├── .DS_Store
├── README.md
├── article
├── pic
│ └── 01
│ │ ├── 01-b-m.png
│ │ ├── 01-ch-dl.png
│ │ ├── 01-ml-all.png
│ │ ├── 01-ml-dl.png
│ │ └── 01-python.png
├── 第1章人工智能之机器学习算法体系汇总.md
└── 第2章1节生成式对抗网络原理与实战.md
└── python
├── .idea
├── misc.xml
├── modules.xml
├── python.iml
└── workspace.xml
└── tmp
├── gan.py
└── test.py
/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vbay/machine-learning/90b6fd467361a64c7886f65e52c41b372f3e81df/.DS_Store
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | 人工智能之机器学习 machine-learning
2 | ==============================
3 |
4 | :zap:最新文章 [第一章人工智能之机器学习算法体系汇总.md](./article/第1章人工智能之机器学习算法体系汇总.md)
5 |
6 | :cn:[中文](#中文) :us:[English](#english)
7 |
8 | > :white_check_mark:*转载请注明出处与作者信息*
9 | ```
10 | 原创作者:王小雷
11 | 作品出自:https://github.com/wangxiaoleiAI/machine-learning
12 | ```
13 |
14 |
15 |
16 | :cn:中文
17 | -------
18 | ***:star:[Star](https://github.com/wangxiaoleiAI/machine-learning.git)***
19 | ***:fire:[Fork](https://github.com/wangxiaoleiAI/machine-learning.git)*** :rocket:[Follow](https://github.com/wangxiaoleiAI)
20 | :boom:[评论 issues](https://github.com/wangxiaoleiAI/machine-learning/issues/2)
21 | - [摘要](#摘要)
22 | - [第一章人工智能之机器学习算法体系汇总.md](./article/第1章人工智能之机器学习算法体系汇总.md)
23 | - [作者](#作者)
24 |
25 | 摘要
26 | --------
27 | 面向人工智能的机器学习,讲解主流机器学习算法原理和编程实现(主Python)。文章和源码皆开源。 https://github.com/wangxiaoleiai/machine-learning 立志每周【周日】文章更新1+,努力构建机器学习体系。
28 |
29 | 作者
30 | ---------
31 | |编号| 姓名 | 博客 | github |加入时间|
32 | | :-- | :----: | :-----------------------: | :--------------------: | ---: |
33 | |1 | 王小雷 | http://blog.csdn.net/dream_an | https://github.com/wangxiaoleiAI |2017-7-24|
34 | |2 |--|--|--|--|
35 |
36 | :email: wov@outlook.com
37 | ----
38 |
39 |
40 | :us:English
41 | ---------
42 |
43 | ***:star:[Star](https://github.com/wangxiaoleiAI/machine-learning.git)***
44 | ***:fire:[Fork](https://github.com/wangxiaoleiAI/machine-learning.git)*** :rocket:[Follow](https://github.com/wangxiaoleiAI)
45 | :boom:[评issues](https://github.com/wangxiaoleiAI/machine-learning/issues/2)
46 |
47 | - [Overview](#overview)
48 | - [Author](#author)
49 |
50 | Overview
51 | --------
52 |
53 |
54 |
55 |
56 |
57 | Author
58 | ---------
59 |
60 | |number| name | blog | github |join|
61 | | :-- | :----: | :-----------------------: | :--------------------: | ---: |
62 | |1 | wangxiaolei | http://blog.csdn.net/dream_an | https://github.com/wangxiaoleiAI |2017-7-24|
63 | |2 |--|--|--|--|
64 |
--------------------------------------------------------------------------------
/article/pic/01/01-b-m.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vbay/machine-learning/90b6fd467361a64c7886f65e52c41b372f3e81df/article/pic/01/01-b-m.png
--------------------------------------------------------------------------------
/article/pic/01/01-ch-dl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vbay/machine-learning/90b6fd467361a64c7886f65e52c41b372f3e81df/article/pic/01/01-ch-dl.png
--------------------------------------------------------------------------------
/article/pic/01/01-ml-all.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vbay/machine-learning/90b6fd467361a64c7886f65e52c41b372f3e81df/article/pic/01/01-ml-all.png
--------------------------------------------------------------------------------
/article/pic/01/01-ml-dl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vbay/machine-learning/90b6fd467361a64c7886f65e52c41b372f3e81df/article/pic/01/01-ml-dl.png
--------------------------------------------------------------------------------
/article/pic/01/01-python.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vbay/machine-learning/90b6fd467361a64c7886f65e52c41b372f3e81df/article/pic/01/01-python.png
--------------------------------------------------------------------------------
/article/第1章人工智能之机器学习算法体系汇总.md:
--------------------------------------------------------------------------------
1 | - [1.人工智能之机器学习体系汇总](#1.人工智能之机器学习体系汇总)
2 | - [2.人工智能相关趋势分析](#2.人工智能相关趋势分析)
3 | - [2.1.人工智能再次登上历史舞台](#2.1.人工智能再次登上历史舞台)
4 | - [2.2.Python才是王道](#2.2.Python才是王道)
5 | - [2.3.深度学习趋势大热](#2.3.深度学习趋势大热)
6 | - [2.4.中国更爱深度学习](#2.4.中国更爱深度学习)
7 | - [3.结语](#3.结语)
8 |
9 | 参加完2017CCAI,听完各位专家的演讲后受益匪浅。立志写“人工智能之机器学习”系列,此为开篇,主要梳理了机器学习方法体系,人工智能相关趋势,Python与机器学习,以及结尾的一点感恩。
10 |
11 | >[Github开源机器学习系列文章及算法源码](https://github.com/wangxiaoleiAI/machine-learning)
12 |
13 | 1.人工智能之机器学习体系汇总
14 | ====
15 | 【直接上干货】此处梳理出面向人工智能的机器学习方法体系,主要体现机器学习方法和逻辑关系,理清机器学习脉络,后续文章会针对机器学习系列讲解算法原理和实战。抱着一颗严谨学习之心,有不当之处欢迎斧正。
16 |
17 | 
18 |
19 | - 监督学习 Supervised learning
20 | - 人工神经网络 Artificial neural network
21 | - 自动编码器 Autoencoder
22 | - 反向传播 Backpropagation
23 | - 玻尔兹曼机 Boltzmann machine
24 | - 卷积神经网络 Convolutional neural network
25 | - Hopfield网络 Hopfield network
26 | - 多层感知器 Multilayer perceptron
27 | - 径向基函数网络(RBFN) Radial basis function network(RBFN)
28 | - 受限玻尔兹曼机 Restricted Boltzmann machine
29 | - 回归神经网络(RNN) Recurrent neural network(RNN)
30 | - 自组织映射(SOM) Self-organizing map(SOM)
31 | - 尖峰神经网络 Spiking neural network
32 | - 贝叶斯 Bayesian
33 | - 朴素贝叶斯 Naive Bayes
34 | - 高斯贝叶斯 Gaussian Naive Bayes
35 | - 多项朴素贝叶斯 Multinomial Naive Bayes
36 | - 平均一依赖性评估(AODE) Averaged One-Dependence Estimators(AODE)
37 | - 贝叶斯信念网络(BNN) Bayesian Belief Network(BBN)
38 | - 贝叶斯网络(BN) Bayesian Network(BN)
39 | - 决策树 Decision Tree
40 | - 分类和回归树(CART) Classification and regression tree (CART)
41 | - 迭代Dichotomiser 3(ID3) Iterative Dichotomiser 3(ID3)
42 | - C4.5算法 C4.5 algorithm
43 | - C5.0算法 C5.0 algorithm
44 | - 卡方自动交互检测(CHAID) Chi-squared Automatic Interaction Detection(CHAID)
45 | - 决策残端 Decision stump
46 | - ID3算法 ID3 algorithm
47 | - 随机森林 Random forest
48 | - SLIQ
49 | - 线性分类 Linear classifier
50 | - Fisher的线性判别 Fisher's linear discriminant
51 | - 线性回归 Linear regression
52 | - Logistic回归 Logistic regression
53 | - 多项Logistic回归 Multinomial logistic regression
54 | - 朴素贝叶斯分类器 Naive Bayes classifier
55 | - 感知 Perceptron
56 | - 支持向量机 Support vector machine
57 | - 无监督学习 Unsupervised learning
58 | - 人工神经网络 Artificial neural network
59 | - 对抗生成网络
60 | - 前馈神经网络 Feedforward neurral network
61 | - 极端学习机 Extreme learning machine
62 | - 逻辑学习机 Logic learning machine
63 | - 自组织映射 Self-organizing map
64 | - 关联规则学习 Association rule learning
65 | - 先验算法 Apriori algorithm
66 | - Eclat算法 Eclat algorithm
67 | - FP-growth算法 FP-growth algorithm
68 | - 分层聚类 Hierarchical clustering
69 | - 单连锁聚类 Single-linkage clustering
70 | - 概念聚类 Conceptual clustering
71 | - 聚类分析 Cluster analysis
72 | - BIRCH
73 | - DBSCAN
74 | - 期望最大化(EM) Expectation-maximization(EM)
75 | - 模糊聚类 Fuzzy clustering
76 | - K-means算法 K-means algorithm
77 | - k-均值聚类 K-means clustering
78 | - k-位数 K-medians
79 | - 平均移 Mean-shift
80 | - OPTICS算法 OPTICS algorithm
81 | - 异常检测 Anomaly detection
82 | - k-最近邻算法(K-NN) k-nearest neighbors classification(K-NN)
83 | - 局部异常因子 Local outlier factor
84 | - 半监督学习 Semi-supervised learning
85 | - 生成模型 Generative models
86 | - 低密度分离 Low-density separation
87 | - 基于图形的方法 Graph-based methods
88 | - 联合训练 Co-training
89 | - 强化学习 Reinforcement learning
90 | - 时间差分学习 Temporal difference learning
91 | - Q学习 Q-learning
92 | - 学习自动 Learning Automata
93 | - 状态-行动-回馈-状态-行动(SARSA) State-Action-Reward-State-Action(SARSA)
94 | - 深度学习 Deep learning
95 | - 深度信念网络 Deep belief machines
96 | - 深度卷积神经网络 Deep Convolutional neural networks
97 | - 深度递归神经网络 Deep Recurrent neural networks
98 | - 分层时间记忆 Hierarchical temporal memory
99 | - 深度玻尔兹曼机(DBM) Deep Boltzmann Machine(DBM)
100 | - 堆叠自动编码器 Stacked Boltzmann Machine
101 | - 生成式对抗网络(GANs) Generative adversarial networks(GANs)
102 | - 迁移学习 Transfer learning
103 | - 传递式迁移学习 Transitive Transfer Learning
104 | - 其他
105 | - 集成学习算法
106 | - Bootstrap aggregating (Bagging)
107 | - AdaBoost
108 | - 梯度提升机(GBM) Gradient boosting machine(GBM)
109 | - 梯度提升决策树(GBRT) Gradient boosted decision tree(GBRT)
110 | - 降维
111 | - 主成分分析(PCA) Principal component analysis(PCA)
112 | - 主成分回归(PCR) Principal component regression(PCR)
113 | - 因子分析 Factor analysis
114 |
115 | >学习应当严谨,有不当场之处欢迎斧正。
116 |
117 | >强力驱动 Wikipedia CSDN
118 |
119 | 2.人工智能相关趋势分析
120 | ===
121 | 2.1.人工智能再次登上历史舞台
122 | -----------
123 |
124 | 人工智能与大数据对比——当今人工智能高于大数据
125 | 
126 |
127 | [数据来自Goolge trends]
128 |
129 | 2.2.Python才是王道
130 | ------------
131 | 
132 |
133 | [数据来自Google trends]
134 |
135 | 2.3.深度学习趋势大热
136 | ---------
137 | 
138 |
139 | [数据来自Google trends]
140 |
141 | 2.4.中国更爱深度学习
142 | ----------
143 | 
144 |
145 | [数据来源-Google trends]
146 |
147 | 3.结语
148 | ======
149 | 关于人工智能的一点感想,写在最后
150 |
151 | > AI systems can’t model everything... AI needs to be robust to “unknown unknowns” [Thomas G.Dietterich ,2017CCAI]
152 |
153 | 中国自古有之
154 |
155 | >“知之为知之,不知为不知,是知也”【出自《论语》】
156 |
157 | 人工智能已然是历史的第三波浪潮,堪称“工业4.0”,有突破性的成就,但也有未解之谜。真正创造一个有认知力的“生命”——还有很大的难度。希望此次浪潮会持续下去,创造出其真正的价值,而非商业泡沫。
158 |
159 | 大多数的我们发表不了顶级学术论文,开创不了先河。不要紧,沉下心,努力去实践。
160 |
161 | 人工智能路漫漫,却让我们的生活充满了机遇与遐想。
162 |
163 |
164 | >立志每周【周日】更新一篇“人工智能之机器学习”系列。[Github开源机器学习系列文章及算法源码](https://github.com/wangxiaoleiAI/machine-learning)
165 |
166 | 感谢CSDN的2017CCAI参会机遇与分享平台。
167 |
168 | > :rocket:[评论本章节 issues](https://github.com/wangxiaoleiAI/machine-learning/issues/2)
169 |
170 | > :white_check_mark:*转载请注明出处与作者信息*
171 | ```
172 | 原创作者:王小雷
173 | 作品出自:https://github.com/wangxiaoleiAI/machine-learning
174 | ```
175 | :star:[Star](https://github.com/wangxiaoleiAI/machine-learning.git)
176 | :fire:[Fork](https://github.com/wangxiaoleiAI/machine-learning.git) :boom:[Follow](https://github.com/wangxiaoleiAI)
177 |
--------------------------------------------------------------------------------
/article/第2章1节生成式对抗网络原理与实战.md:
--------------------------------------------------------------------------------
1 | :izakaya_lantern:构建中
2 | # 构建中..2018/01
3 | 生成式对抗网络(Generative Adversarial Network,GANs),
4 |
5 |
6 |
7 |
8 | > :rocket:[评论本章节 issues](https://github.com/wangxiaoleiAI/machine-learning/issues/2)
9 |
10 | > :white_check_mark:*转载请注明出处与作者信息*
11 | ```
12 | 原创作者:王小雷
13 | 作品出自:https://github.com/wangxiaoleiAI/machine-learning
14 | ```
15 |
16 | :star:[Star](https://github.com/wangxiaoleiAI/machine-learning.git)
17 | :fire:[Fork](https://github.com/wangxiaoleiAI/machine-learning.git) :boom:[Follow](https://github.com/wangxiaoleiAI)
18 |
19 |
20 |
21 | >参考文献
22 |
23 | 1 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde- Farley D, Ozair S, Courville A, Bengio Y. Generative adver- sarial nets. In: Proceedings of the 2014 Conference on Ad- vances in Neural Information Processing Systems 27. Mon- treal, Canada: Curran Associates, Inc., 2014. 2672−2680
24 |
25 | 2
26 |
--------------------------------------------------------------------------------
/python/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/python/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/python/.idea/python.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
--------------------------------------------------------------------------------
/python/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 | 1505986600026
171 |
172 |
173 | 1505986600026
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
--------------------------------------------------------------------------------
/python/tmp/gan.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | # tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
3 |
4 |
5 | rank_three_tensor = tf.ones([3, 4, 5])
6 | matrix = tf.reshape(rank_three_tensor, [6, 10])
--------------------------------------------------------------------------------
/python/tmp/test.py:
--------------------------------------------------------------------------------
1 | print ("hi")
--------------------------------------------------------------------------------