├── utils
├── __init__.py
├── align_trajectory.py
├── mat_utils.py
├── trace_parser.py
├── align_utils.py
├── tfs_utils.py
└── transformations.py
├── plots
└── .gitignore
├── data
├── .gitignore
└── download.sh
├── RAL18_Zhang.pdf
├── img
├── cov_mat.png
├── pos_cov.png
├── spectrum.png
├── fixed_cov_mat.png
├── fixed_pos_cov.png
├── free_cov_mat.png
├── free_pos_cov.png
├── free_cov_transformed_mat.png
└── free_pos_cov_transformed.png
├── README.md
├── cov_transformation.py
└── compare_cov_free_fixed.py
/utils/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/plots/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/data/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 | !download.sh
4 |
--------------------------------------------------------------------------------
/RAL18_Zhang.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/RAL18_Zhang.pdf
--------------------------------------------------------------------------------
/img/cov_mat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/cov_mat.png
--------------------------------------------------------------------------------
/img/pos_cov.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/pos_cov.png
--------------------------------------------------------------------------------
/img/spectrum.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/spectrum.png
--------------------------------------------------------------------------------
/img/fixed_cov_mat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/fixed_cov_mat.png
--------------------------------------------------------------------------------
/img/fixed_pos_cov.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/fixed_pos_cov.png
--------------------------------------------------------------------------------
/img/free_cov_mat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/free_cov_mat.png
--------------------------------------------------------------------------------
/img/free_pos_cov.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/free_pos_cov.png
--------------------------------------------------------------------------------
/data/download.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | wget http://rpg.ifi.uzh.ch/datasets/ral18zhang_data.tar.gz -O - | tar -xz
4 |
--------------------------------------------------------------------------------
/img/free_cov_transformed_mat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/free_cov_transformed_mat.png
--------------------------------------------------------------------------------
/img/free_pos_cov_transformed.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/uzh-rpg/rpg_vi_cov_transformation/HEAD/img/free_pos_cov_transformed.png
--------------------------------------------------------------------------------
/utils/align_trajectory.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 | # -*- coding: utf-8 -*-
3 |
4 | import numpy as np
5 | from tfs_utils import exp_so3, log_so3
6 |
7 |
8 | def align_se3(model, data, only_yaw=False):
9 | """Align two trajectories using the method of Horn (closed-form).
10 |
11 | Input:
12 | model -- first trajectory (nx3), numpy array type
13 | data -- second trajectory (nx3), numpy array type
14 | only_yaw -- constrain the rotation to yaw only
15 |
16 | Output:
17 | R -- rotation matrix (3x3)
18 | t -- translation vector (3x1)
19 |
20 | """
21 | np.set_printoptions(precision=3, suppress=True)
22 | mu_M = model.mean(0)
23 | mu_D = data.mean(0)
24 | model_zerocentered = model - mu_M
25 | data_zerocentered = data - mu_D
26 |
27 | W = np.zeros((3, 3))
28 | for row in range(model.shape[0]):
29 | W += np.outer(model_zerocentered[row, :], data_zerocentered[row, :])
30 | U, d, Vh = np.linalg.linalg.svd(W.transpose())
31 | S = np.matrix(np.identity(3))
32 | if np.linalg.det(U) * np.linalg.det(Vh) < 0:
33 | S[2, 2] = -1
34 | R = U*S*Vh
35 | if only_yaw:
36 | log_R = log_so3(R)
37 | yaw_R = np.array([0, 0, log_R[2]])
38 | R = exp_so3(yaw_R)
39 | t = mu_D - np.dot(R, mu_M)
40 |
41 | return R, t
42 |
--------------------------------------------------------------------------------
/utils/mat_utils.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 | # -*- coding: utf-8 -*-
3 | import numpy as np
4 |
5 |
6 | def permuteHesCov(cov, num_kf):
7 | '''
8 | permutate the covriance/hessian matrix so that
9 | positions, rotations and velocities appear together.
10 | assum that the states are ordered [p0, q0, v0; p1, q1, v1; ...]
11 | '''
12 | assert cov.shape[0] == 9 * num_kf
13 | num_states = 9 * num_kf
14 |
15 | des_index = np.zeros((num_states, ))
16 | for i in range(num_kf):
17 | cur_pos_s = i * 3
18 | old_pos_s = i * 9
19 | des_index[cur_pos_s] = old_pos_s
20 | des_index[cur_pos_s+1] = old_pos_s+1
21 | des_index[cur_pos_s+2] = old_pos_s+2
22 | cur_rot_s = 3 * num_kf + i * 3
23 | old_rot_s = i * 9 + 3
24 | des_index[cur_rot_s] = old_rot_s
25 | des_index[cur_rot_s+1] = old_rot_s+1
26 | des_index[cur_rot_s+2] = old_rot_s+2
27 | cur_vel_s = 6 * num_kf + i * 3
28 | old_vel_s = i * 9 + 6
29 | des_index[cur_vel_s] = old_vel_s
30 | des_index[cur_vel_s+1] = old_vel_s+1
31 | des_index[cur_vel_s+2] = old_vel_s+2
32 |
33 | new_cov = cov
34 | cur_index = np.array(range(num_states))
35 |
36 | for i in range(num_states):
37 | des_id = des_index[i]
38 | loc_des_state = np.argwhere(cur_index == des_id)[0][0]
39 | if loc_des_state == i:
40 | continue
41 | # swap i and loc_des_state
42 | tmp = cur_index[i]
43 | cur_index[i] = cur_index[loc_des_state]
44 | cur_index[loc_des_state] = tmp
45 | new_cov[:, [i, loc_des_state]] = new_cov[:, [loc_des_state, i]]
46 | new_cov[[i, loc_des_state], :] = new_cov[[loc_des_state, i], :]
47 |
48 | return new_cov
49 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Covariance Transformation for Visual-Inertial Systems
2 |
3 | This repository contains the implementation of the covariance transformation method in the following publication:
4 |
5 | Zichao Zhang, Guillermo Gallego and Davide Scaramuzza, "*On the Comparison of Gauge Freedom Handling in Optimization-Based Visual-Inertial State Estimation*," in IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2710-2717, July 2018.
6 |
7 | If the code is used, please cite:
8 |
9 | ```latex
10 | @Article{Zhang18ral,
11 | author={Zichao Zhang and Guillermo Gallego and Davide Scaramuzza},
12 | journal={IEEE Robotics and Automation Letters},
13 | title={On the Comparison of Gauge Freedom Handling in Optimization-Based Visual-Inertial State Estimation},
14 | year={2018},
15 | month={July}
16 | }
17 | ```
18 |
19 | ## Handling unobservable degrees of freedom
20 |
21 | It is well known that visual-inertial systems have four degrees of freedom that are not observable: the global position and the rotation around gravity. These unobservable degrees of freedom (called *gauge freedom*) have to be handled properly in visual-inertial state estimation to obtain a unique state estimate. In optimization-based methods, three approaches are usually used:
22 |
23 | * *Gauge Fixation*: fixing the initial state,
24 | * *Gauge Prior*: adding a prior to the initial state,
25 | * *Free Gauge*: allowing the parameters to evolve freely during optimization.
26 |
27 | 
28 |
29 | While these three methods do not have significant differences in terms of accuracy and efficiency, the estimated covariance (inverse/pseudo inverse of the Fisher Information Matrix) can be very different. The following figure shows the estimated position uncertainties using fixation (left) and free gauge method (right).
30 |
31 | **Position uncertainties of different methods**
32 |
33 | 
34 |
35 | While the estimated covariance from the gauge fixation method shows that the uncertainty grows over time (time increases from bottom to top), the uncertainties from the free gauge approach cannot be interpreted intuitively. This is due to the fact that no reference is chosen for the free gauge approach, and therefore the uncertainty is not associated with any reference frame. However, we show that by observing the gauge constraint, we can *transform the estimated covariance from the free gauge method to any desired gauge fixation*. The result is shown in the middle plot, where we can see that the transformed free gauge uncertainties agree very well with the ones from the gauge fixation case.
36 |
37 | Such transformations can be useful, for example, when the optimization process is used as a black box, and the covariance of a certain fixation is desired. We publicly release the code to the community to benefit related research.
38 |
39 |
40 | **Covariance matrices of different methods**
41 |
42 | The following figure shows how the covariance matrix (in position `p`, orientation `phi` and velocity `v` of the camera) from the free gauge method is transformed to a desired gauge, that is, to a desired reference frame. The yellow areas denote fixed parameters.
43 |
44 | 
45 |
46 |
47 | ## Instructions to Run the Code
48 | First download the data
49 |
50 | ```shell
51 | cd data && ./download.sh
52 | cd ..
53 | ```
54 |
55 | Then simply run
56 |
57 | ```python
58 | python2 compare_cov_free_fixed.py
59 | ```
60 |
61 | The transformed covariance/uncertainties will be plotted and saved in `plots`.
62 |
63 | The script calls the function in `cov_transformation.py` to transform the free gauge covariance to the gauge fixation case. We provide several example datasets in `data` folder. You can try different ones by changing the code at the beginning of the script `cov_transformation.py`.
64 |
65 | The covariance transformation method is implemented in `cov_transformation.py`, and it does not depend on our data and its format. Please see the documentation there for details (e.g., input and output).
66 |
67 |
--------------------------------------------------------------------------------
/utils/trace_parser.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 | # -*- coding: utf-8 -*-
3 | import numpy as np
4 | import os
5 |
6 |
7 | def parseTrajRes(filename):
8 | trace = open(filename, 'r')
9 | num_trials = int(trace.readline())
10 |
11 | mc_est = []
12 | mc_gt = []
13 | mc_pts_est = []
14 | mc_pts_gt = []
15 | mc_cov = []
16 | mc_iter_num = []
17 | mc_reproj_err = []
18 | mc_rot_err = []
19 | mc_vel_err = []
20 | mc_pos_err = []
21 | mc_prior_yaw_err = [] # position error
22 | mc_prior_pos_err = [] # rotation error
23 | mc_time_sec = []
24 | mc_q_inc = []
25 | for i in range(num_trials):
26 | num_kfs = int(trace.readline())
27 | est_single = np.zeros((num_kfs, 10)) # 3 + 4 + 3
28 | gt_single = np.zeros((num_kfs, 10))
29 | for j in range(num_kfs):
30 | line = (trace.readline()).split()
31 | est_single[j, :] = [float(e) for e in line]
32 | for j in range(num_kfs):
33 | line = (trace.readline()).split()
34 | gt_single[j, :] = [float(e) for e in line]
35 |
36 | num_pts_est = int(trace.readline())
37 | pts_est_single = np.zeros((num_pts_est, 3))
38 | for j in range(num_pts_est):
39 | line = (trace.readline()).split()
40 | pts_est_single[j, :] = [float(e) for e in line]
41 |
42 | num_pts_gt = int(trace.readline())
43 | assert num_pts_gt == num_pts_est
44 | pts_gt_single = np.zeros((num_pts_gt, 3))
45 | for j in range(num_pts_gt):
46 | line = (trace.readline()).split()
47 | pts_gt_single[j, :] = [float(e) for e in line]
48 |
49 | cov_rows = int(trace.readline())
50 | cov_cols = int(trace.readline())
51 | cov_single = np.zeros((cov_rows, cov_cols))
52 | for j in range(cov_rows):
53 | line = (trace.readline()).split()
54 | cov_single[j, :] = [float(e) for e in line]
55 |
56 | iter_num = int(trace.readline())
57 | line = (trace.readline()).split()
58 | reproj_err = [float(e) for e in line]
59 |
60 | trace.readline()
61 | line = (trace.readline()).split()
62 | preinte_err = [float(e) for e in line]
63 |
64 | trace.readline()
65 | line = (trace.readline()).split()
66 | prior_err = [float(e) for e in line]
67 |
68 | time_sec = float(trace.readline())
69 |
70 | trace.readline()
71 | line = (trace.readline()).split()
72 | q_inc = np.array([float(e) for e in line])
73 | q_inc = q_inc.reshape((num_kfs, 3))
74 |
75 | mc_est.append(est_single)
76 | mc_gt.append(gt_single)
77 | mc_pts_est.append(pts_est_single)
78 | mc_pts_gt.append(pts_gt_single)
79 | mc_cov.append(cov_single)
80 | mc_iter_num.append(iter_num)
81 | mc_reproj_err.append(reproj_err)
82 | mc_rot_err.append(preinte_err[0::3])
83 | mc_vel_err.append(preinte_err[1::3])
84 | mc_pos_err.append(preinte_err[2::3])
85 | mc_prior_yaw_err.append(prior_err[0::2])
86 | mc_prior_pos_err.append(prior_err[1::2])
87 |
88 | mc_time_sec.append(time_sec)
89 |
90 | mc_q_inc.append(q_inc)
91 |
92 | trace.close()
93 | mc_res = {'mc_est': mc_est, 'mc_gt': mc_gt,
94 | 'mc_pts_est': mc_pts_est, 'mc_pts_gt': mc_pts_gt,
95 | 'mc_cov': mc_cov,
96 | 'mc_iter': mc_iter_num, 'mc_reproj_err': mc_reproj_err,
97 | 'mc_rot_err': mc_rot_err, 'mc_vel_err': mc_vel_err,
98 | 'mc_pos_err': mc_pos_err,
99 | 'mc_prior_yaw_err': mc_prior_yaw_err,
100 | 'mc_prior_pos_err': mc_prior_pos_err,
101 | 'mc_time_sec': mc_time_sec,
102 | 'mc_q_inc': mc_q_inc}
103 | return mc_res
104 |
105 |
106 | def parseTrajResBatch(trace_dir):
107 | catalog = open(os.path.join(trace_dir, 'trajectories.txt'), 'r')
108 | traj_files = [os.path.join(trace_dir, l[0: -1]) for l in catalog]
109 | mc_res_vec = []
110 | for i, traj in enumerate(traj_files):
111 | mc_res = parseTrajRes(traj)
112 | mc_res_vec.append(mc_res)
113 | return mc_res_vec
114 |
115 |
116 | def parseSingle(l):
117 | return l[0:3], l[3:7], l[7:10]
118 |
--------------------------------------------------------------------------------
/utils/align_utils.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 | # -*- coding: utf-8 -*-
3 |
4 | import numpy as np
5 | import transformations as tfs # [w, x, y, z]
6 | from tfs_utils import exp_so3, log_so3
7 | import align_trajectory as align
8 | import trace_parser as tp
9 |
10 |
11 | # utility functions
12 | def _assertDim(states):
13 | # 10: without bias; 16: with bias
14 | assert states.shape[1] == 10 or states.shape[1] == 16
15 |
16 |
17 | def _getIndices(n_aligned, total_n):
18 | if n_aligned == -1:
19 | idxs = np.arange(0, total_n)
20 | else:
21 | assert n_aligned <= total_n and n_aligned >= 1
22 | idxs = np.arange(0, n_aligned)
23 | return idxs
24 |
25 |
26 | # align by a 4-DoF transformation
27 | def alignPositionYawSingleExpm(est, gt):
28 | '''
29 | calcualte the 4DOF transformation: yaw R and translation t so that:
30 | gt = R * est + t
31 | '''
32 |
33 | _assertDim(est)
34 | _assertDim(gt)
35 | est_pos, est_quat, est_vel = tp.parseSingle(est[0, :])
36 | g_pos, g_quat, g_vel = tp.parseSingle(gt[0, :])
37 | g_rot = tfs.quaternion_matrix(g_quat)
38 | g_rot = g_rot[0:3, 0:3]
39 | est_rot = tfs.quaternion_matrix(est_quat)
40 | est_rot = est_rot[0:3, 0:3]
41 |
42 | R_full = np.dot(g_rot, np.transpose(est_rot))
43 | log_R = log_so3(R_full)
44 | yaw_R = np.array([0, 0, log_R[2]])
45 | if np.linalg.norm(yaw_R) < 1e-7:
46 | R = np.identity(3)
47 | else:
48 | R = exp_so3(yaw_R)
49 | t = g_pos - np.dot(R, est_pos)
50 |
51 | return R, t
52 |
53 |
54 | def alignPositionYaw(est, gt, n_aligned=1):
55 | _assertDim(est)
56 | _assertDim(gt)
57 | if n_aligned == 1:
58 | R, t = alignPositionYawSingleExpm(est, gt)
59 | return R, t
60 | else:
61 | idxs = _getIndices(n_aligned, est.shape[0])
62 | est_pos = est[idxs, 0:3]
63 | gt_pos = gt[idxs, 0:3]
64 | R, t = align.align_se3(gt_pos, est_pos,
65 | only_yaw=True) # note the order
66 | t = np.array(t)
67 | t = t.reshape((3, ))
68 | R = np.array(R)
69 | return R, t
70 |
71 |
72 | # align by a SE3 transformation
73 | def alignSE3Single(est, gt):
74 | '''
75 | Calculate SE3 transformation R and t so that:
76 | gt = R * est + t
77 | Using only the first poses of est and gt
78 | '''
79 | _assertDim(est)
80 | _assertDim(gt)
81 | est_pos, est_quat, est_vel = tp.parseSingle(est[0, :])
82 | g_pos, g_quat, g_vel = tp.parseSingle(gt[0, :])
83 |
84 | g_rot = tfs.quaternion_matrix(g_quat)
85 | g_rot = g_rot[0:3, 0:3]
86 | est_rot = tfs.quaternion_matrix(est_quat)
87 | est_rot = est_rot[0:3, 0:3]
88 |
89 | R = np.dot(g_rot, np.transpose(est_rot))
90 | t = g_pos - np.dot(R, est_pos)
91 |
92 | return R, t
93 |
94 |
95 | def alignSE3(est, gt, n_aligned=-1):
96 | '''
97 | Calculate SE3 transformation R and t so that:
98 | gt = R * est + t
99 | '''
100 | _assertDim(est)
101 | _assertDim(gt)
102 | if n_aligned == 1:
103 | R, t = alignSE3Single(est, gt)
104 | return R, t
105 | else:
106 | idxs = _getIndices(n_aligned, est.shape[0])
107 | est_pos = est[idxs, 0:3]
108 | gt_pos = gt[idxs, 0:3]
109 | R, t = align.align_se3(gt_pos, est_pos) # note the order
110 | t = np.array(t)
111 | t = t.reshape((3, ))
112 | R = np.array(R)
113 | return R, t
114 |
115 |
116 | # transformations
117 | def transformStates(states, R, t, scale=1):
118 | states_new = np.zeros(states.shape)
119 | for i, e in enumerate(states):
120 | p, q, v = tp.parseSingle(e)
121 | p_new = scale * np.dot(R, p) + t
122 | v_new = np.dot(R, v)
123 | rot = tfs.quaternion_matrix(q)
124 | rot = rot[0:3, 0:3]
125 | q_new = tfs.quaternion_from_matrix(np.dot(R, rot))
126 | states_new[i, 0:10] = np.hstack((p_new, q_new, v_new))
127 |
128 | return states_new
129 |
130 |
131 | def transformPoints(pts, R, t):
132 | pts_new = np.zeros(pts.shape)
133 | for i, pt in enumerate(pts):
134 | pt_new = np.dot(R, pt) + t
135 | pts_new[i] = pt_new
136 |
137 | return pts_new
138 |
139 |
140 | def transformRinc(incs, R):
141 | '''
142 | Exp(inc_new) = R Exp(inc)
143 | '''
144 | assert incs.shape[1] == 3
145 |
146 | new_incs = np.zeros(incs.shape)
147 | for i, inc in enumerate(incs):
148 | R_inc = exp_so3(inc)
149 | R_new_inc = np.dot(R, R_inc)
150 | new_inc = log_so3(R_new_inc)
151 | new_incs[i, :] = new_inc
152 |
153 | return new_incs
154 |
155 |
156 | if __name__ == '__main__':
157 | pass
158 |
--------------------------------------------------------------------------------
/utils/tfs_utils.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 | # -*- coding: utf-8 -*-
3 |
4 | import numpy as np
5 | import transformations as tfs
6 |
7 |
8 | def skewv3(v):
9 | return np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
10 |
11 |
12 | def transformPt(T, pt):
13 | assert T.shape == (4, 4)
14 | return np.dot(T[0:3, 0:3], pt) + T[0:3, 3]
15 |
16 |
17 | def wxyz2xyzw(quat):
18 | quat_new = np.zeros((4, ))
19 | quat_new[0:3], quat_new[3] = quat[1:4], quat[0]
20 | return quat_new
21 |
22 |
23 | def xyzw2wxyz(quat):
24 | quat_new = np.zeros((4, ))
25 | quat_new[1:4], quat_new[0] = quat[0:3], quat[3]
26 | return quat_new
27 |
28 |
29 | def exp_so3(v):
30 | """
31 | Grassia, F. S. (1998).
32 | Practical parameterization of rotations using the exponential map
33 | """
34 | angle = np.linalg.norm(v)
35 |
36 | if angle < np.power(np.finfo(float).eps, 0.25):
37 | na = 0.5 + angle * angle * 1.0 / 48.0
38 | else:
39 | na = np.sin(angle * 0.5) / angle
40 |
41 | ct = np.cos(angle * 0.5)
42 |
43 | T = tfs.quaternion_matrix([ct, na * v[0], na * v[1], na * v[2]])
44 | return T[0:3, 0:3]
45 |
46 |
47 | def log_so3(R):
48 | assert R.shape == (3, 3)
49 | T = np.identity(4)
50 | T[0:3, 0:3] = R
51 | angle, axis, _ = tfs.rotation_from_matrix(T)
52 |
53 | return angle * axis
54 |
55 |
56 | def exp_se3(v):
57 | vs = np.squeeze(v)
58 | assert vs.shape[0] == 6
59 | t = vs[0:3]
60 | rotv = vs[3:6]
61 | R = exp_so3(rotv)
62 | T = np.identity(4)
63 | T[0:3, 0:3] = R
64 | T[0:3, 3] = t
65 |
66 | return T
67 |
68 |
69 | def log_se3(T):
70 | assert T.shape == (4, 4)
71 | R = T[0:3, 0:3]
72 | t = T[0:3, 3]
73 | rotv = log_so3(R)
74 |
75 | return np.hstack((t, rotv))
76 |
77 |
78 | def randomTranformation():
79 | T = tfs.random_rotation_matrix()
80 | T[0:3, 3] = np.random.rand(3)
81 |
82 | return T
83 |
84 |
85 | def calTyaw(theta):
86 | return exp_se3(np.hstack((np.zeros(5), theta)))
87 |
88 |
89 | def reorderAngle(angles):
90 | n_angle = angles.shape[0]
91 | # convert to 0-2pi
92 | angles_2pi = np.array([a % (2 * np.pi) for a in angles])
93 | for v in angles_2pi:
94 | assert v >= 0 and v <= 2 * np.pi
95 |
96 | # loop over and count wrap around
97 | bias = 0
98 | angles_re = angles_2pi
99 | for i in np.arange(1, n_angle):
100 | # calculate current bias
101 | s = angles_re[i-1] % (2 * np.pi)
102 | e = angles_re[i] % (2 * np.pi)
103 | if s > e and s > np.pi and (s - e) > np.pi:
104 | bias = bias + 2 * np.pi
105 | elif e > s and s < np.pi and (e - s) > np.pi:
106 | bias = bias - 2 * np.pi
107 | angles_re[i] += bias
108 | return angles_re
109 |
110 |
111 | def leftJacobian(v):
112 | if np.linalg.norm(v) < 1e-10:
113 | return np.eye(3)
114 | s_v = skewv3(v)
115 | n_v = np.linalg.norm(v)
116 | I = np.identity(3)
117 | Jl = I + ((1 - np.cos(n_v)) / (n_v*n_v)) * s_v + \
118 | ((n_v - np.sin(n_v))/(n_v*n_v*n_v)) * np.dot(s_v, s_v)
119 | return Jl
120 |
121 |
122 | def invLeftJacobian(v):
123 | if np.linalg.norm(v) < 1e-10:
124 | return np.eye(3)
125 | s_v = skewv3(v)
126 | n_v = np.linalg.norm(v)
127 | I = np.identity(3)
128 | Jl_inv = I - 0.5 * s_v + \
129 | (1/(n_v*n_v) - (1+np.cos(n_v))/(2*n_v*np.sin(n_v))) * np.dot(s_v, s_v)
130 | return Jl_inv
131 |
132 |
133 | def rightJacobian(v):
134 | if np.linalg.norm(v) < 1e-10:
135 | return np.eye(3)
136 | s_v = skewv3(v)
137 | n_v = np.linalg.norm(v)
138 | I = np.identity(3)
139 |
140 | Jr = I - ((1 - np.cos(n_v)) / (n_v*n_v)) * s_v + \
141 | ((n_v - np.sin(n_v)) / (n_v * n_v * n_v)) * np.dot(s_v, s_v)
142 |
143 | return Jr
144 |
145 |
146 | def invRightJacobian(v):
147 | if np.linalg.norm(v) < 1e-10:
148 | return np.eye(3)
149 | s_v = skewv3(v)
150 | n_v = np.linalg.norm(v)
151 | I = np.identity(3)
152 |
153 | Jr_inv = I + 0.5 * s_v + \
154 | (1/(n_v*n_v) - (1+np.cos(n_v))/(2*n_v*np.sin(n_v))) * np.dot(s_v, s_v)
155 | return Jr_inv
156 |
157 |
158 | if __name__ == "__main__":
159 | axis = np.random.rand(3)
160 | axis = axis / np.linalg.norm(axis)
161 | angle = np.random.rand() - 0.5 # -0.5~0.5 no singularity
162 | rotv = angle * axis
163 |
164 | R = exp_so3(rotv)
165 |
166 | so3_vec = log_so3(R)
167 |
168 | print("Original so3 vector:\n{0}".format(rotv))
169 | print("Rotation matrix:\n{0}".format(R))
170 | print("so3 vector:\n{0}".format(so3_vec))
171 |
172 | t = np.random.rand(3)
173 | se3vec = np.hstack((t, rotv))
174 | T = exp_se3(se3vec)
175 | log_se3vec = log_se3(T)
176 |
177 | print("Original se3 vector:\n{0}".format(se3vec))
178 | print("Rotation matrix:\n{0}".format(T))
179 | print("so3 vector:\n{0}".format(log_se3vec))
180 |
181 | angles = np.array([0.1, -0.1, 0.5, 3.14, 5, 0.1])
182 | re_angles = reorderAngle(angles)
183 | print("raw angles are:\n {0}".format(angles))
184 | print("reordered angles are:\n {0}".format(re_angles))
185 |
186 | angles = np.array([0, np.pi-0.1, 0])
187 | re_angles = reorderAngle(angles)
188 | print("raw angles are:\n {0}".format(angles))
189 | print("reordered angles are:\n {0}".format(re_angles))
190 |
191 | angles = np.array([0, np.pi+0.1, 0])
192 | re_angles = reorderAngle(angles)
193 | print("raw angles are:\n {0}".format(angles))
194 | print("reordered angles are:\n {0}".format(re_angles))
195 |
196 | angles = np.array([0, np.pi-0.1, -np.pi+0.1, 0])
197 | re_angles = reorderAngle(angles)
198 | print("raw angles are:\n {0}".format(angles))
199 | print("reordered angles are:\n {0}".format(re_angles))
200 |
201 |
--------------------------------------------------------------------------------
/cov_transformation.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 | # -*- coding: utf-8 -*-
3 |
4 | import numpy as np
5 |
6 | import utils.trace_parser as tp
7 | import utils.tfs_utils as tu
8 | import utils.align_utils as au
9 |
10 |
11 | def transform_vi_covariance(cov_free,
12 | q_inc_free, q_inc_fixed,
13 | est_free, est_fixed,
14 | all_inc_rot=False):
15 | """Transform the free gauge covariance to the same reference frame as
16 | the gauge fixation one
17 |
18 | Suppose N is the number of keyframes.
19 |
20 | Input:
21 | cov_free -- 9N x 9N array
22 | The free gauge covariance to be transformed.
23 | The states are ordered as [position, rotation, velocity]
24 |
25 | q_inc_free -- list of length N, each of which is a (3,) numpy array.
26 | The estimated incremental rotation of the free gauge method.
27 | If all_inc_rot is False, only the first element is used.
28 |
29 | q_inc_fixed -- list of length N, each of which is a (3,) numpy array
30 | The estimated incremental rotations of the fixed gauge
31 | method. If all_inc_rot is False, only the first element is
32 | meaningful and used.
33 |
34 | est_free -- list of length N, each of which is a (10,) numpy array.
35 | The estimated state of the free gauge method.
36 | Each state is ordered as [position, rotation, velocity]
37 |
38 | est_fixed -- list of length N, each of which is a (10,) numpy array.
39 | The estimated state of the fixed gauge method.
40 | Each state is ordered as [position, rotation, velocity]
41 |
42 | all_inc_rot -- If this parameter is True, the incremental rotation
43 | parameterization is used for all rotations.
44 | Otherwise, it is only used for the first rotation.
45 | This affects the transformation of the rotation-related
46 | covariance.
47 |
48 | Output:
49 | cov_proj -- The final transformed covaraince (9N x 9N)
50 | cov_aligend -- The intermediate covariance before the oblique projection.
51 | Q -- The oblique projection matrix.
52 |
53 | """
54 | n_states = cov_free.shape[0]
55 | assert n_states % 9 == 0
56 | n_kfs = n_states / 9
57 |
58 | pos_from_0, quat_from_0, vel_from_0 = tp.parseSingle(est_free[0, :])
59 | pos_to_0, quat_to_0, vel_to_0 = tp.parseSingle(est_fixed[0, :])
60 |
61 | print("Going to transform covariance of {0} keyframes".format(n_kfs))
62 |
63 | # 0 calcualte transformation from the first state
64 | R_inc_0_from = tu.exp_so3(q_inc_free[0])
65 | R_inc_0_to = tu.exp_so3(q_inc_fixed[0])
66 |
67 | R_full = np.dot(R_inc_0_to, np.transpose(R_inc_0_from))
68 | log_R = tu.log_so3(R_full)
69 | yaw_R = np.array([0, 0, log_R[2]])
70 | if np.linalg.norm(yaw_R) < 1e-7:
71 | R = np.identity(3)
72 | else:
73 | R = tu.exp_so3(yaw_R)
74 | t = pos_to_0 - np.dot(R, pos_from_0)
75 |
76 | print("The transformation to be applied is\n{0}\n{1}".format(R, t))
77 |
78 | # align the estimation
79 | q_inc_aligned = au.transformRinc(q_inc_free, R)
80 | est_aligned = au.transformStates(est_free, R, t)
81 |
82 | # 1 transform the covariance
83 | tfs_jac = np.zeros((9*n_kfs, 9*n_kfs))
84 | for j in range(n_kfs):
85 | cs = j * 3
86 |
87 | # positions
88 | tfs_jac[cs:cs+3, cs:cs+3] = R
89 |
90 | # velocity
91 | tfs_jac[6*n_kfs + cs: 6*n_kfs + cs+3,
92 | 6*n_kfs + cs: 6*n_kfs + cs+3] = R
93 |
94 | # q_inc
95 | if all_inc_rot or j == 0:
96 | inv_Jr = tu.invRightJacobian(q_inc_aligned[j])
97 | Jr = tu.rightJacobian(q_inc_free[j])
98 | tfs_jac[3*n_kfs + cs: 3*n_kfs + cs+3,
99 | 3*n_kfs + cs: 3*n_kfs + cs+3] = np.dot(inv_Jr, Jr)
100 | else:
101 | tfs_jac[3*n_kfs + cs: 3*n_kfs + cs+3,
102 | 3*n_kfs + cs: 3*n_kfs + cs+3] = R
103 |
104 | cov_aligned = np.dot(tfs_jac,
105 | np.dot(cov_free, np.transpose(tfs_jac)))
106 |
107 | # 2 project the covariance
108 | az = np.array([0, 0, 1])
109 | s_az = tu.skewv3(az)
110 | # U
111 | U = np.zeros((n_states, 4))
112 | for j in range(n_kfs):
113 | cs = 3 * j
114 | # position
115 | U[cs: cs + 3, 0] = np.dot(s_az, est_aligned[j, 0:3])
116 | U[cs: cs + 3, 1:4] = np.identity(3)
117 |
118 | # rotation
119 | if j == 0 or all_inc_rot:
120 | U[3*n_kfs+cs: 3*n_kfs+cs+3, 0] = \
121 | np.dot(tu.invLeftJacobian(q_inc_aligned[j]), az)
122 | U[3*n_kfs+cs: 3*n_kfs+cs + 3, 1:4] = np.zeros((3, 3))
123 | else:
124 | U[3*n_kfs+cs: 3*n_kfs+cs+3, 0] = az
125 | U[3*n_kfs+cs: 3*n_kfs+cs + 3, 1:4] = np.zeros((3, 3))
126 |
127 | # velocity
128 | U[6*n_kfs+cs: 6*n_kfs+cs+3, 0] = \
129 | np.dot(s_az, est_aligned[j, 7:10])
130 |
131 | U[6*n_kfs+cs: 6*n_kfs+cs + 3, 1:4] = np.zeros((3, 3))
132 |
133 | # V
134 | V = np.zeros((n_states, 4))
135 | V[0:3, 1:4] = np.identity(3)
136 | V[3*n_kfs + 2, 0] = 1
137 |
138 | VTU = np.dot(np.transpose(V), U)
139 | invVTU = np.linalg.inv(VTU)
140 | print("VTU is\n{0} \nand its inverse is\n{1}".format(VTU, invVTU))
141 | Q = np.identity(n_states) - np.dot(U, np.dot(invVTU, np.transpose(V)))
142 |
143 | print("The rank of Q is {0} of size {1}".format(np.linalg.matrix_rank(Q),
144 | Q.shape[0]))
145 |
146 | cov_proj = np.dot(Q, np.dot(cov_aligned, np.transpose(Q)))
147 |
148 | return cov_proj, cov_aligned, Q
149 |
150 | if __name__ == '__main__':
151 | pass
152 |
--------------------------------------------------------------------------------
/compare_cov_free_fixed.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 | # -*- coding: utf-8 -*-
3 |
4 | import os
5 |
6 | import numpy as np
7 | import matplotlib.pyplot as plt
8 | from matplotlib import rc
9 | from matplotlib.patches import Ellipse
10 |
11 | import utils.mat_utils as mu
12 | import utils.trace_parser as tp
13 |
14 | import cov_transformation as ct
15 |
16 | rc('font', **{'family': 'serif', 'serif': ['Cardo'], 'size': 20})
17 | rc('text', usetex=True)
18 |
19 | # directories
20 | cur_file_dir = os.path.dirname(os.path.abspath(__file__))
21 | data_dir = os.path.join(cur_file_dir, 'data/compare_cov_free_fix')
22 | plot_dir = os.path.join(cur_file_dir, 'plots')
23 |
24 |
25 | # NOTE: choose different datasets here
26 | # results that used incremental rotation for ALL orientations
27 | # all_inc_rot = True
28 | # free_trace = os.path.join(data_dir, 'inc_rot_all/free_sine.txt')
29 | # fix_trace = os.path.join(data_dir, 'inc_rot_all/fix_sine.txt')
30 |
31 | # results that used incremental rotation ONLY for the first orientation
32 | all_inc_rot = False
33 | free_trace = os.path.join(data_dir, 'inc_rot_first/free_mh_30.txt')
34 | fix_trace = os.path.join(data_dir, 'inc_rot_first/fix_mh_30.txt')
35 |
36 | # parsing
37 | print("#####################")
38 | print("Parsing results...")
39 | print("#####################")
40 | mc_res_free = tp.parseTrajRes(free_trace)
41 | mc_res_fix = tp.parseTrajRes(fix_trace)
42 | num_trials = len(mc_res_free['mc_est'])
43 | num_kfs = mc_res_free['mc_est'][0].shape[0]
44 | num_sts = 9 * num_kfs
45 |
46 | print("Current trace has {0} trials with {1} keyframes.".format(num_trials,
47 | num_kfs))
48 | valid_cov_ids = [0]
49 | # permute covaraince: put position/rotation/velocity together
50 | mc_perm_cov_free = []
51 | for i in valid_cov_ids:
52 | cur_num_kfs = mc_res_free['mc_est'][i].shape[0]
53 | perm_cov = mu.permuteHesCov(
54 | mc_res_free['mc_cov'][i][0:9*num_kfs, 0:9*num_kfs], num_kfs)
55 | mc_perm_cov_free.append(perm_cov)
56 | mc_res_free['mc_cov'] = mc_perm_cov_free
57 |
58 | mc_perm_cov_fix = []
59 | for i in valid_cov_ids:
60 | cur_num_kfs = mc_res_fix['mc_est'][i].shape[0]
61 | perm_cov = mu.permuteHesCov(
62 | mc_res_fix['mc_cov'][i][0:9*num_kfs, 0:9*num_kfs], num_kfs)
63 | mc_perm_cov_fix.append(perm_cov)
64 | mc_res_fix['mc_cov'] = mc_perm_cov_fix
65 |
66 | # visualization one trial
67 | viz_id = 0
68 | cov_free = mc_res_free['mc_cov'][viz_id]
69 | cov_fix = mc_res_fix['mc_cov'][viz_id]
70 | q_inc_free = mc_res_free['mc_q_inc'][viz_id]
71 | q_inc_fix = mc_res_fix['mc_q_inc'][viz_id]
72 | est_free = mc_res_free['mc_est'][viz_id]
73 | est_fix = mc_res_fix['mc_est'][viz_id]
74 |
75 | # transform covariance
76 | print("#####################")
77 | print("Transform covaraince for trial {0}...".format(viz_id))
78 | print("#####################")
79 | cov_free_transformed, cov_free_aligned, Q = \
80 | ct.transform_vi_covariance(cov_free,
81 | q_inc_free, q_inc_fix,
82 | est_free, est_fix, all_inc_rot)
83 | gt_fixed = mc_res_fix['mc_gt'][viz_id]
84 |
85 | # visualize the covaraince as matrices
86 | print("#####################")
87 | print("Plotting covariance matrices and saving results...")
88 | print("#####################")
89 | fig = plt.figure()
90 | ax = fig.add_subplot(111)
91 | plt.imshow(Q, interpolation='none', cmap='gray_r')
92 | plt.colorbar()
93 | fig.savefig(plot_dir + '/Q.pdf', bbox_inches='tight')
94 |
95 | dim_sts = cov_free.shape[0]
96 | num_kfs = dim_sts / 9
97 | one_third = dim_sts / 3
98 | print("Visualization: {0} states and {1} keyframes.".format(dim_sts, num_kfs))
99 | ticks = [0.5 * one_third, 1.5 * one_third, 2.5 * one_third]
100 | st_labels = ['$\mathbf{p}$', '$\phi$', '$\mathbf{v}$']
101 |
102 | zero_region = np.zeros((dim_sts, dim_sts))
103 | zero_region[:, 0:3] = 1.0
104 | zero_region[0:3, :] = 1.0
105 | zero_region[3*num_kfs+2, :] = 1.0
106 | zero_region[:, 3*num_kfs+2] = 1.0
107 | zero_region = np.ma.masked_where(zero_region < 0.5, zero_region)
108 |
109 | disp_offset = 1e-6
110 |
111 | fig = plt.figure()
112 | fig.canvas.set_window_title('Free Covariance')
113 | ax = fig.add_subplot(111)
114 | plt.imshow(np.log10(disp_offset + np.abs(cov_free)), interpolation='none',
115 | cmap='gray_r')
116 | plt.colorbar()
117 | ax.set_xticks(ticks)
118 | ax.set_xticklabels(st_labels)
119 | ax.set_yticks(ticks)
120 | ax.set_yticklabels(st_labels)
121 | ax.tick_params(axis=u'both', which=u'both', length=0)
122 | plt.tight_layout()
123 | fig.savefig(plot_dir + '/free_cov_mat.pdf', bbox_inches='tight')
124 |
125 | fig = plt.figure()
126 | fig.canvas.set_window_title('Aligned Free Covariance')
127 | ax = fig.add_subplot(111)
128 | plt.imshow(np.log10(disp_offset + np.abs(cov_free_aligned)),
129 | interpolation='none', cmap='gray_r')
130 | plt.colorbar()
131 | ax.set_xticks(ticks)
132 | ax.set_xticklabels(st_labels)
133 | ax.set_yticks(ticks)
134 | ax.set_yticklabels(st_labels)
135 | ax.tick_params(axis=u'both', which=u'both', length=0)
136 | plt.tight_layout()
137 | fig.savefig(plot_dir + '/aligned_free_cov_mat.pdf', bbox_inches='tight')
138 |
139 |
140 | cmap = 'autumn'
141 |
142 | fig = plt.figure()
143 | fig.canvas.set_window_title('Transformed Free Covariance')
144 | ax = fig.add_subplot(111)
145 | plt.imshow(np.log10(disp_offset + np.abs(cov_free_transformed)),
146 | interpolation='none', cmap='gray_r')
147 | plt.colorbar()
148 | plt.imshow(zero_region, interpolation='none', cmap=cmap, vmax=1.0, vmin=0.0,
149 | alpha=1.0)
150 | ax.set_xticks(ticks)
151 | ax.set_xticklabels(st_labels)
152 | ax.set_yticks(ticks)
153 | ax.set_yticklabels(st_labels)
154 | ax.tick_params(axis=u'both', which=u'both', length=0)
155 | plt.tight_layout()
156 | fig.savefig(plot_dir + '/transformed_cov_mat.pdf', bbox_inches='tight')
157 |
158 | fig = plt.figure()
159 | fig.canvas.set_window_title('Fixed Covariance')
160 | ax = fig.add_subplot(111)
161 | plt.imshow(np.log10(disp_offset + np.abs(cov_fix)), interpolation='none',
162 | cmap='gray_r')
163 | plt.colorbar()
164 | plt.imshow(zero_region, interpolation='none', cmap=cmap, vmax=1.0, vmin=0.0,
165 | alpha=1.0)
166 | ax.set_xticks(ticks)
167 | ax.set_xticklabels(st_labels)
168 | ax.set_yticks(ticks)
169 | ax.set_yticklabels(st_labels)
170 | ax.tick_params(axis=u'both', which=u'both', length=0)
171 | plt.tight_layout()
172 | fig.savefig(plot_dir + '/fixed_cov_mat.pdf', bbox_inches='tight')
173 |
174 | # visualize position uncertainties
175 | print("#####################")
176 | print("Plotting 2D position uncertainties and saving results...")
177 | print("#####################")
178 | c_free = 'r'
179 | c_fixed = 'b'
180 | free_viz_s = 1e3
181 | free_align_var_ellips = []
182 | for i in range(num_kfs):
183 | cur_var_e = Ellipse(gt_fixed[i, 0:2],
184 | free_viz_s * cov_free_aligned[i*3, i*3],
185 | free_viz_s * cov_free_aligned[i*3+1, i*3+1],
186 | fill=False)
187 | free_align_var_ellips.append(cur_var_e)
188 |
189 | fix_viz_s = 3e3
190 | fix_var_ellips = []
191 | for i in range(num_kfs):
192 | cur_var_e = Ellipse(gt_fixed[i, 0:2],
193 | fix_viz_s * cov_fix[i*3, i*3],
194 | fix_viz_s * cov_fix[i*3+1, i*3+1],
195 | fill=False)
196 | fix_var_ellips.append(cur_var_e)
197 |
198 | free_proj_var_ellips = []
199 | for i in range(num_kfs):
200 | cur_var_e = Ellipse(gt_fixed[i, 0:2],
201 | fix_viz_s * cov_free_transformed[i*3, i*3],
202 | fix_viz_s * cov_free_transformed[i*3+1, i*3+1],
203 | fill=False)
204 | free_proj_var_ellips.append(cur_var_e)
205 |
206 | fig = plt.figure(figsize=(6, 6))
207 | fig.canvas.set_window_title('Free 2D')
208 | ax = fig.add_subplot(111)
209 | ax.plot(gt_fixed[:, 0], gt_fixed[:, 1], color='k')
210 | for e in free_align_var_ellips:
211 | ax.add_artist(e)
212 | e.set_facecolor('none')
213 | e.set_color(c_free)
214 | e.set(label='Free')
215 | # ax.legend()
216 | plt.tight_layout()
217 | plt.xlabel('x (m)')
218 | plt.ylabel('y (m)')
219 | plt.axis('equal')
220 | fig.savefig(plot_dir + '/aligned_free_cov.pdf', bbox_inches='tight')
221 |
222 | fig = plt.figure(figsize=(6, 6))
223 | fig.canvas.set_window_title('Fixed 2D')
224 | ax = fig.add_subplot(111)
225 | ax.plot(gt_fixed[:, 0], gt_fixed[:, 1], color='k')
226 | for e in fix_var_ellips:
227 | ax.add_artist(e)
228 | e.set_facecolor('none')
229 | e.set_color(c_fixed)
230 | e.set_label('Fixed')
231 | # ax.legend()
232 | plt.tight_layout()
233 | plt.xlabel('x (m)')
234 | plt.ylabel('y (m)')
235 | plt.axis('equal')
236 | fig.savefig(plot_dir + '/fixed_cov.pdf', bbox_inches='tight')
237 |
238 | fig = plt.figure(figsize=(6, 6))
239 | fig.canvas.set_window_title('Transformed 2D')
240 | ax = fig.add_subplot(111)
241 | ax.plot(gt_fixed[:, 0], gt_fixed[:, 1], color='k')
242 | for e in free_proj_var_ellips:
243 | ax.add_artist(e)
244 | e.set_facecolor('none')
245 | e.set_color(c_free)
246 | e.set_label('Transformed Free')
247 | # ax.legend()
248 | plt.tight_layout()
249 | plt.xlabel('x (m)')
250 | plt.ylabel('y (m)')
251 | plt.axis('equal')
252 | fig.savefig(plot_dir + '/transformed_free_cov.pdf', bbox_inches='tight')
253 |
254 | # calculate statistics
255 | print("#####################")
256 | print("Calculating statistics...")
257 | print("#####################")
258 | transformed_diff_cov = cov_free_transformed - cov_fix
259 | org_diff_cov = cov_free - cov_fix
260 |
261 | n_org_diff_cov = np.linalg.norm(org_diff_cov, 'fro')
262 | n_transformed_diff_cov = np.linalg.norm(transformed_diff_cov, 'fro')
263 |
264 | n_org_free_cov = np.linalg.norm(cov_free, 'fro')
265 | n_transformed_free_cov = np.linalg.norm(cov_free_transformed, 'fro')
266 | n_fix_cov = np.linalg.norm(cov_fix, 'fro')
267 |
268 | print("The Frobenius norm of covariance difference"
269 | " before transformation is {0}.".format(n_org_diff_cov))
270 | print("The Frobenius norm of covariance difference"
271 | " after transformation {0}.".format(n_transformed_diff_cov))
272 |
273 | print(">>> Relative difference before transformation:")
274 | print("The relative difference is"
275 | " {0} %.".format(n_org_diff_cov / n_fix_cov * 100))
276 | print("The relative difference is"
277 | " {0} %.".format(n_org_diff_cov / n_org_free_cov * 100))
278 |
279 | print(">>> Relative difference after transformation:")
280 | print("The relative difference is"
281 | " {0} %.".format(n_transformed_diff_cov / n_fix_cov * 100))
282 | print("The relative difference is"
283 | " {0} %.".format(n_transformed_diff_cov / n_transformed_free_cov * 100))
284 |
285 |
286 | # plt.show()
287 |
--------------------------------------------------------------------------------
/utils/transformations.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | # transformations.py
3 |
4 | # Copyright (c) 2006-2017, Christoph Gohlke
5 | # Copyright (c) 2006-2017, The Regents of the University of California
6 | # Produced at the Laboratory for Fluorescence Dynamics
7 | # All rights reserved.
8 | #
9 | # Redistribution and use in source and binary forms, with or without
10 | # modification, are permitted provided that the following conditions are met:
11 | #
12 | # * Redistributions of source code must retain the above copyright
13 | # notice, this list of conditions and the following disclaimer.
14 | # * Redistributions in binary form must reproduce the above copyright
15 | # notice, this list of conditions and the following disclaimer in the
16 | # documentation and/or other materials provided with the distribution.
17 | # * Neither the name of the copyright holders nor the names of any
18 | # contributors may be used to endorse or promote products derived
19 | # from this software without specific prior written permission.
20 | #
21 | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 | # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 | # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 | # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 | # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 | # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 | # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 | # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 | # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 | # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 | # POSSIBILITY OF SUCH DAMAGE.
32 |
33 | """Homogeneous Transformation Matrices and Quaternions.
34 |
35 | A library for calculating 4x4 matrices for translating, rotating, reflecting,
36 | scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
37 | 3D homogeneous coordinates as well as for converting between rotation matrices,
38 | Euler angles, and quaternions. Also includes an Arcball control object and
39 | functions to decompose transformation matrices.
40 |
41 | :Author:
42 | `Christoph Gohlke `_
43 |
44 | :Organization:
45 | Laboratory for Fluorescence Dynamics, University of California, Irvine
46 |
47 | :Version: 2017.02.17
48 |
49 | Requirements
50 | ------------
51 | * `CPython 2.7 or 3.5 `_
52 | * `Numpy 1.11 `_
53 | * `Transformations.c 2017.02.17 `_
54 | (recommended for speedup of some functions)
55 |
56 | Notes
57 | -----
58 | The API is not stable yet and is expected to change between revisions.
59 |
60 | This Python code is not optimized for speed. Refer to the transformations.c
61 | module for a faster implementation of some functions.
62 |
63 | Documentation in HTML format can be generated with epydoc.
64 |
65 | Matrices (M) can be inverted using numpy.linalg.inv(M), be concatenated using
66 | numpy.dot(M0, M1), or transform homogeneous coordinate arrays (v) using
67 | numpy.dot(M, v) for shape (4, \*) column vectors, respectively
68 | numpy.dot(v, M.T) for shape (\*, 4) row vectors ("array of points").
69 |
70 | This module follows the "column vectors on the right" and "row major storage"
71 | (C contiguous) conventions. The translation components are in the right column
72 | of the transformation matrix, i.e. M[:3, 3].
73 | The transpose of the transformation matrices may have to be used to interface
74 | with other graphics systems, e.g. with OpenGL's glMultMatrixd(). See also [16].
75 |
76 | Calculations are carried out with numpy.float64 precision.
77 |
78 | Vector, point, quaternion, and matrix function arguments are expected to be
79 | "array like", i.e. tuple, list, or numpy arrays.
80 |
81 | Return types are numpy arrays unless specified otherwise.
82 |
83 | Angles are in radians unless specified otherwise.
84 |
85 | Quaternions w+ix+jy+kz are represented as [w, x, y, z].
86 |
87 | A triple of Euler angles can be applied/interpreted in 24 ways, which can
88 | be specified using a 4 character string or encoded 4-tuple:
89 |
90 | *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
91 |
92 | - first character : rotations are applied to 's'tatic or 'r'otating frame
93 | - remaining characters : successive rotation axis 'x', 'y', or 'z'
94 |
95 | *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
96 |
97 | - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
98 | - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
99 | by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
100 | - repetition : first and last axis are same (1) or different (0).
101 | - frame : rotations are applied to static (0) or rotating (1) frame.
102 |
103 | Other Python packages and modules for 3D transformations and quaternions:
104 |
105 | * `Transforms3d `_
106 | includes most code of this module.
107 | * `Blender.mathutils `_
108 | * `numpy-dtypes `_
109 |
110 | References
111 | ----------
112 | (1) Matrices and transformations. Ronald Goldman.
113 | In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
114 | (2) More matrices and transformations: shear and pseudo-perspective.
115 | Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
116 | (3) Decomposing a matrix into simple transformations. Spencer Thomas.
117 | In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
118 | (4) Recovering the data from the transformation matrix. Ronald Goldman.
119 | In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
120 | (5) Euler angle conversion. Ken Shoemake.
121 | In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
122 | (6) Arcball rotation control. Ken Shoemake.
123 | In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
124 | (7) Representing attitude: Euler angles, unit quaternions, and rotation
125 | vectors. James Diebel. 2006.
126 | (8) A discussion of the solution for the best rotation to relate two sets
127 | of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
128 | (9) Closed-form solution of absolute orientation using unit quaternions.
129 | BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642.
130 | (10) Quaternions. Ken Shoemake.
131 | http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
132 | (11) From quaternion to matrix and back. JMP van Waveren. 2005.
133 | http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
134 | (12) Uniform random rotations. Ken Shoemake.
135 | In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
136 | (13) Quaternion in molecular modeling. CFF Karney.
137 | J Mol Graph Mod, 25(5):595-604
138 | (14) New method for extracting the quaternion from a rotation matrix.
139 | Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087.
140 | (15) Multiple View Geometry in Computer Vision. Hartley and Zissermann.
141 | Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130.
142 | (16) Column Vectors vs. Row Vectors.
143 | http://steve.hollasch.net/cgindex/math/matrix/column-vec.html
144 |
145 | Examples
146 | --------
147 | >>> alpha, beta, gamma = 0.123, -1.234, 2.345
148 | >>> origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]
149 | >>> I = identity_matrix()
150 | >>> Rx = rotation_matrix(alpha, xaxis)
151 | >>> Ry = rotation_matrix(beta, yaxis)
152 | >>> Rz = rotation_matrix(gamma, zaxis)
153 | >>> R = concatenate_matrices(Rx, Ry, Rz)
154 | >>> euler = euler_from_matrix(R, 'rxyz')
155 | >>> numpy.allclose([alpha, beta, gamma], euler)
156 | True
157 | >>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
158 | >>> is_same_transform(R, Re)
159 | True
160 | >>> al, be, ga = euler_from_matrix(Re, 'rxyz')
161 | >>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
162 | True
163 | >>> qx = quaternion_about_axis(alpha, xaxis)
164 | >>> qy = quaternion_about_axis(beta, yaxis)
165 | >>> qz = quaternion_about_axis(gamma, zaxis)
166 | >>> q = quaternion_multiply(qx, qy)
167 | >>> q = quaternion_multiply(q, qz)
168 | >>> Rq = quaternion_matrix(q)
169 | >>> is_same_transform(R, Rq)
170 | True
171 | >>> S = scale_matrix(1.23, origin)
172 | >>> T = translation_matrix([1, 2, 3])
173 | >>> Z = shear_matrix(beta, xaxis, origin, zaxis)
174 | >>> R = random_rotation_matrix(numpy.random.rand(3))
175 | >>> M = concatenate_matrices(T, R, Z, S)
176 | >>> scale, shear, angles, trans, persp = decompose_matrix(M)
177 | >>> numpy.allclose(scale, 1.23)
178 | True
179 | >>> numpy.allclose(trans, [1, 2, 3])
180 | True
181 | >>> numpy.allclose(shear, [0, math.tan(beta), 0])
182 | True
183 | >>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
184 | True
185 | >>> M1 = compose_matrix(scale, shear, angles, trans, persp)
186 | >>> is_same_transform(M, M1)
187 | True
188 | >>> v0, v1 = random_vector(3), random_vector(3)
189 | >>> M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1))
190 | >>> v2 = numpy.dot(v0, M[:3,:3].T)
191 | >>> numpy.allclose(unit_vector(v1), unit_vector(v2))
192 | True
193 |
194 | """
195 |
196 | from __future__ import division, print_function
197 |
198 | import math
199 |
200 | import numpy
201 |
202 | __version__ = '2017.02.17'
203 | __docformat__ = 'restructuredtext en'
204 | __all__ = ()
205 |
206 |
207 | def identity_matrix():
208 | """Return 4x4 identity/unit matrix.
209 |
210 | >>> I = identity_matrix()
211 | >>> numpy.allclose(I, numpy.dot(I, I))
212 | True
213 | >>> numpy.sum(I), numpy.trace(I)
214 | (4.0, 4.0)
215 | >>> numpy.allclose(I, numpy.identity(4))
216 | True
217 |
218 | """
219 | return numpy.identity(4)
220 |
221 |
222 | def translation_matrix(direction):
223 | """Return matrix to translate by direction vector.
224 |
225 | >>> v = numpy.random.random(3) - 0.5
226 | >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
227 | True
228 |
229 | """
230 | M = numpy.identity(4)
231 | M[:3, 3] = direction[:3]
232 | return M
233 |
234 |
235 | def translation_from_matrix(matrix):
236 | """Return translation vector from translation matrix.
237 |
238 | >>> v0 = numpy.random.random(3) - 0.5
239 | >>> v1 = translation_from_matrix(translation_matrix(v0))
240 | >>> numpy.allclose(v0, v1)
241 | True
242 |
243 | """
244 | return numpy.array(matrix, copy=False)[:3, 3].copy()
245 |
246 |
247 | def reflection_matrix(point, normal):
248 | """Return matrix to mirror at plane defined by point and normal vector.
249 |
250 | >>> v0 = numpy.random.random(4) - 0.5
251 | >>> v0[3] = 1.
252 | >>> v1 = numpy.random.random(3) - 0.5
253 | >>> R = reflection_matrix(v0, v1)
254 | >>> numpy.allclose(2, numpy.trace(R))
255 | True
256 | >>> numpy.allclose(v0, numpy.dot(R, v0))
257 | True
258 | >>> v2 = v0.copy()
259 | >>> v2[:3] += v1
260 | >>> v3 = v0.copy()
261 | >>> v2[:3] -= v1
262 | >>> numpy.allclose(v2, numpy.dot(R, v3))
263 | True
264 |
265 | """
266 | normal = unit_vector(normal[:3])
267 | M = numpy.identity(4)
268 | M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
269 | M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
270 | return M
271 |
272 |
273 | def reflection_from_matrix(matrix):
274 | """Return mirror plane point and normal vector from reflection matrix.
275 |
276 | >>> v0 = numpy.random.random(3) - 0.5
277 | >>> v1 = numpy.random.random(3) - 0.5
278 | >>> M0 = reflection_matrix(v0, v1)
279 | >>> point, normal = reflection_from_matrix(M0)
280 | >>> M1 = reflection_matrix(point, normal)
281 | >>> is_same_transform(M0, M1)
282 | True
283 |
284 | """
285 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)
286 | # normal: unit eigenvector corresponding to eigenvalue -1
287 | w, V = numpy.linalg.eig(M[:3, :3])
288 | i = numpy.where(abs(numpy.real(w) + 1.0) < 1e-8)[0]
289 | if not len(i):
290 | raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
291 | normal = numpy.real(V[:, i[0]]).squeeze()
292 | # point: any unit eigenvector corresponding to eigenvalue 1
293 | w, V = numpy.linalg.eig(M)
294 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
295 | if not len(i):
296 | raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
297 | point = numpy.real(V[:, i[-1]]).squeeze()
298 | point /= point[3]
299 | return point, normal
300 |
301 |
302 | def rotation_matrix(angle, direction, point=None):
303 | """Return matrix to rotate about axis defined by point and direction.
304 |
305 | >>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0])
306 | >>> numpy.allclose(numpy.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1])
307 | True
308 | >>> angle = (random.random() - 0.5) * (2*math.pi)
309 | >>> direc = numpy.random.random(3) - 0.5
310 | >>> point = numpy.random.random(3) - 0.5
311 | >>> R0 = rotation_matrix(angle, direc, point)
312 | >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
313 | >>> is_same_transform(R0, R1)
314 | True
315 | >>> R0 = rotation_matrix(angle, direc, point)
316 | >>> R1 = rotation_matrix(-angle, -direc, point)
317 | >>> is_same_transform(R0, R1)
318 | True
319 | >>> I = numpy.identity(4, numpy.float64)
320 | >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
321 | True
322 | >>> numpy.allclose(2, numpy.trace(rotation_matrix(math.pi/2,
323 | ... direc, point)))
324 | True
325 |
326 | """
327 | sina = math.sin(angle)
328 | cosa = math.cos(angle)
329 | direction = unit_vector(direction[:3])
330 | # rotation matrix around unit vector
331 | R = numpy.diag([cosa, cosa, cosa])
332 | R += numpy.outer(direction, direction) * (1.0 - cosa)
333 | direction *= sina
334 | R += numpy.array([[ 0.0, -direction[2], direction[1]],
335 | [ direction[2], 0.0, -direction[0]],
336 | [-direction[1], direction[0], 0.0]])
337 | M = numpy.identity(4)
338 | M[:3, :3] = R
339 | if point is not None:
340 | # rotation not around origin
341 | point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
342 | M[:3, 3] = point - numpy.dot(R, point)
343 | return M
344 |
345 |
346 | def rotation_from_matrix(matrix):
347 | """Return rotation angle and axis from rotation matrix.
348 |
349 | >>> angle = (random.random() - 0.5) * (2*math.pi)
350 | >>> direc = numpy.random.random(3) - 0.5
351 | >>> point = numpy.random.random(3) - 0.5
352 | >>> R0 = rotation_matrix(angle, direc, point)
353 | >>> angle, direc, point = rotation_from_matrix(R0)
354 | >>> R1 = rotation_matrix(angle, direc, point)
355 | >>> is_same_transform(R0, R1)
356 | True
357 |
358 | """
359 | R = numpy.array(matrix, dtype=numpy.float64, copy=False)
360 | R33 = R[:3, :3]
361 | # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
362 | w, W = numpy.linalg.eig(R33.T)
363 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
364 | if not len(i):
365 | raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
366 | direction = numpy.real(W[:, i[-1]]).squeeze()
367 | # point: unit eigenvector of R33 corresponding to eigenvalue of 1
368 | w, Q = numpy.linalg.eig(R)
369 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
370 | if not len(i):
371 | raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
372 | point = numpy.real(Q[:, i[-1]]).squeeze()
373 | point /= point[3]
374 | # rotation angle depending on direction
375 | cosa = (numpy.trace(R33) - 1.0) / 2.0
376 | if abs(direction[2]) > 1e-8:
377 | sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
378 | elif abs(direction[1]) > 1e-8:
379 | sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
380 | else:
381 | sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
382 | angle = math.atan2(sina, cosa)
383 | return angle, direction, point
384 |
385 |
386 | def scale_matrix(factor, origin=None, direction=None):
387 | """Return matrix to scale by factor around origin in direction.
388 |
389 | Use factor -1 for point symmetry.
390 |
391 | >>> v = (numpy.random.rand(4, 5) - 0.5) * 20
392 | >>> v[3] = 1
393 | >>> S = scale_matrix(-1.234)
394 | >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
395 | True
396 | >>> factor = random.random() * 10 - 5
397 | >>> origin = numpy.random.random(3) - 0.5
398 | >>> direct = numpy.random.random(3) - 0.5
399 | >>> S = scale_matrix(factor, origin)
400 | >>> S = scale_matrix(factor, origin, direct)
401 |
402 | """
403 | if direction is None:
404 | # uniform scaling
405 | M = numpy.diag([factor, factor, factor, 1.0])
406 | if origin is not None:
407 | M[:3, 3] = origin[:3]
408 | M[:3, 3] *= 1.0 - factor
409 | else:
410 | # nonuniform scaling
411 | direction = unit_vector(direction[:3])
412 | factor = 1.0 - factor
413 | M = numpy.identity(4)
414 | M[:3, :3] -= factor * numpy.outer(direction, direction)
415 | if origin is not None:
416 | M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
417 | return M
418 |
419 |
420 | def scale_from_matrix(matrix):
421 | """Return scaling factor, origin and direction from scaling matrix.
422 |
423 | >>> factor = random.random() * 10 - 5
424 | >>> origin = numpy.random.random(3) - 0.5
425 | >>> direct = numpy.random.random(3) - 0.5
426 | >>> S0 = scale_matrix(factor, origin)
427 | >>> factor, origin, direction = scale_from_matrix(S0)
428 | >>> S1 = scale_matrix(factor, origin, direction)
429 | >>> is_same_transform(S0, S1)
430 | True
431 | >>> S0 = scale_matrix(factor, origin, direct)
432 | >>> factor, origin, direction = scale_from_matrix(S0)
433 | >>> S1 = scale_matrix(factor, origin, direction)
434 | >>> is_same_transform(S0, S1)
435 | True
436 |
437 | """
438 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)
439 | M33 = M[:3, :3]
440 | factor = numpy.trace(M33) - 2.0
441 | try:
442 | # direction: unit eigenvector corresponding to eigenvalue factor
443 | w, V = numpy.linalg.eig(M33)
444 | i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0]
445 | direction = numpy.real(V[:, i]).squeeze()
446 | direction /= vector_norm(direction)
447 | except IndexError:
448 | # uniform scaling
449 | factor = (factor + 2.0) / 3.0
450 | direction = None
451 | # origin: any eigenvector corresponding to eigenvalue 1
452 | w, V = numpy.linalg.eig(M)
453 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
454 | if not len(i):
455 | raise ValueError("no eigenvector corresponding to eigenvalue 1")
456 | origin = numpy.real(V[:, i[-1]]).squeeze()
457 | origin /= origin[3]
458 | return factor, origin, direction
459 |
460 |
461 | def projection_matrix(point, normal, direction=None,
462 | perspective=None, pseudo=False):
463 | """Return matrix to project onto plane defined by point and normal.
464 |
465 | Using either perspective point, projection direction, or none of both.
466 |
467 | If pseudo is True, perspective projections will preserve relative depth
468 | such that Perspective = dot(Orthogonal, PseudoPerspective).
469 |
470 | >>> P = projection_matrix([0, 0, 0], [1, 0, 0])
471 | >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
472 | True
473 | >>> point = numpy.random.random(3) - 0.5
474 | >>> normal = numpy.random.random(3) - 0.5
475 | >>> direct = numpy.random.random(3) - 0.5
476 | >>> persp = numpy.random.random(3) - 0.5
477 | >>> P0 = projection_matrix(point, normal)
478 | >>> P1 = projection_matrix(point, normal, direction=direct)
479 | >>> P2 = projection_matrix(point, normal, perspective=persp)
480 | >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
481 | >>> is_same_transform(P2, numpy.dot(P0, P3))
482 | True
483 | >>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0])
484 | >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20
485 | >>> v0[3] = 1
486 | >>> v1 = numpy.dot(P, v0)
487 | >>> numpy.allclose(v1[1], v0[1])
488 | True
489 | >>> numpy.allclose(v1[0], 3-v1[1])
490 | True
491 |
492 | """
493 | M = numpy.identity(4)
494 | point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
495 | normal = unit_vector(normal[:3])
496 | if perspective is not None:
497 | # perspective projection
498 | perspective = numpy.array(perspective[:3], dtype=numpy.float64,
499 | copy=False)
500 | M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
501 | M[:3, :3] -= numpy.outer(perspective, normal)
502 | if pseudo:
503 | # preserve relative depth
504 | M[:3, :3] -= numpy.outer(normal, normal)
505 | M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
506 | else:
507 | M[:3, 3] = numpy.dot(point, normal) * perspective
508 | M[3, :3] = -normal
509 | M[3, 3] = numpy.dot(perspective, normal)
510 | elif direction is not None:
511 | # parallel projection
512 | direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
513 | scale = numpy.dot(direction, normal)
514 | M[:3, :3] -= numpy.outer(direction, normal) / scale
515 | M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
516 | else:
517 | # orthogonal projection
518 | M[:3, :3] -= numpy.outer(normal, normal)
519 | M[:3, 3] = numpy.dot(point, normal) * normal
520 | return M
521 |
522 |
523 | def projection_from_matrix(matrix, pseudo=False):
524 | """Return projection plane and perspective point from projection matrix.
525 |
526 | Return values are same as arguments for projection_matrix function:
527 | point, normal, direction, perspective, and pseudo.
528 |
529 | >>> point = numpy.random.random(3) - 0.5
530 | >>> normal = numpy.random.random(3) - 0.5
531 | >>> direct = numpy.random.random(3) - 0.5
532 | >>> persp = numpy.random.random(3) - 0.5
533 | >>> P0 = projection_matrix(point, normal)
534 | >>> result = projection_from_matrix(P0)
535 | >>> P1 = projection_matrix(*result)
536 | >>> is_same_transform(P0, P1)
537 | True
538 | >>> P0 = projection_matrix(point, normal, direct)
539 | >>> result = projection_from_matrix(P0)
540 | >>> P1 = projection_matrix(*result)
541 | >>> is_same_transform(P0, P1)
542 | True
543 | >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
544 | >>> result = projection_from_matrix(P0, pseudo=False)
545 | >>> P1 = projection_matrix(*result)
546 | >>> is_same_transform(P0, P1)
547 | True
548 | >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
549 | >>> result = projection_from_matrix(P0, pseudo=True)
550 | >>> P1 = projection_matrix(*result)
551 | >>> is_same_transform(P0, P1)
552 | True
553 |
554 | """
555 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)
556 | M33 = M[:3, :3]
557 | w, V = numpy.linalg.eig(M)
558 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
559 | if not pseudo and len(i):
560 | # point: any eigenvector corresponding to eigenvalue 1
561 | point = numpy.real(V[:, i[-1]]).squeeze()
562 | point /= point[3]
563 | # direction: unit eigenvector corresponding to eigenvalue 0
564 | w, V = numpy.linalg.eig(M33)
565 | i = numpy.where(abs(numpy.real(w)) < 1e-8)[0]
566 | if not len(i):
567 | raise ValueError("no eigenvector corresponding to eigenvalue 0")
568 | direction = numpy.real(V[:, i[0]]).squeeze()
569 | direction /= vector_norm(direction)
570 | # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
571 | w, V = numpy.linalg.eig(M33.T)
572 | i = numpy.where(abs(numpy.real(w)) < 1e-8)[0]
573 | if len(i):
574 | # parallel projection
575 | normal = numpy.real(V[:, i[0]]).squeeze()
576 | normal /= vector_norm(normal)
577 | return point, normal, direction, None, False
578 | else:
579 | # orthogonal projection, where normal equals direction vector
580 | return point, direction, None, None, False
581 | else:
582 | # perspective projection
583 | i = numpy.where(abs(numpy.real(w)) > 1e-8)[0]
584 | if not len(i):
585 | raise ValueError(
586 | "no eigenvector not corresponding to eigenvalue 0")
587 | point = numpy.real(V[:, i[-1]]).squeeze()
588 | point /= point[3]
589 | normal = - M[3, :3]
590 | perspective = M[:3, 3] / numpy.dot(point[:3], normal)
591 | if pseudo:
592 | perspective -= normal
593 | return point, normal, None, perspective, pseudo
594 |
595 |
596 | def clip_matrix(left, right, bottom, top, near, far, perspective=False):
597 | """Return matrix to obtain normalized device coordinates from frustum.
598 |
599 | The frustum bounds are axis-aligned along x (left, right),
600 | y (bottom, top) and z (near, far).
601 |
602 | Normalized device coordinates are in range [-1, 1] if coordinates are
603 | inside the frustum.
604 |
605 | If perspective is True the frustum is a truncated pyramid with the
606 | perspective point at origin and direction along z axis, otherwise an
607 | orthographic canonical view volume (a box).
608 |
609 | Homogeneous coordinates transformed by the perspective clip matrix
610 | need to be dehomogenized (divided by w coordinate).
611 |
612 | >>> frustum = numpy.random.rand(6)
613 | >>> frustum[1] += frustum[0]
614 | >>> frustum[3] += frustum[2]
615 | >>> frustum[5] += frustum[4]
616 | >>> M = clip_matrix(perspective=False, *frustum)
617 | >>> numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1])
618 | array([-1., -1., -1., 1.])
619 | >>> numpy.dot(M, [frustum[1], frustum[3], frustum[5], 1])
620 | array([ 1., 1., 1., 1.])
621 | >>> M = clip_matrix(perspective=True, *frustum)
622 | >>> v = numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1])
623 | >>> v / v[3]
624 | array([-1., -1., -1., 1.])
625 | >>> v = numpy.dot(M, [frustum[1], frustum[3], frustum[4], 1])
626 | >>> v / v[3]
627 | array([ 1., 1., -1., 1.])
628 |
629 | """
630 | if left >= right or bottom >= top or near >= far:
631 | raise ValueError("invalid frustum")
632 | if perspective:
633 | if near <= _EPS:
634 | raise ValueError("invalid frustum: near <= 0")
635 | t = 2.0 * near
636 | M = [[t/(left-right), 0.0, (right+left)/(right-left), 0.0],
637 | [0.0, t/(bottom-top), (top+bottom)/(top-bottom), 0.0],
638 | [0.0, 0.0, (far+near)/(near-far), t*far/(far-near)],
639 | [0.0, 0.0, -1.0, 0.0]]
640 | else:
641 | M = [[2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)],
642 | [0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)],
643 | [0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)],
644 | [0.0, 0.0, 0.0, 1.0]]
645 | return numpy.array(M)
646 |
647 |
648 | def shear_matrix(angle, direction, point, normal):
649 | """Return matrix to shear by angle along direction vector on shear plane.
650 |
651 | The shear plane is defined by a point and normal vector. The direction
652 | vector must be orthogonal to the plane's normal vector.
653 |
654 | A point P is transformed by the shear matrix into P" such that
655 | the vector P-P" is parallel to the direction vector and its extent is
656 | given by the angle of P-P'-P", where P' is the orthogonal projection
657 | of P onto the shear plane.
658 |
659 | >>> angle = (random.random() - 0.5) * 4*math.pi
660 | >>> direct = numpy.random.random(3) - 0.5
661 | >>> point = numpy.random.random(3) - 0.5
662 | >>> normal = numpy.cross(direct, numpy.random.random(3))
663 | >>> S = shear_matrix(angle, direct, point, normal)
664 | >>> numpy.allclose(1, numpy.linalg.det(S))
665 | True
666 |
667 | """
668 | normal = unit_vector(normal[:3])
669 | direction = unit_vector(direction[:3])
670 | if abs(numpy.dot(normal, direction)) > 1e-6:
671 | raise ValueError("direction and normal vectors are not orthogonal")
672 | angle = math.tan(angle)
673 | M = numpy.identity(4)
674 | M[:3, :3] += angle * numpy.outer(direction, normal)
675 | M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
676 | return M
677 |
678 |
679 | def shear_from_matrix(matrix):
680 | """Return shear angle, direction and plane from shear matrix.
681 |
682 | >>> angle = (random.random() - 0.5) * 4*math.pi
683 | >>> direct = numpy.random.random(3) - 0.5
684 | >>> point = numpy.random.random(3) - 0.5
685 | >>> normal = numpy.cross(direct, numpy.random.random(3))
686 | >>> S0 = shear_matrix(angle, direct, point, normal)
687 | >>> angle, direct, point, normal = shear_from_matrix(S0)
688 | >>> S1 = shear_matrix(angle, direct, point, normal)
689 | >>> is_same_transform(S0, S1)
690 | True
691 |
692 | """
693 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)
694 | M33 = M[:3, :3]
695 | # normal: cross independent eigenvectors corresponding to the eigenvalue 1
696 | w, V = numpy.linalg.eig(M33)
697 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-4)[0]
698 | if len(i) < 2:
699 | raise ValueError("no two linear independent eigenvectors found %s" % w)
700 | V = numpy.real(V[:, i]).squeeze().T
701 | lenorm = -1.0
702 | for i0, i1 in ((0, 1), (0, 2), (1, 2)):
703 | n = numpy.cross(V[i0], V[i1])
704 | w = vector_norm(n)
705 | if w > lenorm:
706 | lenorm = w
707 | normal = n
708 | normal /= lenorm
709 | # direction and angle
710 | direction = numpy.dot(M33 - numpy.identity(3), normal)
711 | angle = vector_norm(direction)
712 | direction /= angle
713 | angle = math.atan(angle)
714 | # point: eigenvector corresponding to eigenvalue 1
715 | w, V = numpy.linalg.eig(M)
716 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
717 | if not len(i):
718 | raise ValueError("no eigenvector corresponding to eigenvalue 1")
719 | point = numpy.real(V[:, i[-1]]).squeeze()
720 | point /= point[3]
721 | return angle, direction, point, normal
722 |
723 |
724 | def decompose_matrix(matrix):
725 | """Return sequence of transformations from transformation matrix.
726 |
727 | matrix : array_like
728 | Non-degenerative homogeneous transformation matrix
729 |
730 | Return tuple of:
731 | scale : vector of 3 scaling factors
732 | shear : list of shear factors for x-y, x-z, y-z axes
733 | angles : list of Euler angles about static x, y, z axes
734 | translate : translation vector along x, y, z axes
735 | perspective : perspective partition of matrix
736 |
737 | Raise ValueError if matrix is of wrong type or degenerative.
738 |
739 | >>> T0 = translation_matrix([1, 2, 3])
740 | >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
741 | >>> T1 = translation_matrix(trans)
742 | >>> numpy.allclose(T0, T1)
743 | True
744 | >>> S = scale_matrix(0.123)
745 | >>> scale, shear, angles, trans, persp = decompose_matrix(S)
746 | >>> scale[0]
747 | 0.123
748 | >>> R0 = euler_matrix(1, 2, 3)
749 | >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
750 | >>> R1 = euler_matrix(*angles)
751 | >>> numpy.allclose(R0, R1)
752 | True
753 |
754 | """
755 | M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
756 | if abs(M[3, 3]) < _EPS:
757 | raise ValueError("M[3, 3] is zero")
758 | M /= M[3, 3]
759 | P = M.copy()
760 | P[:, 3] = 0.0, 0.0, 0.0, 1.0
761 | if not numpy.linalg.det(P):
762 | raise ValueError("matrix is singular")
763 |
764 | scale = numpy.zeros((3, ))
765 | shear = [0.0, 0.0, 0.0]
766 | angles = [0.0, 0.0, 0.0]
767 |
768 | if any(abs(M[:3, 3]) > _EPS):
769 | perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
770 | M[:, 3] = 0.0, 0.0, 0.0, 1.0
771 | else:
772 | perspective = numpy.array([0.0, 0.0, 0.0, 1.0])
773 |
774 | translate = M[3, :3].copy()
775 | M[3, :3] = 0.0
776 |
777 | row = M[:3, :3].copy()
778 | scale[0] = vector_norm(row[0])
779 | row[0] /= scale[0]
780 | shear[0] = numpy.dot(row[0], row[1])
781 | row[1] -= row[0] * shear[0]
782 | scale[1] = vector_norm(row[1])
783 | row[1] /= scale[1]
784 | shear[0] /= scale[1]
785 | shear[1] = numpy.dot(row[0], row[2])
786 | row[2] -= row[0] * shear[1]
787 | shear[2] = numpy.dot(row[1], row[2])
788 | row[2] -= row[1] * shear[2]
789 | scale[2] = vector_norm(row[2])
790 | row[2] /= scale[2]
791 | shear[1:] /= scale[2]
792 |
793 | if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
794 | numpy.negative(scale, scale)
795 | numpy.negative(row, row)
796 |
797 | angles[1] = math.asin(-row[0, 2])
798 | if math.cos(angles[1]):
799 | angles[0] = math.atan2(row[1, 2], row[2, 2])
800 | angles[2] = math.atan2(row[0, 1], row[0, 0])
801 | else:
802 | # angles[0] = math.atan2(row[1, 0], row[1, 1])
803 | angles[0] = math.atan2(-row[2, 1], row[1, 1])
804 | angles[2] = 0.0
805 |
806 | return scale, shear, angles, translate, perspective
807 |
808 |
809 | def compose_matrix(scale=None, shear=None, angles=None, translate=None,
810 | perspective=None):
811 | """Return transformation matrix from sequence of transformations.
812 |
813 | This is the inverse of the decompose_matrix function.
814 |
815 | Sequence of transformations:
816 | scale : vector of 3 scaling factors
817 | shear : list of shear factors for x-y, x-z, y-z axes
818 | angles : list of Euler angles about static x, y, z axes
819 | translate : translation vector along x, y, z axes
820 | perspective : perspective partition of matrix
821 |
822 | >>> scale = numpy.random.random(3) - 0.5
823 | >>> shear = numpy.random.random(3) - 0.5
824 | >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
825 | >>> trans = numpy.random.random(3) - 0.5
826 | >>> persp = numpy.random.random(4) - 0.5
827 | >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
828 | >>> result = decompose_matrix(M0)
829 | >>> M1 = compose_matrix(*result)
830 | >>> is_same_transform(M0, M1)
831 | True
832 |
833 | """
834 | M = numpy.identity(4)
835 | if perspective is not None:
836 | P = numpy.identity(4)
837 | P[3, :] = perspective[:4]
838 | M = numpy.dot(M, P)
839 | if translate is not None:
840 | T = numpy.identity(4)
841 | T[:3, 3] = translate[:3]
842 | M = numpy.dot(M, T)
843 | if angles is not None:
844 | R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
845 | M = numpy.dot(M, R)
846 | if shear is not None:
847 | Z = numpy.identity(4)
848 | Z[1, 2] = shear[2]
849 | Z[0, 2] = shear[1]
850 | Z[0, 1] = shear[0]
851 | M = numpy.dot(M, Z)
852 | if scale is not None:
853 | S = numpy.identity(4)
854 | S[0, 0] = scale[0]
855 | S[1, 1] = scale[1]
856 | S[2, 2] = scale[2]
857 | M = numpy.dot(M, S)
858 | M /= M[3, 3]
859 | return M
860 |
861 |
862 | def orthogonalization_matrix(lengths, angles):
863 | """Return orthogonalization matrix for crystallographic cell coordinates.
864 |
865 | Angles are expected in degrees.
866 |
867 | The de-orthogonalization matrix is the inverse.
868 |
869 | >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
870 | >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
871 | True
872 | >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
873 | >>> numpy.allclose(numpy.sum(O), 43.063229)
874 | True
875 |
876 | """
877 | a, b, c = lengths
878 | angles = numpy.radians(angles)
879 | sina, sinb, _ = numpy.sin(angles)
880 | cosa, cosb, cosg = numpy.cos(angles)
881 | co = (cosa * cosb - cosg) / (sina * sinb)
882 | return numpy.array([
883 | [ a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0],
884 | [-a*sinb*co, b*sina, 0.0, 0.0],
885 | [ a*cosb, b*cosa, c, 0.0],
886 | [ 0.0, 0.0, 0.0, 1.0]])
887 |
888 |
889 | def affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True):
890 | """Return affine transform matrix to register two point sets.
891 |
892 | v0 and v1 are shape (ndims, \*) arrays of at least ndims non-homogeneous
893 | coordinates, where ndims is the dimensionality of the coordinate space.
894 |
895 | If shear is False, a similarity transformation matrix is returned.
896 | If also scale is False, a rigid/Euclidean transformation matrix
897 | is returned.
898 |
899 | By default the algorithm by Hartley and Zissermann [15] is used.
900 | If usesvd is True, similarity and Euclidean transformation matrices
901 | are calculated by minimizing the weighted sum of squared deviations
902 | (RMSD) according to the algorithm by Kabsch [8].
903 | Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9]
904 | is used, which is slower when using this Python implementation.
905 |
906 | The returned matrix performs rotation, translation and uniform scaling
907 | (if specified).
908 |
909 | >>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]]
910 | >>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]]
911 | >>> affine_matrix_from_points(v0, v1)
912 | array([[ 0.14549, 0.00062, 675.50008],
913 | [ 0.00048, 0.14094, 53.24971],
914 | [ 0. , 0. , 1. ]])
915 | >>> T = translation_matrix(numpy.random.random(3)-0.5)
916 | >>> R = random_rotation_matrix(numpy.random.random(3))
917 | >>> S = scale_matrix(random.random())
918 | >>> M = concatenate_matrices(T, R, S)
919 | >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20
920 | >>> v0[3] = 1
921 | >>> v1 = numpy.dot(M, v0)
922 | >>> v0[:3] += numpy.random.normal(0, 1e-8, 300).reshape(3, -1)
923 | >>> M = affine_matrix_from_points(v0[:3], v1[:3])
924 | >>> numpy.allclose(v1, numpy.dot(M, v0))
925 | True
926 |
927 | More examples in superimposition_matrix()
928 |
929 | """
930 | v0 = numpy.array(v0, dtype=numpy.float64, copy=True)
931 | v1 = numpy.array(v1, dtype=numpy.float64, copy=True)
932 |
933 | ndims = v0.shape[0]
934 | if ndims < 2 or v0.shape[1] < ndims or v0.shape != v1.shape:
935 | raise ValueError("input arrays are of wrong shape or type")
936 |
937 | # move centroids to origin
938 | t0 = -numpy.mean(v0, axis=1)
939 | M0 = numpy.identity(ndims+1)
940 | M0[:ndims, ndims] = t0
941 | v0 += t0.reshape(ndims, 1)
942 | t1 = -numpy.mean(v1, axis=1)
943 | M1 = numpy.identity(ndims+1)
944 | M1[:ndims, ndims] = t1
945 | v1 += t1.reshape(ndims, 1)
946 |
947 | if shear:
948 | # Affine transformation
949 | A = numpy.concatenate((v0, v1), axis=0)
950 | u, s, vh = numpy.linalg.svd(A.T)
951 | vh = vh[:ndims].T
952 | B = vh[:ndims]
953 | C = vh[ndims:2*ndims]
954 | t = numpy.dot(C, numpy.linalg.pinv(B))
955 | t = numpy.concatenate((t, numpy.zeros((ndims, 1))), axis=1)
956 | M = numpy.vstack((t, ((0.0,)*ndims) + (1.0,)))
957 | elif usesvd or ndims != 3:
958 | # Rigid transformation via SVD of covariance matrix
959 | u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
960 | # rotation matrix from SVD orthonormal bases
961 | R = numpy.dot(u, vh)
962 | if numpy.linalg.det(R) < 0.0:
963 | # R does not constitute right handed system
964 | R -= numpy.outer(u[:, ndims-1], vh[ndims-1, :]*2.0)
965 | s[-1] *= -1.0
966 | # homogeneous transformation matrix
967 | M = numpy.identity(ndims+1)
968 | M[:ndims, :ndims] = R
969 | else:
970 | # Rigid transformation matrix via quaternion
971 | # compute symmetric matrix N
972 | xx, yy, zz = numpy.sum(v0 * v1, axis=1)
973 | xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
974 | xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
975 | N = [[xx+yy+zz, 0.0, 0.0, 0.0],
976 | [yz-zy, xx-yy-zz, 0.0, 0.0],
977 | [zx-xz, xy+yx, yy-xx-zz, 0.0],
978 | [xy-yx, zx+xz, yz+zy, zz-xx-yy]]
979 | # quaternion: eigenvector corresponding to most positive eigenvalue
980 | w, V = numpy.linalg.eigh(N)
981 | q = V[:, numpy.argmax(w)]
982 | q /= vector_norm(q) # unit quaternion
983 | # homogeneous transformation matrix
984 | M = quaternion_matrix(q)
985 |
986 | if scale and not shear:
987 | # Affine transformation; scale is ratio of RMS deviations from centroid
988 | v0 *= v0
989 | v1 *= v1
990 | M[:ndims, :ndims] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
991 |
992 | # move centroids back
993 | M = numpy.dot(numpy.linalg.inv(M1), numpy.dot(M, M0))
994 | M /= M[ndims, ndims]
995 | return M
996 |
997 |
998 | def superimposition_matrix(v0, v1, scale=False, usesvd=True):
999 | """Return matrix to transform given 3D point set into second point set.
1000 |
1001 | v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points.
1002 |
1003 | The parameters scale and usesvd are explained in the more general
1004 | affine_matrix_from_points function.
1005 |
1006 | The returned matrix is a similarity or Euclidean transformation matrix.
1007 | This function has a fast C implementation in transformations.c.
1008 |
1009 | >>> v0 = numpy.random.rand(3, 10)
1010 | >>> M = superimposition_matrix(v0, v0)
1011 | >>> numpy.allclose(M, numpy.identity(4))
1012 | True
1013 | >>> R = random_rotation_matrix(numpy.random.random(3))
1014 | >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]]
1015 | >>> v1 = numpy.dot(R, v0)
1016 | >>> M = superimposition_matrix(v0, v1)
1017 | >>> numpy.allclose(v1, numpy.dot(M, v0))
1018 | True
1019 | >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20
1020 | >>> v0[3] = 1
1021 | >>> v1 = numpy.dot(R, v0)
1022 | >>> M = superimposition_matrix(v0, v1)
1023 | >>> numpy.allclose(v1, numpy.dot(M, v0))
1024 | True
1025 | >>> S = scale_matrix(random.random())
1026 | >>> T = translation_matrix(numpy.random.random(3)-0.5)
1027 | >>> M = concatenate_matrices(T, R, S)
1028 | >>> v1 = numpy.dot(M, v0)
1029 | >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1)
1030 | >>> M = superimposition_matrix(v0, v1, scale=True)
1031 | >>> numpy.allclose(v1, numpy.dot(M, v0))
1032 | True
1033 | >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False)
1034 | >>> numpy.allclose(v1, numpy.dot(M, v0))
1035 | True
1036 | >>> v = numpy.empty((4, 100, 3))
1037 | >>> v[:, :, 0] = v0
1038 | >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False)
1039 | >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
1040 | True
1041 |
1042 | """
1043 | v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
1044 | v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]
1045 | return affine_matrix_from_points(v0, v1, shear=False,
1046 | scale=scale, usesvd=usesvd)
1047 |
1048 |
1049 | def euler_matrix(ai, aj, ak, axes='sxyz'):
1050 | """Return homogeneous rotation matrix from Euler angles and axis sequence.
1051 |
1052 | ai, aj, ak : Euler's roll, pitch and yaw angles
1053 | axes : One of 24 axis sequences as string or encoded tuple
1054 |
1055 | >>> R = euler_matrix(1, 2, 3, 'syxz')
1056 | >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
1057 | True
1058 | >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
1059 | >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
1060 | True
1061 | >>> ai, aj, ak = (4*math.pi) * (numpy.random.random(3) - 0.5)
1062 | >>> for axes in _AXES2TUPLE.keys():
1063 | ... R = euler_matrix(ai, aj, ak, axes)
1064 | >>> for axes in _TUPLE2AXES.keys():
1065 | ... R = euler_matrix(ai, aj, ak, axes)
1066 |
1067 | """
1068 | try:
1069 | firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
1070 | except (AttributeError, KeyError):
1071 | _TUPLE2AXES[axes] # validation
1072 | firstaxis, parity, repetition, frame = axes
1073 |
1074 | i = firstaxis
1075 | j = _NEXT_AXIS[i+parity]
1076 | k = _NEXT_AXIS[i-parity+1]
1077 |
1078 | if frame:
1079 | ai, ak = ak, ai
1080 | if parity:
1081 | ai, aj, ak = -ai, -aj, -ak
1082 |
1083 | si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
1084 | ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
1085 | cc, cs = ci*ck, ci*sk
1086 | sc, ss = si*ck, si*sk
1087 |
1088 | M = numpy.identity(4)
1089 | if repetition:
1090 | M[i, i] = cj
1091 | M[i, j] = sj*si
1092 | M[i, k] = sj*ci
1093 | M[j, i] = sj*sk
1094 | M[j, j] = -cj*ss+cc
1095 | M[j, k] = -cj*cs-sc
1096 | M[k, i] = -sj*ck
1097 | M[k, j] = cj*sc+cs
1098 | M[k, k] = cj*cc-ss
1099 | else:
1100 | M[i, i] = cj*ck
1101 | M[i, j] = sj*sc-cs
1102 | M[i, k] = sj*cc+ss
1103 | M[j, i] = cj*sk
1104 | M[j, j] = sj*ss+cc
1105 | M[j, k] = sj*cs-sc
1106 | M[k, i] = -sj
1107 | M[k, j] = cj*si
1108 | M[k, k] = cj*ci
1109 | return M
1110 |
1111 |
1112 | def euler_from_matrix(matrix, axes='sxyz'):
1113 | """Return Euler angles from rotation matrix for specified axis sequence.
1114 |
1115 | axes : One of 24 axis sequences as string or encoded tuple
1116 |
1117 | Note that many Euler angle triplets can describe one matrix.
1118 |
1119 | >>> R0 = euler_matrix(1, 2, 3, 'syxz')
1120 | >>> al, be, ga = euler_from_matrix(R0, 'syxz')
1121 | >>> R1 = euler_matrix(al, be, ga, 'syxz')
1122 | >>> numpy.allclose(R0, R1)
1123 | True
1124 | >>> angles = (4*math.pi) * (numpy.random.random(3) - 0.5)
1125 | >>> for axes in _AXES2TUPLE.keys():
1126 | ... R0 = euler_matrix(axes=axes, *angles)
1127 | ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
1128 | ... if not numpy.allclose(R0, R1): print(axes, "failed")
1129 |
1130 | """
1131 | try:
1132 | firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
1133 | except (AttributeError, KeyError):
1134 | _TUPLE2AXES[axes] # validation
1135 | firstaxis, parity, repetition, frame = axes
1136 |
1137 | i = firstaxis
1138 | j = _NEXT_AXIS[i+parity]
1139 | k = _NEXT_AXIS[i-parity+1]
1140 |
1141 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
1142 | if repetition:
1143 | sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
1144 | if sy > _EPS:
1145 | ax = math.atan2( M[i, j], M[i, k])
1146 | ay = math.atan2( sy, M[i, i])
1147 | az = math.atan2( M[j, i], -M[k, i])
1148 | else:
1149 | ax = math.atan2(-M[j, k], M[j, j])
1150 | ay = math.atan2( sy, M[i, i])
1151 | az = 0.0
1152 | else:
1153 | cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
1154 | if cy > _EPS:
1155 | ax = math.atan2( M[k, j], M[k, k])
1156 | ay = math.atan2(-M[k, i], cy)
1157 | az = math.atan2( M[j, i], M[i, i])
1158 | else:
1159 | ax = math.atan2(-M[j, k], M[j, j])
1160 | ay = math.atan2(-M[k, i], cy)
1161 | az = 0.0
1162 |
1163 | if parity:
1164 | ax, ay, az = -ax, -ay, -az
1165 | if frame:
1166 | ax, az = az, ax
1167 | return ax, ay, az
1168 |
1169 |
1170 | def euler_from_quaternion(quaternion, axes='sxyz'):
1171 | """Return Euler angles from quaternion for specified axis sequence.
1172 |
1173 | >>> angles = euler_from_quaternion([0.99810947, 0.06146124, 0, 0])
1174 | >>> numpy.allclose(angles, [0.123, 0, 0])
1175 | True
1176 |
1177 | """
1178 | return euler_from_matrix(quaternion_matrix(quaternion), axes)
1179 |
1180 |
1181 | def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
1182 | """Return quaternion from Euler angles and axis sequence.
1183 |
1184 | ai, aj, ak : Euler's roll, pitch and yaw angles
1185 | axes : One of 24 axis sequences as string or encoded tuple
1186 |
1187 | >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
1188 | >>> numpy.allclose(q, [0.435953, 0.310622, -0.718287, 0.444435])
1189 | True
1190 |
1191 | """
1192 | try:
1193 | firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
1194 | except (AttributeError, KeyError):
1195 | _TUPLE2AXES[axes] # validation
1196 | firstaxis, parity, repetition, frame = axes
1197 |
1198 | i = firstaxis + 1
1199 | j = _NEXT_AXIS[i+parity-1] + 1
1200 | k = _NEXT_AXIS[i-parity] + 1
1201 |
1202 | if frame:
1203 | ai, ak = ak, ai
1204 | if parity:
1205 | aj = -aj
1206 |
1207 | ai /= 2.0
1208 | aj /= 2.0
1209 | ak /= 2.0
1210 | ci = math.cos(ai)
1211 | si = math.sin(ai)
1212 | cj = math.cos(aj)
1213 | sj = math.sin(aj)
1214 | ck = math.cos(ak)
1215 | sk = math.sin(ak)
1216 | cc = ci*ck
1217 | cs = ci*sk
1218 | sc = si*ck
1219 | ss = si*sk
1220 |
1221 | q = numpy.empty((4, ))
1222 | if repetition:
1223 | q[0] = cj*(cc - ss)
1224 | q[i] = cj*(cs + sc)
1225 | q[j] = sj*(cc + ss)
1226 | q[k] = sj*(cs - sc)
1227 | else:
1228 | q[0] = cj*cc + sj*ss
1229 | q[i] = cj*sc - sj*cs
1230 | q[j] = cj*ss + sj*cc
1231 | q[k] = cj*cs - sj*sc
1232 | if parity:
1233 | q[j] *= -1.0
1234 |
1235 | return q
1236 |
1237 |
1238 | def quaternion_about_axis(angle, axis):
1239 | """Return quaternion for rotation about axis.
1240 |
1241 | >>> q = quaternion_about_axis(0.123, [1, 0, 0])
1242 | >>> numpy.allclose(q, [0.99810947, 0.06146124, 0, 0])
1243 | True
1244 |
1245 | """
1246 | q = numpy.array([0.0, axis[0], axis[1], axis[2]])
1247 | qlen = vector_norm(q)
1248 | if qlen > _EPS:
1249 | q *= math.sin(angle/2.0) / qlen
1250 | q[0] = math.cos(angle/2.0)
1251 | return q
1252 |
1253 |
1254 | def quaternion_matrix(quaternion):
1255 | """Return homogeneous rotation matrix from quaternion.
1256 |
1257 | >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
1258 | >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
1259 | True
1260 | >>> M = quaternion_matrix([1, 0, 0, 0])
1261 | >>> numpy.allclose(M, numpy.identity(4))
1262 | True
1263 | >>> M = quaternion_matrix([0, 1, 0, 0])
1264 | >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
1265 | True
1266 |
1267 | """
1268 | q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
1269 | n = numpy.dot(q, q)
1270 | if n < _EPS:
1271 | return numpy.identity(4)
1272 | q *= math.sqrt(2.0 / n)
1273 | q = numpy.outer(q, q)
1274 | return numpy.array([
1275 | [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0],
1276 | [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0],
1277 | [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
1278 | [ 0.0, 0.0, 0.0, 1.0]])
1279 |
1280 |
1281 | def quaternion_from_matrix(matrix, isprecise=False):
1282 | """Return quaternion from rotation matrix.
1283 |
1284 | If isprecise is True, the input matrix is assumed to be a precise rotation
1285 | matrix and a faster algorithm is used.
1286 |
1287 | >>> q = quaternion_from_matrix(numpy.identity(4), True)
1288 | >>> numpy.allclose(q, [1, 0, 0, 0])
1289 | True
1290 | >>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1]))
1291 | >>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0])
1292 | True
1293 | >>> R = rotation_matrix(0.123, (1, 2, 3))
1294 | >>> q = quaternion_from_matrix(R, True)
1295 | >>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786])
1296 | True
1297 | >>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0],
1298 | ... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]]
1299 | >>> q = quaternion_from_matrix(R)
1300 | >>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611])
1301 | True
1302 | >>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0],
1303 | ... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]]
1304 | >>> q = quaternion_from_matrix(R)
1305 | >>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603])
1306 | True
1307 | >>> R = random_rotation_matrix()
1308 | >>> q = quaternion_from_matrix(R)
1309 | >>> is_same_transform(R, quaternion_matrix(q))
1310 | True
1311 | >>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
1312 | ... quaternion_from_matrix(R, isprecise=True))
1313 | True
1314 | >>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0)
1315 | >>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
1316 | ... quaternion_from_matrix(R, isprecise=True))
1317 | True
1318 |
1319 | """
1320 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
1321 | if isprecise:
1322 | q = numpy.empty((4, ))
1323 | t = numpy.trace(M)
1324 | if t > M[3, 3]:
1325 | q[0] = t
1326 | q[3] = M[1, 0] - M[0, 1]
1327 | q[2] = M[0, 2] - M[2, 0]
1328 | q[1] = M[2, 1] - M[1, 2]
1329 | else:
1330 | i, j, k = 0, 1, 2
1331 | if M[1, 1] > M[0, 0]:
1332 | i, j, k = 1, 2, 0
1333 | if M[2, 2] > M[i, i]:
1334 | i, j, k = 2, 0, 1
1335 | t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
1336 | q[i] = t
1337 | q[j] = M[i, j] + M[j, i]
1338 | q[k] = M[k, i] + M[i, k]
1339 | q[3] = M[k, j] - M[j, k]
1340 | q = q[[3, 0, 1, 2]]
1341 | q *= 0.5 / math.sqrt(t * M[3, 3])
1342 | else:
1343 | m00 = M[0, 0]
1344 | m01 = M[0, 1]
1345 | m02 = M[0, 2]
1346 | m10 = M[1, 0]
1347 | m11 = M[1, 1]
1348 | m12 = M[1, 2]
1349 | m20 = M[2, 0]
1350 | m21 = M[2, 1]
1351 | m22 = M[2, 2]
1352 | # symmetric matrix K
1353 | K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0],
1354 | [m01+m10, m11-m00-m22, 0.0, 0.0],
1355 | [m02+m20, m12+m21, m22-m00-m11, 0.0],
1356 | [m21-m12, m02-m20, m10-m01, m00+m11+m22]])
1357 | K /= 3.0
1358 | # quaternion is eigenvector of K that corresponds to largest eigenvalue
1359 | w, V = numpy.linalg.eigh(K)
1360 | q = V[[3, 0, 1, 2], numpy.argmax(w)]
1361 | if q[0] < 0.0:
1362 | numpy.negative(q, q)
1363 | return q
1364 |
1365 |
1366 | def quaternion_multiply(quaternion1, quaternion0):
1367 | """Return multiplication of two quaternions.
1368 |
1369 | >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7])
1370 | >>> numpy.allclose(q, [28, -44, -14, 48])
1371 | True
1372 |
1373 | """
1374 | w0, x0, y0, z0 = quaternion0
1375 | w1, x1, y1, z1 = quaternion1
1376 | return numpy.array([
1377 | -x1*x0 - y1*y0 - z1*z0 + w1*w0,
1378 | x1*w0 + y1*z0 - z1*y0 + w1*x0,
1379 | -x1*z0 + y1*w0 + z1*x0 + w1*y0,
1380 | x1*y0 - y1*x0 + z1*w0 + w1*z0], dtype=numpy.float64)
1381 |
1382 |
1383 | def quaternion_conjugate(quaternion):
1384 | """Return conjugate of quaternion.
1385 |
1386 | >>> q0 = random_quaternion()
1387 | >>> q1 = quaternion_conjugate(q0)
1388 | >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:])
1389 | True
1390 |
1391 | """
1392 | q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
1393 | numpy.negative(q[1:], q[1:])
1394 | return q
1395 |
1396 |
1397 | def quaternion_inverse(quaternion):
1398 | """Return inverse of quaternion.
1399 |
1400 | >>> q0 = random_quaternion()
1401 | >>> q1 = quaternion_inverse(q0)
1402 | >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0])
1403 | True
1404 |
1405 | """
1406 | q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
1407 | numpy.negative(q[1:], q[1:])
1408 | return q / numpy.dot(q, q)
1409 |
1410 |
1411 | def quaternion_real(quaternion):
1412 | """Return real part of quaternion.
1413 |
1414 | >>> quaternion_real([3, 0, 1, 2])
1415 | 3.0
1416 |
1417 | """
1418 | return float(quaternion[0])
1419 |
1420 |
1421 | def quaternion_imag(quaternion):
1422 | """Return imaginary part of quaternion.
1423 |
1424 | >>> quaternion_imag([3, 0, 1, 2])
1425 | array([ 0., 1., 2.])
1426 |
1427 | """
1428 | return numpy.array(quaternion[1:4], dtype=numpy.float64, copy=True)
1429 |
1430 |
1431 | def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
1432 | """Return spherical linear interpolation between two quaternions.
1433 |
1434 | >>> q0 = random_quaternion()
1435 | >>> q1 = random_quaternion()
1436 | >>> q = quaternion_slerp(q0, q1, 0)
1437 | >>> numpy.allclose(q, q0)
1438 | True
1439 | >>> q = quaternion_slerp(q0, q1, 1, 1)
1440 | >>> numpy.allclose(q, q1)
1441 | True
1442 | >>> q = quaternion_slerp(q0, q1, 0.5)
1443 | >>> angle = math.acos(numpy.dot(q0, q))
1444 | >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \
1445 | numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle)
1446 | True
1447 |
1448 | """
1449 | q0 = unit_vector(quat0[:4])
1450 | q1 = unit_vector(quat1[:4])
1451 | if fraction == 0.0:
1452 | return q0
1453 | elif fraction == 1.0:
1454 | return q1
1455 | d = numpy.dot(q0, q1)
1456 | if abs(abs(d) - 1.0) < _EPS:
1457 | return q0
1458 | if shortestpath and d < 0.0:
1459 | # invert rotation
1460 | d = -d
1461 | numpy.negative(q1, q1)
1462 | angle = math.acos(d) + spin * math.pi
1463 | if abs(angle) < _EPS:
1464 | return q0
1465 | isin = 1.0 / math.sin(angle)
1466 | q0 *= math.sin((1.0 - fraction) * angle) * isin
1467 | q1 *= math.sin(fraction * angle) * isin
1468 | q0 += q1
1469 | return q0
1470 |
1471 |
1472 | def random_quaternion(rand=None):
1473 | """Return uniform random unit quaternion.
1474 |
1475 | rand: array like or None
1476 | Three independent random variables that are uniformly distributed
1477 | between 0 and 1.
1478 |
1479 | >>> q = random_quaternion()
1480 | >>> numpy.allclose(1, vector_norm(q))
1481 | True
1482 | >>> q = random_quaternion(numpy.random.random(3))
1483 | >>> len(q.shape), q.shape[0]==4
1484 | (1, True)
1485 |
1486 | """
1487 | if rand is None:
1488 | rand = numpy.random.rand(3)
1489 | else:
1490 | assert len(rand) == 3
1491 | r1 = numpy.sqrt(1.0 - rand[0])
1492 | r2 = numpy.sqrt(rand[0])
1493 | pi2 = math.pi * 2.0
1494 | t1 = pi2 * rand[1]
1495 | t2 = pi2 * rand[2]
1496 | return numpy.array([numpy.cos(t2)*r2, numpy.sin(t1)*r1,
1497 | numpy.cos(t1)*r1, numpy.sin(t2)*r2])
1498 |
1499 |
1500 | def random_rotation_matrix(rand=None):
1501 | """Return uniform random rotation matrix.
1502 |
1503 | rand: array like
1504 | Three independent random variables that are uniformly distributed
1505 | between 0 and 1 for each returned quaternion.
1506 |
1507 | >>> R = random_rotation_matrix()
1508 | >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
1509 | True
1510 |
1511 | """
1512 | return quaternion_matrix(random_quaternion(rand))
1513 |
1514 |
1515 | class Arcball(object):
1516 | """Virtual Trackball Control.
1517 |
1518 | >>> ball = Arcball()
1519 | >>> ball = Arcball(initial=numpy.identity(4))
1520 | >>> ball.place([320, 320], 320)
1521 | >>> ball.down([500, 250])
1522 | >>> ball.drag([475, 275])
1523 | >>> R = ball.matrix()
1524 | >>> numpy.allclose(numpy.sum(R), 3.90583455)
1525 | True
1526 | >>> ball = Arcball(initial=[1, 0, 0, 0])
1527 | >>> ball.place([320, 320], 320)
1528 | >>> ball.setaxes([1, 1, 0], [-1, 1, 0])
1529 | >>> ball.constrain = True
1530 | >>> ball.down([400, 200])
1531 | >>> ball.drag([200, 400])
1532 | >>> R = ball.matrix()
1533 | >>> numpy.allclose(numpy.sum(R), 0.2055924)
1534 | True
1535 | >>> ball.next()
1536 |
1537 | """
1538 | def __init__(self, initial=None):
1539 | """Initialize virtual trackball control.
1540 |
1541 | initial : quaternion or rotation matrix
1542 |
1543 | """
1544 | self._axis = None
1545 | self._axes = None
1546 | self._radius = 1.0
1547 | self._center = [0.0, 0.0]
1548 | self._vdown = numpy.array([0.0, 0.0, 1.0])
1549 | self._constrain = False
1550 | if initial is None:
1551 | self._qdown = numpy.array([1.0, 0.0, 0.0, 0.0])
1552 | else:
1553 | initial = numpy.array(initial, dtype=numpy.float64)
1554 | if initial.shape == (4, 4):
1555 | self._qdown = quaternion_from_matrix(initial)
1556 | elif initial.shape == (4, ):
1557 | initial /= vector_norm(initial)
1558 | self._qdown = initial
1559 | else:
1560 | raise ValueError("initial not a quaternion or matrix")
1561 | self._qnow = self._qpre = self._qdown
1562 |
1563 | def place(self, center, radius):
1564 | """Place Arcball, e.g. when window size changes.
1565 |
1566 | center : sequence[2]
1567 | Window coordinates of trackball center.
1568 | radius : float
1569 | Radius of trackball in window coordinates.
1570 |
1571 | """
1572 | self._radius = float(radius)
1573 | self._center[0] = center[0]
1574 | self._center[1] = center[1]
1575 |
1576 | def setaxes(self, *axes):
1577 | """Set axes to constrain rotations."""
1578 | if axes is None:
1579 | self._axes = None
1580 | else:
1581 | self._axes = [unit_vector(axis) for axis in axes]
1582 |
1583 | @property
1584 | def constrain(self):
1585 | """Return state of constrain to axis mode."""
1586 | return self._constrain
1587 |
1588 | @constrain.setter
1589 | def constrain(self, value):
1590 | """Set state of constrain to axis mode."""
1591 | self._constrain = bool(value)
1592 |
1593 | def down(self, point):
1594 | """Set initial cursor window coordinates and pick constrain-axis."""
1595 | self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
1596 | self._qdown = self._qpre = self._qnow
1597 | if self._constrain and self._axes is not None:
1598 | self._axis = arcball_nearest_axis(self._vdown, self._axes)
1599 | self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
1600 | else:
1601 | self._axis = None
1602 |
1603 | def drag(self, point):
1604 | """Update current cursor window coordinates."""
1605 | vnow = arcball_map_to_sphere(point, self._center, self._radius)
1606 | if self._axis is not None:
1607 | vnow = arcball_constrain_to_axis(vnow, self._axis)
1608 | self._qpre = self._qnow
1609 | t = numpy.cross(self._vdown, vnow)
1610 | if numpy.dot(t, t) < _EPS:
1611 | self._qnow = self._qdown
1612 | else:
1613 | q = [numpy.dot(self._vdown, vnow), t[0], t[1], t[2]]
1614 | self._qnow = quaternion_multiply(q, self._qdown)
1615 |
1616 | def next(self, acceleration=0.0):
1617 | """Continue rotation in direction of last drag."""
1618 | q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
1619 | self._qpre, self._qnow = self._qnow, q
1620 |
1621 | def matrix(self):
1622 | """Return homogeneous rotation matrix."""
1623 | return quaternion_matrix(self._qnow)
1624 |
1625 |
1626 | def arcball_map_to_sphere(point, center, radius):
1627 | """Return unit sphere coordinates from window coordinates."""
1628 | v0 = (point[0] - center[0]) / radius
1629 | v1 = (center[1] - point[1]) / radius
1630 | n = v0*v0 + v1*v1
1631 | if n > 1.0:
1632 | # position outside of sphere
1633 | n = math.sqrt(n)
1634 | return numpy.array([v0/n, v1/n, 0.0])
1635 | else:
1636 | return numpy.array([v0, v1, math.sqrt(1.0 - n)])
1637 |
1638 |
1639 | def arcball_constrain_to_axis(point, axis):
1640 | """Return sphere point perpendicular to axis."""
1641 | v = numpy.array(point, dtype=numpy.float64, copy=True)
1642 | a = numpy.array(axis, dtype=numpy.float64, copy=True)
1643 | v -= a * numpy.dot(a, v) # on plane
1644 | n = vector_norm(v)
1645 | if n > _EPS:
1646 | if v[2] < 0.0:
1647 | numpy.negative(v, v)
1648 | v /= n
1649 | return v
1650 | if a[2] == 1.0:
1651 | return numpy.array([1.0, 0.0, 0.0])
1652 | return unit_vector([-a[1], a[0], 0.0])
1653 |
1654 |
1655 | def arcball_nearest_axis(point, axes):
1656 | """Return axis, which arc is nearest to point."""
1657 | point = numpy.array(point, dtype=numpy.float64, copy=False)
1658 | nearest = None
1659 | mx = -1.0
1660 | for axis in axes:
1661 | t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
1662 | if t > mx:
1663 | nearest = axis
1664 | mx = t
1665 | return nearest
1666 |
1667 |
1668 | # epsilon for testing whether a number is close to zero
1669 | _EPS = numpy.finfo(float).eps * 4.0
1670 |
1671 | # axis sequences for Euler angles
1672 | _NEXT_AXIS = [1, 2, 0, 1]
1673 |
1674 | # map axes strings to/from tuples of inner axis, parity, repetition, frame
1675 | _AXES2TUPLE = {
1676 | 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
1677 | 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
1678 | 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
1679 | 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
1680 | 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
1681 | 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
1682 | 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
1683 | 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
1684 |
1685 | _TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
1686 |
1687 |
1688 | def vector_norm(data, axis=None, out=None):
1689 | """Return length, i.e. Euclidean norm, of ndarray along axis.
1690 |
1691 | >>> v = numpy.random.random(3)
1692 | >>> n = vector_norm(v)
1693 | >>> numpy.allclose(n, numpy.linalg.norm(v))
1694 | True
1695 | >>> v = numpy.random.rand(6, 5, 3)
1696 | >>> n = vector_norm(v, axis=-1)
1697 | >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
1698 | True
1699 | >>> n = vector_norm(v, axis=1)
1700 | >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
1701 | True
1702 | >>> v = numpy.random.rand(5, 4, 3)
1703 | >>> n = numpy.empty((5, 3))
1704 | >>> vector_norm(v, axis=1, out=n)
1705 | >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
1706 | True
1707 | >>> vector_norm([])
1708 | 0.0
1709 | >>> vector_norm([1])
1710 | 1.0
1711 |
1712 | """
1713 | data = numpy.array(data, dtype=numpy.float64, copy=True)
1714 | if out is None:
1715 | if data.ndim == 1:
1716 | return math.sqrt(numpy.dot(data, data))
1717 | data *= data
1718 | out = numpy.atleast_1d(numpy.sum(data, axis=axis))
1719 | numpy.sqrt(out, out)
1720 | return out
1721 | else:
1722 | data *= data
1723 | numpy.sum(data, axis=axis, out=out)
1724 | numpy.sqrt(out, out)
1725 |
1726 |
1727 | def unit_vector(data, axis=None, out=None):
1728 | """Return ndarray normalized by length, i.e. Euclidean norm, along axis.
1729 |
1730 | >>> v0 = numpy.random.random(3)
1731 | >>> v1 = unit_vector(v0)
1732 | >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
1733 | True
1734 | >>> v0 = numpy.random.rand(5, 4, 3)
1735 | >>> v1 = unit_vector(v0, axis=-1)
1736 | >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
1737 | >>> numpy.allclose(v1, v2)
1738 | True
1739 | >>> v1 = unit_vector(v0, axis=1)
1740 | >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
1741 | >>> numpy.allclose(v1, v2)
1742 | True
1743 | >>> v1 = numpy.empty((5, 4, 3))
1744 | >>> unit_vector(v0, axis=1, out=v1)
1745 | >>> numpy.allclose(v1, v2)
1746 | True
1747 | >>> list(unit_vector([]))
1748 | []
1749 | >>> list(unit_vector([1]))
1750 | [1.0]
1751 |
1752 | """
1753 | if out is None:
1754 | data = numpy.array(data, dtype=numpy.float64, copy=True)
1755 | if data.ndim == 1:
1756 | data /= math.sqrt(numpy.dot(data, data))
1757 | return data
1758 | else:
1759 | if out is not data:
1760 | out[:] = numpy.array(data, copy=False)
1761 | data = out
1762 | length = numpy.atleast_1d(numpy.sum(data*data, axis))
1763 | numpy.sqrt(length, length)
1764 | if axis is not None:
1765 | length = numpy.expand_dims(length, axis)
1766 | data /= length
1767 | if out is None:
1768 | return data
1769 |
1770 |
1771 | def random_vector(size):
1772 | """Return array of random doubles in the half-open interval [0.0, 1.0).
1773 |
1774 | >>> v = random_vector(10000)
1775 | >>> numpy.all(v >= 0) and numpy.all(v < 1)
1776 | True
1777 | >>> v0 = random_vector(10)
1778 | >>> v1 = random_vector(10)
1779 | >>> numpy.any(v0 == v1)
1780 | False
1781 |
1782 | """
1783 | return numpy.random.random(size)
1784 |
1785 |
1786 | def vector_product(v0, v1, axis=0):
1787 | """Return vector perpendicular to vectors.
1788 |
1789 | >>> v = vector_product([2, 0, 0], [0, 3, 0])
1790 | >>> numpy.allclose(v, [0, 0, 6])
1791 | True
1792 | >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]]
1793 | >>> v1 = [[3], [0], [0]]
1794 | >>> v = vector_product(v0, v1)
1795 | >>> numpy.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]])
1796 | True
1797 | >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]]
1798 | >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]]
1799 | >>> v = vector_product(v0, v1, axis=1)
1800 | >>> numpy.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]])
1801 | True
1802 |
1803 | """
1804 | return numpy.cross(v0, v1, axis=axis)
1805 |
1806 |
1807 | def angle_between_vectors(v0, v1, directed=True, axis=0):
1808 | """Return angle between vectors.
1809 |
1810 | If directed is False, the input vectors are interpreted as undirected axes,
1811 | i.e. the maximum angle is pi/2.
1812 |
1813 | >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3])
1814 | >>> numpy.allclose(a, math.pi)
1815 | True
1816 | >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False)
1817 | >>> numpy.allclose(a, 0)
1818 | True
1819 | >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]]
1820 | >>> v1 = [[3], [0], [0]]
1821 | >>> a = angle_between_vectors(v0, v1)
1822 | >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532])
1823 | True
1824 | >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]]
1825 | >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]]
1826 | >>> a = angle_between_vectors(v0, v1, axis=1)
1827 | >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532])
1828 | True
1829 |
1830 | """
1831 | v0 = numpy.array(v0, dtype=numpy.float64, copy=False)
1832 | v1 = numpy.array(v1, dtype=numpy.float64, copy=False)
1833 | dot = numpy.sum(v0 * v1, axis=axis)
1834 | dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis)
1835 | return numpy.arccos(dot if directed else numpy.fabs(dot))
1836 |
1837 |
1838 | def inverse_matrix(matrix):
1839 | """Return inverse of square transformation matrix.
1840 |
1841 | >>> M0 = random_rotation_matrix()
1842 | >>> M1 = inverse_matrix(M0.T)
1843 | >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
1844 | True
1845 | >>> for size in range(1, 7):
1846 | ... M0 = numpy.random.rand(size, size)
1847 | ... M1 = inverse_matrix(M0)
1848 | ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print(size)
1849 |
1850 | """
1851 | return numpy.linalg.inv(matrix)
1852 |
1853 |
1854 | def concatenate_matrices(*matrices):
1855 | """Return concatenation of series of transformation matrices.
1856 |
1857 | >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
1858 | >>> numpy.allclose(M, concatenate_matrices(M))
1859 | True
1860 | >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
1861 | True
1862 |
1863 | """
1864 | M = numpy.identity(4)
1865 | for i in matrices:
1866 | M = numpy.dot(M, i)
1867 | return M
1868 |
1869 |
1870 | def is_same_transform(matrix0, matrix1):
1871 | """Return True if two matrices perform same transformation.
1872 |
1873 | >>> is_same_transform(numpy.identity(4), numpy.identity(4))
1874 | True
1875 | >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
1876 | False
1877 |
1878 | """
1879 | matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
1880 | matrix0 /= matrix0[3, 3]
1881 | matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
1882 | matrix1 /= matrix1[3, 3]
1883 | return numpy.allclose(matrix0, matrix1)
1884 |
1885 |
1886 | def is_same_quaternion(q0, q1):
1887 | """Return True if two quaternions are equal."""
1888 | q0 = numpy.array(q0)
1889 | q1 = numpy.array(q1)
1890 | return numpy.allclose(q0, q1) or numpy.allclose(q0, -q1)
1891 |
1892 |
1893 | def _import_module(name, package=None, warn=True, prefix='_py_', ignore='_'):
1894 | """Try import all public attributes from module into global namespace.
1895 |
1896 | Existing attributes with name clashes are renamed with prefix.
1897 | Attributes starting with underscore are ignored by default.
1898 |
1899 | Return True on successful import.
1900 |
1901 | """
1902 | import warnings
1903 | from importlib import import_module
1904 | try:
1905 | if not package:
1906 | module = import_module(name)
1907 | else:
1908 | module = import_module('.' + name, package=package)
1909 | except ImportError:
1910 | if warn:
1911 | pass
1912 | # warnings.warn("failed to import module %s" % name)
1913 | else:
1914 | for attr in dir(module):
1915 | if ignore and attr.startswith(ignore):
1916 | continue
1917 | if prefix:
1918 | if attr in globals():
1919 | globals()[prefix + attr] = globals()[attr]
1920 | elif warn:
1921 | warnings.warn("no Python implementation of " + attr)
1922 | globals()[attr] = getattr(module, attr)
1923 | return True
1924 |
1925 |
1926 | _import_module('_transformations')
1927 |
1928 | if __name__ == "__main__":
1929 | import doctest
1930 | import random # noqa: used in doctests
1931 | numpy.set_printoptions(suppress=True, precision=5)
1932 | doctest.testmod()
1933 |
--------------------------------------------------------------------------------