├── README.md
└── YoutubeSummarization.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # YoutubeVideoSummarization_LLMs
2 |
3 | Youtube Video Summarisation using Mistral 7B, LangChain, and Whisper
4 |
5 | YouTube is a treasure trove of knowledge and entertainment, but it can be challenging to sift through long videos to extract the key takeaways.
6 | Enter Whisper, LangChain and Mistral, groundbreaking technologies reshaping the landscape of video summarization, enabling users to grasp the essence of lengthy videos swiftly and efficiently.
7 | In this notebook, we'll walk you through how to use the three tools together to quickly and easily summarize video content.
8 |
9 |
--------------------------------------------------------------------------------
/YoutubeSummarization.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {
7 | "colab": {
8 | "base_uri": "https://localhost:8080/"
9 | },
10 | "id": "Tnct2r11pDA1",
11 | "outputId": "b3066d8a-cb6c-47b1-a1c1-61b18577a99b"
12 | },
13 | "outputs": [
14 | {
15 | "name": "stderr",
16 | "output_type": "stream",
17 | "text": [
18 | "/usr/local/lib/python3.10/dist-packages/blurr/text/modeling/question_answering.py:31: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
19 | " squad_metric = load_metric(\"squad\")\n",
20 | "/usr/local/lib/python3.10/dist-packages/datasets/load.py:752: FutureWarning: The repository for squad contains custom code which must be executed to correctly load the metric. You can inspect the repository content at https://raw.githubusercontent.com/huggingface/datasets/2.16.0/metrics/squad/squad.py\n",
21 | "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
22 | "Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.\n",
23 | " warnings.warn(\n"
24 | ]
25 | },
26 | {
27 | "data": {
28 | "text/plain": [
29 | "True"
30 | ]
31 | },
32 | "execution_count": 1,
33 | "metadata": {},
34 | "output_type": "execute_result"
35 | }
36 | ],
37 | "source": [
38 | "import datasets\n",
39 | "import pandas as pd\n",
40 | "from fastai.text.all import *\n",
41 | "# from transformers import *\n",
42 | "\n",
43 | "from blurr.text.data.all import *\n",
44 | "from blurr.text.modeling.all import *\n",
45 | "\n",
46 | "import nltk\n",
47 | "nltk.download('punkt', quiet=True)"
48 | ]
49 | },
50 | {
51 | "cell_type": "code",
52 | "execution_count": null,
53 | "metadata": {
54 | "colab": {
55 | "base_uri": "https://localhost:8080/",
56 | "height": 1000,
57 | "referenced_widgets": [
58 | "bf85b12c3ea642bb8e1d25d6d8b44d3c",
59 | "54a8a2e471ac44f3afc36dde06e4207a",
60 | "37e74e3ca09a4c509b946f77a0115bda",
61 | "2f7e6acb864549679927882f4497effb",
62 | "1ebd4932bfe041c294090a2b89f93c3e",
63 | "e57e7c2cd07841a297e0940b70a90ce1",
64 | "3424edfcda01476eb98db85844adff6a",
65 | "aed709ca704d4107a1c5c5bb7bc7b952",
66 | "02fd5be983d84eb5853923885799f2d8",
67 | "1fa217a9225c40efbc7c6b7f56708e1b",
68 | "e231b485d1b3409580ba90a3e3dffabd",
69 | "c394c8051f23404793a6f561a571ffe0",
70 | "f2e04dbe648c42b49749ba1f1e163804",
71 | "63c5e25becc147b6b44ba51e21ca6dda",
72 | "77c9e6712bbd48f3a65551141b96a9ad",
73 | "b29fb7c49a4043b2b82b54564bdf4a50",
74 | "778b7e42ba524cb1a9f34e7d17f69d86",
75 | "f38f18f13a6b443dae71a939af6fe140",
76 | "384b6149860b4a849fb0c981d5da3ba6",
77 | "324c0fdeed794080adab5a63cc61fd72",
78 | "264de8716c564a399f2624ec32a471e3",
79 | "1e7755e63dc34a7c8be3d3da1082881f",
80 | "d7d4ac5274c644a7a070cdd9396767f7",
81 | "cb4e0d12e4164d14af0f9ab34e4374b2",
82 | "86ea63fd58fa4307b3faf4b50a3116a3",
83 | "b73eb505bceb46afb46bd541eba365f3",
84 | "69762e15163e4cfca7b354a3f9832b44",
85 | "1ada03d73946419ea7bf8e7727ea0a59",
86 | "093df990a07a404d8a56772596f7801d",
87 | "751aed48bd8d429e900f0efa54df30cc",
88 | "bec7ed1e35d54efb8650a13ee84b67c5",
89 | "5877b7aec265429c9006dd714f5a2887",
90 | "8d7a4b2fd462449fa977f934206e0585",
91 | "88ec035e13d74bfe87330e62f565346b",
92 | "5470199cce0b49859c3261a10b4a220d",
93 | "e21d2378e1ec450ba722f108b97253f7",
94 | "83a62efdd9b44580b64fc07b180e70c3",
95 | "5fd3a820509b4d8a93555475e023792e",
96 | "383f0e618ec94d299024087d2454ba74",
97 | "a3ae11c35376463493c5fe646cfee862",
98 | "f8bad810f43745be9a56e9eb326a2847",
99 | "aa1ab5bc0f0545e7a9f0534a0196aa9d",
100 | "9b0708935f8741028b74f7ba7898c40b",
101 | "b4c0e4a5ef444865a4a47fbfdaeca142",
102 | "ec6ab3e41e2e4709a6a274407abaa8fc",
103 | "8309104e4b5547d189cec761a7b20d17",
104 | "206a8d34539e41d8a58c9af9a1e6dc17",
105 | "6e572ca90a2e433f9447fce8d83485dd",
106 | "c8d48420a23b4d459f35b1782f92149f",
107 | "6bdae43bc1fc402699f42c2436abec68",
108 | "337d4377a5db49c28bce89d05b4147dd",
109 | "9f313f2f62d54f59ab42a5e3ec887285",
110 | "da5482c545df47e99d0c67dcb78d4819",
111 | "67943a2da8ca4363bb02625886ebbaac",
112 | "782457319f27485abb0a7439d03a5ac4",
113 | "35a8ab96926e4326ba805c336c518972",
114 | "b7cb8dd1b04e47278c36f6b6e739c184",
115 | "33320ae023154082b2c81593d16f2e9f",
116 | "d4b81ce4d1f5479d99b2c335f5e2bfbf",
117 | "ccafded2fa9d40388f19dc40c0b59bc2",
118 | "a6803114f3144eb4a5800711e6756335",
119 | "e4b7dcbf3c85429698d7bd8fb889efd5",
120 | "23ea097a36f14df6beb53e6b4bc9dfe1",
121 | "4f0df75674bb4f3e904a829906334f97",
122 | "41fc68dde7d0400c9fe3d2aa6bdde602",
123 | "7734fc3cee4e495bab2ecfc11ccb2f82",
124 | "656ee2c7ee8646b2b2bc000969411021",
125 | "047079d8262b4f94a29686687c09fbbf",
126 | "05f9572a3967425a9cc749c62b66f873",
127 | "e1b1a813a29447dcb925c89c533ad42d",
128 | "40dc5cfabae042e4887f26f539458572",
129 | "8b4e76a4437d4fb0a21c2aa3299aa357",
130 | "72df7d047b25461baeae0e80a87719bd",
131 | "c2f4b4f547aa407faa5fa76be1139093",
132 | "f5d8908c52d140a48431f1fa30145d0f",
133 | "10d762804c644f1dbb01ae0bc59ababa",
134 | "1f797a0301204f93bf63427022b02515",
135 | "d648db571011429bbc3cf214360350f2",
136 | "04ee3b7b051f4c15bb59f996f42ab385",
137 | "f8d4ca3632824c50a6b560ef0f1cc1ef",
138 | "f426ad9df02f4380af6d7c1f217b34ba",
139 | "9b980e90f069420e9a392fe82a80784a",
140 | "4cfb4111507b4dfa8d4461a8b1be1489",
141 | "160b1f37aa3d48129639e663a8907abb",
142 | "16026cb519b84eb990389d9a4f152f09",
143 | "4aee7a184c07486a88104dd8e9f229c4",
144 | "1735c76560a5471da7301a5242cfbeff",
145 | "67c5747c63834c40b0b687ea2aa274f1"
146 | ]
147 | },
148 | "id": "MfDE_4QBpC-d",
149 | "outputId": "7ea87b60-35f4-4bbb-ae89-716dfffe9fb2"
150 | },
151 | "outputs": [
152 | {
153 | "data": {
154 | "application/vnd.jupyter.widget-view+json": {
155 | "model_id": "bf85b12c3ea642bb8e1d25d6d8b44d3c",
156 | "version_major": 2,
157 | "version_minor": 0
158 | },
159 | "text/plain": [
160 | "Downloading data: 0%| | 0.00/313M [00:00, ?B/s]"
161 | ]
162 | },
163 | "metadata": {},
164 | "output_type": "display_data"
165 | },
166 | {
167 | "data": {
168 | "application/vnd.jupyter.widget-view+json": {
169 | "model_id": "c394c8051f23404793a6f561a571ffe0",
170 | "version_major": 2,
171 | "version_minor": 0
172 | },
173 | "text/plain": [
174 | "Downloading data: 0%| | 0.00/304M [00:00, ?B/s]"
175 | ]
176 | },
177 | "metadata": {},
178 | "output_type": "display_data"
179 | },
180 | {
181 | "data": {
182 | "application/vnd.jupyter.widget-view+json": {
183 | "model_id": "d7d4ac5274c644a7a070cdd9396767f7",
184 | "version_major": 2,
185 | "version_minor": 0
186 | },
187 | "text/plain": [
188 | "Downloading data: 0%| | 0.00/155M [00:00, ?B/s]"
189 | ]
190 | },
191 | "metadata": {},
192 | "output_type": "display_data"
193 | },
194 | {
195 | "data": {
196 | "application/vnd.jupyter.widget-view+json": {
197 | "model_id": "88ec035e13d74bfe87330e62f565346b",
198 | "version_major": 2,
199 | "version_minor": 0
200 | },
201 | "text/plain": [
202 | "Downloading data: 0%| | 0.00/34.7M [00:00, ?B/s]"
203 | ]
204 | },
205 | "metadata": {},
206 | "output_type": "display_data"
207 | },
208 | {
209 | "data": {
210 | "application/vnd.jupyter.widget-view+json": {
211 | "model_id": "ec6ab3e41e2e4709a6a274407abaa8fc",
212 | "version_major": 2,
213 | "version_minor": 0
214 | },
215 | "text/plain": [
216 | "Downloading data: 0%| | 0.00/30.0M [00:00, ?B/s]"
217 | ]
218 | },
219 | "metadata": {},
220 | "output_type": "display_data"
221 | },
222 | {
223 | "data": {
224 | "application/vnd.jupyter.widget-view+json": {
225 | "model_id": "35a8ab96926e4326ba805c336c518972",
226 | "version_major": 2,
227 | "version_minor": 0
228 | },
229 | "text/plain": [
230 | "Generating train split: 0%| | 0/287113 [00:00, ? examples/s]"
231 | ]
232 | },
233 | "metadata": {},
234 | "output_type": "display_data"
235 | },
236 | {
237 | "data": {
238 | "application/vnd.jupyter.widget-view+json": {
239 | "model_id": "656ee2c7ee8646b2b2bc000969411021",
240 | "version_major": 2,
241 | "version_minor": 0
242 | },
243 | "text/plain": [
244 | "Generating validation split: 0%| | 0/13368 [00:00, ? examples/s]"
245 | ]
246 | },
247 | "metadata": {},
248 | "output_type": "display_data"
249 | },
250 | {
251 | "data": {
252 | "application/vnd.jupyter.widget-view+json": {
253 | "model_id": "d648db571011429bbc3cf214360350f2",
254 | "version_major": 2,
255 | "version_minor": 0
256 | },
257 | "text/plain": [
258 | "Generating test split: 0%| | 0/11490 [00:00, ? examples/s]"
259 | ]
260 | },
261 | "metadata": {},
262 | "output_type": "display_data"
263 | },
264 | {
265 | "data": {
266 | "text/html": [
267 | "\n",
268 | "
\n",
269 | "
\n",
270 | "\n",
283 | "
\n",
284 | " \n",
285 | " \n",
286 | " | \n",
287 | " article | \n",
288 | " highlights | \n",
289 | " id | \n",
290 | "
\n",
291 | " \n",
292 | " \n",
293 | " \n",
294 | " | 0 | \n",
295 | " LONDON, England (Reuters) -- Harry Potter star Daniel Radcliffe gains access to a reported £20 million ($41.1 million) fortune as he turns 18 on Monday, but he insists the money won't cast a spell on him. Daniel Radcliffe as Harry Potter in \"Harry Potter and the Order of the Phoenix\" To the disappointment of gossip columnists around the world, the young actor says he has no plans to fritter his cash away on fast cars, drink and celebrity parties. \"I don't plan to be one of those people who, as soon as they turn 18, suddenly buy themselves a massive sports car collection or something simila... | \n",
296 | " Harry Potter star Daniel Radcliffe gets £20M fortune as he turns 18 Monday .\\nYoung actor says he has no plans to fritter his cash away .\\nRadcliffe's earnings from first five Potter films have been held in trust fund . | \n",
297 | " 42c027e4ff9730fbb3de84c1af0d2c506e41c3e4 | \n",
298 | "
\n",
299 | " \n",
300 | " | 1 | \n",
301 | " Editor's note: In our Behind the Scenes series, CNN correspondents share their experiences in covering news and analyze the stories behind the events. Here, Soledad O'Brien takes users inside a jail where many of the inmates are mentally ill. An inmate housed on the \"forgotten floor,\" where many mentally ill inmates are housed in Miami before trial. MIAMI, Florida (CNN) -- The ninth floor of the Miami-Dade pretrial detention facility is dubbed the \"forgotten floor.\" Here, inmates with the most severe mental illnesses are incarcerated until they're ready to appear in court. Most often, they... | \n",
302 | " Mentally ill inmates in Miami are housed on the \"forgotten floor\"\\nJudge Steven Leifman says most are there as a result of \"avoidable felonies\"\\nWhile CNN tours facility, patient shouts: \"I am the son of the president\"\\nLeifman says the system is unjust and he's fighting for change . | \n",
303 | " ee8871b15c50d0db17b0179a6d2beab35065f1e9 | \n",
304 | "
\n",
305 | " \n",
306 | " | 2 | \n",
307 | " MINNEAPOLIS, Minnesota (CNN) -- Drivers who were on the Minneapolis bridge when it collapsed told harrowing tales of survival. \"The whole bridge from one side of the Mississippi to the other just completely gave way, fell all the way down,\" survivor Gary Babineau told CNN. \"I probably had a 30-, 35-foot free fall. And there's cars in the water, there's cars on fire. The whole bridge is down.\" He said his back was injured but he determined he could move around. \"I realized there was a school bus right next to me, and me and a couple of other guys went over and started lifting the kids off t... | \n",
308 | " NEW: \"I thought I was going to die,\" driver says .\\nMan says pickup truck was folded in half; he just has cut on face .\\nDriver: \"I probably had a 30-, 35-foot free fall\"\\nMinnesota bridge collapsed during rush hour Wednesday . | \n",
309 | " 06352019a19ae31e527f37f7571c6dd7f0c5da37 | \n",
310 | "
\n",
311 | " \n",
312 | " | 3 | \n",
313 | " WASHINGTON (CNN) -- Doctors removed five small polyps from President Bush's colon on Saturday, and \"none appeared worrisome,\" a White House spokesman said. The polyps were removed and sent to the National Naval Medical Center in Bethesda, Maryland, for routine microscopic examination, spokesman Scott Stanzel said. Results are expected in two to three days. All were small, less than a centimeter [half an inch] in diameter, he said. Bush is in good humor, Stanzel said, and will resume his activities at Camp David. During the procedure Vice President Dick Cheney assumed presidential power. Bu... | \n",
314 | " Five small polyps found during procedure; \"none worrisome,\" spokesman says .\\nPresident reclaims powers transferred to vice president .\\nBush undergoes routine colonoscopy at Camp David . | \n",
315 | " 24521a2abb2e1f5e34e6824e0f9e56904a2b0e88 | \n",
316 | "
\n",
317 | " \n",
318 | " | 4 | \n",
319 | " (CNN) -- The National Football League has indefinitely suspended Atlanta Falcons quarterback Michael Vick without pay, officials with the league said Friday. NFL star Michael Vick is set to appear in court Monday. A judge will have the final say on a plea deal. Earlier, Vick admitted to participating in a dogfighting ring as part of a plea agreement with federal prosecutors in Virginia. \"Your admitted conduct was not only illegal, but also cruel and reprehensible. Your team, the NFL, and NFL fans have all been hurt by your actions,\" NFL Commissioner Roger Goodell said in a letter to Vick.... | \n",
320 | " NEW: NFL chief, Atlanta Falcons owner critical of Michael Vick's conduct .\\nNFL suspends Falcons quarterback indefinitely without pay .\\nVick admits funding dogfighting operation but says he did not gamble .\\nVick due in federal court Monday; future in NFL remains uncertain . | \n",
321 | " 7fe70cc8b12fab2d0a258fababf7d9c6b5e1262a | \n",
322 | "
\n",
323 | " \n",
324 | "
\n",
325 | "
\n",
326 | "
\n",
534 | "
\n"
535 | ],
536 | "text/plain": [
537 | " article \\\n",
538 | "0 LONDON, England (Reuters) -- Harry Potter star Daniel Radcliffe gains access to a reported £20 million ($41.1 million) fortune as he turns 18 on Monday, but he insists the money won't cast a spell on him. Daniel Radcliffe as Harry Potter in \"Harry Potter and the Order of the Phoenix\" To the disappointment of gossip columnists around the world, the young actor says he has no plans to fritter his cash away on fast cars, drink and celebrity parties. \"I don't plan to be one of those people who, as soon as they turn 18, suddenly buy themselves a massive sports car collection or something simila... \n",
539 | "1 Editor's note: In our Behind the Scenes series, CNN correspondents share their experiences in covering news and analyze the stories behind the events. Here, Soledad O'Brien takes users inside a jail where many of the inmates are mentally ill. An inmate housed on the \"forgotten floor,\" where many mentally ill inmates are housed in Miami before trial. MIAMI, Florida (CNN) -- The ninth floor of the Miami-Dade pretrial detention facility is dubbed the \"forgotten floor.\" Here, inmates with the most severe mental illnesses are incarcerated until they're ready to appear in court. Most often, they... \n",
540 | "2 MINNEAPOLIS, Minnesota (CNN) -- Drivers who were on the Minneapolis bridge when it collapsed told harrowing tales of survival. \"The whole bridge from one side of the Mississippi to the other just completely gave way, fell all the way down,\" survivor Gary Babineau told CNN. \"I probably had a 30-, 35-foot free fall. And there's cars in the water, there's cars on fire. The whole bridge is down.\" He said his back was injured but he determined he could move around. \"I realized there was a school bus right next to me, and me and a couple of other guys went over and started lifting the kids off t... \n",
541 | "3 WASHINGTON (CNN) -- Doctors removed five small polyps from President Bush's colon on Saturday, and \"none appeared worrisome,\" a White House spokesman said. The polyps were removed and sent to the National Naval Medical Center in Bethesda, Maryland, for routine microscopic examination, spokesman Scott Stanzel said. Results are expected in two to three days. All were small, less than a centimeter [half an inch] in diameter, he said. Bush is in good humor, Stanzel said, and will resume his activities at Camp David. During the procedure Vice President Dick Cheney assumed presidential power. Bu... \n",
542 | "4 (CNN) -- The National Football League has indefinitely suspended Atlanta Falcons quarterback Michael Vick without pay, officials with the league said Friday. NFL star Michael Vick is set to appear in court Monday. A judge will have the final say on a plea deal. Earlier, Vick admitted to participating in a dogfighting ring as part of a plea agreement with federal prosecutors in Virginia. \"Your admitted conduct was not only illegal, but also cruel and reprehensible. Your team, the NFL, and NFL fans have all been hurt by your actions,\" NFL Commissioner Roger Goodell said in a letter to Vick.... \n",
543 | "\n",
544 | " highlights \\\n",
545 | "0 Harry Potter star Daniel Radcliffe gets £20M fortune as he turns 18 Monday .\\nYoung actor says he has no plans to fritter his cash away .\\nRadcliffe's earnings from first five Potter films have been held in trust fund . \n",
546 | "1 Mentally ill inmates in Miami are housed on the \"forgotten floor\"\\nJudge Steven Leifman says most are there as a result of \"avoidable felonies\"\\nWhile CNN tours facility, patient shouts: \"I am the son of the president\"\\nLeifman says the system is unjust and he's fighting for change . \n",
547 | "2 NEW: \"I thought I was going to die,\" driver says .\\nMan says pickup truck was folded in half; he just has cut on face .\\nDriver: \"I probably had a 30-, 35-foot free fall\"\\nMinnesota bridge collapsed during rush hour Wednesday . \n",
548 | "3 Five small polyps found during procedure; \"none worrisome,\" spokesman says .\\nPresident reclaims powers transferred to vice president .\\nBush undergoes routine colonoscopy at Camp David . \n",
549 | "4 NEW: NFL chief, Atlanta Falcons owner critical of Michael Vick's conduct .\\nNFL suspends Falcons quarterback indefinitely without pay .\\nVick admits funding dogfighting operation but says he did not gamble .\\nVick due in federal court Monday; future in NFL remains uncertain . \n",
550 | "\n",
551 | " id \n",
552 | "0 42c027e4ff9730fbb3de84c1af0d2c506e41c3e4 \n",
553 | "1 ee8871b15c50d0db17b0179a6d2beab35065f1e9 \n",
554 | "2 06352019a19ae31e527f37f7571c6dd7f0c5da37 \n",
555 | "3 24521a2abb2e1f5e34e6824e0f9e56904a2b0e88 \n",
556 | "4 7fe70cc8b12fab2d0a258fababf7d9c6b5e1262a "
557 | ]
558 | },
559 | "execution_count": 2,
560 | "metadata": {},
561 | "output_type": "execute_result"
562 | }
563 | ],
564 | "source": [
565 | "raw_data = datasets.load_dataset('cnn_dailymail', '3.0.0', split='train[:1%]')\n",
566 | "df = pd.DataFrame(raw_data)\n",
567 | "df.head()"
568 | ]
569 | },
570 | {
571 | "cell_type": "code",
572 | "execution_count": null,
573 | "metadata": {
574 | "colab": {
575 | "base_uri": "https://localhost:8080/"
576 | },
577 | "id": "w7xpomXUpC7s",
578 | "outputId": "1ec772dd-fbca-4a39-d9f0-9b99f9fe1cac"
579 | },
580 | "outputs": [],
581 | "source": [
582 | "from transformers import AutoModelForCausalLM\n",
583 | "pretrained_model_name = \"mistralai/Mistral-7B-v0.1\"\n",
584 | "hf_arch, hf_config, hf_tokenizer, hf_model = get_hf_objects(pretrained_model_name, model_cls=AutoModelForCausalLM)\n",
585 | "\n",
586 | "hf_arch, type(hf_config), type(hf_tokenizer), type(hf_model)"
587 | ]
588 | },
589 | {
590 | "cell_type": "code",
591 | "execution_count": null,
592 | "metadata": {
593 | "colab": {
594 | "base_uri": "https://localhost:8080/"
595 | },
596 | "id": "W5MaJDMdpC5M",
597 | "outputId": "927c2b8d-3bc7-4dfa-de5a-e9de0295d667"
598 | },
599 | "outputs": [
600 | {
601 | "data": {
602 | "text/plain": [
603 | "{'early_stopping': True,\n",
604 | " 'length_penalty': 2.0,\n",
605 | " 'max_length': 142,\n",
606 | " 'min_length': 56,\n",
607 | " 'no_repeat_ngram_size': 3,\n",
608 | " 'num_beams': 4}"
609 | ]
610 | },
611 | "execution_count": 5,
612 | "metadata": {},
613 | "output_type": "execute_result"
614 | }
615 | ],
616 | "source": [
617 | "text_gen_kwargs = default_text_gen_kwargs(hf_config, hf_model, task='summarization'); text_gen_kwargs\n"
618 | ]
619 | },
620 | {
621 | "cell_type": "code",
622 | "execution_count": null,
623 | "metadata": {
624 | "id": "-UrCWr0epC2k"
625 | },
626 | "outputs": [],
627 | "source": [
628 | "hf_batch_tfm = Seq2SeqBatchTokenizeTransform(\n",
629 | " hf_arch, hf_config, hf_tokenizer, hf_model, max_length=256, max_tgt_length=130, text_gen_kwargs=text_gen_kwargs\n",
630 | ")\n",
631 | "\n",
632 | "blocks = (Seq2SeqTextBlock(batch_tokenize_tfm=hf_batch_tfm), noop)\n",
633 | "dblock = DataBlock(blocks=blocks, get_x=ColReader('article'), get_y=ColReader('highlights'), splitter=RandomSplitter())"
634 | ]
635 | },
636 | {
637 | "cell_type": "code",
638 | "execution_count": null,
639 | "metadata": {
640 | "colab": {
641 | "base_uri": "https://localhost:8080/"
642 | },
643 | "id": "RWJeFAZ6pCz8",
644 | "outputId": "392c3815-862e-40d7-f7a8-df4f88fc3632"
645 | },
646 | "outputs": [
647 | {
648 | "name": "stderr",
649 | "output_type": "stream",
650 | "text": [
651 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
652 | " warnings.warn(\n"
653 | ]
654 | }
655 | ],
656 | "source": [
657 | "dls = dblock.dataloaders(df, bs=2)\n"
658 | ]
659 | },
660 | {
661 | "cell_type": "code",
662 | "execution_count": null,
663 | "metadata": {
664 | "colab": {
665 | "base_uri": "https://localhost:8080/"
666 | },
667 | "id": "vB303UwPpCxU",
668 | "outputId": "b2a5f399-19a4-48a7-dd35-b821756a7a77"
669 | },
670 | "outputs": [
671 | {
672 | "data": {
673 | "text/plain": [
674 | "(2, torch.Size([2, 256]), torch.Size([2, 64]))"
675 | ]
676 | },
677 | "execution_count": 8,
678 | "metadata": {},
679 | "output_type": "execute_result"
680 | }
681 | ],
682 | "source": [
683 | "b = dls.one_batch()\n",
684 | "len(b), b[0]['input_ids'].shape, b[1].shape"
685 | ]
686 | },
687 | {
688 | "cell_type": "code",
689 | "execution_count": null,
690 | "metadata": {
691 | "id": "VdFnhtkSpCuu"
692 | },
693 | "outputs": [],
694 | "source": [
695 | "seq2seq_metrics = {\n",
696 | " 'rouge': {\n",
697 | " 'compute_kwargs': { 'rouge_types': [\"rouge1\", \"rouge2\", \"rougeL\"], 'use_stemmer': True },\n",
698 | " 'returns': [\"rouge1\", \"rouge2\", \"rougeL\"]\n",
699 | " },\n",
700 | " 'bertscore': {\n",
701 | " 'compute_kwargs': { 'lang': 'en' },\n",
702 | " 'returns': [\"precision\", \"recall\", \"f1\"]\n",
703 | " }\n",
704 | " }"
705 | ]
706 | },
707 | {
708 | "cell_type": "code",
709 | "execution_count": null,
710 | "metadata": {
711 | "colab": {
712 | "base_uri": "https://localhost:8080/"
713 | },
714 | "id": "azwdL5GTpCsN",
715 | "outputId": "3206109e-e3e0-4bf3-d082-0bb9bbb506cc"
716 | },
717 | "outputs": [
718 | {
719 | "name": "stderr",
720 | "output_type": "stream",
721 | "text": [
722 | "/usr/local/lib/python3.10/dist-packages/datasets/load.py:752: FutureWarning: The repository for rouge contains custom code which must be executed to correctly load the metric. You can inspect the repository content at https://raw.githubusercontent.com/huggingface/datasets/2.16.0/metrics/rouge/rouge.py\n",
723 | "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
724 | "Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.\n",
725 | " warnings.warn(\n",
726 | "/usr/local/lib/python3.10/dist-packages/datasets/load.py:752: FutureWarning: The repository for bertscore contains custom code which must be executed to correctly load the metric. You can inspect the repository content at https://raw.githubusercontent.com/huggingface/datasets/2.16.0/metrics/bertscore/bertscore.py\n",
727 | "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
728 | "Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.\n",
729 | " warnings.warn(\n"
730 | ]
731 | }
732 | ],
733 | "source": [
734 | "model = BaseModelWrapper(hf_model)\n",
735 | "learn_cbs = [BaseModelCallback]\n",
736 | "fit_cbs = [Seq2SeqMetricsCallback(custom_metrics=seq2seq_metrics)]\n",
737 | "\n",
738 | "learn = Learner(dls,\n",
739 | " model,\n",
740 | " opt_func=ranger,\n",
741 | " loss_func=CrossEntropyLossFlat(),\n",
742 | " cbs=learn_cbs,\n",
743 | " splitter=partial(blurr_seq2seq_splitter, arch=hf_arch)).to_fp16()\n",
744 | "\n",
745 | "learn.create_opt()\n",
746 | "learn.freeze()"
747 | ]
748 | },
749 | {
750 | "cell_type": "code",
751 | "execution_count": null,
752 | "metadata": {
753 | "colab": {
754 | "base_uri": "https://localhost:8080/",
755 | "height": 920
756 | },
757 | "id": "y9CJS6wKpCnN",
758 | "outputId": "80255fe4-6fe2-4a59-d2e2-6116464f21a5"
759 | },
760 | "outputs": [
761 | {
762 | "data": {
763 | "text/html": [
764 | "\n",
765 | "\n"
780 | ],
781 | "text/plain": [
782 | ""
783 | ]
784 | },
785 | "metadata": {},
786 | "output_type": "display_data"
787 | },
788 | {
789 | "data": {
790 | "text/html": [
791 | "\n",
792 | " \n",
793 | " \n",
794 | " | epoch | \n",
795 | " train_loss | \n",
796 | " valid_loss | \n",
797 | " rouge1 | \n",
798 | " rouge2 | \n",
799 | " rougeL | \n",
800 | " bertscore_precision | \n",
801 | " bertscore_recall | \n",
802 | " bertscore_f1 | \n",
803 | " time | \n",
804 | "
\n",
805 | " \n",
806 | " \n",
807 | " \n",
808 | " | 0 | \n",
809 | " 2.313362 | \n",
810 | " 2.267261 | \n",
811 | " 0.390941 | \n",
812 | " 0.175083 | \n",
813 | " 0.271496 | \n",
814 | " 0.872475 | \n",
815 | " 0.889451 | \n",
816 | " 0.880812 | \n",
817 | " 14:20 | \n",
818 | "
\n",
819 | " \n",
820 | " | 1 | \n",
821 | " 2.224230 | \n",
822 | " 2.030470 | \n",
823 | " 0.391732 | \n",
824 | " 0.173396 | \n",
825 | " 0.269354 | \n",
826 | " 0.871781 | \n",
827 | " 0.890125 | \n",
828 | " 0.880784 | \n",
829 | " 14:46 | \n",
830 | "
\n",
831 | " \n",
832 | " | 2 | \n",
833 | " 1.984522 | \n",
834 | " 1.845844 | \n",
835 | " 0.392791 | \n",
836 | " 0.174549 | \n",
837 | " 0.270810 | \n",
838 | " 0.876156 | \n",
839 | " 0.893962 | \n",
840 | " 0.884898 | \n",
841 | " 15:10 | \n",
842 | "
\n",
843 | " \n",
844 | " | 3 | \n",
845 | " 2.010073 | \n",
846 | " 1.824263 | \n",
847 | " 0.393448 | \n",
848 | " 0.173317 | \n",
849 | " 0.268847 | \n",
850 | " 0.877554 | \n",
851 | " 0.894635 | \n",
852 | " 0.885938 | \n",
853 | " 15:25 | \n",
854 | "
\n",
855 | " \n",
856 | " | 4 | \n",
857 | " 1.951596 | \n",
858 | " 1.821531 | \n",
859 | " 0.393700 | \n",
860 | " 0.173725 | \n",
861 | " 0.269105 | \n",
862 | " 0.877445 | \n",
863 | " 0.894748 | \n",
864 | " 0.885937 | \n",
865 | " 15:25 | \n",
866 | "
\n",
867 | " \n",
868 | "
"
869 | ],
870 | "text/plain": [
871 | ""
872 | ]
873 | },
874 | "metadata": {},
875 | "output_type": "display_data"
876 | },
877 | {
878 | "name": "stderr",
879 | "output_type": "stream",
880 | "text": [
881 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
882 | " warnings.warn(\n",
883 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
884 | " warnings.warn(\n",
885 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
886 | " warnings.warn(\n",
887 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
888 | " warnings.warn(\n",
889 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
890 | " warnings.warn(\n",
891 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
892 | " warnings.warn(\n",
893 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
894 | " warnings.warn(\n",
895 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
896 | " warnings.warn(\n",
897 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
898 | " warnings.warn(\n",
899 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
900 | " warnings.warn(\n",
901 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
902 | " warnings.warn(\n",
903 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
904 | " warnings.warn(\n",
905 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
906 | " warnings.warn(\n",
907 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
908 | " warnings.warn(\n",
909 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
910 | " warnings.warn(\n",
911 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
912 | " warnings.warn(\n",
913 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
914 | " warnings.warn(\n",
915 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
916 | " warnings.warn(\n",
917 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
918 | " warnings.warn(\n",
919 | "/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3856: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n",
920 | " warnings.warn(\n"
921 | ]
922 | }
923 | ],
924 | "source": [
925 | "learn.fit_one_cycle(5, lr_max=3e-5, cbs=fit_cbs)"
926 | ]
927 | },
928 | {
929 | "cell_type": "code",
930 | "execution_count": null,
931 | "metadata": {
932 | "id": "2ix41xw6pCkM"
933 | },
934 | "outputs": [],
935 | "source": [
936 | "import whisper\n",
937 | "\n",
938 | "\n",
939 | "model = whisper.load_model(\"base\")\n",
940 | "result = model.transcribe(\"example.mp4\")\n",
941 | "\n",
942 | "\n",
943 | "transcribed_text = result['text']\n",
944 | "\n",
945 | "\n",
946 | "# Save the transcribed text to a file\n",
947 | "with open(\"text.txt\", \"w\") as file:\n",
948 | " file.write(transcribed_text)\n",
949 | "\n",
950 | "\n",
951 | "print(\"Transcribed text saved to text.txt\")\n",
952 | "\n",
953 | "\n",
954 | "def summarize_transcript(filename):\n",
955 | " # Load transcript\n",
956 | " loader = TextLoader(filename)\n",
957 | " docs = loader.load()\n",
958 | "\n",
959 | "\n",
960 | " # Load LLM\n",
961 | " config = {'max_new_tokens': 4096, 'temperature': 0.7, 'context_length': 4096}\n",
962 | " llm = CTransformers(model=\"TheBloke/Mistral-7B-Instruct-v0.1-GGUF\",\n",
963 | " model_file=\"mistral-7b-instruct-v0.1.Q4_K_M.gguf\",\n",
964 | " config=config,\n",
965 | " threads=os.cpu_count())\n",
966 | " map_template = \"\"\"[INST] The following is a part of a transcript:\n",
967 | " {docs}\n",
968 | " Based on this, please identify the main points.\n",
969 | " Answer: [/INST] \"\"\"\n",
970 | " map_prompt = PromptTemplate.from_template(map_template)\n",
971 | " map_chain = LLMChain(llm=llm, prompt=map_prompt)\n",
972 | "\n",
973 | "\n",
974 | " # Reduce template and chain\n",
975 | " reduce_template = \"\"\"[INST] The following is set of summaries from the transcript:\n",
976 | " {doc_summaries}\n",
977 | " Take these and distill it into a final, consolidated summary of the main points.\n",
978 | " Construct it as a well organized summary of the main points and should be between 3 and 5 paragraphs.\n",
979 | " Answer: [/INST] \"\"\"\n",
980 | " reduce_prompt = PromptTemplate.from_template(reduce_template)\n",
981 | " reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)\n",
982 | " combine_documents_chain = StuffDocumentsChain(\n",
983 | " llm_chain=reduce_chain, document_variable_name=\"doc_summaries\"\n",
984 | " )\n",
985 | " # Combines and iteratively reduces the mapped documents\n",
986 | " reduce_documents_chain = ReduceDocumentsChain(\n",
987 | " # This is final chain that is called.\n",
988 | " combine_documents_chain=combine_documents_chain,\n",
989 | " # If documents exceed context for `StuffDocumentsChain`\n",
990 | " collapse_documents_chain=combine_documents_chain,\n",
991 | " # The maximum number of tokens to group documents into.\n",
992 | " token_max=4000,\n",
993 | " )\n",
994 | " # Combining documents by mapping a chain over them, then combining results\n",
995 | " map_reduce_chain = MapReduceDocumentsChain(\n",
996 | " # Map chain\n",
997 | " llm_chain=map_chain,\n",
998 | " # Reduce chain\n",
999 | " reduce_documents_chain=reduce_documents_chain,\n",
1000 | " # The variable name in the llm_chain to put the documents in\n",
1001 | " document_variable_name=\"docs\",\n",
1002 | " # Return the results of the map steps in the output\n",
1003 | " return_intermediate_steps=True,\n",
1004 | " )\n",
1005 | " text_splitter = RecursiveCharacterTextSplitter(\n",
1006 | " chunk_size=4000, chunk_overlap=0\n",
1007 | " )\n",
1008 | " split_docs = text_splitter.split_documents(docs)\n",
1009 | "\n",
1010 | "\n",
1011 | " # Run the chain\n",
1012 | " start_time = time.time()\n",
1013 | " result = map_reduce_chain.__call__(split_docs, return_only_outputs=True)\n",
1014 | " print(f\"Time taken: {time.time() - start_time} seconds\")\n",
1015 | " return result['output_text']\n"
1016 | ]
1017 | },
1018 | {
1019 | "cell_type": "code",
1020 | "execution_count": null,
1021 | "metadata": {
1022 | "id": "JNlWCFQKpChU"
1023 | },
1024 | "outputs": [],
1025 | "source": [
1026 | "summarize_transcript('text.txt')"
1027 | ]
1028 | }
1029 | ],
1030 | "metadata": {
1031 | "accelerator": "GPU",
1032 | "colab": {
1033 | "provenance": []
1034 | },
1035 | "kernelspec": {
1036 | "display_name": "Python 3",
1037 | "name": "python3"
1038 | },
1039 | "language_info": {
1040 | "name": "python"
1041 | },
1042 | "widgets": {
1043 | "application/vnd.jupyter.widget-state+json": {
1044 | "02fd5be983d84eb5853923885799f2d8": {
1045 | "model_module": "@jupyter-widgets/controls",
1046 | "model_module_version": "1.5.0",
1047 | "model_name": "ProgressStyleModel",
1048 | "state": {
1049 | "_model_module": "@jupyter-widgets/controls",
1050 | "_model_module_version": "1.5.0",
1051 | "_model_name": "ProgressStyleModel",
1052 | "_view_count": null,
1053 | "_view_module": "@jupyter-widgets/base",
1054 | "_view_module_version": "1.2.0",
1055 | "_view_name": "StyleView",
1056 | "bar_color": null,
1057 | "description_width": ""
1058 | }
1059 | },
1060 | "047079d8262b4f94a29686687c09fbbf": {
1061 | "model_module": "@jupyter-widgets/controls",
1062 | "model_module_version": "1.5.0",
1063 | "model_name": "HTMLModel",
1064 | "state": {
1065 | "_dom_classes": [],
1066 | "_model_module": "@jupyter-widgets/controls",
1067 | "_model_module_version": "1.5.0",
1068 | "_model_name": "HTMLModel",
1069 | "_view_count": null,
1070 | "_view_module": "@jupyter-widgets/controls",
1071 | "_view_module_version": "1.5.0",
1072 | "_view_name": "HTMLView",
1073 | "description": "",
1074 | "description_tooltip": null,
1075 | "layout": "IPY_MODEL_8b4e76a4437d4fb0a21c2aa3299aa357",
1076 | "placeholder": "",
1077 | "style": "IPY_MODEL_72df7d047b25461baeae0e80a87719bd",
1078 | "value": "Generating validation split: 100%"
1079 | }
1080 | },
1081 | "04ee3b7b051f4c15bb59f996f42ab385": {
1082 | "model_module": "@jupyter-widgets/controls",
1083 | "model_module_version": "1.5.0",
1084 | "model_name": "HTMLModel",
1085 | "state": {
1086 | "_dom_classes": [],
1087 | "_model_module": "@jupyter-widgets/controls",
1088 | "_model_module_version": "1.5.0",
1089 | "_model_name": "HTMLModel",
1090 | "_view_count": null,
1091 | "_view_module": "@jupyter-widgets/controls",
1092 | "_view_module_version": "1.5.0",
1093 | "_view_name": "HTMLView",
1094 | "description": "",
1095 | "description_tooltip": null,
1096 | "layout": "IPY_MODEL_4cfb4111507b4dfa8d4461a8b1be1489",
1097 | "placeholder": "",
1098 | "style": "IPY_MODEL_160b1f37aa3d48129639e663a8907abb",
1099 | "value": "Generating test split: 100%"
1100 | }
1101 | },
1102 | "05f9572a3967425a9cc749c62b66f873": {
1103 | "model_module": "@jupyter-widgets/controls",
1104 | "model_module_version": "1.5.0",
1105 | "model_name": "FloatProgressModel",
1106 | "state": {
1107 | "_dom_classes": [],
1108 | "_model_module": "@jupyter-widgets/controls",
1109 | "_model_module_version": "1.5.0",
1110 | "_model_name": "FloatProgressModel",
1111 | "_view_count": null,
1112 | "_view_module": "@jupyter-widgets/controls",
1113 | "_view_module_version": "1.5.0",
1114 | "_view_name": "ProgressView",
1115 | "bar_style": "success",
1116 | "description": "",
1117 | "description_tooltip": null,
1118 | "layout": "IPY_MODEL_c2f4b4f547aa407faa5fa76be1139093",
1119 | "max": 13368,
1120 | "min": 0,
1121 | "orientation": "horizontal",
1122 | "style": "IPY_MODEL_f5d8908c52d140a48431f1fa30145d0f",
1123 | "value": 13368
1124 | }
1125 | },
1126 | "093df990a07a404d8a56772596f7801d": {
1127 | "model_module": "@jupyter-widgets/controls",
1128 | "model_module_version": "1.5.0",
1129 | "model_name": "DescriptionStyleModel",
1130 | "state": {
1131 | "_model_module": "@jupyter-widgets/controls",
1132 | "_model_module_version": "1.5.0",
1133 | "_model_name": "DescriptionStyleModel",
1134 | "_view_count": null,
1135 | "_view_module": "@jupyter-widgets/base",
1136 | "_view_module_version": "1.2.0",
1137 | "_view_name": "StyleView",
1138 | "description_width": ""
1139 | }
1140 | },
1141 | "10d762804c644f1dbb01ae0bc59ababa": {
1142 | "model_module": "@jupyter-widgets/base",
1143 | "model_module_version": "1.2.0",
1144 | "model_name": "LayoutModel",
1145 | "state": {
1146 | "_model_module": "@jupyter-widgets/base",
1147 | "_model_module_version": "1.2.0",
1148 | "_model_name": "LayoutModel",
1149 | "_view_count": null,
1150 | "_view_module": "@jupyter-widgets/base",
1151 | "_view_module_version": "1.2.0",
1152 | "_view_name": "LayoutView",
1153 | "align_content": null,
1154 | "align_items": null,
1155 | "align_self": null,
1156 | "border": null,
1157 | "bottom": null,
1158 | "display": null,
1159 | "flex": null,
1160 | "flex_flow": null,
1161 | "grid_area": null,
1162 | "grid_auto_columns": null,
1163 | "grid_auto_flow": null,
1164 | "grid_auto_rows": null,
1165 | "grid_column": null,
1166 | "grid_gap": null,
1167 | "grid_row": null,
1168 | "grid_template_areas": null,
1169 | "grid_template_columns": null,
1170 | "grid_template_rows": null,
1171 | "height": null,
1172 | "justify_content": null,
1173 | "justify_items": null,
1174 | "left": null,
1175 | "margin": null,
1176 | "max_height": null,
1177 | "max_width": null,
1178 | "min_height": null,
1179 | "min_width": null,
1180 | "object_fit": null,
1181 | "object_position": null,
1182 | "order": null,
1183 | "overflow": null,
1184 | "overflow_x": null,
1185 | "overflow_y": null,
1186 | "padding": null,
1187 | "right": null,
1188 | "top": null,
1189 | "visibility": null,
1190 | "width": null
1191 | }
1192 | },
1193 | "1536b8949d514088a2d06e05d36a35fa": {
1194 | "model_module": "@jupyter-widgets/base",
1195 | "model_module_version": "1.2.0",
1196 | "model_name": "LayoutModel",
1197 | "state": {
1198 | "_model_module": "@jupyter-widgets/base",
1199 | "_model_module_version": "1.2.0",
1200 | "_model_name": "LayoutModel",
1201 | "_view_count": null,
1202 | "_view_module": "@jupyter-widgets/base",
1203 | "_view_module_version": "1.2.0",
1204 | "_view_name": "LayoutView",
1205 | "align_content": null,
1206 | "align_items": null,
1207 | "align_self": null,
1208 | "border": null,
1209 | "bottom": null,
1210 | "display": null,
1211 | "flex": null,
1212 | "flex_flow": null,
1213 | "grid_area": null,
1214 | "grid_auto_columns": null,
1215 | "grid_auto_flow": null,
1216 | "grid_auto_rows": null,
1217 | "grid_column": null,
1218 | "grid_gap": null,
1219 | "grid_row": null,
1220 | "grid_template_areas": null,
1221 | "grid_template_columns": null,
1222 | "grid_template_rows": null,
1223 | "height": null,
1224 | "justify_content": null,
1225 | "justify_items": null,
1226 | "left": null,
1227 | "margin": null,
1228 | "max_height": null,
1229 | "max_width": null,
1230 | "min_height": null,
1231 | "min_width": null,
1232 | "object_fit": null,
1233 | "object_position": null,
1234 | "order": null,
1235 | "overflow": null,
1236 | "overflow_x": null,
1237 | "overflow_y": null,
1238 | "padding": null,
1239 | "right": null,
1240 | "top": null,
1241 | "visibility": null,
1242 | "width": null
1243 | }
1244 | },
1245 | "16026cb519b84eb990389d9a4f152f09": {
1246 | "model_module": "@jupyter-widgets/base",
1247 | "model_module_version": "1.2.0",
1248 | "model_name": "LayoutModel",
1249 | "state": {
1250 | "_model_module": "@jupyter-widgets/base",
1251 | "_model_module_version": "1.2.0",
1252 | "_model_name": "LayoutModel",
1253 | "_view_count": null,
1254 | "_view_module": "@jupyter-widgets/base",
1255 | "_view_module_version": "1.2.0",
1256 | "_view_name": "LayoutView",
1257 | "align_content": null,
1258 | "align_items": null,
1259 | "align_self": null,
1260 | "border": null,
1261 | "bottom": null,
1262 | "display": null,
1263 | "flex": null,
1264 | "flex_flow": null,
1265 | "grid_area": null,
1266 | "grid_auto_columns": null,
1267 | "grid_auto_flow": null,
1268 | "grid_auto_rows": null,
1269 | "grid_column": null,
1270 | "grid_gap": null,
1271 | "grid_row": null,
1272 | "grid_template_areas": null,
1273 | "grid_template_columns": null,
1274 | "grid_template_rows": null,
1275 | "height": null,
1276 | "justify_content": null,
1277 | "justify_items": null,
1278 | "left": null,
1279 | "margin": null,
1280 | "max_height": null,
1281 | "max_width": null,
1282 | "min_height": null,
1283 | "min_width": null,
1284 | "object_fit": null,
1285 | "object_position": null,
1286 | "order": null,
1287 | "overflow": null,
1288 | "overflow_x": null,
1289 | "overflow_y": null,
1290 | "padding": null,
1291 | "right": null,
1292 | "top": null,
1293 | "visibility": null,
1294 | "width": null
1295 | }
1296 | },
1297 | "160b1f37aa3d48129639e663a8907abb": {
1298 | "model_module": "@jupyter-widgets/controls",
1299 | "model_module_version": "1.5.0",
1300 | "model_name": "DescriptionStyleModel",
1301 | "state": {
1302 | "_model_module": "@jupyter-widgets/controls",
1303 | "_model_module_version": "1.5.0",
1304 | "_model_name": "DescriptionStyleModel",
1305 | "_view_count": null,
1306 | "_view_module": "@jupyter-widgets/base",
1307 | "_view_module_version": "1.2.0",
1308 | "_view_name": "StyleView",
1309 | "description_width": ""
1310 | }
1311 | },
1312 | "1735c76560a5471da7301a5242cfbeff": {
1313 | "model_module": "@jupyter-widgets/base",
1314 | "model_module_version": "1.2.0",
1315 | "model_name": "LayoutModel",
1316 | "state": {
1317 | "_model_module": "@jupyter-widgets/base",
1318 | "_model_module_version": "1.2.0",
1319 | "_model_name": "LayoutModel",
1320 | "_view_count": null,
1321 | "_view_module": "@jupyter-widgets/base",
1322 | "_view_module_version": "1.2.0",
1323 | "_view_name": "LayoutView",
1324 | "align_content": null,
1325 | "align_items": null,
1326 | "align_self": null,
1327 | "border": null,
1328 | "bottom": null,
1329 | "display": null,
1330 | "flex": null,
1331 | "flex_flow": null,
1332 | "grid_area": null,
1333 | "grid_auto_columns": null,
1334 | "grid_auto_flow": null,
1335 | "grid_auto_rows": null,
1336 | "grid_column": null,
1337 | "grid_gap": null,
1338 | "grid_row": null,
1339 | "grid_template_areas": null,
1340 | "grid_template_columns": null,
1341 | "grid_template_rows": null,
1342 | "height": null,
1343 | "justify_content": null,
1344 | "justify_items": null,
1345 | "left": null,
1346 | "margin": null,
1347 | "max_height": null,
1348 | "max_width": null,
1349 | "min_height": null,
1350 | "min_width": null,
1351 | "object_fit": null,
1352 | "object_position": null,
1353 | "order": null,
1354 | "overflow": null,
1355 | "overflow_x": null,
1356 | "overflow_y": null,
1357 | "padding": null,
1358 | "right": null,
1359 | "top": null,
1360 | "visibility": null,
1361 | "width": null
1362 | }
1363 | },
1364 | "1ada03d73946419ea7bf8e7727ea0a59": {
1365 | "model_module": "@jupyter-widgets/base",
1366 | "model_module_version": "1.2.0",
1367 | "model_name": "LayoutModel",
1368 | "state": {
1369 | "_model_module": "@jupyter-widgets/base",
1370 | "_model_module_version": "1.2.0",
1371 | "_model_name": "LayoutModel",
1372 | "_view_count": null,
1373 | "_view_module": "@jupyter-widgets/base",
1374 | "_view_module_version": "1.2.0",
1375 | "_view_name": "LayoutView",
1376 | "align_content": null,
1377 | "align_items": null,
1378 | "align_self": null,
1379 | "border": null,
1380 | "bottom": null,
1381 | "display": null,
1382 | "flex": null,
1383 | "flex_flow": null,
1384 | "grid_area": null,
1385 | "grid_auto_columns": null,
1386 | "grid_auto_flow": null,
1387 | "grid_auto_rows": null,
1388 | "grid_column": null,
1389 | "grid_gap": null,
1390 | "grid_row": null,
1391 | "grid_template_areas": null,
1392 | "grid_template_columns": null,
1393 | "grid_template_rows": null,
1394 | "height": null,
1395 | "justify_content": null,
1396 | "justify_items": null,
1397 | "left": null,
1398 | "margin": null,
1399 | "max_height": null,
1400 | "max_width": null,
1401 | "min_height": null,
1402 | "min_width": null,
1403 | "object_fit": null,
1404 | "object_position": null,
1405 | "order": null,
1406 | "overflow": null,
1407 | "overflow_x": null,
1408 | "overflow_y": null,
1409 | "padding": null,
1410 | "right": null,
1411 | "top": null,
1412 | "visibility": null,
1413 | "width": null
1414 | }
1415 | },
1416 | "1e7755e63dc34a7c8be3d3da1082881f": {
1417 | "model_module": "@jupyter-widgets/controls",
1418 | "model_module_version": "1.5.0",
1419 | "model_name": "DescriptionStyleModel",
1420 | "state": {
1421 | "_model_module": "@jupyter-widgets/controls",
1422 | "_model_module_version": "1.5.0",
1423 | "_model_name": "DescriptionStyleModel",
1424 | "_view_count": null,
1425 | "_view_module": "@jupyter-widgets/base",
1426 | "_view_module_version": "1.2.0",
1427 | "_view_name": "StyleView",
1428 | "description_width": ""
1429 | }
1430 | },
1431 | "1ebd4932bfe041c294090a2b89f93c3e": {
1432 | "model_module": "@jupyter-widgets/base",
1433 | "model_module_version": "1.2.0",
1434 | "model_name": "LayoutModel",
1435 | "state": {
1436 | "_model_module": "@jupyter-widgets/base",
1437 | "_model_module_version": "1.2.0",
1438 | "_model_name": "LayoutModel",
1439 | "_view_count": null,
1440 | "_view_module": "@jupyter-widgets/base",
1441 | "_view_module_version": "1.2.0",
1442 | "_view_name": "LayoutView",
1443 | "align_content": null,
1444 | "align_items": null,
1445 | "align_self": null,
1446 | "border": null,
1447 | "bottom": null,
1448 | "display": null,
1449 | "flex": null,
1450 | "flex_flow": null,
1451 | "grid_area": null,
1452 | "grid_auto_columns": null,
1453 | "grid_auto_flow": null,
1454 | "grid_auto_rows": null,
1455 | "grid_column": null,
1456 | "grid_gap": null,
1457 | "grid_row": null,
1458 | "grid_template_areas": null,
1459 | "grid_template_columns": null,
1460 | "grid_template_rows": null,
1461 | "height": null,
1462 | "justify_content": null,
1463 | "justify_items": null,
1464 | "left": null,
1465 | "margin": null,
1466 | "max_height": null,
1467 | "max_width": null,
1468 | "min_height": null,
1469 | "min_width": null,
1470 | "object_fit": null,
1471 | "object_position": null,
1472 | "order": null,
1473 | "overflow": null,
1474 | "overflow_x": null,
1475 | "overflow_y": null,
1476 | "padding": null,
1477 | "right": null,
1478 | "top": null,
1479 | "visibility": null,
1480 | "width": null
1481 | }
1482 | },
1483 | "1f797a0301204f93bf63427022b02515": {
1484 | "model_module": "@jupyter-widgets/controls",
1485 | "model_module_version": "1.5.0",
1486 | "model_name": "DescriptionStyleModel",
1487 | "state": {
1488 | "_model_module": "@jupyter-widgets/controls",
1489 | "_model_module_version": "1.5.0",
1490 | "_model_name": "DescriptionStyleModel",
1491 | "_view_count": null,
1492 | "_view_module": "@jupyter-widgets/base",
1493 | "_view_module_version": "1.2.0",
1494 | "_view_name": "StyleView",
1495 | "description_width": ""
1496 | }
1497 | },
1498 | "1fa217a9225c40efbc7c6b7f56708e1b": {
1499 | "model_module": "@jupyter-widgets/base",
1500 | "model_module_version": "1.2.0",
1501 | "model_name": "LayoutModel",
1502 | "state": {
1503 | "_model_module": "@jupyter-widgets/base",
1504 | "_model_module_version": "1.2.0",
1505 | "_model_name": "LayoutModel",
1506 | "_view_count": null,
1507 | "_view_module": "@jupyter-widgets/base",
1508 | "_view_module_version": "1.2.0",
1509 | "_view_name": "LayoutView",
1510 | "align_content": null,
1511 | "align_items": null,
1512 | "align_self": null,
1513 | "border": null,
1514 | "bottom": null,
1515 | "display": null,
1516 | "flex": null,
1517 | "flex_flow": null,
1518 | "grid_area": null,
1519 | "grid_auto_columns": null,
1520 | "grid_auto_flow": null,
1521 | "grid_auto_rows": null,
1522 | "grid_column": null,
1523 | "grid_gap": null,
1524 | "grid_row": null,
1525 | "grid_template_areas": null,
1526 | "grid_template_columns": null,
1527 | "grid_template_rows": null,
1528 | "height": null,
1529 | "justify_content": null,
1530 | "justify_items": null,
1531 | "left": null,
1532 | "margin": null,
1533 | "max_height": null,
1534 | "max_width": null,
1535 | "min_height": null,
1536 | "min_width": null,
1537 | "object_fit": null,
1538 | "object_position": null,
1539 | "order": null,
1540 | "overflow": null,
1541 | "overflow_x": null,
1542 | "overflow_y": null,
1543 | "padding": null,
1544 | "right": null,
1545 | "top": null,
1546 | "visibility": null,
1547 | "width": null
1548 | }
1549 | },
1550 | "206a8d34539e41d8a58c9af9a1e6dc17": {
1551 | "model_module": "@jupyter-widgets/controls",
1552 | "model_module_version": "1.5.0",
1553 | "model_name": "FloatProgressModel",
1554 | "state": {
1555 | "_dom_classes": [],
1556 | "_model_module": "@jupyter-widgets/controls",
1557 | "_model_module_version": "1.5.0",
1558 | "_model_name": "FloatProgressModel",
1559 | "_view_count": null,
1560 | "_view_module": "@jupyter-widgets/controls",
1561 | "_view_module_version": "1.5.0",
1562 | "_view_name": "ProgressView",
1563 | "bar_style": "success",
1564 | "description": "",
1565 | "description_tooltip": null,
1566 | "layout": "IPY_MODEL_9f313f2f62d54f59ab42a5e3ec887285",
1567 | "max": 30000471,
1568 | "min": 0,
1569 | "orientation": "horizontal",
1570 | "style": "IPY_MODEL_da5482c545df47e99d0c67dcb78d4819",
1571 | "value": 30000471
1572 | }
1573 | },
1574 | "23ea097a36f14df6beb53e6b4bc9dfe1": {
1575 | "model_module": "@jupyter-widgets/base",
1576 | "model_module_version": "1.2.0",
1577 | "model_name": "LayoutModel",
1578 | "state": {
1579 | "_model_module": "@jupyter-widgets/base",
1580 | "_model_module_version": "1.2.0",
1581 | "_model_name": "LayoutModel",
1582 | "_view_count": null,
1583 | "_view_module": "@jupyter-widgets/base",
1584 | "_view_module_version": "1.2.0",
1585 | "_view_name": "LayoutView",
1586 | "align_content": null,
1587 | "align_items": null,
1588 | "align_self": null,
1589 | "border": null,
1590 | "bottom": null,
1591 | "display": null,
1592 | "flex": null,
1593 | "flex_flow": null,
1594 | "grid_area": null,
1595 | "grid_auto_columns": null,
1596 | "grid_auto_flow": null,
1597 | "grid_auto_rows": null,
1598 | "grid_column": null,
1599 | "grid_gap": null,
1600 | "grid_row": null,
1601 | "grid_template_areas": null,
1602 | "grid_template_columns": null,
1603 | "grid_template_rows": null,
1604 | "height": null,
1605 | "justify_content": null,
1606 | "justify_items": null,
1607 | "left": null,
1608 | "margin": null,
1609 | "max_height": null,
1610 | "max_width": null,
1611 | "min_height": null,
1612 | "min_width": null,
1613 | "object_fit": null,
1614 | "object_position": null,
1615 | "order": null,
1616 | "overflow": null,
1617 | "overflow_x": null,
1618 | "overflow_y": null,
1619 | "padding": null,
1620 | "right": null,
1621 | "top": null,
1622 | "visibility": null,
1623 | "width": null
1624 | }
1625 | },
1626 | "264de8716c564a399f2624ec32a471e3": {
1627 | "model_module": "@jupyter-widgets/base",
1628 | "model_module_version": "1.2.0",
1629 | "model_name": "LayoutModel",
1630 | "state": {
1631 | "_model_module": "@jupyter-widgets/base",
1632 | "_model_module_version": "1.2.0",
1633 | "_model_name": "LayoutModel",
1634 | "_view_count": null,
1635 | "_view_module": "@jupyter-widgets/base",
1636 | "_view_module_version": "1.2.0",
1637 | "_view_name": "LayoutView",
1638 | "align_content": null,
1639 | "align_items": null,
1640 | "align_self": null,
1641 | "border": null,
1642 | "bottom": null,
1643 | "display": null,
1644 | "flex": null,
1645 | "flex_flow": null,
1646 | "grid_area": null,
1647 | "grid_auto_columns": null,
1648 | "grid_auto_flow": null,
1649 | "grid_auto_rows": null,
1650 | "grid_column": null,
1651 | "grid_gap": null,
1652 | "grid_row": null,
1653 | "grid_template_areas": null,
1654 | "grid_template_columns": null,
1655 | "grid_template_rows": null,
1656 | "height": null,
1657 | "justify_content": null,
1658 | "justify_items": null,
1659 | "left": null,
1660 | "margin": null,
1661 | "max_height": null,
1662 | "max_width": null,
1663 | "min_height": null,
1664 | "min_width": null,
1665 | "object_fit": null,
1666 | "object_position": null,
1667 | "order": null,
1668 | "overflow": null,
1669 | "overflow_x": null,
1670 | "overflow_y": null,
1671 | "padding": null,
1672 | "right": null,
1673 | "top": null,
1674 | "visibility": null,
1675 | "width": null
1676 | }
1677 | },
1678 | "2f7e6acb864549679927882f4497effb": {
1679 | "model_module": "@jupyter-widgets/controls",
1680 | "model_module_version": "1.5.0",
1681 | "model_name": "HTMLModel",
1682 | "state": {
1683 | "_dom_classes": [],
1684 | "_model_module": "@jupyter-widgets/controls",
1685 | "_model_module_version": "1.5.0",
1686 | "_model_name": "HTMLModel",
1687 | "_view_count": null,
1688 | "_view_module": "@jupyter-widgets/controls",
1689 | "_view_module_version": "1.5.0",
1690 | "_view_name": "HTMLView",
1691 | "description": "",
1692 | "description_tooltip": null,
1693 | "layout": "IPY_MODEL_1fa217a9225c40efbc7c6b7f56708e1b",
1694 | "placeholder": "",
1695 | "style": "IPY_MODEL_e231b485d1b3409580ba90a3e3dffabd",
1696 | "value": " 313M/313M [00:20<00:00, 20.3MB/s]"
1697 | }
1698 | },
1699 | "3149f938ad244aa2bf1690fdb633a97c": {
1700 | "model_module": "@jupyter-widgets/controls",
1701 | "model_module_version": "1.5.0",
1702 | "model_name": "LabelModel",
1703 | "state": {
1704 | "_dom_classes": [],
1705 | "_model_module": "@jupyter-widgets/controls",
1706 | "_model_module_version": "1.5.0",
1707 | "_model_name": "LabelModel",
1708 | "_view_count": null,
1709 | "_view_module": "@jupyter-widgets/controls",
1710 | "_view_module_version": "1.5.0",
1711 | "_view_name": "LabelView",
1712 | "description": "",
1713 | "description_tooltip": null,
1714 | "layout": "IPY_MODEL_4e6c2ea3e4784b18b169d66e9d44a300",
1715 | "placeholder": "",
1716 | "style": "IPY_MODEL_8f26997c4ff9480893edd4afeb36341d",
1717 | "value": "0.010 MB of 0.010 MB uploaded\r"
1718 | }
1719 | },
1720 | "324c0fdeed794080adab5a63cc61fd72": {
1721 | "model_module": "@jupyter-widgets/controls",
1722 | "model_module_version": "1.5.0",
1723 | "model_name": "ProgressStyleModel",
1724 | "state": {
1725 | "_model_module": "@jupyter-widgets/controls",
1726 | "_model_module_version": "1.5.0",
1727 | "_model_name": "ProgressStyleModel",
1728 | "_view_count": null,
1729 | "_view_module": "@jupyter-widgets/base",
1730 | "_view_module_version": "1.2.0",
1731 | "_view_name": "StyleView",
1732 | "bar_color": null,
1733 | "description_width": ""
1734 | }
1735 | },
1736 | "33320ae023154082b2c81593d16f2e9f": {
1737 | "model_module": "@jupyter-widgets/controls",
1738 | "model_module_version": "1.5.0",
1739 | "model_name": "FloatProgressModel",
1740 | "state": {
1741 | "_dom_classes": [],
1742 | "_model_module": "@jupyter-widgets/controls",
1743 | "_model_module_version": "1.5.0",
1744 | "_model_name": "FloatProgressModel",
1745 | "_view_count": null,
1746 | "_view_module": "@jupyter-widgets/controls",
1747 | "_view_module_version": "1.5.0",
1748 | "_view_name": "ProgressView",
1749 | "bar_style": "success",
1750 | "description": "",
1751 | "description_tooltip": null,
1752 | "layout": "IPY_MODEL_23ea097a36f14df6beb53e6b4bc9dfe1",
1753 | "max": 287113,
1754 | "min": 0,
1755 | "orientation": "horizontal",
1756 | "style": "IPY_MODEL_4f0df75674bb4f3e904a829906334f97",
1757 | "value": 287113
1758 | }
1759 | },
1760 | "337d4377a5db49c28bce89d05b4147dd": {
1761 | "model_module": "@jupyter-widgets/controls",
1762 | "model_module_version": "1.5.0",
1763 | "model_name": "DescriptionStyleModel",
1764 | "state": {
1765 | "_model_module": "@jupyter-widgets/controls",
1766 | "_model_module_version": "1.5.0",
1767 | "_model_name": "DescriptionStyleModel",
1768 | "_view_count": null,
1769 | "_view_module": "@jupyter-widgets/base",
1770 | "_view_module_version": "1.2.0",
1771 | "_view_name": "StyleView",
1772 | "description_width": ""
1773 | }
1774 | },
1775 | "3424edfcda01476eb98db85844adff6a": {
1776 | "model_module": "@jupyter-widgets/controls",
1777 | "model_module_version": "1.5.0",
1778 | "model_name": "DescriptionStyleModel",
1779 | "state": {
1780 | "_model_module": "@jupyter-widgets/controls",
1781 | "_model_module_version": "1.5.0",
1782 | "_model_name": "DescriptionStyleModel",
1783 | "_view_count": null,
1784 | "_view_module": "@jupyter-widgets/base",
1785 | "_view_module_version": "1.2.0",
1786 | "_view_name": "StyleView",
1787 | "description_width": ""
1788 | }
1789 | },
1790 | "35a8ab96926e4326ba805c336c518972": {
1791 | "model_module": "@jupyter-widgets/controls",
1792 | "model_module_version": "1.5.0",
1793 | "model_name": "HBoxModel",
1794 | "state": {
1795 | "_dom_classes": [],
1796 | "_model_module": "@jupyter-widgets/controls",
1797 | "_model_module_version": "1.5.0",
1798 | "_model_name": "HBoxModel",
1799 | "_view_count": null,
1800 | "_view_module": "@jupyter-widgets/controls",
1801 | "_view_module_version": "1.5.0",
1802 | "_view_name": "HBoxView",
1803 | "box_style": "",
1804 | "children": [
1805 | "IPY_MODEL_b7cb8dd1b04e47278c36f6b6e739c184",
1806 | "IPY_MODEL_33320ae023154082b2c81593d16f2e9f",
1807 | "IPY_MODEL_d4b81ce4d1f5479d99b2c335f5e2bfbf"
1808 | ],
1809 | "layout": "IPY_MODEL_ccafded2fa9d40388f19dc40c0b59bc2"
1810 | }
1811 | },
1812 | "37e74e3ca09a4c509b946f77a0115bda": {
1813 | "model_module": "@jupyter-widgets/controls",
1814 | "model_module_version": "1.5.0",
1815 | "model_name": "FloatProgressModel",
1816 | "state": {
1817 | "_dom_classes": [],
1818 | "_model_module": "@jupyter-widgets/controls",
1819 | "_model_module_version": "1.5.0",
1820 | "_model_name": "FloatProgressModel",
1821 | "_view_count": null,
1822 | "_view_module": "@jupyter-widgets/controls",
1823 | "_view_module_version": "1.5.0",
1824 | "_view_name": "ProgressView",
1825 | "bar_style": "success",
1826 | "description": "",
1827 | "description_tooltip": null,
1828 | "layout": "IPY_MODEL_aed709ca704d4107a1c5c5bb7bc7b952",
1829 | "max": 312768577,
1830 | "min": 0,
1831 | "orientation": "horizontal",
1832 | "style": "IPY_MODEL_02fd5be983d84eb5853923885799f2d8",
1833 | "value": 312768577
1834 | }
1835 | },
1836 | "383f0e618ec94d299024087d2454ba74": {
1837 | "model_module": "@jupyter-widgets/base",
1838 | "model_module_version": "1.2.0",
1839 | "model_name": "LayoutModel",
1840 | "state": {
1841 | "_model_module": "@jupyter-widgets/base",
1842 | "_model_module_version": "1.2.0",
1843 | "_model_name": "LayoutModel",
1844 | "_view_count": null,
1845 | "_view_module": "@jupyter-widgets/base",
1846 | "_view_module_version": "1.2.0",
1847 | "_view_name": "LayoutView",
1848 | "align_content": null,
1849 | "align_items": null,
1850 | "align_self": null,
1851 | "border": null,
1852 | "bottom": null,
1853 | "display": null,
1854 | "flex": null,
1855 | "flex_flow": null,
1856 | "grid_area": null,
1857 | "grid_auto_columns": null,
1858 | "grid_auto_flow": null,
1859 | "grid_auto_rows": null,
1860 | "grid_column": null,
1861 | "grid_gap": null,
1862 | "grid_row": null,
1863 | "grid_template_areas": null,
1864 | "grid_template_columns": null,
1865 | "grid_template_rows": null,
1866 | "height": null,
1867 | "justify_content": null,
1868 | "justify_items": null,
1869 | "left": null,
1870 | "margin": null,
1871 | "max_height": null,
1872 | "max_width": null,
1873 | "min_height": null,
1874 | "min_width": null,
1875 | "object_fit": null,
1876 | "object_position": null,
1877 | "order": null,
1878 | "overflow": null,
1879 | "overflow_x": null,
1880 | "overflow_y": null,
1881 | "padding": null,
1882 | "right": null,
1883 | "top": null,
1884 | "visibility": null,
1885 | "width": null
1886 | }
1887 | },
1888 | "384b6149860b4a849fb0c981d5da3ba6": {
1889 | "model_module": "@jupyter-widgets/base",
1890 | "model_module_version": "1.2.0",
1891 | "model_name": "LayoutModel",
1892 | "state": {
1893 | "_model_module": "@jupyter-widgets/base",
1894 | "_model_module_version": "1.2.0",
1895 | "_model_name": "LayoutModel",
1896 | "_view_count": null,
1897 | "_view_module": "@jupyter-widgets/base",
1898 | "_view_module_version": "1.2.0",
1899 | "_view_name": "LayoutView",
1900 | "align_content": null,
1901 | "align_items": null,
1902 | "align_self": null,
1903 | "border": null,
1904 | "bottom": null,
1905 | "display": null,
1906 | "flex": null,
1907 | "flex_flow": null,
1908 | "grid_area": null,
1909 | "grid_auto_columns": null,
1910 | "grid_auto_flow": null,
1911 | "grid_auto_rows": null,
1912 | "grid_column": null,
1913 | "grid_gap": null,
1914 | "grid_row": null,
1915 | "grid_template_areas": null,
1916 | "grid_template_columns": null,
1917 | "grid_template_rows": null,
1918 | "height": null,
1919 | "justify_content": null,
1920 | "justify_items": null,
1921 | "left": null,
1922 | "margin": null,
1923 | "max_height": null,
1924 | "max_width": null,
1925 | "min_height": null,
1926 | "min_width": null,
1927 | "object_fit": null,
1928 | "object_position": null,
1929 | "order": null,
1930 | "overflow": null,
1931 | "overflow_x": null,
1932 | "overflow_y": null,
1933 | "padding": null,
1934 | "right": null,
1935 | "top": null,
1936 | "visibility": null,
1937 | "width": null
1938 | }
1939 | },
1940 | "40dc5cfabae042e4887f26f539458572": {
1941 | "model_module": "@jupyter-widgets/base",
1942 | "model_module_version": "1.2.0",
1943 | "model_name": "LayoutModel",
1944 | "state": {
1945 | "_model_module": "@jupyter-widgets/base",
1946 | "_model_module_version": "1.2.0",
1947 | "_model_name": "LayoutModel",
1948 | "_view_count": null,
1949 | "_view_module": "@jupyter-widgets/base",
1950 | "_view_module_version": "1.2.0",
1951 | "_view_name": "LayoutView",
1952 | "align_content": null,
1953 | "align_items": null,
1954 | "align_self": null,
1955 | "border": null,
1956 | "bottom": null,
1957 | "display": null,
1958 | "flex": null,
1959 | "flex_flow": null,
1960 | "grid_area": null,
1961 | "grid_auto_columns": null,
1962 | "grid_auto_flow": null,
1963 | "grid_auto_rows": null,
1964 | "grid_column": null,
1965 | "grid_gap": null,
1966 | "grid_row": null,
1967 | "grid_template_areas": null,
1968 | "grid_template_columns": null,
1969 | "grid_template_rows": null,
1970 | "height": null,
1971 | "justify_content": null,
1972 | "justify_items": null,
1973 | "left": null,
1974 | "margin": null,
1975 | "max_height": null,
1976 | "max_width": null,
1977 | "min_height": null,
1978 | "min_width": null,
1979 | "object_fit": null,
1980 | "object_position": null,
1981 | "order": null,
1982 | "overflow": null,
1983 | "overflow_x": null,
1984 | "overflow_y": null,
1985 | "padding": null,
1986 | "right": null,
1987 | "top": null,
1988 | "visibility": null,
1989 | "width": null
1990 | }
1991 | },
1992 | "41fc68dde7d0400c9fe3d2aa6bdde602": {
1993 | "model_module": "@jupyter-widgets/base",
1994 | "model_module_version": "1.2.0",
1995 | "model_name": "LayoutModel",
1996 | "state": {
1997 | "_model_module": "@jupyter-widgets/base",
1998 | "_model_module_version": "1.2.0",
1999 | "_model_name": "LayoutModel",
2000 | "_view_count": null,
2001 | "_view_module": "@jupyter-widgets/base",
2002 | "_view_module_version": "1.2.0",
2003 | "_view_name": "LayoutView",
2004 | "align_content": null,
2005 | "align_items": null,
2006 | "align_self": null,
2007 | "border": null,
2008 | "bottom": null,
2009 | "display": null,
2010 | "flex": null,
2011 | "flex_flow": null,
2012 | "grid_area": null,
2013 | "grid_auto_columns": null,
2014 | "grid_auto_flow": null,
2015 | "grid_auto_rows": null,
2016 | "grid_column": null,
2017 | "grid_gap": null,
2018 | "grid_row": null,
2019 | "grid_template_areas": null,
2020 | "grid_template_columns": null,
2021 | "grid_template_rows": null,
2022 | "height": null,
2023 | "justify_content": null,
2024 | "justify_items": null,
2025 | "left": null,
2026 | "margin": null,
2027 | "max_height": null,
2028 | "max_width": null,
2029 | "min_height": null,
2030 | "min_width": null,
2031 | "object_fit": null,
2032 | "object_position": null,
2033 | "order": null,
2034 | "overflow": null,
2035 | "overflow_x": null,
2036 | "overflow_y": null,
2037 | "padding": null,
2038 | "right": null,
2039 | "top": null,
2040 | "visibility": null,
2041 | "width": null
2042 | }
2043 | },
2044 | "4754cf8fdf4d4022a962d7c8ceeaa46f": {
2045 | "model_module": "@jupyter-widgets/controls",
2046 | "model_module_version": "1.5.0",
2047 | "model_name": "ProgressStyleModel",
2048 | "state": {
2049 | "_model_module": "@jupyter-widgets/controls",
2050 | "_model_module_version": "1.5.0",
2051 | "_model_name": "ProgressStyleModel",
2052 | "_view_count": null,
2053 | "_view_module": "@jupyter-widgets/base",
2054 | "_view_module_version": "1.2.0",
2055 | "_view_name": "StyleView",
2056 | "bar_color": null,
2057 | "description_width": ""
2058 | }
2059 | },
2060 | "4aee7a184c07486a88104dd8e9f229c4": {
2061 | "model_module": "@jupyter-widgets/controls",
2062 | "model_module_version": "1.5.0",
2063 | "model_name": "ProgressStyleModel",
2064 | "state": {
2065 | "_model_module": "@jupyter-widgets/controls",
2066 | "_model_module_version": "1.5.0",
2067 | "_model_name": "ProgressStyleModel",
2068 | "_view_count": null,
2069 | "_view_module": "@jupyter-widgets/base",
2070 | "_view_module_version": "1.2.0",
2071 | "_view_name": "StyleView",
2072 | "bar_color": null,
2073 | "description_width": ""
2074 | }
2075 | },
2076 | "4cfb4111507b4dfa8d4461a8b1be1489": {
2077 | "model_module": "@jupyter-widgets/base",
2078 | "model_module_version": "1.2.0",
2079 | "model_name": "LayoutModel",
2080 | "state": {
2081 | "_model_module": "@jupyter-widgets/base",
2082 | "_model_module_version": "1.2.0",
2083 | "_model_name": "LayoutModel",
2084 | "_view_count": null,
2085 | "_view_module": "@jupyter-widgets/base",
2086 | "_view_module_version": "1.2.0",
2087 | "_view_name": "LayoutView",
2088 | "align_content": null,
2089 | "align_items": null,
2090 | "align_self": null,
2091 | "border": null,
2092 | "bottom": null,
2093 | "display": null,
2094 | "flex": null,
2095 | "flex_flow": null,
2096 | "grid_area": null,
2097 | "grid_auto_columns": null,
2098 | "grid_auto_flow": null,
2099 | "grid_auto_rows": null,
2100 | "grid_column": null,
2101 | "grid_gap": null,
2102 | "grid_row": null,
2103 | "grid_template_areas": null,
2104 | "grid_template_columns": null,
2105 | "grid_template_rows": null,
2106 | "height": null,
2107 | "justify_content": null,
2108 | "justify_items": null,
2109 | "left": null,
2110 | "margin": null,
2111 | "max_height": null,
2112 | "max_width": null,
2113 | "min_height": null,
2114 | "min_width": null,
2115 | "object_fit": null,
2116 | "object_position": null,
2117 | "order": null,
2118 | "overflow": null,
2119 | "overflow_x": null,
2120 | "overflow_y": null,
2121 | "padding": null,
2122 | "right": null,
2123 | "top": null,
2124 | "visibility": null,
2125 | "width": null
2126 | }
2127 | },
2128 | "4e6c2ea3e4784b18b169d66e9d44a300": {
2129 | "model_module": "@jupyter-widgets/base",
2130 | "model_module_version": "1.2.0",
2131 | "model_name": "LayoutModel",
2132 | "state": {
2133 | "_model_module": "@jupyter-widgets/base",
2134 | "_model_module_version": "1.2.0",
2135 | "_model_name": "LayoutModel",
2136 | "_view_count": null,
2137 | "_view_module": "@jupyter-widgets/base",
2138 | "_view_module_version": "1.2.0",
2139 | "_view_name": "LayoutView",
2140 | "align_content": null,
2141 | "align_items": null,
2142 | "align_self": null,
2143 | "border": null,
2144 | "bottom": null,
2145 | "display": null,
2146 | "flex": null,
2147 | "flex_flow": null,
2148 | "grid_area": null,
2149 | "grid_auto_columns": null,
2150 | "grid_auto_flow": null,
2151 | "grid_auto_rows": null,
2152 | "grid_column": null,
2153 | "grid_gap": null,
2154 | "grid_row": null,
2155 | "grid_template_areas": null,
2156 | "grid_template_columns": null,
2157 | "grid_template_rows": null,
2158 | "height": null,
2159 | "justify_content": null,
2160 | "justify_items": null,
2161 | "left": null,
2162 | "margin": null,
2163 | "max_height": null,
2164 | "max_width": null,
2165 | "min_height": null,
2166 | "min_width": null,
2167 | "object_fit": null,
2168 | "object_position": null,
2169 | "order": null,
2170 | "overflow": null,
2171 | "overflow_x": null,
2172 | "overflow_y": null,
2173 | "padding": null,
2174 | "right": null,
2175 | "top": null,
2176 | "visibility": null,
2177 | "width": null
2178 | }
2179 | },
2180 | "4f0df75674bb4f3e904a829906334f97": {
2181 | "model_module": "@jupyter-widgets/controls",
2182 | "model_module_version": "1.5.0",
2183 | "model_name": "ProgressStyleModel",
2184 | "state": {
2185 | "_model_module": "@jupyter-widgets/controls",
2186 | "_model_module_version": "1.5.0",
2187 | "_model_name": "ProgressStyleModel",
2188 | "_view_count": null,
2189 | "_view_module": "@jupyter-widgets/base",
2190 | "_view_module_version": "1.2.0",
2191 | "_view_name": "StyleView",
2192 | "bar_color": null,
2193 | "description_width": ""
2194 | }
2195 | },
2196 | "5470199cce0b49859c3261a10b4a220d": {
2197 | "model_module": "@jupyter-widgets/controls",
2198 | "model_module_version": "1.5.0",
2199 | "model_name": "HTMLModel",
2200 | "state": {
2201 | "_dom_classes": [],
2202 | "_model_module": "@jupyter-widgets/controls",
2203 | "_model_module_version": "1.5.0",
2204 | "_model_name": "HTMLModel",
2205 | "_view_count": null,
2206 | "_view_module": "@jupyter-widgets/controls",
2207 | "_view_module_version": "1.5.0",
2208 | "_view_name": "HTMLView",
2209 | "description": "",
2210 | "description_tooltip": null,
2211 | "layout": "IPY_MODEL_383f0e618ec94d299024087d2454ba74",
2212 | "placeholder": "",
2213 | "style": "IPY_MODEL_a3ae11c35376463493c5fe646cfee862",
2214 | "value": "Downloading data: 100%"
2215 | }
2216 | },
2217 | "54a8a2e471ac44f3afc36dde06e4207a": {
2218 | "model_module": "@jupyter-widgets/controls",
2219 | "model_module_version": "1.5.0",
2220 | "model_name": "HTMLModel",
2221 | "state": {
2222 | "_dom_classes": [],
2223 | "_model_module": "@jupyter-widgets/controls",
2224 | "_model_module_version": "1.5.0",
2225 | "_model_name": "HTMLModel",
2226 | "_view_count": null,
2227 | "_view_module": "@jupyter-widgets/controls",
2228 | "_view_module_version": "1.5.0",
2229 | "_view_name": "HTMLView",
2230 | "description": "",
2231 | "description_tooltip": null,
2232 | "layout": "IPY_MODEL_e57e7c2cd07841a297e0940b70a90ce1",
2233 | "placeholder": "",
2234 | "style": "IPY_MODEL_3424edfcda01476eb98db85844adff6a",
2235 | "value": "Downloading data: 100%"
2236 | }
2237 | },
2238 | "552d6aae8e7849a9a4875908513cd85a": {
2239 | "model_module": "@jupyter-widgets/controls",
2240 | "model_module_version": "1.5.0",
2241 | "model_name": "FloatProgressModel",
2242 | "state": {
2243 | "_dom_classes": [],
2244 | "_model_module": "@jupyter-widgets/controls",
2245 | "_model_module_version": "1.5.0",
2246 | "_model_name": "FloatProgressModel",
2247 | "_view_count": null,
2248 | "_view_module": "@jupyter-widgets/controls",
2249 | "_view_module_version": "1.5.0",
2250 | "_view_name": "ProgressView",
2251 | "bar_style": "",
2252 | "description": "",
2253 | "description_tooltip": null,
2254 | "layout": "IPY_MODEL_5fb6b552296a46599950cc645f98e19c",
2255 | "max": 1,
2256 | "min": 0,
2257 | "orientation": "horizontal",
2258 | "style": "IPY_MODEL_4754cf8fdf4d4022a962d7c8ceeaa46f",
2259 | "value": 1
2260 | }
2261 | },
2262 | "5877b7aec265429c9006dd714f5a2887": {
2263 | "model_module": "@jupyter-widgets/base",
2264 | "model_module_version": "1.2.0",
2265 | "model_name": "LayoutModel",
2266 | "state": {
2267 | "_model_module": "@jupyter-widgets/base",
2268 | "_model_module_version": "1.2.0",
2269 | "_model_name": "LayoutModel",
2270 | "_view_count": null,
2271 | "_view_module": "@jupyter-widgets/base",
2272 | "_view_module_version": "1.2.0",
2273 | "_view_name": "LayoutView",
2274 | "align_content": null,
2275 | "align_items": null,
2276 | "align_self": null,
2277 | "border": null,
2278 | "bottom": null,
2279 | "display": null,
2280 | "flex": null,
2281 | "flex_flow": null,
2282 | "grid_area": null,
2283 | "grid_auto_columns": null,
2284 | "grid_auto_flow": null,
2285 | "grid_auto_rows": null,
2286 | "grid_column": null,
2287 | "grid_gap": null,
2288 | "grid_row": null,
2289 | "grid_template_areas": null,
2290 | "grid_template_columns": null,
2291 | "grid_template_rows": null,
2292 | "height": null,
2293 | "justify_content": null,
2294 | "justify_items": null,
2295 | "left": null,
2296 | "margin": null,
2297 | "max_height": null,
2298 | "max_width": null,
2299 | "min_height": null,
2300 | "min_width": null,
2301 | "object_fit": null,
2302 | "object_position": null,
2303 | "order": null,
2304 | "overflow": null,
2305 | "overflow_x": null,
2306 | "overflow_y": null,
2307 | "padding": null,
2308 | "right": null,
2309 | "top": null,
2310 | "visibility": null,
2311 | "width": null
2312 | }
2313 | },
2314 | "5fb6b552296a46599950cc645f98e19c": {
2315 | "model_module": "@jupyter-widgets/base",
2316 | "model_module_version": "1.2.0",
2317 | "model_name": "LayoutModel",
2318 | "state": {
2319 | "_model_module": "@jupyter-widgets/base",
2320 | "_model_module_version": "1.2.0",
2321 | "_model_name": "LayoutModel",
2322 | "_view_count": null,
2323 | "_view_module": "@jupyter-widgets/base",
2324 | "_view_module_version": "1.2.0",
2325 | "_view_name": "LayoutView",
2326 | "align_content": null,
2327 | "align_items": null,
2328 | "align_self": null,
2329 | "border": null,
2330 | "bottom": null,
2331 | "display": null,
2332 | "flex": null,
2333 | "flex_flow": null,
2334 | "grid_area": null,
2335 | "grid_auto_columns": null,
2336 | "grid_auto_flow": null,
2337 | "grid_auto_rows": null,
2338 | "grid_column": null,
2339 | "grid_gap": null,
2340 | "grid_row": null,
2341 | "grid_template_areas": null,
2342 | "grid_template_columns": null,
2343 | "grid_template_rows": null,
2344 | "height": null,
2345 | "justify_content": null,
2346 | "justify_items": null,
2347 | "left": null,
2348 | "margin": null,
2349 | "max_height": null,
2350 | "max_width": null,
2351 | "min_height": null,
2352 | "min_width": null,
2353 | "object_fit": null,
2354 | "object_position": null,
2355 | "order": null,
2356 | "overflow": null,
2357 | "overflow_x": null,
2358 | "overflow_y": null,
2359 | "padding": null,
2360 | "right": null,
2361 | "top": null,
2362 | "visibility": null,
2363 | "width": null
2364 | }
2365 | },
2366 | "5fd3a820509b4d8a93555475e023792e": {
2367 | "model_module": "@jupyter-widgets/base",
2368 | "model_module_version": "1.2.0",
2369 | "model_name": "LayoutModel",
2370 | "state": {
2371 | "_model_module": "@jupyter-widgets/base",
2372 | "_model_module_version": "1.2.0",
2373 | "_model_name": "LayoutModel",
2374 | "_view_count": null,
2375 | "_view_module": "@jupyter-widgets/base",
2376 | "_view_module_version": "1.2.0",
2377 | "_view_name": "LayoutView",
2378 | "align_content": null,
2379 | "align_items": null,
2380 | "align_self": null,
2381 | "border": null,
2382 | "bottom": null,
2383 | "display": null,
2384 | "flex": null,
2385 | "flex_flow": null,
2386 | "grid_area": null,
2387 | "grid_auto_columns": null,
2388 | "grid_auto_flow": null,
2389 | "grid_auto_rows": null,
2390 | "grid_column": null,
2391 | "grid_gap": null,
2392 | "grid_row": null,
2393 | "grid_template_areas": null,
2394 | "grid_template_columns": null,
2395 | "grid_template_rows": null,
2396 | "height": null,
2397 | "justify_content": null,
2398 | "justify_items": null,
2399 | "left": null,
2400 | "margin": null,
2401 | "max_height": null,
2402 | "max_width": null,
2403 | "min_height": null,
2404 | "min_width": null,
2405 | "object_fit": null,
2406 | "object_position": null,
2407 | "order": null,
2408 | "overflow": null,
2409 | "overflow_x": null,
2410 | "overflow_y": null,
2411 | "padding": null,
2412 | "right": null,
2413 | "top": null,
2414 | "visibility": null,
2415 | "width": null
2416 | }
2417 | },
2418 | "63c5e25becc147b6b44ba51e21ca6dda": {
2419 | "model_module": "@jupyter-widgets/controls",
2420 | "model_module_version": "1.5.0",
2421 | "model_name": "FloatProgressModel",
2422 | "state": {
2423 | "_dom_classes": [],
2424 | "_model_module": "@jupyter-widgets/controls",
2425 | "_model_module_version": "1.5.0",
2426 | "_model_name": "FloatProgressModel",
2427 | "_view_count": null,
2428 | "_view_module": "@jupyter-widgets/controls",
2429 | "_view_module_version": "1.5.0",
2430 | "_view_name": "ProgressView",
2431 | "bar_style": "success",
2432 | "description": "",
2433 | "description_tooltip": null,
2434 | "layout": "IPY_MODEL_384b6149860b4a849fb0c981d5da3ba6",
2435 | "max": 304337300,
2436 | "min": 0,
2437 | "orientation": "horizontal",
2438 | "style": "IPY_MODEL_324c0fdeed794080adab5a63cc61fd72",
2439 | "value": 304337300
2440 | }
2441 | },
2442 | "656ee2c7ee8646b2b2bc000969411021": {
2443 | "model_module": "@jupyter-widgets/controls",
2444 | "model_module_version": "1.5.0",
2445 | "model_name": "HBoxModel",
2446 | "state": {
2447 | "_dom_classes": [],
2448 | "_model_module": "@jupyter-widgets/controls",
2449 | "_model_module_version": "1.5.0",
2450 | "_model_name": "HBoxModel",
2451 | "_view_count": null,
2452 | "_view_module": "@jupyter-widgets/controls",
2453 | "_view_module_version": "1.5.0",
2454 | "_view_name": "HBoxView",
2455 | "box_style": "",
2456 | "children": [
2457 | "IPY_MODEL_047079d8262b4f94a29686687c09fbbf",
2458 | "IPY_MODEL_05f9572a3967425a9cc749c62b66f873",
2459 | "IPY_MODEL_e1b1a813a29447dcb925c89c533ad42d"
2460 | ],
2461 | "layout": "IPY_MODEL_40dc5cfabae042e4887f26f539458572"
2462 | }
2463 | },
2464 | "67943a2da8ca4363bb02625886ebbaac": {
2465 | "model_module": "@jupyter-widgets/base",
2466 | "model_module_version": "1.2.0",
2467 | "model_name": "LayoutModel",
2468 | "state": {
2469 | "_model_module": "@jupyter-widgets/base",
2470 | "_model_module_version": "1.2.0",
2471 | "_model_name": "LayoutModel",
2472 | "_view_count": null,
2473 | "_view_module": "@jupyter-widgets/base",
2474 | "_view_module_version": "1.2.0",
2475 | "_view_name": "LayoutView",
2476 | "align_content": null,
2477 | "align_items": null,
2478 | "align_self": null,
2479 | "border": null,
2480 | "bottom": null,
2481 | "display": null,
2482 | "flex": null,
2483 | "flex_flow": null,
2484 | "grid_area": null,
2485 | "grid_auto_columns": null,
2486 | "grid_auto_flow": null,
2487 | "grid_auto_rows": null,
2488 | "grid_column": null,
2489 | "grid_gap": null,
2490 | "grid_row": null,
2491 | "grid_template_areas": null,
2492 | "grid_template_columns": null,
2493 | "grid_template_rows": null,
2494 | "height": null,
2495 | "justify_content": null,
2496 | "justify_items": null,
2497 | "left": null,
2498 | "margin": null,
2499 | "max_height": null,
2500 | "max_width": null,
2501 | "min_height": null,
2502 | "min_width": null,
2503 | "object_fit": null,
2504 | "object_position": null,
2505 | "order": null,
2506 | "overflow": null,
2507 | "overflow_x": null,
2508 | "overflow_y": null,
2509 | "padding": null,
2510 | "right": null,
2511 | "top": null,
2512 | "visibility": null,
2513 | "width": null
2514 | }
2515 | },
2516 | "67c5747c63834c40b0b687ea2aa274f1": {
2517 | "model_module": "@jupyter-widgets/controls",
2518 | "model_module_version": "1.5.0",
2519 | "model_name": "DescriptionStyleModel",
2520 | "state": {
2521 | "_model_module": "@jupyter-widgets/controls",
2522 | "_model_module_version": "1.5.0",
2523 | "_model_name": "DescriptionStyleModel",
2524 | "_view_count": null,
2525 | "_view_module": "@jupyter-widgets/base",
2526 | "_view_module_version": "1.2.0",
2527 | "_view_name": "StyleView",
2528 | "description_width": ""
2529 | }
2530 | },
2531 | "69762e15163e4cfca7b354a3f9832b44": {
2532 | "model_module": "@jupyter-widgets/base",
2533 | "model_module_version": "1.2.0",
2534 | "model_name": "LayoutModel",
2535 | "state": {
2536 | "_model_module": "@jupyter-widgets/base",
2537 | "_model_module_version": "1.2.0",
2538 | "_model_name": "LayoutModel",
2539 | "_view_count": null,
2540 | "_view_module": "@jupyter-widgets/base",
2541 | "_view_module_version": "1.2.0",
2542 | "_view_name": "LayoutView",
2543 | "align_content": null,
2544 | "align_items": null,
2545 | "align_self": null,
2546 | "border": null,
2547 | "bottom": null,
2548 | "display": null,
2549 | "flex": null,
2550 | "flex_flow": null,
2551 | "grid_area": null,
2552 | "grid_auto_columns": null,
2553 | "grid_auto_flow": null,
2554 | "grid_auto_rows": null,
2555 | "grid_column": null,
2556 | "grid_gap": null,
2557 | "grid_row": null,
2558 | "grid_template_areas": null,
2559 | "grid_template_columns": null,
2560 | "grid_template_rows": null,
2561 | "height": null,
2562 | "justify_content": null,
2563 | "justify_items": null,
2564 | "left": null,
2565 | "margin": null,
2566 | "max_height": null,
2567 | "max_width": null,
2568 | "min_height": null,
2569 | "min_width": null,
2570 | "object_fit": null,
2571 | "object_position": null,
2572 | "order": null,
2573 | "overflow": null,
2574 | "overflow_x": null,
2575 | "overflow_y": null,
2576 | "padding": null,
2577 | "right": null,
2578 | "top": null,
2579 | "visibility": null,
2580 | "width": null
2581 | }
2582 | },
2583 | "6bdae43bc1fc402699f42c2436abec68": {
2584 | "model_module": "@jupyter-widgets/base",
2585 | "model_module_version": "1.2.0",
2586 | "model_name": "LayoutModel",
2587 | "state": {
2588 | "_model_module": "@jupyter-widgets/base",
2589 | "_model_module_version": "1.2.0",
2590 | "_model_name": "LayoutModel",
2591 | "_view_count": null,
2592 | "_view_module": "@jupyter-widgets/base",
2593 | "_view_module_version": "1.2.0",
2594 | "_view_name": "LayoutView",
2595 | "align_content": null,
2596 | "align_items": null,
2597 | "align_self": null,
2598 | "border": null,
2599 | "bottom": null,
2600 | "display": null,
2601 | "flex": null,
2602 | "flex_flow": null,
2603 | "grid_area": null,
2604 | "grid_auto_columns": null,
2605 | "grid_auto_flow": null,
2606 | "grid_auto_rows": null,
2607 | "grid_column": null,
2608 | "grid_gap": null,
2609 | "grid_row": null,
2610 | "grid_template_areas": null,
2611 | "grid_template_columns": null,
2612 | "grid_template_rows": null,
2613 | "height": null,
2614 | "justify_content": null,
2615 | "justify_items": null,
2616 | "left": null,
2617 | "margin": null,
2618 | "max_height": null,
2619 | "max_width": null,
2620 | "min_height": null,
2621 | "min_width": null,
2622 | "object_fit": null,
2623 | "object_position": null,
2624 | "order": null,
2625 | "overflow": null,
2626 | "overflow_x": null,
2627 | "overflow_y": null,
2628 | "padding": null,
2629 | "right": null,
2630 | "top": null,
2631 | "visibility": null,
2632 | "width": null
2633 | }
2634 | },
2635 | "6e572ca90a2e433f9447fce8d83485dd": {
2636 | "model_module": "@jupyter-widgets/controls",
2637 | "model_module_version": "1.5.0",
2638 | "model_name": "HTMLModel",
2639 | "state": {
2640 | "_dom_classes": [],
2641 | "_model_module": "@jupyter-widgets/controls",
2642 | "_model_module_version": "1.5.0",
2643 | "_model_name": "HTMLModel",
2644 | "_view_count": null,
2645 | "_view_module": "@jupyter-widgets/controls",
2646 | "_view_module_version": "1.5.0",
2647 | "_view_name": "HTMLView",
2648 | "description": "",
2649 | "description_tooltip": null,
2650 | "layout": "IPY_MODEL_67943a2da8ca4363bb02625886ebbaac",
2651 | "placeholder": "",
2652 | "style": "IPY_MODEL_782457319f27485abb0a7439d03a5ac4",
2653 | "value": " 30.0M/30.0M [00:01<00:00, 21.5MB/s]"
2654 | }
2655 | },
2656 | "72df7d047b25461baeae0e80a87719bd": {
2657 | "model_module": "@jupyter-widgets/controls",
2658 | "model_module_version": "1.5.0",
2659 | "model_name": "DescriptionStyleModel",
2660 | "state": {
2661 | "_model_module": "@jupyter-widgets/controls",
2662 | "_model_module_version": "1.5.0",
2663 | "_model_name": "DescriptionStyleModel",
2664 | "_view_count": null,
2665 | "_view_module": "@jupyter-widgets/base",
2666 | "_view_module_version": "1.2.0",
2667 | "_view_name": "StyleView",
2668 | "description_width": ""
2669 | }
2670 | },
2671 | "751aed48bd8d429e900f0efa54df30cc": {
2672 | "model_module": "@jupyter-widgets/base",
2673 | "model_module_version": "1.2.0",
2674 | "model_name": "LayoutModel",
2675 | "state": {
2676 | "_model_module": "@jupyter-widgets/base",
2677 | "_model_module_version": "1.2.0",
2678 | "_model_name": "LayoutModel",
2679 | "_view_count": null,
2680 | "_view_module": "@jupyter-widgets/base",
2681 | "_view_module_version": "1.2.0",
2682 | "_view_name": "LayoutView",
2683 | "align_content": null,
2684 | "align_items": null,
2685 | "align_self": null,
2686 | "border": null,
2687 | "bottom": null,
2688 | "display": null,
2689 | "flex": null,
2690 | "flex_flow": null,
2691 | "grid_area": null,
2692 | "grid_auto_columns": null,
2693 | "grid_auto_flow": null,
2694 | "grid_auto_rows": null,
2695 | "grid_column": null,
2696 | "grid_gap": null,
2697 | "grid_row": null,
2698 | "grid_template_areas": null,
2699 | "grid_template_columns": null,
2700 | "grid_template_rows": null,
2701 | "height": null,
2702 | "justify_content": null,
2703 | "justify_items": null,
2704 | "left": null,
2705 | "margin": null,
2706 | "max_height": null,
2707 | "max_width": null,
2708 | "min_height": null,
2709 | "min_width": null,
2710 | "object_fit": null,
2711 | "object_position": null,
2712 | "order": null,
2713 | "overflow": null,
2714 | "overflow_x": null,
2715 | "overflow_y": null,
2716 | "padding": null,
2717 | "right": null,
2718 | "top": null,
2719 | "visibility": null,
2720 | "width": null
2721 | }
2722 | },
2723 | "7734fc3cee4e495bab2ecfc11ccb2f82": {
2724 | "model_module": "@jupyter-widgets/controls",
2725 | "model_module_version": "1.5.0",
2726 | "model_name": "DescriptionStyleModel",
2727 | "state": {
2728 | "_model_module": "@jupyter-widgets/controls",
2729 | "_model_module_version": "1.5.0",
2730 | "_model_name": "DescriptionStyleModel",
2731 | "_view_count": null,
2732 | "_view_module": "@jupyter-widgets/base",
2733 | "_view_module_version": "1.2.0",
2734 | "_view_name": "StyleView",
2735 | "description_width": ""
2736 | }
2737 | },
2738 | "778b7e42ba524cb1a9f34e7d17f69d86": {
2739 | "model_module": "@jupyter-widgets/base",
2740 | "model_module_version": "1.2.0",
2741 | "model_name": "LayoutModel",
2742 | "state": {
2743 | "_model_module": "@jupyter-widgets/base",
2744 | "_model_module_version": "1.2.0",
2745 | "_model_name": "LayoutModel",
2746 | "_view_count": null,
2747 | "_view_module": "@jupyter-widgets/base",
2748 | "_view_module_version": "1.2.0",
2749 | "_view_name": "LayoutView",
2750 | "align_content": null,
2751 | "align_items": null,
2752 | "align_self": null,
2753 | "border": null,
2754 | "bottom": null,
2755 | "display": null,
2756 | "flex": null,
2757 | "flex_flow": null,
2758 | "grid_area": null,
2759 | "grid_auto_columns": null,
2760 | "grid_auto_flow": null,
2761 | "grid_auto_rows": null,
2762 | "grid_column": null,
2763 | "grid_gap": null,
2764 | "grid_row": null,
2765 | "grid_template_areas": null,
2766 | "grid_template_columns": null,
2767 | "grid_template_rows": null,
2768 | "height": null,
2769 | "justify_content": null,
2770 | "justify_items": null,
2771 | "left": null,
2772 | "margin": null,
2773 | "max_height": null,
2774 | "max_width": null,
2775 | "min_height": null,
2776 | "min_width": null,
2777 | "object_fit": null,
2778 | "object_position": null,
2779 | "order": null,
2780 | "overflow": null,
2781 | "overflow_x": null,
2782 | "overflow_y": null,
2783 | "padding": null,
2784 | "right": null,
2785 | "top": null,
2786 | "visibility": null,
2787 | "width": null
2788 | }
2789 | },
2790 | "77c9e6712bbd48f3a65551141b96a9ad": {
2791 | "model_module": "@jupyter-widgets/controls",
2792 | "model_module_version": "1.5.0",
2793 | "model_name": "HTMLModel",
2794 | "state": {
2795 | "_dom_classes": [],
2796 | "_model_module": "@jupyter-widgets/controls",
2797 | "_model_module_version": "1.5.0",
2798 | "_model_name": "HTMLModel",
2799 | "_view_count": null,
2800 | "_view_module": "@jupyter-widgets/controls",
2801 | "_view_module_version": "1.5.0",
2802 | "_view_name": "HTMLView",
2803 | "description": "",
2804 | "description_tooltip": null,
2805 | "layout": "IPY_MODEL_264de8716c564a399f2624ec32a471e3",
2806 | "placeholder": "",
2807 | "style": "IPY_MODEL_1e7755e63dc34a7c8be3d3da1082881f",
2808 | "value": " 304M/304M [00:09<00:00, 28.5MB/s]"
2809 | }
2810 | },
2811 | "782457319f27485abb0a7439d03a5ac4": {
2812 | "model_module": "@jupyter-widgets/controls",
2813 | "model_module_version": "1.5.0",
2814 | "model_name": "DescriptionStyleModel",
2815 | "state": {
2816 | "_model_module": "@jupyter-widgets/controls",
2817 | "_model_module_version": "1.5.0",
2818 | "_model_name": "DescriptionStyleModel",
2819 | "_view_count": null,
2820 | "_view_module": "@jupyter-widgets/base",
2821 | "_view_module_version": "1.2.0",
2822 | "_view_name": "StyleView",
2823 | "description_width": ""
2824 | }
2825 | },
2826 | "8309104e4b5547d189cec761a7b20d17": {
2827 | "model_module": "@jupyter-widgets/controls",
2828 | "model_module_version": "1.5.0",
2829 | "model_name": "HTMLModel",
2830 | "state": {
2831 | "_dom_classes": [],
2832 | "_model_module": "@jupyter-widgets/controls",
2833 | "_model_module_version": "1.5.0",
2834 | "_model_name": "HTMLModel",
2835 | "_view_count": null,
2836 | "_view_module": "@jupyter-widgets/controls",
2837 | "_view_module_version": "1.5.0",
2838 | "_view_name": "HTMLView",
2839 | "description": "",
2840 | "description_tooltip": null,
2841 | "layout": "IPY_MODEL_6bdae43bc1fc402699f42c2436abec68",
2842 | "placeholder": "",
2843 | "style": "IPY_MODEL_337d4377a5db49c28bce89d05b4147dd",
2844 | "value": "Downloading data: 100%"
2845 | }
2846 | },
2847 | "83a62efdd9b44580b64fc07b180e70c3": {
2848 | "model_module": "@jupyter-widgets/controls",
2849 | "model_module_version": "1.5.0",
2850 | "model_name": "HTMLModel",
2851 | "state": {
2852 | "_dom_classes": [],
2853 | "_model_module": "@jupyter-widgets/controls",
2854 | "_model_module_version": "1.5.0",
2855 | "_model_name": "HTMLModel",
2856 | "_view_count": null,
2857 | "_view_module": "@jupyter-widgets/controls",
2858 | "_view_module_version": "1.5.0",
2859 | "_view_name": "HTMLView",
2860 | "description": "",
2861 | "description_tooltip": null,
2862 | "layout": "IPY_MODEL_9b0708935f8741028b74f7ba7898c40b",
2863 | "placeholder": "",
2864 | "style": "IPY_MODEL_b4c0e4a5ef444865a4a47fbfdaeca142",
2865 | "value": " 34.7M/34.7M [00:01<00:00, 30.3MB/s]"
2866 | }
2867 | },
2868 | "86ea63fd58fa4307b3faf4b50a3116a3": {
2869 | "model_module": "@jupyter-widgets/controls",
2870 | "model_module_version": "1.5.0",
2871 | "model_name": "FloatProgressModel",
2872 | "state": {
2873 | "_dom_classes": [],
2874 | "_model_module": "@jupyter-widgets/controls",
2875 | "_model_module_version": "1.5.0",
2876 | "_model_name": "FloatProgressModel",
2877 | "_view_count": null,
2878 | "_view_module": "@jupyter-widgets/controls",
2879 | "_view_module_version": "1.5.0",
2880 | "_view_name": "ProgressView",
2881 | "bar_style": "success",
2882 | "description": "",
2883 | "description_tooltip": null,
2884 | "layout": "IPY_MODEL_751aed48bd8d429e900f0efa54df30cc",
2885 | "max": 154686581,
2886 | "min": 0,
2887 | "orientation": "horizontal",
2888 | "style": "IPY_MODEL_bec7ed1e35d54efb8650a13ee84b67c5",
2889 | "value": 154686581
2890 | }
2891 | },
2892 | "88ec035e13d74bfe87330e62f565346b": {
2893 | "model_module": "@jupyter-widgets/controls",
2894 | "model_module_version": "1.5.0",
2895 | "model_name": "HBoxModel",
2896 | "state": {
2897 | "_dom_classes": [],
2898 | "_model_module": "@jupyter-widgets/controls",
2899 | "_model_module_version": "1.5.0",
2900 | "_model_name": "HBoxModel",
2901 | "_view_count": null,
2902 | "_view_module": "@jupyter-widgets/controls",
2903 | "_view_module_version": "1.5.0",
2904 | "_view_name": "HBoxView",
2905 | "box_style": "",
2906 | "children": [
2907 | "IPY_MODEL_5470199cce0b49859c3261a10b4a220d",
2908 | "IPY_MODEL_e21d2378e1ec450ba722f108b97253f7",
2909 | "IPY_MODEL_83a62efdd9b44580b64fc07b180e70c3"
2910 | ],
2911 | "layout": "IPY_MODEL_5fd3a820509b4d8a93555475e023792e"
2912 | }
2913 | },
2914 | "8b4e76a4437d4fb0a21c2aa3299aa357": {
2915 | "model_module": "@jupyter-widgets/base",
2916 | "model_module_version": "1.2.0",
2917 | "model_name": "LayoutModel",
2918 | "state": {
2919 | "_model_module": "@jupyter-widgets/base",
2920 | "_model_module_version": "1.2.0",
2921 | "_model_name": "LayoutModel",
2922 | "_view_count": null,
2923 | "_view_module": "@jupyter-widgets/base",
2924 | "_view_module_version": "1.2.0",
2925 | "_view_name": "LayoutView",
2926 | "align_content": null,
2927 | "align_items": null,
2928 | "align_self": null,
2929 | "border": null,
2930 | "bottom": null,
2931 | "display": null,
2932 | "flex": null,
2933 | "flex_flow": null,
2934 | "grid_area": null,
2935 | "grid_auto_columns": null,
2936 | "grid_auto_flow": null,
2937 | "grid_auto_rows": null,
2938 | "grid_column": null,
2939 | "grid_gap": null,
2940 | "grid_row": null,
2941 | "grid_template_areas": null,
2942 | "grid_template_columns": null,
2943 | "grid_template_rows": null,
2944 | "height": null,
2945 | "justify_content": null,
2946 | "justify_items": null,
2947 | "left": null,
2948 | "margin": null,
2949 | "max_height": null,
2950 | "max_width": null,
2951 | "min_height": null,
2952 | "min_width": null,
2953 | "object_fit": null,
2954 | "object_position": null,
2955 | "order": null,
2956 | "overflow": null,
2957 | "overflow_x": null,
2958 | "overflow_y": null,
2959 | "padding": null,
2960 | "right": null,
2961 | "top": null,
2962 | "visibility": null,
2963 | "width": null
2964 | }
2965 | },
2966 | "8d7a4b2fd462449fa977f934206e0585": {
2967 | "model_module": "@jupyter-widgets/controls",
2968 | "model_module_version": "1.5.0",
2969 | "model_name": "DescriptionStyleModel",
2970 | "state": {
2971 | "_model_module": "@jupyter-widgets/controls",
2972 | "_model_module_version": "1.5.0",
2973 | "_model_name": "DescriptionStyleModel",
2974 | "_view_count": null,
2975 | "_view_module": "@jupyter-widgets/base",
2976 | "_view_module_version": "1.2.0",
2977 | "_view_name": "StyleView",
2978 | "description_width": ""
2979 | }
2980 | },
2981 | "8f26997c4ff9480893edd4afeb36341d": {
2982 | "model_module": "@jupyter-widgets/controls",
2983 | "model_module_version": "1.5.0",
2984 | "model_name": "DescriptionStyleModel",
2985 | "state": {
2986 | "_model_module": "@jupyter-widgets/controls",
2987 | "_model_module_version": "1.5.0",
2988 | "_model_name": "DescriptionStyleModel",
2989 | "_view_count": null,
2990 | "_view_module": "@jupyter-widgets/base",
2991 | "_view_module_version": "1.2.0",
2992 | "_view_name": "StyleView",
2993 | "description_width": ""
2994 | }
2995 | },
2996 | "9b0708935f8741028b74f7ba7898c40b": {
2997 | "model_module": "@jupyter-widgets/base",
2998 | "model_module_version": "1.2.0",
2999 | "model_name": "LayoutModel",
3000 | "state": {
3001 | "_model_module": "@jupyter-widgets/base",
3002 | "_model_module_version": "1.2.0",
3003 | "_model_name": "LayoutModel",
3004 | "_view_count": null,
3005 | "_view_module": "@jupyter-widgets/base",
3006 | "_view_module_version": "1.2.0",
3007 | "_view_name": "LayoutView",
3008 | "align_content": null,
3009 | "align_items": null,
3010 | "align_self": null,
3011 | "border": null,
3012 | "bottom": null,
3013 | "display": null,
3014 | "flex": null,
3015 | "flex_flow": null,
3016 | "grid_area": null,
3017 | "grid_auto_columns": null,
3018 | "grid_auto_flow": null,
3019 | "grid_auto_rows": null,
3020 | "grid_column": null,
3021 | "grid_gap": null,
3022 | "grid_row": null,
3023 | "grid_template_areas": null,
3024 | "grid_template_columns": null,
3025 | "grid_template_rows": null,
3026 | "height": null,
3027 | "justify_content": null,
3028 | "justify_items": null,
3029 | "left": null,
3030 | "margin": null,
3031 | "max_height": null,
3032 | "max_width": null,
3033 | "min_height": null,
3034 | "min_width": null,
3035 | "object_fit": null,
3036 | "object_position": null,
3037 | "order": null,
3038 | "overflow": null,
3039 | "overflow_x": null,
3040 | "overflow_y": null,
3041 | "padding": null,
3042 | "right": null,
3043 | "top": null,
3044 | "visibility": null,
3045 | "width": null
3046 | }
3047 | },
3048 | "9b980e90f069420e9a392fe82a80784a": {
3049 | "model_module": "@jupyter-widgets/base",
3050 | "model_module_version": "1.2.0",
3051 | "model_name": "LayoutModel",
3052 | "state": {
3053 | "_model_module": "@jupyter-widgets/base",
3054 | "_model_module_version": "1.2.0",
3055 | "_model_name": "LayoutModel",
3056 | "_view_count": null,
3057 | "_view_module": "@jupyter-widgets/base",
3058 | "_view_module_version": "1.2.0",
3059 | "_view_name": "LayoutView",
3060 | "align_content": null,
3061 | "align_items": null,
3062 | "align_self": null,
3063 | "border": null,
3064 | "bottom": null,
3065 | "display": null,
3066 | "flex": null,
3067 | "flex_flow": null,
3068 | "grid_area": null,
3069 | "grid_auto_columns": null,
3070 | "grid_auto_flow": null,
3071 | "grid_auto_rows": null,
3072 | "grid_column": null,
3073 | "grid_gap": null,
3074 | "grid_row": null,
3075 | "grid_template_areas": null,
3076 | "grid_template_columns": null,
3077 | "grid_template_rows": null,
3078 | "height": null,
3079 | "justify_content": null,
3080 | "justify_items": null,
3081 | "left": null,
3082 | "margin": null,
3083 | "max_height": null,
3084 | "max_width": null,
3085 | "min_height": null,
3086 | "min_width": null,
3087 | "object_fit": null,
3088 | "object_position": null,
3089 | "order": null,
3090 | "overflow": null,
3091 | "overflow_x": null,
3092 | "overflow_y": null,
3093 | "padding": null,
3094 | "right": null,
3095 | "top": null,
3096 | "visibility": null,
3097 | "width": null
3098 | }
3099 | },
3100 | "9f313f2f62d54f59ab42a5e3ec887285": {
3101 | "model_module": "@jupyter-widgets/base",
3102 | "model_module_version": "1.2.0",
3103 | "model_name": "LayoutModel",
3104 | "state": {
3105 | "_model_module": "@jupyter-widgets/base",
3106 | "_model_module_version": "1.2.0",
3107 | "_model_name": "LayoutModel",
3108 | "_view_count": null,
3109 | "_view_module": "@jupyter-widgets/base",
3110 | "_view_module_version": "1.2.0",
3111 | "_view_name": "LayoutView",
3112 | "align_content": null,
3113 | "align_items": null,
3114 | "align_self": null,
3115 | "border": null,
3116 | "bottom": null,
3117 | "display": null,
3118 | "flex": null,
3119 | "flex_flow": null,
3120 | "grid_area": null,
3121 | "grid_auto_columns": null,
3122 | "grid_auto_flow": null,
3123 | "grid_auto_rows": null,
3124 | "grid_column": null,
3125 | "grid_gap": null,
3126 | "grid_row": null,
3127 | "grid_template_areas": null,
3128 | "grid_template_columns": null,
3129 | "grid_template_rows": null,
3130 | "height": null,
3131 | "justify_content": null,
3132 | "justify_items": null,
3133 | "left": null,
3134 | "margin": null,
3135 | "max_height": null,
3136 | "max_width": null,
3137 | "min_height": null,
3138 | "min_width": null,
3139 | "object_fit": null,
3140 | "object_position": null,
3141 | "order": null,
3142 | "overflow": null,
3143 | "overflow_x": null,
3144 | "overflow_y": null,
3145 | "padding": null,
3146 | "right": null,
3147 | "top": null,
3148 | "visibility": null,
3149 | "width": null
3150 | }
3151 | },
3152 | "a3ae11c35376463493c5fe646cfee862": {
3153 | "model_module": "@jupyter-widgets/controls",
3154 | "model_module_version": "1.5.0",
3155 | "model_name": "DescriptionStyleModel",
3156 | "state": {
3157 | "_model_module": "@jupyter-widgets/controls",
3158 | "_model_module_version": "1.5.0",
3159 | "_model_name": "DescriptionStyleModel",
3160 | "_view_count": null,
3161 | "_view_module": "@jupyter-widgets/base",
3162 | "_view_module_version": "1.2.0",
3163 | "_view_name": "StyleView",
3164 | "description_width": ""
3165 | }
3166 | },
3167 | "a6803114f3144eb4a5800711e6756335": {
3168 | "model_module": "@jupyter-widgets/base",
3169 | "model_module_version": "1.2.0",
3170 | "model_name": "LayoutModel",
3171 | "state": {
3172 | "_model_module": "@jupyter-widgets/base",
3173 | "_model_module_version": "1.2.0",
3174 | "_model_name": "LayoutModel",
3175 | "_view_count": null,
3176 | "_view_module": "@jupyter-widgets/base",
3177 | "_view_module_version": "1.2.0",
3178 | "_view_name": "LayoutView",
3179 | "align_content": null,
3180 | "align_items": null,
3181 | "align_self": null,
3182 | "border": null,
3183 | "bottom": null,
3184 | "display": null,
3185 | "flex": null,
3186 | "flex_flow": null,
3187 | "grid_area": null,
3188 | "grid_auto_columns": null,
3189 | "grid_auto_flow": null,
3190 | "grid_auto_rows": null,
3191 | "grid_column": null,
3192 | "grid_gap": null,
3193 | "grid_row": null,
3194 | "grid_template_areas": null,
3195 | "grid_template_columns": null,
3196 | "grid_template_rows": null,
3197 | "height": null,
3198 | "justify_content": null,
3199 | "justify_items": null,
3200 | "left": null,
3201 | "margin": null,
3202 | "max_height": null,
3203 | "max_width": null,
3204 | "min_height": null,
3205 | "min_width": null,
3206 | "object_fit": null,
3207 | "object_position": null,
3208 | "order": null,
3209 | "overflow": null,
3210 | "overflow_x": null,
3211 | "overflow_y": null,
3212 | "padding": null,
3213 | "right": null,
3214 | "top": null,
3215 | "visibility": null,
3216 | "width": null
3217 | }
3218 | },
3219 | "aa1ab5bc0f0545e7a9f0534a0196aa9d": {
3220 | "model_module": "@jupyter-widgets/controls",
3221 | "model_module_version": "1.5.0",
3222 | "model_name": "ProgressStyleModel",
3223 | "state": {
3224 | "_model_module": "@jupyter-widgets/controls",
3225 | "_model_module_version": "1.5.0",
3226 | "_model_name": "ProgressStyleModel",
3227 | "_view_count": null,
3228 | "_view_module": "@jupyter-widgets/base",
3229 | "_view_module_version": "1.2.0",
3230 | "_view_name": "StyleView",
3231 | "bar_color": null,
3232 | "description_width": ""
3233 | }
3234 | },
3235 | "aed709ca704d4107a1c5c5bb7bc7b952": {
3236 | "model_module": "@jupyter-widgets/base",
3237 | "model_module_version": "1.2.0",
3238 | "model_name": "LayoutModel",
3239 | "state": {
3240 | "_model_module": "@jupyter-widgets/base",
3241 | "_model_module_version": "1.2.0",
3242 | "_model_name": "LayoutModel",
3243 | "_view_count": null,
3244 | "_view_module": "@jupyter-widgets/base",
3245 | "_view_module_version": "1.2.0",
3246 | "_view_name": "LayoutView",
3247 | "align_content": null,
3248 | "align_items": null,
3249 | "align_self": null,
3250 | "border": null,
3251 | "bottom": null,
3252 | "display": null,
3253 | "flex": null,
3254 | "flex_flow": null,
3255 | "grid_area": null,
3256 | "grid_auto_columns": null,
3257 | "grid_auto_flow": null,
3258 | "grid_auto_rows": null,
3259 | "grid_column": null,
3260 | "grid_gap": null,
3261 | "grid_row": null,
3262 | "grid_template_areas": null,
3263 | "grid_template_columns": null,
3264 | "grid_template_rows": null,
3265 | "height": null,
3266 | "justify_content": null,
3267 | "justify_items": null,
3268 | "left": null,
3269 | "margin": null,
3270 | "max_height": null,
3271 | "max_width": null,
3272 | "min_height": null,
3273 | "min_width": null,
3274 | "object_fit": null,
3275 | "object_position": null,
3276 | "order": null,
3277 | "overflow": null,
3278 | "overflow_x": null,
3279 | "overflow_y": null,
3280 | "padding": null,
3281 | "right": null,
3282 | "top": null,
3283 | "visibility": null,
3284 | "width": null
3285 | }
3286 | },
3287 | "b29fb7c49a4043b2b82b54564bdf4a50": {
3288 | "model_module": "@jupyter-widgets/base",
3289 | "model_module_version": "1.2.0",
3290 | "model_name": "LayoutModel",
3291 | "state": {
3292 | "_model_module": "@jupyter-widgets/base",
3293 | "_model_module_version": "1.2.0",
3294 | "_model_name": "LayoutModel",
3295 | "_view_count": null,
3296 | "_view_module": "@jupyter-widgets/base",
3297 | "_view_module_version": "1.2.0",
3298 | "_view_name": "LayoutView",
3299 | "align_content": null,
3300 | "align_items": null,
3301 | "align_self": null,
3302 | "border": null,
3303 | "bottom": null,
3304 | "display": null,
3305 | "flex": null,
3306 | "flex_flow": null,
3307 | "grid_area": null,
3308 | "grid_auto_columns": null,
3309 | "grid_auto_flow": null,
3310 | "grid_auto_rows": null,
3311 | "grid_column": null,
3312 | "grid_gap": null,
3313 | "grid_row": null,
3314 | "grid_template_areas": null,
3315 | "grid_template_columns": null,
3316 | "grid_template_rows": null,
3317 | "height": null,
3318 | "justify_content": null,
3319 | "justify_items": null,
3320 | "left": null,
3321 | "margin": null,
3322 | "max_height": null,
3323 | "max_width": null,
3324 | "min_height": null,
3325 | "min_width": null,
3326 | "object_fit": null,
3327 | "object_position": null,
3328 | "order": null,
3329 | "overflow": null,
3330 | "overflow_x": null,
3331 | "overflow_y": null,
3332 | "padding": null,
3333 | "right": null,
3334 | "top": null,
3335 | "visibility": null,
3336 | "width": null
3337 | }
3338 | },
3339 | "b4c0e4a5ef444865a4a47fbfdaeca142": {
3340 | "model_module": "@jupyter-widgets/controls",
3341 | "model_module_version": "1.5.0",
3342 | "model_name": "DescriptionStyleModel",
3343 | "state": {
3344 | "_model_module": "@jupyter-widgets/controls",
3345 | "_model_module_version": "1.5.0",
3346 | "_model_name": "DescriptionStyleModel",
3347 | "_view_count": null,
3348 | "_view_module": "@jupyter-widgets/base",
3349 | "_view_module_version": "1.2.0",
3350 | "_view_name": "StyleView",
3351 | "description_width": ""
3352 | }
3353 | },
3354 | "b73eb505bceb46afb46bd541eba365f3": {
3355 | "model_module": "@jupyter-widgets/controls",
3356 | "model_module_version": "1.5.0",
3357 | "model_name": "HTMLModel",
3358 | "state": {
3359 | "_dom_classes": [],
3360 | "_model_module": "@jupyter-widgets/controls",
3361 | "_model_module_version": "1.5.0",
3362 | "_model_name": "HTMLModel",
3363 | "_view_count": null,
3364 | "_view_module": "@jupyter-widgets/controls",
3365 | "_view_module_version": "1.5.0",
3366 | "_view_name": "HTMLView",
3367 | "description": "",
3368 | "description_tooltip": null,
3369 | "layout": "IPY_MODEL_5877b7aec265429c9006dd714f5a2887",
3370 | "placeholder": "",
3371 | "style": "IPY_MODEL_8d7a4b2fd462449fa977f934206e0585",
3372 | "value": " 155M/155M [00:08<00:00, 23.2MB/s]"
3373 | }
3374 | },
3375 | "b7cb8dd1b04e47278c36f6b6e739c184": {
3376 | "model_module": "@jupyter-widgets/controls",
3377 | "model_module_version": "1.5.0",
3378 | "model_name": "HTMLModel",
3379 | "state": {
3380 | "_dom_classes": [],
3381 | "_model_module": "@jupyter-widgets/controls",
3382 | "_model_module_version": "1.5.0",
3383 | "_model_name": "HTMLModel",
3384 | "_view_count": null,
3385 | "_view_module": "@jupyter-widgets/controls",
3386 | "_view_module_version": "1.5.0",
3387 | "_view_name": "HTMLView",
3388 | "description": "",
3389 | "description_tooltip": null,
3390 | "layout": "IPY_MODEL_a6803114f3144eb4a5800711e6756335",
3391 | "placeholder": "",
3392 | "style": "IPY_MODEL_e4b7dcbf3c85429698d7bd8fb889efd5",
3393 | "value": "Generating train split: 100%"
3394 | }
3395 | },
3396 | "bec7ed1e35d54efb8650a13ee84b67c5": {
3397 | "model_module": "@jupyter-widgets/controls",
3398 | "model_module_version": "1.5.0",
3399 | "model_name": "ProgressStyleModel",
3400 | "state": {
3401 | "_model_module": "@jupyter-widgets/controls",
3402 | "_model_module_version": "1.5.0",
3403 | "_model_name": "ProgressStyleModel",
3404 | "_view_count": null,
3405 | "_view_module": "@jupyter-widgets/base",
3406 | "_view_module_version": "1.2.0",
3407 | "_view_name": "StyleView",
3408 | "bar_color": null,
3409 | "description_width": ""
3410 | }
3411 | },
3412 | "bf85b12c3ea642bb8e1d25d6d8b44d3c": {
3413 | "model_module": "@jupyter-widgets/controls",
3414 | "model_module_version": "1.5.0",
3415 | "model_name": "HBoxModel",
3416 | "state": {
3417 | "_dom_classes": [],
3418 | "_model_module": "@jupyter-widgets/controls",
3419 | "_model_module_version": "1.5.0",
3420 | "_model_name": "HBoxModel",
3421 | "_view_count": null,
3422 | "_view_module": "@jupyter-widgets/controls",
3423 | "_view_module_version": "1.5.0",
3424 | "_view_name": "HBoxView",
3425 | "box_style": "",
3426 | "children": [
3427 | "IPY_MODEL_54a8a2e471ac44f3afc36dde06e4207a",
3428 | "IPY_MODEL_37e74e3ca09a4c509b946f77a0115bda",
3429 | "IPY_MODEL_2f7e6acb864549679927882f4497effb"
3430 | ],
3431 | "layout": "IPY_MODEL_1ebd4932bfe041c294090a2b89f93c3e"
3432 | }
3433 | },
3434 | "c2f4b4f547aa407faa5fa76be1139093": {
3435 | "model_module": "@jupyter-widgets/base",
3436 | "model_module_version": "1.2.0",
3437 | "model_name": "LayoutModel",
3438 | "state": {
3439 | "_model_module": "@jupyter-widgets/base",
3440 | "_model_module_version": "1.2.0",
3441 | "_model_name": "LayoutModel",
3442 | "_view_count": null,
3443 | "_view_module": "@jupyter-widgets/base",
3444 | "_view_module_version": "1.2.0",
3445 | "_view_name": "LayoutView",
3446 | "align_content": null,
3447 | "align_items": null,
3448 | "align_self": null,
3449 | "border": null,
3450 | "bottom": null,
3451 | "display": null,
3452 | "flex": null,
3453 | "flex_flow": null,
3454 | "grid_area": null,
3455 | "grid_auto_columns": null,
3456 | "grid_auto_flow": null,
3457 | "grid_auto_rows": null,
3458 | "grid_column": null,
3459 | "grid_gap": null,
3460 | "grid_row": null,
3461 | "grid_template_areas": null,
3462 | "grid_template_columns": null,
3463 | "grid_template_rows": null,
3464 | "height": null,
3465 | "justify_content": null,
3466 | "justify_items": null,
3467 | "left": null,
3468 | "margin": null,
3469 | "max_height": null,
3470 | "max_width": null,
3471 | "min_height": null,
3472 | "min_width": null,
3473 | "object_fit": null,
3474 | "object_position": null,
3475 | "order": null,
3476 | "overflow": null,
3477 | "overflow_x": null,
3478 | "overflow_y": null,
3479 | "padding": null,
3480 | "right": null,
3481 | "top": null,
3482 | "visibility": null,
3483 | "width": null
3484 | }
3485 | },
3486 | "c394c8051f23404793a6f561a571ffe0": {
3487 | "model_module": "@jupyter-widgets/controls",
3488 | "model_module_version": "1.5.0",
3489 | "model_name": "HBoxModel",
3490 | "state": {
3491 | "_dom_classes": [],
3492 | "_model_module": "@jupyter-widgets/controls",
3493 | "_model_module_version": "1.5.0",
3494 | "_model_name": "HBoxModel",
3495 | "_view_count": null,
3496 | "_view_module": "@jupyter-widgets/controls",
3497 | "_view_module_version": "1.5.0",
3498 | "_view_name": "HBoxView",
3499 | "box_style": "",
3500 | "children": [
3501 | "IPY_MODEL_f2e04dbe648c42b49749ba1f1e163804",
3502 | "IPY_MODEL_63c5e25becc147b6b44ba51e21ca6dda",
3503 | "IPY_MODEL_77c9e6712bbd48f3a65551141b96a9ad"
3504 | ],
3505 | "layout": "IPY_MODEL_b29fb7c49a4043b2b82b54564bdf4a50"
3506 | }
3507 | },
3508 | "c8d48420a23b4d459f35b1782f92149f": {
3509 | "model_module": "@jupyter-widgets/base",
3510 | "model_module_version": "1.2.0",
3511 | "model_name": "LayoutModel",
3512 | "state": {
3513 | "_model_module": "@jupyter-widgets/base",
3514 | "_model_module_version": "1.2.0",
3515 | "_model_name": "LayoutModel",
3516 | "_view_count": null,
3517 | "_view_module": "@jupyter-widgets/base",
3518 | "_view_module_version": "1.2.0",
3519 | "_view_name": "LayoutView",
3520 | "align_content": null,
3521 | "align_items": null,
3522 | "align_self": null,
3523 | "border": null,
3524 | "bottom": null,
3525 | "display": null,
3526 | "flex": null,
3527 | "flex_flow": null,
3528 | "grid_area": null,
3529 | "grid_auto_columns": null,
3530 | "grid_auto_flow": null,
3531 | "grid_auto_rows": null,
3532 | "grid_column": null,
3533 | "grid_gap": null,
3534 | "grid_row": null,
3535 | "grid_template_areas": null,
3536 | "grid_template_columns": null,
3537 | "grid_template_rows": null,
3538 | "height": null,
3539 | "justify_content": null,
3540 | "justify_items": null,
3541 | "left": null,
3542 | "margin": null,
3543 | "max_height": null,
3544 | "max_width": null,
3545 | "min_height": null,
3546 | "min_width": null,
3547 | "object_fit": null,
3548 | "object_position": null,
3549 | "order": null,
3550 | "overflow": null,
3551 | "overflow_x": null,
3552 | "overflow_y": null,
3553 | "padding": null,
3554 | "right": null,
3555 | "top": null,
3556 | "visibility": null,
3557 | "width": null
3558 | }
3559 | },
3560 | "cb4e0d12e4164d14af0f9ab34e4374b2": {
3561 | "model_module": "@jupyter-widgets/controls",
3562 | "model_module_version": "1.5.0",
3563 | "model_name": "HTMLModel",
3564 | "state": {
3565 | "_dom_classes": [],
3566 | "_model_module": "@jupyter-widgets/controls",
3567 | "_model_module_version": "1.5.0",
3568 | "_model_name": "HTMLModel",
3569 | "_view_count": null,
3570 | "_view_module": "@jupyter-widgets/controls",
3571 | "_view_module_version": "1.5.0",
3572 | "_view_name": "HTMLView",
3573 | "description": "",
3574 | "description_tooltip": null,
3575 | "layout": "IPY_MODEL_1ada03d73946419ea7bf8e7727ea0a59",
3576 | "placeholder": "",
3577 | "style": "IPY_MODEL_093df990a07a404d8a56772596f7801d",
3578 | "value": "Downloading data: 100%"
3579 | }
3580 | },
3581 | "ccafded2fa9d40388f19dc40c0b59bc2": {
3582 | "model_module": "@jupyter-widgets/base",
3583 | "model_module_version": "1.2.0",
3584 | "model_name": "LayoutModel",
3585 | "state": {
3586 | "_model_module": "@jupyter-widgets/base",
3587 | "_model_module_version": "1.2.0",
3588 | "_model_name": "LayoutModel",
3589 | "_view_count": null,
3590 | "_view_module": "@jupyter-widgets/base",
3591 | "_view_module_version": "1.2.0",
3592 | "_view_name": "LayoutView",
3593 | "align_content": null,
3594 | "align_items": null,
3595 | "align_self": null,
3596 | "border": null,
3597 | "bottom": null,
3598 | "display": null,
3599 | "flex": null,
3600 | "flex_flow": null,
3601 | "grid_area": null,
3602 | "grid_auto_columns": null,
3603 | "grid_auto_flow": null,
3604 | "grid_auto_rows": null,
3605 | "grid_column": null,
3606 | "grid_gap": null,
3607 | "grid_row": null,
3608 | "grid_template_areas": null,
3609 | "grid_template_columns": null,
3610 | "grid_template_rows": null,
3611 | "height": null,
3612 | "justify_content": null,
3613 | "justify_items": null,
3614 | "left": null,
3615 | "margin": null,
3616 | "max_height": null,
3617 | "max_width": null,
3618 | "min_height": null,
3619 | "min_width": null,
3620 | "object_fit": null,
3621 | "object_position": null,
3622 | "order": null,
3623 | "overflow": null,
3624 | "overflow_x": null,
3625 | "overflow_y": null,
3626 | "padding": null,
3627 | "right": null,
3628 | "top": null,
3629 | "visibility": null,
3630 | "width": null
3631 | }
3632 | },
3633 | "d4b81ce4d1f5479d99b2c335f5e2bfbf": {
3634 | "model_module": "@jupyter-widgets/controls",
3635 | "model_module_version": "1.5.0",
3636 | "model_name": "HTMLModel",
3637 | "state": {
3638 | "_dom_classes": [],
3639 | "_model_module": "@jupyter-widgets/controls",
3640 | "_model_module_version": "1.5.0",
3641 | "_model_name": "HTMLModel",
3642 | "_view_count": null,
3643 | "_view_module": "@jupyter-widgets/controls",
3644 | "_view_module_version": "1.5.0",
3645 | "_view_name": "HTMLView",
3646 | "description": "",
3647 | "description_tooltip": null,
3648 | "layout": "IPY_MODEL_41fc68dde7d0400c9fe3d2aa6bdde602",
3649 | "placeholder": "",
3650 | "style": "IPY_MODEL_7734fc3cee4e495bab2ecfc11ccb2f82",
3651 | "value": " 287113/287113 [00:12<00:00, 16606.27 examples/s]"
3652 | }
3653 | },
3654 | "d648db571011429bbc3cf214360350f2": {
3655 | "model_module": "@jupyter-widgets/controls",
3656 | "model_module_version": "1.5.0",
3657 | "model_name": "HBoxModel",
3658 | "state": {
3659 | "_dom_classes": [],
3660 | "_model_module": "@jupyter-widgets/controls",
3661 | "_model_module_version": "1.5.0",
3662 | "_model_name": "HBoxModel",
3663 | "_view_count": null,
3664 | "_view_module": "@jupyter-widgets/controls",
3665 | "_view_module_version": "1.5.0",
3666 | "_view_name": "HBoxView",
3667 | "box_style": "",
3668 | "children": [
3669 | "IPY_MODEL_04ee3b7b051f4c15bb59f996f42ab385",
3670 | "IPY_MODEL_f8d4ca3632824c50a6b560ef0f1cc1ef",
3671 | "IPY_MODEL_f426ad9df02f4380af6d7c1f217b34ba"
3672 | ],
3673 | "layout": "IPY_MODEL_9b980e90f069420e9a392fe82a80784a"
3674 | }
3675 | },
3676 | "d7d4ac5274c644a7a070cdd9396767f7": {
3677 | "model_module": "@jupyter-widgets/controls",
3678 | "model_module_version": "1.5.0",
3679 | "model_name": "HBoxModel",
3680 | "state": {
3681 | "_dom_classes": [],
3682 | "_model_module": "@jupyter-widgets/controls",
3683 | "_model_module_version": "1.5.0",
3684 | "_model_name": "HBoxModel",
3685 | "_view_count": null,
3686 | "_view_module": "@jupyter-widgets/controls",
3687 | "_view_module_version": "1.5.0",
3688 | "_view_name": "HBoxView",
3689 | "box_style": "",
3690 | "children": [
3691 | "IPY_MODEL_cb4e0d12e4164d14af0f9ab34e4374b2",
3692 | "IPY_MODEL_86ea63fd58fa4307b3faf4b50a3116a3",
3693 | "IPY_MODEL_b73eb505bceb46afb46bd541eba365f3"
3694 | ],
3695 | "layout": "IPY_MODEL_69762e15163e4cfca7b354a3f9832b44"
3696 | }
3697 | },
3698 | "da5482c545df47e99d0c67dcb78d4819": {
3699 | "model_module": "@jupyter-widgets/controls",
3700 | "model_module_version": "1.5.0",
3701 | "model_name": "ProgressStyleModel",
3702 | "state": {
3703 | "_model_module": "@jupyter-widgets/controls",
3704 | "_model_module_version": "1.5.0",
3705 | "_model_name": "ProgressStyleModel",
3706 | "_view_count": null,
3707 | "_view_module": "@jupyter-widgets/base",
3708 | "_view_module_version": "1.2.0",
3709 | "_view_name": "StyleView",
3710 | "bar_color": null,
3711 | "description_width": ""
3712 | }
3713 | },
3714 | "e1b1a813a29447dcb925c89c533ad42d": {
3715 | "model_module": "@jupyter-widgets/controls",
3716 | "model_module_version": "1.5.0",
3717 | "model_name": "HTMLModel",
3718 | "state": {
3719 | "_dom_classes": [],
3720 | "_model_module": "@jupyter-widgets/controls",
3721 | "_model_module_version": "1.5.0",
3722 | "_model_name": "HTMLModel",
3723 | "_view_count": null,
3724 | "_view_module": "@jupyter-widgets/controls",
3725 | "_view_module_version": "1.5.0",
3726 | "_view_name": "HTMLView",
3727 | "description": "",
3728 | "description_tooltip": null,
3729 | "layout": "IPY_MODEL_10d762804c644f1dbb01ae0bc59ababa",
3730 | "placeholder": "",
3731 | "style": "IPY_MODEL_1f797a0301204f93bf63427022b02515",
3732 | "value": " 13368/13368 [00:00<00:00, 39394.83 examples/s]"
3733 | }
3734 | },
3735 | "e21d2378e1ec450ba722f108b97253f7": {
3736 | "model_module": "@jupyter-widgets/controls",
3737 | "model_module_version": "1.5.0",
3738 | "model_name": "FloatProgressModel",
3739 | "state": {
3740 | "_dom_classes": [],
3741 | "_model_module": "@jupyter-widgets/controls",
3742 | "_model_module_version": "1.5.0",
3743 | "_model_name": "FloatProgressModel",
3744 | "_view_count": null,
3745 | "_view_module": "@jupyter-widgets/controls",
3746 | "_view_module_version": "1.5.0",
3747 | "_view_name": "ProgressView",
3748 | "bar_style": "success",
3749 | "description": "",
3750 | "description_tooltip": null,
3751 | "layout": "IPY_MODEL_f8bad810f43745be9a56e9eb326a2847",
3752 | "max": 34664725,
3753 | "min": 0,
3754 | "orientation": "horizontal",
3755 | "style": "IPY_MODEL_aa1ab5bc0f0545e7a9f0534a0196aa9d",
3756 | "value": 34664725
3757 | }
3758 | },
3759 | "e231b485d1b3409580ba90a3e3dffabd": {
3760 | "model_module": "@jupyter-widgets/controls",
3761 | "model_module_version": "1.5.0",
3762 | "model_name": "DescriptionStyleModel",
3763 | "state": {
3764 | "_model_module": "@jupyter-widgets/controls",
3765 | "_model_module_version": "1.5.0",
3766 | "_model_name": "DescriptionStyleModel",
3767 | "_view_count": null,
3768 | "_view_module": "@jupyter-widgets/base",
3769 | "_view_module_version": "1.2.0",
3770 | "_view_name": "StyleView",
3771 | "description_width": ""
3772 | }
3773 | },
3774 | "e4b7dcbf3c85429698d7bd8fb889efd5": {
3775 | "model_module": "@jupyter-widgets/controls",
3776 | "model_module_version": "1.5.0",
3777 | "model_name": "DescriptionStyleModel",
3778 | "state": {
3779 | "_model_module": "@jupyter-widgets/controls",
3780 | "_model_module_version": "1.5.0",
3781 | "_model_name": "DescriptionStyleModel",
3782 | "_view_count": null,
3783 | "_view_module": "@jupyter-widgets/base",
3784 | "_view_module_version": "1.2.0",
3785 | "_view_name": "StyleView",
3786 | "description_width": ""
3787 | }
3788 | },
3789 | "e563dce073b446aba83e147d27c3311e": {
3790 | "model_module": "@jupyter-widgets/controls",
3791 | "model_module_version": "1.5.0",
3792 | "model_name": "VBoxModel",
3793 | "state": {
3794 | "_dom_classes": [],
3795 | "_model_module": "@jupyter-widgets/controls",
3796 | "_model_module_version": "1.5.0",
3797 | "_model_name": "VBoxModel",
3798 | "_view_count": null,
3799 | "_view_module": "@jupyter-widgets/controls",
3800 | "_view_module_version": "1.5.0",
3801 | "_view_name": "VBoxView",
3802 | "box_style": "",
3803 | "children": [
3804 | "IPY_MODEL_3149f938ad244aa2bf1690fdb633a97c",
3805 | "IPY_MODEL_552d6aae8e7849a9a4875908513cd85a"
3806 | ],
3807 | "layout": "IPY_MODEL_1536b8949d514088a2d06e05d36a35fa"
3808 | }
3809 | },
3810 | "e57e7c2cd07841a297e0940b70a90ce1": {
3811 | "model_module": "@jupyter-widgets/base",
3812 | "model_module_version": "1.2.0",
3813 | "model_name": "LayoutModel",
3814 | "state": {
3815 | "_model_module": "@jupyter-widgets/base",
3816 | "_model_module_version": "1.2.0",
3817 | "_model_name": "LayoutModel",
3818 | "_view_count": null,
3819 | "_view_module": "@jupyter-widgets/base",
3820 | "_view_module_version": "1.2.0",
3821 | "_view_name": "LayoutView",
3822 | "align_content": null,
3823 | "align_items": null,
3824 | "align_self": null,
3825 | "border": null,
3826 | "bottom": null,
3827 | "display": null,
3828 | "flex": null,
3829 | "flex_flow": null,
3830 | "grid_area": null,
3831 | "grid_auto_columns": null,
3832 | "grid_auto_flow": null,
3833 | "grid_auto_rows": null,
3834 | "grid_column": null,
3835 | "grid_gap": null,
3836 | "grid_row": null,
3837 | "grid_template_areas": null,
3838 | "grid_template_columns": null,
3839 | "grid_template_rows": null,
3840 | "height": null,
3841 | "justify_content": null,
3842 | "justify_items": null,
3843 | "left": null,
3844 | "margin": null,
3845 | "max_height": null,
3846 | "max_width": null,
3847 | "min_height": null,
3848 | "min_width": null,
3849 | "object_fit": null,
3850 | "object_position": null,
3851 | "order": null,
3852 | "overflow": null,
3853 | "overflow_x": null,
3854 | "overflow_y": null,
3855 | "padding": null,
3856 | "right": null,
3857 | "top": null,
3858 | "visibility": null,
3859 | "width": null
3860 | }
3861 | },
3862 | "ec6ab3e41e2e4709a6a274407abaa8fc": {
3863 | "model_module": "@jupyter-widgets/controls",
3864 | "model_module_version": "1.5.0",
3865 | "model_name": "HBoxModel",
3866 | "state": {
3867 | "_dom_classes": [],
3868 | "_model_module": "@jupyter-widgets/controls",
3869 | "_model_module_version": "1.5.0",
3870 | "_model_name": "HBoxModel",
3871 | "_view_count": null,
3872 | "_view_module": "@jupyter-widgets/controls",
3873 | "_view_module_version": "1.5.0",
3874 | "_view_name": "HBoxView",
3875 | "box_style": "",
3876 | "children": [
3877 | "IPY_MODEL_8309104e4b5547d189cec761a7b20d17",
3878 | "IPY_MODEL_206a8d34539e41d8a58c9af9a1e6dc17",
3879 | "IPY_MODEL_6e572ca90a2e433f9447fce8d83485dd"
3880 | ],
3881 | "layout": "IPY_MODEL_c8d48420a23b4d459f35b1782f92149f"
3882 | }
3883 | },
3884 | "f2e04dbe648c42b49749ba1f1e163804": {
3885 | "model_module": "@jupyter-widgets/controls",
3886 | "model_module_version": "1.5.0",
3887 | "model_name": "HTMLModel",
3888 | "state": {
3889 | "_dom_classes": [],
3890 | "_model_module": "@jupyter-widgets/controls",
3891 | "_model_module_version": "1.5.0",
3892 | "_model_name": "HTMLModel",
3893 | "_view_count": null,
3894 | "_view_module": "@jupyter-widgets/controls",
3895 | "_view_module_version": "1.5.0",
3896 | "_view_name": "HTMLView",
3897 | "description": "",
3898 | "description_tooltip": null,
3899 | "layout": "IPY_MODEL_778b7e42ba524cb1a9f34e7d17f69d86",
3900 | "placeholder": "",
3901 | "style": "IPY_MODEL_f38f18f13a6b443dae71a939af6fe140",
3902 | "value": "Downloading data: 100%"
3903 | }
3904 | },
3905 | "f38f18f13a6b443dae71a939af6fe140": {
3906 | "model_module": "@jupyter-widgets/controls",
3907 | "model_module_version": "1.5.0",
3908 | "model_name": "DescriptionStyleModel",
3909 | "state": {
3910 | "_model_module": "@jupyter-widgets/controls",
3911 | "_model_module_version": "1.5.0",
3912 | "_model_name": "DescriptionStyleModel",
3913 | "_view_count": null,
3914 | "_view_module": "@jupyter-widgets/base",
3915 | "_view_module_version": "1.2.0",
3916 | "_view_name": "StyleView",
3917 | "description_width": ""
3918 | }
3919 | },
3920 | "f426ad9df02f4380af6d7c1f217b34ba": {
3921 | "model_module": "@jupyter-widgets/controls",
3922 | "model_module_version": "1.5.0",
3923 | "model_name": "HTMLModel",
3924 | "state": {
3925 | "_dom_classes": [],
3926 | "_model_module": "@jupyter-widgets/controls",
3927 | "_model_module_version": "1.5.0",
3928 | "_model_name": "HTMLModel",
3929 | "_view_count": null,
3930 | "_view_module": "@jupyter-widgets/controls",
3931 | "_view_module_version": "1.5.0",
3932 | "_view_name": "HTMLView",
3933 | "description": "",
3934 | "description_tooltip": null,
3935 | "layout": "IPY_MODEL_1735c76560a5471da7301a5242cfbeff",
3936 | "placeholder": "",
3937 | "style": "IPY_MODEL_67c5747c63834c40b0b687ea2aa274f1",
3938 | "value": " 11490/11490 [00:00<00:00, 37224.53 examples/s]"
3939 | }
3940 | },
3941 | "f5d8908c52d140a48431f1fa30145d0f": {
3942 | "model_module": "@jupyter-widgets/controls",
3943 | "model_module_version": "1.5.0",
3944 | "model_name": "ProgressStyleModel",
3945 | "state": {
3946 | "_model_module": "@jupyter-widgets/controls",
3947 | "_model_module_version": "1.5.0",
3948 | "_model_name": "ProgressStyleModel",
3949 | "_view_count": null,
3950 | "_view_module": "@jupyter-widgets/base",
3951 | "_view_module_version": "1.2.0",
3952 | "_view_name": "StyleView",
3953 | "bar_color": null,
3954 | "description_width": ""
3955 | }
3956 | },
3957 | "f8bad810f43745be9a56e9eb326a2847": {
3958 | "model_module": "@jupyter-widgets/base",
3959 | "model_module_version": "1.2.0",
3960 | "model_name": "LayoutModel",
3961 | "state": {
3962 | "_model_module": "@jupyter-widgets/base",
3963 | "_model_module_version": "1.2.0",
3964 | "_model_name": "LayoutModel",
3965 | "_view_count": null,
3966 | "_view_module": "@jupyter-widgets/base",
3967 | "_view_module_version": "1.2.0",
3968 | "_view_name": "LayoutView",
3969 | "align_content": null,
3970 | "align_items": null,
3971 | "align_self": null,
3972 | "border": null,
3973 | "bottom": null,
3974 | "display": null,
3975 | "flex": null,
3976 | "flex_flow": null,
3977 | "grid_area": null,
3978 | "grid_auto_columns": null,
3979 | "grid_auto_flow": null,
3980 | "grid_auto_rows": null,
3981 | "grid_column": null,
3982 | "grid_gap": null,
3983 | "grid_row": null,
3984 | "grid_template_areas": null,
3985 | "grid_template_columns": null,
3986 | "grid_template_rows": null,
3987 | "height": null,
3988 | "justify_content": null,
3989 | "justify_items": null,
3990 | "left": null,
3991 | "margin": null,
3992 | "max_height": null,
3993 | "max_width": null,
3994 | "min_height": null,
3995 | "min_width": null,
3996 | "object_fit": null,
3997 | "object_position": null,
3998 | "order": null,
3999 | "overflow": null,
4000 | "overflow_x": null,
4001 | "overflow_y": null,
4002 | "padding": null,
4003 | "right": null,
4004 | "top": null,
4005 | "visibility": null,
4006 | "width": null
4007 | }
4008 | },
4009 | "f8d4ca3632824c50a6b560ef0f1cc1ef": {
4010 | "model_module": "@jupyter-widgets/controls",
4011 | "model_module_version": "1.5.0",
4012 | "model_name": "FloatProgressModel",
4013 | "state": {
4014 | "_dom_classes": [],
4015 | "_model_module": "@jupyter-widgets/controls",
4016 | "_model_module_version": "1.5.0",
4017 | "_model_name": "FloatProgressModel",
4018 | "_view_count": null,
4019 | "_view_module": "@jupyter-widgets/controls",
4020 | "_view_module_version": "1.5.0",
4021 | "_view_name": "ProgressView",
4022 | "bar_style": "success",
4023 | "description": "",
4024 | "description_tooltip": null,
4025 | "layout": "IPY_MODEL_16026cb519b84eb990389d9a4f152f09",
4026 | "max": 11490,
4027 | "min": 0,
4028 | "orientation": "horizontal",
4029 | "style": "IPY_MODEL_4aee7a184c07486a88104dd8e9f229c4",
4030 | "value": 11490
4031 | }
4032 | }
4033 | }
4034 | }
4035 | },
4036 | "nbformat": 4,
4037 | "nbformat_minor": 0
4038 | }
4039 |
--------------------------------------------------------------------------------