 | "_view_count": null, 2125 | "_view_module": "@jupyter-widgets/controls", 2126 | "_view_module_version": "1.5.0", 2127 | "_view_name": "ProgressView", 2128 | "bar_style": "", 2129 | "description": "", 2130 | "description_tooltip": null, 2131 | "layout": "IPY_MODEL_263db6859652481985789ad8da51447c", 2132 | "max": 25000, 2133 | "min": 0, 2134 | "orientation": "horizontal", 2135 | "style": "IPY_MODEL_3aab6c731da44c15a9dfba98672d0735", 2136 | "value": 25000 2137 | } 2138 | }, 2139 | "d444e4552f2c4d35a202e457bf8efd0b": { 2140 | "model_module": "@jupyter-widgets/controls", 2141 | "model_name": "HTMLModel", 2142 | "model_module_version": "1.5.0", 2143 | "state": { 2144 | "_dom_classes": [], 2145 | "_model_module": "@jupyter-widgets/controls", 2146 | "_model_module_version": "1.5.0", 2147 | "_model_name": "HTMLModel", 2148 | "_view_count": null, 2149 | "_view_module": "@jupyter-widgets/controls", 2150 | "_view_module_version": "1.5.0", 2151 | "_view_name": "HTMLView", 2152 | "description": "", 2153 | "description_tooltip": null, 2154 | "layout": "IPY_MODEL_e8bd7a69d9454970bc358e2994c0d1ba", 2155 | "placeholder": "​", 2156 | "style": "IPY_MODEL_da20567a8cc6422d8684310b92e9119e", 2157 | "value": " 15273/25000 [00:00<00:00, 152714.49 examples/s]" 2158 | } 2159 | }, 2160 | "f6ed3a1763d144fcadd5ff7c83966b80": { 2161 | "model_module": "@jupyter-widgets/base", 2162 | "model_name": "LayoutModel", 2163 | "model_module_version": "1.2.0", 2164 | "state": { 2165 | "_model_module": "@jupyter-widgets/base", 2166 | "_model_module_version": "1.2.0", 2167 | "_model_name": "LayoutModel", 2168 | "_view_count": null, 2169 | "_view_module": "@jupyter-widgets/base", 2170 | "_view_module_version": "1.2.0", 2171 | "_view_name": "LayoutView", 2172 | "align_content": null, 2173 | "align_items": null, 2174 | "align_self": null, 2175 | "border": null, 2176 | "bottom": null, 2177 | "display": null, 2178 | "flex": null, 2179 | "flex_flow": null, 2180 | "grid_area": null, 2181 | "grid_auto_columns": null, 2182 | "grid_auto_flow": null, 2183 | "grid_auto_rows": null, 2184 | "grid_column": null, 2185 | "grid_gap": null, 2186 | "grid_row": null, 2187 | "grid_template_areas": null, 2188 | "grid_template_columns": null, 2189 | "grid_template_rows": null, 2190 | "height": null, 2191 | "justify_content": null, 2192 | "justify_items": null, 2193 | "left": null, 2194 | "margin": null, 2195 | "max_height": null, 2196 | "max_width": null, 2197 | "min_height": null, 2198 | "min_width": null, 2199 | "object_fit": null, 2200 | "object_position": null, 2201 | "order": null, 2202 | "overflow": null, 2203 | "overflow_x": null, 2204 | "overflow_y": null, 2205 | "padding": null, 2206 | "right": null, 2207 | "top": null, 2208 | "visibility": "hidden", 2209 | "width": null 2210 | } 2211 | }, 2212 | "f5fedede8bec441d82804ab9918f5b24": { 2213 | "model_module": "@jupyter-widgets/base", 2214 | "model_name": "LayoutModel", 2215 | "model_module_version": "1.2.0", 2216 | "state": { 2217 | "_model_module": "@jupyter-widgets/base", 2218 | "_model_module_version": "1.2.0", 2219 | "_model_name": "LayoutModel", 2220 | "_view_count": null, 2221 | "_view_module": "@jupyter-widgets/base", 2222 | "_view_module_version": "1.2.0", 2223 | "_view_name": "LayoutView", 2224 | "align_content": null, 2225 | "align_items": null, 2226 | "align_self": null, 2227 | "border": null, 2228 | "bottom": null, 2229 | "display": null, 2230 | "flex": null, 2231 | "flex_flow": null, 2232 | "grid_area": null, 2233 | "grid_auto_columns": null, 2234 | "grid_auto_flow": null, 2235 | "grid_auto_rows": null, 2236 | "grid_column": null, 2237 | "grid_gap": null, 2238 | "grid_row": null, 2239 | "grid_template_areas": null, 2240 | "grid_template_columns": null, 2241 | "grid_template_rows": null, 2242 | "height": null, 2243 | "justify_content": null, 2244 | "justify_items": null, 2245 | "left": null, 2246 | "margin": null, 2247 | "max_height": null, 2248 | "max_width": null, 2249 | "min_height": null, 2250 | "min_width": null, 2251 | "object_fit": null, 2252 | "object_position": null, 2253 | "order": null, 2254 | "overflow": null, 2255 | "overflow_x": null, 2256 | "overflow_y": null, 2257 | "padding": null, 2258 | "right": null, 2259 | "top": null, 2260 | "visibility": null, 2261 | "width": null 2262 | } 2263 | }, 2264 | "a183da90da714155811e0e0143e316eb": { 2265 | "model_module": "@jupyter-widgets/controls", 2266 | "model_name": "DescriptionStyleModel", 2267 | "model_module_version": "1.5.0", 2268 | "state": { 2269 | "_model_module": "@jupyter-widgets/controls", 2270 | "_model_module_version": "1.5.0", 2271 | "_model_name": "DescriptionStyleModel", 2272 | "_view_count": null, 2273 | "_view_module": "@jupyter-widgets/base", 2274 | "_view_module_version": "1.2.0", 2275 | "_view_name": "StyleView", 2276 | "description_width": "" 2277 | } 2278 | }, 2279 | "263db6859652481985789ad8da51447c": { 2280 | "model_module": "@jupyter-widgets/base", 2281 | "model_name": "LayoutModel", 2282 | "model_module_version": "1.2.0", 2283 | "state": { 2284 | "_model_module": "@jupyter-widgets/base", 2285 | "_model_module_version": "1.2.0", 2286 | "_model_name": "LayoutModel", 2287 | "_view_count": null, 2288 | "_view_module": "@jupyter-widgets/base", 2289 | "_view_module_version": "1.2.0", 2290 | "_view_name": "LayoutView", 2291 | "align_content": null, 2292 | "align_items": null, 2293 | "align_self": null, 2294 | "border": null, 2295 | "bottom": null, 2296 | "display": null, 2297 | "flex": null, 2298 | "flex_flow": null, 2299 | "grid_area": null, 2300 | "grid_auto_columns": null, 2301 | "grid_auto_flow": null, 2302 | "grid_auto_rows": null, 2303 | "grid_column": null, 2304 | "grid_gap": null, 2305 | "grid_row": null, 2306 | "grid_template_areas": null, 2307 | "grid_template_columns": null, 2308 | "grid_template_rows": null, 2309 | "height": null, 2310 | "justify_content": null, 2311 | "justify_items": null, 2312 | "left": null, 2313 | "margin": null, 2314 | "max_height": null, 2315 | "max_width": null, 2316 | "min_height": null, 2317 | "min_width": null, 2318 | "object_fit": null, 2319 | "object_position": null, 2320 | "order": null, 2321 | "overflow": null, 2322 | "overflow_x": null, 2323 | "overflow_y": null, 2324 | "padding": null, 2325 | "right": null, 2326 | "top": null, 2327 | "visibility": null, 2328 | "width": null 2329 | } 2330 | }, 2331 | "3aab6c731da44c15a9dfba98672d0735": { 2332 | "model_module": "@jupyter-widgets/controls", 2333 | "model_name": "ProgressStyleModel", 2334 | "model_module_version": "1.5.0", 2335 | "state": { 2336 | "_model_module": "@jupyter-widgets/controls", 2337 | "_model_module_version": "1.5.0", 2338 | "_model_name": "ProgressStyleModel", 2339 | "_view_count": null, 2340 | "_view_module": "@jupyter-widgets/base", 2341 | "_view_module_version": "1.2.0", 2342 | "_view_name": "StyleView", 2343 | "bar_color": null, 2344 | "description_width": "" 2345 | } 2346 | }, 2347 | "e8bd7a69d9454970bc358e2994c0d1ba": { 2348 | "model_module": "@jupyter-widgets/base", 2349 | "model_name": "LayoutModel", 2350 | "model_module_version": "1.2.0", 2351 | "state": { 2352 | "_model_module": "@jupyter-widgets/base", 2353 | "_model_module_version": "1.2.0", 2354 | "_model_name": "LayoutModel", 2355 | "_view_count": null, 2356 | "_view_module": "@jupyter-widgets/base", 2357 | "_view_module_version": "1.2.0", 2358 | "_view_name": "LayoutView", 2359 | "align_content": null, 2360 | "align_items": null, 2361 | "align_self": null, 2362 | "border": null, 2363 | "bottom": null, 2364 | "display": null, 2365 | "flex": null, 2366 | "flex_flow": null, 2367 | "grid_area": null, 2368 | "grid_auto_columns": null, 2369 | "grid_auto_flow": null, 2370 | "grid_auto_rows": null, 2371 | "grid_column": null, 2372 | "grid_gap": null, 2373 | "grid_row": null, 2374 | "grid_template_areas": null, 2375 | "grid_template_columns": null, 2376 | "grid_template_rows": null, 2377 | "height": null, 2378 | "justify_content": null, 2379 | "justify_items": null, 2380 | "left": null, 2381 | "margin": null, 2382 | "max_height": null, 2383 | "max_width": null, 2384 | "min_height": null, 2385 | "min_width": null, 2386 | "object_fit": null, 2387 | "object_position": null, 2388 | "order": null, 2389 | "overflow": null, 2390 | "overflow_x": null, 2391 | "overflow_y": null, 2392 | "padding": null, 2393 | "right": null, 2394 | "top": null, 2395 | "visibility": null, 2396 | "width": null 2397 | } 2398 | }, 2399 | "da20567a8cc6422d8684310b92e9119e": { 2400 | "model_module": "@jupyter-widgets/controls", 2401 | "model_name": "DescriptionStyleModel", 2402 | "model_module_version": "1.5.0", 2403 | "state": { 2404 | "_model_module": "@jupyter-widgets/controls", 2405 | "_model_module_version": "1.5.0", 2406 | "_model_name": "DescriptionStyleModel", 2407 | "_view_count": null, 2408 | "_view_module": "@jupyter-widgets/base", 2409 | "_view_module_version": "1.2.0", 2410 | "_view_name": "StyleView", 2411 | "description_width": "" 2412 | } 2413 | }, 2414 | "cfd9342f64534a579161b6e2a94a81d8": { 2415 | "model_module": "@jupyter-widgets/controls", 2416 | "model_name": "HBoxModel", 2417 | "model_module_version": "1.5.0", 2418 | "state": { 2419 | "_dom_classes": [], 2420 | "_model_module": "@jupyter-widgets/controls", 2421 | "_model_module_version": "1.5.0", 2422 | "_model_name": "HBoxModel", 2423 | "_view_count": null, 2424 | "_view_module": "@jupyter-widgets/controls", 2425 | "_view_module_version": "1.5.0", 2426 | "_view_name": "HBoxView", 2427 | "box_style": "", 2428 | "children": [ 2429 | "IPY_MODEL_75dd1253ae5940e19b5e6f745dc25bfa", 2430 | "IPY_MODEL_d9641c8b5ec1466796335ab37adf92fc", 2431 | "IPY_MODEL_7ad81f5aa9424c2a8987d426453c935d" 2432 | ], 2433 | "layout": "IPY_MODEL_7b7ca5db7bee4456850e3ce8babe2b99" 2434 | } 2435 | }, 2436 | "75dd1253ae5940e19b5e6f745dc25bfa": { 2437 | "model_module": "@jupyter-widgets/controls", 2438 | "model_name": "HTMLModel", 2439 | "model_module_version": "1.5.0", 2440 | "state": { 2441 | "_dom_classes": [], 2442 | "_model_module": "@jupyter-widgets/controls", 2443 | "_model_module_version": "1.5.0", 2444 | "_model_name": "HTMLModel", 2445 | "_view_count": null, 2446 | "_view_module": "@jupyter-widgets/controls", 2447 | "_view_module_version": "1.5.0", 2448 | "_view_name": "HTMLView", 2449 | "description": "", 2450 | "description_tooltip": null, 2451 | "layout": "IPY_MODEL_c04f23fa0f0f4e7687a00fb99cc9f293", 2452 | "placeholder": "​", 2453 | "style": "IPY_MODEL_5afc20c36e1f4a94b82819f732a4d0f6", 2454 | "value": "Generating unsupervised examples...: 100%" 2455 | } 2456 | }, 2457 | "d9641c8b5ec1466796335ab37adf92fc": { 2458 | "model_module": "@jupyter-widgets/controls", 2459 | "model_name": "FloatProgressModel", 2460 | "model_module_version": "1.5.0", 2461 | "state": { 2462 | "_dom_classes": [], 2463 | "_model_module": "@jupyter-widgets/controls", 2464 | "_model_module_version": "1.5.0", 2465 | "_model_name": "FloatProgressModel", 2466 | "_view_count": null, 2467 | "_view_module": "@jupyter-widgets/controls", 2468 | "_view_module_version": "1.5.0", 2469 | "_view_name": "ProgressView", 2470 | "bar_style": "", 2471 | "description": "", 2472 | "description_tooltip": null, 2473 | "layout": "IPY_MODEL_ca44537116d349ae90f23a0c012a7e00", 2474 | "max": 50000, 2475 | "min": 0, 2476 | "orientation": "horizontal", 2477 | "style": "IPY_MODEL_2b139c7107394539bdb4891f3276301d", 2478 | "value": 50000 2479 | } 2480 | }, 2481 | "7ad81f5aa9424c2a8987d426453c935d": { 2482 | "model_module": "@jupyter-widgets/controls", 2483 | "model_name": "HTMLModel", 2484 | "model_module_version": "1.5.0", 2485 | "state": { 2486 | "_dom_classes": [], 2487 | "_model_module": "@jupyter-widgets/controls", 2488 | "_model_module_version": "1.5.0", 2489 | "_model_name": "HTMLModel", 2490 | "_view_count": null, 2491 | "_view_module": "@jupyter-widgets/controls", 2492 | "_view_module_version": "1.5.0", 2493 | "_view_name": "HTMLView", 2494 | "description": "", 2495 | "description_tooltip": null, 2496 | "layout": "IPY_MODEL_0657b8f40f98454eb2d4609bc5ccffe8", 2497 | "placeholder": "​", 2498 | "style": "IPY_MODEL_1ad5ada5601041f3ab7c126074927fb2", 2499 | "value": " 49899/50000 [00:17<00:00, 5338.74 examples/s]" 2500 | } 2501 | }, 2502 | "7b7ca5db7bee4456850e3ce8babe2b99": { 2503 | "model_module": "@jupyter-widgets/base", 2504 | "model_name": "LayoutModel", 2505 | "model_module_version": "1.2.0", 2506 | "state": { 2507 | "_model_module": "@jupyter-widgets/base", 2508 | "_model_module_version": "1.2.0", 2509 | "_model_name": "LayoutModel", 2510 | "_view_count": null, 2511 | "_view_module": "@jupyter-widgets/base", 2512 | "_view_module_version": "1.2.0", 2513 | "_view_name": "LayoutView", 2514 | "align_content": null, 2515 | "align_items": null, 2516 | "align_self": null, 2517 | "border": null, 2518 | "bottom": null, 2519 | "display": null, 2520 | "flex": null, 2521 | "flex_flow": null, 2522 | "grid_area": null, 2523 | "grid_auto_columns": null, 2524 | "grid_auto_flow": null, 2525 | "grid_auto_rows": null, 2526 | "grid_column": null, 2527 | "grid_gap": null, 2528 | "grid_row": null, 2529 | "grid_template_areas": null, 2530 | "grid_template_columns": null, 2531 | "grid_template_rows": null, 2532 | "height": null, 2533 | "justify_content": null, 2534 | "justify_items": null, 2535 | "left": null, 2536 | "margin": null, 2537 | "max_height": null, 2538 | "max_width": null, 2539 | "min_height": null, 2540 | "min_width": null, 2541 | "object_fit": null, 2542 | "object_position": null, 2543 | "order": null, 2544 | "overflow": null, 2545 | "overflow_x": null, 2546 | "overflow_y": null, 2547 | "padding": null, 2548 | "right": null, 2549 | "top": null, 2550 | "visibility": "hidden", 2551 | "width": null 2552 | } 2553 | }, 2554 | "c04f23fa0f0f4e7687a00fb99cc9f293": { 2555 | "model_module": "@jupyter-widgets/base", 2556 | "model_name": "LayoutModel", 2557 | "model_module_version": "1.2.0", 2558 | "state": { 2559 | "_model_module": "@jupyter-widgets/base", 2560 | "_model_module_version": "1.2.0", 2561 | "_model_name": "LayoutModel", 2562 | "_view_count": null, 2563 | "_view_module": "@jupyter-widgets/base", 2564 | "_view_module_version": "1.2.0", 2565 | "_view_name": "LayoutView", 2566 | "align_content": null, 2567 | "align_items": null, 2568 | "align_self": null, 2569 | "border": null, 2570 | "bottom": null, 2571 | "display": null, 2572 | "flex": null, 2573 | "flex_flow": null, 2574 | "grid_area": null, 2575 | "grid_auto_columns": null, 2576 | "grid_auto_flow": null, 2577 | "grid_auto_rows": null, 2578 | "grid_column": null, 2579 | "grid_gap": null, 2580 | "grid_row": null, 2581 | "grid_template_areas": null, 2582 | "grid_template_columns": null, 2583 | "grid_template_rows": null, 2584 | "height": null, 2585 | "justify_content": null, 2586 | "justify_items": null, 2587 | "left": null, 2588 | "margin": null, 2589 | "max_height": null, 2590 | "max_width": null, 2591 | "min_height": null, 2592 | "min_width": null, 2593 | "object_fit": null, 2594 | "object_position": null, 2595 | "order": null, 2596 | "overflow": null, 2597 | "overflow_x": null, 2598 | "overflow_y": null, 2599 | "padding": null, 2600 | "right": null, 2601 | "top": null, 2602 | "visibility": null, 2603 | "width": null 2604 | } 2605 | }, 2606 | "5afc20c36e1f4a94b82819f732a4d0f6": { 2607 | "model_module": "@jupyter-widgets/controls", 2608 | "model_name": "DescriptionStyleModel", 2609 | "model_module_version": "1.5.0", 2610 | "state": { 2611 | "_model_module": "@jupyter-widgets/controls", 2612 | "_model_module_version": "1.5.0", 2613 | "_model_name": "DescriptionStyleModel", 2614 | "_view_count": null, 2615 | "_view_module": "@jupyter-widgets/base", 2616 | "_view_module_version": "1.2.0", 2617 | "_view_name": "StyleView", 2618 | "description_width": "" 2619 | } 2620 | }, 2621 | "ca44537116d349ae90f23a0c012a7e00": { 2622 | "model_module": "@jupyter-widgets/base", 2623 | "model_name": "LayoutModel", 2624 | "model_module_version": "1.2.0", 2625 | "state": { 2626 | "_model_module": "@jupyter-widgets/base", 2627 | "_model_module_version": "1.2.0", 2628 | "_model_name": "LayoutModel", 2629 | "_view_count": null, 2630 | "_view_module": "@jupyter-widgets/base", 2631 | "_view_module_version": "1.2.0", 2632 | "_view_name": "LayoutView", 2633 | "align_content": null, 2634 | "align_items": null, 2635 | "align_self": null, 2636 | "border": null, 2637 | "bottom": null, 2638 | "display": null, 2639 | "flex": null, 2640 | "flex_flow": null, 2641 | "grid_area": null, 2642 | "grid_auto_columns": null, 2643 | "grid_auto_flow": null, 2644 | "grid_auto_rows": null, 2645 | "grid_column": null, 2646 | "grid_gap": null, 2647 | "grid_row": null, 2648 | "grid_template_areas": null, 2649 | "grid_template_columns": null, 2650 | "grid_template_rows": null, 2651 | "height": null, 2652 | "justify_content": null, 2653 | "justify_items": null, 2654 | "left": null, 2655 | "margin": null, 2656 | "max_height": null, 2657 | "max_width": null, 2658 | "min_height": null, 2659 | "min_width": null, 2660 | "object_fit": null, 2661 | "object_position": null, 2662 | "order": null, 2663 | "overflow": null, 2664 | "overflow_x": null, 2665 | "overflow_y": null, 2666 | "padding": null, 2667 | "right": null, 2668 | "top": null, 2669 | "visibility": null, 2670 | "width": null 2671 | } 2672 | }, 2673 | "2b139c7107394539bdb4891f3276301d": { 2674 | "model_module": "@jupyter-widgets/controls", 2675 | "model_name": "ProgressStyleModel", 2676 | "model_module_version": "1.5.0", 2677 | "state": { 2678 | "_model_module": "@jupyter-widgets/controls", 2679 | "_model_module_version": "1.5.0", 2680 | "_model_name": "ProgressStyleModel", 2681 | "_view_count": null, 2682 | "_view_module": "@jupyter-widgets/base", 2683 | "_view_module_version": "1.2.0", 2684 | "_view_name": "StyleView", 2685 | "bar_color": null, 2686 | "description_width": "" 2687 | } 2688 | }, 2689 | "0657b8f40f98454eb2d4609bc5ccffe8": { 2690 | "model_module": "@jupyter-widgets/base", 2691 | "model_name": "LayoutModel", 2692 | "model_module_version": "1.2.0", 2693 | "state": { 2694 | "_model_module": "@jupyter-widgets/base", 2695 | "_model_module_version": "1.2.0", 2696 | "_model_name": "LayoutModel", 2697 | "_view_count": null, 2698 | "_view_module": "@jupyter-widgets/base", 2699 | "_view_module_version": "1.2.0", 2700 | "_view_name": "LayoutView", 2701 | "align_content": null, 2702 | "align_items": null, 2703 | "align_self": null, 2704 | "border": null, 2705 | "bottom": null, 2706 | "display": null, 2707 | "flex": null, 2708 | "flex_flow": null, 2709 | "grid_area": null, 2710 | "grid_auto_columns": null, 2711 | "grid_auto_flow": null, 2712 | "grid_auto_rows": null, 2713 | "grid_column": null, 2714 | "grid_gap": null, 2715 | "grid_row": null, 2716 | "grid_template_areas": null, 2717 | "grid_template_columns": null, 2718 | "grid_template_rows": null, 2719 | "height": null, 2720 | "justify_content": null, 2721 | "justify_items": null, 2722 | "left": null, 2723 | "margin": null, 2724 | "max_height": null, 2725 | "max_width": null, 2726 | "min_height": null, 2727 | "min_width": null, 2728 | "object_fit": null, 2729 | "object_position": null, 2730 | "order": null, 2731 | "overflow": null, 2732 | "overflow_x": null, 2733 | "overflow_y": null, 2734 | "padding": null, 2735 | "right": null, 2736 | "top": null, 2737 | "visibility": null, 2738 | "width": null 2739 | } 2740 | }, 2741 | "1ad5ada5601041f3ab7c126074927fb2": { 2742 | "model_module": "@jupyter-widgets/controls", 2743 | "model_name": "DescriptionStyleModel", 2744 | "model_module_version": "1.5.0", 2745 | "state": { 2746 | "_model_module": "@jupyter-widgets/controls", 2747 | "_model_module_version": "1.5.0", 2748 | "_model_name": "DescriptionStyleModel", 2749 | "_view_count": null, 2750 | "_view_module": "@jupyter-widgets/base", 2751 | "_view_module_version": "1.2.0", 2752 | "_view_name": "StyleView", 2753 | "description_width": "" 2754 | } 2755 | }, 2756 | "5a81f7fbf0a74a3e8eb09b968c8e5b9b": { 2757 | "model_module": "@jupyter-widgets/controls", 2758 | "model_name": "HBoxModel", 2759 | "model_module_version": "1.5.0", 2760 | "state": { 2761 | "_dom_classes": [], 2762 | "_model_module": "@jupyter-widgets/controls", 2763 | "_model_module_version": "1.5.0", 2764 | "_model_name": "HBoxModel", 2765 | "_view_count": null, 2766 | "_view_module": "@jupyter-widgets/controls", 2767 | "_view_module_version": "1.5.0", 2768 | "_view_name": "HBoxView", 2769 | "box_style": "", 2770 | "children": [ 2771 | "IPY_MODEL_815adf56656f43b097e7228409d15494", 2772 | "IPY_MODEL_19f3854e27aa4e4ea022d6e0638117f3", 2773 | "IPY_MODEL_084e60db582d4e7283f0adc8e5aeb7f4" 2774 | ], 2775 | "layout": "IPY_MODEL_6948abc6e29d4b148bf04a9fc609f9e8" 2776 | } 2777 | }, 2778 | "815adf56656f43b097e7228409d15494": { 2779 | "model_module": "@jupyter-widgets/controls", 2780 | "model_name": "HTMLModel", 2781 | "model_module_version": "1.5.0", 2782 | "state": { 2783 | "_dom_classes": [], 2784 | "_model_module": "@jupyter-widgets/controls", 2785 | "_model_module_version": "1.5.0", 2786 | "_model_name": "HTMLModel", 2787 | "_view_count": null, 2788 | "_view_module": "@jupyter-widgets/controls", 2789 | "_view_module_version": "1.5.0", 2790 | "_view_name": "HTMLView", 2791 | "description": "", 2792 | "description_tooltip": null, 2793 | "layout": "IPY_MODEL_109489ef947849ef9f3a069bf2cf25d6", 2794 | "placeholder": "​", 2795 | "style": "IPY_MODEL_4d746014d6aa4c8d8b375dfe323c2914", 2796 | "value": "Shuffling /root/tensorflow_datasets/imdb_reviews/plain_text/1.0.0.incompleteSAD0T3/imdb_reviews-unsupervised.tfrecord*...: 72%" 2797 | } 2798 | }, 2799 | "19f3854e27aa4e4ea022d6e0638117f3": { 2800 | "model_module": "@jupyter-widgets/controls", 2801 | "model_name": "FloatProgressModel", 2802 | "model_module_version": "1.5.0", 2803 | "state": { 2804 | "_dom_classes": [], 2805 | "_model_module": "@jupyter-widgets/controls", 2806 | "_model_module_version": "1.5.0", 2807 | "_model_name": "FloatProgressModel", 2808 | "_view_count": null, 2809 | "_view_module": "@jupyter-widgets/controls", 2810 | "_view_module_version": "1.5.0", 2811 | "_view_name": "ProgressView", 2812 | "bar_style": "", 2813 | "description": "", 2814 | "description_tooltip": null, 2815 | "layout": "IPY_MODEL_ea4ee7e61067487eac60a152067b6485", 2816 | "max": 50000, 2817 | "min": 0, 2818 | "orientation": "horizontal", 2819 | "style": "IPY_MODEL_44a3cc03595a4cb2a4baa16f8e4a9393", 2820 | "value": 50000 2821 | } 2822 | }, 2823 | "084e60db582d4e7283f0adc8e5aeb7f4": { 2824 | "model_module": "@jupyter-widgets/controls", 2825 | "model_name": "HTMLModel", 2826 | "model_module_version": "1.5.0", 2827 | "state": { 2828 | "_dom_classes": [], 2829 | "_model_module": "@jupyter-widgets/controls", 2830 | "_model_module_version": "1.5.0", 2831 | "_model_name": "HTMLModel", 2832 | "_view_count": null, 2833 | "_view_module": "@jupyter-widgets/controls", 2834 | "_view_module_version": "1.5.0", 2835 | "_view_name": "HTMLView", 2836 | "description": "", 2837 | "description_tooltip": null, 2838 | "layout": "IPY_MODEL_1fdca155f1b442099c043c320e569ffd", 2839 | "placeholder": "​", 2840 | "style": "IPY_MODEL_834ee15d726d4ee19f2e6b3372dead8f", 2841 | "value": " 35873/50000 [00:00<00:00, 194008.10 examples/s]" 2842 | } 2843 | }, 2844 | "6948abc6e29d4b148bf04a9fc609f9e8": { 2845 | "model_module": "@jupyter-widgets/base", 2846 | "model_name": "LayoutModel", 2847 | "model_module_version": "1.2.0", 2848 | "state": { 2849 | "_model_module": "@jupyter-widgets/base", 2850 | "_model_module_version": "1.2.0", 2851 | "_model_name": "LayoutModel", 2852 | "_view_count": null, 2853 | "_view_module": "@jupyter-widgets/base", 2854 | "_view_module_version": "1.2.0", 2855 | "_view_name": "LayoutView", 2856 | "align_content": null, 2857 | "align_items": null, 2858 | "align_self": null, 2859 | "border": null, 2860 | "bottom": null, 2861 | "display": null, 2862 | "flex": null, 2863 | "flex_flow": null, 2864 | "grid_area": null, 2865 | "grid_auto_columns": null, 2866 | "grid_auto_flow": null, 2867 | "grid_auto_rows": null, 2868 | "grid_column": null, 2869 | "grid_gap": null, 2870 | "grid_row": null, 2871 | "grid_template_areas": null, 2872 | "grid_template_columns": null, 2873 | "grid_template_rows": null, 2874 | "height": null, 2875 | "justify_content": null, 2876 | "justify_items": null, 2877 | "left": null, 2878 | "margin": null, 2879 | "max_height": null, 2880 | "max_width": null, 2881 | "min_height": null, 2882 | "min_width": null, 2883 | "object_fit": null, 2884 | "object_position": null, 2885 | "order": null, 2886 | "overflow": null, 2887 | "overflow_x": null, 2888 | "overflow_y": null, 2889 | "padding": null, 2890 | "right": null, 2891 | "top": null, 2892 | "visibility": "hidden", 2893 | "width": null 2894 | } 2895 | }, 2896 | "109489ef947849ef9f3a069bf2cf25d6": { 2897 | "model_module": "@jupyter-widgets/base", 2898 | "model_name": "LayoutModel", 2899 | "model_module_version": "1.2.0", 2900 | "state": { 2901 | "_model_module": "@jupyter-widgets/base", 2902 | "_model_module_version": "1.2.0", 2903 | "_model_name": "LayoutModel", 2904 | "_view_count": null, 2905 | "_view_module": "@jupyter-widgets/base", 2906 | "_view_module_version": "1.2.0", 2907 | "_view_name": "LayoutView", 2908 | "align_content": null, 2909 | "align_items": null, 2910 | "align_self": null, 2911 | "border": null, 2912 | "bottom": null, 2913 | "display": null, 2914 | "flex": null, 2915 | "flex_flow": null, 2916 | "grid_area": null, 2917 | "grid_auto_columns": null, 2918 | "grid_auto_flow": null, 2919 | "grid_auto_rows": null, 2920 | "grid_column": null, 2921 | "grid_gap": null, 2922 | "grid_row": null, 2923 | "grid_template_areas": null, 2924 | "grid_template_columns": null, 2925 | "grid_template_rows": null, 2926 | "height": null, 2927 | "justify_content": null, 2928 | "justify_items": null, 2929 | "left": null, 2930 | "margin": null, 2931 | "max_height": null, 2932 | "max_width": null, 2933 | "min_height": null, 2934 | "min_width": null, 2935 | "object_fit": null, 2936 | "object_position": null, 2937 | "order": null, 2938 | "overflow": null, 2939 | "overflow_x": null, 2940 | "overflow_y": null, 2941 | "padding": null, 2942 | "right": null, 2943 | "top": null, 2944 | "visibility": null, 2945 | "width": null 2946 | } 2947 | }, 2948 | "4d746014d6aa4c8d8b375dfe323c2914": { 2949 | "model_module": "@jupyter-widgets/controls", 2950 | "model_name": "DescriptionStyleModel", 2951 | "model_module_version": "1.5.0", 2952 | "state": { 2953 | "_model_module": "@jupyter-widgets/controls", 2954 | "_model_module_version": "1.5.0", 2955 | "_model_name": "DescriptionStyleModel", 2956 | "_view_count": null, 2957 | "_view_module": "@jupyter-widgets/base", 2958 | "_view_module_version": "1.2.0", 2959 | "_view_name": "StyleView", 2960 | "description_width": "" 2961 | } 2962 | }, 2963 | "ea4ee7e61067487eac60a152067b6485": { 2964 | "model_module": "@jupyter-widgets/base", 2965 | "model_name": "LayoutModel", 2966 | "model_module_version": "1.2.0", 2967 | "state": { 2968 | "_model_module": "@jupyter-widgets/base", 2969 | "_model_module_version": "1.2.0", 2970 | "_model_name": "LayoutModel", 2971 | "_view_count": null, 2972 | "_view_module": "@jupyter-widgets/base", 2973 | "_view_module_version": "1.2.0", 2974 | "_view_name": "LayoutView", 2975 | "align_content": null, 2976 | "align_items": null, 2977 | "align_self": null, 2978 | "border": null, 2979 | "bottom": null, 2980 | "display": null, 2981 | "flex": null, 2982 | "flex_flow": null, 2983 | "grid_area": null, 2984 | "grid_auto_columns": null, 2985 | "grid_auto_flow": null, 2986 | "grid_auto_rows": null, 2987 | "grid_column": null, 2988 | "grid_gap": null, 2989 | "grid_row": null, 2990 | "grid_template_areas": null, 2991 | "grid_template_columns": null, 2992 | "grid_template_rows": null, 2993 | "height": null, 2994 | "justify_content": null, 2995 | "justify_items": null, 2996 | "left": null, 2997 | "margin": null, 2998 | "max_height": null, 2999 | "max_width": null, 3000 | "min_height": null, 3001 | "min_width": null, 3002 | "object_fit": null, 3003 | "object_position": null, 3004 | "order": null, 3005 | "overflow": null, 3006 | "overflow_x": null, 3007 | "overflow_y": null, 3008 | "padding": null, 3009 | "right": null, 3010 | "top": null, 3011 | "visibility": null, 3012 | "width": null 3013 | } 3014 | }, 3015 | "44a3cc03595a4cb2a4baa16f8e4a9393": { 3016 | "model_module": "@jupyter-widgets/controls", 3017 | "model_name": "ProgressStyleModel", 3018 | "model_module_version": "1.5.0", 3019 | "state": { 3020 | "_model_module": "@jupyter-widgets/controls", 3021 | "_model_module_version": "1.5.0", 3022 | "_model_name": "ProgressStyleModel", 3023 | "_view_count": null, 3024 | "_view_module": "@jupyter-widgets/base", 3025 | "_view_module_version": "1.2.0", 3026 | "_view_name": "StyleView", 3027 | "bar_color": null, 3028 | "description_width": "" 3029 | } 3030 | }, 3031 | "1fdca155f1b442099c043c320e569ffd": { 3032 | "model_module": "@jupyter-widgets/base", 3033 | "model_name": "LayoutModel", 3034 | "model_module_version": "1.2.0", 3035 | "state": { 3036 | "_model_module": "@jupyter-widgets/base", 3037 | "_model_module_version": "1.2.0", 3038 | "_model_name": "LayoutModel", 3039 | "_view_count": null, 3040 | "_view_module": "@jupyter-widgets/base", 3041 | "_view_module_version": "1.2.0", 3042 | "_view_name": "LayoutView", 3043 | "align_content": null, 3044 | "align_items": null, 3045 | "align_self": null, 3046 | "border": null, 3047 | "bottom": null, 3048 | "display": null, 3049 | "flex": null, 3050 | "flex_flow": null, 3051 | "grid_area": null, 3052 | "grid_auto_columns": null, 3053 | "grid_auto_flow": null, 3054 | "grid_auto_rows": null, 3055 | "grid_column": null, 3056 | "grid_gap": null, 3057 | "grid_row": null, 3058 | "grid_template_areas": null, 3059 | "grid_template_columns": null, 3060 | "grid_template_rows": null, 3061 | "height": null, 3062 | "justify_content": null, 3063 | "justify_items": null, 3064 | "left": null, 3065 | "margin": null, 3066 | "max_height": null, 3067 | "max_width": null, 3068 | "min_height": null, 3069 | "min_width": null, 3070 | "object_fit": null, 3071 | "object_position": null, 3072 | "order": null, 3073 | "overflow": null, 3074 | "overflow_x": null, 3075 | "overflow_y": null, 3076 | "padding": null, 3077 | "right": null, 3078 | "top": null, 3079 | "visibility": null, 3080 | "width": null 3081 | } 3082 | }, 3083 | "834ee15d726d4ee19f2e6b3372dead8f": { 3084 | "model_module": "@jupyter-widgets/controls", 3085 | "model_name": "DescriptionStyleModel", 3086 | "model_module_version": "1.5.0", 3087 | "state": { 3088 | "_model_module": "@jupyter-widgets/controls", 3089 | "_model_module_version": "1.5.0", 3090 | "_model_name": "DescriptionStyleModel", 3091 | "_view_count": null, 3092 | "_view_module": "@jupyter-widgets/base", 3093 | "_view_module_version": "1.2.0", 3094 | "_view_name": "StyleView", 3095 | "description_width": "" 3096 | } 3097 | } 3098 | } 3099 | } 3100 | }, 3101 | "cells": [ 3102 | { 3103 | "cell_type": "markdown", 3104 | "source": [ 3105 | "# [KerasNLP] Position Embedding Techniques in Transformers\n", 3106 | "\n", 3107 | "**Author:** [Usha Rengaraju](https://www.linkedin.com/in/usha-rengaraju-b570b7a2/)
\n", 3108 | "**Date created:** 2023/07/10
\n", 3109 | "**Last modified:** 2023/07/10
\n", 3110 | "**Description:** Position Embedding Techniques in Transformers using KerasNLP" 3111 | ], 3112 | "metadata": { 3113 | "id": "yvKc4pDsVJGN" 3114 | } 3115 | }, 3116 | { 3117 | "cell_type": "markdown", 3118 | "source": [ 3119 | "## Overview\n", 3120 | "\n", 3121 | "Embedding layers are the ones which convert the input data to embedding vector form with some added information like position encoding and much more. There are various embedding layers already implemented in KerasNLP which we can use on the go.\n", 3122 | "\n", 3123 | "In this guide we create a simple text classification pipeline and showcase the various embedding layers and their affects on the performance." 3124 | ], 3125 | "metadata": { 3126 | "id": "pcanbuwJ7PUX" 3127 | } 3128 | }, 3129 | { 3130 | "cell_type": "markdown", 3131 | "source": [ 3132 | "## Imports & setup\n", 3133 | "\n", 3134 | "This tutorial requires you to have KerasNLP installed:\n", 3135 | "\n", 3136 | "```shell\n", 3137 | "pip install keras-nlp\n", 3138 | "```\n", 3139 | "\n", 3140 | "We begin by importing all required packages:" 3141 | ], 3142 | "metadata": { 3143 | "id": "DmC_kCnI7VPq" 3144 | } 3145 | }, 3146 | { 3147 | "cell_type": "code", 3148 | "execution_count": null, 3149 | "metadata": { 3150 | "id": "6_hxrvF7nKnR", 3151 | "colab": { 3152 | "base_uri": "https://localhost:8080/" 3153 | }, 3154 | "outputId": "80323c7e-4991-4bf2-f741-c661508d5f93" 3155 | }, 3156 | "outputs": [ 3157 | { 3158 | "output_type": "stream", 3159 | "name": "stdout", 3160 | "text": [ 3161 | "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/42.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.2/42.2 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", 3162 | "\u001b[?25h" 3163 | ] 3164 | } 3165 | ], 3166 | "source": [ 3167 | "!pip install -q keras-nlp einops" 3168 | ] 3169 | }, 3170 | { 3171 | "cell_type": "code", 3172 | "source": [ 3173 | "import os\n", 3174 | "import re\n", 3175 | "import json\n", 3176 | "import string\n", 3177 | "import numpy as np\n", 3178 | "import tensorflow as tf\n", 3179 | "from tensorflow import keras\n", 3180 | "from tensorflow.keras import layers\n", 3181 | "import keras_nlp" 3182 | ], 3183 | "metadata": { 3184 | "id": "TJN1sCA8nUWh" 3185 | }, 3186 | "execution_count": null, 3187 | "outputs": [] 3188 | }, 3189 | { 3190 | "cell_type": "markdown", 3191 | "source": [ 3192 | "## Data loading\n", 3193 | "\n", 3194 | "This guide uses the\n", 3195 | "[IMDB review dataset](https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews)\n", 3196 | "for demonstration purposes.\n", 3197 | "\n", 3198 | "To get started, we first load the dataset:" 3199 | ], 3200 | "metadata": { 3201 | "id": "r8CwaHyl_8oX" 3202 | } 3203 | }, 3204 | { 3205 | "cell_type": "code", 3206 | "source": [ 3207 | "import keras_nlp\n", 3208 | "import tensorflow_datasets as tfds\n", 3209 | "\n", 3210 | "imdb_train, imdb_test = tfds.load(\n", 3211 | " \"imdb_reviews\",\n", 3212 | " split=[\"train\", \"test\"],\n", 3213 | " as_supervised=True,\n", 3214 | " batch_size=16,\n", 3215 | ")\n" 3216 | ], 3217 | "metadata": { 3218 | "id": "hMSCeP3InUv_", 3219 | "colab": { 3220 | "base_uri": "https://localhost:8080/", 3221 | "height": 116, 3222 | "referenced_widgets": [ 3223 | "8fc3ffd3192e410690bfb1c15cc91df8", 3224 | "194715023f574cb6945498787a28599e", 3225 | "e6ca529399674745849418cb0cc9d63e", 3226 | "d33de86165ae4bbab6185ac13a4a7169", 3227 | "6437b891ad8f4433bf59f112a1446b26", 3228 | "0b0696c421c24b719a9e0d3ac48a264f", 3229 | "b4bbefacd57644149fc055dc2ba8809a", 3230 | "773075570214465f90615fc25895a6f8", 3231 | "9cba2aed6b6c40eeb15fc09adfcee5d2", 3232 | "061391e9db9f4edd8d2b33aef1aca202", 3233 | "44cf3199fd5c4ea7bbfeff15de48dadd", 3234 | "63117fcc267e4d9b9d83c81448ec891a", 3235 | "eef23369bd3643fbac4d9daedd35bf8e", 3236 | "10c2178666304d40900ec1aa7ed81a2a", 3237 | "5e4072737287496da4921b5cf8500a7c", 3238 | "20f744e4872e4400a1cce33c5b5e093d", 3239 | "f9f72195acc44f4692eff40af44809c3", 3240 | "1a9a4c298f2449319e2137f35c2a6f42", 3241 | "dcd3e61974f145d684ae05df73cafc89", 3242 | "10f73b7c2aec4eed92a0d41d0e8bede1", 3243 | "2a857876349e44f09119067f8c3ecd45", 3244 | "6bffef1006cf4e5fb962296a9f436cff", 3245 | "cd666a0c2b2e48b995cc54ca36fccdf3", 3246 | "e89b1d933be84497b573d2d898b48951", 3247 | "223f0c3e7d0243eea7889b07b4ef9b1f", 3248 | "c61a98a2d1434686a1359a2bdcbaf4aa", 3249 | "6a2def4fcd044b869970ca1925a775d8", 3250 | "1c2f4629a1454ab6a363069fb418a117", 3251 | "c63ecefd70b14c268e4cfb113b1dc4eb", 3252 | "a336071f42d94b77aeac4f9d185ccc0c", 3253 | "0d7bd5d5cfba4aaabf64589d054b9d56", 3254 | "77c25dd467f249f2a349af3261032aac", 3255 | "48db30e6f6e0407297c83738a5c6fa13", 3256 | "149bab124f4c4f44b59ef4d63a07f02d", 3257 | "06efa4a5c87e463690f87c9b67e3f44a", 3258 | "3630b3350dc548549631ceb2b46130b6", 3259 | "4acc59eee6f74cfc80b831d0ef177bc6", 3260 | "09ccfba66baa407ca46b82e4238d1ed2", 3261 | "1c16f6e380f843ce8e59fff0d1cad88b", 3262 | "727d0a9eea1143fb97e37e5722e2adb5", 3263 | "c333de07fea040338b250efe6de5bd15", 3264 | "b43d812de0b24b25bd4bf12e33d642ad", 3265 | "21fed1f71da44f21b2fb0814b4de58c5", 3266 | "593709e37e36407da8612ad3f101c0be", 3267 | "40a1e79a8fac4ff4ba1c8f186ac47340", 3268 | "a6d2b1e5f7ff46a8a18a37f2a1a0f526", 3269 | "85b941ee509f411b8e3bd978b3d1cff5", 3270 | "2c800664c8d043db892e40e07fce2f96", 3271 | "317410e8927a49ba8ba968e32269a08f", 3272 | "3fb33e76f8104b04aa18dfc464b72a1b", 3273 | "d6315fd8422541a8bfa04cbabb976e94", 3274 | "58c7d4ffceb44332a3b362737e6a3554", 3275 | "5212b25a72474677b638478932d87425", 3276 | "0d891a5143fa42bfb9b106391eb91939", 3277 | "ed5f5d0280354ac9961fd05488548091", 3278 | "7cd65bceb9cb4944aeb30c186a9bc90e", 3279 | "0dc894352c154805ba2d3596f43c9e4f", 3280 | "ef3e7f7b90d24a39a535963ca42ca0a3", 3281 | "d8a83f84c41d436d9f6c6866527cf7c0", 3282 | "5e9a252ecc7041afafeb4527f214b2fd", 3283 | "a78402b082574cbbbeeeca72584496ec", 3284 | "01688391d2ea438db0388c43408de598", 3285 | "1186620e299d45819962a4aadc384935", 3286 | "31f86ffde7e84dfea6ef496a07a8bac7", 3287 | "52eb4b36d34c4cac84395dc3d7a2e531", 3288 | "a0f11fe12e104dd284054dc9e11c372d", 3289 | "c53d7572399a4e32804c6b353f055030", 3290 | "9a51db6daeb74ac590d120b6a74ce6a3", 3291 | "62afcb8f9fc242a0bf3fb455e0304f96", 3292 | "d444e4552f2c4d35a202e457bf8efd0b", 3293 | "f6ed3a1763d144fcadd5ff7c83966b80", 3294 | "f5fedede8bec441d82804ab9918f5b24", 3295 | "a183da90da714155811e0e0143e316eb", 3296 | "263db6859652481985789ad8da51447c", 3297 | "3aab6c731da44c15a9dfba98672d0735", 3298 | "e8bd7a69d9454970bc358e2994c0d1ba", 3299 | "da20567a8cc6422d8684310b92e9119e", 3300 | "cfd9342f64534a579161b6e2a94a81d8", 3301 | "75dd1253ae5940e19b5e6f745dc25bfa", 3302 | "d9641c8b5ec1466796335ab37adf92fc", 3303 | "7ad81f5aa9424c2a8987d426453c935d", 3304 | "7b7ca5db7bee4456850e3ce8babe2b99", 3305 | "c04f23fa0f0f4e7687a00fb99cc9f293", 3306 | "5afc20c36e1f4a94b82819f732a4d0f6", 3307 | "ca44537116d349ae90f23a0c012a7e00", 3308 | "2b139c7107394539bdb4891f3276301d", 3309 | "0657b8f40f98454eb2d4609bc5ccffe8", 3310 | "1ad5ada5601041f3ab7c126074927fb2", 3311 | "5a81f7fbf0a74a3e8eb09b968c8e5b9b", 3312 | "815adf56656f43b097e7228409d15494", 3313 | "19f3854e27aa4e4ea022d6e0638117f3", 3314 | "084e60db582d4e7283f0adc8e5aeb7f4", 3315 | "6948abc6e29d4b148bf04a9fc609f9e8", 3316 | "109489ef947849ef9f3a069bf2cf25d6", 3317 | "4d746014d6aa4c8d8b375dfe323c2914", 3318 | "ea4ee7e61067487eac60a152067b6485", 3319 | "44a3cc03595a4cb2a4baa16f8e4a9393", 3320 | "1fdca155f1b442099c043c320e569ffd", 3321 | "834ee15d726d4ee19f2e6b3372dead8f" 3322 | ] 3323 | }, 3324 | "outputId": "ac9857a5-9eef-42f8-b85a-fb9b29a0626f" 3325 | }, 3326 | "execution_count": null, 3327 | "outputs": [ 3328 | { 3329 | "output_type": "stream", 3330 | "name": "stdout", 3331 | "text": [ 3332 | "Downloading and preparing dataset 80.23 MiB (download: 80.23 MiB, generated: Unknown size, total: 80.23 MiB) to /root/tensorflow_datasets/imdb_reviews/plain_text/1.0.0...\n" 3333 | ] 3334 | }, 3335 | { 3336 | "output_type": "display_data", 3337 | "data": { 3338 | "text/plain": [ 3339 | "Dl Completed...: 0 url [00:00, ? url/s]" 3340 | ], 3341 | "application/vnd.jupyter.widget-view+json": { 3342 | "version_major": 2, 3343 | "version_minor": 0, 3344 | "model_id": "8fc3ffd3192e410690bfb1c15cc91df8" 3345 | } 3346 | }, 3347 | "metadata": {} 3348 | }, 3349 | { 3350 | "output_type": "display_data", 3351 | "data": { 3352 | "text/plain": [ 3353 | "Dl Size...: 0 MiB [00:00, ? MiB/s]" 3354 | ], 3355 | "application/vnd.jupyter.widget-view+json": { 3356 | "version_major": 2, 3357 | "version_minor": 0, 3358 | "model_id": "63117fcc267e4d9b9d83c81448ec891a" 3359 | } 3360 | }, 3361 | "metadata": {} 3362 | }, 3363 | { 3364 | "output_type": "display_data", 3365 | "data": { 3366 | "text/plain": [ 3367 | "Generating splits...: 0%| | 0/3 [00:00" 3707 | ] 3708 | }, 3709 | "metadata": {}, 3710 | "execution_count": 42 3711 | } 3712 | ] 3713 | }, 3714 | { 3715 | "cell_type": "markdown", 3716 | "source": [ 3717 | "## Sine Positional Embedding\n", 3718 | "\n", 3719 | "This layer calculates the position encoding as a mix of sine and cosine functions with geometrically increasing wavelengths. Defined and formulized in Attention is All You Need.\n", 3720 | "\n", 3721 | "**max_wavelength**: The maximum angular wavelength of the sine/cosine curves, as described in Attention is All You Need. Defaults to 10000." 3722 | ], 3723 | "metadata": { 3724 | "id": "v3W3bPJPz3lx" 3725 | } 3726 | }, 3727 | { 3728 | "cell_type": "code", 3729 | "source": [ 3730 | "token_id_input = keras.Input(\n", 3731 | " shape=(None,),\n", 3732 | " dtype=\"int32\",\n", 3733 | " name=\"token_ids\",\n", 3734 | ")\n", 3735 | "embed = keras.layers.Embedding(\n", 3736 | " input_dim=len(vocab), output_dim=64\n", 3737 | ")(token_id_input)\n", 3738 | "outputs = keras_nlp.layers.SinePositionEncoding()(embed)\n", 3739 | "outputs = embed+outputs\n", 3740 | "outputs = keras_nlp.layers.TransformerEncoder(\n", 3741 | " num_heads=2,\n", 3742 | " intermediate_dim=128,\n", 3743 | " dropout=0.1,\n", 3744 | ")(outputs)\n", 3745 | "outputs = keras.layers.Dense(2)(outputs[:, 0, :])\n", 3746 | "model = keras.Model(\n", 3747 | " inputs=token_id_input,\n", 3748 | " outputs=outputs,\n", 3749 | ")\n", 3750 | "\n", 3751 | "model.summary()" 3752 | ], 3753 | "metadata": { 3754 | "colab": { 3755 | "base_uri": "https://localhost:8080/" 3756 | }, 3757 | "id": "aVk8T47Yzzi4", 3758 | "outputId": "1bc452ab-613d-420d-97bf-3aeb595e6600" 3759 | }, 3760 | "execution_count": null, 3761 | "outputs": [ 3762 | { 3763 | "output_type": "stream", 3764 | "name": "stdout", 3765 | "text": [ 3766 | "Model: \"model_8\"\n", 3767 | "__________________________________________________________________________________________________\n", 3768 | " Layer (type) Output Shape Param # Connected to \n", 3769 | "==================================================================================================\n", 3770 | " token_ids (InputLayer) [(None, None)] 0 [] \n", 3771 | " \n", 3772 | " embedding_3 (Embedding) (None, None, 64) 1226880 ['token_ids[0][0]'] \n", 3773 | " \n", 3774 | " sine_position_encoding_2 (Sine (None, None, 64) 0 ['embedding_3[0][0]'] \n", 3775 | " PositionEncoding) \n", 3776 | " \n", 3777 | " tf.__operators__.add_2 (TFOpLa (None, None, 64) 0 ['embedding_3[0][0]', \n", 3778 | " mbda) 'sine_position_encoding_2[0][0]'\n", 3779 | " ] \n", 3780 | " \n", 3781 | " transformer_encoder_11 (Transf (None, None, 64) 33472 ['tf.__operators__.add_2[0][0]'] \n", 3782 | " ormerEncoder) \n", 3783 | " \n", 3784 | " tf.__operators__.getitem_14 (S (None, 64) 0 ['transformer_encoder_11[0][0]'] \n", 3785 | " licingOpLambda) \n", 3786 | " \n", 3787 | " dense_8 (Dense) (None, 2) 130 ['tf.__operators__.getitem_14[0][\n", 3788 | " 0]'] \n", 3789 | " \n", 3790 | "==================================================================================================\n", 3791 | "Total params: 1,260,482\n", 3792 | "Trainable params: 1,260,482\n", 3793 | "Non-trainable params: 0\n", 3794 | "__________________________________________________________________________________________________\n" 3795 | ] 3796 | } 3797 | ] 3798 | }, 3799 | { 3800 | "cell_type": "code", 3801 | "source": [ 3802 | "model.compile(\n", 3803 | " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", 3804 | " optimizer=keras.optimizers.experimental.AdamW(5e-5),\n", 3805 | " metrics=keras.metrics.SparseCategoricalAccuracy(),\n", 3806 | " jit_compile=True,\n", 3807 | ")\n", 3808 | "model.fit(\n", 3809 | " imdb_preproc_train_ds,\n", 3810 | " validation_data=imdb_preproc_val_ds,\n", 3811 | " epochs=3,\n", 3812 | ")" 3813 | ], 3814 | "metadata": { 3815 | "colab": { 3816 | "base_uri": "https://localhost:8080/" 3817 | }, 3818 | "id": "4Vi6tkusz8-k", 3819 | "outputId": "9a5bd483-fdf2-4086-f3e7-10a71e4cf8c9" 3820 | }, 3821 | "execution_count": null, 3822 | "outputs": [ 3823 | { 3824 | "output_type": "stream", 3825 | "name": "stdout", 3826 | "text": [ 3827 | "Epoch 1/3\n", 3828 | "1563/1563 [==============================] - 159s 97ms/step - loss: 0.7058 - sparse_categorical_accuracy: 0.5028 - val_loss: 0.6950 - val_sparse_categorical_accuracy: 0.5000\n", 3829 | "Epoch 2/3\n", 3830 | "1563/1563 [==============================] - 159s 102ms/step - loss: 0.6889 - sparse_categorical_accuracy: 0.5364 - val_loss: 0.6695 - val_sparse_categorical_accuracy: 0.5344\n", 3831 | "Epoch 3/3\n", 3832 | "1563/1563 [==============================] - 155s 99ms/step - loss: 0.5447 - sparse_categorical_accuracy: 0.7310 - val_loss: 0.4687 - val_sparse_categorical_accuracy: 0.7697\n" 3833 | ] 3834 | }, 3835 | { 3836 | "output_type": "execute_result", 3837 | "data": { 3838 | "text/plain": [ 3839 | "" 3840 | ] 3841 | }, 3842 | "metadata": {}, 3843 | "execution_count": 49 3844 | } 3845 | ] 3846 | }, 3847 | { 3848 | "cell_type": "markdown", 3849 | "source": [ 3850 | "## Rotary embeddings\n", 3851 | "\n", 3852 | "Rotary position embedding is a sort of position embedding that naturally combines explicit relative position dependency in the formulation of self-attention while encoding absolute positional information with rotation matrices.\n", 3853 | "\n", 3854 | "**rotary_ndims**: The rotatory matrix dimensions\n", 3855 | "\n", 3856 | "**max_wavelength**: The maximum angular wavelength of the sine/cosine curves, as described in Attention is All You Need. Defaults to 10000." 3857 | ], 3858 | "metadata": { 3859 | "id": "S_48Odbh7CCs" 3860 | } 3861 | }, 3862 | { 3863 | "cell_type": "code", 3864 | "source": [ 3865 | "class RotaryEmbedding(keras.layers.Layer):\n", 3866 | " def __init__(self, rotary_ndims, max_wavelength=10000):\n", 3867 | " super().__init__()\n", 3868 | " self.rotary_ndims = int(rotary_ndims)\n", 3869 | " self.max_wavelength = max_wavelength\n", 3870 | " self.to_qk = keras.layers.Dense(units=rotary_ndims * 4, use_bias=False)\n", 3871 | "\n", 3872 | " def _apply_rotary_pos_emb(self, tensor, cos_emb, sin_emb):\n", 3873 | " cos_emb = cos_emb[: tf.shape(tensor)[0], : tf.shape(tensor)[1]]\n", 3874 | " sin_emb = sin_emb[: tf.shape(tensor)[0], : tf.shape(tensor)[1]]\n", 3875 | " x1, x2 = tf.split(tensor, 2, axis=-1)\n", 3876 | " half_rot_tensor = tf.concat((-x2, x1), axis=-1)\n", 3877 | " ret = (tensor * cos_emb) + (half_rot_tensor * sin_emb)\n", 3878 | " return ret\n", 3879 | "\n", 3880 | " def _compute_cos_sin_embedding(self, x, seq_dim=1):\n", 3881 | " seq_len = tf.shape(x)[seq_dim]\n", 3882 | " range = tf.range(\n", 3883 | " start=0, limit=self.rotary_ndims, delta=2, dtype=\"float32\"\n", 3884 | " )\n", 3885 | " inverse_freq = 1.0 / (\n", 3886 | " self.max_wavelength ** (range / self.rotary_ndims)\n", 3887 | " )\n", 3888 | " tensor = tf.range(seq_len, dtype=inverse_freq.dtype)\n", 3889 | " freqs = tf.einsum(\"i, j -> ij\", tensor, inverse_freq)\n", 3890 | " embedding = tf.concat((freqs, freqs), axis=-1)\n", 3891 | " return tf.cos(embedding), tf.sin(embedding)\n", 3892 | "\n", 3893 | " def call(self, x):\n", 3894 | " qk = self.to_qk(x)\n", 3895 | " qk = tf.split(qk, num_or_size_splits=2, axis=-1)\n", 3896 | " query, key = qk\n", 3897 | "\n", 3898 | " query_rot, query_pass = (\n", 3899 | " query[..., : self.rotary_ndims],\n", 3900 | " query[..., self.rotary_ndims :],\n", 3901 | " )\n", 3902 | " key_rot, key_pass = (\n", 3903 | " key[..., : self.rotary_ndims],\n", 3904 | " key[..., self.rotary_ndims :],\n", 3905 | " )\n", 3906 | " cos_emb, sin_emb = self._compute_cos_sin_embedding(key_rot, seq_dim=1)\n", 3907 | " query_emb = self._apply_rotary_pos_emb(query_rot, cos_emb, sin_emb)\n", 3908 | " key_emb = self._apply_rotary_pos_emb(key_rot, cos_emb, sin_emb)\n", 3909 | " query = tf.concat((query_emb, query_pass), axis=-1)\n", 3910 | "\n", 3911 | " return query\n", 3912 | "\n", 3913 | " def get_config(self):\n", 3914 | " config = super().get_config()\n", 3915 | " config.update(\n", 3916 | " {\n", 3917 | " \"rotary_ndims\": self.rotary_ndims,\n", 3918 | " \"max_wavelength\": self.max_wavelength,\n", 3919 | " }\n", 3920 | " )\n", 3921 | "\n", 3922 | " return config\n", 3923 | "\n" 3924 | ], 3925 | "metadata": { 3926 | "id": "_bqIXwR12dfi", 3927 | "colab": { 3928 | "base_uri": "https://localhost:8080/" 3929 | }, 3930 | "outputId": "7986b80c-78f2-4248-8aff-82cf3a8a7f4b" 3931 | }, 3932 | "execution_count": null, 3933 | "outputs": [ 3934 | { 3935 | "output_type": "execute_result", 3936 | "data": { 3937 | "text/plain": [ 3938 | "TensorShape([2, 128])" 3939 | ] 3940 | }, 3941 | "metadata": {}, 3942 | "execution_count": 46 3943 | } 3944 | ] 3945 | }, 3946 | { 3947 | "cell_type": "code", 3948 | "source": [ 3949 | "from einops import rearrange, repeat\n", 3950 | "\n", 3951 | "token_id_input = keras.Input(\n", 3952 | " shape=(None,),\n", 3953 | " dtype=\"int32\",\n", 3954 | " name=\"token_ids\",\n", 3955 | ")\n", 3956 | "embed = keras.layers.Embedding(\n", 3957 | " input_dim=len(vocab), output_dim=128\n", 3958 | ")(token_id_input)\n", 3959 | "outputs = RotaryEmbedding(64)(embed)\n", 3960 | "outputs=outputs+embed\n", 3961 | "outputs = keras_nlp.layers.TransformerEncoder(\n", 3962 | " num_heads=2,\n", 3963 | " intermediate_dim=128,\n", 3964 | " dropout=0.1,\n", 3965 | ")(outputs)\n", 3966 | "outputs = keras.layers.Dense(2)(outputs[:, 0, :])\n", 3967 | "model = keras.Model(\n", 3968 | " inputs=token_id_input,\n", 3969 | " outputs=outputs,\n", 3970 | ")\n", 3971 | "\n", 3972 | "model.summary()" 3973 | ], 3974 | "metadata": { 3975 | "colab": { 3976 | "base_uri": "https://localhost:8080/" 3977 | }, 3978 | "id": "o4mc34DT7N6i", 3979 | "outputId": "7e2159ec-3e7a-4a96-e702-adee68c3b8c6" 3980 | }, 3981 | "execution_count": null, 3982 | "outputs": [ 3983 | { 3984 | "output_type": "stream", 3985 | "name": "stdout", 3986 | "text": [ 3987 | "Model: \"model\"\n", 3988 | "__________________________________________________________________________________________________\n", 3989 | " Layer (type) Output Shape Param # Connected to \n", 3990 | "==================================================================================================\n", 3991 | " token_ids (InputLayer) [(None, None)] 0 [] \n", 3992 | " \n", 3993 | " embedding_7 (Embedding) (None, None, 128) 2453760 ['token_ids[0][0]'] \n", 3994 | " \n", 3995 | " rotary_embedding_37 (RotaryEmb (None, None, 128) 32768 ['embedding_7[0][0]'] \n", 3996 | " edding) \n", 3997 | " \n", 3998 | " tf.__operators__.add_3 (TFOpLa (None, None, 128) 0 ['rotary_embedding_37[0][0]', \n", 3999 | " mbda) 'embedding_7[0][0]'] \n", 4000 | " \n", 4001 | " transformer_encoder (Transform (None, None, 128) 99584 ['tf.__operators__.add_3[0][0]'] \n", 4002 | " erEncoder) \n", 4003 | " \n", 4004 | " tf.__operators__.getitem (Slic (None, 128) 0 ['transformer_encoder[0][0]'] \n", 4005 | " ingOpLambda) \n", 4006 | " \n", 4007 | " dense_37 (Dense) (None, 2) 258 ['tf.__operators__.getitem[0][0]'\n", 4008 | " ] \n", 4009 | " \n", 4010 | "==================================================================================================\n", 4011 | "Total params: 2,586,370\n", 4012 | "Trainable params: 2,586,370\n", 4013 | "Non-trainable params: 0\n", 4014 | "__________________________________________________________________________________________________\n" 4015 | ] 4016 | } 4017 | ] 4018 | }, 4019 | { 4020 | "cell_type": "code", 4021 | "source": [ 4022 | "model.compile(\n", 4023 | " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", 4024 | " optimizer=keras.optimizers.experimental.AdamW(5e-5),\n", 4025 | " metrics=keras.metrics.SparseCategoricalAccuracy(),\n", 4026 | " jit_compile=True,\n", 4027 | ")\n", 4028 | "model.fit(\n", 4029 | " imdb_preproc_train_ds,\n", 4030 | " validation_data=imdb_preproc_val_ds,\n", 4031 | " epochs=3,\n", 4032 | ")" 4033 | ], 4034 | "metadata": { 4035 | "colab": { 4036 | "base_uri": "https://localhost:8080/" 4037 | }, 4038 | "id": "fT4eWdIR7Qcb", 4039 | "outputId": "b5a44040-ce02-48ef-d9ea-4937c5f5eb30" 4040 | }, 4041 | "execution_count": null, 4042 | "outputs": [ 4043 | { 4044 | "output_type": "stream", 4045 | "name": "stdout", 4046 | "text": [ 4047 | "Epoch 1/3\n", 4048 | "1563/1563 [==============================] - 32s 16ms/step - loss: 0.7163 - sparse_categorical_accuracy: 0.5028 - val_loss: 0.6969 - val_sparse_categorical_accuracy: 0.5000\n", 4049 | "Epoch 2/3\n", 4050 | "1563/1563 [==============================] - 23s 15ms/step - loss: 0.7025 - sparse_categorical_accuracy: 0.5047 - val_loss: 0.6964 - val_sparse_categorical_accuracy: 0.5000\n", 4051 | "Epoch 3/3\n", 4052 | "1563/1563 [==============================] - 23s 15ms/step - loss: 0.6986 - sparse_categorical_accuracy: 0.5032 - val_loss: 0.6956 - val_sparse_categorical_accuracy: 0.5000\n" 4053 | ] 4054 | }, 4055 | { 4056 | "output_type": "execute_result", 4057 | "data": { 4058 | "text/plain": [ 4059 | "" 4060 | ] 4061 | }, 4062 | "metadata": {}, 4063 | "execution_count": 47 4064 | } 4065 | ] 4066 | }, 4067 | { 4068 | "cell_type": "markdown", 4069 | "source": [ 4070 | "## Alibi embeddings\n", 4071 | "\n", 4072 | "Without using actual position embeddings, ALiBi completes the positional embedding task. Instead, ALiBi penalises the attention value that a given query can give to a given key based on how far apart the key and query are from one another when calculating the attention between a given key and query. As a result, the penalty is relatively low when a key and question are close together and very high when they are far apart.\n", 4073 | "\n", 4074 | "The idea behind this strategy is the obvious one that words that are nearby matter a lot more than words that are far away. It takes in the attention head size and total heads as the input parameters.\n", 4075 | "\n", 4076 | "\n" 4077 | ], 4078 | "metadata": { 4079 | "id": "Ads3RvmfDIae" 4080 | } 4081 | }, 4082 | { 4083 | "cell_type": "code", 4084 | "source": [ 4085 | "!pip install einops" 4086 | ], 4087 | "metadata": { 4088 | "colab": { 4089 | "base_uri": "https://localhost:8080/" 4090 | }, 4091 | "id": "_EnisJQ4GcaL", 4092 | "outputId": "5833bca3-b46a-4ce7-fea5-aaa9d3bbb1fb" 4093 | }, 4094 | "execution_count": null, 4095 | "outputs": [ 4096 | { 4097 | "output_type": "stream", 4098 | "name": "stdout", 4099 | "text": [ 4100 | "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", 4101 | "Collecting einops\n", 4102 | " Downloading einops-0.6.1-py3-none-any.whl (42 kB)\n", 4103 | "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.2/42.2 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", 4104 | "\u001b[?25hInstalling collected packages: einops\n", 4105 | "Successfully installed einops-0.6.1\n" 4106 | ] 4107 | } 4108 | ] 4109 | }, 4110 | { 4111 | "cell_type": "code", 4112 | "source": [ 4113 | "import math\n", 4114 | "from einops import rearrange, repeat, reduce\n", 4115 | "\n", 4116 | "\n", 4117 | "class AlibiPositionalBias(layers.Layer):\n", 4118 | " def __init__(self, heads, total_heads):\n", 4119 | " super(AlibiPositionalBias,self).__init__()\n", 4120 | " self.heads = heads\n", 4121 | " self.total_heads = total_heads\n", 4122 | " slopes = self._get_slopes(heads)\n", 4123 | " slopes = tf.convert_to_tensor(slopes, dtype=tf.float32)\n", 4124 | " slopes = rearrange(slopes, 'h -> h 1 1')\n", 4125 | " self.slopes =slopes\n", 4126 | " self.bias=None\n", 4127 | "\n", 4128 | " def get_bias(self, i, j):\n", 4129 | " i_arange = tf.range(j - i, j)\n", 4130 | " j_arange = tf.range(j)\n", 4131 | " bias = -tf.math.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))\n", 4132 | " return bias\n", 4133 | " @staticmethod\n", 4134 | " def _get_slopes(heads):\n", 4135 | " def get_slopes_power_of_2(n):\n", 4136 | " start = (2**(-2**-(math.log2(n)-3)))\n", 4137 | " ratio = start\n", 4138 | " return [start*ratio**i for i in range(n)]\n", 4139 | "\n", 4140 | " if math.log2(heads).is_integer():\n", 4141 | " return get_slopes_power_of_2(heads)\n", 4142 | "\n", 4143 | " closest_power_of_2 = 2 ** math.floor(math.log2(heads))\n", 4144 | " return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]\n", 4145 | "\n", 4146 | "\n", 4147 | " def call(self, i, j):\n", 4148 | " h = self.total_heads\n", 4149 | "\n", 4150 | " if self.bias and self.bias.shape[-1] >= j:\n", 4151 | " return self.bias[..., :i, :j]\n", 4152 | "\n", 4153 | " bias = self.get_bias(i, j)\n", 4154 | " bias = tf.cast(bias,dtype=tf.float32) * self.slopes\n", 4155 | " self.bias = bias\n", 4156 | "\n", 4157 | " return self.bias\n", 4158 | "\n", 4159 | "class LearnedAlibiPositionalBias(AlibiPositionalBias):\n", 4160 | " def __init__(self, heads, total_heads):\n", 4161 | " super(LearnedAlibiPositionalBias,self).__init__(heads, total_heads)\n", 4162 | " log_slopes = tf.math.log(self.slopes)\n", 4163 | " self.learned_logslopes = tf.Variable(log_slopes)\n", 4164 | "\n", 4165 | " def call(self, i, j):\n", 4166 | " h = self.heads\n", 4167 | "\n", 4168 | " def get_slopes(param):\n", 4169 | " return tf.math.exp(param)\n", 4170 | "\n", 4171 | " if self.bias and self.bias.shape[-1] >= j:\n", 4172 | " bias = self.bias[..., :i, :j]\n", 4173 | " else:\n", 4174 | " bias = self.get_bias(i, j)\n", 4175 | " self.bias=bias\n", 4176 | "\n", 4177 | " slopes = get_slopes(self.learned_logslopes)\n", 4178 | " bias = tf.cast(bias,dtype=tf.float32) * slopes\n", 4179 | "\n", 4180 | " return bias" 4181 | ], 4182 | "metadata": { 4183 | "id": "YhNrk6dYCsPI" 4184 | }, 4185 | "execution_count": null, 4186 | "outputs": [] 4187 | }, 4188 | { 4189 | "cell_type": "code", 4190 | "source": [ 4191 | "token_id_input = keras.Input(\n", 4192 | " shape=(None,),\n", 4193 | " dtype=\"int32\",\n", 4194 | " name=\"token_ids\",\n", 4195 | ")\n", 4196 | "embed = keras.layers.Embedding(\n", 4197 | " input_dim=len(vocab), output_dim=64\n", 4198 | ")(token_id_input)\n", 4199 | "outputs = embed+LearnedAlibiPositionalBias(1,32)(512,64)\n", 4200 | "outputs = keras_nlp.layers.TransformerEncoder(\n", 4201 | " num_heads=2,\n", 4202 | " intermediate_dim=128,\n", 4203 | " dropout=0.1,\n", 4204 | ")(outputs)\n", 4205 | "outputs = keras.layers.Dense(2)(outputs[:, 0, :])\n", 4206 | "model = keras.Model(\n", 4207 | " inputs=token_id_input,\n", 4208 | " outputs=outputs,\n", 4209 | ")\n", 4210 | "\n", 4211 | "model.summary()" 4212 | ], 4213 | "metadata": { 4214 | "colab": { 4215 | "base_uri": "https://localhost:8080/" 4216 | }, 4217 | "outputId": "666df52c-7b73-4801-9d55-65c401886bf1", 4218 | "id": "ZrsuDAbfV-uA" 4219 | }, 4220 | "execution_count": null, 4221 | "outputs": [ 4222 | { 4223 | "output_type": "stream", 4224 | "name": "stdout", 4225 | "text": [ 4226 | "Model: \"model_2\"\n", 4227 | "_________________________________________________________________\n", 4228 | " Layer (type) Output Shape Param # \n", 4229 | "=================================================================\n", 4230 | " token_ids (InputLayer) [(None, None)] 0 \n", 4231 | " \n", 4232 | " embedding_2 (Embedding) (None, None, 64) 1226880 \n", 4233 | " \n", 4234 | " tf.__operators__.add_2 (TFO (None, 512, 64) 0 \n", 4235 | " pLambda) \n", 4236 | " \n", 4237 | " transformer_encoder_2 (Tran (None, 512, 64) 33472 \n", 4238 | " sformerEncoder) \n", 4239 | " \n", 4240 | " tf.__operators__.getitem_2 (None, 64) 0 \n", 4241 | " (SlicingOpLambda) \n", 4242 | " \n", 4243 | " dense_2 (Dense) (None, 2) 130 \n", 4244 | " \n", 4245 | "=================================================================\n", 4246 | "Total params: 1,260,482\n", 4247 | "Trainable params: 1,260,482\n", 4248 | "Non-trainable params: 0\n", 4249 | "_________________________________________________________________\n" 4250 | ] 4251 | } 4252 | ] 4253 | }, 4254 | { 4255 | "cell_type": "code", 4256 | "source": [ 4257 | "model.compile(\n", 4258 | " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", 4259 | " optimizer=keras.optimizers.experimental.AdamW(5e-5),\n", 4260 | " metrics=keras.metrics.SparseCategoricalAccuracy(),\n", 4261 | " jit_compile=True,\n", 4262 | ")\n", 4263 | "model.fit(\n", 4264 | " imdb_preproc_train_ds,\n", 4265 | " validation_data=imdb_preproc_val_ds,\n", 4266 | " epochs=3,\n", 4267 | ")" 4268 | ], 4269 | "metadata": { 4270 | "id": "suG3kCuCV-uL" 4271 | }, 4272 | "execution_count": null, 4273 | "outputs": [] 4274 | }, 4275 | { 4276 | "cell_type": "code", 4277 | "source": [], 4278 | "metadata": { 4279 | "id": "HTPukbUiM3W8" 4280 | }, 4281 | "execution_count": null, 4282 | "outputs": [] 4283 | } 4284 | ] 4285 | } --------------------------------------------------------------------------------