├── .gitignore ├── LICENSE ├── README.md ├── generated ├── ga_adv_class_398.jpg ├── ga_adv_class_420.jpg ├── ga_adv_class_543.jpg ├── ga_fooling_class_340.jpg ├── ga_fooling_class_457.jpg ├── ga_fooling_class_483.jpg ├── targeted_adv_img_from_948_to_35.jpg ├── targeted_adv_img_from_948_to_62.jpg ├── targeted_adv_noise_from_948_to_35.jpg ├── targeted_adv_noise_from_948_to_62.jpg ├── untargeted_adv_img_from_13_to_19.jpg ├── untargeted_adv_img_from_390_to_397.jpg ├── untargeted_adv_noise_from_13_to_19.jpg └── untargeted_adv_noise_from_390_to_397.jpg ├── input_images ├── apple.JPEG ├── bird.JPEG ├── cat_dog.png ├── eel.JPEG ├── snake.jpg └── spider.png └── src ├── fast_gradient_sign_targeted.py ├── fast_gradient_sign_untargeted.py ├── gradient_ascent_adv.py ├── gradient_ascent_fooling.py └── misc_functions.py /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | env/ 12 | build/ 13 | develop-eggs/ 14 | dist/ 15 | downloads/ 16 | eggs/ 17 | .eggs/ 18 | lib/ 19 | lib64/ 20 | parts/ 21 | sdist/ 22 | var/ 23 | wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | 28 | # PyInstaller 29 | # Usually these files are written by a python script from a template 30 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 31 | *.manifest 32 | *.spec 33 | 34 | # Installer logs 35 | pip-log.txt 36 | pip-delete-this-directory.txt 37 | 38 | # Unit test / coverage reports 39 | htmlcov/ 40 | .tox/ 41 | .coverage 42 | .coverage.* 43 | .cache 44 | nosetests.xml 45 | coverage.xml 46 | *.cover 47 | .hypothesis/ 48 | 49 | # Translations 50 | *.mo 51 | *.pot 52 | 53 | # Django stuff: 54 | *.log 55 | local_settings.py 56 | 57 | # Flask stuff: 58 | instance/ 59 | .webassets-cache 60 | 61 | # Scrapy stuff: 62 | .scrapy 63 | 64 | # Sphinx documentation 65 | docs/_build/ 66 | 67 | # PyBuilder 68 | target/ 69 | 70 | # Jupyter Notebook 71 | .ipynb_checkpoints 72 | 73 | # pyenv 74 | .python-version 75 | 76 | # celery beat schedule file 77 | celerybeat-schedule 78 | 79 | # SageMath parsed files 80 | *.sage.py 81 | 82 | # dotenv 83 | .env 84 | 85 | # virtualenv 86 | .venv 87 | venv/ 88 | ENV/ 89 | 90 | # Spyder project settings 91 | .spyderproject 92 | .spyproject 93 | 94 | # Rope project settings 95 | .ropeproject 96 | 97 | # mkdocs documentation 98 | /site 99 | 100 | # mypy 101 | .mypy_cache/ 102 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2017 Utku Ozbulak 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Convolutional Neural Network Adversarial Attacks 2 | 3 | 4 | **Note**: I am aware that there are some issues with the code, I will update this repository soon (Also will move away from cv2 to PIL). 5 | 6 | This repo is a branch off of [CNN Visualisations](https://github.com/utkuozbulak/pytorch-cnn-visualizations) because it was starting to get bloated. It contains following CNN adversarial attacks implemented in Pytorch: 7 | 8 | * Fast Gradient Sign, Untargeted [1] 9 | * Fast Gradient Sign, Targeted [1] 10 | * Gradient Ascent, Adversarial Images [2] 11 | * Gradient Ascent, Fooling Images (Unrecognizable images predicted as classes with high confidence) [2] 12 | 13 | It will also include more adverisarial attack and defenses techniques in the future as well. 14 | 15 | The code uses pretrained AlexNet in the model zoo. You can simply change it with your model but don't forget to change target class parameters as well. 16 | 17 | All images are pre-processed with mean and std of the ImageNet dataset before being fed to the model. None of the code uses GPU as these operations are quite fast (for a single image). You can make use of gpu with very little effort. The examples below include numbers in the brackets after the description, like *Mastiff (243)*, this number represents the class id in the ImageNet dataset. 18 | 19 | I tried to comment on the code as much as possible, if you have any issues understanding it or porting it, don't hesitate to reach out. 20 | 21 | Below, are some sample results for each operation. 22 | 23 | ## Fast Gradient Sign - Untargeted 24 | In this operation we update the original image with signs of the received gradient on the first layer. Untargeted version aims to reduce the confidence of the initial class. The code breaks as soon as the image stops being classified as the original label. 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |
Predicted as Eel (390)
Confidence: 0.96
Adversarial Noise Predicted as Blowfish (397)
Confidence: 0.81
39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 |
Predicted as Snowbird (13)
Confidence: 0.99
Adversarial Noise Predicted as Chickadee (19)
Confidence: 0.95
53 | 54 | ## Fast Gradient Sign - Targeted 55 | Targeted version of FGS works almost the same as the untargeted version. The only difference is that we do not try to minimize the original label but maximize the target label. The code breaks as soon as the image is predicted as the target class. 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |
Predicted as Apple (948)
Confidence: 0.95
Adversarial Noise Predicted as Rock python (62)
Confidence: 0.16
70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 |
Predicted as Apple (948)
Confidence: 0.95
Adversarial Noise Predicted as Mud turtle (35)
Confidence: 0.54
85 | 86 | 87 | 88 | ## Gradient Ascent - Fooling Image Generation 89 | In this operation we start with a random image and continously update the image with targeted backpropagation (for a certain class) and stop when we achieve target confidence for that class. All of the below images are generated from pretrained AlexNet to fool it. 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 |
Predicted as Zebra (340)
Confidence: 0.94
Predicted as Bow tie (457)
Confidence: 0.95
Predicted as Castle (483)
Confidence: 0.99
105 | 106 | 107 | ## Gradient Ascent - Adversarial Image Generation 108 | This operation works exactly same as the previous one. The only important thing is that keeping learning rate a bit smaller so that the image does not receive huge updates so that it will continue to look like the originial. As it can be seen from samples, on some images it is almost impossible to recognize the difference between two images but on others it can clearly be observed that something is wrong. All of the examples below were created from and tested on AlexNet to fool it. 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 |
Predicted as Eel (390)
Confidence: 0.96
Predicted as Apple (948)
Confidence: 0.95
Predicted as Snowbird (13)
Confidence: 0.99
Predicted as Banjo (420)
Confidence: 0.99
Predicted as Abacus (398)
Confidence: 0.99
Predicted as Dumbell (543)
Confidence: 1
133 | 134 | 135 | 136 | 137 | ## Requirements: 138 | ``` 139 | torch >= 0.2.0.post4 140 | torchvision >= 0.1.9 141 | numpy >= 1.13.0 142 | opencv >= 3.1.0 143 | ``` 144 | 145 | 146 | ## References: 147 | 148 | [1] I. J. Goodfellow, J. Shlens, C. Szegedy. *Explaining and Harnessing Adversarial Examples* https://arxiv.org/abs/1412.6572 149 | 150 | [2] A. Nguyen, J. Yosinski, J. Clune. *Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images* https://arxiv.org/abs/1412.1897 151 | -------------------------------------------------------------------------------- /generated/ga_adv_class_398.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/ga_adv_class_398.jpg -------------------------------------------------------------------------------- /generated/ga_adv_class_420.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/ga_adv_class_420.jpg -------------------------------------------------------------------------------- /generated/ga_adv_class_543.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/ga_adv_class_543.jpg -------------------------------------------------------------------------------- /generated/ga_fooling_class_340.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/ga_fooling_class_340.jpg -------------------------------------------------------------------------------- /generated/ga_fooling_class_457.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/ga_fooling_class_457.jpg -------------------------------------------------------------------------------- /generated/ga_fooling_class_483.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/ga_fooling_class_483.jpg -------------------------------------------------------------------------------- /generated/targeted_adv_img_from_948_to_35.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/targeted_adv_img_from_948_to_35.jpg -------------------------------------------------------------------------------- /generated/targeted_adv_img_from_948_to_62.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/targeted_adv_img_from_948_to_62.jpg -------------------------------------------------------------------------------- /generated/targeted_adv_noise_from_948_to_35.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/targeted_adv_noise_from_948_to_35.jpg -------------------------------------------------------------------------------- /generated/targeted_adv_noise_from_948_to_62.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/targeted_adv_noise_from_948_to_62.jpg -------------------------------------------------------------------------------- /generated/untargeted_adv_img_from_13_to_19.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/untargeted_adv_img_from_13_to_19.jpg -------------------------------------------------------------------------------- /generated/untargeted_adv_img_from_390_to_397.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/untargeted_adv_img_from_390_to_397.jpg -------------------------------------------------------------------------------- /generated/untargeted_adv_noise_from_13_to_19.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/untargeted_adv_noise_from_13_to_19.jpg -------------------------------------------------------------------------------- /generated/untargeted_adv_noise_from_390_to_397.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/generated/untargeted_adv_noise_from_390_to_397.jpg -------------------------------------------------------------------------------- /input_images/apple.JPEG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/input_images/apple.JPEG -------------------------------------------------------------------------------- /input_images/bird.JPEG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/input_images/bird.JPEG -------------------------------------------------------------------------------- /input_images/cat_dog.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/input_images/cat_dog.png -------------------------------------------------------------------------------- /input_images/eel.JPEG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/input_images/eel.JPEG -------------------------------------------------------------------------------- /input_images/snake.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/input_images/snake.jpg -------------------------------------------------------------------------------- /input_images/spider.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/utkuozbulak/pytorch-cnn-adversarial-attacks/8af67f124c904401947c90078481f93f3456e107/input_images/spider.png -------------------------------------------------------------------------------- /src/fast_gradient_sign_targeted.py: -------------------------------------------------------------------------------- 1 | """ 2 | Created on Fri Dec 16 01:24:11 2017 3 | 4 | @author: Utku Ozbulak - github.com/utkuozbulak 5 | """ 6 | import os 7 | import numpy as np 8 | import cv2 9 | 10 | import torch 11 | from torch import nn 12 | from torch.autograd import Variable 13 | # from torch.autograd.gradcheck import zero_gradients # See processed_image.grad = None 14 | 15 | from misc_functions import preprocess_image, recreate_image, get_params 16 | 17 | 18 | class FastGradientSignTargeted(): 19 | """ 20 | Fast gradient sign untargeted adversarial attack, maximizes the target class activation 21 | with iterative grad sign updates 22 | """ 23 | def __init__(self, model, alpha): 24 | self.model = model 25 | self.model.eval() 26 | # Movement multiplier per iteration 27 | self.alpha = alpha 28 | # Create the folder to export images if not exists 29 | if not os.path.exists('../generated'): 30 | os.makedirs('../generated') 31 | 32 | def generate(self, original_image, org_class, target_class): 33 | # I honestly dont know a better way to create a variable with specific value 34 | # Targeting the specific class 35 | im_label_as_var = Variable(torch.from_numpy(np.asarray([target_class]))) 36 | # Define loss functions 37 | ce_loss = nn.CrossEntropyLoss() 38 | # Process image 39 | processed_image = preprocess_image(original_image) 40 | # Start iteration 41 | for i in range(10): 42 | print('Iteration:', str(i)) 43 | # zero_gradients(x) 44 | # Zero out previous gradients 45 | # Can also use zero_gradients(x) 46 | processed_image.grad = None 47 | # Forward pass 48 | out = self.model(processed_image) 49 | # Calculate CE loss 50 | pred_loss = ce_loss(out, im_label_as_var) 51 | # Do backward pass 52 | pred_loss.backward() 53 | # Create Noise 54 | # Here, processed_image.grad.data is also the same thing is the backward gradient from 55 | # the first layer, can use that with hooks as well 56 | adv_noise = self.alpha * torch.sign(processed_image.grad.data) 57 | # Add noise to processed image 58 | processed_image.data = processed_image.data - adv_noise 59 | 60 | # Confirming if the image is indeed adversarial with added noise 61 | # This is necessary (for some cases) because when we recreate image 62 | # the values become integers between 1 and 255 and sometimes the adversariality 63 | # is lost in the recreation process 64 | 65 | # Generate confirmation image 66 | recreated_image = recreate_image(processed_image) 67 | # Process confirmation image 68 | prep_confirmation_image = preprocess_image(recreated_image) 69 | # Forward pass 70 | confirmation_out = self.model(prep_confirmation_image) 71 | # Get prediction 72 | _, confirmation_prediction = confirmation_out.data.max(1) 73 | # Get Probability 74 | confirmation_confidence = \ 75 | nn.functional.softmax(confirmation_out)[0][confirmation_prediction].data.numpy()[0] 76 | # Convert tensor to int 77 | confirmation_prediction = confirmation_prediction.numpy()[0] 78 | # Check if the prediction is different than the original 79 | if confirmation_prediction == target_class: 80 | print('Original image was predicted as:', org_class, 81 | 'with adversarial noise converted to:', confirmation_prediction, 82 | 'and predicted with confidence of:', confirmation_confidence) 83 | # Create the image for noise as: Original image - generated image 84 | noise_image = original_image - recreated_image 85 | cv2.imwrite('../generated/targeted_adv_noise_from_' + str(org_class) + '_to_' + 86 | str(confirmation_prediction) + '.jpg', noise_image) 87 | # Write image 88 | cv2.imwrite('../generated/targeted_adv_img_from_' + str(org_class) + '_to_' + 89 | str(confirmation_prediction) + '.jpg', recreated_image) 90 | break 91 | 92 | return 1 93 | 94 | 95 | if __name__ == '__main__': 96 | target_example = 0 # Apple 97 | (original_image, prep_img, org_class, _, pretrained_model) =\ 98 | get_params(target_example) 99 | target_class = 62 # Mud turtle 100 | 101 | FGS_untargeted = FastGradientSignTargeted(pretrained_model, 0.01) 102 | FGS_untargeted.generate(original_image, org_class, target_class) 103 | -------------------------------------------------------------------------------- /src/fast_gradient_sign_untargeted.py: -------------------------------------------------------------------------------- 1 | """ 2 | Created on Fri Dec 15 19:57:34 2017 3 | 4 | @author: Utku Ozbulak - github.com/utkuozbulak 5 | """ 6 | import os 7 | import numpy as np 8 | import cv2 9 | 10 | import torch 11 | from torch import nn 12 | from torch.autograd import Variable 13 | # from torch.autograd.gradcheck import zero_gradients # See processed_image.grad = None 14 | 15 | from misc_functions import preprocess_image, recreate_image, get_params 16 | 17 | 18 | class FastGradientSignUntargeted(): 19 | """ 20 | Fast gradient sign untargeted adversarial attack, minimizes the initial class activation 21 | with iterative grad sign updates 22 | """ 23 | def __init__(self, model, alpha): 24 | self.model = model 25 | self.model.eval() 26 | # Movement multiplier per iteration 27 | self.alpha = alpha 28 | # Create the folder to export images if not exists 29 | if not os.path.exists('../generated'): 30 | os.makedirs('../generated') 31 | 32 | def generate(self, original_image, im_label): 33 | # I honestly dont know a better way to create a variable with specific value 34 | im_label_as_var = Variable(torch.from_numpy(np.asarray([im_label]))) 35 | # Define loss functions 36 | ce_loss = nn.CrossEntropyLoss() 37 | # Process image 38 | processed_image = preprocess_image(original_image) 39 | # Start iteration 40 | for i in range(10): 41 | print('Iteration:', str(i)) 42 | # zero_gradients(x) 43 | # Zero out previous gradients 44 | # Can also use zero_gradients(x) 45 | processed_image.grad = None 46 | # Forward pass 47 | out = self.model(processed_image) 48 | # Calculate CE loss 49 | pred_loss = ce_loss(out, im_label_as_var) 50 | # Do backward pass 51 | pred_loss.backward() 52 | # Create Noise 53 | # Here, processed_image.grad.data is also the same thing is the backward gradient from 54 | # the first layer, can use that with hooks as well 55 | adv_noise = self.alpha * torch.sign(processed_image.grad.data) 56 | # Add Noise to processed image 57 | processed_image.data = processed_image.data + adv_noise 58 | 59 | # Confirming if the image is indeed adversarial with added noise 60 | # This is necessary (for some cases) because when we recreate image 61 | # the values become integers between 1 and 255 and sometimes the adversariality 62 | # is lost in the recreation process 63 | 64 | # Generate confirmation image 65 | recreated_image = recreate_image(processed_image) 66 | # Process confirmation image 67 | prep_confirmation_image = preprocess_image(recreated_image) 68 | # Forward pass 69 | confirmation_out = self.model(prep_confirmation_image) 70 | # Get prediction 71 | _, confirmation_prediction = confirmation_out.data.max(1) 72 | # Get Probability 73 | confirmation_confidence = \ 74 | nn.functional.softmax(confirmation_out)[0][confirmation_prediction].data.numpy()[0] 75 | # Convert tensor to int 76 | confirmation_prediction = confirmation_prediction.numpy()[0] 77 | # Check if the prediction is different than the original 78 | if confirmation_prediction != im_label: 79 | print('Original image was predicted as:', im_label, 80 | 'with adversarial noise converted to:', confirmation_prediction, 81 | 'and predicted with confidence of:', confirmation_confidence) 82 | # Create the image for noise as: Original image - generated image 83 | noise_image = original_image - recreated_image 84 | cv2.imwrite('../generated/untargeted_adv_noise_from_' + str(im_label) + '_to_' + 85 | str(confirmation_prediction) + '.jpg', noise_image) 86 | # Write image 87 | cv2.imwrite('../generated/untargeted_adv_img_from_' + str(im_label) + '_to_' + 88 | str(confirmation_prediction) + '.jpg', recreated_image) 89 | break 90 | 91 | return 1 92 | 93 | 94 | if __name__ == '__main__': 95 | target_example = 2 # Eel 96 | (original_image, prep_img, target_class, _, pretrained_model) =\ 97 | get_params(target_example) 98 | 99 | FGS_untargeted = FastGradientSignUntargeted(pretrained_model, 0.01) 100 | FGS_untargeted.generate(original_image, target_class) 101 | -------------------------------------------------------------------------------- /src/gradient_ascent_adv.py: -------------------------------------------------------------------------------- 1 | """ 2 | Created on Thu Oct 29 14:09:01 2017 3 | 4 | @author: Utku Ozbulak - github.com/utkuozbulak 5 | """ 6 | import os 7 | import cv2 8 | 9 | from torch.optim import SGD 10 | from torchvision import models 11 | from torch.nn import functional 12 | 13 | from misc_functions import preprocess_image, recreate_image, get_params 14 | 15 | 16 | class DisguisedFoolingSampleGeneration(): 17 | """ 18 | Produces an image that maximizes a certain class with gradient ascent, breaks as soon as 19 | the target prediction confidence is captured 20 | """ 21 | def __init__(self, model, initial_image, target_class, minimum_confidence): 22 | self.model = model 23 | self.model.eval() 24 | self.target_class = target_class 25 | self.minimum_confidence = minimum_confidence 26 | # Generate a random image 27 | self.initial_image = initial_image 28 | # Create the folder to export images if not exists 29 | if not os.path.exists('../generated'): 30 | os.makedirs('../generated') 31 | 32 | def generate(self): 33 | for i in range(1, 500): 34 | # Process image and return variable 35 | self.processed_image = preprocess_image(self.initial_image) 36 | # Define optimizer for the image 37 | optimizer = SGD([self.processed_image], lr=0.7) 38 | # Forward 39 | output = self.model(self.processed_image) 40 | # Get confidence from softmax 41 | target_confidence = functional.softmax(output)[0][self.target_class].data.numpy()[0] 42 | if target_confidence > self.minimum_confidence: 43 | # Reading the raw image and pushing it through model to see the prediction 44 | # this is needed because the format of preprocessed image is float and when 45 | # it is written back to file it is converted to uint8, so there is a chance that 46 | # there are some losses while writing 47 | confirmation_image = cv2.imread('../generated/ga_adv_class_' + 48 | str(self.target_class) + '.jpg', 1) 49 | # Preprocess image 50 | confirmation_processed_image = preprocess_image(confirmation_image) 51 | # Get prediction 52 | confirmation_output = self.model(confirmation_processed_image) 53 | # Get confidence 54 | softmax_confirmation = \ 55 | functional.softmax(confirmation_output)[0][self.target_class].data.numpy()[0] 56 | if softmax_confirmation > self.minimum_confidence: 57 | print('Generated disguised fooling image with', "{0:.2f}".format(softmax_confirmation), 58 | 'confidence at', str(i) + 'th iteration.') 59 | break 60 | # Target specific class 61 | class_loss = -output[0, self.target_class] 62 | print('Iteration:', str(i), 'Target confidence', "{0:.4f}".format(target_confidence)) 63 | # Zero grads 64 | self.model.zero_grad() 65 | # Backward 66 | class_loss.backward() 67 | # Update image 68 | optimizer.step() 69 | # Recreate image 70 | self.initial_image = recreate_image(self.processed_image) 71 | # Save image 72 | cv2.imwrite('../generated/ga_adv_class_' + str(self.target_class) + '.jpg', 73 | self.initial_image) 74 | return confirmation_image 75 | 76 | 77 | if __name__ == '__main__': 78 | target_example = 0 # Appple 79 | (original_image, prep_img, _, _, pretrained_model) =\ 80 | get_params(target_example) 81 | 82 | fooling_target_class = 398 # Abacus 83 | min_confidence = 0.99 84 | fool = DisguisedFoolingSampleGeneration(pretrained_model, 85 | original_image, 86 | fooling_target_class, 87 | min_confidence) 88 | generated_image = fool.generate() 89 | -------------------------------------------------------------------------------- /src/gradient_ascent_fooling.py: -------------------------------------------------------------------------------- 1 | """ 2 | Created on Thu Oct 28 08:12:10 2017 3 | 4 | @author: Utku Ozbulak - github.com/utkuozbulak 5 | """ 6 | import os 7 | import cv2 8 | import numpy as np 9 | 10 | from torch.optim import SGD 11 | from torchvision import models 12 | from torch.nn import functional 13 | 14 | from misc_functions import preprocess_image, recreate_image 15 | 16 | 17 | class FoolingSampleGeneration(): 18 | """ 19 | Produces an image that maximizes a certain class with gradient ascent, breaks as soon as 20 | the target prediction confidence is captured 21 | """ 22 | def __init__(self, model, target_class, minimum_confidence): 23 | self.model = model 24 | self.model.eval() 25 | self.target_class = target_class 26 | self.minimum_confidence = minimum_confidence 27 | # Generate a random image 28 | self.created_image = np.uint8(np.random.uniform(0, 255, (224, 224, 3))) 29 | # Create the folder to export images if not exists 30 | if not os.path.exists('../generated'): 31 | os.makedirs('../generated') 32 | 33 | def generate(self): 34 | for i in range(1, 200): 35 | # Process image and return variable 36 | self.processed_image = preprocess_image(self.created_image) 37 | # Define optimizer for the image 38 | optimizer = SGD([self.processed_image], lr=6) 39 | # Forward 40 | output = self.model(self.processed_image) 41 | # Get confidence from softmax 42 | target_confidence = functional.softmax(output)[0][self.target_class].data.numpy()[0] 43 | if target_confidence > self.minimum_confidence: 44 | # Reading the raw image and pushing it through model to see the prediction 45 | # this is needed because the format of preprocessed image is float and when 46 | # it is written back to file it is converted to uint8, so there is a chance that 47 | # there are some losses while writing 48 | confirmation_image = cv2.imread('../generated/ga_fooling_class_' + 49 | str(self.target_class) + '.jpg', 1) 50 | # Preprocess image 51 | confirmation_processed_image = preprocess_image(confirmation_image) 52 | # Get prediction 53 | confirmation_output = self.model(confirmation_processed_image) 54 | # Get confidence 55 | softmax_confirmation = \ 56 | functional.softmax(confirmation_output)[0][self.target_class].data.numpy()[0] 57 | if softmax_confirmation > self.minimum_confidence: 58 | print('Generated fooling image with', "{0:.2f}".format(softmax_confirmation), 59 | 'confidence at', str(i) + 'th iteration.') 60 | break 61 | # Target specific class 62 | class_loss = -output[0, self.target_class] 63 | print('Iteration:', str(i), 'Target Confidence', "{0:.4f}".format(target_confidence)) 64 | # Zero grads 65 | self.model.zero_grad() 66 | # Backward 67 | class_loss.backward() 68 | # Update image 69 | optimizer.step() 70 | # Recreate image 71 | self.created_image = recreate_image(self.processed_image) 72 | # Save image 73 | cv2.imwrite('../generated/ga_fooling_class_' + str(self.target_class) + '.jpg', 74 | self.created_image) 75 | return self.processed_image 76 | 77 | 78 | if __name__ == '__main__': 79 | target_class = 483 # Castle 80 | pretrained_model = models.alexnet(pretrained=True) 81 | cig = FoolingSampleGeneration(pretrained_model, target_class, 0.99) 82 | cig.generate() 83 | -------------------------------------------------------------------------------- /src/misc_functions.py: -------------------------------------------------------------------------------- 1 | """ 2 | Created on Thu Oct 21 11:09:09 2017 3 | 4 | @author: Utku Ozbulak - github.com/utkuozbulak 5 | """ 6 | import copy 7 | import cv2 8 | import numpy as np 9 | 10 | import torch 11 | from torch.autograd import Variable 12 | from torchvision import models 13 | 14 | 15 | def preprocess_image(cv2im, resize_im=True): 16 | """ 17 | Processes image for CNNs 18 | 19 | Args: 20 | PIL_img (PIL_img): Image to process 21 | resize_im (bool): Resize to 224 or not 22 | returns: 23 | im_as_var (Pytorch variable): Variable that contains processed float tensor 24 | """ 25 | # mean and std list for channels (Imagenet) 26 | mean = [0.485, 0.456, 0.406] 27 | std = [0.229, 0.224, 0.225] 28 | # Resize image 29 | if resize_im: 30 | cv2im = cv2.resize(cv2im, (224, 224)) 31 | im_as_arr = np.float32(cv2im) 32 | im_as_arr = np.ascontiguousarray(im_as_arr[..., ::-1]) 33 | im_as_arr = im_as_arr.transpose(2, 0, 1) # Convert array to D,W,H 34 | # Normalize the channels 35 | for channel, _ in enumerate(im_as_arr): 36 | im_as_arr[channel] /= 255 37 | im_as_arr[channel] -= mean[channel] 38 | im_as_arr[channel] /= std[channel] 39 | # Convert to float tensor 40 | im_as_ten = torch.from_numpy(im_as_arr).float() 41 | # Add one more channel to the beginning. Tensor shape = 1,3,224,224 42 | im_as_ten.unsqueeze_(0) 43 | # Convert to Pytorch variable 44 | im_as_var = Variable(im_as_ten, requires_grad=True) 45 | return im_as_var 46 | 47 | 48 | def recreate_image(im_as_var): 49 | """ 50 | Recreates images from a torch variable, sort of reverse preprocessing 51 | 52 | Args: 53 | im_as_var (torch variable): Image to recreate 54 | 55 | returns: 56 | recreated_im (numpy arr): Recreated image in array 57 | """ 58 | reverse_mean = [-0.485, -0.456, -0.406] 59 | reverse_std = [1/0.229, 1/0.224, 1/0.225] 60 | recreated_im = copy.copy(im_as_var.data.numpy()[0]) 61 | for c in range(3): 62 | recreated_im[c] /= reverse_std[c] 63 | recreated_im[c] -= reverse_mean[c] 64 | recreated_im[recreated_im > 1] = 1 65 | recreated_im[recreated_im < 0] = 0 66 | recreated_im = np.round(recreated_im * 255) 67 | 68 | recreated_im = np.uint8(recreated_im).transpose(1, 2, 0) 69 | # Convert RBG to GBR 70 | recreated_im = recreated_im[..., ::-1] 71 | return recreated_im 72 | 73 | 74 | def get_params(example_index): 75 | """ 76 | Gets used variables for almost all visualizations, like the image, model etc. 77 | 78 | Args: 79 | example_index (int): Image id to use from examples 80 | 81 | returns: 82 | original_image (numpy arr): Original image read from the file 83 | prep_img (numpy_arr): Processed image 84 | target_class (int): Target class for the image 85 | file_name_to_export (string): File name to export the visualizations 86 | pretrained_model(Pytorch model): Model to use for the operations 87 | """ 88 | # Pick one of the examples 89 | example_list = [['../input_images/apple.JPEG', 948], 90 | ['../input_images/eel.JPEG', 390], 91 | ['../input_images/bird.JPEG', 13]] 92 | selected_example = example_index 93 | img_path = example_list[selected_example][0] 94 | target_class = example_list[selected_example][1] 95 | file_name_to_export = img_path[img_path.rfind('/')+1:img_path.rfind('.')] 96 | # Read image 97 | original_image = cv2.imread(img_path, 1) 98 | # Process image 99 | prep_img = preprocess_image(original_image) 100 | # Define model 101 | pretrained_model = models.alexnet(pretrained=True) 102 | return (original_image, 103 | prep_img, 104 | target_class, 105 | file_name_to_export, 106 | pretrained_model) 107 | --------------------------------------------------------------------------------