├── LICENSE
├── Requirements.txt
├── README.md
├── Black Friday - Analysing Columns.ipynb
├── Black Friday - Analysis.ipynb
└── Black Friday - Analysing Age & Marital Status.ipynb
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2024 Abbireddy Venkata Chandu
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/Requirements.txt:
--------------------------------------------------------------------------------
1 | Requirements for Black Friday Sales Analysis
2 |
3 | 1. Dataset:
4 | - Sales transaction data, including customer demographics (age, gender, marital status), products purchased, and purchase amounts.
5 | - Data fields like product categories, city tier, and occupation are essential for deeper insights.
6 |
7 | 2. Software and Tools:
8 | - Python: Programming language for data analysis.
9 | - Libraries:
10 | - Pandas: Data cleaning and manipulation.
11 | - NumPy: Numerical computations.
12 | - Matplotlib/Seaborn: Data visualization.
13 | - Scikit-learn: For advanced analysis or predictive modeling (if needed).
14 | - Jupyter Notebook: For interactive analysis and visualization.
15 |
16 | 3. Environment Setup:
17 | - Python 3.x installed.
18 | - Virtual environment or dependency management tools like `pip` or `conda`.
19 |
20 | 4. Data Preprocessing :
21 | - Cleaning: Handle missing or inconsistent values.
22 | - Transformation: Convert categorical data to a usable format.
23 | - Aggregation: Combine or summarize data based on relevant features.
24 |
25 | 5. Skills :
26 | - Knowledge of data preprocessing and wrangling.
27 | - Experience with data visualization techniques.
28 | - Understanding of basic statistics for interpreting trends and insights.
29 |
30 | 6. Objectives :
31 | - Analyze trends by age, gender, marital status, and occupation.
32 | - Identify high-performing products and customer segments.
33 | - Derive actionable insights for strategic decision-making.
34 |
35 | This setup ensures a comprehensive and effective analysis of Black Friday sales data.
36 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | # Black Friday Sales Analysis
3 |
4 | This project provides an in-depth analysis of Black Friday sales data. The analysis delves into key customer demographics, purchasing behaviors, and product trends to uncover insights that can guide strategic decision-making. By exploring multiple dimensions of the data, this project aims to enhance understanding of consumer preferences during Black Friday sales.
5 |
6 | ## Table of Contents
7 | - [Overview](#overview)
8 | - [Dataset](#dataset)
9 | - [Analysis Scope](#analysis-scope)
10 | - [Analysis Highlights](#analysis-highlights)
11 | - [Technologies Used](#technologies-used)
12 | - [How to Run](#how-to-run)
13 | - [Results and Insights](#results-and-insights)
14 | - [Contributing](#contributing)
15 | - [License](#license)
16 |
17 | ---
18 |
19 | ## Overview
20 | Black Friday sales represent a major retail event characterized by high-volume consumer activity. This analysis focuses on understanding the interplay of various demographic and behavioral factors that drive sales. By using data visualization and statistical methods, we aim to identify patterns and trends to answer key questions about customer purchasing behavior.
21 |
22 | ---
23 |
24 | ## Dataset
25 | The dataset used in this project contains transactional data from a Black Friday sales event.
26 | Key attributes include:
27 | - **Demographics**: Age, Gender, Marital Status
28 | - **Behavioral**: Product ID, Purchase Amount
29 | - **Occupational Data**: Occupation and City Tier
30 |
31 | ---
32 |
33 | ## Analysis Scope
34 | The analysis is divided into the following sections:
35 |
36 | ### 1. **Combining Age & Marital Status**
37 | - Examines how age groups correlate with marital status in determining purchasing power.
38 | - Identifies trends in spending behavior across single and married individuals.
39 |
40 | ### 2. **Occupation and Products Analysis**
41 | - Analyzes purchasing patterns based on customers’ occupations.
42 | - Highlights which product categories are preferred by specific occupational groups.
43 |
44 | ### 3. **Analyzing Age & Marital Status**
45 | - Provides deeper insights into how marital status affects spending within different age groups.
46 | - Identifies demographic segments with the highest contribution to sales.
47 |
48 | ### 4. **Analyzing Gender**
49 | - Compares purchasing trends between male and female customers.
50 | - Evaluates the influence of gender on product preference and spending behavior.
51 |
52 | ### 5. **Multi-Column Analysis**
53 | - Combines multiple dimensions, including age, occupation, and city tier, to gain holistic insights.
54 | - Visualizes relationships between demographic features and total sales.
55 |
56 | ---
57 |
58 | ## Technologies Used
59 | - **Programming Language**: Python
60 | - **Libraries**:
61 | - Pandas (Data manipulation)
62 | - Matplotlib & Seaborn (Data visualization)
63 | - NumPy (Numerical computations)
64 | - **Jupyter Notebook**: For interactive data analysis.
65 |
66 | ---
67 |
68 | ## How to Run
69 | 1. Clone this repository:
70 | ```bash
71 | git clone https://github.com/venkat-0706/Black-Friday.git
72 | ```
73 | 2. Navigate to the project directory:
74 | ```bash
75 | cd Black-Friday
76 | ```
77 | 3. Install dependencies:
78 | ```bash
79 | pip install -r requirements.txt
80 | ```
81 | 4. Run the Jupyter Notebook:
82 | ```bash
83 | jupyter notebook BlackFridayAnalys.ipynb
84 | ```
85 |
86 | ---
87 |
88 | ## Results and Insights
89 | - **Age & Marital Status**: Married individuals in the 26-35 age group contribute the most to total sales.
90 | - **Occupation Trends**: Certain occupations show a strong preference for high-value products.
91 | - **Gender Analysis**: Males tend to spend more, but females show more diverse product preferences.
92 | - **Multi-Dimensional Insights**: Customers from Tier 1 cities in the 26-45 age range dominate high-value purchases.
93 |
94 | ---
95 |
96 | ## Contributing
97 | Contributions are welcome! If you'd like to enhance this project or add new analysis dimensions, please feel free to:
98 | 1. Fork the repository.
99 | 2. Create a new branch (`git checkout -b feature/YourFeature`).
100 | 3. Commit your changes (`git commit -m "Add your feature"`).
101 | 4. Push to the branch (`git push origin feature/YourFeature`).
102 | 5. Open a pull request.
103 |
104 | ---
105 |
106 | ## License
107 | This project is licensed under the [MIT License](LICENSE).
108 |
109 | ---
110 |
111 | ## Contact
112 | For any queries, feel free to reach out:
113 | - **Email**: chanduabbireddy247@gmail.com
114 | - **GitHub**: [venkat-0706](https://github.com/venkat-0706)
115 | - **Linkedin**: [chandu0706](https://www.linkedin.com/in/chandu0706/).
116 | ```
117 |
118 | This template is modular, informative, and user-friendly, making it perfect for a GitHub repository. Adjust details like the repository URL and contact information as needed.
119 |
--------------------------------------------------------------------------------
/Black Friday - Analysing Columns.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 2,
6 | "id": "b469ab75-f37b-49d0-8559-b821666ac192",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd\n"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 8,
16 | "id": "d475756c-dbd3-4623-bbf8-c975de3906f7",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "df = pd.read_csv('BlackFriday.csv')\n",
21 | "\n",
22 | "del df['Product_Category_2']\n",
23 | "del df['Product_Category_3']"
24 | ]
25 | },
26 | {
27 | "cell_type": "code",
28 | "execution_count": 10,
29 | "id": "17f80875-38d1-4c23-a9f6-6d21602d05ad",
30 | "metadata": {},
31 | "outputs": [
32 | {
33 | "data": {
34 | "text/html": [
35 | "
\n",
36 | "\n",
49 | "
\n",
50 | " \n",
51 | " \n",
52 | " \n",
53 | " User_ID \n",
54 | " Product_ID \n",
55 | " Gender \n",
56 | " Age \n",
57 | " Occupation \n",
58 | " City_Category \n",
59 | " Stay_In_Current_City_Years \n",
60 | " Marital_Status \n",
61 | " Product_Category_1 \n",
62 | " Purchase \n",
63 | " \n",
64 | " \n",
65 | " \n",
66 | " \n",
67 | " 0 \n",
68 | " 1000001 \n",
69 | " P00069042 \n",
70 | " F \n",
71 | " 0-17 \n",
72 | " 10 \n",
73 | " A \n",
74 | " 2 \n",
75 | " 0 \n",
76 | " 3 \n",
77 | " 8370 \n",
78 | " \n",
79 | " \n",
80 | " 1 \n",
81 | " 1000001 \n",
82 | " P00248942 \n",
83 | " F \n",
84 | " 0-17 \n",
85 | " 10 \n",
86 | " A \n",
87 | " 2 \n",
88 | " 0 \n",
89 | " 1 \n",
90 | " 15200 \n",
91 | " \n",
92 | " \n",
93 | " 2 \n",
94 | " 1000001 \n",
95 | " P00087842 \n",
96 | " F \n",
97 | " 0-17 \n",
98 | " 10 \n",
99 | " A \n",
100 | " 2 \n",
101 | " 0 \n",
102 | " 12 \n",
103 | " 1422 \n",
104 | " \n",
105 | " \n",
106 | " 3 \n",
107 | " 1000001 \n",
108 | " P00085442 \n",
109 | " F \n",
110 | " 0-17 \n",
111 | " 10 \n",
112 | " A \n",
113 | " 2 \n",
114 | " 0 \n",
115 | " 12 \n",
116 | " 1057 \n",
117 | " \n",
118 | " \n",
119 | " 4 \n",
120 | " 1000002 \n",
121 | " P00285442 \n",
122 | " M \n",
123 | " 55+ \n",
124 | " 16 \n",
125 | " C \n",
126 | " 4+ \n",
127 | " 0 \n",
128 | " 8 \n",
129 | " 7969 \n",
130 | " \n",
131 | " \n",
132 | "
\n",
133 | "
"
134 | ],
135 | "text/plain": [
136 | " User_ID Product_ID Gender Age Occupation City_Category \\\n",
137 | "0 1000001 P00069042 F 0-17 10 A \n",
138 | "1 1000001 P00248942 F 0-17 10 A \n",
139 | "2 1000001 P00087842 F 0-17 10 A \n",
140 | "3 1000001 P00085442 F 0-17 10 A \n",
141 | "4 1000002 P00285442 M 55+ 16 C \n",
142 | "\n",
143 | " Stay_In_Current_City_Years Marital_Status Product_Category_1 Purchase \n",
144 | "0 2 0 3 8370 \n",
145 | "1 2 0 1 15200 \n",
146 | "2 2 0 12 1422 \n",
147 | "3 2 0 12 1057 \n",
148 | "4 4+ 0 8 7969 "
149 | ]
150 | },
151 | "execution_count": 10,
152 | "metadata": {},
153 | "output_type": "execute_result"
154 | }
155 | ],
156 | "source": [
157 | "df.head()"
158 | ]
159 | },
160 | {
161 | "cell_type": "code",
162 | "execution_count": 14,
163 | "id": "7d785535-59da-4455-bdbf-fc6ac42aabe1",
164 | "metadata": {},
165 | "outputs": [
166 | {
167 | "data": {
168 | "text/plain": [
169 | "5891"
170 | ]
171 | },
172 | "execution_count": 14,
173 | "metadata": {},
174 | "output_type": "execute_result"
175 | }
176 | ],
177 | "source": [
178 | "df['User_ID'].nunique()"
179 | ]
180 | },
181 | {
182 | "cell_type": "code",
183 | "execution_count": 16,
184 | "id": "1a5ebcbe-9a28-46ae-875e-95ecb633f575",
185 | "metadata": {},
186 | "outputs": [
187 | {
188 | "data": {
189 | "text/plain": [
190 | "3623"
191 | ]
192 | },
193 | "execution_count": 16,
194 | "metadata": {},
195 | "output_type": "execute_result"
196 | }
197 | ],
198 | "source": [
199 | "\n",
200 | "df['Product_ID'].nunique()"
201 | ]
202 | },
203 | {
204 | "cell_type": "code",
205 | "execution_count": 18,
206 | "id": "338fcf0b-03ab-43d8-ae77-2bc7d191945d",
207 | "metadata": {},
208 | "outputs": [
209 | {
210 | "data": {
211 | "text/plain": [
212 | "array(['F', 'M'], dtype=object)"
213 | ]
214 | },
215 | "execution_count": 18,
216 | "metadata": {},
217 | "output_type": "execute_result"
218 | }
219 | ],
220 | "source": [
221 | "\n",
222 | "df['Gender'].unique()"
223 | ]
224 | },
225 | {
226 | "cell_type": "code",
227 | "execution_count": 20,
228 | "id": "42cef3cc-91d2-4b8d-8d86-0cc48943c5cb",
229 | "metadata": {},
230 | "outputs": [
231 | {
232 | "data": {
233 | "text/plain": [
234 | "array(['0-17', '55+', '26-35', '46-50', '51-55', '36-45', '18-25'],\n",
235 | " dtype=object)"
236 | ]
237 | },
238 | "execution_count": 20,
239 | "metadata": {},
240 | "output_type": "execute_result"
241 | }
242 | ],
243 | "source": [
244 | "\n",
245 | "df['Age'].unique()"
246 | ]
247 | },
248 | {
249 | "cell_type": "code",
250 | "execution_count": 22,
251 | "id": "c364a16b-857d-4683-ae66-b0befbe99672",
252 | "metadata": {},
253 | "outputs": [
254 | {
255 | "data": {
256 | "text/plain": [
257 | "array([10, 16, 15, 7, 20, 9, 1, 12, 17, 0, 3, 4, 11, 8, 19, 2, 18,\n",
258 | " 5, 14, 13, 6], dtype=int64)"
259 | ]
260 | },
261 | "execution_count": 22,
262 | "metadata": {},
263 | "output_type": "execute_result"
264 | }
265 | ],
266 | "source": [
267 | "\n",
268 | "df['Occupation'].unique()\n"
269 | ]
270 | },
271 | {
272 | "cell_type": "code",
273 | "execution_count": 24,
274 | "id": "91fae47a-ab7b-4112-a87b-d160e778eecb",
275 | "metadata": {},
276 | "outputs": [
277 | {
278 | "data": {
279 | "text/plain": [
280 | "array(['A', 'C', 'B'], dtype=object)"
281 | ]
282 | },
283 | "execution_count": 24,
284 | "metadata": {},
285 | "output_type": "execute_result"
286 | }
287 | ],
288 | "source": [
289 | "\n",
290 | "df['City_Category'].unique()"
291 | ]
292 | },
293 | {
294 | "cell_type": "code",
295 | "execution_count": 26,
296 | "id": "e434dc19-136f-4b34-820c-7dae161c7b1f",
297 | "metadata": {},
298 | "outputs": [
299 | {
300 | "data": {
301 | "text/plain": [
302 | "array(['2', '4+', '3', '1', '0'], dtype=object)"
303 | ]
304 | },
305 | "execution_count": 26,
306 | "metadata": {},
307 | "output_type": "execute_result"
308 | }
309 | ],
310 | "source": [
311 | "df['Stay_In_Current_City_Years'].unique()"
312 | ]
313 | },
314 | {
315 | "cell_type": "code",
316 | "execution_count": 28,
317 | "id": "da7aa06a-4fec-42ad-b498-ea9c35dd2542",
318 | "metadata": {},
319 | "outputs": [
320 | {
321 | "data": {
322 | "text/plain": [
323 | "array([0, 1], dtype=int64)"
324 | ]
325 | },
326 | "execution_count": 28,
327 | "metadata": {},
328 | "output_type": "execute_result"
329 | }
330 | ],
331 | "source": [
332 | "\n",
333 | "df['Marital_Status'].unique()"
334 | ]
335 | },
336 | {
337 | "cell_type": "code",
338 | "execution_count": 30,
339 | "id": "e88705c4-c9c2-4678-a700-050deace9743",
340 | "metadata": {},
341 | "outputs": [
342 | {
343 | "data": {
344 | "text/plain": [
345 | "array([ 3, 1, 12, 8, 5, 4, 2, 6, 14, 11, 13, 15, 7, 16, 18, 10, 17,\n",
346 | " 9], dtype=int64)"
347 | ]
348 | },
349 | "execution_count": 30,
350 | "metadata": {},
351 | "output_type": "execute_result"
352 | }
353 | ],
354 | "source": [
355 | "df['Product_Category_1'].unique()"
356 | ]
357 | },
358 | {
359 | "cell_type": "code",
360 | "execution_count": 32,
361 | "id": "883b1158-9f6d-4928-a3f7-4a548d2166ec",
362 | "metadata": {},
363 | "outputs": [
364 | {
365 | "data": {
366 | "text/plain": [
367 | "9333.859852635065"
368 | ]
369 | },
370 | "execution_count": 32,
371 | "metadata": {},
372 | "output_type": "execute_result"
373 | }
374 | ],
375 | "source": [
376 | "\n",
377 | "df['Purchase'].sum()/len(df['Purchase'])"
378 | ]
379 | },
380 | {
381 | "cell_type": "code",
382 | "execution_count": 36,
383 | "id": "71f281cb-79e8-4bd7-8151-6c81f074c1f7",
384 | "metadata": {},
385 | "outputs": [
386 | {
387 | "name": "stdout",
388 | "output_type": "stream",
389 | "text": [
390 | "5891 \t: User_ID\n",
391 | "3623 \t: Product_ID\n",
392 | "2 \t: Gender\n",
393 | "7 \t: Age\n",
394 | "21 \t: Occupation\n",
395 | "3 \t: City_Category\n",
396 | "5 \t: Stay_In_Current_City_Years\n",
397 | "2 \t: Marital_Status\n",
398 | "18 \t: Product_Category_1\n",
399 | "17959 \t: Purchase\n"
400 | ]
401 | }
402 | ],
403 | "source": [
404 | "\n",
405 | "for column in df.columns:\n",
406 | " print(df[column].nunique() , \"\\t:\", column)"
407 | ]
408 | },
409 | {
410 | "cell_type": "code",
411 | "execution_count": null,
412 | "id": "825f4eca-d4e9-4e1f-bdf4-59493d2e27fb",
413 | "metadata": {},
414 | "outputs": [],
415 | "source": []
416 | }
417 | ],
418 | "metadata": {
419 | "kernelspec": {
420 | "display_name": "Python 3 (ipykernel)",
421 | "language": "python",
422 | "name": "python3"
423 | },
424 | "language_info": {
425 | "codemirror_mode": {
426 | "name": "ipython",
427 | "version": 3
428 | },
429 | "file_extension": ".py",
430 | "mimetype": "text/x-python",
431 | "name": "python",
432 | "nbconvert_exporter": "python",
433 | "pygments_lexer": "ipython3",
434 | "version": "3.12.4"
435 | }
436 | },
437 | "nbformat": 4,
438 | "nbformat_minor": 5
439 | }
440 |
--------------------------------------------------------------------------------
/Black Friday - Analysis.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 2,
6 | "id": "bb3dd480-061f-46c6-a281-d4b873a37131",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd\n"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 4,
16 | "id": "ae07eba1-285e-4f56-aa55-33e29eaa8a58",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "df = pd.read_csv('BlackFriday.csv')\n"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 6,
26 | "id": "c364e5e9-1716-4668-bd75-4676e1d46f8a",
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "data": {
31 | "text/html": [
32 | "\n",
33 | "\n",
46 | "
\n",
47 | " \n",
48 | " \n",
49 | " \n",
50 | " User_ID \n",
51 | " Product_ID \n",
52 | " Gender \n",
53 | " Age \n",
54 | " Occupation \n",
55 | " City_Category \n",
56 | " Stay_In_Current_City_Years \n",
57 | " Marital_Status \n",
58 | " Product_Category_1 \n",
59 | " Product_Category_2 \n",
60 | " Product_Category_3 \n",
61 | " Purchase \n",
62 | " \n",
63 | " \n",
64 | " \n",
65 | " \n",
66 | " 0 \n",
67 | " 1000001 \n",
68 | " P00069042 \n",
69 | " F \n",
70 | " 0-17 \n",
71 | " 10 \n",
72 | " A \n",
73 | " 2 \n",
74 | " 0 \n",
75 | " 3 \n",
76 | " NaN \n",
77 | " NaN \n",
78 | " 8370 \n",
79 | " \n",
80 | " \n",
81 | " 1 \n",
82 | " 1000001 \n",
83 | " P00248942 \n",
84 | " F \n",
85 | " 0-17 \n",
86 | " 10 \n",
87 | " A \n",
88 | " 2 \n",
89 | " 0 \n",
90 | " 1 \n",
91 | " 6.0 \n",
92 | " 14.0 \n",
93 | " 15200 \n",
94 | " \n",
95 | " \n",
96 | " 2 \n",
97 | " 1000001 \n",
98 | " P00087842 \n",
99 | " F \n",
100 | " 0-17 \n",
101 | " 10 \n",
102 | " A \n",
103 | " 2 \n",
104 | " 0 \n",
105 | " 12 \n",
106 | " NaN \n",
107 | " NaN \n",
108 | " 1422 \n",
109 | " \n",
110 | " \n",
111 | " 3 \n",
112 | " 1000001 \n",
113 | " P00085442 \n",
114 | " F \n",
115 | " 0-17 \n",
116 | " 10 \n",
117 | " A \n",
118 | " 2 \n",
119 | " 0 \n",
120 | " 12 \n",
121 | " 14.0 \n",
122 | " NaN \n",
123 | " 1057 \n",
124 | " \n",
125 | " \n",
126 | " 4 \n",
127 | " 1000002 \n",
128 | " P00285442 \n",
129 | " M \n",
130 | " 55+ \n",
131 | " 16 \n",
132 | " C \n",
133 | " 4+ \n",
134 | " 0 \n",
135 | " 8 \n",
136 | " NaN \n",
137 | " NaN \n",
138 | " 7969 \n",
139 | " \n",
140 | " \n",
141 | " ... \n",
142 | " ... \n",
143 | " ... \n",
144 | " ... \n",
145 | " ... \n",
146 | " ... \n",
147 | " ... \n",
148 | " ... \n",
149 | " ... \n",
150 | " ... \n",
151 | " ... \n",
152 | " ... \n",
153 | " ... \n",
154 | " \n",
155 | " \n",
156 | " 537572 \n",
157 | " 1004737 \n",
158 | " P00193542 \n",
159 | " M \n",
160 | " 36-45 \n",
161 | " 16 \n",
162 | " C \n",
163 | " 1 \n",
164 | " 0 \n",
165 | " 1 \n",
166 | " 2.0 \n",
167 | " NaN \n",
168 | " 11664 \n",
169 | " \n",
170 | " \n",
171 | " 537573 \n",
172 | " 1004737 \n",
173 | " P00111142 \n",
174 | " M \n",
175 | " 36-45 \n",
176 | " 16 \n",
177 | " C \n",
178 | " 1 \n",
179 | " 0 \n",
180 | " 1 \n",
181 | " 15.0 \n",
182 | " 16.0 \n",
183 | " 19196 \n",
184 | " \n",
185 | " \n",
186 | " 537574 \n",
187 | " 1004737 \n",
188 | " P00345942 \n",
189 | " M \n",
190 | " 36-45 \n",
191 | " 16 \n",
192 | " C \n",
193 | " 1 \n",
194 | " 0 \n",
195 | " 8 \n",
196 | " 15.0 \n",
197 | " NaN \n",
198 | " 8043 \n",
199 | " \n",
200 | " \n",
201 | " 537575 \n",
202 | " 1004737 \n",
203 | " P00285842 \n",
204 | " M \n",
205 | " 36-45 \n",
206 | " 16 \n",
207 | " C \n",
208 | " 1 \n",
209 | " 0 \n",
210 | " 5 \n",
211 | " NaN \n",
212 | " NaN \n",
213 | " 7172 \n",
214 | " \n",
215 | " \n",
216 | " 537576 \n",
217 | " 1004737 \n",
218 | " P00118242 \n",
219 | " M \n",
220 | " 36-45 \n",
221 | " 16 \n",
222 | " C \n",
223 | " 1 \n",
224 | " 0 \n",
225 | " 5 \n",
226 | " 8.0 \n",
227 | " NaN \n",
228 | " 6875 \n",
229 | " \n",
230 | " \n",
231 | "
\n",
232 | "
537577 rows × 12 columns
\n",
233 | "
"
234 | ],
235 | "text/plain": [
236 | " User_ID Product_ID Gender Age Occupation City_Category \\\n",
237 | "0 1000001 P00069042 F 0-17 10 A \n",
238 | "1 1000001 P00248942 F 0-17 10 A \n",
239 | "2 1000001 P00087842 F 0-17 10 A \n",
240 | "3 1000001 P00085442 F 0-17 10 A \n",
241 | "4 1000002 P00285442 M 55+ 16 C \n",
242 | "... ... ... ... ... ... ... \n",
243 | "537572 1004737 P00193542 M 36-45 16 C \n",
244 | "537573 1004737 P00111142 M 36-45 16 C \n",
245 | "537574 1004737 P00345942 M 36-45 16 C \n",
246 | "537575 1004737 P00285842 M 36-45 16 C \n",
247 | "537576 1004737 P00118242 M 36-45 16 C \n",
248 | "\n",
249 | " Stay_In_Current_City_Years Marital_Status Product_Category_1 \\\n",
250 | "0 2 0 3 \n",
251 | "1 2 0 1 \n",
252 | "2 2 0 12 \n",
253 | "3 2 0 12 \n",
254 | "4 4+ 0 8 \n",
255 | "... ... ... ... \n",
256 | "537572 1 0 1 \n",
257 | "537573 1 0 1 \n",
258 | "537574 1 0 8 \n",
259 | "537575 1 0 5 \n",
260 | "537576 1 0 5 \n",
261 | "\n",
262 | " Product_Category_2 Product_Category_3 Purchase \n",
263 | "0 NaN NaN 8370 \n",
264 | "1 6.0 14.0 15200 \n",
265 | "2 NaN NaN 1422 \n",
266 | "3 14.0 NaN 1057 \n",
267 | "4 NaN NaN 7969 \n",
268 | "... ... ... ... \n",
269 | "537572 2.0 NaN 11664 \n",
270 | "537573 15.0 16.0 19196 \n",
271 | "537574 15.0 NaN 8043 \n",
272 | "537575 NaN NaN 7172 \n",
273 | "537576 8.0 NaN 6875 \n",
274 | "\n",
275 | "[537577 rows x 12 columns]"
276 | ]
277 | },
278 | "execution_count": 6,
279 | "metadata": {},
280 | "output_type": "execute_result"
281 | }
282 | ],
283 | "source": [
284 | "df\n"
285 | ]
286 | },
287 | {
288 | "cell_type": "code",
289 | "execution_count": 8,
290 | "id": "253a6c80-3d5e-4358-9238-afd1e9864589",
291 | "metadata": {},
292 | "outputs": [
293 | {
294 | "data": {
295 | "text/html": [
296 | "\n",
297 | "\n",
310 | "
\n",
311 | " \n",
312 | " \n",
313 | " \n",
314 | " User_ID \n",
315 | " Product_ID \n",
316 | " Gender \n",
317 | " Age \n",
318 | " Occupation \n",
319 | " City_Category \n",
320 | " Stay_In_Current_City_Years \n",
321 | " Marital_Status \n",
322 | " Product_Category_1 \n",
323 | " Product_Category_2 \n",
324 | " Product_Category_3 \n",
325 | " Purchase \n",
326 | " \n",
327 | " \n",
328 | " \n",
329 | " \n",
330 | " 0 \n",
331 | " 1000001 \n",
332 | " P00069042 \n",
333 | " F \n",
334 | " 0-17 \n",
335 | " 10 \n",
336 | " A \n",
337 | " 2 \n",
338 | " 0 \n",
339 | " 3 \n",
340 | " NaN \n",
341 | " NaN \n",
342 | " 8370 \n",
343 | " \n",
344 | " \n",
345 | " 1 \n",
346 | " 1000001 \n",
347 | " P00248942 \n",
348 | " F \n",
349 | " 0-17 \n",
350 | " 10 \n",
351 | " A \n",
352 | " 2 \n",
353 | " 0 \n",
354 | " 1 \n",
355 | " 6.0 \n",
356 | " 14.0 \n",
357 | " 15200 \n",
358 | " \n",
359 | " \n",
360 | " 2 \n",
361 | " 1000001 \n",
362 | " P00087842 \n",
363 | " F \n",
364 | " 0-17 \n",
365 | " 10 \n",
366 | " A \n",
367 | " 2 \n",
368 | " 0 \n",
369 | " 12 \n",
370 | " NaN \n",
371 | " NaN \n",
372 | " 1422 \n",
373 | " \n",
374 | " \n",
375 | " 3 \n",
376 | " 1000001 \n",
377 | " P00085442 \n",
378 | " F \n",
379 | " 0-17 \n",
380 | " 10 \n",
381 | " A \n",
382 | " 2 \n",
383 | " 0 \n",
384 | " 12 \n",
385 | " 14.0 \n",
386 | " NaN \n",
387 | " 1057 \n",
388 | " \n",
389 | " \n",
390 | " 4 \n",
391 | " 1000002 \n",
392 | " P00285442 \n",
393 | " M \n",
394 | " 55+ \n",
395 | " 16 \n",
396 | " C \n",
397 | " 4+ \n",
398 | " 0 \n",
399 | " 8 \n",
400 | " NaN \n",
401 | " NaN \n",
402 | " 7969 \n",
403 | " \n",
404 | " \n",
405 | "
\n",
406 | "
"
407 | ],
408 | "text/plain": [
409 | " User_ID Product_ID Gender Age Occupation City_Category \\\n",
410 | "0 1000001 P00069042 F 0-17 10 A \n",
411 | "1 1000001 P00248942 F 0-17 10 A \n",
412 | "2 1000001 P00087842 F 0-17 10 A \n",
413 | "3 1000001 P00085442 F 0-17 10 A \n",
414 | "4 1000002 P00285442 M 55+ 16 C \n",
415 | "\n",
416 | " Stay_In_Current_City_Years Marital_Status Product_Category_1 \\\n",
417 | "0 2 0 3 \n",
418 | "1 2 0 1 \n",
419 | "2 2 0 12 \n",
420 | "3 2 0 12 \n",
421 | "4 4+ 0 8 \n",
422 | "\n",
423 | " Product_Category_2 Product_Category_3 Purchase \n",
424 | "0 NaN NaN 8370 \n",
425 | "1 6.0 14.0 15200 \n",
426 | "2 NaN NaN 1422 \n",
427 | "3 14.0 NaN 1057 \n",
428 | "4 NaN NaN 7969 "
429 | ]
430 | },
431 | "execution_count": 8,
432 | "metadata": {},
433 | "output_type": "execute_result"
434 | }
435 | ],
436 | "source": [
437 | "df.head()"
438 | ]
439 | },
440 | {
441 | "cell_type": "code",
442 | "execution_count": 10,
443 | "id": "dd1007cd-51e6-431e-bb63-1fbcadf8c264",
444 | "metadata": {},
445 | "outputs": [
446 | {
447 | "name": "stdout",
448 | "output_type": "stream",
449 | "text": [
450 | "\n",
451 | "RangeIndex: 537577 entries, 0 to 537576\n",
452 | "Data columns (total 12 columns):\n",
453 | " # Column Non-Null Count Dtype \n",
454 | "--- ------ -------------- ----- \n",
455 | " 0 User_ID 537577 non-null int64 \n",
456 | " 1 Product_ID 537577 non-null object \n",
457 | " 2 Gender 537577 non-null object \n",
458 | " 3 Age 537577 non-null object \n",
459 | " 4 Occupation 537577 non-null int64 \n",
460 | " 5 City_Category 537577 non-null object \n",
461 | " 6 Stay_In_Current_City_Years 537577 non-null object \n",
462 | " 7 Marital_Status 537577 non-null int64 \n",
463 | " 8 Product_Category_1 537577 non-null int64 \n",
464 | " 9 Product_Category_2 370591 non-null float64\n",
465 | " 10 Product_Category_3 164278 non-null float64\n",
466 | " 11 Purchase 537577 non-null int64 \n",
467 | "dtypes: float64(2), int64(5), object(5)\n",
468 | "memory usage: 49.2+ MB\n"
469 | ]
470 | }
471 | ],
472 | "source": [
473 | "df.info()"
474 | ]
475 | },
476 | {
477 | "cell_type": "code",
478 | "execution_count": 12,
479 | "id": "7241fd1d-969f-4b71-9f1a-a8bd62da6446",
480 | "metadata": {},
481 | "outputs": [
482 | {
483 | "data": {
484 | "text/html": [
485 | "\n",
486 | "\n",
499 | "
\n",
500 | " \n",
501 | " \n",
502 | " \n",
503 | " User_ID \n",
504 | " Product_ID \n",
505 | " Gender \n",
506 | " Age \n",
507 | " Occupation \n",
508 | " City_Category \n",
509 | " Stay_In_Current_City_Years \n",
510 | " Marital_Status \n",
511 | " Product_Category_1 \n",
512 | " Product_Category_2 \n",
513 | " Product_Category_3 \n",
514 | " Purchase \n",
515 | " \n",
516 | " \n",
517 | " \n",
518 | " \n",
519 | " 0 \n",
520 | " False \n",
521 | " False \n",
522 | " False \n",
523 | " False \n",
524 | " False \n",
525 | " False \n",
526 | " False \n",
527 | " False \n",
528 | " False \n",
529 | " True \n",
530 | " True \n",
531 | " False \n",
532 | " \n",
533 | " \n",
534 | " 1 \n",
535 | " False \n",
536 | " False \n",
537 | " False \n",
538 | " False \n",
539 | " False \n",
540 | " False \n",
541 | " False \n",
542 | " False \n",
543 | " False \n",
544 | " False \n",
545 | " False \n",
546 | " False \n",
547 | " \n",
548 | " \n",
549 | " 2 \n",
550 | " False \n",
551 | " False \n",
552 | " False \n",
553 | " False \n",
554 | " False \n",
555 | " False \n",
556 | " False \n",
557 | " False \n",
558 | " False \n",
559 | " True \n",
560 | " True \n",
561 | " False \n",
562 | " \n",
563 | " \n",
564 | " 3 \n",
565 | " False \n",
566 | " False \n",
567 | " False \n",
568 | " False \n",
569 | " False \n",
570 | " False \n",
571 | " False \n",
572 | " False \n",
573 | " False \n",
574 | " False \n",
575 | " True \n",
576 | " False \n",
577 | " \n",
578 | " \n",
579 | " 4 \n",
580 | " False \n",
581 | " False \n",
582 | " False \n",
583 | " False \n",
584 | " False \n",
585 | " False \n",
586 | " False \n",
587 | " False \n",
588 | " False \n",
589 | " True \n",
590 | " True \n",
591 | " False \n",
592 | " \n",
593 | " \n",
594 | " ... \n",
595 | " ... \n",
596 | " ... \n",
597 | " ... \n",
598 | " ... \n",
599 | " ... \n",
600 | " ... \n",
601 | " ... \n",
602 | " ... \n",
603 | " ... \n",
604 | " ... \n",
605 | " ... \n",
606 | " ... \n",
607 | " \n",
608 | " \n",
609 | " 537572 \n",
610 | " False \n",
611 | " False \n",
612 | " False \n",
613 | " False \n",
614 | " False \n",
615 | " False \n",
616 | " False \n",
617 | " False \n",
618 | " False \n",
619 | " False \n",
620 | " True \n",
621 | " False \n",
622 | " \n",
623 | " \n",
624 | " 537573 \n",
625 | " False \n",
626 | " False \n",
627 | " False \n",
628 | " False \n",
629 | " False \n",
630 | " False \n",
631 | " False \n",
632 | " False \n",
633 | " False \n",
634 | " False \n",
635 | " False \n",
636 | " False \n",
637 | " \n",
638 | " \n",
639 | " 537574 \n",
640 | " False \n",
641 | " False \n",
642 | " False \n",
643 | " False \n",
644 | " False \n",
645 | " False \n",
646 | " False \n",
647 | " False \n",
648 | " False \n",
649 | " False \n",
650 | " True \n",
651 | " False \n",
652 | " \n",
653 | " \n",
654 | " 537575 \n",
655 | " False \n",
656 | " False \n",
657 | " False \n",
658 | " False \n",
659 | " False \n",
660 | " False \n",
661 | " False \n",
662 | " False \n",
663 | " False \n",
664 | " True \n",
665 | " True \n",
666 | " False \n",
667 | " \n",
668 | " \n",
669 | " 537576 \n",
670 | " False \n",
671 | " False \n",
672 | " False \n",
673 | " False \n",
674 | " False \n",
675 | " False \n",
676 | " False \n",
677 | " False \n",
678 | " False \n",
679 | " False \n",
680 | " True \n",
681 | " False \n",
682 | " \n",
683 | " \n",
684 | "
\n",
685 | "
537577 rows × 12 columns
\n",
686 | "
"
687 | ],
688 | "text/plain": [
689 | " User_ID Product_ID Gender Age Occupation City_Category \\\n",
690 | "0 False False False False False False \n",
691 | "1 False False False False False False \n",
692 | "2 False False False False False False \n",
693 | "3 False False False False False False \n",
694 | "4 False False False False False False \n",
695 | "... ... ... ... ... ... ... \n",
696 | "537572 False False False False False False \n",
697 | "537573 False False False False False False \n",
698 | "537574 False False False False False False \n",
699 | "537575 False False False False False False \n",
700 | "537576 False False False False False False \n",
701 | "\n",
702 | " Stay_In_Current_City_Years Marital_Status Product_Category_1 \\\n",
703 | "0 False False False \n",
704 | "1 False False False \n",
705 | "2 False False False \n",
706 | "3 False False False \n",
707 | "4 False False False \n",
708 | "... ... ... ... \n",
709 | "537572 False False False \n",
710 | "537573 False False False \n",
711 | "537574 False False False \n",
712 | "537575 False False False \n",
713 | "537576 False False False \n",
714 | "\n",
715 | " Product_Category_2 Product_Category_3 Purchase \n",
716 | "0 True True False \n",
717 | "1 False False False \n",
718 | "2 True True False \n",
719 | "3 False True False \n",
720 | "4 True True False \n",
721 | "... ... ... ... \n",
722 | "537572 False True False \n",
723 | "537573 False False False \n",
724 | "537574 False True False \n",
725 | "537575 True True False \n",
726 | "537576 False True False \n",
727 | "\n",
728 | "[537577 rows x 12 columns]"
729 | ]
730 | },
731 | "execution_count": 12,
732 | "metadata": {},
733 | "output_type": "execute_result"
734 | }
735 | ],
736 | "source": [
737 | "df.isnull()"
738 | ]
739 | },
740 | {
741 | "cell_type": "code",
742 | "execution_count": 14,
743 | "id": "457142f3-a7fd-48af-92f6-0e8ca29b6d09",
744 | "metadata": {},
745 | "outputs": [
746 | {
747 | "data": {
748 | "text/plain": [
749 | "User_ID 0\n",
750 | "Product_ID 0\n",
751 | "Gender 0\n",
752 | "Age 0\n",
753 | "Occupation 0\n",
754 | "City_Category 0\n",
755 | "Stay_In_Current_City_Years 0\n",
756 | "Marital_Status 0\n",
757 | "Product_Category_1 0\n",
758 | "Product_Category_2 166986\n",
759 | "Product_Category_3 373299\n",
760 | "Purchase 0\n",
761 | "dtype: int64"
762 | ]
763 | },
764 | "execution_count": 14,
765 | "metadata": {},
766 | "output_type": "execute_result"
767 | }
768 | ],
769 | "source": [
770 | "df.isnull().sum()"
771 | ]
772 | },
773 | {
774 | "cell_type": "code",
775 | "execution_count": 16,
776 | "id": "3687a103-9856-4c86-b551-eb43d9ebdb7f",
777 | "metadata": {},
778 | "outputs": [
779 | {
780 | "data": {
781 | "text/html": [
782 | "\n",
783 | "\n",
796 | "
\n",
797 | " \n",
798 | " \n",
799 | " \n",
800 | " User_ID \n",
801 | " Product_ID \n",
802 | " Gender \n",
803 | " Age \n",
804 | " Occupation \n",
805 | " City_Category \n",
806 | " Stay_In_Current_City_Years \n",
807 | " Marital_Status \n",
808 | " Product_Category_1 \n",
809 | " Product_Category_2 \n",
810 | " Product_Category_3 \n",
811 | " Purchase \n",
812 | " \n",
813 | " \n",
814 | " \n",
815 | " \n",
816 | " 1 \n",
817 | " 1000001 \n",
818 | " P00248942 \n",
819 | " F \n",
820 | " 0-17 \n",
821 | " 10 \n",
822 | " A \n",
823 | " 2 \n",
824 | " 0 \n",
825 | " 1 \n",
826 | " 6.0 \n",
827 | " 14.0 \n",
828 | " 15200 \n",
829 | " \n",
830 | " \n",
831 | " 6 \n",
832 | " 1000004 \n",
833 | " P00184942 \n",
834 | " M \n",
835 | " 46-50 \n",
836 | " 7 \n",
837 | " B \n",
838 | " 2 \n",
839 | " 1 \n",
840 | " 1 \n",
841 | " 8.0 \n",
842 | " 17.0 \n",
843 | " 19215 \n",
844 | " \n",
845 | " \n",
846 | " 13 \n",
847 | " 1000005 \n",
848 | " P00145042 \n",
849 | " M \n",
850 | " 26-35 \n",
851 | " 20 \n",
852 | " A \n",
853 | " 1 \n",
854 | " 1 \n",
855 | " 1 \n",
856 | " 2.0 \n",
857 | " 5.0 \n",
858 | " 15665 \n",
859 | " \n",
860 | " \n",
861 | " 14 \n",
862 | " 1000006 \n",
863 | " P00231342 \n",
864 | " F \n",
865 | " 51-55 \n",
866 | " 9 \n",
867 | " A \n",
868 | " 1 \n",
869 | " 0 \n",
870 | " 5 \n",
871 | " 8.0 \n",
872 | " 14.0 \n",
873 | " 5378 \n",
874 | " \n",
875 | " \n",
876 | " 16 \n",
877 | " 1000006 \n",
878 | " P0096642 \n",
879 | " F \n",
880 | " 51-55 \n",
881 | " 9 \n",
882 | " A \n",
883 | " 1 \n",
884 | " 0 \n",
885 | " 2 \n",
886 | " 3.0 \n",
887 | " 4.0 \n",
888 | " 13055 \n",
889 | " \n",
890 | " \n",
891 | " ... \n",
892 | " ... \n",
893 | " ... \n",
894 | " ... \n",
895 | " ... \n",
896 | " ... \n",
897 | " ... \n",
898 | " ... \n",
899 | " ... \n",
900 | " ... \n",
901 | " ... \n",
902 | " ... \n",
903 | " ... \n",
904 | " \n",
905 | " \n",
906 | " 537549 \n",
907 | " 1004734 \n",
908 | " P00345842 \n",
909 | " M \n",
910 | " 51-55 \n",
911 | " 1 \n",
912 | " B \n",
913 | " 1 \n",
914 | " 1 \n",
915 | " 2 \n",
916 | " 8.0 \n",
917 | " 14.0 \n",
918 | " 13082 \n",
919 | " \n",
920 | " \n",
921 | " 537551 \n",
922 | " 1004735 \n",
923 | " P00313442 \n",
924 | " M \n",
925 | " 46-50 \n",
926 | " 3 \n",
927 | " C \n",
928 | " 3 \n",
929 | " 0 \n",
930 | " 5 \n",
931 | " 6.0 \n",
932 | " 8.0 \n",
933 | " 6863 \n",
934 | " \n",
935 | " \n",
936 | " 537562 \n",
937 | " 1004736 \n",
938 | " P00146742 \n",
939 | " M \n",
940 | " 18-25 \n",
941 | " 20 \n",
942 | " A \n",
943 | " 1 \n",
944 | " 1 \n",
945 | " 1 \n",
946 | " 13.0 \n",
947 | " 14.0 \n",
948 | " 11508 \n",
949 | " \n",
950 | " \n",
951 | " 537571 \n",
952 | " 1004737 \n",
953 | " P00221442 \n",
954 | " M \n",
955 | " 36-45 \n",
956 | " 16 \n",
957 | " C \n",
958 | " 1 \n",
959 | " 0 \n",
960 | " 1 \n",
961 | " 2.0 \n",
962 | " 5.0 \n",
963 | " 11852 \n",
964 | " \n",
965 | " \n",
966 | " 537573 \n",
967 | " 1004737 \n",
968 | " P00111142 \n",
969 | " M \n",
970 | " 36-45 \n",
971 | " 16 \n",
972 | " C \n",
973 | " 1 \n",
974 | " 0 \n",
975 | " 1 \n",
976 | " 15.0 \n",
977 | " 16.0 \n",
978 | " 19196 \n",
979 | " \n",
980 | " \n",
981 | "
\n",
982 | "
164278 rows × 12 columns
\n",
983 | "
"
984 | ],
985 | "text/plain": [
986 | " User_ID Product_ID Gender Age Occupation City_Category \\\n",
987 | "1 1000001 P00248942 F 0-17 10 A \n",
988 | "6 1000004 P00184942 M 46-50 7 B \n",
989 | "13 1000005 P00145042 M 26-35 20 A \n",
990 | "14 1000006 P00231342 F 51-55 9 A \n",
991 | "16 1000006 P0096642 F 51-55 9 A \n",
992 | "... ... ... ... ... ... ... \n",
993 | "537549 1004734 P00345842 M 51-55 1 B \n",
994 | "537551 1004735 P00313442 M 46-50 3 C \n",
995 | "537562 1004736 P00146742 M 18-25 20 A \n",
996 | "537571 1004737 P00221442 M 36-45 16 C \n",
997 | "537573 1004737 P00111142 M 36-45 16 C \n",
998 | "\n",
999 | " Stay_In_Current_City_Years Marital_Status Product_Category_1 \\\n",
1000 | "1 2 0 1 \n",
1001 | "6 2 1 1 \n",
1002 | "13 1 1 1 \n",
1003 | "14 1 0 5 \n",
1004 | "16 1 0 2 \n",
1005 | "... ... ... ... \n",
1006 | "537549 1 1 2 \n",
1007 | "537551 3 0 5 \n",
1008 | "537562 1 1 1 \n",
1009 | "537571 1 0 1 \n",
1010 | "537573 1 0 1 \n",
1011 | "\n",
1012 | " Product_Category_2 Product_Category_3 Purchase \n",
1013 | "1 6.0 14.0 15200 \n",
1014 | "6 8.0 17.0 19215 \n",
1015 | "13 2.0 5.0 15665 \n",
1016 | "14 8.0 14.0 5378 \n",
1017 | "16 3.0 4.0 13055 \n",
1018 | "... ... ... ... \n",
1019 | "537549 8.0 14.0 13082 \n",
1020 | "537551 6.0 8.0 6863 \n",
1021 | "537562 13.0 14.0 11508 \n",
1022 | "537571 2.0 5.0 11852 \n",
1023 | "537573 15.0 16.0 19196 \n",
1024 | "\n",
1025 | "[164278 rows x 12 columns]"
1026 | ]
1027 | },
1028 | "execution_count": 16,
1029 | "metadata": {},
1030 | "output_type": "execute_result"
1031 | }
1032 | ],
1033 | "source": [
1034 | "df.dropna()"
1035 | ]
1036 | },
1037 | {
1038 | "cell_type": "code",
1039 | "execution_count": 18,
1040 | "id": "041a5a67-2320-47c3-b366-f66edfe48bf6",
1041 | "metadata": {},
1042 | "outputs": [],
1043 | "source": [
1044 | "\n",
1045 | "del df['Product_Category_2']\n",
1046 | "del df['Product_Category_3']"
1047 | ]
1048 | },
1049 | {
1050 | "cell_type": "code",
1051 | "execution_count": 20,
1052 | "id": "42cdbb5a-3878-46ee-845d-347b13452916",
1053 | "metadata": {},
1054 | "outputs": [
1055 | {
1056 | "data": {
1057 | "text/html": [
1058 | "\n",
1059 | "\n",
1072 | "
\n",
1073 | " \n",
1074 | " \n",
1075 | " \n",
1076 | " User_ID \n",
1077 | " Product_ID \n",
1078 | " Gender \n",
1079 | " Age \n",
1080 | " Occupation \n",
1081 | " City_Category \n",
1082 | " Stay_In_Current_City_Years \n",
1083 | " Marital_Status \n",
1084 | " Product_Category_1 \n",
1085 | " Purchase \n",
1086 | " \n",
1087 | " \n",
1088 | " \n",
1089 | " \n",
1090 | " 0 \n",
1091 | " 1000001 \n",
1092 | " P00069042 \n",
1093 | " F \n",
1094 | " 0-17 \n",
1095 | " 10 \n",
1096 | " A \n",
1097 | " 2 \n",
1098 | " 0 \n",
1099 | " 3 \n",
1100 | " 8370 \n",
1101 | " \n",
1102 | " \n",
1103 | " 1 \n",
1104 | " 1000001 \n",
1105 | " P00248942 \n",
1106 | " F \n",
1107 | " 0-17 \n",
1108 | " 10 \n",
1109 | " A \n",
1110 | " 2 \n",
1111 | " 0 \n",
1112 | " 1 \n",
1113 | " 15200 \n",
1114 | " \n",
1115 | " \n",
1116 | " 2 \n",
1117 | " 1000001 \n",
1118 | " P00087842 \n",
1119 | " F \n",
1120 | " 0-17 \n",
1121 | " 10 \n",
1122 | " A \n",
1123 | " 2 \n",
1124 | " 0 \n",
1125 | " 12 \n",
1126 | " 1422 \n",
1127 | " \n",
1128 | " \n",
1129 | " 3 \n",
1130 | " 1000001 \n",
1131 | " P00085442 \n",
1132 | " F \n",
1133 | " 0-17 \n",
1134 | " 10 \n",
1135 | " A \n",
1136 | " 2 \n",
1137 | " 0 \n",
1138 | " 12 \n",
1139 | " 1057 \n",
1140 | " \n",
1141 | " \n",
1142 | " 4 \n",
1143 | " 1000002 \n",
1144 | " P00285442 \n",
1145 | " M \n",
1146 | " 55+ \n",
1147 | " 16 \n",
1148 | " C \n",
1149 | " 4+ \n",
1150 | " 0 \n",
1151 | " 8 \n",
1152 | " 7969 \n",
1153 | " \n",
1154 | " \n",
1155 | " ... \n",
1156 | " ... \n",
1157 | " ... \n",
1158 | " ... \n",
1159 | " ... \n",
1160 | " ... \n",
1161 | " ... \n",
1162 | " ... \n",
1163 | " ... \n",
1164 | " ... \n",
1165 | " ... \n",
1166 | " \n",
1167 | " \n",
1168 | " 537572 \n",
1169 | " 1004737 \n",
1170 | " P00193542 \n",
1171 | " M \n",
1172 | " 36-45 \n",
1173 | " 16 \n",
1174 | " C \n",
1175 | " 1 \n",
1176 | " 0 \n",
1177 | " 1 \n",
1178 | " 11664 \n",
1179 | " \n",
1180 | " \n",
1181 | " 537573 \n",
1182 | " 1004737 \n",
1183 | " P00111142 \n",
1184 | " M \n",
1185 | " 36-45 \n",
1186 | " 16 \n",
1187 | " C \n",
1188 | " 1 \n",
1189 | " 0 \n",
1190 | " 1 \n",
1191 | " 19196 \n",
1192 | " \n",
1193 | " \n",
1194 | " 537574 \n",
1195 | " 1004737 \n",
1196 | " P00345942 \n",
1197 | " M \n",
1198 | " 36-45 \n",
1199 | " 16 \n",
1200 | " C \n",
1201 | " 1 \n",
1202 | " 0 \n",
1203 | " 8 \n",
1204 | " 8043 \n",
1205 | " \n",
1206 | " \n",
1207 | " 537575 \n",
1208 | " 1004737 \n",
1209 | " P00285842 \n",
1210 | " M \n",
1211 | " 36-45 \n",
1212 | " 16 \n",
1213 | " C \n",
1214 | " 1 \n",
1215 | " 0 \n",
1216 | " 5 \n",
1217 | " 7172 \n",
1218 | " \n",
1219 | " \n",
1220 | " 537576 \n",
1221 | " 1004737 \n",
1222 | " P00118242 \n",
1223 | " M \n",
1224 | " 36-45 \n",
1225 | " 16 \n",
1226 | " C \n",
1227 | " 1 \n",
1228 | " 0 \n",
1229 | " 5 \n",
1230 | " 6875 \n",
1231 | " \n",
1232 | " \n",
1233 | "
\n",
1234 | "
537577 rows × 10 columns
\n",
1235 | "
"
1236 | ],
1237 | "text/plain": [
1238 | " User_ID Product_ID Gender Age Occupation City_Category \\\n",
1239 | "0 1000001 P00069042 F 0-17 10 A \n",
1240 | "1 1000001 P00248942 F 0-17 10 A \n",
1241 | "2 1000001 P00087842 F 0-17 10 A \n",
1242 | "3 1000001 P00085442 F 0-17 10 A \n",
1243 | "4 1000002 P00285442 M 55+ 16 C \n",
1244 | "... ... ... ... ... ... ... \n",
1245 | "537572 1004737 P00193542 M 36-45 16 C \n",
1246 | "537573 1004737 P00111142 M 36-45 16 C \n",
1247 | "537574 1004737 P00345942 M 36-45 16 C \n",
1248 | "537575 1004737 P00285842 M 36-45 16 C \n",
1249 | "537576 1004737 P00118242 M 36-45 16 C \n",
1250 | "\n",
1251 | " Stay_In_Current_City_Years Marital_Status Product_Category_1 \\\n",
1252 | "0 2 0 3 \n",
1253 | "1 2 0 1 \n",
1254 | "2 2 0 12 \n",
1255 | "3 2 0 12 \n",
1256 | "4 4+ 0 8 \n",
1257 | "... ... ... ... \n",
1258 | "537572 1 0 1 \n",
1259 | "537573 1 0 1 \n",
1260 | "537574 1 0 8 \n",
1261 | "537575 1 0 5 \n",
1262 | "537576 1 0 5 \n",
1263 | "\n",
1264 | " Purchase \n",
1265 | "0 8370 \n",
1266 | "1 15200 \n",
1267 | "2 1422 \n",
1268 | "3 1057 \n",
1269 | "4 7969 \n",
1270 | "... ... \n",
1271 | "537572 11664 \n",
1272 | "537573 19196 \n",
1273 | "537574 8043 \n",
1274 | "537575 7172 \n",
1275 | "537576 6875 \n",
1276 | "\n",
1277 | "[537577 rows x 10 columns]"
1278 | ]
1279 | },
1280 | "execution_count": 20,
1281 | "metadata": {},
1282 | "output_type": "execute_result"
1283 | }
1284 | ],
1285 | "source": [
1286 | "df"
1287 | ]
1288 | },
1289 | {
1290 | "cell_type": "code",
1291 | "execution_count": null,
1292 | "id": "b85f15c0-ea53-445f-aab5-cf25edf5287b",
1293 | "metadata": {},
1294 | "outputs": [],
1295 | "source": []
1296 | }
1297 | ],
1298 | "metadata": {
1299 | "kernelspec": {
1300 | "display_name": "Python 3 (ipykernel)",
1301 | "language": "python",
1302 | "name": "python3"
1303 | },
1304 | "language_info": {
1305 | "codemirror_mode": {
1306 | "name": "ipython",
1307 | "version": 3
1308 | },
1309 | "file_extension": ".py",
1310 | "mimetype": "text/x-python",
1311 | "name": "python",
1312 | "nbconvert_exporter": "python",
1313 | "pygments_lexer": "ipython3",
1314 | "version": "3.12.4"
1315 | }
1316 | },
1317 | "nbformat": 4,
1318 | "nbformat_minor": 5
1319 | }
1320 |
--------------------------------------------------------------------------------
/Black Friday - Analysing Age & Marital Status.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 76,
6 | "id": "1c0acf39",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 77,
16 | "id": "d1720a06",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "df = pd.read_csv('BlackFriday.csv')\n",
21 | "\n",
22 | "del df['Product_Category_2']\n",
23 | "del df['Product_Category_3']"
24 | ]
25 | },
26 | {
27 | "cell_type": "code",
28 | "execution_count": 78,
29 | "id": "9b992a81",
30 | "metadata": {},
31 | "outputs": [
32 | {
33 | "data": {
34 | "text/html": [
35 | "\n",
36 | "\n",
49 | "
\n",
50 | " \n",
51 | " \n",
52 | " \n",
53 | " User_ID \n",
54 | " Product_ID \n",
55 | " Gender \n",
56 | " Age \n",
57 | " Occupation \n",
58 | " City_Category \n",
59 | " Stay_In_Current_City_Years \n",
60 | " Marital_Status \n",
61 | " Product_Category_1 \n",
62 | " Purchase \n",
63 | " \n",
64 | " \n",
65 | " \n",
66 | " \n",
67 | " 0 \n",
68 | " 1000001 \n",
69 | " P00069042 \n",
70 | " F \n",
71 | " 0-17 \n",
72 | " 10 \n",
73 | " A \n",
74 | " 2 \n",
75 | " 0 \n",
76 | " 3 \n",
77 | " 8370 \n",
78 | " \n",
79 | " \n",
80 | " 1 \n",
81 | " 1000001 \n",
82 | " P00248942 \n",
83 | " F \n",
84 | " 0-17 \n",
85 | " 10 \n",
86 | " A \n",
87 | " 2 \n",
88 | " 0 \n",
89 | " 1 \n",
90 | " 15200 \n",
91 | " \n",
92 | " \n",
93 | " 2 \n",
94 | " 1000001 \n",
95 | " P00087842 \n",
96 | " F \n",
97 | " 0-17 \n",
98 | " 10 \n",
99 | " A \n",
100 | " 2 \n",
101 | " 0 \n",
102 | " 12 \n",
103 | " 1422 \n",
104 | " \n",
105 | " \n",
106 | " 3 \n",
107 | " 1000001 \n",
108 | " P00085442 \n",
109 | " F \n",
110 | " 0-17 \n",
111 | " 10 \n",
112 | " A \n",
113 | " 2 \n",
114 | " 0 \n",
115 | " 12 \n",
116 | " 1057 \n",
117 | " \n",
118 | " \n",
119 | " 4 \n",
120 | " 1000002 \n",
121 | " P00285442 \n",
122 | " M \n",
123 | " 55+ \n",
124 | " 16 \n",
125 | " C \n",
126 | " 4+ \n",
127 | " 0 \n",
128 | " 8 \n",
129 | " 7969 \n",
130 | " \n",
131 | " \n",
132 | "
\n",
133 | "
"
134 | ],
135 | "text/plain": [
136 | " User_ID Product_ID Gender Age Occupation City_Category \\\n",
137 | "0 1000001 P00069042 F 0-17 10 A \n",
138 | "1 1000001 P00248942 F 0-17 10 A \n",
139 | "2 1000001 P00087842 F 0-17 10 A \n",
140 | "3 1000001 P00085442 F 0-17 10 A \n",
141 | "4 1000002 P00285442 M 55+ 16 C \n",
142 | "\n",
143 | " Stay_In_Current_City_Years Marital_Status Product_Category_1 Purchase \n",
144 | "0 2 0 3 8370 \n",
145 | "1 2 0 1 15200 \n",
146 | "2 2 0 12 1422 \n",
147 | "3 2 0 12 1057 \n",
148 | "4 4+ 0 8 7969 "
149 | ]
150 | },
151 | "execution_count": 78,
152 | "metadata": {},
153 | "output_type": "execute_result"
154 | }
155 | ],
156 | "source": [
157 | "df.head()"
158 | ]
159 | },
160 | {
161 | "cell_type": "code",
162 | "execution_count": 81,
163 | "id": "f0144760",
164 | "metadata": {},
165 | "outputs": [
166 | {
167 | "data": {
168 | "text/plain": [
169 | ""
170 | ]
171 | },
172 | "execution_count": 81,
173 | "metadata": {},
174 | "output_type": "execute_result"
175 | },
176 | {
177 | "data": {
178 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAGWCAYAAACtq5+6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkn0lEQVR4nO3deZhlVX3u8e8rjQSDzIMIaKOAAyQSQZQ4hAQF1KiYaAJJhChKHOI1JsZgJjQGL+aq3DhAxICCN4jECYIjAceIQENQQIK0itIytYIKiijwu3+cVXK6rB7oXlW7us738zznqV1rn73O76wqirfXWXvvVBWSJEmS+rnP0AVIkiRJC40hW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSNE2SxUkqyaKha1mVJA9KcluSDTr19y9J/q5t75dkWY9+W39PTHJVr/7G+l0vflaSJo8hW9J6Jck1SW5v4fLGJO9OssnQdfWW5I+T3NXe521Jvtne625Tz6mqb1fVJlV11xr09YXVvWZVvbiqXt+p/kqyy1jfn6+qh/Xoe7a18aokvzd0LZLWX4ZsSeujZ1TVJsCjgccAf3tvO1hPZj7Pb+9zM+DJwO3AxUn26P1CvWbDF4jDgZvbV0laK4ZsSeutqvoO8HFgj5mWDST5TJIXtu0/TvJfSY5LcjPw2iQbJ3lzkm8l+UGSLyTZeOwl/jDJt5N8N8nfjPW7T5Lzk3w/yfVJ3p7kvm1f2mvc1Pr8ylQoTrJRkje1Pm9syzPGX29l7/Ouqvp6Vb0U+Czw2tbfCu+5vcdvJLm1zXz/YZJHAP8C7NtmxL/fnvueJCck+ViSHwG/2dr+cfy1k/x1e//XJPnDmcZ27LW/0LY/15q/3F7z96cvP0nyiNbH95NckeSZY/vek+QdST7a3ssFSR66mmF6QZLr2s/jL1o/D0jy4yRbjfW9V5LlSTacqZMkDwZ+AzgSODDJdtP2v7q9xnVJXjg+Y7+2P19JC5MhW9J6K8lOwNOA/17DQx4LfAPYFjgGeBOwF/DrwJbAq4G7x57/BOBhwP7A37fACnAX8Epga2Dftv+lbd8BwJOA3YDNgd8Hvtf2vbG17wnsAuwA/P0a1j7lQ8ATpzcm+WXgrcBTq+r+7T1dWlVXAi+mzYpX1eZjh/1BG4f7AzMtJ3lAe487MJrVPTHJapd8VNWT2uaj2mu+f1qtGwL/AXyK0c/i5cC/Tev7UOB1wBbA0lbnqvwmsCuj8T8qyZOr6gbgM8D4so8/Ak6vqp+tpJ/DgCVV9UHgSmD8HxYHAX/O6FOFXRiF8XE9fr6SFghDtqT10UfajOwXGM3svmENj7uuqt5WVXcCdwAvAF5RVd9ps8VfrKo7xp7/uqq6vaq+DHwZeBRAVV1cVV+qqjur6hrgndwTuH7GKLQ+HEhVXVlV1ycJ8CLglVV1c1Xd2uo+5F6+9+sY/YNgJnczmtXfuKqur6orVtPXmVX1X1V1d1X9ZCXP+buquqOqPgt8lBUD69p6HLAJcGxV/bSqzgPOZhSsp3yoqi5sP6t/YxRcV+V1VfWjqroMePdYX6cwCtZTS2IOBd67in4OA05r26ex4pKR3wPeXVVXVNWPGf0jgNZ3r5+vpAXCkC1pfXRwVW1eVQ+uqpdW1e1reNy1Y9tbA78EfH0Vz79hbPvHjIIhSXZLcnaSG5L8kFGY2hqgBca3A+8AbkxyYpJNgW2A+zFaU/399o+ET7T2e2MHRuuFV1BVP2I0a/5i4Pq21OLhq+nr2tXsv6X1O+VbwAPvTbEr8UDg2qoa/9TgW4ze25QZx34Vxt/LeJ1nAo9M8hDgKcAPqurCmTpI8nhgZ+D01nQa8CtJ9hyveyWv2evnK2mBMGRLWiimwuD9xtoeMO05Nbb9XeAnwOrW+s7kBOB/gF2ralPgr4H8/EWq3lpVewG7M1o+8Jft9W4Hdm//QNi8qjZrJzbeG88GPj/Tjqr6ZFU9Bdi+1feuqV0r6Wtl7VO2aMtQpjyI0Uw6jMZ7VWO9KtcBOyUZ/3/Qg4Dv3Is+pttpWl/XAbQZ+jMYLft4HquexT6c0c/x0iQ3ABe09sPa1+uBHVfymr1+vpIWCEO2pAWhqpYzCml/lGSDJC9gFQG6zaKeDLwlyQPbMfsm2WgNXu7+wA+B29ps8UumdiR5TJLHtnXHP2IU5O9qr/cu4Lgk27bn7pDkwNW9WKtt5yRvA/ZjbJnC2HO2S/LMForvAG5jtHYc4EZgx7STM++l1yW5b5InAr8N/HtrvxT4nST3ayf+HTHtuBuBh6ykzwsYjc2rk2yYZD/gGdwzg7w2/q7VsjvwfGB8HfipwB8DzwT+30wHJ/klRstBjmS0NGXq8XJGJ8AuYhTWn99O2rwfY+ut1+XnK2lhMmRLWkhexGjW+HuMZpG/uJrnvwq4DLiI0RKMN7JmfxdfxeikwVsZBavxQLdpa7uF0bKF7zE6wRLgrxidxPeltszkPxmdWLky+ya5jVGg/0zr+zFt3fF09wH+gtEM7s2M1ohPnYx5HnAFcEOS767B+5tyQ3sf1zFaF/3iqvqftu844KeMwvQpbf+41wKntKUTK6zjrqqfMgq8T2U0A3w8cNhY32vjs4zG9lzgTVX1qbHX+y9G69UvaWvoZ3Iwo5noU6vqhqkHcBKwAXBQVX2c0cmln26vdX47dmod/739+UpawFK1uk8LJUlavyU5Dzitqv61Y5+PAC4HNmonaErSzzmTLUla0JI8htGNi96/uueuQV/PbstntmD0ycd/GLAlzcSQLUlasJKcwmjZxp+1y+qtqz8BljO6Ks1djK3Hl6RxLheRJEmSOnMmW5IkSerMkC1JkiR1tmjoAnrbeuuta/HixUOXIUmSpAXu4osv/m5VzXhn1wUXshcvXsySJUuGLkOSJEkLXJJvrWyfy0UkSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSeps0dAFSFp/LD7qo0OXsE6uOfbpQ5cgSZoQzmRLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdrTZkJ9kpyaeTXJnkiiSvaO1bJjknydXt6xZjx7wmydIkVyU5cKx9rySXtX1vTZLWvlGS97f2C5IsHjvm8PYaVyc5vOu7lyRJkmbBmsxk3wn8RVU9Angc8LIkjwSOAs6tql2Bc9v3tH2HALsDBwHHJ9mg9XUCcCSwa3sc1NqPAG6pql2A44A3tr62BI4GHgvsAxw9HuYlSZKk+Wi1Ibuqrq+qS9r2rcCVwA7As4BT2tNOAQ5u288CTq+qO6rqm8BSYJ8k2wObVtX5VVXAqdOOmerrA8D+bZb7QOCcqrq5qm4BzuGeYC5JkiTNS/dqTXZbxvFrwAXAdlV1PYyCOLBte9oOwLVjhy1rbTu07entKxxTVXcCPwC2WkVf0+s6MsmSJEuWL19+b96SJEmS1N0ah+wkmwAfBP6sqn64qqfO0FaraF/bY+5pqDqxqvauqr232WabVZQmSZIkzb41CtlJNmQUsP+tqj7Umm9sS0BoX29q7cuAncYO3xG4rrXvOEP7CsckWQRsBty8ir4kSZKkeWtNri4S4CTgyqp6y9ius4Cpq30cDpw51n5Iu2LIzoxOcLywLSm5NcnjWp+HTTtmqq/nAOe1ddufBA5IskU74fGA1iZJkiTNW4vW4DmPB54HXJbk0tb218CxwBlJjgC+DTwXoKquSHIG8FVGVyZ5WVXd1Y57CfAeYGPg4+0BoxD/3iRLGc1gH9L6ujnJ64GL2vP+oapuXru3KkmSJM2N1YbsqvoCM6+NBth/JcccAxwzQ/sSYI8Z2n9CC+kz7DsZOHl1dUqSJEnzhXd8lCRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSepstSE7yclJbkpy+Vjba5N8J8ml7fG0sX2vSbI0yVVJDhxr3yvJZW3fW5OktW+U5P2t/YIki8eOOTzJ1e1xeLd3LUmSJM2iNZnJfg9w0Aztx1XVnu3xMYAkjwQOAXZvxxyfZIP2/BOAI4Fd22OqzyOAW6pqF+A44I2try2Bo4HHAvsARyfZ4l6/Q0mSJGmOrTZkV9XngJvXsL9nAadX1R1V9U1gKbBPku2BTavq/Koq4FTg4LFjTmnbHwD2b7PcBwLnVNXNVXULcA4zh31JkiRpXlmXNdl/muQrbTnJ1AzzDsC1Y89Z1tp2aNvT21c4pqruBH4AbLWKviRJkqR5bW1D9gnAQ4E9geuBN7f2zPDcWkX72h6zgiRHJlmSZMny5ctXUbYkSZI0+9YqZFfVjVV1V1XdDbyL0ZppGM027zT21B2B61r7jjO0r3BMkkXAZoyWp6ysr5nqObGq9q6qvbfZZpu1eUuSJElSN2sVstsa6ynPBqauPHIWcEi7YsjOjE5wvLCqrgduTfK4tt76MODMsWOmrhzyHOC8tm77k8ABSbZoy1EOaG2SJEnSvLZodU9I8j5gP2DrJMsYXfFjvyR7Mlq+cQ3wJwBVdUWSM4CvAncCL6uqu1pXL2F0pZKNgY+3B8BJwHuTLGU0g31I6+vmJK8HLmrP+4eqWtMTMCVJkqTBrDZkV9WhMzSftIrnHwMcM0P7EmCPGdp/Ajx3JX2dDJy8uholSZKk+cQ7PkqSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6WzR0AZKk1Vt81EeHLmGdXHPs04cuQZLmlDPZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJna02ZCc5OclNSS4fa9syyTlJrm5ftxjb95okS5NcleTAsfa9klzW9r01SVr7Rkne39ovSLJ47JjD22tcneTwbu9akiRJmkVrMpP9HuCgaW1HAedW1a7Aue17kjwSOATYvR1zfJIN2jEnAEcCu7bHVJ9HALdU1S7AccAbW19bAkcDjwX2AY4eD/OSJEnSfLXakF1VnwNuntb8LOCUtn0KcPBY++lVdUdVfRNYCuyTZHtg06o6v6oKOHXaMVN9fQDYv81yHwicU1U3V9UtwDn8YtiXJEmS5p21XZO9XVVdD9C+btvadwCuHXvesta2Q9ue3r7CMVV1J/ADYKtV9PULkhyZZEmSJcuXL1/LtyRJkiT10fvEx8zQVqtoX9tjVmysOrGq9q6qvbfZZps1KlSSJEmaLWsbsm9sS0BoX29q7cuAncaetyNwXWvfcYb2FY5JsgjYjNHylJX1JUmSJM1ri9byuLOAw4Fj29czx9pPS/IW4IGMTnC8sKruSnJrkscBFwCHAW+b1tf5wHOA86qqknwSeMPYyY4HAK9Zy3q1QCw+6qNDl7BOrjn26UOXIEmS5sBqQ3aS9wH7AVsnWcboih/HAmckOQL4NvBcgKq6IskZwFeBO4GXVdVdrauXMLpSycbAx9sD4CTgvUmWMprBPqT1dXOS1wMXtef9Q1VNPwFTkiRJmndWG7Kr6tCV7Np/Jc8/BjhmhvYlwB4ztP+EFtJn2HcycPLqapQkSZLmE+/4KEmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktTZOoXsJNckuSzJpUmWtLYtk5yT5Or2dYux578mydIkVyU5cKx9r9bP0iRvTZLWvlGS97f2C5IsXpd6JUmSpLnQYyb7N6tqz6rau31/FHBuVe0KnNu+J8kjgUOA3YGDgOOTbNCOOQE4Eti1PQ5q7UcAt1TVLsBxwBs71CtJkiTNqtlYLvIs4JS2fQpw8Fj76VV1R1V9E1gK7JNke2DTqjq/qgo4ddoxU319ANh/apZbkiRJmq/WNWQX8KkkFyc5srVtV1XXA7Sv27b2HYBrx45d1tp2aNvT21c4pqruBH4AbDW9iCRHJlmSZMny5cvX8S1JkiRJ62bROh7/+Kq6Lsm2wDlJ/mcVz51pBrpW0b6qY1ZsqDoROBFg7733/oX9kiRJ0lxap5nsqrqufb0J+DCwD3BjWwJC+3pTe/oyYKexw3cErmvtO87QvsIxSRYBmwE3r0vNkiRJ0mxb65Cd5JeT3H9qGzgAuBw4Czi8Pe1w4My2fRZwSLtiyM6MTnC8sC0puTXJ49p668OmHTPV13OA89q6bUmSJGneWpflItsBH27nIS4CTquqTyS5CDgjyRHAt4HnAlTVFUnOAL4K3Am8rKruan29BHgPsDHw8fYAOAl4b5KljGawD1mHeiVJkqQ5sdYhu6q+ATxqhvbvAfuv5JhjgGNmaF8C7DFD+09oIV2SJElaX3jHR0mSJKkzQ7YkSZLU2bpewk+SpAVv8VEfHbqEdXLNsU8fugRp4jiTLUmSJHVmyJYkSZI6M2RLkiRJnRmyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR15h0fJUnSvLY+33HTu21OLmeyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmeGbEmSJKkzQ7YkSZLUmSFbkiRJ6syQLUmSJHVmyJYkSZI6WzR0AZIkSZqfFh/10aFLWCfXHPv0wV7bmWxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ96M5l7youySJElaHWeyJUmSpM4M2ZIkSVJnhmxJkiSpM0O2JEmS1JkhW5IkSerMkC1JkiR1ZsiWJEmSOjNkS5IkSZ0ZsiVJkqTODNmSJElSZ4ZsSZIkqTNDtiRJktSZIVuSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkztaLkJ3koCRXJVma5Kih65EkSZJWZd6H7CQbAO8Ango8Ejg0ySOHrUqSJElauXkfsoF9gKVV9Y2q+ilwOvCsgWuSJEmSVmp9CNk7ANeOfb+stUmSJEnzUqpq6BpWKclzgQOr6oXt++cB+1TVy8eecyRwZPv2YcBVc15oP1sD3x26iAnm+A/L8R+OYz8sx39Yjv9w1vexf3BVbTPTjkVzXclaWAbsNPb9jsB140+oqhOBE+eyqNmSZElV7T10HZPK8R+W4z8cx35Yjv+wHP/hLOSxXx+Wi1wE7Jpk5yT3BQ4Bzhq4JkmSJGml5v1MdlXdmeRPgU8CGwAnV9UVA5clSZIkrdS8D9kAVfUx4GND1zFHFsSyl/WY4z8sx384jv2wHP9hOf7DWbBjP+9PfJQkSZLWN+vDmmxJkiRpvWLIliRJkjozZEuSJEmdrRcnPkpa2JJsAuwGfKOqvj9wORPH8Z9bSQLsw+juxcXo3g8XlidJzTl/94eVZIuqumXoOmaLM9kDSnJJkr9N8tCha9Hoj22SRyfZfOhaFrokx49tPwH4KvBm4LIkTxussAnh+A8nyQHA1cBrgacBTwdeB1zd9mkW+bs/75w7dAGzyZnsYW0BbA58OskNwPuA91fVdas8Sl0kOb6qXtq2nwCcBnwd2CXJn7RLR2p2PG5s+/XAwVV1SZKHAGcwOZfsHIrjP5x/Bp5cVdeMNybZmdG4P2KIoiaIv/vzS4YuYDYZsod1S1W9CnhVkicChwKXJLkSeF+7Xbxmj39s54dNq+oSgKr6RpINhi5owjj+c2sRsGyG9u8AG85xLZPO3/0BJDlsahPYYux7qurUYaqaHYbseaKqPg98PsnLgacAv88CvkD7POQf27n18CRfYfRHdvHUurwk98GgMRcc/+GcDFyU5HTg2ta2E3AIcNJgVU0Of/eHt/PY9kbAYkY/jwV3ToI3oxlQktOr6pCh65hUSX4MLKX9sQUeNPbH9itVtceQ9S1kSR48ren6qvppkq2BJ1XVh4aoa1LMMP7XVdXPHP+5keQRwLMYnfgYRjPbZ1XVVwctbAL4t2d+SXJJVT166DpmiyFbE8ugId0jybZVddPQdUiaHEn+u6p+beg6ZotXF5mnkjx/6BoWuqr61rTHz1r7dw3YsyvJA5KckOQdSbZK8toklyU5I8n2Q9e30CXZctpjK+DCJFsk2XLo+hayJAeNbW+W5F+TfCXJaUm2G7K2STBt/DdPcpLjP6jnDV3AbDJkz1+vG7qAhS7Jpkn+d5L3JvmDafuOX9lx6uI9jC6ddS3waeB2Rpcy+zzwL8OVNTG+C1w89ljCaOnCJW1bs+cNY9tvBm4AngFcBLxzkIomy/j4vwm4Hsd/MFV1+dA1zCaXiwyonXwx4y5gt6raaC7rmTRJPsjoerVfAl4A/Az4g6q6Y6GvExva+EeESb5dVQ8a23dpVe05WHETIMmrgCcDf1lVl7W2b1bVzqs+Uutq/G/L9N91f/dnn+M/rCQHVdUn2vZmwFuAxwCXA6+sqhuHrK83ry4yrO2AA4HpdzsK8MW5L2fiPLSqfrdtfyTJ3wDnJXnmkEVNiPFP0aZfsslP2GZZVb2pXd3iuCTXAkezAM/sn6e2TfLnjP7Ob5okY3d69Hd/9jn+w3oD8Im2/Wbu+SThdxh9knDwMGXNDkP2sM4GNqmqS6fvSPKZOa9m8myU5D5VdTdAVR2TZBnwOWCTYUtb8M5MsklV3VZVfzvVmGQX4GsD1jUxqmoZ8NwkzwDOAe43cEmT4l3A/dv2KcDWwPIkDwAuHaqoCeL4zx97j31ycFySw4csZja4XEQTK8k/AZ+qqv+c1n4Q8Laq2nWYyqS5lWRjRp/sLOj1kZKG1Say3sLok4SXMfq7U23fV6rqV4esrzc/Gplnkhw5dA2ToqpePT1gt/ZPGLDnXpKzh65hUlXV7cCxQ9cxqfzdH5bjP6emPknYhHs+SWChfpLgcpH558V4p8fBJDm7qn576Dom1A5DFzDhHP/hOPbDcvznSFWtcOW0JE9I8jzg8qo6bCWHrbecyZ5/MnQBE84/tsP576ELmHCO/3Ac+2E5/nMkyYVj2y8E3s5oZvvoJEcNVtgscU32wJI8nHtur1vATcCHqurKQQubUElOrqoXDF3HJEqyVVV9b+g6JpXjPxzHXpNi2uVbLwKeVlXLk/wy8KWq+pVhK+zLmewBJfkr4HRGs9cXMroY/l3A+xbiv+jWBwbsuZHk2Hb7epLsneQbwJeSfCvJbwxc3oLn+A/HsZ+/knx86BomwH3anWW3YjTRuxygqn4E3Dlsaf05kz2gJF8Ddp+6nfdY+32BKzz5bnYl2Rv4P8B3gNcAJzO6KP7VwJFV5UeIsyTJZVMzFkk+Dby6qi5KshtwWlXtPWyFC5vjPxzHflhJVnaTsQBnV9X2c1nPpElyDXA3o/Eu4Ner6oYkmwBfWGg3A/LEx2HdDTwQ+Na09u3bPs2u4xndhGNzRjf/eWVVPSXJ/m3fvgPWttBtmGRRVd0JbFxVFwFU1deSeKfT2ef4D8exH9ZFwGeZ+fynzee2lMlTVYtXsutu4NlzWMqccCZ7QO16zG9nNHN6bWt+ELAL8KdTtx7V7FjNrb1/vk/9JXk5o7t8HQs8idH/3D4E7A88pKqeN1x1C5/jPxzHflhJLgeeXVVXz7Dv2qraaYCytEA5kz2gqvpE+4hwH0YnPgZYBlxUVXcNWtxk+EmSA4DNgEpycFV9pK2LdPxnUVW9LcllwEuA3Rj9LdoN+AjwjwOWNhEc/+G0sb+c0eVax8f+TBz7ufBaVn4+2svnsA5NAGeyNbGSPAr4J0YfU72SUeA4nNEa7RdV1RcHLG/Ba1fW2QG4oKpuG2s/yE9xZl+SfYBq64F3Bw4Crqyqjw1c2sRJcupCvEbw+iDJExhNdF1eVZ8auh4tLIZsaQZJnl9V7x66joUqyf9idEvdK4E9gVdU1Zlt3yVVtbKTk9RBkqOBpzKaRT2HUcj4LPBk4JNVdcyA5S1oSc6aofm3gPMAquqZc1vRZElyYVXt07ZfxOjv0IeBA4D/qCrvfKpuDNnSDKav0VZfbanCvlV1W5LFwAeA91bVP7sefva18d8T2Ai4Adixqn6YZGNGnyz86pD1LWRJLgG+Cvwro6srBHgfcAhAVX12uOoWvkm7TrOG5ZpsTawkX1nZLmC7uaxlAm0wtUSkqq5Jsh/wgSQPxruezoU723kfP07y9ar6IUBV3Z7EKxvNrr2BVwB/A/xlVV2a5HbD9Zy5T5ItGK3LXuE6zUkW3HWaNSxDtibZdsCBwC3T2sPokn6aPTck2bOqLgVoM9q/zeha5c4kzb6fJrlfVf0Y2GuqMclmePnQWVVVdwPHJfn39vVG/H/xXNoMuJh2neYkDxi7TrP/wFdX/oetSXY2sMlU0BuX5DNzXs1kOYxpd/dq1w0+LMk7hylpojypqu6An4e+KRsyOvlXs6yqlgHPTfJ04IdD1zMpJu06zRqWa7IlSZKkzlZ2rUhJkiRJa8mQLUmSJHVmyJakCZHk2Umq3QhIkjSLDNmSNDkOBb5AuyazJGn2GLIlaQK0S5Q9HjiCFrKT3CfJ8UmuSHJ2ko8leU7bt1eSzya5OMknk2w/YPmStN4xZEvSZDgY+ERVfQ24Ocmjgd8BFjO6NvkLgX0BkmwIvA14TlXtxej65d5qXZLuBa+TLUmT4VDg/7bt09v3GwL/3q6VfUOST7f9DwP2AM5JArABcP2cVitJ6zlDtiQtcEm2An4L2CNJMQrNBXx4ZYcAV1TVvnNUoiQtOC4XkaSF7znAqVX14KpaXFU7Ad8Evgv8blubvR2wX3v+VcA2SX6+fCTJ7kMULknrK0O2JC18h/KLs9YfBB4ILAMuB94JXAD8oKp+yiiYvzHJl4FLgV+fs2olaQHwtuqSNMGSbFJVt7UlJRcCj6+qG4auS5LWd67JlqTJdnaSzYH7Aq83YEtSH85kS5IkSZ25JluSJEnqzJAtSZIkdWbIliRJkjozZEuSJEmdGbIlSZKkzgzZkiRJUmf/H9oQoFy9y7SNAAAAAElFTkSuQmCC\n",
179 | "text/plain": [
180 | ""
181 | ]
182 | },
183 | "metadata": {
184 | "needs_background": "light"
185 | },
186 | "output_type": "display_data"
187 | }
188 | ],
189 | "source": [
190 | "df.groupby('Age').size().plot(kind = 'bar', figsize = (12, 6), title = 'Purchase Distribution by Age')"
191 | ]
192 | },
193 | {
194 | "cell_type": "code",
195 | "execution_count": 106,
196 | "id": "7ab48797",
197 | "metadata": {},
198 | "outputs": [],
199 | "source": [
200 | "lst = []\n",
201 | "for i in df['Age'].unique():\n",
202 | " lst.append([i, df[df['Age'] == i]['Product_ID'].nunique()])\n",
203 | " \n",
204 | "data = pd.DataFrame(lst , columns = ['Age','Products'])"
205 | ]
206 | },
207 | {
208 | "cell_type": "code",
209 | "execution_count": 113,
210 | "id": "f274a258",
211 | "metadata": {},
212 | "outputs": [
213 | {
214 | "data": {
215 | "text/plain": [
216 | ""
217 | ]
218 | },
219 | "execution_count": 113,
220 | "metadata": {},
221 | "output_type": "execute_result"
222 | },
223 | {
224 | "data": {
225 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAGGCAYAAABWh9liAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAg/0lEQVR4nO3dfbRcdX3v8ffHgIACihgpJmioxQceg8QsWhURrKRqL9CWZbQFaqnpRaxPrb1Yu5a47qWXekWv2oLFqkCXyqUqhYtiSxFEl0oINM0DCEZBOBIh0noFBZT4vX/MTpgeTnJOnmbO78z7tdas2fPbe898f5kkn9lPv52qQpIkTX9PGHYBkiRpagxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpETsNu4DJPP3pT6958+YNuwxJkgbipptu+mFVzZ5o3rQP7Xnz5rFs2bJhlyFJ0kAk+d6m5rl7XJKkRhjakiQ1YtLQTrJrkqVJ/i3J6iTv7drPSvL9JMu7x6v61nlXkjVJbktyXF/7EUlWdvM+nCQ7pluSJM08Uzmm/QhwTFU9mGRn4GtJrurmfbCq3t+/cJIDgcXAQcAzgX9J8tyqWg+cDywBvgl8EVgEXIUkqVk///nPGRsb4+GHHx52KU3ZddddmTt3LjvvvPOU15k0tKt3R5EHu5c7d4/N3WXkeOCSqnoEuCPJGmBhkjuBPavqGwBJLgZOwNCWpKaNjY2xxx57MG/ePNyBOjVVxf3338/Y2Bj777//lNeb0jHtJLOSLAfuA66uqhu6WW9OsiLJJ5Ls1bXNAe7uW32sa5vTTY9vlyQ17OGHH2bvvfc2sLdAEvbee+8t3jsxpdCuqvVVNR+YS2+r+WB6u7qfA8wH1gLnbqhlorfYTPvjJFmSZFmSZevWrZtKiZKkITKwt9zW/Jlt0dnjVfUj4DpgUVXd24X5L4CPAQu7xcaA/fpWmwvc07XPnaB9os+5oKoWVNWC2bMnvL5ckqSNZs2axfz58zn44IM56aST+OlPf7rV73X00Udv1fggP/rRjzjvvPO2+nOnYtJj2klmAz+vqh8l2Q14BfBXSfatqrXdYicCq7rpK4BPJ/kAvRPRDgCWVtX6JA8kORK4ATgF+Mh27o8kacjmnfmF7fp+d57z6kmX2W233Vi+fDkAv/u7v8tHP/pR3vGOd2ycv379embNmrVd6xpvQ2i/6U1v2mGfMZUt7X2Ba5OsAG6kd0z7SuB93eVbK4CXA28HqKrVwKXALcCXgDO6M8cBTgf+DlgDfAdPQpMkbWcvfelLWbNmDddddx0vf/nLef3rX88hhxzCww8/zBve8AYOOeQQDj/8cK699loAHnroIRYvXsyhhx7Ka1/7Wh566KGN77X77rtvnP7sZz/L7//+7wNw7733cuKJJ3LYYYdx2GGH8fWvf50zzzyT73znO8yfP593vvOdrF27lqOOOmrjHoCvfvWr29y3qZw9vgI4fIL2kzezztnA2RO0LwMO3sIaJUmakkcffZSrrrqKRYsWAbB06VJWrVrF/vvvz7nn9k69WrlyJd/61rd45Stfye23387555/Pk570JFasWMGKFSt44QtfOOnnvOUtb+FlL3sZl112GevXr+fBBx/knHPOYdWqVRu3+M8991yOO+443v3ud7N+/fpt2mW/gSOiSZKa99BDDzF//nwWLFjAs571LE477TQAFi5cuPGSqq997WucfHJve/P5z38+z372s7n99tu5/vrr+b3f+z0ADj30UA499NBJP+/LX/4yp59+OtA7nv6Upzzlccu86EUv4pOf/CRnnXUWK1euZI899tjmfhrakqTmbTimvXz5cj7ykY/wxCc+EYAnP/nJG5fpDTsysU2dyd3fvqWXZx111FFcf/31zJkzh5NPPpmLL754i9afyLS/y5e0tbb3yTBbaionz0ganKOOOopPfepTHHPMMdx+++3cddddPO95z9vY/vKXv5xVq1axYsWKjevss88+3HrrrTzvec/jsssu27i1fOyxx3L++efztre9jfXr1/OTn/yEPfbYgwceeGDjut/73veYM2cOb3zjG/nJT37CzTffzCmnnLJNfXBLW5I0Et70pjexfv16DjnkEF772tdy4YUXsssuu3D66afz4IMPcuihh/K+972PhQsXblznnHPO4TWveQ3HHHMM++6778b2D33oQ1x77bUccsghHHHEEaxevZq9996bF7/4xRx88MG8853v5LrrrmP+/PkcfvjhfO5zn+Otb33rNvchm9tdMB0sWLCgvJ+2toZb2tJg3HrrrbzgBS8YdhlNmujPLslNVbVgouXd0pYkqRGGtiRJjTC0JUlqhKEtSdpm0/38qOloa/7MDG1J0jbZdddduf/++w3uLbDhftq77rrrFq3nddqSpG0yd+5cxsbG8FbKW2bXXXdl7ty5ky/Yx9CWpBlomJc8ernjjuPucUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjDG1JkhrhiGiSpBllmKPBwY4dEc4tbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjDG1JkhrhiGjSDDWTR4WSRpVb2pIkNcLQliSpEYa2JEmNMLQlSWqEoS1JUiMmDe0kuyZZmuTfkqxO8t6u/WlJrk7y7e55r7513pVkTZLbkhzX135EkpXdvA8nyY7pliRJM89UtrQfAY6pqsOA+cCiJEcCZwLXVNUBwDXda5IcCCwGDgIWAeclmdW91/nAEuCA7rFo+3VFkqSZbdLQrp4Hu5c7d48Cjgcu6tovAk7opo8HLqmqR6rqDmANsDDJvsCeVfWNqirg4r51JEnSJKZ0TDvJrCTLgfuAq6vqBmCfqloL0D0/o1t8DnB33+pjXducbnp8+0SftyTJsiTL1q1btwXdkSRp5ppSaFfV+qqaD8ylt9V88GYWn+g4dW2mfaLPu6CqFlTVgtmzZ0+lREmSZrwtOnu8qn4EXEfvWPS93S5vuuf7usXGgP36VpsL3NO1z52gXZIkTcFUzh6fneSp3fRuwCuAbwFXAKd2i50KXN5NXwEsTrJLkv3pnXC2tNuF/kCSI7uzxk/pW0eSJE1iKjcM2Re4qDsD/AnApVV1ZZJvAJcmOQ24CzgJoKpWJ7kUuAV4FDijqtZ373U6cCGwG3BV95AkSVMwaWhX1Qrg8Ana7weO3cQ6ZwNnT9C+DNjc8XBJkrQJjogmSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1YiqXfElSc+ad+YWhfv6d57x6qJ+vmcktbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1wtCWJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpEYa2JEmNMLQlSWqEoS1JUiMMbUmSGmFoS5LUCENbkqRG7DTsArTjzDvzC0P9/DvPefVQP1+SZhq3tCVJaoShLUlSIyYN7ST7Jbk2ya1JVid5a9d+VpLvJ1nePV7Vt867kqxJcluS4/raj0iyspv34STZMd2SJGnmmcox7UeBP6mqm5PsAdyU5Opu3ger6v39Cyc5EFgMHAQ8E/iXJM+tqvXA+cAS4JvAF4FFwFXbpyuSJM1sk25pV9Xaqrq5m34AuBWYs5lVjgcuqapHquoOYA2wMMm+wJ5V9Y2qKuBi4IRt7YAkSaNii45pJ5kHHA7c0DW9OcmKJJ9IslfXNge4u2+1sa5tTjc9vl2SJE3BlEM7ye7A54C3VdWP6e3qfg4wH1gLnLth0QlWr820T/RZS5IsS7Js3bp1Uy1RkqQZbUqhnWRneoH9qar6PEBV3VtV66vqF8DHgIXd4mPAfn2rzwXu6drnTtD+OFV1QVUtqKoFs2fP3pL+SJI0Y03l7PEAHwduraoP9LXv27fYicCqbvoKYHGSXZLsDxwALK2qtcADSY7s3vMU4PLt1A9Jkma8qZw9/mLgZGBlkuVd258Dr0syn94u7juBPwKoqtVJLgVuoXfm+RndmeMApwMXArvRO2vcM8clSZqiSUO7qr7GxMejv7iZdc4Gzp6gfRlw8JYUKEmSehwRTZKkRhjakiQ1wtCWJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpEYa2JEmNMLQlSWrEVG7N2bR5Z35hqJ9/5zmvHurnS5JmDre0JUlqhKEtSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1wtCWJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpEYa2JEmNMLQlSWqEoS1JUiMMbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGThnaS/ZJcm+TWJKuTvLVrf1qSq5N8u3veq2+ddyVZk+S2JMf1tR+RZGU378NJsmO6JUnSzDOVLe1HgT+pqhcARwJnJDkQOBO4pqoOAK7pXtPNWwwcBCwCzksyq3uv84ElwAHdY9F27IskSTPapKFdVWur6uZu+gHgVmAOcDxwUbfYRcAJ3fTxwCVV9UhV3QGsARYm2RfYs6q+UVUFXNy3jiRJmsQWHdNOMg84HLgB2Keq1kIv2IFndIvNAe7uW22sa5vTTY9vn+hzliRZlmTZunXrtqRESZJmrCmHdpLdgc8Bb6uqH29u0QnaajPtj2+suqCqFlTVgtmzZ0+1REmSZrQphXaSnekF9qeq6vNd873dLm+65/u69jFgv77V5wL3dO1zJ2iXJElTMJWzxwN8HLi1qj7QN+sK4NRu+lTg8r72xUl2SbI/vRPOlna70B9IcmT3nqf0rSNJkiax0xSWeTFwMrAyyfKu7c+Bc4BLk5wG3AWcBFBVq5NcCtxC78zzM6pqfbfe6cCFwG7AVd1DkiRNwaShXVVfY+Lj0QDHbmKds4GzJ2hfBhy8JQVKkqQeR0STJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpEYa2JEmNMLQlSWqEoS1JUiMMbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1wtCWJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpEYa2JEmNMLQlSWqEoS1JUiMmDe0kn0hyX5JVfW1nJfl+kuXd41V9896VZE2S25Ic19d+RJKV3bwPJ8n2744kSTPXVLa0LwQWTdD+waqa3z2+CJDkQGAxcFC3znlJZnXLnw8sAQ7oHhO9pyRJ2oRJQ7uqrgf+fYrvdzxwSVU9UlV3AGuAhUn2Bfasqm9UVQEXAydsZc2SJI2kbTmm/eYkK7rd53t1bXOAu/uWGeva5nTT49snlGRJkmVJlq1bt24bSpQkaebY2tA+H3gOMB9YC5zbtU90nLo20z6hqrqgqhZU1YLZs2dvZYmSJM0sWxXaVXVvVa2vql8AHwMWdrPGgP36Fp0L3NO1z52gXZIkTdFWhXZ3jHqDE4ENZ5ZfASxOskuS/emdcLa0qtYCDyQ5sjtr/BTg8m2oW5KkkbPTZAsk+QxwNPD0JGPAe4Cjk8ynt4v7TuCPAKpqdZJLgVuAR4Ezqmp991an0zsTfTfgqu4hSZKmaNLQrqrXTdD88c0sfzZw9gTty4CDt6g6SZK0kSOiSZLUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1wtCWJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpEYa2JEmNMLQlSWqEoS1JUiMMbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1wtCWJKkRhrYkSY2YNLSTfCLJfUlW9bU9LcnVSb7dPe/VN+9dSdYkuS3JcX3tRyRZ2c37cJJs/+5IkjRzTWVL+0Jg0bi2M4FrquoA4JruNUkOBBYDB3XrnJdkVrfO+cAS4IDuMf49JUnSZkwa2lV1PfDv45qPBy7qpi8CTuhrv6SqHqmqO4A1wMIk+wJ7VtU3qqqAi/vWkSRJU7C1x7T3qaq1AN3zM7r2OcDdfcuNdW1zuunx7RNKsiTJsiTL1q1bt5UlSpI0s2zvE9EmOk5dm2mfUFVdUFULqmrB7Nmzt1txkiS1bGtD+95ulzfd831d+xiwX99yc4F7uva5E7RLkqQp2trQvgI4tZs+Fbi8r31xkl2S7E/vhLOl3S70B5Ic2Z01fkrfOpIkaQp2mmyBJJ8BjgaenmQMeA9wDnBpktOAu4CTAKpqdZJLgVuAR4Ezqmp991an0zsTfTfgqu4hSZKmaNLQrqrXbWLWsZtY/mzg7AnalwEHb1F1kiRpI0dEkySpEYa2JEmNMLQlSWqEoS1JUiMMbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1wtCWJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpEYa2JEmNMLQlSWqEoS1JUiMMbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjtim0k9yZZGWS5UmWdW1PS3J1km93z3v1Lf+uJGuS3JbkuG0tXpKkUbI9trRfXlXzq2pB9/pM4JqqOgC4pntNkgOBxcBBwCLgvCSztsPnS5I0EnbE7vHjgYu66YuAE/raL6mqR6rqDmANsHAHfL4kSTPStoZ2Af+c5KYkS7q2fapqLUD3/IyufQ5wd9+6Y13b4yRZkmRZkmXr1q3bxhIlSZoZdtrG9V9cVfckeQZwdZJvbWbZTNBWEy1YVRcAFwAsWLBgwmUkSRo127SlXVX3dM/3AZfR2919b5J9Abrn+7rFx4D9+lafC9yzLZ8vSdIo2erQTvLkJHtsmAZeCawCrgBO7RY7Fbi8m74CWJxklyT7AwcAS7f28yVJGjXbsnt8H+CyJBve59NV9aUkNwKXJjkNuAs4CaCqVie5FLgFeBQ4o6rWb1P1kiSNkK0O7ar6LnDYBO33A8duYp2zgbO39jMlSRpljogmSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1wtCWJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYY2pIkNcLQliSpEYa2JEmNMLQlSWqEoS1JUiMMbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjTC0JUlqhKEtSVIjDG1JkhphaEuS1AhDW5KkRhjakiQ1wtCWJKkRhrYkSY0wtCVJaoShLUlSIwxtSZIaYWhLktQIQ1uSpEYMPLSTLEpyW5I1Sc4c9OdLktSqgYZ2klnA3wC/ARwIvC7JgYOsQZKkVg16S3shsKaqvltVPwMuAY4fcA2SJDVp0KE9B7i77/VY1yZJkiaRqhrchyUnAcdV1R92r08GFlbVH49bbgmwpHv5POC2gRX5eE8HfjjEzx+mUe472H/7P7r9H+W+w/D7/+yqmj3RjJ0GXMgYsF/f67nAPeMXqqoLgAsGVdTmJFlWVQuGXccwjHLfwf7b/9Ht/yj3HaZ3/we9e/xG4IAk+yd5IrAYuGLANUiS1KSBbmlX1aNJ3gz8EzAL+ERVrR5kDZIktWrQu8epqi8CXxz0526DabGbfkhGue9g/+3/6BrlvsM07v9AT0STJElbz2FMJUlqhKEtSVIjDG1Jkhox8BPR1IYke1XVfwy7jmFJsjvwXOC7VfWjIZezwyUJvWGG5wBFb/yEpTWCJ72M2nc/3qj3f7pzS7uT5OYkf5HkOcOuZZq4ZtgFDFKS8/qmXwLcApwLrEzyqqEVNgBJXgl8GzgLeBXwauC9wLe7eTPaKH/3YP/HS7J7khcmeeqwa5mIW9qP2Qt4KnBtkh8AnwH+T1U9bsS2EZFhFzBgR/ZN/3fghKq6OckvA5fS1mWKW+pDwCuq6s7+xiT70+v3C4ZR1ACN8ncPI97/JOdV1Zu66ZcAnwa+A/xKkj/qLlOeNgztx/xHVf0p8KdJXgq8Drg5ya3AZ7qhVWe0JKdsmAT26ntNVV08nKqGYs+quhmgqr7b3VJ2JtuJ3hDD430f2HnAtQzbqH33441i/5v60WJoT6Cqvgp8NckfA78OvJZpfLH9drR/3/QuwDx6AT4KxzWfn2QFvf7O23BMP8kTmPnB9QngxiSX8Nhd+PajN8zwx4dW1eCM8ncP9r/ftP/R4uAqnSSXVNXiYdcxXSS5uapeOOw6BiXJs8c1ra2qnyV5OnBUVX1+GHUNSpIX0Lu3/Rx6/3mPAVdU1S1DLWwA/O4f1/97qurnI9T/nwJr6H60AM/q+9GyoqoOHmZ94xnamlCSf62qw4ddh6TBS/KMqrpv2HUMQms/Wjx7fAqSvGHYNQzBycMuYJCS/FKS85P8TZK9k5yVZGWSS5PsO+z6dqQki/qmn5Lk75KsSPLpJPsMs7ZBGNf/pyb5+Ij1/2njHnsDS5PsleRpw65vR6uq7417/Lxr/+F0C2wwtKfqvcMuYNCqatWwaxiwC+ld6nI3cC3wEL1Ln74KfHR4ZQ3EX/ZNnwv8APhNerfS/duhVDRY/f1/P7CW0er/D4Gb+h7L6B0mubmbntGS7Jnkfyb5+ySvHzfvvE2tNyzuHu90J2JMOAt4blXtMsh6Bi3Joqr6Ujf9FOADwIuAVcDbq+reYda3o/UfDkhyV1U9q2/e8qqaP7TidrD+8xfG93Wm9x3sf5I/BV4BvLOqVnZtd1TV/ptfc2ZI8jl64xR8E/gD4OfA66vqkel4bo9njz9mH+A4YPwoYAG+PvhyBu4vgS910+fy2NbGb9Hb2jhhOGUNTP9ep/GXt830PVLPSPIOen/X90ySvpHQZnrfYcT7X1Xv764c+GCSu4H3MBpXjGzwnKr67W76H5O8G/hykv8yzKI2xdB+zJXA7lW1fPyMJNcNvJrhWtC3dfHBJKcOs5gBuTzJ7lX1YFX9xYbGJL8C3D7EugbhY8Ae3fRFwNOBdUl+CVg+rKIGaNT7T1WNAScl+U3gauBJQy5pkHZJ8oSq+gVAVZ2dZAy4Hth9uKU9nrvHBUD3l/QD9LY2zqD367O6eSuq6tBh1idpMJLsRu/f/0ic15LkfcA/V9W/jGtfBHykqg4YTmUTm/G7frZFkiXDrmGANmxt7M5jWxuM0tbGeEmuHHYNwzLKfYfR7n9VPQScM+w6BqWq/mx8YHftX5pugQ3uHp/Mf2U0RkKjqv7TGfJJXpLkZGBVVZ2yidVmujnDLmCIRrnvYP9Huv9Jrqyq1wy7jom4pb15I3PTjCRL+6b/EPhrelve70ly5tAKG65/HXYBQzTKfQf7P+r9n7Y/Wjym3SfJ83lsKMcC7gM+X1W3DrWwARh3ydONwKuqal2SJwPfrKpDhlvh4CXZu6ruH3YdwzDKfZfff5JPVNUfDLuOibil3Uny34BL6G1dL6U3sMJ64DMjsqX5hG4EpL3p/ZhbB1BVPwEeHW5pO16Sc7phC0myIMl3gW8m+V6Slw25vB1qlPs+mSRXDbuGHc3v//Gma2CDW9obJbkdOGjDEHZ97U8EVk/HExK2pyR3Ar/gsbt6/VpV/SDJ7sDXRmCAiZUb9iYkuRb4s6q6MclzgU9X1YLhVrjjjHLfAZJsavCMAFdW1UwfxnbUv/8FwP+idyvad9G7692L6A24sqSqptWhAk9Ee8wvgGcC3xvXvm83b0arqnmbmPUL4MQBljIsOyfZqaoeBXarqhsBqur2JDN6NDxGu+/Q26v2FSY+h+Wpgy1lKEb9+z+P3oAyT6U3kNbbq+rXkxzbzfvVIdb2OG5pd7pr8v6a3q+rDfcUfhbwK8CbNwzxqZkpvXun/ya9S12OovcP+PPAscAvV9WMvYHKKPcdIMkq4MSq+vYE8+6uqv2GUNbA+P1vdgjjaXe3Q7e0O1X1pW530EL+8z2Fb6yq9UMtTjtcVX0kyUrgdOC59P5tPBf4R+B/DLG0Ha7r+yp6lzj29/1yZnjfO2ex6fN7/niAdQzFKP/d7zyc5JXAU4BKckJV/WN3PH/a/d/vlrbU6a4emAPcUFUP9rUvGrU9LUkuHtXr85O8hN6P91VV9c/DrmcQkiwEqjuWfRCwCLi1qr445NJ2uCSHAe+jdyjw7fR+vJxK7xj3G6tqWt17wtCWgCRvoTd8663AfOCtVXV5N2/a3elne0pyxQTNxwBfBqiqaXnjhO0lydKqWthNv5He34PLgFcC/7eqZvToYEneA/wGvS3sq+n9YPkKvTt//VNVnT3E8oYqyRuq6pPDrqOfoS3RO4MW+NWqejDJPOCzwN9X1Yem43Gt7SnJzfTuJf539K4cCPAZYDFAVX1leNXteKM+RkH3d38+sAu9e6nPraofd2OQ3zDK9x0Yf4x7OvCYttQza8Mu8aq6M8nRwGeTPJuZPzLeAuCtwLvp3VN5eZKHZnpY93lCkr3oHdf+T2MUJJnxYxQAj3bn7fw0yXeq6sfQG4M8yYy/cibJik3NonfL5mnF0JZ6fpBk/oZbs3Zb3K+hd83mjN7S6m5J+MEk/9A938to/d/wFOAmujEKkvxS3xgFM/0HG8DPkjypqn4KHLGhMclTGIHLXekF83HAf4xrD71LwKaVUfqHKW3OKYwb+a27bvWUJH87nJIGq++eyq8GfjzsegbFMQo4qqoegY0/4DbYmd4JWTPdlcDuG36w90ty3cCrmYTHtCVJaoRjj0uS1AhDW5KkRhja0ohKcmKS6gaVkdQAQ1saXa8DvkZ3Pbak6c/QlkZQdznTi4HT6EI7yROSnJdkdZIrk3wxye90845I8pUkNyX5pyQz+naV0nRlaEuj6QTgS1V1O/Dv3T2lfwuYR++69D+kuyVhkp2BjwC/U1VH0Lt2fWSHtpSGyeu0pdH0OuB/d9OXdK93Bv6hu1b3B0mu7eY/DzgYuDoJwCxg7UCrlQQY2tLISbI3vRuCHJyk6IVw0btJxoSrAKur6lcHVKKkTXD3uDR6fge4uKqeXVXzqmo/4A7gh8Bvd8e29wGO7pa/DZidZOPu8u72jZIGzNCWRs/rePxW9eeAZwJjwCrgb4EbgP9XVT+jF/R/leTfgOXArw2sWkkbOYyppI2S7N7dLGVvYCnw4qr6wbDrktTjMW1J/a5M8lTgicB/N7Cl6cUtbUmSGuExbUmSGmFoS5LUCENbkqRGGNqSJDXC0JYkqRGGtiRJjfj/HHgg7zXinY0AAAAASUVORK5CYII=\n",
226 | "text/plain": [
227 | ""
228 | ]
229 | },
230 | "metadata": {
231 | "needs_background": "light"
232 | },
233 | "output_type": "display_data"
234 | }
235 | ],
236 | "source": [
237 | "data.plot.bar(x = 'Age', figsize = (8,6))"
238 | ]
239 | },
240 | {
241 | "cell_type": "code",
242 | "execution_count": 115,
243 | "id": "8947785f",
244 | "metadata": {},
245 | "outputs": [
246 | {
247 | "data": {
248 | "text/plain": [
249 | ""
250 | ]
251 | },
252 | "execution_count": 115,
253 | "metadata": {},
254 | "output_type": "execute_result"
255 | },
256 | {
257 | "data": {
258 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAGWCAYAAACKBR5SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlOUlEQVR4nO3de7xmZV338c/XAXxSVAhGQGAYUjTRhHAiTRMsD4OH0DIfyEfM06SPWFlWdPJQT0Vl2UGIyAgpgSxFEUfA8oCH0BkIYRDRCTHGARk8EaLi6O/5Y62R28u92few773XPnzer9d+zbqv61pr/+61h813rvtaa6WqkCRJknSnewxdgCRJkrTQGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmS9F2S/HySD03TtzpJJdllvuuSpPlkSJa0JCR5f5IvJbnn0LVM5a6C58iYhyW5uH8fX05yWZKnzFeNQ+nPTSV59tC1SNIOhmRJi16S1cCPAwX81LDVzMo7gfcA+wD3B34RuHXQiubH84Av9n9K0oJgSJa0FJwAXAqcSRO0kpyZ5NQk705yW5IPJ9k3yV/0M7afTPLDI+Mf2s9KfznJ1Ul+aqTv/UleNPL6u2aH+9nQlyT5dH/sU9J5KHAa8Oi+hi+3byDJ3sDBwN9V1R3914er6kN9/9FJtiT5rSS3JLk+yXNG9r9nktcl+e8kn09yWpLva/b91SQ3J7kxyfNH9t0ryflJbk3yMeCBY5zzFyTZ2h/rV/vj7Jvk9iR7jRz7kUm2Jdl1qoMkOQg4ClgHPDnJPk3/r/ffY2uSF/Xn+EEzvWdJmi1DsqSl4ATgzf3X9wQt4NnA7wB7A98A/gO4vH/9r8CfA/RB7p3AxXQzuS8H3pzkITtRy9OAHwEO67/vk6vqGuAlwH9U1e5VtccU+30B2Az8U5JnTPEeAPbta96f7h8Dp4/U9sfAg4HDgQf1Y17V7Hu/vv2FwClJ9uz7TgG+DuwHvKD/msnjgUOAJwEnJXlCVd0EvL9/3zv8H+DcqvrmNMc5AdhYVW8FrgFGg/9a4FeAJ/Tv6ahm35nesyTdbQs2JCc5o5/x2DTG2IOS/HuSK/uZngPmo0ZJw0vyWOAg4C1VdRnwX8DPNcPOq6rLqurrwHnA16vqrKr6FvDPwI6Z5EcBuwMn9zO57wUuAI7fiZJOrqovV9V/A++jC3AzqqqiC57XA38G3JjkkiSHNEN/t6q+UVUfAN4FPDtJgBcDr6iqL1bV/wB/CBw3st83gd+rqm9W1XrgNuAhSVYAPwO8qqq+WlWbgDeNUfJr+/FXAf/AnefoTXTBmP7YxwP/eBfHOQE4u98+m+/+JODZwD9U1dVVdTvw2h0dY75nSbrbFmxIpvvYdO2YY18HnFVVjwB+D/ijuSpK0oLzPODiqrqlf90GLYDPj2x/bYrXu/fbDwBuqKpvj/R/lm6Gclw3jWzfPnLsGVXVlqo6saoeSBf8vwqcNTLkS1X11aa2BwArgXsBl/XLRL4MXNi37/CFqto+RW0rgV2AG5rjzqQd/4B++x3AoUl+AHgi8JWq+thUB0jyGLolJuf2TWcDP5Tk8P71A5rvM7o9znuWpLttwd7Cp6ou6S/G+Y4kD6T7WHAl3S/4F1fVJ4FDgVf0w94HvH3+KpU0lH796bOBFUl2hNN7AnskOayqPr6Th9wKHJjkHiNBeRXwqX77q3TBbId9d+LYtTOFVNUNSU4Bzhlp3jPJvUeC8ipgE3ALXdh/WFV9bme+D7AN2A4cCHxy5Lgzacdv7ev+epK30C2b+EHuehb5eUCAK7qJ4e84AbgCuBEY/WTwwJHt2bxnSZrRQp5JnsrpwMur6pHAK4FT+/aP031cCPBM4D6jF45IWrKeAXyL7h/Kh/dfDwU+SBe0dtZH6YLwryfZNcnRwNO5c6bzCuCnk9yrv3jshTtx7M8DByTZbarOJHsmeW2SByW5R38h3wvoLkgc9dokuyX5cbr1z//SB/q/A16f5P798fZP8uSZiuqXnLwNeE3/vg5lvLtM/G4//mHA8+mWrexwFvDzdHca+adp3u//ovsHzjru/NkdTrcO/Dnp7sP8FuD56S6mvBcj641n854laRyLJiQn2R34MeBfklwB/C3dRSbQBeajkvwn3YUdn6ObGZG0tD2Pbs3qf1fVTTu+gDdwZ9AaW1XdQRfsjqGbqTwVOKH/xArg9cAddIH3TXQXCo7rvcDVwE1Jbpmi/w5gNfBvdLd920R3keHPj4y5CfgS3aztm4GXjNT2G3QX/l2a5Nb+OONecHgi3dKLm+iWuv3DGPt8oP9+/w68rqou3tFRVR8Gvg1cXlXXT7P/M+hmgs9qfnZ/D6wA1lbVu4G/ovuEcDPdBZfQnReY3XuWpLuU7lqRhalfbnFBVT08yX2Ba6tqvxn22R34ZFV58Z6kJaOf1f6nxfK7Lcl7gbOr6o0TPOZD6f7xcM9mfbUkTdyimUmuqluBzyT5WeiubE5yWL+9d5Id7+U3gTMGKlOSlr0kPwIcwXcvwbi7x3pmv7xkT7pbvr3TgCxpPizYkJzkHLqP1h6S7ib4L6S7EOSFST5O97Hlsf3wo4Frk3yK7klVfzBAyZK07CV5E92yh1/ub8s2W79Ad3Hhf9GtP3/pBI4pSTNa0MstJEmSpCEs2JlkSZIkaSiGZEmSJKmxIB8msvfee9fq1auHLkOSJElL2GWXXXZLVU35pM4FGZJXr17Nxo0bhy5DkiRJS1iSz07X53ILSZIkqWFIliRJkhqGZEmSJKlhSJYkSZIahmRJkiSpYUiWJEmSGoZkSZIkqWFIliRJkhqGZEmSJKlhSJYkSZIaM4bkJAcmeV+Sa5JcneSXphiTJH+VZHOSK5McMdK3Nsm1fd9Jk34DkiRJ0qSNM5O8HfjVqnoo8CjgZUkObcYcAxzSf60D/gYgyQrglL7/UOD4KfaVJEmSFpQZQ3JV3VhVl/fb/wNcA+zfDDsWOKs6lwJ7JNkPOBLYXFXXVdUdwLn9WEmSJGnB2mVnBidZDfww8NGma3/ghpHXW/q2qdp/dJpjr6ObhWbVqlU7U5akMa0+6V1DlzAr15/81KFLkCQtE2NfuJdkd+CtwC9X1a1t9xS71F20f29j1elVtaaq1qxcuXLcsiRJkqSJG2smOcmudAH5zVX1timGbAEOHHl9ALAV2G2adkmSJGnBGufuFgH+Hrimqv58mmHnAyf0d7l4FPCVqroR2AAckuTgJLsBx/VjJUmSpAVrnJnkxwDPBa5KckXf9lvAKoCqOg1YDzwF2AzcDjy/79ue5ETgImAFcEZVXT3JNyBJkiRN2owhuao+xNRri0fHFPCyafrW04VoSZIkaVHwiXuSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1dplpQJIzgKcBN1fVw6fo/zXgOSPHeyiwsqq+mOR64H+AbwHbq2rNpAqXJEmS5so4M8lnAmun66yqP62qw6vqcOA3gQ9U1RdHhjy+7zcgS5IkaVGYMSRX1SXAF2ca1zseOGdWFUmSJEkDm9ia5CT3optxfutIcwEXJ7ksyboZ9l+XZGOSjdu2bZtUWZIkSdJOm+SFe08HPtwstXhMVR0BHAO8LMnjptu5qk6vqjVVtWblypUTLEuSJEnaOZMMycfRLLWoqq39nzcD5wFHTvD7SZIkSXNiIiE5yf2Ao4B3jLTdO8l9dmwDTwI2TeL7SZIkSXNpnFvAnQMcDeydZAvwamBXgKo6rR/2TODiqvrqyK77AOcl2fF9zq6qCydXuiRJkjQ3ZgzJVXX8GGPOpLtV3GjbdcBhd7cwSZIkaSg+cU+SJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWrMGJKTnJHk5iSbpuk/OslXklzRf71qpG9tkmuTbE5y0iQLlyRJkubKODPJZwJrZxjzwao6vP/6PYAkK4BTgGOAQ4Hjkxw6m2IlSZKk+TBjSK6qS4Av3o1jHwlsrqrrquoO4Fzg2LtxHEmSJGleTWpN8qOTfDzJu5M8rG/bH7hhZMyWvk2SJEla0HaZwDEuBw6qqtuSPAV4O3AIkCnG1nQHSbIOWAewatWqCZQlSZIk3T2znkmuqlur6rZ+ez2wa5K96WaODxwZegCw9S6Oc3pVramqNStXrpxtWZIkSdLdNuuQnGTfJOm3j+yP+QVgA3BIkoOT7AYcB5w/2+8nSZIkzbUZl1skOQc4Gtg7yRbg1cCuAFV1GvAs4KVJtgNfA46rqgK2JzkRuAhYAZxRVVfPybuQJEmSJmjGkFxVx8/Q/wbgDdP0rQfW373SJEmSpGH4xD1JkiSpYUiWJEmSGoZkSZIkqWFIliRJkhqGZEmSJKlhSJYkSZIahmRJkiSpYUiWJEmSGoZkSZIkqWFIliRJkhqGZEmSJKlhSJYkSZIahmRJkiSpYUiWJEmSGoZkSZIkqWFIliRJkhqGZEmSJKlhSJYkSZIahmRJkiSpYUiWJEmSGoZkSZIkqWFIliRJkhqGZEmSJKlhSJYkSZIahmRJkiSpYUiWJEmSGoZkSZIkqWFIliRJkhqGZEmSJKlhSJYkSZIaM4bkJGckuTnJpmn6n5Pkyv7rI0kOG+m7PslVSa5IsnGShUuSJElzZZyZ5DOBtXfR/xngqKp6BPD7wOlN/+Or6vCqWnP3SpQkSZLm1y4zDaiqS5Ksvov+j4y8vBQ4YAJ1SZIkSYOZ9JrkFwLvHnldwMVJLkuybsLfS5IkSZoTM84kjyvJ4+lC8mNHmh9TVVuT3B94T5JPVtUl0+y/DlgHsGrVqkmVJUmSJO20icwkJ3kE8Ebg2Kr6wo72qtra/3kzcB5w5HTHqKrTq2pNVa1ZuXLlJMqSJEmS7pZZh+Qkq4C3Ac+tqk+NtN87yX12bANPAqa8Q4YkSZK0kMy43CLJOcDRwN5JtgCvBnYFqKrTgFcBewGnJgHY3t/JYh/gvL5tF+DsqrpwDt6DJEmSNFHj3N3i+Bn6XwS8aIr264DDvncPSZIkaWHziXuSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1ZgzJSc5IcnOSTdP0J8lfJdmc5MokR4z0rU1ybd930iQLlyRJkubKODPJZwJr76L/GOCQ/msd8DcASVYAp/T9hwLHJzl0NsVKkiRJ82GXmQZU1SVJVt/FkGOBs6qqgEuT7JFkP2A1sLmqrgNIcm4/9hOzrlqSFpnVJ71r6BJm5fqTnzp0CZI0ryaxJnl/4IaR11v6tunap5RkXZKNSTZu27ZtAmVJkiRJd88kQnKmaKu7aJ9SVZ1eVWuqas3KlSsnUJYkSZJ098y43GIMW4ADR14fAGwFdpumXZIkSVrQJjGTfD5wQn+Xi0cBX6mqG4ENwCFJDk6yG3BcP1aSJEla0GacSU5yDnA0sHeSLcCrgV0Bquo0YD3wFGAzcDvw/L5ve5ITgYuAFcAZVXX1HLwHSZIkaaLGubvF8TP0F/CyafrW04VoSZIkadHwiXuSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDVmfCy1NEmrT3rX0CXMyvUnP3XoEiRJ0jxwJlmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqjBWSk6xNcm2SzUlOmqL/15Jc0X9tSvKtJN/f912f5Kq+b+Ok34AkSZI0abvMNCDJCuAU4InAFmBDkvOr6hM7xlTVnwJ/2o9/OvCKqvriyGEeX1W3TLRySZIkaY6MM5N8JLC5qq6rqjuAc4Fj72L88cA5kyhOkiRJGsI4IXl/4IaR11v6tu+R5F7AWuCtI80FXJzksiTrpvsmSdYl2Zhk47Zt28YoS5IkSZob44TkTNFW04x9OvDhZqnFY6rqCOAY4GVJHjfVjlV1elWtqao1K1euHKMsSZIkaW6ME5K3AAeOvD4A2DrN2ONollpU1db+z5uB8+iWb0iSJEkL1jgheQNwSJKDk+xGF4TPbwcluR9wFPCOkbZ7J7nPjm3gScCmSRQuSZIkzZUZ725RVduTnAhcBKwAzqiqq5O8pO8/rR/6TODiqvrqyO77AOcl2fG9zq6qCyf5BiRJkqRJmzEkA1TVemB903Za8/pM4Mym7TrgsFlVKEmSJM0zn7gnSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSY6yQnGRtkmuTbE5y0hT9Ryf5SpIr+q9XjbuvJEmStNDsMtOAJCuAU4AnAluADUnOr6pPNEM/WFVPu5v7SpIkSQvGODPJRwKbq+q6qroDOBc4dszjz2ZfSZIkaRDjhOT9gRtGXm/p21qPTvLxJO9O8rCd3Jck65JsTLJx27ZtY5QlSZIkzY1xQnKmaKvm9eXAQVV1GPDXwNt3Yt+user0qlpTVWtWrlw5RlmSJEnS3BgnJG8BDhx5fQCwdXRAVd1aVbf12+uBXZPsPc6+kiRJ0kIzTkjeAByS5OAkuwHHAeePDkiyb5L020f2x/3COPtKkiRJC82Md7eoqu1JTgQuAlYAZ1TV1Ule0vefBjwLeGmS7cDXgOOqqoAp952j9yJJkiRNxIwhGb6zhGJ903bayPYbgDeMu68kSZK0kPnEPUmSJKlhSJYkSZIahmRJkiSpYUiWJEmSGoZkSZIkqWFIliRJkhqGZEmSJKkx1n2SJUlazFaf9K6hS5iV609+6tAlSMuOM8mSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw/skS5KkOeV9qrUYOZMsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUsOQLEmSJDUMyZIkSVLDkCxJkiQ1DMmSJElSw5AsSZIkNQzJkiRJUmOskJxkbZJrk2xOctIU/c9JcmX/9ZEkh430XZ/kqiRXJNk4yeIlSZKkubDLTAOSrABOAZ4IbAE2JDm/qj4xMuwzwFFV9aUkxwCnAz860v/4qrplgnVLkiRJc2acmeQjgc1VdV1V3QGcCxw7OqCqPlJVX+pfXgocMNkyJUmSpPkzTkjeH7hh5PWWvm06LwTePfK6gIuTXJZk3XQ7JVmXZGOSjdu2bRujLEmSJGluzLjcAsgUbTXlwOTxdCH5sSPNj6mqrUnuD7wnySer6pLvOWDV6XTLNFizZs2Ux5ckSZLmwzgzyVuAA0deHwBsbQcleQTwRuDYqvrCjvaq2tr/eTNwHt3yDUmSJGnBGickbwAOSXJwkt2A44DzRwckWQW8DXhuVX1qpP3eSe6zYxt4ErBpUsVLkiRJc2HG5RZVtT3JicBFwArgjKq6OslL+v7TgFcBewGnJgHYXlVrgH2A8/q2XYCzq+rCOXknkiRJ0oSMsyaZqloPrG/aThvZfhHwoin2uw44rG2XJEmSFjKfuCdJkiQ1DMmSJElSY6zlFpIkSVp8Vp/0rqFLmJXrT37qYN/bmWRJkiSpYUiWJEmSGoZkSZIkqWFIliRJkhqGZEmSJKlhSJYkSZIahmRJkiSpYUiWJEmSGoZkSZIkqbHsnrjnk2ckSZI0E2eSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqGJIlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElqjBWSk6xNcm2SzUlOmqI/Sf6q778yyRHj7itJkiQtNDOG5CQrgFOAY4BDgeOTHNoMOwY4pP9aB/zNTuwrSZIkLSjjzCQfCWyuquuq6g7gXODYZsyxwFnVuRTYI8l+Y+4rSZIkLSjjhOT9gRtGXm/p28YZM86+kiRJ0oKyyxhjMkVbjTlmnH27AyTr6JZqANyW5NoxaluI9gZumauD54/n6shLhud/WJ7/4Xjuh+X5H5bnfziL/dwfNF3HOCF5C3DgyOsDgK1jjtltjH0BqKrTgdPHqGdBS7KxqtYMXcdy5fkflud/OJ77YXn+h+X5H85SPvfjLLfYAByS5OAkuwHHAec3Y84HTujvcvEo4CtVdeOY+0qSJEkLyowzyVW1PcmJwEXACuCMqro6yUv6/tOA9cBTgM3A7cDz72rfOXknkiRJ0oSMs9yCqlpPF4RH204b2S7gZePuu8Qt+iUji5znf1ie/+F47ofl+R+W5384S/bcp8u3kiRJknbwsdSSJElSw5AsSZIkNQzJkiRJUmOsC/ck6a4k2R14MHBdVX154HKWHc///EoS4Ei6J8gW3f3/P1Ze5DMI//4PJ8meVfWloeuYK84kz0KSy5P8TpIHDl2Lul+USY5IssfQtSx1SU4d2X4s8Angz4CrkjxlsMKWCc//cJI8Cfg08Bq6W58+FXgt8Om+T3PMv/8Lyr8PXcBcciZ5dvYE9gDel+Qm4Bzgn6tqyqcKarKSnFpV/7fffixwNvBfwIOS/EJ/+0HNjUeNbP8+8IyqujzJDwBvYXnd9nEInv/h/CXwhKq6frQxycF05/2hQxS1zPj3f+HI0AXMJUPy7Hypql4JvDLJjwPHA5cnuQY4p3/UtuaOvygXhvtW1eUAVXVdkhVDF7TMeP7n1y7AlinaPwfsOs+1yL//8y7JCTs2gT1HXlNVZw1T1dwwJE9IVX0Q+GCSlwNPBP43S/gG2wuQvyjn1w8muZLul+TqHevSktwDg8J88PwP5wxgQ5JzgRv6tgOB44C/H6yq5cW//8M6eGT7nsBqup/FkluT78NEZiHJuVV13NB1LFdJbqd7FHro/iNdNfKL8sqqeviQ9S1lSQ5qmm6sqjuS7A08rqreNkRdy8UU539rVX3T8z8/kjwUOJbuwr3QzSyfX1WfGLSwZcLfPwtHksur6oih65grhmQtWgYF6U5J7l9VNw9dh6TlI8l/VtUPD13HXPHuFnMkyfOHrmGpq6rPNl/f7NtvMSDPrST7JvmbJKck2SvJa5JcleQtSfYbur6lLsn3N197AR9LsmeS7x+6vqUsydqR7fsleWOSK5OcnWSfIWtbLpqfwR5J/t6fwWCeO3QBc8mQPHdeO3QBS12S+yb5oyT/mOTnmr5Tp9tPE3Em3W2XbgDeB3yN7lZYHwROG66sZeMW4LKRr410H/1f3m9r7vzhyPafATcBTwc2AH87SEXLz+jP4HXAjfgzGERVbRq6hrnkcotZ6C8cmLILeHBV3XM+61lukryV7n6llwIvAL4J/FxVfWOpr5Ma2uhHbEn+u6pWjfRdUVWHD1bcMpDklcATgF+rqqv6ts9U1cF3vadma/R3S/t33b/788OfwXCSrK2qC/vt+wF/DvwIsAl4RVV9fsj6Js27W8zOPsCTgfZpMwE+Mv/lLDsPrKqf6bffnuS3gfcm+akhi1omRj+Fam/54ydUc6yqXtffXeH1SW4AXs0SvLJ8gbp/kl+h+z1/3yQZedKef/fnhz+D4fwhcGG//WfcOYv/03Sz+M8Ypqy5YUienQuA3avqirYjyfvnvZrl555J7lFV3waoqj9IsgW4BNh92NKWvHck2b2qbquq39nRmORBwKcGrGvZqKotwM8meTrwHuBeA5e0XPwdcJ9++03A3sC2JPsCVwxV1DLjz2BhWDMya//6JM8bspi54HILLVpJ/gS4uKr+rWlfC/x1VR0yTGXS/EryfXSfrCzp9YGShtVPRP053Sz+y+h+71Tfd2VVPWLI+ibNjyUmLMm6oWtYLqrq19uA3LdfaECef0kuGLqG5aqqvgacPHQdy5V/94fnz2De7JjF3507Z/FZqrP4LreYvJfgk/YGk+SCqnra0HUsU/sPXcAy5/kfjud+eP4M5kFVfdedu5I8NslzgU1VdcI0uy1aziRPXoYuYJnzF+Vw/nPoApY5z/9wPPfD82cwD5J8bGT7RcAb6GaWX53kpMEKmyOuSZ6lJD/InY8nLeBm4G1Vdc2ghS1TSc6oqhcMXcdylGSvqvrC0HUsV57/4XjutVw0t//cADylqrYluTdwaVX90LAVTpYzybOQ5DeAc+lmjz9GdyPzbwHnLMV/US0GBuT5keTk/vHfJFmT5Drg0iSfTXLUwOUteZ7/4XjuF7Yk7x66hiXuHv2TPfeim2jdBlBVXwW2D1va5DmTPAtJPgU8bMfjkEfadwOu9uKxuZVkDfCnwOeA3wTOoLup+aeBdVXlx29zJMlVO2YMkrwP+PWq2pDkwcDZVbVm2AqXNs//cDz3w0sy3YOiAlxQVfvNZz3LSZLrgW/TnesCfqyqbkqyO/ChpfYgFy/cm51vAw8APtu079f3aW6dSvcQhT3oHt7yiqp6YpKf7PsePWBtS92uSXapqu3A91XVBoCq+lQSnzQ59zz/w/HcD28D8AGmvgZoj/ktZXmpqtXTdH0beOY8ljIvnEmehf5+vG+gm7m8oW9eBTwIOHHHoxs1N2Z4NPJ3+jR5SV5O95Slk4HH0f2P6W3ATwI/UFXPHa66pc/zPxzP/fCSbAKeWVWfnqLvhqo6cICytAQ5kzwLVXVh/xHbkXQX7gXYAmyoqm8NWtzy8PUkTwLuB1SSZ1TV2/t1gZ7/OVRVf53kKuClwIPpfpc8GHg78P8GLG1Z8PwPpz/3m+hu9zl67t+B536+vIbpr6l6+TzWoSXOmWQtWkkOA/6E7mOeV9AFhufRrVF+cVV9ZMDylrz+zi77Ax+tqttG2tf6KcrcS3IkUP162IcBa4Frqmr9wKUtO0nOWor3iF0skjyWbrJqU1VdPHQ9WjoMyVqSkjy/qv5h6DqWqiS/SPdI0muAw4Ffqqp39H2XV9V0F9ZoApK8GjiGbhbzPXQB4QPAE4CLquoPBixvSUty/hTNPwG8F6Cqfmp+K1p+knysqo7st19M97voPOBJwDuryqdPaiIMyVqS2jXKmqz+o/5HV9VtSVYD/wr8Y1X9pevB515//g8H7gncBBxQVbcm+T66mf1HDFnfUpbkcuATwBvpru4PcA5wHEBVfWC46paH5XavXg3HNclatJJcOV0XsM981rIMrdixxKKqrk9yNPCvSQ7Cp07Oh+39dQ+3J/mvqroVoKq+lsQ768ytNcAvAb8N/FpVXZHka4bjeXWPJHvSrUv+rnv1Jlly9+rVcAzJWsz2AZ4MfKlpD90t4TR3bkpyeFVdAdDPKD+N7l7VzuLMvTuS3KuqbgceuaMxyf3w9pNzqqq+Dbw+yb/0f34e/1863+4HXEZ/r94k+47cq9d/pGti/A9bi9kFwO47gtqoJO+f92qWlxNonq7U3zf2hCR/O0xJy8rjquob8J3QtsOudBevao5V1RbgZ5M8Fbh16HqWk+V2r14NxzXJkiRJUmO6+wxKkiRJy5YhWZIkSWoYkiVpkUjyzCTVP8hFkjSHDMmStHgcD3yI/p68kqS5Y0iWpEWgv73VY4AX0ofkJPdIcmqSq5NckGR9kmf1fY9M8oEklyW5KMl+A5YvSYuOIVmSFodnABdW1aeALyY5AvhpYDXdvalfBDwaIMmuwF8Dz6qqR9Ldv9pHVUvSTvA+yZK0OBwP/EW/fW7/elfgX/p7Jd+U5H19/0OAhwPvSQKwArhxXquVpEXOkCxJC1ySvYCfAB6epOhCbwHnTbcLcHVVPXqeSpSkJcflFpK08D0LOKuqDqqq1VV1IPAZ4BbgZ/q1yfsAR/fjrwVWJvnO8oskDxuicElarAzJkrTwHc/3zhq/FXgAsAXYBPwt8FHgK1V1B12w/uMkHweuAH5s3qqVpCXAx1JL0iKWZPequq1fkvEx4DFVddPQdUnSYueaZEla3C5IsgewG/D7BmRJmgxnkiVJkqSGa5IlSZKkhiFZkiRJahiSJUmSpIYhWZIkSWoYkiVJkqSGIVmSJElq/H9l7DA4WZJKlgAAAABJRU5ErkJggg==\n",
259 | "text/plain": [
260 | ""
261 | ]
262 | },
263 | "metadata": {
264 | "needs_background": "light"
265 | },
266 | "output_type": "display_data"
267 | }
268 | ],
269 | "source": [
270 | "df.groupby('Age').sum()['Purchase'].plot(kind = 'bar', figsize = (12, 6), title = 'Amount Spend by Age')"
271 | ]
272 | },
273 | {
274 | "cell_type": "code",
275 | "execution_count": 116,
276 | "id": "73aed420",
277 | "metadata": {},
278 | "outputs": [
279 | {
280 | "data": {
281 | "text/plain": [
282 | ""
283 | ]
284 | },
285 | "execution_count": 116,
286 | "metadata": {},
287 | "output_type": "execute_result"
288 | },
289 | {
290 | "data": {
291 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAGWCAYAAABVS2RNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAi+UlEQVR4nO3debxdZX3v8c+XQYpygQgBMUGDigPQipLywmqtt1pJ1Qq2YmNbkyo21aq1drDYSb299NJeh9YqttQBcICmDgWpWCmK1VaFgFSmIlGQRKbgPILAr3+sFdkcThJ4zjl7nZz9eb9e+7XXftZwfvvhsPM9az/rWakqJEmSJN07OwxdgCRJkrQ9MkhLkiRJDQzSkiRJUgODtCRJktTAIC1JkiQ1MEhLkiRJDQzSkqQmSX49yae2sG5Zkkqy07jrkqRxMUhLmihJzkvy9SS7DF3LdLYWTke2OTjJR/v38Y0kFyZ52rhqHErfN5XkOUPXIklgkJY0QZIsA34aKOCZw1YzIx8CzgH2BfYBfhv41qAVjcdq4Gv9syQNziAtaZKsAj4DnMyUMJbk5CQnJjk7yXeS/EeSByT56/7M738neczI9o/qz25/I8llSZ45su68JC8ceX2Xs8z9WdUXJbmqP/Zb0nkU8HfA4/oavjH1DSTZGzgA+IequrV//EdVfapf/6QkG5P8UZKbk1yT5FdH9t8lyeuSXJvkxiR/l2TXKfv+XpKbklyf5Pkj++6V5Mwk30pyPvDQe9DnL0hyXX+s3+uP84Ak30uy18ixD0uyKcnO0x0kyYOBnwHWAEcm2XfK+lf2P+O6JC/s+/hh23rPkjQTBmlJk2QV8J7+cbcwBjwH+BNgb+AW4NPARf3r9wFvAOjD3oeAj9KdEX4Z8J4kj7gXtTwD+Eng0f3PPbKqrgBeBHy6qnarqj2n2e+rwHrg3UmOnuY9ADygr3kJ3R8MJ43U9pfAw4FDgYf12/zZlH336NuPBd6SZFG/7i3AD4D9gBf0j23538CBwFOB45I8papuAM7r3/dmvwacXlU/3MJxVgHrqur9wBXA6B8HK4DfBZ7Sv6efmbLvtt6zJDUxSEuaCEmeADwYWFtVFwJfBH5lymYfrKoLq+oHwAeBH1TVqVV1O/CPwOYz0kcAuwEn9GeEPwacBTz3XpR0QlV9o6quBT5OF/K2qaqKLpxeA7weuD7Jvyc5cMqmf1pVt1TVJ4B/AZ6TJMBvAK+oqq9V1beBvwBWjuz3Q+D/VNUPq+rDwHeARyTZEfgl4M+q6rtVdSlwyj0o+bX99pcA7+TOPjqFLjzTH/u5wLu2cpxVwHv75fdy128UngO8s6ouq6rvAa/dvOIevmdJamKQljQpVgMfraqb+9dTwxjAjSPL35/m9W798gOBDVV1x8j6L9Od6bynbhhZ/t7IsbepqjZW1Uur6qF0fxx8Fzh1ZJOvV9V3p9T2QGAxcF/gwn5IyjeAj/Ttm321qm6bprbFwE7AhinH3Zap2z+wXz4DOCjJQ4CfA75ZVedPd4Akj6cbznJ63/Re4MeTHNq/fuCUnzO6fE/esyQ1cVoiSQtePx72OcCOSTYH2F2APZM8uqr+614e8jpg/yQ7jITpBwFf6Je/SxfeNnvAvTh23ZtCqmpDkrcAp400L0pyv5Ew/SDgUuBmuj8IDq6qr9ybnwNsAm4D9gf+e+S42zJ1++v6un+QZC3dEI1HsvWz0auBABd3J5h/ZBVwMXA9sHTKz9xsJu9ZkrbKM9KSJsHRwO3AQXRDKA4FHgV8ki6M3VufpQvLr0yyc5InAb/AnWdMLwZ+Mcl9+wvejr0Xx74RWJrkPtOtTLIoyWuTPCzJDv3Fhy+gu4hy1GuT3CfJT9ONx/6nPvT/A/DGJPv0x1uS5MhtFdUPb/kA8Jr+fR3EPZs940/77Q8Gnk83RGazU4Ffp5tB5d1beL8/RvdH0Bru/G93KN249F9NN0/1WuD5/QWg92Vk/PNM3rMkbYtBWtIkWE03hvbaqrph8wN4M3eGsXusqm6lC38/T3fG80RgVVVtPvP6RuBWulB8Ct3FjffUx4DLgBuS3DzN+luBZcC/0U15dyndhZG/PrLNDcDX6c7+vgd40Uhtf0h3seJnknyrP849vUjypXTDPG6gm/nknfdgn0/0P+9c4HVV9dHNK6rqP4A7gIuq6pot7H803RnlU6f8t3s7sCOwoqrOBt5EN9Z8Pd1FotD1C8zsPUvSFqW7bkWStBD0Z8ffXVVLt7HpvJDkY8B7q+pts3jMR9H9gbHLlPHekjSrPCMtSRpEkp8EHstdh3u0HutZ/VCWRXTT3X3IEC1prhmkJUljl+QUuiEWv9NPSTdTv0l3QeQX6cbDv3gWjilJW+XQDkmSJKmBZ6QlSZKkBtsM0knekeSmJJeOtN0/yTlJruqfF42se1WS9UmuHJ1eKMlhSS7p172pv9sUSXZJ8o99+2eTLJvl9yhJkiTNum0O7UjyRLpbxJ5aVYf0bX8FfK2qTkhyHLCoqv6wn1f0NOBwujtN/Rvw8Kq6Pcn5wMvp5jr9MPCmqjo7yW8BP1FVL0qyEnhWVf3ytgrfe++9a9myZY1vW5IkSbpnLrzwwpur6m53RN3m3KlV9e/TnCU+CnhSv3wKcB7dPJ1HAadX1S3A1UnWA4cnuQbYvao+DZDkVLq5Qc/u93lNf6z3AW9OktpGwl+2bBnr1q3bVvmSJEnSjCT58nTtrWOk962q6wH653369iXAhpHtNvZtS/rlqe132aefquibwF6NdUmSJEljMdsXG2aattpK+9b2ufvBkzVJ1iVZt2nTpsYSJUmSpJlrDdI3JtkPoH++qW/fCOw/st1SulvUbuyXp7bfZZ/+Nr17AF+b7odW1UlVtbyqli9efLdhKpIkSdLYtAbpM4HV/fJq4IyR9pX9TBwHAAcC5/fDP76d5Ih+to5VU/bZfKxnAx/b1vhoSZIkaWjbvNgwyWl0FxbunWQj8GrgBGBtkmOBa4FjAKrqsiRrgcuB24CXVNXt/aFeDJwM7Ep3keHZffvbgXf1FyZ+DVg5K+9MkiRJmkPb7Z0Nly9fXs7aIUmSpLmW5MKqWj613TsbSpIkSQ0M0pIkSVIDg7QkSZLUwCAtSZIkNTBIS5IkSQ0M0pIkSVIDg7QkSZLUYJs3ZJEkSZpry477l6FLmJFrTnj60CVoAJ6RliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJauDFhpIkSRPOiz3beEZakiRJauAZaUmaRzwrJEnbD89IS5IkSQ0M0pIkSVIDh3ZIuguHFkiSdM8YpCVJ6m3Pf0j6R6Q0fgZpzUv+YyZJkuY7x0hLkiRJDQzSkiRJUgODtCRJktTAIC1JkiQ1MEhLkiRJDQzSkiRJUgOnv9uC7Xn6NXAKNkmSpLnmGWlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpwYyCdJJXJLksyaVJTkvyY0nun+ScJFf1z4tGtn9VkvVJrkxy5Ej7YUku6de9KUlmUpckSZI015qDdJIlwG8Dy6vqEGBHYCVwHHBuVR0InNu/JslB/fqDgRXAiUl27A/3VmANcGD/WNFalyRJkjQOMx3asROwa5KdgPsC1wFHAaf0608Bju6XjwJOr6pbqupqYD1weJL9gN2r6tNVVcCpI/tIkiRJ81JzkK6qrwCvA64Frge+WVUfBfatquv7ba4H9ul3WQJsGDnExr5tSb88tf1ukqxJsi7Juk2bNrWWLkmSJM3YTIZ2LKI7y3wA8EDgfkl+bWu7TNNWW2m/e2PVSVW1vKqWL168+N6WLEmSJM2amQzteApwdVVtqqofAh8Afgq4sR+uQf98U7/9RmD/kf2X0g0F2dgvT22XJEmS5q2ZBOlrgSOS3LefZePJwBXAmcDqfpvVwBn98pnAyiS7JDmA7qLC8/vhH99OckR/nFUj+0iSJEnz0k6tO1bVZ5O8D7gIuA34HHASsBuwNsmxdGH7mH77y5KsBS7vt39JVd3eH+7FwMnArsDZ/UOSJEmat5qDNEBVvRp49ZTmW+jOTk+3/fHA8dO0rwMOmUktkiRJ0jh5Z0NJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGMwrSSfZM8r4k/53kiiSPS3L/JOckuap/XjSy/auSrE9yZZIjR9oPS3JJv+5NSTKTuiRJkqS5NtMz0n8DfKSqHgk8GrgCOA44t6oOBM7tX5PkIGAlcDCwAjgxyY79cd4KrAEO7B8rZliXJEmSNKeag3SS3YEnAm8HqKpbq+obwFHAKf1mpwBH98tHAadX1S1VdTWwHjg8yX7A7lX16aoq4NSRfSRJkqR5aSZnpB8CbALemeRzSd6W5H7AvlV1PUD/vE+//RJgw8j+G/u2Jf3y1Pa7SbImybok6zZt2jSD0iVJkqSZmUmQ3gl4LPDWqnoM8F36YRxbMN2459pK+90bq06qquVVtXzx4sX3tl5JkiRp1swkSG8ENlbVZ/vX76ML1jf2wzXon28a2X7/kf2XAtf17UunaZckSZLmreYgXVU3ABuSPKJvejJwOXAmsLpvWw2c0S+fCaxMskuSA+guKjy/H/7x7SRH9LN1rBrZR5IkSZqXdprh/i8D3pPkPsCXgOfThfO1SY4FrgWOAaiqy5KspQvbtwEvqarb++O8GDgZ2BU4u39IkiRJ89aMgnRVXQwsn2bVk7ew/fHA8dO0rwMOmUktkiRJ0jh5Z0NJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhrMOEgn2THJ55Kc1b++f5JzklzVPy8a2fZVSdYnuTLJkSPthyW5pF/3piSZaV2SJEnSXJqNM9IvB64YeX0ccG5VHQic278myUHASuBgYAVwYpId+33eCqwBDuwfK2ahLkmSJGnOzChIJ1kKPB1420jzUcAp/fIpwNEj7adX1S1VdTWwHjg8yX7A7lX16aoq4NSRfSRJkqR5aaZnpP8aeCVwx0jbvlV1PUD/vE/fvgTYMLLdxr5tSb88tV2SJEmat5qDdJJnADdV1YX3dJdp2mor7dP9zDVJ1iVZt2nTpnv4YyVJkqTZN5Mz0o8HnpnkGuB04GeTvBu4sR+uQf98U7/9RmD/kf2XAtf17Uunab+bqjqpqpZX1fLFixfPoHRJkiRpZpqDdFW9qqqWVtUyuosIP1ZVvwacCazuN1sNnNEvnwmsTLJLkgPoLio8vx/+8e0kR/Szdawa2UeSJEmal3aag2OeAKxNcixwLXAMQFVdlmQtcDlwG/CSqrq93+fFwMnArsDZ/UOSJEmat2YlSFfVecB5/fJXgSdvYbvjgeOnaV8HHDIbtUiSJEnj4J0NJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGjQH6ST7J/l4kiuSXJbk5X37/ZOck+Sq/nnRyD6vSrI+yZVJjhxpPyzJJf26NyXJzN6WJEmSNLdmckb6NuD3qupRwBHAS5IcBBwHnFtVBwLn9q/p160EDgZWACcm2bE/1luBNcCB/WPFDOqSJEmS5lxzkK6q66vqon7528AVwBLgKOCUfrNTgKP75aOA06vqlqq6GlgPHJ5kP2D3qvp0VRVw6sg+kiRJ0rw0K2OkkywDHgN8Fti3qq6HLmwD+/SbLQE2jOy2sW9b0i9PbZ/u56xJsi7Juk2bNs1G6ZIkSVKTGQfpJLsB7wd+p6q+tbVNp2mrrbTfvbHqpKpaXlXLFy9efO+LlSRJkmbJjIJ0kp3pQvR7quoDffON/XAN+ueb+vaNwP4juy8Fruvbl07TLkmSJM1bM5m1I8DbgSuq6g0jq84EVvfLq4EzRtpXJtklyQF0FxWe3w//+HaSI/pjrhrZR5IkSZqXdprBvo8HngdckuTivu2PgBOAtUmOBa4FjgGoqsuSrAUup5vx4yVVdXu/34uBk4FdgbP7hyRJkjRvNQfpqvoU049vBnjyFvY5Hjh+mvZ1wCGttUiSJEnj5p0NJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqYJCWJEmSGhikJUmSpAYGaUmSJKmBQVqSJElqMG+CdJIVSa5Msj7JcUPXI0mSJG3NvAjSSXYE3gL8PHAQ8NwkBw1blSRJkrRl8yJIA4cD66vqS1V1K3A6cNTANUmSJElbNF+C9BJgw8jrjX2bJEmSNC+lqoaugSTHAEdW1Qv7188DDq+ql03Zbg2wpn/5CODKsRY6u/YGbh66iAlm/w/Hvh+W/T8s+3849v2wtvf+f3BVLZ7auNMQlUxjI7D/yOulwHVTN6qqk4CTxlXUXEqyrqqWD13HpLL/h2PfD8v+H5b9Pxz7flgLtf/ny9COC4ADkxyQ5D7ASuDMgWuSJEmStmhenJGuqtuSvBT4V2BH4B1VddnAZUmSJElbNC+CNEBVfRj48NB1jNGCGKKyHbP/h2PfD8v+H5b9Pxz7flgLsv/nxcWGkiRJ0vZmvoyRliRJkrYrBmlJkiSpgUFakiRJajBvLjaUtPAl2Q14OPClqvrGwOVMHPt/vJIEOJzuTr1Fd3+E88uLk8bO3/1hJVlUVV8fuo654BnpMUhyUZI/SfLQoWtR94Ga5LFJ9hy6loUuyYkjy08ALgdeD1yS5GmDFTYh7P/hJHkqcBXwGuBpwNOB1wJX9es0h/zdn3fOHbqAueIZ6fFYBOwJfDzJDcBpwD9W1d3u3qjZl+TEqvqtfvkJwHuBLwIPS/Kb/dSLmhtHjCz/OXB0VV2U5CHAWiZryssh2P/D+RvgKVV1zWhjkgPo+v1RQxQ1Qfzdn18ydAFzxSA9Hl+vqt8Hfj/JTwPPBS5KcgVwWn/rc80dP1Dnh92r6iKAqvpSkh2HLmjC2P/jtROwcZr2rwA7j7mWSefv/gCSrNq8CCwaeU1VnTpMVbPPID1mVfVJ4JNJXgb8HPDLLNBJyucpP1DH65FJPk/3Qbps8zi5JDtgmBgH+3847wAuSHI6sKFv2x9YCbx9sKomh7/7wztgZHkXYBndf48FdY2AN2QZgySnV9XKoeuYVEm+B6yn/0AFHjTygfr5qjpkyPoWsiQPntJ0fVXdmmRv4IlV9YEh6poU0/T/dVX1Q/t/PJI8CjiK7mLD0J2hPrOqLh+0sAngZ8/8kuSiqnrs0HXMBYO0FjzDhHSnJPtU1U1D1yFpciT5XFU9Zug65oKzdgwsyfOHrmGhq6ovT3n8sG+/2RA9t5I8IMlbk7wlyV5JXpPkkiRrk+w3dH0LXZL7T3nsBZyfZFGS+w9d30KWZMXI8h5J3pbk80nem2TfIWubBFP6f88kb7f/B/W8oQuYKwbp4b126AIWuiS7J/l/Sd6V5FemrDtxS/tpVpxMN+3UBuDjwPfppgH7JPB3w5U1MW4GLhx5rKMbZnBRv6y58xcjy68HbgB+AbgA+PtBKposo/3/OuB67P/BVNWlQ9cwVxzaMQb9BQ/TrgIeXlW7jLOeSZPk/XTzuX4GeAHwQ+BXquqWhTxuaz4Y/TovybVV9aCRdRdX1aGDFTcBkvw+8BTgD6rqkr7t6qo6YOt7aqZGP1um/q77uz/37P9hJVlRVR/pl/cA3gD8JHAp8IqqunHI+maTs3aMx77AkcDUu/oE+M/xlzNxHlpVv9Qv/3OSPwY+luSZQxY1IUa/9Zo63ZHfiM2xqnpdP2vEG5NsAF7NArtifh7bJ8nv0n3O754kI3c09Hd/7tn/w/oL4CP98uu58xuBX6T7RuDoYcqafQbp8TgL2K2qLp66Isl5Y69m8uySZIequgOgqo5PshH4d2C3YUtb8M5IsltVfaeq/mRzY5KHAV8YsK6JUVUbgWOS/AJwDnDfgUuaFP8A/K9++RRgb2BTkgcAFw9V1ASx/+eP5SPfALwxyeohi5ltDu3Qgpfkr4CPVtW/TWlfAfxtVR04TGXSeCXZle4bmgU7XlHS8PqTVW+g+0bgJXSfO9Wv+3xV/cSQ9c0mv94YSJI1Q9cwKarqlVNDdN/+EUP0+CU5a+gaJlVVfR84Yeg6JpW/+8Oy/8dq8zcCu3HnNwIsxG8EHNoxnBfhHQ0Hk+SsqnrG0HVMqCVDFzDh7P/h2PfDsv/HpKruMiNZkickeR5waVWt2sJu2yXPSA8nQxcw4fxAHc7nhi5gwtn/w7Hvh2X/j0mS80eWXwi8me4M9auTHDdYYXPAMdJjkuSR3Hmr2AJuAj5QVVcMWtiESvKOqnrB0HVMoiR7VdVXh65jUtn/w7HvNSmmTH16AfC0qtqU5H7AZ6rqx4etcPZ4RnoMkvwhcDrdWejz6SaEvx04baH9Zba9MESPR5IT+luxk2R5ki8Bn0ny5SQ/M3B5C579Pxz7fv5KcvbQNUyAHfo7qO5Fd9J2E0BVfRe4bdjSZpdnpMcgyReAgzffmnqk/T7AZV7wNreSLAf+P/AV4FXAO+gmhr8KWFNVft03R5JcsvnMQ5KPA6+sqguSPBx4b1UtH7bChc3+H459P6wkW7rRVoCzqmq/cdYzaZJcA9xB198F/FRV3ZBkN+BTC+mGOF5sOB53AA8Evjylfb9+nebWiXQ3otiT7gY4r6iqn0vy5H7d4wasbaHbOclOVXUbsGtVXQBQVV9I4h095579Pxz7flgXAJ9g+uuR9hxvKZOnqpZtYdUdwLPGWMqc84z0GPTzFb+Z7gzohr75QcDDgJduvo2m5sY2blP9o3WafUleRnc3qxOAJ9L9A/YB4MnAQ6rqecNVt/DZ/8Ox74eV5FLgWVV11TTrNlTV/gOUpQXIM9JjUFUf6b/OO5zuYsMAG4ELqur2QYubDD9I8lRgD6CSHF1V/9yPU7T/51BV/W2SS4AXAw+n+8x5OPDPwP8dsLSJYP8Pp+/7S+mmOh3t+zOw78fhNWz5OrCXjbEOLXCekdaCl+TRwF/RfaX0CrpQsZpuzPRvVNV/DljegtfPWLME+GxVfWekfYXfxsy9JIcD1Y/PPRhYAVxRVR8euLSJk+TUhTaH7vYiyRPoTmZdWlUfHboeLRwGaU20JM+vqncOXcdCleS36W4PewVwKPDyqjqjX3dRVW3pgiDNgiSvBn6e7mzoOXRB4hPAU4B/rarjByxvQUty5jTNPwt8DKCqnjneiiZLkvOr6vB++TfoPoc+CDwV+FBVeYdPzQqDtCba1DHTml39sILHVdV3kiwD3ge8q6r+xvHpc6/v/0OBXYAbgKVV9a0ku9J9Q/ATQ9a3kCW5CLgceBvdrAUBTgNWAlTVJ4arbuGbpHmMNSzHSGvBS/L5La0C9h1nLRNox83DOarqmiRPAt6X5MF4d89xuK2/DuN7Sb5YVd8CqKrvJ3HGoLm1HHg58MfAH1TVxUm+b4Aemx2SLKIbJ32XeYyTLKh5jDUsg7Qmwb7AkcDXp7SHbjo8zZ0bkhxaVRcD9Gemn0E3l7dnhOberUnuW1XfAw7b3JhkD5x6c05V1R3AG5P8U/98I/6bO057ABfSz2Oc5AEj8xj7R7xmjf9TaxKcBey2OcyNSnLe2KuZLKuYcherfl7dVUn+fpiSJsoTq+oW+FGw22xnugtuNceqaiNwTJKnA98aup5JMUnzGGtYjpGWJEmSGmxpjkVJkiRJW2GQliRJkhoYpCVpAUnyrCTV3whHkjSHDNKStLA8F/gU/XzFkqS5Y5CWpAWin9rr8cCx9EE6yQ5JTkxyWZKzknw4ybP7dYcl+USSC5P8a5L9BixfkrY7BmlJWjiOBj5SVV8AvpbkscAvAsvo5u1+IfA4gCQ7A38LPLuqDqOb29tbhkvSveA80pK0cDwX+Ot++fT+9c7AP/XzSN+Q5OP9+kcAhwDnJAHYEbh+rNVK0nbOIC1JC0CSvYCfBQ5JUnTBuIAPbmkX4LKqetyYSpSkBcehHZK0MDwbOLWqHlxVy6pqf+Bq4Gbgl/qx0vsCT+q3vxJYnORHQz2SHDxE4ZK0vTJIS9LC8Fzufvb5/cADgY3ApcDfA58FvllVt9KF779M8l/AxcBPja1aSVoAvEW4JC1wSXarqu/0wz/OBx5fVTcMXZckbe8cIy1JC99ZSfYE7gP8uSFakmaHZ6QlSZKkBo6RliRJkhoYpCVJkqQGBmlJkiSpgUFakiRJamCQliRJkhoYpCVJkqQG/wNNCftFTgoUXgAAAABJRU5ErkJggg==\n",
292 | "text/plain": [
293 | ""
294 | ]
295 | },
296 | "metadata": {
297 | "needs_background": "light"
298 | },
299 | "output_type": "display_data"
300 | }
301 | ],
302 | "source": [
303 | "df.groupby('Age').mean()['Purchase'].plot(kind = 'bar', figsize = (12, 6), title = 'Amount Spend by Age')"
304 | ]
305 | },
306 | {
307 | "cell_type": "code",
308 | "execution_count": 119,
309 | "id": "bbdb3f43",
310 | "metadata": {},
311 | "outputs": [
312 | {
313 | "data": {
314 | "text/plain": [
315 | ""
316 | ]
317 | },
318 | "execution_count": 119,
319 | "metadata": {},
320 | "output_type": "execute_result"
321 | },
322 | {
323 | "data": {
324 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAADnCAYAAAAzUZtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzqklEQVR4nO2deXxU1dnHv89kT4CwrwHCTtRRVESsBDTVVoHi1qqtbV3aWtq4ltbS19qibV/j3tYidHGJO3Z5rQXriiyKrAqyhC0QlpAQluzLrM/7x51oyDqTzMydmdzv5zMfJjf33PNMmN89557zLKKqWFhYxCY2sw2wsLAIHZbALSxiGEvgFhYxjCVwC4sYxhK4hUUMYwncwiKGsQRuYRHDWAK3sIhhLIFbWMQwlsAtLGIYS+AWFjGMJXALixjGEriFRQxjCdzCIoaxBG5hEcNYArewiGEsgVtYxDCWwC1MQUSeEZEyEdnW5NgkEVkrIptFZKOITGmj7SMislNEPhOR/xOR3r7jmSJS72u/WUQWh+njRCyWwC3M4jngsmbHHgbuV9VJwK98P7fGu8AZqnomsBv4RZPfFarqJN9rbnBNjj4sgVuYgqquAk42Pwz08r1PB4600fYdVXX7flwLZITEyBgg3mwDLCyacBfwtog8ijH4fMmPNrcAS5r8PEpEPgWqgF+q6uqgWxlFWCO4RSTxI+BuVR0O3A083d7JInIv4AZe8h0qAUao6tnAT4CXRaRXW+27A5bALSKJG4F/+d7/HZgCICLP+hbN3mw8UURuBGYDN6gv97eqOlT1hO/9JqAQGB9G+yMOa4puEUkcAWYAK4AcYA+Aqt7c9CQRuQz4OTBDVeuaHB8AnFRVj4iMBsYB+8JjemQiVuEDCzMQkVeAi4D+wFHg18Au4A8YA08D8GPfSNy87V4gCTjhO7RWVeeKyDXAAxjTdg/wa1X9T4g/SkRjCdzCIoaxnsEtLGIY6xk8llmQnoSxyDQE6Nfs1bfZzz0xpsX1QF2Tf5u/L8VwLjFeCyprw/eBLALFmqLHCPZ8+4g41XM3Fx06Gzjd9xoLxIW46yMYYt/FF8LfwYLKbr24FSlYAo9C7Pl2GzAVuBQ4z/caCPDOweLSIR7PYBPNa6QEWA2s9L12sKDS+rKFGUvgUYI9356KIeg5GPu/A1s773fHTmyYU1N7Xjht85OjwNvAf4F3WFDZ3E3VIgRYAo9g7Pn2QcDXMER9CZDSUZtZNbUr846dmBFq27qIB1gHvAK8xILKcpPtiVksgUcY9nx7D+Am4FvA+QS40zHc5Vr75uGSqSEwLVQ0YHivPQ18YE3jg0tUC1xEhgPPA4MBL/AXVf2D73e3A7dhOD0sU9V7Wmn/G+AKX9sy4CZVPSIimUABxsIR+BwpQvlZ7Pn20cDtGMETnfafTlA98EnRoZFBMyy87AOeAZ5lQWWrkWQWgRHtAh8CDFHVT0SkJ7AJuBIYBNwLzFJVh4gMVNWyVtr3UtUq3/s7gNN8HlGZwFJVPSPUn8Geb88B7sR4ru66X4Kqrj1wuDZNtUeXr2UeHuAt4G/AGyyo9JpsT9QS1fvgqlqCsVqLqlaLSAEwDPgBkKeqDt/vWojbd7yqyY9pGPHIIceeb08Bvg3cAQT3JiIinyYn7Z9W32AP6nXDSxwwy/fazoL0X7Gg8l8dtLFohZjxZPONumdjLN6MB7JFZJ2IrBSRNleVReR3InIIuAEji0gjo0TkU1/77GDYaM+3J9nz7T8HDgF/Idji9rE2JTmWFq1OB/7JgvQNLEj/itnGRBsxIXAR6QH8E7jLNyrHA30w9op/BrwmItJaW1W91xd//BLGMzuEIK7Ynm+/GtgB5GF4joWMTclJrX7WKGcy8DYL0lewIP1Cs42JFqJe4CKSgCHul1S1cRp3GPiXGqzHWETr31pccRNeBq6B4MYV2/PtZ9nz7R/4bBzdmWsEyv6EhJDeQExmBvAhC9LfZEH62WYbE+lE+yKbAPkYMcB3NTk+Fxiqqr8SkfHA+xgjsjZrP05V9/je344RX/z1VuKKVwN2VfXbOcOebx8A/Bb4PuG+karWby46lBgXejdVs1GMmdedluNM60S7wKdhiG8rxigN8D/AexjbLZMAJ/BTVV3eSvt/AhN8bQ8Ac1W1uCtxxfZ8ewLG4tl9GIkDTeG14pLCLKdrjFn9h5lS4IcsqHzDbEMijagWeKRhz7efA7wIZJlty09Olq+5ubLan6SFscQLwB0sqKww25BIIeqfwSMBe77dZs+3/wIjha/p4gZYl5zsMtsGE/gOxrbaTLMNiRQsgXcRe759JEYOsf8FEsy15gt2Jib2NNsGkxgKLGNB+jMsSO/WGVXBEniXsOfb5wCbgaDskweTk3G24WbbYDI3A9tYkJ5jtiFmYj2DdwJ7vj0eY8T+KRCxe87vHSw+OsjjGWS2HSbjAX7GgsonzDbEDKwRPEDs+fYhwHIMB5qIFTfAhuSkQ2bbEAHEAY+zIP05XwqrboUl8ACw59snYCykRdyUvDU+Tkm28qV9wY3Aytv+55fdakZjCdxP7Pn2ycCHwAizbfGXLclJiWbbEEl84DmrYan3gnWZ85dFxE5HOLAE7ge+kM7lGEn6o4Yj8fGRkJstIjjoHbj2Ztc904GRwEeZ85dNN9umcGAJvAPs+fargDcx0gpHFS4YWSfS7afptZpc8FXnQ2fC5wFHfYB3Mucvu85Mu8KBJfB2sOfbv4dRBC86F2dEbFuSkvabbYaZuNVW8mXHo33rSUpt9qsk4OVYF7kl8Daw59vvwcgoEtUBG2tiKzY8IFSp/Ybz11Wl9G1rYc0GvJA5f9nscNoVTiyBt4I93/5b4CGz7QgGG5Ojc/LRVVTx3uO+dfunOm5CB6cmAH/PnL8sJh1iLIE3w55v/xFGPreYYH9iQl+zbTCDlzxfXv13z0VT/Dw9Gfh35vxl0ZSN1i8sgTfBnm+fCTxpth3BpFZklPeLUNpuwWbvmNW/dH8v0NzwPYD/Zs5fNikEJpmGJXAf9nz72cASovyZuwUiqXsTEg6YbUa4OK69PrnGueCCTjbvjbG6PjGIJpmKJXDAnm/PAJZi3MVjjrUpyaVm2xAOHBq/L8fx6BgPcV3JFjwAeC9z/rJozS1/Ct1e4PZ8ey+Mfe6hZtsSKtamJDvNtiHUeFVOXObMi6+iRzCy6AwD/pE5f1nUewJ2a4H7osL+DkRzDvEOKUhM7NTM5JZ/1zPwkWrOeKqmxe8eXeNA7q/ieF3rj/fttQ02qjhvcf2seL8ODaYb8WTg8SBezxS6tcCBRUDM59o+GWfr1Bf/pkkJvPXt5v4hcKjSy7v73IxIbzuYrq22oeAR93UbVngnnRmCS+dGuyNMtxW4Pd/+bYyMpzGPV2RAWVzcsUDbTR8ZT9+UliK+++0GHr4kud1Y2bbaBpu3PJNXPuW5IpR50v+WOX9ZR3vpEUu3FLhvUS2mtsM6YkNy0sFgXOeNXS6G9bRx1mDzNxv2eYesmeu6O9RBIz0wnsfDMx0JMt1O4PZ8uwDPYmyJdBvWpiRXd/UadS7ld6sdPHCx+d5xVZqy7XLng+c0CSAJJWcAT4Whn6DT7QQO5AKXmG1EuNmc1PXY8MKTXvaXK2ctriHz99UcrlLO+XMtpTXh9aNxq+1wjuOxQQ4Sk8PY7Y2Z85d9L4z9BYVuJXB7vn08MeJjHihHEroeG24fFEfZz3pSdJfxyuglfPLDNAb3CN/XSJWqq5wP1B+n94CwdfoFT2bOXxaW8lPBotsI3J5vjwOeB6LyWaqrOCGzXqQukDbf/GcdFzxdy64TXjIer+bpT9reTj9S7WXmS3WdausvqnjucuXu3qqjx3X5Yp0jBfijSX13im6TVdWeb/8l8Buz7TCTv5Uc3X5+g+N0s+3oLE+7L1/5G/d3AvUxDwVXFOXNiooySd1C4D4/83WYXJjg8NOHqd5cTXyveMb97tRB6Ph/j1O6pJSJT04kvuepnpZep5f9D+5H3Yp6lF7n9WLQVYHnDvxeReXqu8oroyJhZHPWeyesvNb560gQN0ARcFpR3qx6sw3piO4yRV9IBFQd6TOtD5nzMlscd55wUrO9hoR+rZsoCULmzzMZ+5uxjH1gLDVba6jbG9BsG4ANyeFckwoepdpn4/XO+6aZbUcTMjGKXEY8MS9we779WqCz0UVBJW1CGnFpLfePS18pZdC1bY/IIkJcstFOPcYo3pmM7PsSE/oE3spcGjRhzyWOR8Z7sZm/8X4qP8ucv2xsoI1E5DIR2SUie0VkfhvnPCMiZSKyrdnxJb769ptFpEhENnfUX1eibiIee749Ccgz2472qPq0ioQ+CaSMSGn3PPUqhb8uxFnmpO+X+5I6JvC1whpfbLgtSm7sHpVjX3E+nFJDaiTWGEvCcJa63N8GIhKHMZu8FDgMbBCRN1R1R7NTnwP+hLEo/Dmq+rnbrIg8BlR21GdU/Ed3gduBUWYb0RZeh5dj/znGwKsGdniu2ISxvxnLhMcnUL+vnobDDYF3KJK2LyEhKB5toUaVhu+6fnH0oA7KMNuWdrgsc/6yqwM4fwqwV1X3qaoTeBW4ovlJqroKONnWRUREgGuBVzrqMGYFXjAxK/3JRe5Zo0t0j9m2tIWzzInzmJO99+1l17xduMpdFP66EFdF25V/49LiSJuYRs3WzkVprU1JKumsveFCFf2N+zuffOQ94wyzbfGDxzLnL/N3JjwMaFpO6rDvWKBkA0dVO/5ux6zAgZ8MquCiB5/zjHnkb+6PBpXrYbMNak7y8GSynsxiwmMTmPDYBBL6JDDm/jEk9D51sc1d5cZT6wGMFfWaHTUkDumcY1o0xIa/4b1g1TOey79kth1+kolRl9wfWls56cw21jfxY/SGGBV4wcSsPsBdAAK2kce48I+LPQN+9ZJnVa9aPWGWXYcWHWLfb/fhKHWw8+6dnFzZ5iwMV7mLoseLAHBXutn/0H72/HIPhfcX0uP0HvSa1LnH0oLExLRONQwTu7wZH93puj1StsP85ReZ85f5swh4GGha1jkDKGuycDa3owuISDxwNUZ6sQ6JyX3wgolZv6ONbQyF6o8nyieLZ9nObUiUmEzR1B421aNbig5FZAG+Ck377DzHooku4qMxk8oNRXmzXm7vBJ84dwNfBoqBDcC3VHV7K+dmAktV9Yxmxy8DfqGqft0EY24E943ed7T1e4GeX9qpM5573FN/07uelfEejfgpazDxigw6HmcLODY81Lg07kCO49FhUSpugP/JnL+s3c1LVXUDtwFvAwXAa22I+xXgY2CCiBwWkaZBLtfj5/QcYnAEL5iYdQfwB3/Pd9s4tGS67dAbU2WqisTcDa81Hik7/slltXXnmG1HI6pUXu7MO7FTR0RVIEcrXFaUN+tts41oSix+oX8QyMnxXobfsML7pecf9eydvtW7IVRGRRJrghAbHixUcf/IdWdhDIgb4G6zDWhOTAm8YGLWBRjB+QGT5Gb8bUu95z39hHvLmfu8W4NsWkSxJSkpYhycnvLM+fgt7/kRM5voIl/NnL/sNLONaEpMCZwAR+/W6NnAWb9c4rUvXOheP6pU9wbDqEjjcITUDf/Qc8bKR9zXR2XwSzvcZbYBTYmZZ/CCiVm9gBKCGO+t4D04kDWPXBM3qqy3dMYhITJR9Ww8cMiVpJgWfVKs/dZPc/xhsmKLtUGmGhhYlDerE66GwSeW/rg3EORkDgK2kWVMe3KRp/+vXvasNHMPPaiIxH2WlLTPrO7rNGnXpY5HTo9BcQP0JAD/9FATS3/gLk/P20Ig6YwDOuOvf/Qk3vm6Z0WyU0OfzT/EfJySbMrNyqNSeqnj4V51JEe0w00XudZsAxqJCYEXTMw6Fzg71P0I9LywQC967nFP/Y3velZF8x76huTksD+bqVJ3vfO+8mIGDAl332Fmdub8Ze2HB4aJmBA4ENZslzZlwKyNOv35Rz1H56z1fkQULmQUJoQ3NlwVvdd9y2cbdGJWOPs1iR7ALLONgNgR+NfM6DTey/Bvf+C98IVHPbujbQ+92iajtHOBDp3i754Zq172XDI1XP1FABExTY/6VfSCiVlZQPOAeVOoTmbL76+02baOskVFMcPXDx85MMblDnmZ3K3ezNVfc/5vp7fDjr/5e+oLNxCXms7Q7xn1BypWvUDd3nUgQlxqb/rNvIv4nv1atK3a8Do1W94BgYQBmfSfeRcSHm/YOmBAUd6swHNrBZFYGMEvNduARno2cNZ9r0bPHvq65OQjoe7jhPb89CrnA10auXvYL2HgN+4/5Viv869h6C1/YujNT5Iy5jwq17R0z3ZXH6dq038YfOMTxo3B66W2YFVXTAmEVGB2uDprC0vgIWBAFVPynvWMfvhp90cDK7TYbHvaItSx4U6N35/jeGyUm/guJbxMHn4GcSk9TzlmS/piR1RdDbSZpM7rQd1O1OtB3Q7ievTtiimBYvo0PWJcFjtDwcSsBOAis+1oDQFbZhkXPrnI49g+Ulb+/grbGVVp0nIOaSI7khJDVgTCq5Rf7nzQVkmP3qHqo3zV89RuW44tKZVB33ywxe/je/an15SrKF50MxKfSPKos0kZFVav2IvD2VlrRPsIPhVjxTJiabKHnnDn656VkbSHfiwubnjHZwWOKs4fuOYdKNRhIX2+7zP9u2T8+DnSTruI6k1LW/ze01BD3Z51DJv7NBm5z6MuBzXbPwilSc3pmzl/2fhwdticaBd4xE3P20Kg14UFRhz6je95VsZ5tO3Ea2HCKzL4pM0WdIeXJ9xfX/++99xJwb5uW6SddhF1uz9qcbyhaDPx6YOIS01H4uJJHX8BjuKCcJnViKk7B9Eu8K+YbUCg2JQBszbojBce9ZTMWetdY/Ye+sYg1Q1v5H3P2Sv+6Lk65EUKXCe/WNqo27uOhL4tk6/G9xqA88guvK4GVJWGA1tI6BeSSUt7mJqTP6BtMhEZDywCBqnqGSJyJjBHVX8bKgPbomBiVm/gOBBpCfEDwhHPrr9cZqtebbdNNqP/a6pqVi44cTIoOdAOeAeuneF84vxg1+w+9sbDOA5uxVNfRVxqb9Kn3UDDvo24Th4GsRHfawB9v5pLfM/+uKtPcOKtPzLIt+pesfolaneuRmw2EgeNod9ldyBdW/MLlM1FebNC7mXZFoEKfCXwM+DPqnq279i25nmjwkHBxKyvYKS+iQnM2kMf43Sueb24tMsZTGs0ecdkx6JRDSRFhItmBOEB0ovyZtWa0XmgU/RUVV3f7Jg7WMYEyEST+g0JTfbQ12WWamG4+j0cH99x1YUOcKvtyCWOR/tZ4m6VOOA8szoPVODHRWQMPhdHEfk6Rgy2GUwwqd+QMqCK8x961jPq4afdH4ZjD90hkukER2fbq1LzdeeC6lL6RmSm1gjBtIW2QAWeC/wZmCgixRjZK34UbKP8JCYFDp/voU97cpGn/30ve1b2rNO2E6h3uTOJ35qUtL8zTVXx/sz9wx2bdWzM/l8EiegQuK+m0iXAAGCiqk5T1aKQWNYxMf+lEkiyH9AZf/uDJ/6Of3tWJDk1JM9xa1OSj3em3YueS1b/wzNjSrDtiUFMy9MWkMBF5E4R6YXhSP+EiHwiImHfqiqYmJVG52o6RSUCvabt0IvyH/fUffc9z6pg76GvT0nyBtrmE+/YVfe5b4m2CiRmYdp3NdAp+i2qWoWx/zwQuBlzyvOOp1MVsqMbmzJg9gad/sKjnpKvBTEOfW9CQu9Azi/T9E3fcP46WmqHRQKpmfOXhdUJvpFABd4oqpnAs6q6BXOEFvPT8/aI9zLiO7449Oxt3o1dvV6VzZbpb2x4gyYUftnx6FgPcVEdx2ACppRBDlTgm0TkHQyBvy0iPYGAp3dBoFsLvJEkNxNu/4938tO/d2+27/du6/SFRHoVJcQf6ug0r8rxy5x5idWkpXe6r+5LVAj8e8B84DxVrQMSMabp4cYSeBN61jPpvle9Z/zpKff6zu6hdxQbrorjRtfPS4p0SNh9PWOEyBS4iCSLyHoR2QJsBa4DxovIdOA+YKmIbBeRhzu4zk9FREWkv+/nTBGpb1I6dXEAdkdE4v5IY2AlUx561pPZmT30tSnJ7e6FP+j+1sbV3jOjIlNNhGKKwP15jnIAOapaIyI/BJ7A2PsuBM4EVqnqxSLSpkeUiAzHiPxqHthQqKqTOmF354pjdwME4nx76I5tI2Xl76+02atTpcMFnu1JiW16ob3pmbLiL57ZFwXV0O5HZI7gatAYw3w7sAsoBfYA3wfKfOeVtXOZJ4B7CF6Sv5A/A95bUsK0vXuYs79lfYBnTp7gtF07KXe37aXrUeXqov386HCHj7YhIdA99GNxca1+AQu9Q9b82HXXRSExsnsRmQIHEJE4EdkMZAHvYOyDTwAygdkislJEWvW3FZE5QLFvxb05o0TkU1/7QJLyhXwEvyo9nb9ktHzcLHG5+Li2jiHx7U9+XigvZ0xiUqjM8xt/99A9IkMrbLbypseqNHXrTOeDsVIY0GxMceX1S+Cq6vFNpf8LfAlYA4wFvgM0Rpi9JnJqmKCIpAL3Ar9q5bIlwAhfVNpPgJd9TjT+EHKBT05NJT2u5Z/nobIy5g0Y0O7eYKnLxcraGq5Jj5zF5iZ76Ee+1kYc+sbkpAON710adzjH8ehgB4mm1S+LMcKSyrU5gbqqzgbeA/YB24C/AVf6Isy8QH8Reda3aPYmMAYYBWwRkSKMaconIjJYVR2qRq0vVd2E8Uzvb3obU750y2uqGRgfz8Tk9rvPKyvjpwMGYotAV5x4LyO/84H3S88/5tk9rdke+scpyZUAqlRd6Xyg4Ti9B5hjZUxiit+AP6voA0Skt+99CnAJxnP36xjebIN9iSASgeOqerOqTlLVmaq6VVUHqmqmqmYCh4FzVLXUd90433VHA+MwbhztUjAxy5Q/VL3Xy59PnOD2/v3bPW9FTQ194+M4vYObgNkku5hwR7M99E+Tk+JV8dzhum33dh011mwbY4ywZploxB+xDAHyfWLsj7HA9XOMBbNhwFyMwgM3amCuk9OBB0TEjREUP1fVr6gpU/5Qh1xOil0urioyAq+Out1cc6CIJSMzGdDkefyT+jo+qKlhVc1eHKrUer3cc+QIDw8daobZHeLbQ6cs3bvu6Tk27189Mz/6j/dL0822KwYxZWAKNKPLXuD8xqm1GfjqgFeGo69il5MfHT7MG6NGt/jdJYV7+fvITPq0s9i2vq6WZ0+eZFEri3WRhIKWDjp/496MM8u/NHh8aq+EXqZFP8UqCkdH5k0P+9810LvKIcIkrnYIy53wp0eKWV9XR4XHw8WFe7mtX3+u6d271XPL3C7uKy3lzxEu5OZ4bIm1+0bN3nR42Izhaos/z1X77soVR9ZmzRmR22ATW2ROOaKXajM69WsEF5Gf+N6ejrE9towmWUBU9fGQWNcKvmIHUVu2NxKoT+57ZNe463ef7HvaJHzrKwANFYs3oXXnDkwesf2iwdePExFTVn5jlL0Zednjwt2pv6NhY92Yg75XIiYt+2ftLHAVTMyqbmKThZ+c7D1++67x11fWpwycgsgpI7SquwGtOw2grOHg6Tsr163K6j3VehYPHqbkLvRL4Kp6f8dnhZXjWAL3C6/Y3MXDZmzYlzmrpyc+pc3st17Xvh3A504tn5WvnD4kZfSHvZMGhjzHeTfBlEIXgWZ0eVeaTOlEpI+ImJG62LRFvmjBFZ9SWTDhhpUrpv++bM/Yr1/QnrgBPI5tVc2PvVfywrlur2tX6KzsVlSY0WmgC1YDVLWi8QdVLW8vyCSEWAJvg5rUIft3Tfjmocpeo89FxO+USl53cYsIPY+6U94pfjbl8owfVIpI5LjlRSdBrSDjL4EK3CMiI1T1IICIjCR4ASSB0KkkgbFMWf9Jn+wZ+3WPI6n3ZERGBdJWvbXHwdVqjH21u3zE+uNvrp/Sf+Z5zV2RLQLClKijQAX+P8CHvgonYDir3Bpck/zCGsEBr8Q7ikZ+Zf3B4ZcO9sYldjooxOPcuRsjxqBVimq2TRmWOm5lRtp4K8li54lsgYuIDcOL7RyMPM8C3K2qZoym3VrgjsRex3aPu3b7sf5nnY7YAonCaxWPs8DT0Tkflf1f9pzhuZtS4nuc29X+uimRPUVXVa+I3KaqrwEtizGHl24p8Mqembt2Tfjm8Zq0YZMRuShY11XPsTF+nGZ7q/iZUVeMuK3YJrZuk7I6iET2CO7jXRH5KbAE+DyBgJ8+5MGkNMz9mYYi3pLBUzcWjr4y0ZXYYxJBzkfndR/bD+rXM7vTW993RemrOy4e/M3+ImJ+sHt0ERUCv8X3b26TYwq0dNYOLZ3PIBoluOOSavaN+tqm4qHZmWqLD1n1EI9z20GMkF6/ONZw6LSCyrWrT+t9QZcfDboRtRl52eEeBIEABa7q350+DOzBmEGkmW1IsKlP7n945/jrC8v7TJwUyDZXZ/E49wZcEXRr+arsISmjP+yTNMhygvEPc/J2EaDAReS7rR1X1eeDY45/ZO0s8BZMzNpCOyu/0caJPllbd4+/rqY+uf8URMKSv0vV60arszrT9r2SFyZfNeKOnfG2xJgq4xwiokPgnFrnOBn4MvAJEFaB+/iUKBe4V2zuw8MuXr8/c2ZvT3xy2FMSe90HdmBkxg28rXqS3y5+Lm1mxg8qmno3WrTKp2Z1HOgU/famP/u8m14IqkX+s9mkfruMKz6tfM/Yqz8rHTRlPGIz7SblcWzr0nNhjbt8+Prjb26Y0n/mZMsJpl0+MqvjrsZW12GkWjID0+6KnaUmbei+nRO+VVzVMzMgN9JQ4XUf6NfVaxTVbDtvaOrYlcPTJpj+eSIUxUhSagqBPoP/hy9cU20YdY9fC7ZRfrINIwQv4ovgHR1w7qY9Y69WZ2L6uRj550xHvQ2VqDMoGUbWlL2ePWd47saU+B6Tg3G9GGNXRl62aa7VgYrj0Sbv3cABVT0cRHv8JmtngaNgYlannyFDjccW31A08vINhzJyhnjjEiPO+8vj2r0TOD9Il7O9Vfz0mCtG3HbYJq0XUOgK897M4/3CNfRL7cP738s/5XeL173C71YsYsvtb9A3tXeLthcsupa0xBTibHHE2eJ488a/Btu8jjBteg5+ClxEkjGSK47FqE/2tKqaEsDejM1EmMAbEnsf3T3u2p3H+9vPCIYbaajwOLa3W4ssUJzehj4flLxamjPkW45gO8F8w34ZN51zFXct+99Tjh+pOsrqoo0M69V+TYHXvvmHVsUfJkwVuL/x4PnAZAxxXw48FjKLAmO12QY0UtFrdMG68+79aM0Fv+1zfMBZMxBbl59vQ4l6jo4M9jWPOw5n7aj4eH2wrzt1+CR6p7SsdXH/+3/i3ot/hJhSot5vIn8EB05TVTuAiDwNBP0/sZP8B6PgQqBlkIOCIt4jQy5cXzh6Tqo7IS2iZhLt4fWUHwZv0AUOsK1idfbQ1NGr+yQNDuns5Z09HzK4Z39OG9h++nYRuOG1eQjCDZPmcMOkOaE0qzllGXnZu8PZYXP8Ffjn6WZU1R0pOyJZOwuOFkzMWgdcEM5+3XFJ1YWjr/jkyJBpo9UWNzWcfQcDj3P7fkJYDO+9khfPu3LEHQUJtsROOdF0RL2rgSc/foGXrut4IvmvG55icM/+HK8t51tLfsKYfiOYOnxSKMxqDdNWzxvxd+Q7S0SqfK9q4MzG9yLSItVPmPl3uDqqSxlw6JOz7li5atpjWjxsxgy1xUVXnmQfXufukO48eNWT/E7xsz1VtbzjswOnqKKYQ5UlfPWZW7hg0bWUVB/j8ue+T1lNyyDDwT2NSjT90/pw2fhsNh8pCIVJbbGy41NCi79JF+NCbUgXeB3IC2UHx/uevmX3uGvrG5L7TcGodR61qKpXvRUhdy+tcVdkrDu2dOP5A2af48slEDSyBoxh8+1vfP7zBYuuZdmNf2mxkFbnrMerSo+kVOqc9azav4E7L7wpmKa0hxfztpA/J+L3kDsia2fBroKJWbsIdhil2FwHh1+y/sCIr/b1xCefFcxrm4m6i3di+C+EnAO1OyYPSxu3cnjaxC45weS+cT9rD37KyfpKzlt4DfOm3cz1Z81u9dzS6uPc89ZDPP+NRzhWV84P/nUvAB6vhytOu4SLRwdrZ7BDVmTkZR8JV2dtEVDpokilYGLWQ8A9wbiWMyHt5J6xX//s6MDJWYjNlJrOocRZ+9YKr3PHRWHsUr82/MebUuN7djcnmO9n5GU/bbYRpqw+h4DXu3qB6h4ZhRvOuWf1h196KOXooCkXxaK4Abyu/b3D3KW8XfzMGK96THGIMgkH8A+zjYAYmKL7WIeR5aVF6t/2UNCjA8/btHfMVeJMSj8Xo555zKLqrEXrw14Az3CCeaU0Z8gNDT6nqVhnWUZettk1/IAYGcGzdhZ4CWAU99gS6/aOvmL1yum/37fjtJsm+8Qd83idhQWYVHLquKM4a3vFRxvM6NsEXjbbgEZiZQQH+DOGO22bNCT1Kdk17rrdJ/qdcSYiEetGGio8zm21HZ8VOrZXfJQ9NHXM6r5JQ2L5b1+J+UlJPycmFtkaKZiY9RGtJIEoTx+3Y9f46yvqUgedh0iCCaZFBA3lf9wDbrPCewGwEee4cuQd+0LlBBMBPJORl/09s41oJJZGcICn8AlcEU/xsOz1+zK/1sOdkBr2bCmRhnqrj5otbgAvnqS3i5/tOSvj1pMi0tdse0LAS2Yb0JRYG8ETXfGpOwpHX3G4ZPAFY9QW/NDFaMVdv+4jd8NHF5ptRyMj0rI2Th3wtaA7wZjM1oy87IiKSYipETxrZ4Fz4Q/fewGxLTDblkZeXPEI2w6spWdKb+699tRt0fe2vMbra/9M3nf/RY+UU2v7ldeU8fwHeVTVlSMiXJg1i4vt13TaDo9zZ6fbhoKDtQWTh6WOWzGiR9ZFZtsSRB4224DmxNLd00BsCzFSSUUEU8d/ldyZD7Y4Xl5Txs7Dm+jTo/XirDaJ4+qpc7nvumf56ZV/YtX2f1NSXtRpO9R7sv2wKxP4+NgbM+rcVbGysn4AeNVsI5oTcwLPXZxzHHjWbDsaGTv0TFKTW8Yy/3PNU1w59dY2Y5nT0/oxfMB4AJITUxnceyQVtZ3L/ON1l+4BjUTHHXm7+NlxXvWYllY4iDyWkZcdCUlQTiHmBO7jMaDDgnpm8VnRGnqn9Sejn39+NSeqSzl8Yi+ZAzu38OxxbDPdJ7otnN6G3stLXqlV1QazbekCRwG/3FJFpEhEtorIZhHZ6Du2QESKfcc2i8jMYBkWkwLPXZyzH3jFbDtaw+lq4O1PX2LW5Jv8Ot/hqudv7yzgmgt+TEpi5wq5eFyFEV0B5oSjeOK2ig83mm1HF8jLyMsO5LHwYlWdpKpN/fOf8B2bpKpvNm/guwncFKhhMSlwH/9DBD2LN3Ks6ggnqkp58B+38quXvkVF7TEe+tdcqupapij3eNz89Z0FTB73ZSaN7pxviKrbgdaG3T01UHZUrJl2wnEkYlJwBUAxsNhsI9oiZgWeuzjnEPCQ2XY0Z1i/0eTd+E8euOFlHrjhZXqnDeDnVy+mV+qpW8KqyksrH2Vw7xF8+cxvdLo/r6toB5DaRbPDwvIjL09xeZ07zLYjQP43Iy87kMcLBd4RkU0icmuT47eJyGci8oyI9AmWcTErcB+PYKxumsaz7/2Wx16/naOVh/jli9exZmeL2dfnVNQe56k3fwHAvtJtrN/zLruPfMqD/7iVB/9xK9sPrgu4f49zW0QEPfiD4QTzTLoJ5ag7SxHwtwDbXKiq52AkL80VkenAIoxAp0lACb6kpiJib3wux3DDfqDJc7pfST1jytGlNRbOXf4NIiCzhlk0lD+5A1wRP0VvyvC0iZsuGDDn7ChwgpmZkZf93842FpEFQI2qPtrkWCawVFXPaOXcIlV9LpA+Iv0P2GVyF+f8HVhhth1moN76cnBFXfXPQ7U7zz1YW7DKbDs64JVAxS0iaSLSs/E98BVgm4gMaXLaVRhVe4JCzAvcx51E8LZZqPA4C3YSpf/Ha4/9Z0aduypS0nM35wTGdypQBgEfisgWjNTjy1T1LeBh39bZZ8DFwN3BMjTmp+iNLJy7fBEdhJPGGo6ql1ar52jUhmYm2JIqrxxxe4VN4kKSw70L3JSRl53f8WnmE1O+6B3wS+A6IGgrlJGOespGBdpmyfot7Cgpo0dSIj+77NRciSt2FrL0s53cf8WlpCWdmjeirKqGF9d+UfD1RE0dXz1jPNPHB2zC57i8jvT3S14qvWTId+pFJKXTFwou70aLuCFKp2+dIXdxzgngh2bbES68nhNFoAFH000elcEPpk9pcbyirp7dR4/TO7V1nQ3s1YOffCWbn3wlm7sumUZifBxnDOu6d+xJR8mEreWrN3X5QsGhjiibBXYbgcPnC24R65QQTDyObQc7027MgH6kJrbMifHvzTuYfVaWX1XA9pQdp19aKn3TgrP9XlD58bTjDcWRsOj264y87H1mGxEI3UrgPu4GPjPbiFDjde0JWoXP7cVHSU9JZmjvlkEzrbH54BEmjRgarO4B+KDk5akur2N7UC8aGJ8AT5jYf6fodgLPXZzTAFwLmJqfLJSoej3qrQrK9pjT7eG9gr189fTxfp3v9njZfuQoZw0f0vHJAeDFm/hW8bN9VLVlfaLQUwl8KyMvO+p2YrqdwAFyF+fsAnLNtiNUeN2HdgDpHZ7oBydqajlZW8fj76zmd0uXU1nfwBPvrqaqvnXvzJ2lZWT0SadnclBLhANQ564cuqbs3wdU1Rv0i7eNF0Pcu8LYZ9DolgIHyF2ckw88b7YdocDj2Bq0UW5I717cf8Wl3Ds7h3tn55Cekszdl2bTK6X19OahmJ435XDdrnMO1G4P5/P4vRl52W37F0c43VbgPn4MROWduT287gN++Sm3xosff8qT76/hWHUtv/nP+6zb1/ZaXWV9A39b9YUvitPtYffR49iHBVR/ImDWHVs2o9ZdGQ4nmFcz8rJDWtgy1HQbR5e2WDh3+ZnAx0RJxFVHqDqqHBULU4lxH4cEW1LlFSNur4gLnRPMp8C0AOO8I47uPoKTuzjnMwz/X6fZtgQDj3P3TmJc3GA4wSw/8pJDVUMhwGPAldEubrAEDkDu4px3gG9jLKhENR7njnqzbQgXJ50l47eWr/q04zMDwgV8PSMvu1N+BJGGJXAfPieYqPJSag11l44w24ZwUlC59sIgO8HcnpGXHQlONUHBEngTchfn/BWYb7YdncXrqTwCns47f0cpQXSCuTMjL/vPQbhOxGAJvBm5i3MeIgIT2PuDx7m90GwbzMBwgnmmr6p2Lq+0kUbpxxl52X8Mpl2RgCXwVshdnPNz4K9m2xEoXueuOLNtMIs6d9WQj8peP6SqgXqbKXBrRl72olDYZTaWwNtmLrDEbCP8RVVVveUTzLbDTIrrdp9dVLMtkMysXuDmjLzsQPOqRQ2WwNsgd3GOF7gB+IvZtviDeo7sBDrt4BIrrD/+5oxaV6U/2Sk9wHejKba7M3R7Rxd/WDh3+X3AA2bb0R6u2rdXeJzbLzLbjkjA5wRTHidxmW2c4ga+nZGXHTUztM5ijeB+kLs45zfA9zC+GBGJx7XPv1jOboDL60h//8iLrjacYBqA67qDuMESuN/kLs55BpgJVJhsSgtUXfVo/elm2xFJlDtLx31WvrK5E8whDPfTf5lhkxlYAg+A3MU57wLnA7vNtqUpXlfhDiD48ZlRzs7KdRceazjU6LTyITA5Iy87UtI/hYWoEriIxInIpyKytMmx20Vkl4hsF5FW96/bq94oIr8Qkb2+a3y1IxtyF+fsxhD5O8H4TMHA49heY7YNkcoHJa9eUO0qfxDIycjLLjPbnnATbUEJdwIFQC8AEbkYuAI4U1UdIjKwnbZPNK0g4Wt/GnA9cDowFHhPRMZ3tJeauzinYuHc5TMxChzeB7RMYhZGvO7i0MZnRi/ViveHWY/NichKs+EgakZwEckAZnFqLagfAXmq6gBQ1UDv0FcAr6qqQ1X3A3uBlilFWyF3cY7Ht/h2PkGsRBEo6q09Bm7/8il1L7YAk+ctWdptxQ1RJHDg98A9nBrxNR7IFpF1IrJSRM5rp31r1RuHYSy8NHLYd8xvchfnfApMxnBvDXs0mse5Yw/4ley0u6AYxfymzluyNKLWSswgKgQuIrOBMlVtvkASj1HIYCrwM+A1EWnty95q9UZaF0bAjgG5i3McPvfWbIxZQNjwOAuiPsQ1iHwGZM9bsvTH85YsDaSkb8wSFQIHLgTmiEgR8CqQIyIvYoy4/1KD9RgjaH8Reda3mPYmgKoeVVWPL1nfX/liGn4YGN6knwzgSGeNzF2cswbjJvIUnbhRdAb1nBgbjn4inGqMdNjnzFuy9COzjYkkos6TTUQuAn6qqrNFZC4wVFV/JSLjgfeBEdrsQ4nIEFUt8b2/GzhfVa8XkdOBlzEEP9TXflwnAhZasHDu8kuBhcC4rl6rLbzuskJn9YtjQnX9KOFVYN68JUs7fWOOZaJtFb05zwDPiMg2jJRLNzYXt4+HRWQSxqhahK+EkapuF5HXgB0YXmq5wRA3GHvmC+cuPw24BfgVAT7b+4PHue0wxqNHd2QXkDtvydL3zTYkkom6ETwaWTh3eTJwO0Yyib7Bum5DxV82oDXtLSzGInXA74BH5y1ZGhN59EKJJfAwsnDu8nTgpxjPi2lduZaqx+Wo+IMD6BEM26KAkxiPPH+at2Rpt3NY6SyWwE1g4dzlgzDKGd8KJHZweqt4nPu2uGpfPyuohkUmRcDjwNPzliyN+iyn4cYSuIksnLt8OEaU2i2cuprfIc6af6/0ugpndHxm1PIJ8Ajw93lLlkZdTbBIwRJ4BLBw7nIbcBnwA2A2fix+NpT/aTs4YzGC7G3gEWvxLDhYAo8wFs5dPgS4Cfg+MLq1c9RbX+GoXNSL6PFj6IjPgH9gjNY7zTYmlrAEHqEsnLtcgByMKfxMmlQLdTdsXuuuXz7VLNuCxEYMUf9z3pKlYfX+605YAo8CFs5dHo/hzTcLmOmoevmEekqnm2xWoChGDbh/Yoj6gMn2dAssgUchj113xTDwXAzMAC4CItFd1QNsxRD1x8D7lrdZ+LEEHgM8dt3sYRjuthMwIuwaXwPCZIITI05/C8bz9CZgw7wlS2vD1L9FG1gCj2Eeu252b04V/ARgCJACJLfybzKnLtzVY1TaLPP92/R9478HgZ3zlix1hfwDWQSMJXCLU3jsutmJGEL3WCNw9GMJ3MIihomVfVQLC4tWsARuEXJEpEhEtvqScGz0HfuGLxOuV0Qmt9O21Yy4IpIpIvVNji8O1+eJJqI9Htwieri4WXnfbcDVgD/1uFtkxPVRqKqTgmFcrGIJ3MIUVLUAoPUUehbBwpqiW4QDBd4RkU0icmsn2reWERdglK8QxkoRyQ6SrTGFJXCLcHChqp4DXA7kikggbrZtZcQtwci/dzbwE+BlEbEKMDbDErhFyFHVI75/y4D/o53iEv5mxPUVqzjhe78JKMRw5rFogiVwi5AiImki0rPxPfAV2qkEo6o3q+okVW1cLR/S5NdXNbYVkQEiEud7Pxoje+2+0HyK6MVaZLMINYOA//MtpsUDL6vqWyJyFfAkhr/8MhHZrKqtFX9sNSMuMB14QETcGIEtc1X1ZEg/SRRiebJZWMQw1hTdwiKGsQRuYRHDWAK3sIhhLIFbWMQwlsAtLGIYS+AWFjGMJXALixjGEriFRQxjCdzCIoaxBG5hEcNYArewiGEsgVtYxDCWwC0sYhhL4BYWMYwlcAuLGMYSuIVFDGMJ3MIihvl/QlR6pp8xV8YAAAAASUVORK5CYII=\n",
325 | "text/plain": [
326 | ""
327 | ]
328 | },
329 | "metadata": {},
330 | "output_type": "display_data"
331 | }
332 | ],
333 | "source": [
334 | "df.groupby('Age').mean()['Purchase'].plot(kind = 'pie', autopct = '%0.1f')"
335 | ]
336 | },
337 | {
338 | "cell_type": "code",
339 | "execution_count": 121,
340 | "id": "eddf2927",
341 | "metadata": {},
342 | "outputs": [
343 | {
344 | "data": {
345 | "text/plain": [
346 | ""
347 | ]
348 | },
349 | "execution_count": 121,
350 | "metadata": {},
351 | "output_type": "execute_result"
352 | },
353 | {
354 | "data": {
355 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAADnCAYAAADGrxD1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWuUlEQVR4nO3deXxU5b3H8c8zSSYQxAFRARU9XqtURXFfUawVtU71trZeW9cqWq3Voq+r7an3Xu9R1E65blitba2KhSpia6vluHYRULCiWJGqLOKwCIKADIEA2c794wyaQkgmy8zvnGd+79drXiQhyfNF881z1ueYIAhQStkjIR1AKdW9tNRKWUZLrZRltNRKWUZLrZRltNRKWUZLrZRltNRKWUZLrZRltNRKWUZLrZRltNRKWUZLrZRltNRKWUZLrZRltNRKWUZLrZRltNRKWUZLHRHGmNONMXONMQuMMa50HhVfRtcok2eMqQDmASOApcBM4NtBELwrGkzFks7U0XAUsCAIgoVBENQDE4F/F86kYkpLHQ27A0tavL80/zGlOkxLHQ2mlY/pfpHqFC11NCwFBrV4fw9gmVAWFXNa6miYCexrjNnbGJMEvgU8I5xJxVSldAAFQRA0GmOuBl4AKoCHgyD4p3AsFVN6Skspy+hMbSnH9QcBQ4C9gRSwYyuv3i3ergJy+dfarV4tP7YCmAtks5l0cyn+LapjdKaOOcf1dwYOIizwlteBhEUupo2EF8y8B8wBZgFvZjPplUUeV7VDSx0jjutXAEcCpwInAAcDu4qG2tZS4A1gOjA5m0m/J5yn7GipI85x/QHAV4HTgZOBvrKJOmwB8CfCo/mvZDPpRuE81tNSR5Dj+vsAX8+/jsGeU4+fAs8Rlvy5bCadE85jJS11RDiuXwOcD3wPOFQ4Tik0AFOBccAT2Uy6QTaOPbTUwhzXd4DvAyOJ36Z1d1kOPAD8IptJfyIdJu601EIc1z8FuIZwf9mWzeuu2gw8BozNZtJvS4eJKy11CTmu3wu4CLgaOEA4TtRNAcYCT+v58I7RUpeA4/pJ4AfAfwF9ZNPEzofAT4CHtNyF0VIXmeP6XwPuAPYRjhJ3bwGjspn0NOkgUaelLhLH9Q8G7iY8t6y6zxPADdlMekm7n1mmtNTdzHH9XYFbCY9m6wGw4qgDxgBjspn0RukwUaOl7ib5/eZrCfebd5RNUzYWE87ak6SDRImWuhs4rn8I4WKBg4WjlKspwGXZTHqBdJAo0M3DLnJc/2rgNbTQkoYDbzmu/x3pIFGgM3UnOa7fF3iI8PpsFR0TgSvL+bpyLXUnOK5/HPA4sKd0FtWqRcC52Uz679JBJGipO8Bx/QTgAjejq8ZEXT1wbTaTfkA6SKlpqQvkuH5/YAJwinQW1SHjgSvK6dSXlroAjusPJbwPeKB0FtUps4GvlssFK3r0ux2O659MeN+vFjq+DgamOa7/BekgpaClboPj+ucSztB6MUn87UVY7CHSQYpNS70djutfQ3iEOymdRXWbAcDLjusfIR2kmLTUrXBc/4fAvbT+4DoVb/2Avziuf4J0kGLRUm/Fcf2bgJ9K51BFtSPwguP6p0kHKQYtdQuO699GeA5a2a8n8Izj+mdLB+luWuq8/Cb3jdI5VEklgUmO6/+HdJDupOepgfxv69+h+9DlahNwki2XlZZ9qR3XP5zwPHSNdBYl6mPgKBsuUCnrzW/H9fcgfFqEFloNINzH7iUdpKvKttSO6+8ATEavFFOfOwSY4Lh+rHfDyrLU+butHgeGSmdRkfM1wiWJY6ss96kd17+bcD2x2Fj6wKUkkj0hkcAkKhh48T3Ur1zI6hfuJ6jfRGVqV3Y+8wYS1dvuSax69h42fjCTipoUu438uUD6WLo4m0n/RjpEZ5RdqR3X/y7wS+kcHbX0gUsZePHdVNR8/iz55Y9eR98vXUqPPQ9i/ewXaVy7gj4nXrjN125aMgdT1YPV/l1a6sLVAydnM+lXpYN0VFltfjuuvx9wj3SO7tKwZinVg8L7E3o4h1I3b3qrn9dj0BAqevYuZTQbJIHfO67fTzpIR5VNqfP70Y8QXkkUP8awctJNLB83itp/PA9Acue92LggPLVa9/4rNNaukkxoo/6E9wDEStmUmnAf+jjpEJ014PwxDPzOWHY952ZqZ01m05I59DtjFLWzfJaPG0Vz/UZMQldYKoLzHNc/UzpER5RFqfOb3bdK5+iKyt7hVmBFrz7U7Hcsm5fNo6rfIPqfO5qB3xlLrwOGU9l3gHBKa/3Ccf1U+58WDdaXOr/Z/TBx3ewGmus30by57rO3N334Fsld9qJpw1oAgqCZ3PSJ9D7kK4IprbYbcKd0iEJZf/Tbcf3rgLukc3RFw9qP+eSp/IZGczO9DhhO6rhzWffG09TO8gGo2e84+gy/GGMMjbWrWf38vfQ/J7zh7JNnxrB58Ts0bVxHRU0fUsPOp/fQU6X+OXE2IptJ/1k6RHusLrXj+vsCbxPjWVpFShY4KJtJr5cO0hZrN79jf7RbRZEDZKRDtMfaUgMXAcdLh1DWucpx/Uj/XFlZasf1q4CbpHMoKxngDukQbbGy1MAlwN7SIZS1jnFc/yzpENtj3YGy/MPfFwCDpLMoq70DHJLNpJulg2zNxpn6crTQqvgOAr4tHaI1Vs3Ujuv3AD4gvFhAqWKbD3wxarO1bTP1lWihVensC5wjHWJr1pTacf0awmdHK1VKP5YOsDVrSg1cTXirnFKlNNRx/bR0iJasKLXj+pXAddI5VNmK1BaiFaUGziRc4lUpCcMc1x8sHWILW0p9mXQAVfa2XRxOSOxPaTmuP4jw7hlbfkGpeFoE7J3NpMULZUMRLsWOf4eKt72ASDzz2oYyRGazR5W9SPwsxnrz23H9owArnlSorJAD+mcz6c2SIeI+U0fy2ltVtlKEZ2JExbbU+ZVNzpXOodRWxDfBY1tqwoMS+sRKFTVfcVx/Z8kAcS71KdIBlGpFFcKb4HEu9YnSAZTaDtFTW7EsteP61cBR0jmU2o5hkoPHstTA0UAP6RBKbce+juuL3TEY11LrpreKOrHZOq6lHi4dQKl2iO1Xx67U+Xunj5XOoVQ7dKbugCOAXtIhlGrHIY7r7yAxcBxLrfvTKg4qENqijGOpj5EOoFSBRDbB41jqfaQDKFWggyUGjWOp95IOoFSB9pQYNFaldly/L+HtbUrFgZa6ADpLqzjZ2XH9nqUeNG6ldqQDKNVBJX9YY8GlNsYMM8Zckn97F2OMxPOfHYExleqKkm+CF1RqY8z/Aj/i8+cGVQETihWqDY7AmEp1RTRLDXwdOAvYABAEwTKgd7FCtcERGFOprohsqeuDcNnRAMAYI3WZph4oU3ET2VJPMsb8EuhjjLkc+DPwYPFibZc+e1rFTclLXVnIJwVBcIcxZgSwDhgM3BQEwUtFTda6KoExleqKvqUesKBSA+RLLFHklozw+Ep1VMknokKPfp9tjJlvjMkZY9YZY2qNMeuKHa4VcTuvrlTJS13oTD0GODMIgveKGaYAWmoVN9GcqYEVESg0aKlV/ER2pn7DGPME8Efgs4d/BUHwVDFCtUFL3c36kVs1MTl67j5m+f7SWWzUjKmFT0s6ZqGl3hGoA05t8bEA0FLH2JUVz7z6w8on9k+Y4HjpLLZKEJT82FOhp7QuKXaQAmmpu8Egs/Kj3yW95f3NWi1z8TWVesBCj37vYYz5gzFmpTFmhTHm98aYPYodrhVa6i4wNDffVPmbqVOT16b6m7VHSOcpEw2lHrDQze9HgMeAc/LvX5D/2IhihGpDE1rsTtnfLPpgYnJ0XcrU6cKNpVXaHWoKL/UuQRA80uL9ccaYa4uQpz2rgQEC48ZWJY0Nd1U98OqZiRnHGkO1dJ4y9EmpByx01ltljLnAGFORf11AWLBSWyEwZmwdbd59953qy7JnVcw4SQstpuSlLnSmvhS4D7ib8Kj39PzHSk1LXYCebK57sOrOmccn5gwzhgrpPGVuVakHLPTo92LC+6mlaanbcXri77N+VnXfzlWmSZ83Fg3RmqmNMTe18ddBEASjuzlPez4u8XixkWL92seSt805MLFI9NnIahuR26fe0MoLYCTh8kaltkhgzMi7qOLF12ZVX1GvhY6klaUesM2ZOgiCO7e8bYzpDYwCLgEmAndu7+uKaKHAmJE1gDUrJiVv/nDPxCf6KKLomlfqAds9+m2M2ckYcyswm/CXwGFBEPwoCIKS/wYCPhQYM5L+s3LStBnVV/fQQkdaHZAt9aDt7VP/H3A28CvgoCAI1pck1fZlCY++l+1iCf9mli16Mnnzmn6mVuyh5qpgc/FyzaUe1ITrCW7nL41pJrwrq5H8ooNb/orwQNmOxY23Lcf1lwASl6iKStDcdFvlQ698q+JvRxlDyZ/6oDrlMbzc+aUetL196ihekvk6ZVbqQ8yCuROStzftYDbpaap4eVdi0ILXKIuQ6YS7BNZL0rD5/qqxM05JzBpmTCz/X5U7LXWBXpUOUAonJf4x+5dVd/WuNo0nSWdRnfaOxKBxLPUsYBPQQzpIMfRiY+2jyZ++dbiZd4Ix5XtA0AIf4+UWSAwcxX3mNmUz6XrgDekcxfCNxNSZb1dfXntEYt6JWujYmyo1cBxnagg3wa25emoncqsnJUfP/UJi2XHSWVS3mSI1cOxm6rzp0gG6yxUVf3r1jeqr0EJbR6zUcZ2pY1/qQWblR08mb142wHyq64TZZxVCR74hpjN1NpNehcA1td0jCP6ncvyUqclrUwPMp0dKp1FFMRUvt/2ruoosrjM1wF+B/aRDdMQXzeKFTyRvWZ8ydXoRid1EnzkXy5k6b6J0gEJV0tgwtuq+l59LurunTN3B0nlUUTVR+vXw/0WcZ+qpwBJgkHSQthxt3n13XHJMZU9Tf5J0FlUSU/ByEncwfia2M3U2kw6I8Gzdk81146tunzIxeevgnqY+VrsJqkuelA4Q21Ln/VY6QGtOS7z+1uzqy1adUDFnuC78V1bEN72hnVsv48Bx/TnAgdI5AHZkfe6x5O2zhySyeq9zefobXu5k6RBxn6khIrP1hRUvvfZW9RWbtdBlTXzTG+J9oGyLx4DbEFoNpT9rVj6ZvGXhnomVuqxQedtA+LMoLvYzdTaTXoTQFWbXVT457bXqq6u10AoYj5fLSYcAO2ZqgAlAyS631HXCVCvukw6wRexn6rzxlODxJgmam26v/PWUvySv36WfqT202OOp2PgbXu6f0iG2sKLU2Ux6A+FzvopmqFkwb3b1ZXPPq/zrcGOoKeZYKnYiM0uDPZvfEP6HvR7o253fNEnD5vuq7p0xIvHm8cZQ1Z3fW1lhMfC0dIiWrJipAbKZ9DpgbHd+zxMTb89+p3rkR6dWvHmSFlptxz14uSbpEC3ZNFNDWOrrgFRXvkkvNtaOS/70rSN0nTDVtqXAA9IhtmbNTA2QzaTXAj/ryvf4emLazLerL689UtcJU+0bjZfbJB1ia7bN1BAeMBsF9O7IF+1EbvXE5K3v75f4SFciUYX4AHhYOkRrrJqpAbKZ9Brg/o58zXcrJr/6RvVVaKFVB/wvXq5ROkRrbJypIXzM7jVAr7Y+aQ/zybInkzd/NNCs0TKrjpgDPC4dYnusm6nhszXMbtv+ZwTBjZUTpk5Ljuo90KzRdcJUR7kST7MslK0zNcAdwAXAAS0/ONgs/vCJ5OjaPmbDiTKxVMz9Hi/nS4doi5UzNUA2k24AriT/CN4Kmhrvrrr/5eeT7m59zAZdJ0x1xjrgB9Ih2hP7RRLa47j+w0ea9495NJlJ1Jj6wdJ54qapOeCIBzewe+8Ek8+rYc3GgHN/V0d2bYDTxzDpmzX07bntmb+xr23mwVkNBMDlh1Vx7THVpQ/f/b6Pl/u5dIj2WDtTb/GNxJTrJyVvSWmhO2fs3+vZf+fPf0wyr2zmy3tXMv+aHfjy3pVkXtm8zdfMWdnEg7MaeP3yXrx9ZS8mz2tk/upIXXTVGa8Bv5AOUQjrS33n7WPWGMM10jniaOm6Zvz5jVx2WPKzjz09t5GLh4ZXzF48tIo/zt32rM57nzRzzB4V1FQZKhOG4XtV8of3I3n2p1CNwHejfHCsJetLDYCXewqYJB0jbq59fhNjTulBosXW9Yr1zQzsHf7YDOydYOWGbX/Oh+yaYOqiJlbXNVPXEPDsgkaWxKMP23M7Xk7kWdOdUR6lDl1FuE64KsDkeQ3s2stw+G4dXwx1/10q+NHxSUaMr+P0CXUM7Z+gMhHbK26nA7dIh+gIm09p/SsvtxovdQ4wDfSOq/a8uriJZ+Y28uz8WjY1wrrNARc8tZH+OyRYXhvO1strm9m1V+vzwsjDkozMb7bf+JdN7LFjLOePtcB5UbsLqz3WH/3ehpf6Ad18i6btXs42csf0eiafV8MNL26iX43BHVZN5pXNrNkYMGZEj22+ZuWGsPCLc82cOr6OGSN7tXqUPOLOxsv9QTpER8Xy12eXeLl70f3rTnOHJXlpYSP7/mw9Ly1sxB0WnqpaVtvMGb+t++zzvjFpIwfcv54zH6/j/jN6xLHQd8ax0FCOMzWAl+oNzAT0NJdqzSvAl6J6w0Z7yrPUAF7qQMJzjztIR1GR8gFwnPRD7rqi/Da/twhXf/wm0CAdRUXGKuArcS40lHOpAbzcC8Cl5K8PV2VtI3AmXm6+dJCuKu9SA3i5CcAPpWMoUc3At/Fyr0kH6Q5aagAvdwdwl3QMJeYavFyklvntCi31564nIk/QVCV1UxzuvOqI8j363RovVQk8Qri4grLfDfmtNKvoTN1SeF7yIiK4lrPqVgHhJrd1hQadqbfPS/0EcKVjqG7XDFyBl/u1dJBi0VK3xUv9GLhdOobqNk3AxXg5q4+daKnb46WuAu4FOn4PooqSHOFpq+ekgxSblroQXmoEMBHYSTqK6pT5wFl4ufelg5SCHigrhJd7CTgSiM3qF+ozLwJHlUuhQUtdOC+3EDgWeFI6iirYPcAZeLm1wjlKSje/O8NLuYRPANFfitG0HrgaL/eodBAJWurO8lInAuOAvYWTqH81HbgIL/eBdBApOtN0lpebChwM/Eo6igLCW2j/GzixnAsNOlN3Dy91GvAQsLt0lDL1LnAhXm6WdJAo0Jm6O4T3ZQ8BxktHKTMNwBjgcC3053Sm7m5e6kvA3cBQ6SiWexa4Di83TzpI1Gipi8FLJQhXVLkV6C+cxjbzCMv8rHSQqNJSF1O4aumNwHWAFY99FFQLjAbuwcvpunJt0FKXgpdyCI/MXggk2/5ktZVPCa+9vxcvt0Y6TBxoqUvJS+1GOGtfAfQWThN1KwiXmHoAL1crHSZOtNQSvFQf4HvAKHSfe2tLCI9o/xovt0k6TBxpqSV5qR6ESyddBhwtnEZSA+ATnut/Lm4PpIsaLXVUeKkhhEfMz6N8Zu/3gIeB38R9Af0o0VJHjZeqAL4MnA+cBfQRzdP9lgJPA7/Fy82QDmMjLXWUhQU/Bjg9/zociNvjI5uBN4HngGfwcm8K57GeljpOvNQuwGn519HAF4heyeuB2cDrwDTgJbzcatlI5UVLHWdeakfgUMIZ/LD8azClu6a/nvApkTMJSzwT+Aderr5E46tWaKlt46V6AnsCg/KvPVv8uRtQA/Rs8dr6YphGwkUG1gMb8n+uBRYB2fzrw/yfy/ByzcX7x6jO0FKXu/A69Z5AFVCns2z8aamVCGPMw8BXgZVBEAyRzmMTvZ9aSRlHeERfdTMttRIRBMFUQG/QKAIttVKW0VIrZRkttVKW0VIrZRkttRJhjHkcmAEMNsYsNcaMlM5kCz1PrZRldKZWyjJaaqUso6VWyjJaaqUso6VWyjJaaqUso6VWyjJaaqUso6VWyjJaaqUso6VWyjJaaqUso6VWyjJaaqUso6VWyjJaaqUso6VWyjJaaqUso6VWyjL/D3G5RjTNctawAAAAAElFTkSuQmCC\n",
356 | "text/plain": [
357 | ""
358 | ]
359 | },
360 | "metadata": {},
361 | "output_type": "display_data"
362 | }
363 | ],
364 | "source": [
365 | "df.groupby('Marital_Status').size().plot(kind = 'pie', autopct = '%0.1f')"
366 | ]
367 | },
368 | {
369 | "cell_type": "code",
370 | "execution_count": 122,
371 | "id": "fa6bc690",
372 | "metadata": {},
373 | "outputs": [
374 | {
375 | "data": {
376 | "text/plain": [
377 | ""
378 | ]
379 | },
380 | "execution_count": 122,
381 | "metadata": {},
382 | "output_type": "execute_result"
383 | },
384 | {
385 | "data": {
386 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAADnCAYAAADGrxD1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVu0lEQVR4nO3de5gcVZ3G8e/puSVhkpIkXEIIdAANiCCBrDdkBQFZMrIsiCgQ9QHJCo/cBC/NuotHWXDkjqhgUC4rEbJcF2lYxXh7WENYFwKCIjFhCCEhJDGp3Ka751L7R/WQIcx9qupXdfr3eZ5+CMlMnzcz8+ZUd506ZYIgQCnljpx0AKVUtLTUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY7TUSjlGS62UY+qlA6gYWC8HTAHywN7V/04DPKAZGF/9b8+jHugCOo8uX71iWTB1PLAN2Ar4wArgFaCt59HW2rIpqb+OGh4tddZZb3fgsF6PAwkL3DiSpyvT2ADsMdjH5QvFjYQFfxl4BlgELG5rbdk8knFVdIze9TJDrFcHzAKOBj5IWOIpUQ7xd6Xvr1vLzpNH+OndwPOEBV8ELGprbXkpsnBqSLTUaWe9qcBs4Hjgo4SH0LE5uDTP30RzlGOsA34B3A881tba0h7hc6s+aKnTyHpTgNOB0whn48QcULq9vZ2msTE9/VbgUeA+oNjW2rI1pnFqmpY6LazXDHwCmEM4I4ucmdindFdXN7m6BIZqB34O3As8qDN4dLTU0qw3C7gQOBkYJxklCOiaXv5pEoXe0XpgHvD9ttaW1wTGd4qWWkJ4yulE4GLgw8Jp3hQEtE8v/zSuQ++h6CA8NL+hrbXlKcEcmaalTpL1dgI+D1wA7Cuc5m2CAH96+aexvhE3DE8CNwD3t7W2dApnyRQtdRKs1wicC3wd2EU4Tb+6A7Nun/L8kZ7Oiksb4dft7rbWFv1hHQJdJhon6+Ww3hzgRcJZJ7WFBujGVKQz9CEPzAeezBeKRwhnyQSdqeNiveOBbwPvlY4yVJWgbsW7yj/ZSzrHIB4EvtbW2rJUOkhaaamjZr3pwPcIF4xkSiloWLZ/+c7UvdbvQwdwC/DNttaW9dJh0kYPv6NivXqsVwBeIIOFBugm1yGdYYgagPOBv+YLxc9Jh0kbnamjYL2ZwG3AIcJJRmVzMPaFg8o/PlA6xwg8AHyhrbVlnXSQNNCZejSsV4f1vgU8RcYLDdBJXVZPHZ0MPJ8vFD8uHSQNtNQjFV5o8Wvg33DkEtZO6rqkM4zCbsDP8oXirflCsTmKJzTGdBljlvR65KN43rhpqUcifGd7CeDUKZaMl7rH2cBz+UIxipV67UEQHNLr0RbBc8ZOSz0c4Zth3wGKQNoWaYxaR1DXLZ0hItOB3+QLxfOkg0hw4rAxEdabTHiONDVrtaPWQb0LM3WPOuCmfKG4P3BhW2vLSP5uY40xS6q/fjkIgpMiSxcjnamHwnrvJNzJw9lCA1RocGWm7u2LQDFfKE4Ywef2PvzORKFBSz046x1OWOj9pKPErUK9q+c3jwN+ny8Up0sHSYKWeiDWOxVYCEySjpKEspszdY8DgcX5QvFw6SBx01L3x3oXA/cATdJRklIOGqQjxG0XYGG+UDxFOkictNR9sd5XgGsBIx0lSWUaXD387q0JuDtfKJ462AcGQRDJ+e6kaal3ZL1LgKukY0go01gr/4jVA/PzheKnpIPEQUvdm/W+BFwjHUNKicZamKl79BT7k9JBoqal7mG9i4DrpGNIag9qZqbuUUdY7OOlg0RJSw1gvTOB66VjSCvVzuF3bw3A/flC8e+lg0RFS2294wi3p615NVpqgLHAI/lCMTO71AyktkttvfcSbiavy2WBUtBYyz8P44GH8oVi5tck1O430Xq7AT8j/GYqoJ2mWp2pe+SBBflCUeKGBpGpzVJbrwl4iPCWr6qqRGOmf5gjcjTwHekQo1GbpYYbgQ9Ih0ibGj/87u2SfKF4unSIkaq9b6L1TgG+IB0jjXSmfosf5QvFmdIhRqK2Sm29PPAj6Rhp1a6l7m0s8GC+UMzcZhi1U2rr1RNeoJGWe0WlTolGPQvwVnsDt0qHGK7aKTVcAbxfOkSalQItdR/+aSgXf6RJbZTaekcAX5GOkXY6U/frpiydv3a/1OEdJ39IjV1GORJlGpy/oHqEdiU8Y5IJ7pcavgYcIB0iC8o6Uw/kjHyh2CIdYijcLnW4YeC/SMfIinJQ3yidIeVuGeEGholyu9ThnRHHSIfICj38HtSewNXSIQbjbqnDm71/VDpGllRo0Jl6cHPzheIs6RADcbPU4druK6RjZE2FhprZZHEUDCn/2XKz1HAusJd0iCwJArq6ybn68xC1j+ULxY9Ih+iPe+92Wq8ZfXNsJCqESyNj17lpLeuK19G1ZQPG5Gg+5DgmzDrxzT/3Fz/Axt/cxp7nz6du3NsXAHaXtrD+se9SWbcCgMmzL6RpauInOK4gpXdsca/UcDHh/s5qeBIrNbk6dj7q8zTtvh/d5W2svvMixuRn0jh5Lzo3raXU9gx1E/r/Fv5t4TzG7HMYu5z0LwRdHQQd5URi7+DwfKHY0tbaUpQYfCBuHW6FN7G7RDpGFgWYjqTGqm+eSNPu4V2Mck3jaJg0ja7N6wHYsPBWdj7qTPpbK9Rd3kbp1RdoPvhjAJi6BnJjxLbn/vd8oZi6RU2uzdRfBlJ/HjGNujEViXE7/TVU1iynaY8ZbFu6mLrxk2jcdZ/+P37j69SNm8D6R2+g8sbLNO2+Hzsf/c/kGkXOXB4CnAoskBi8P+7M1NYbD5wjHSOruhOcqd8cs9LO2gevZOLRcyGXw1+0gHccMWfAzwm6u6i8vozxM2ezx5nfxTQ0senJexNK3CebttnanVLD2ehllSPWTa4zyfGCrk7WPnglO737SMbN+BCdG1+n01/DqtvOZ+XNZ9G1eR2r77iIri0b3vJ59eMnUzd+Mk17zABg3IzDqaxZlmT0He1PuAVSarhx+G29HHCBdIws6yaX2EwdBAHrH7uRhknTmPC+8LbPjbvkmXb+/Dc/ZuXNZzHlc9e/7d3vuuadqZ8wmY71K2mYtCelV56lYbL42ctzgF9Kh+jhykx9AuFOkGqEush1JTVW+bU/sfWFX1Na8Ryrbj+fVbefT/uy/+334zs3r2fNvd948/8nHnMO6x65hlW3nUfljZeZ8EHxy51PzBeKU6RD9DBB4MDtk6z3OHCMdIws2xA0PzuzPM+JzeyFXNbW2nK5dAhwYaa23j6k7DVNFnVSl9hM7ai5adkvPPulhtPRDRBGTUs9atOA2dIhwJ1Sq1HqCOq11KOXilOq2S619Q5BdzWJRIW6bukMDviHfKG4m3SIbJdaZ+nIdNCgpR69HCk4BM9uqa1ngE9Lx3BFhXoHToOkwgnSAbJb6nAPb73BXUTKOlNH5dh8oSi62USWS/0x6QAuKQe6PVlEmoEjJQNoqRUAZRr08Ds6H5ccPJultt4E9BY6kSqhew5GSPR1dTZLHR7euHExSkqUadQFPNHZO18oHiQ1eFZLfax0ANe0BzpTR0zsWoSsllrXekespDN11A6TGjh7pQ53C91fOoZrtNSRO1Rq4OyVGt6LXsARuVLQmMWfhTSbkS8Ud5IYOIvfyJnSAVzUTpP+QxmtHOHGhCIDZ42WOgYlGlNxLbBjRA7Bs1hqsdcqLtPD71iIvFmWrW+k9RqAA6VjuKidJp2po6cz9RBMB3SRcgxKNOhinugdkC8UE/+6ZrHUKgb6mjoW9UDimyZoqRUApaBRZ+p47JH0gEMutTHmw8aYM6u/3sUYI1EwvX46JiW01DFJfD/wIZXaGPMN4GvApdXfagDuiivUAKYKjFkTyjToexXxSGepgZOAfwS2AgRBsAoYH1eoAWipY1LWmTouqS11JQhv5REAGGNElr+hN5OPTSnQmTomqS31fxpjfgi8wxgzl/BmYLfGF6tfYncXd12FetF9tRyWeKmHdMgVBME1xphjgU3ADOCyIAgejzVZ38YJjFkTKvqaOi7pLDVAtcQSRe5N6rDfeRUadKaOR+I/s0N99/tkY8xSY4xvjNlkjNlsjNkUd7g+aKljEAR0dZPL2pqFrEj8DcihDngVcEIQBH+OM8yArNcE6KqneFSAsdIhHJXaZaJrRAsd0h+6+FSkAzgstTP1H4wxC4CHgHLPbwZB8EAcofqhd2WMz4TlTWf8TTqEi7oxm2BDomMOtdQTgG28dQP9AEiy1O0JjlVTjMEYgonSOVyUI9ic9JgmXFOSEdbrRF9Xq2xZjvX3TXLAob77vacx5kFjzBvGmDXGmPuNMXvGHa4PJYExlRqN8uAfEq2hvlF2O/Aw4WVkU4GfVX8vaVpqlTXrkx5wqKXeJQiC24Mg6Kw+7kBmHba+rlZZk9pSrzPGzDHG1FUfcxAIC2wUGFOp0Uhtqc8CTgVeB1YDp1R/L2mvCYyp1GgkXuqhXtCxgvB6amkrpQMoNUzpKrUx5rIB/jgIguDyiPMMRmdqlTXpKjXVnU52sBPweWASoKVWamAvJz3ggKUOguDanl8bY8YDFwJnAvcA1/b3eTHSw2+VNS8lPeCgr6mNMROBi4EzgDuBQ4MgSHYx63avCo2r1EhsQ2AiGuw19dXAycA84KAgCLYkkqp/LxFe2KFLRVUWLMX6ia/DHnDttzGmm3CZWyfVTQd7/ojwjbIJ8cbrg/VeJNxSSam0uxfrn5r0oIO9pk7jbhjPo6VW2ZD462nI3m13AJZIB1BqiJ6VGDSLpX5aOoBSQ/R7iUGzWOr/kw6g1BC8ivVF1lVkr9TWXwP8VTqGUoMQmaUhi6UO/Uo6gFKD0FIPk5Zapd0iqYGzXOoMba6masxmBM/SZLPU1l9LeL5aqTT6JdbvkBo8m6UOLZQOoFQ/ipKDZ7nUj0gHUKoPAfCoZIAsl/o3wBvSIZTawWKsv1oyQHZLbf0u4D7pGErtIMm71vQpu6UOLZAOoNQOtNSj9ASwSjqEUlW/w/rLpENku9TW7wbulY6hVNWPpQNA1ksdukM6gFKAT0ommGzd9bI/1nsCOFwywl/WdfGp+7bfFWj5hm6+dVQTG0sBtz7dwS7jDABXHt3E7Hc29PkcXd0Bs27dytTxOR45fVwiuVVkbsH650qHAIG73MfkJoRLPWNyHUvOaQbCck69bgsn7d/A7UsqfOkDjXz5Q02DPseNiyscMDnHpsTvk6gi8CPpAD1cOPwGuJ8UvWG28OUu9p2YY+93DP3Lu3JTN8WlnZx9aGOMyVRMnsb6qbnO341SW78TuEU6Ro97nu/gtPdsP8T+3lMVDr55C2f9Vzsb2vt+uXPRf5e46pgx5ExSKVWErpIO0JsbpQ7NAyrSISpdAQ//pZNPvjt8ZXPurEaWXdDMknN2Ykqz4ZJfvP0W24+81MGuOxkO20N3Ps6gpaTkDbIe7pQ63BHlTukYjy3t5NApOXZrDr+0uzXnqMsZcsYw97BGnnqt622f8z8runj4L53kb9jMp+9r51cvdzLnAb0Vd0Z8p3pqNTXcKXXoSkDskjeAu3c49F69efv3+8E/d/CeXd/+Jf/2MWNYefF42i4azz2njOWj0+u56+SxieRVo7IS+Il0iB25VWrrtyE4W2/rCHh8eRcnH7C91F/9ZZmDbt7CwTdv4ddtXVx/3BgAVm3uZvb8bVJRVTSuxfriL/l25MZ56t6stxfhJuqDn0NSauRWA/th/dT9y+zWTA1g/RXAzdIxlPO+nsZCg4ulDl0BbJIOoZz1NClenuxmqa2/DviGdAzlrAsl7mY5VG6WOnQT8Ix0COWce7H+E9IhBuJuqcOdUc4FUnUOUWVaCfiqdIjBuFtqAOsvBm6VjqGccXn1tGmquV3q0KXoBoVq9J4hZWu8++N+qa2/AbhAOobKtA7grOqFQ6nnfqkBrL+AFKwLV5n1Tay/RDrEUNVGqUPnEV5Ro9RwLAJapUMMR+2U2vpbgNMRvuBDZYoPfKZ6JiUzaqfUANb/A/Cv0jFUJgTAnDRs+TtctVXq0NXAz6VDqNS7HOtn8n5ttVfqcHnfp4AXpaOo1HoM+KZ0iJFy79LLobLevsBiYJJ0FJUqy4FZ1VOhmVR7M3WP8LXSJ9A3ztR2PnBSlgsNtVxqAOv/FjhHOoZKhRJwItZ/TjrIaNV2qQGsfxsZOw+pItcFnFb9Rz7ztNQA1r8U3S2lln0B6z8kHSIqWurtvgj8h3QIlbhLsX4q7lYZFS11j/BU15nAfOkoKjEW6zv30qt2T2n1x3o5whn7DOkoKlYXY/3rpUPEwdmZ2hgTGGN+0uv/640xa40xA68SCu+28FngBzFHVDK6gbmuFhocLjWwFXiPMabnVhfHAq8N6TOt3431v0i4wYIeyrijAzgd66fmtrNxcLnUEC73a6n++jTg7mF9dvh667PoAhUXbCVcWLJAOkjcXC/1PcCnjTFjgIMJl4UOj/XvAo5H9xHPshXA4Vi/KB0kCU6XOgiC54A84Sz96IifyPoLgQ8Df40kmErS74H3Yf1npYMkxelSVz0MXMNwD713ZP0/AocB90eQSSXjB8CR1dsc14x66QAJuA3wgyD4ozHmyFE9k/U3AadgvQsJr8tuGOQzlIytwHlY/w7pIBKcn6mDIFgZBMGNkT6p9W8EjiB8rabS5UngkFotNOjik9Gx3kTC2/ucLh1F0Ql8C7gya3uKRU1LHQXrfZzwgpA9paPUqBcJNwj8g3SQNHD+8DsR4V5WBwI/RBerJKlCeNnsoVro7XSmjpr1PgLMA94lHcVxjxHeUlb3ct+BljoO1msgvJTzMmBn4TSuWQ58Ces/LB0krbTUcQrfSPs6YcGbhNNk3UbC9QbXYv2ScJZU01InwXrTCLec/Qy1sTYgSn8Drge+W10noAahpU6S9fYGLgLOBpplw6TeeuA64Casv1k6TJZoqSVYb2fCXUwvAHYXTpM2bcD3gVuq9z9Tw6SllmS9JsIdVuYCHxBOI6kbeJxwrfYj1Y0q1AhpqdPCejMIr92eA+wlnCYprxDeN/w2rP+KdBhXaKnTxnoGOIqw4CcAE2UDRe4l4AHgfl0wEg8tdZpZrw54PzCbcKOGmYARzTR83cCzwEPAA1j/edk47tNSZ4n1dics95HAB4F3iubpWyfwNPA74LfAE1h/o2iiGqOlzjLrTQbeBxxafRwE7E1y13lvBv7U67EEWIT1tyY0vuqDlto14SH7NGCfXo/phLfs9XZ4jO3jGboIZ9sK4cKPddXHamAV4Y6sy4A/Yf1X4/yrqJHRUteycI36GMISd2D9TuFEKgJaaqUco9dTK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+UYLbVSjtFSK+WY/weNOKeiA+fFfQAAAABJRU5ErkJggg==\n",
387 | "text/plain": [
388 | ""
389 | ]
390 | },
391 | "metadata": {},
392 | "output_type": "display_data"
393 | }
394 | ],
395 | "source": [
396 | "df.groupby('Gender').size().plot(kind = 'pie', autopct = '%0.1f')"
397 | ]
398 | },
399 | {
400 | "cell_type": "code",
401 | "execution_count": null,
402 | "id": "eb343dac",
403 | "metadata": {},
404 | "outputs": [],
405 | "source": []
406 | }
407 | ],
408 | "metadata": {
409 | "kernelspec": {
410 | "display_name": "Python 3",
411 | "language": "python",
412 | "name": "python3"
413 | },
414 | "language_info": {
415 | "codemirror_mode": {
416 | "name": "ipython",
417 | "version": 3
418 | },
419 | "file_extension": ".py",
420 | "mimetype": "text/x-python",
421 | "name": "python",
422 | "nbconvert_exporter": "python",
423 | "pygments_lexer": "ipython3",
424 | "version": "3.8.8"
425 | }
426 | },
427 | "nbformat": 4,
428 | "nbformat_minor": 5
429 | }
430 |
--------------------------------------------------------------------------------