├── .gitignore
├── README.md
├── environment.lock.yml
├── environment.yml
├── environment1.yml
├── jupyter-lab.sh
├── older version
├── t01
│ ├── demo_package
│ │ ├── __init__.py
│ │ └── demo_module.py
│ └── tutorial1-Python_Pytorch.ipynb
├── t02
│ ├── imgs
│ │ ├── error_types.png
│ │ ├── neuron.png
│ │ ├── perceptron.png
│ │ ├── sgd1d.png
│ │ └── sgd2d_2.png
│ ├── plot_utils.py
│ └── tutorial2-Logistic_Regression.ipynb
├── t03
│ ├── imgs
│ │ ├── linear_discriminant.png
│ │ ├── mlp.png
│ │ ├── neuron.png
│ │ ├── nonlinear_datasets.png
│ │ ├── overfit_1-2-4HL_3N.jpg
│ │ ├── overfit_1HL_3-6-20N.jpg
│ │ ├── perceptron.png
│ │ └── perceptron_db.png
│ └── tutorial3-MLP.ipynb
├── t04
│ ├── img
│ │ ├── 1x1_conv.png
│ │ ├── arch.png
│ │ ├── cat_translation.png
│ │ ├── classification.png
│ │ ├── cnn_filters.png
│ │ ├── cnn_layer.jpeg
│ │ ├── cnn_layers.jpeg
│ │ ├── conv.gif
│ │ ├── deeper_meme.jpeg
│ │ ├── depthcol.jpeg
│ │ ├── feature_hierarchy.png
│ │ ├── filter_resp.png
│ │ ├── fully_conv.png
│ │ ├── maxpool.png
│ │ ├── mlp.png
│ │ ├── net_archs.png
│ │ ├── overfit_1-2-4HL_3N.jpg
│ │ ├── overfit_1HL_3-6-20N.jpg
│ │ ├── pooling_invariance.png
│ │ ├── receptive_field.png
│ │ ├── receptive_field2.png
│ │ ├── regression.png
│ │ ├── resnet_arch_table.png
│ │ ├── resnet_block.png
│ │ ├── resnet_block2.png
│ │ ├── resnet_plain_deep_error.png
│ │ ├── toeplitz.png
│ │ ├── vanilla_dnn_scale.png
│ │ ├── zf1.png
│ │ └── zf2.png
│ └── tutorial4-CNNs.ipynb
├── t05
│ ├── DJIA_30
│ │ └── all_stocks_2006-01-01_to_2018-01-01.csv.gz
│ ├── imgs
│ │ ├── backprop-graph.png
│ │ ├── backprop-modular.png
│ │ ├── bilevel.png
│ │ ├── enc-pred-dec.png
│ │ ├── sgd-init.png
│ │ ├── sgd-loss.png
│ │ ├── sgd-lr-schedule.png
│ │ ├── sgd-lr.png
│ │ └── sgd-zigzag.png
│ └── tutorial5-Optimization.ipynb
├── t06
│ ├── img
│ │ ├── bptt.png
│ │ ├── causal_convolution.png
│ │ ├── cnn_filters.png
│ │ ├── mlp.png
│ │ ├── rnn_cell.png
│ │ ├── rnn_layered.png
│ │ ├── rnn_unrolled.png
│ │ ├── rnn_use_cases.jpeg
│ │ ├── sentiment_analysis.png
│ │ ├── tbptt.png
│ │ ├── tcn.png
│ │ └── word_embeddings.png
│ └── tutorial6-SeqModels.ipynb
├── t07
│ ├── img
│ │ ├── GRU.png
│ │ ├── attention-layer.png
│ │ ├── bahdanau2015-annotated.png
│ │ ├── bahdanau2015.png
│ │ ├── enc_dec.png
│ │ ├── rnn_layered.png
│ │ ├── rnn_unrolled.png
│ │ ├── self_attn_transformer.svg
│ │ ├── seq2seq.svg
│ │ ├── seq2seq1.png
│ │ ├── seq2seq_attention.svg
│ │ ├── seq2seq_predict.svg
│ │ ├── sutskever2014_pca.png
│ │ ├── xu2015_1.png
│ │ └── xu2015_2.png
│ └── tutorial7-Attention.ipynb
├── t08
│ ├── img
│ │ ├── cifar10.png
│ │ ├── cifar10_100.png
│ │ ├── cnn_feature_vis.png
│ │ ├── data_dist.jpg
│ │ ├── ganin_da.png
│ │ ├── ganin_da2.png
│ │ ├── ganin_da3.png
│ │ ├── mnist_m.png
│ │ ├── pan_yang.png
│ │ ├── target-dist-shift.png
│ │ ├── temp-dist.jpg
│ │ ├── tl_example.png
│ │ ├── transfer-learning-medical.png
│ │ ├── transfer_learning_digits.png
│ │ ├── transferlearning.png
│ │ ├── zf1.png
│ │ └── zf2.png
│ ├── tut7
│ │ ├── data.py
│ │ └── plot_utils.py
│ └── tutorial7-TL_DA.ipynb
├── t09
│ ├── .gitignore
│ ├── atari_wrappers.py
│ ├── img
│ │ ├── deepmind_arch.png
│ │ ├── deepmind_frames.png
│ │ ├── deepmind_results1.png
│ │ ├── deepmind_results2.png
│ │ ├── mdp.png
│ │ ├── mdp2.png
│ │ ├── mdp_transition_prob.png
│ │ ├── q_expectation.png
│ │ ├── rl_episodes.png
│ │ ├── rl_fields.png
│ │ ├── rl_setting.png
│ │ ├── rl_setting2.png
│ │ ├── space-invaders-atari-2600.jpg
│ │ └── v_expectation.png
│ └── tutorial9-DeepRL.ipynb
├── t10
│ ├── img
│ │ ├── conv.gif
│ │ ├── gcn.png
│ │ ├── laplacian_eigenfunctions.png
│ │ ├── random_graph.png
│ │ ├── spectral_generalization.png
│ │ └── toeplitz.png
│ └── tutorial10-GeometricDL.ipynb
└── t11
│ ├── img
│ ├── block_scheduling.png
│ ├── execution_model.png
│ ├── grid_blocks.png
│ ├── hetero.png
│ ├── host_device.png
│ ├── kernel.png
│ ├── kernel_geom.png
│ ├── matmul_noshared.png
│ ├── matmul_shared.png
│ ├── mem_global.png
│ ├── mem_local.png
│ ├── mem_shared.png
│ ├── numba_flowchart.png
│ ├── sm.png
│ └── thread_id_1d.png
│ └── tutorial11-cuda.ipynb
├── run-all.sh
├── t00 - python, numpy, torch
├── demo_package
│ ├── __init__.py
│ └── demo_module.py
└── tutorial0-Python_Pytorch.ipynb
├── t01 - linear models
├── imgs
│ ├── error_types.png
│ ├── neuron.png
│ ├── perceptron.png
│ ├── sgd1d.png
│ └── sgd2d_2.png
├── plot_utils.py
└── tutorial 1-Logistic_Regression.ipynb
├── t02 - mlp
├── imgs
│ ├── linear_discriminant.png
│ ├── mlp.png
│ ├── neuron.png
│ ├── nonlinear_datasets.png
│ ├── overfit_1-2-4HL_3N.jpg
│ ├── overfit_1HL_3-6-20N.jpg
│ ├── perceptron.png
│ └── perceptron_db.png
├── plot_utils.py
└── tutorial 2 -MLP.ipynb
├── t03 - CNN
├── img
│ ├── 1x1_conv.png
│ ├── arch.png
│ ├── cat_translation.png
│ ├── classification.png
│ ├── cnn_filters.png
│ ├── cnn_layer.jpeg
│ ├── cnn_layers.jpeg
│ ├── conv.gif
│ ├── deeper_meme.jpeg
│ ├── depthcol.jpeg
│ ├── feature_hierarchy.png
│ ├── filter_resp.png
│ ├── fully_conv.png
│ ├── maxpool.png
│ ├── mlp.png
│ ├── net_archs.png
│ ├── overfit_1-2-4HL_3N.jpg
│ ├── overfit_1HL_3-6-20N.jpg
│ ├── pooling_invariance.png
│ ├── receptive_field.png
│ ├── receptive_field2.png
│ ├── regression.png
│ ├── resnet_arch_table.png
│ ├── resnet_block.png
│ ├── resnet_block2.png
│ ├── resnet_plain_deep_error.png
│ ├── toeplitz.png
│ ├── vanilla_dnn_scale.png
│ ├── zf1.png
│ └── zf2.png
└── tutorial3-CNNs.ipynb
├── t04 - optimization
├── DJIA_30
│ └── all_stocks_2006-01-01_to_2018-01-01.csv.gz
├── imgs
│ ├── Figure1.png
│ ├── Figure4.png
│ ├── backprop-graph.png
│ ├── backprop-modular.png
│ ├── bilevel.png
│ ├── enc-pred-dec.png
│ ├── figure2-highres.png
│ ├── flat.png
│ ├── lr.gif
│ ├── paraboloid.png
│ ├── scheduler.png
│ ├── sgd-init.png
│ ├── sgd-loss.png
│ ├── sgd-lr-schedule.png
│ ├── sgd-lr.png
│ └── sgd-zigzag.png
└── tutorial4-Optimization.ipynb
├── t05 - automatic differentiation
├── imgs
│ ├── Figure1.png
│ ├── Figure4.png
│ ├── add_mult.png
│ ├── backprop-graph.png
│ ├── backprop-modular.png
│ ├── backwardAD.png
│ ├── bilevel.png
│ ├── chain.png
│ ├── chain_forward.png
│ ├── chain_forwardAD.png
│ ├── chain_reverseAD.png
│ ├── enc-pred-dec.png
│ ├── example_forward.png
│ ├── example_forwardAD.png
│ ├── example_graph.png
│ ├── example_reverseAD.png
│ ├── figure2-highres.png
│ ├── flat.png
│ ├── forwardAD.png
│ ├── sgd-init.png
│ ├── sgd-loss.png
│ ├── sgd-lr-schedule.png
│ ├── sgd-lr.png
│ └── sgd-zigzag.png
└── tut05-AutoDiff.ipynb
├── t06- Object detection
├── assets
│ ├── fl.png
│ ├── instance.png
│ ├── panoptic.png
│ ├── tut_objdet_cat.png
│ ├── tut_objdet_catdog.jpeg
│ ├── tut_objdet_detection.png
│ ├── tut_objdet_detectron.png
│ ├── tut_objdet_diagram.png
│ ├── tut_objdet_dog.jpg
│ ├── tut_objdet_faster_rcnn.png
│ ├── tut_objdet_faster_rcnn_arch.png
│ ├── tut_objdet_nms.png
│ ├── tut_objdet_pyramid.PNG
│ ├── tut_objdet_rcnn-family-summary.png
│ ├── tut_objdet_rcnn.png
│ ├── tut_objdet_rcnn2.jpg
│ ├── tut_objdet_roi1.PNG
│ ├── tut_objdet_roi2.png
│ ├── tut_objdet_rpn_1.png
│ ├── tut_objdet_rpn_2.jpeg
│ ├── tut_objdet_selective_search.jpg
│ ├── tut_objdet_size.png
│ ├── tut_objdet_sliding.gif
│ ├── tut_objdet_small_big_obj.PNG
│ ├── tut_objdet_speed.jpg
│ ├── tut_objdet_ssd_2.PNG
│ ├── tut_objdet_ssd_arch.png
│ ├── tut_objdet_svm.PNG
│ ├── tut_objdet_warp.PNG
│ ├── tut_objdet_yolo.png
│ ├── tut_objdet_yolo_arch.png
│ ├── tut_objdet_yolov2.png
│ ├── tut_objdet_yolov4arch.png
│ ├── tut_objdet_yolov4res.png
│ ├── tut_seg_iou.png
│ ├── yolo2.jpg
│ ├── yolo8.png
│ └── רשימת-מסמכים-נדרשים-לדוקטור.xlsx
├── imgs
│ ├── ap_prac.png
│ ├── confmat.png
│ ├── pr.png
│ ├── prauc.png
│ ├── prgraph.png
│ └── tut_objdet_roi1.PNG
└── tutorial6-OD.ipynb
├── t07 - transfer learning
├── img
│ ├── cifar10.png
│ ├── cifar10_100.png
│ ├── cnn_feature_vis.png
│ ├── data_dist.jpg
│ ├── ganin_da.png
│ ├── ganin_da2.png
│ ├── ganin_da3.png
│ ├── mnist_m.png
│ ├── pan_yang.png
│ ├── target-dist-shift.png
│ ├── temp-dist.jpg
│ ├── tl_example.png
│ ├── transfer-learning-medical.png
│ ├── transfer_learning_digits.png
│ ├── transferlearning.png
│ ├── zf1.png
│ └── zf2.png
├── tut7
│ ├── data.py
│ └── plot_utils.py
└── tutorial7-TL_DA.ipynb
├── t08- RNN
├── img
│ ├── bptt.png
│ ├── causal_convolution.png
│ ├── cnn_filters.png
│ ├── mlp.png
│ ├── rnn_cell.png
│ ├── rnn_layered.png
│ ├── rnn_unrolled.png
│ ├── rnn_use_cases.jpeg
│ ├── sentiment_analysis.png
│ ├── tasks.png
│ ├── tbptt.png
│ ├── tcn.png
│ └── word_embeddings.png
└── tutorial8-SeqModels.ipynb
├── t09- Attention
├── img
│ ├── GRU.png
│ ├── att.png
│ ├── attention-glasses.png
│ ├── attention-layer.png
│ ├── attention-text.png
│ ├── bahdanau2015-annotated.png
│ ├── bahdanau2015.png
│ ├── bleu.png
│ ├── enc_dec.png
│ ├── rnn_layered.png
│ ├── rnn_unrolled.png
│ ├── self_attn_transformer.svg
│ ├── seq2seq.svg
│ ├── seq2seq1.png
│ ├── seq2seq_attention.svg
│ ├── seq2seq_predict.svg
│ ├── sutskever2014_pca.png
│ ├── xu2015_1.png
│ └── xu2015_2.png
└── tutorial9-Attention.ipynb
├── t10- Transformers
├── img
│ ├── GRU.png
│ ├── Hydra29.webp
│ ├── SesameStreet-Season46-ShowOpen-29.webp
│ ├── aiayn.png
│ ├── att.png
│ ├── attention-glasses.png
│ ├── attention-layer.png
│ ├── attention-text.png
│ ├── attention_jay.png
│ ├── bahdanau2015-annotated.png
│ ├── bahdanau2015.png
│ ├── bayer.png
│ ├── before.png
│ ├── bert.png
│ ├── bleu.png
│ ├── description-image.avif
│ ├── dnns-13.jpg.webp
│ ├── enc_dec.png
│ ├── gpt2.png
│ ├── matrix_att_jay.png
│ ├── matrix_att_jay2.png
│ ├── mhatt_jay.png
│ ├── q.png
│ ├── rnn_layered.png
│ ├── rnn_unrolled.png
│ ├── self_attn_transformer.svg
│ ├── seq2seq.svg
│ ├── seq2seq1.png
│ ├── seq2seq_attention.svg
│ ├── seq2seq_predict.svg
│ ├── size.png
│ ├── ss.PNG
│ ├── sutskever2014_pca.png
│ ├── train.png
│ ├── xu2015_1.png
│ └── xu2015_2.png
└── tutorial10-Transformers.ipynb
├── t11- VAE
├── img
│ ├── gau.png
│ ├── gen_disc.jpg
│ ├── gmm.png
│ └── vae.png
└── tutorial11-VAE.ipynb
├── t111- efficient CNN
├── bonus tutorial-efficient CNNs.ipynb
└── img
│ ├── 1x1_conv.png
│ ├── ChannelShuffle.png
│ ├── IRB.png
│ ├── IRB_linear.png
│ ├── SSC.png
│ ├── SqueezeNet.png
│ ├── arch.png
│ ├── bn_1.png
│ ├── bn_2.png
│ ├── bn_3.png
│ ├── bn_4.png
│ ├── bn_5.png
│ ├── conv1.png
│ ├── conv_dept.png
│ ├── conv_dept2.png
│ ├── eff.png
│ ├── effv2.png
│ ├── kd.png
│ ├── low_rank.png
│ ├── pooling_invariance.png
│ ├── prune.png
│ ├── receptive_field.png
│ ├── receptive_field2.png
│ ├── regression.png
│ ├── resnet_arch_table.png
│ ├── resnet_block.png
│ ├── resnet_block2.png
│ ├── rn.webp
│ ├── sobel.png
│ ├── ste.png
│ └── swish.png
├── t12- GAN
├── gan_mnist_01.pt
├── gan_mnist_02.pt
├── img
│ ├── 1_hmbyMq-akpx-VRq7ZfnGFA.png
│ ├── 1_losses.png
│ ├── 2cf8b4f1-7163-4af1-aa4b-6066329d554a.png
│ ├── DCGAN.png
│ ├── Earth-Movers-Distance.png
│ ├── cgan.png
│ ├── collaps.png
│ ├── gan_diagram_discriminator.svg
│ ├── gan_diagram_generator.svg
│ ├── gan_osil.png
│ ├── gau.png
│ ├── gen_disc.jpg
│ ├── gmm.png
│ ├── hairstyle.jpeg
│ ├── infogan.png
│ ├── larit.png
│ ├── mapping_net.png
│ ├── progan.png
│ ├── progang.gif
│ ├── russel.jpg
│ ├── style2-scalednoise.png
│ ├── style2.png
│ ├── stylefinal.png
│ ├── vae.png
│ └── wdistance.png
└── tutorial12-GAN.ipynb
├── t13 - Diffusion Models
├── DDPMs.ipynb
├── Intro.gif
├── PixelCNN++.ppm
├── elbo.jpeg
├── forward_reverse.png
├── random_walk.gif
└── training_and_sampling.png
└── t14- Multi-Modal
├── CLIP.png
├── CO.png
├── Screenshot 2024-08-08 at 13.05.34.png
├── cca.png
├── clip.jpeg
├── dog.png
├── fus.png
├── gal.png
├── gay.jpeg
├── mixing.png
├── modals.png
├── rep.png
├── table.png
├── translation.png
└── tutorial14- Multi-modal.ipynb
/.gitignore:
--------------------------------------------------------------------------------
1 | data/
2 |
3 | # Created by https://www.gitignore.io/api/python,osx,linux,windows
4 |
5 | ### Linux ###
6 | *~
7 |
8 | # temporary files which can be created if a process still has a handle open of a deleted file
9 | .fuse_hidden*
10 |
11 | # KDE directory preferences
12 | .directory
13 |
14 | # Linux trash folder which might appear on any partition or disk
15 | .Trash-*
16 |
17 | # .nfs files are created when an open file is removed but is still being accessed
18 | .nfs*
19 |
20 | ### OSX ###
21 | # General
22 | .DS_Store
23 | .AppleDouble
24 | .LSOverride
25 |
26 | # Icon must end with two \r
27 | Icon
28 |
29 | # Thumbnails
30 | ._*
31 |
32 | # Files that might appear in the root of a volume
33 | .DocumentRevisions-V100
34 | .fseventsd
35 | .Spotlight-V100
36 | .TemporaryItems
37 | .Trashes
38 | .VolumeIcon.icns
39 | .com.apple.timemachine.donotpresent
40 |
41 | # Directories potentially created on remote AFP share
42 | .AppleDB
43 | .AppleDesktop
44 | Network Trash Folder
45 | Temporary Items
46 | .apdisk
47 |
48 | ### Python ###
49 | # Byte-compiled / optimized / DLL files
50 | __pycache__/
51 | *.py[cod]
52 | *$py.class
53 |
54 | # C extensions
55 | *.so
56 |
57 | # Distribution / packaging
58 | .Python
59 | build/
60 | develop-eggs/
61 | dist/
62 | downloads/
63 | eggs/
64 | .eggs/
65 | lib/
66 | lib64/
67 | parts/
68 | sdist/
69 | var/
70 | wheels/
71 | *.egg-info/
72 | .installed.cfg
73 | *.egg
74 | MANIFEST
75 |
76 | # PyInstaller
77 | # Usually these files are written by a python script from a template
78 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
79 | *.manifest
80 | *.spec
81 |
82 | # Installer logs
83 | pip-log.txt
84 | pip-delete-this-directory.txt
85 |
86 | # Unit test / coverage reports
87 | htmlcov/
88 | .tox/
89 | .nox/
90 | .coverage
91 | .coverage.*
92 | .cache
93 | nosetests.xml
94 | coverage.xml
95 | *.cover
96 | .hypothesis/
97 | .pytest_cache/
98 |
99 | # Translations
100 | *.mo
101 | *.pot
102 |
103 | # Django stuff:
104 | *.log
105 | local_settings.py
106 | db.sqlite3
107 |
108 | # Flask stuff:
109 | instance/
110 | .webassets-cache
111 |
112 | # Scrapy stuff:
113 | .scrapy
114 |
115 | # Sphinx documentation
116 | docs/_build/
117 |
118 | # PyBuilder
119 | target/
120 |
121 | # Jupyter Notebook
122 | .ipynb_checkpoints
123 |
124 | # IPython
125 | profile_default/
126 | ipython_config.py
127 |
128 | # pyenv
129 | .python-version
130 |
131 | # celery beat schedule file
132 | celerybeat-schedule
133 |
134 | # SageMath parsed files
135 | *.sage.py
136 |
137 | # Environments
138 | .env
139 | .venv
140 | env/
141 | venv/
142 | ENV/
143 | env.bak/
144 | venv.bak/
145 |
146 | # Spyder project settings
147 | .spyderproject
148 | .spyproject
149 |
150 | # Rope project settings
151 | .ropeproject
152 |
153 | # mkdocs documentation
154 | /site
155 |
156 | # mypy
157 | .mypy_cache/
158 | .dmypy.json
159 | dmypy.json
160 |
161 | ### Python Patch ###
162 | .venv/
163 |
164 | ### Python.VirtualEnv Stack ###
165 | # Virtualenv
166 | # http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
167 | [Bb]in
168 | [Ii]nclude
169 | [Ll]ib
170 | [Ll]ib64
171 | [Ll]ocal
172 | [Ss]cripts
173 | pyvenv.cfg
174 | pip-selfcheck.json
175 |
176 | ### Windows ###
177 | # Windows thumbnail cache files
178 | Thumbs.db
179 | ehthumbs.db
180 | ehthumbs_vista.db
181 |
182 | # Dump file
183 | *.stackdump
184 |
185 | # Folder config file
186 | [Dd]esktop.ini
187 |
188 | # Recycle Bin used on file shares
189 | $RECYCLE.BIN/
190 |
191 | # Windows Installer files
192 | *.cab
193 | *.msi
194 | *.msix
195 | *.msm
196 | *.msp
197 |
198 | # Windows shortcuts
199 | *.lnk
200 |
201 |
202 | # End of https://www.gitignore.io/api/python,osx,linux,windows
203 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # CS236781 Tutorials
2 |
3 | This repo contains the code and notebooks shown during course tutorials.
4 |
5 | You can also view the tutorial notebooks in your browser using `nbviewer` by clicking the
6 | button below.
7 |
8 |
9 |
10 | ## Environment set-up
11 |
12 | 1. Install the python3 version of [miniconda](https://conda.io/miniconda.html).
13 | Follow the [installation instructions](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html)
14 | for your platform.
15 |
16 | 2. Use conda to create a virtual environment for the assignment.
17 | From the assignment's root directory, run
18 |
19 | ```shell
20 | conda env create -f environment.yml
21 | ```
22 |
23 | This will install all the necessary packages into a new conda virtual environment named `cs236781`.
24 |
25 | 3. Activate the new environment by running
26 |
27 | ```shell
28 | conda activate cs236781-tutorials
29 | ```
30 |
31 | 4. Optionally, execute the `run-all.sh` script to run all notebook and test that
32 | everything is installed correctly.
33 |
34 | Notes:
35 | - On Windows, you should also install Microsoft's [Build Tools for Visual
36 | Studio](https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019)
37 | before installing the conda env. Make sure "C++ Build Tools" is selected during installation.
38 | - After a new tutorial is added, you should run `conda env update` from the repo
39 | directory to update your dependencies since each new tutorial might add ones.
40 |
41 |
42 |
--------------------------------------------------------------------------------
/environment.lock.yml:
--------------------------------------------------------------------------------
1 | name: cs236781-tutorials
2 | channels:
3 | - pytorch
4 | - conda-forge
5 | - defaults
6 | dependencies:
7 | - apipkg=1.5
8 | - appnope=0.1.0
9 | - argon2-cffi=20.1.0
10 | - async_generator=1.10
11 | - attrs=20.2.0
12 | - backcall=0.2.0
13 | - blas=1.0
14 | - bleach=3.2.1
15 | - brotlipy=0.7.0
16 | - bzip2=1.0.8
17 | - ca-certificates=2020.10.14
18 | - cairo=1.14.12
19 | - catalogue=1.0.0
20 | - certifi=2020.6.20
21 | - cffi=1.14.0
22 | - chardet=3.0.4
23 | - click=7.1.2
24 | - cmake=3.18.2
25 | - coverage=5.3
26 | - cryptography=3.1.1
27 | - cudatoolkit=9.0
28 | - cycler=0.10.0
29 | - cymem=2.0.3
30 | - cython=0.29.21
31 | - cython-blis=0.4.1
32 | - dbus=1.13.18
33 | - decorator=4.4.2
34 | - defusedxml=0.6.0
35 | - entrypoints=0.3
36 | - execnet=1.7.1
37 | - expat=2.2.10
38 | - ffmpeg=4.2.2
39 | - fontconfig=2.13.0
40 | - freetype=2.10.4
41 | - gettext=0.19.8.1
42 | - giflib=5.2.1
43 | - glib=2.63.1
44 | - gmp=6.1.2
45 | - gnutls=3.6.5
46 | - graphite2=1.3.14
47 | - graphviz=2.42.3
48 | - harfbuzz=2.4.0
49 | - hdf5=1.10.6
50 | - icu=58.2
51 | - idna=2.10
52 | - importlib-metadata=2.0.0
53 | - importlib_metadata=2.0.0
54 | - iniconfig=1.1.1
55 | - intel-openmp=2019.4
56 | - ipykernel=5.3.4
57 | - ipython=7.18.1
58 | - ipython_genutils=0.2.0
59 | - ipywidgets=7.5.1
60 | - jasper=1.900.1
61 | - jedi=0.17.2
62 | - jinja2=2.11.2
63 | - joblib=0.17.0
64 | - jpeg=9d
65 | - json5=0.9.5
66 | - jsonschema=3.0.2
67 | - jupyter=1.0.0
68 | - jupyter_client=6.1.7
69 | - jupyter_console=6.2.0
70 | - jupyter_core=4.6.3
71 | - jupyterlab=2.2.6
72 | - jupyterlab_pygments=0.1.2
73 | - jupyterlab_server=1.2.0
74 | - kiwisolver=1.2.0
75 | - krb5=1.18.2
76 | - lame=3.100
77 | - lcms2=2.11
78 | - libblas=3.8.0
79 | - libcblas=3.8.0
80 | - libcurl=7.71.1
81 | - libcxx=11.0.0
82 | - libedit=3.1.20191231
83 | - libffi=3.2.1
84 | - libgfortran=3.0.1
85 | - libiconv=1.16
86 | - liblapack=3.8.0
87 | - liblapacke=3.8.0
88 | - libllvm10=10.0.1
89 | - libopencv=4.2.0
90 | - libopus=1.3.1
91 | - libpng=1.6.37
92 | - libsodium=1.0.18
93 | - libssh2=1.9.0
94 | - libtiff=4.1.0
95 | - libuv=1.40.0
96 | - libvpx=1.7.0
97 | - libwebp=1.0.2
98 | - libxml2=2.9.10
99 | - llvm-openmp=10.0.0
100 | - llvmlite=0.34.0
101 | - lz4-c=1.9.2
102 | - markupsafe=1.1.1
103 | - matplotlib=3.3.2
104 | - matplotlib-base=3.3.2
105 | - mistune=0.8.4
106 | - mkl=2019.4
107 | - mkl-service=2.3.0
108 | - mkl_fft=1.2.0
109 | - mkl_random=1.1.1
110 | - more-itertools=8.5.0
111 | - murmurhash=1.0.2
112 | - nbclient=0.5.1
113 | - nbconvert=6.0.7
114 | - nbformat=5.0.8
115 | - ncurses=6.2
116 | - nest-asyncio=1.4.1
117 | - nettle=3.4.1
118 | - networkx=2.5
119 | - ninja=1.10.1
120 | - nltk=3.5
121 | - nodejs=10.13.0
122 | - notebook=6.1.4
123 | - numba=0.51.2
124 | - numpy=1.19.2
125 | - numpy-base=1.19.2
126 | - olefile=0.46
127 | - opencv=4.2.0
128 | - openh264=2.1.0
129 | - openssl=1.1.1h
130 | - packaging=20.4
131 | - pandas=1.1.3
132 | - pandoc=2.11
133 | - pandocfilters=1.4.2
134 | - parso=0.7.0
135 | - pcre=8.44
136 | - pexpect=4.8.0
137 | - pickleshare=0.7.5
138 | - pillow=8.0.1
139 | - pip=20.2.4
140 | - pixman=0.40.0
141 | - plac=0.9.6
142 | - pluggy=0.13.1
143 | - preshed=3.0.2
144 | - prometheus_client=0.8.0
145 | - prompt-toolkit=3.0.8
146 | - prompt_toolkit=3.0.8
147 | - ptyprocess=0.6.0
148 | - py=1.9.0
149 | - py-opencv=4.2.0
150 | - pycparser=2.20
151 | - pygments=2.7.1
152 | - pyopenssl=19.1.0
153 | - pyparsing=2.4.7
154 | - pyqt=5.9.2
155 | - pyrsistent=0.17.3
156 | - pysocks=1.7.1
157 | - pytest=6.1.1
158 | - pytest-cov=2.10.1
159 | - pytest-forked=1.3.0
160 | - pytest-xdist=2.1.0
161 | - python=3.8.6
162 | - python-dateutil=2.8.1
163 | - python-graphviz=0.14.2
164 | - python_abi=3.8
165 | - pytorch=1.6.0
166 | - pytz=2020.1
167 | - pyzmq=19.0.2
168 | - qt=5.9.7
169 | - qtconsole=4.7.7
170 | - qtpy=1.9.0
171 | - readline=8.0
172 | - regex=2020.10.15
173 | - requests=2.24.0
174 | - rhash=1.4.0
175 | - rise=5.6.1
176 | - scikit-learn=0.23.2
177 | - scipy=1.5.0
178 | - send2trash=1.5.0
179 | - setuptools=50.3.0
180 | - sip=4.19.8
181 | - six=1.15.0
182 | - spacy=2.3.2
183 | - spacy-model-en_core_web_sm=2.3.1
184 | - sqlite=3.33.0
185 | - srsly=1.0.2
186 | - swig=3.0.12
187 | - terminado=0.9.1
188 | - testpath=0.4.4
189 | - thinc=7.4.1
190 | - threadpoolctl=2.1.0
191 | - tk=8.6.10
192 | - toml=0.10.1
193 | - torchtext=0.7.0
194 | - torchvision=0.7.0
195 | - tornado=6.0.4
196 | - tqdm=4.50.2
197 | - traitlets=5.0.5
198 | - urllib3=1.25.11
199 | - wasabi=0.8.0
200 | - wcwidth=0.2.5
201 | - webencodings=0.5.1
202 | - wheel=0.35.1
203 | - widgetsnbextension=3.5.1
204 | - x264=1!157.20191217
205 | - xz=5.2.5
206 | - zeromq=4.3.3
207 | - zipp=3.4.0
208 | - zlib=1.2.11
209 | - zstd=1.4.5
210 | - pip:
211 | - atari-py==0.2.6
212 | - box2d-py==2.3.8
213 | - cloudpickle==1.6.0
214 | - https://github.com/explosion/spacy-models/releases/download/de_core_news_sm-2.3.0/de_core_news_sm-2.3.0.tar.gz
215 | - future==0.18.2
216 | - gym==0.17.3
217 | - nbmerge==0.0.4
218 | - pyglet==1.5.0
219 | - torchviz==0.0.1
220 |
221 |
--------------------------------------------------------------------------------
/environment.yml:
--------------------------------------------------------------------------------
1 | name: cs236781-tutorials
2 | channels:
3 | - pytorch
4 | - conda-forge
5 | - defaults
6 | dependencies:
7 | # common
8 | - ipython
9 | - jupyter
10 | - jupyterlab
11 | - matplotlib
12 | - numpy
13 | - pandas
14 | - pip
15 | - pytest
16 | - pytest-xdist
17 | - python=3.8.12
18 | - scikit-learn=1.1.3
19 | - scipy
20 | - tqdm
21 | # pytorch
22 | - pytorch
23 | #- cudatoolkit
24 | - torchvision
25 | - torchtext
26 |
--------------------------------------------------------------------------------
/environment1.yml:
--------------------------------------------------------------------------------
1 | name: cs236781-hw
2 | channels:
3 | - pytorch
4 | - conda-forge
5 | - defaults
6 | dependencies:
7 | - aiofiles=22.1.0=pyhd8ed1ab_0
8 | - aiosqlite=0.18.0=pyhd8ed1ab_0
9 | - anyio=3.6.2=pyhd8ed1ab_0
10 | - argon2-cffi=21.3.0=pyhd8ed1ab_0
11 | - argon2-cffi-bindings=21.2.0=py38h91455d4_3
12 | - asttokens=2.2.1=pyhd8ed1ab_0
13 | - attrs=22.2.0=pyh71513ae_0
14 | - babel=2.12.1=pyhd8ed1ab_1
15 | - backcall=0.2.0=pyh9f0ad1d_0
16 | - backports=1.0=pyhd8ed1ab_3
17 | - backports.functools_lru_cache=1.6.4=pyhd8ed1ab_0
18 | - beautifulsoup4=4.12.0=pyha770c72_0
19 | - blas=2.116=mkl
20 | - blas-devel=3.9.0=16_win64_mkl
21 | - bleach=6.0.0=pyhd8ed1ab_0
22 | - brotli=1.0.9=hcfcfb64_8
23 | - brotli-bin=1.0.9=hcfcfb64_8
24 | - brotlipy=0.7.0=py38h91455d4_1005
25 | - bzip2=1.0.8=h8ffe710_4
26 | - ca-certificates=2022.12.7=h5b45459_0
27 | - certifi=2022.12.7=pyhd8ed1ab_0
28 | - cffi=1.15.1=py38h57701bc_3
29 | - charset-normalizer=3.1.0=pyhd8ed1ab_0
30 | - colorama=0.4.6=pyhd8ed1ab_0
31 | - comm=0.1.3=pyhd8ed1ab_0
32 | - contourpy=1.0.7=py38hb1fd069_0
33 | - cryptography=40.0.1=py38h95f5157_0
34 | - cudatoolkit=11.8.0=h09e9e62_11
35 | - cycler=0.11.0=pyhd8ed1ab_0
36 | - debugpy=1.6.6=py38hd3f51b4_0
37 | - decorator=5.1.1=pyhd8ed1ab_0
38 | - defusedxml=0.7.1=pyhd8ed1ab_0
39 | - entrypoints=0.4=pyhd8ed1ab_0
40 | - exceptiongroup=1.1.1=pyhd8ed1ab_0
41 | - execnet=1.9.0=pyhd8ed1ab_0
42 | - executing=1.2.0=pyhd8ed1ab_0
43 | - filelock=3.10.7=pyhd8ed1ab_0
44 | - flit-core=3.8.0=pyhd8ed1ab_0
45 | - fonttools=4.39.3=py38h91455d4_0
46 | - freetype=2.12.1=h546665d_1
47 | - gettext=0.21.1=h5728263_0
48 | - glib=2.74.1=h12be248_1
49 | - glib-tools=2.74.1=h12be248_1
50 | - gst-plugins-base=1.22.0=h001b923_2
51 | - gstreamer=1.22.0=h6b5321d_2
52 | - icu=70.1=h0e60522_0
53 | - idna=3.4=pyhd8ed1ab_0
54 | - importlib-metadata=6.1.0=pyha770c72_0
55 | - importlib-resources=5.12.0=pyhd8ed1ab_0
56 | - importlib_metadata=6.1.0=hd8ed1ab_0
57 | - importlib_resources=5.12.0=pyhd8ed1ab_0
58 | - iniconfig=2.0.0=pyhd8ed1ab_0
59 | - intel-openmp=2023.0.0=h57928b3_25922
60 | - ipykernel=6.22.0=pyh025b116_0
61 | - ipython=8.12.0=pyh08f2357_0
62 | - ipython_genutils=0.2.0=py_1
63 | - ipywidgets=8.0.6=pyhd8ed1ab_0
64 | - jedi=0.18.2=pyhd8ed1ab_0
65 | - jinja2=3.1.2=pyhd8ed1ab_1
66 | - joblib=1.2.0=pyhd8ed1ab_0
67 | - jpeg=9e=hcfcfb64_3
68 | - json5=0.9.5=pyh9f0ad1d_0
69 | - jsonschema=4.17.3=pyhd8ed1ab_0
70 | - jupyter=1.0.0=py38haa244fe_8
71 | - jupyter_client=8.1.0=pyhd8ed1ab_0
72 | - jupyter_console=6.6.3=pyhd8ed1ab_0
73 | - jupyter_core=5.3.0=py38haa244fe_0
74 | - jupyter_events=0.6.3=pyhd8ed1ab_0
75 | - jupyter_server=2.5.0=pyhd8ed1ab_0
76 | - jupyter_server_fileid=0.8.0=pyhd8ed1ab_0
77 | - jupyter_server_terminals=0.4.4=pyhd8ed1ab_1
78 | - jupyter_server_ydoc=0.8.0=pyhd8ed1ab_0
79 | - jupyter_ydoc=0.2.3=pyhd8ed1ab_0
80 | - jupyterlab=3.6.3=pyhd8ed1ab_0
81 | - jupyterlab_pygments=0.2.2=pyhd8ed1ab_0
82 | - jupyterlab_server=2.22.0=pyhd8ed1ab_0
83 | - jupyterlab_widgets=3.0.7=pyhd8ed1ab_0
84 | - kiwisolver=1.4.4=py38hb1fd069_1
85 | - krb5=1.20.1=heb0366b_0
86 | - lcms2=2.15=ha5c8aab_0
87 | - lerc=4.0.0=h63175ca_0
88 | - libblas=3.9.0=16_win64_mkl
89 | - libbrotlicommon=1.0.9=hcfcfb64_8
90 | - libbrotlidec=1.0.9=hcfcfb64_8
91 | - libbrotlienc=1.0.9=hcfcfb64_8
92 | - libcblas=3.9.0=16_win64_mkl
93 | - libclang=15.0.7=default_h77d9078_1
94 | - libclang13=15.0.7=default_h77d9078_1
95 | - libdeflate=1.17=hcfcfb64_0
96 | - libffi=3.4.2=h8ffe710_5
97 | - libglib=2.74.1=he8f3873_1
98 | - libhwloc=2.9.0=h51c2c0f_0
99 | - libiconv=1.17=h8ffe710_0
100 | - liblapack=3.9.0=16_win64_mkl
101 | - liblapacke=3.9.0=16_win64_mkl
102 | - libogg=1.3.4=h8ffe710_1
103 | - libpng=1.6.39=h19919ed_0
104 | - libsodium=1.0.18=h8d14728_1
105 | - libsqlite=3.40.0=hcfcfb64_0
106 | - libtiff=4.5.0=hf8721a0_2
107 | - libuv=1.44.2=h8ffe710_0
108 | - libvorbis=1.3.7=h0e60522_0
109 | - libwebp-base=1.3.0=hcfcfb64_0
110 | - libxcb=1.13=hcd874cb_1004
111 | - libxml2=2.10.3=hc3477c8_6
112 | - libzlib=1.2.13=hcfcfb64_4
113 | - m2w64-gcc-libgfortran=5.3.0=6
114 | - m2w64-gcc-libs=5.3.0=7
115 | - m2w64-gcc-libs-core=5.3.0=7
116 | - m2w64-gmp=6.1.0=2
117 | - m2w64-libwinpthread-git=5.0.0.4634.697f757=2
118 | - markupsafe=2.1.2=py38h91455d4_0
119 | - matplotlib=3.7.1=py38haa244fe_0
120 | - matplotlib-base=3.7.1=py38h528a6c7_0
121 | - matplotlib-inline=0.1.6=pyhd8ed1ab_0
122 | - mistune=2.0.5=pyhd8ed1ab_0
123 | - mkl=2022.1.0=h6a75c08_874
124 | - mkl-devel=2022.1.0=h57928b3_875
125 | - mkl-include=2022.1.0=h6a75c08_874
126 | - mpmath=1.3.0=pyhd8ed1ab_0
127 | - msys2-conda-epoch=20160418=1
128 | - munkres=1.1.4=pyh9f0ad1d_0
129 | - nbclassic=0.5.3=pyhb4ecaf3_3
130 | - nbclient=0.7.2=pyhd8ed1ab_0
131 | - nbconvert=7.2.10=pyhd8ed1ab_1
132 | - nbconvert-core=7.2.10=pyhd8ed1ab_1
133 | - nbconvert-pandoc=7.2.10=pyhd8ed1ab_1
134 | - nbformat=5.8.0=pyhd8ed1ab_0
135 | - nest-asyncio=1.5.6=pyhd8ed1ab_0
136 | - networkx=3.0=pyhd8ed1ab_0
137 | - notebook=6.5.3=pyha770c72_0
138 | - notebook-shim=0.2.2=pyhd8ed1ab_0
139 | - numpy=1.24.2=py38h7ec9225_0
140 | - openjpeg=2.5.0=ha2aaf27_2
141 | - openssl=3.1.0=hcfcfb64_0
142 | - packaging=23.0=pyhd8ed1ab_0
143 | - pandas=2.0.0=py38h5846ac1_0
144 | - pandoc=2.19.2=h57928b3_2
145 | - pandocfilters=1.5.0=pyhd8ed1ab_0
146 | - parso=0.8.3=pyhd8ed1ab_0
147 | - pcre2=10.40=h17e33f8_0
148 | - pickleshare=0.7.5=py_1003
149 | - pillow=9.4.0=py38h087119c_1
150 | - pip=23.0.1=pyhd8ed1ab_0
151 | - pkgutil-resolve-name=1.3.10=pyhd8ed1ab_0
152 | - platformdirs=3.2.0=pyhd8ed1ab_0
153 | - pluggy=1.0.0=pyhd8ed1ab_5
154 | - ply=3.11=py_1
155 | - pooch=1.7.0=pyha770c72_3
156 | - prometheus_client=0.16.0=pyhd8ed1ab_0
157 | - prompt-toolkit=3.0.38=pyha770c72_0
158 | - prompt_toolkit=3.0.38=hd8ed1ab_0
159 | - psutil=5.9.4=py38h91455d4_0
160 | - pthread-stubs=0.4=hcd874cb_1001
161 | - pthreads-win32=2.9.1=hfa6e2cd_3
162 | - pure_eval=0.2.2=pyhd8ed1ab_0
163 | - pycparser=2.21=pyhd8ed1ab_0
164 | - pygments=2.14.0=pyhd8ed1ab_0
165 | - pyopenssl=23.1.1=pyhd8ed1ab_0
166 | - pyparsing=3.0.9=pyhd8ed1ab_0
167 | - pyqt=5.15.7=py38hd6c051e_3
168 | - pyqt5-sip=12.11.0=py38hd3f51b4_3
169 | - pyrsistent=0.19.3=py38h91455d4_0
170 | - pysocks=1.7.1=pyh0701188_6
171 | - pytest=7.2.2=pyhd8ed1ab_0
172 | - pytest-xdist=3.2.1=pyhd8ed1ab_0
173 | - python=3.8.12=h900ac77_2_cpython
174 | - python-dateutil=2.8.2=pyhd8ed1ab_0
175 | - python-fastjsonschema=2.16.3=pyhd8ed1ab_0
176 | - python-json-logger=2.0.7=pyhd8ed1ab_0
177 | - python-tzdata=2023.3=pyhd8ed1ab_0
178 | - python_abi=3.8=3_cp38
179 | - pytorch=2.0.0=py3.8_cpu_0
180 | - pytorch-mutex=1.0=cpu
181 | - pytz=2023.3=pyhd8ed1ab_0
182 | - pywin32=304=py38hd3f51b4_2
183 | - pywinpty=2.0.10=py38hd3f51b4_0
184 | - pyyaml=6.0=py38h91455d4_5
185 | - pyzmq=25.0.2=py38ha85f68a_0
186 | - qt-main=5.15.8=h720456b_6
187 | - qtconsole=5.4.2=pyhd8ed1ab_0
188 | - qtconsole-base=5.4.2=pyha770c72_0
189 | - qtpy=2.3.1=pyhd8ed1ab_0
190 | - requests=2.28.2=pyhd8ed1ab_1
191 | - rfc3339-validator=0.1.4=pyhd8ed1ab_0
192 | - rfc3986-validator=0.1.1=pyh9f0ad1d_0
193 | - scikit-learn=1.1.3=py38h69724d7_1
194 | - scipy=1.10.1=py38h0f6ee2a_0
195 | - send2trash=1.8.0=pyhd8ed1ab_0
196 | - setuptools=67.6.1=pyhd8ed1ab_0
197 | - sip=6.7.7=py38hd3f51b4_1
198 | - six=1.16.0=pyh6c4a22f_0
199 | - sniffio=1.3.0=pyhd8ed1ab_0
200 | - soupsieve=2.3.2.post1=pyhd8ed1ab_0
201 | - sqlite=3.40.0=hcfcfb64_0
202 | - stack_data=0.6.2=pyhd8ed1ab_0
203 | - sympy=1.11.1=pyh04b8f61_3
204 | - tbb=2021.8.0=h91493d7_0
205 | - terminado=0.17.0=pyh08f2357_0
206 | - threadpoolctl=3.1.0=pyh8a188c0_0
207 | - tinycss2=1.2.1=pyhd8ed1ab_0
208 | - tk=8.6.12=h8ffe710_0
209 | - toml=0.10.2=pyhd8ed1ab_0
210 | - tomli=2.0.1=pyhd8ed1ab_0
211 | - torchdata=0.6.0=py38
212 | - torchtext=0.15.0=py38
213 | - torchvision=0.15.0=py38_cpu
214 | - tornado=6.2=py38h91455d4_1
215 | - tqdm=4.65.0=pyhd8ed1ab_1
216 | - traitlets=5.9.0=pyhd8ed1ab_0
217 | - typing-extensions=4.5.0=hd8ed1ab_0
218 | - typing_extensions=4.5.0=pyha770c72_0
219 | - ucrt=10.0.22621.0=h57928b3_0
220 | - unicodedata2=15.0.0=py38h91455d4_0
221 | - urllib3=1.26.15=pyhd8ed1ab_0
222 | - vc=14.3=hb6edc58_10
223 | - vs2015_runtime=14.34.31931=h4c5c07a_10
224 | - wcwidth=0.2.6=pyhd8ed1ab_0
225 | - webencodings=0.5.1=py_1
226 | - websocket-client=1.5.1=pyhd8ed1ab_0
227 | - wheel=0.40.0=pyhd8ed1ab_0
228 | - widgetsnbextension=4.0.7=pyhd8ed1ab_0
229 | - win_inet_pton=1.1.0=pyhd8ed1ab_6
230 | - winpty=0.4.3=4
231 | - xorg-libxau=1.0.9=hcd874cb_0
232 | - xorg-libxdmcp=1.1.3=hcd874cb_0
233 | - xz=5.2.6=h8d14728_0
234 | - y-py=0.5.9=py38h4900a04_0
235 | - yaml=0.2.5=h8ffe710_2
236 | - ypy-websocket=0.8.2=pyhd8ed1ab_0
237 | - zeromq=4.3.4=h0e60522_1
238 | - zipp=3.15.0=pyhd8ed1ab_0
239 | - zstd=1.5.2=h12be248_6
240 | - pip:
241 | - python-graphviz==0.20.1
242 | - torchviz==0.0.2
243 | prefix: C:\Users\moshe\anaconda3\envs\cs236781-hw
244 |
--------------------------------------------------------------------------------
/jupyter-lab.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | ###
4 | # CS236781: Deep Learning
5 | # jupyter-lab.sh
6 | #
7 | # This script is intended to help you run jupyter lab on the course servers.
8 | #
9 | # Example usage:
10 | #
11 | # To run on the gateway machine (limited resources, no GPU):
12 | # ./jupyter-lab.sh
13 | #
14 | # To run on a compute node:
15 | # srun -c 2 --gres=gpu:1 --pty jupyter-lab.sh
16 | #
17 |
18 | ###
19 | # Conda parameters
20 | #
21 | CONDA_HOME=$HOME/miniconda3
22 | CONDA_ENV=cs236781-tutorials
23 |
24 | unset XDG_RUNTIME_DIR
25 | source $CONDA_HOME/etc/profile.d/conda.sh
26 | conda activate $CONDA_ENV
27 |
28 | # jupyter lab --no-browser --ip=$(hostname -I) --port-retries=100
29 | jupyter notebook --no-browser --ip=$(hostname -I) --port-retries=100
30 |
31 |
--------------------------------------------------------------------------------
/older version/t01/demo_package/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | Demo package init file.
3 | This file used to be required for defining a python pacakge, until python 3.3.
4 | """
5 |
6 | # Package init code can be written here
7 |
--------------------------------------------------------------------------------
/older version/t01/demo_package/demo_module.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import math
3 |
4 |
5 | def demo_func(a=1):
6 | """
7 | Just a demo
8 | """
9 | print(f'this is a demo, a={a}')
10 |
11 |
12 | # This will be executed when this module is imported for the first time
13 | demo_func(17)
14 |
15 |
16 | if __name__ == '__main__':
17 | """
18 | This will be executed when the script is run from the command line.
19 | """
20 | demo_func(a=42)
21 |
22 |
--------------------------------------------------------------------------------
/older version/t02/imgs/error_types.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t02/imgs/error_types.png
--------------------------------------------------------------------------------
/older version/t02/imgs/neuron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t02/imgs/neuron.png
--------------------------------------------------------------------------------
/older version/t02/imgs/perceptron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t02/imgs/perceptron.png
--------------------------------------------------------------------------------
/older version/t02/imgs/sgd1d.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t02/imgs/sgd1d.png
--------------------------------------------------------------------------------
/older version/t02/imgs/sgd2d_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t02/imgs/sgd2d_2.png
--------------------------------------------------------------------------------
/older version/t02/plot_utils.py:
--------------------------------------------------------------------------------
1 | import itertools
2 | import math
3 | import matplotlib.pyplot as plt
4 |
5 |
6 | def tensors_as_images(tensors, nrows=1, figsize=(8, 8), titles=[],
7 | wspace=0.1, hspace=0.2, cmap=None):
8 | """
9 | Plots a sequence of pytorch tensors as images.
10 | :param tensors: A sequence of pytorch tensors, should have shape CxWxH
11 | """
12 | assert nrows > 0
13 |
14 | num_tensors = len(tensors)
15 |
16 | ncols = math.ceil(num_tensors / nrows)
17 |
18 | fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize,
19 | gridspec_kw=dict(wspace=wspace, hspace=hspace),
20 | subplot_kw=dict(yticks=[], xticks=[]))
21 | axes_flat = axes.reshape(-1)
22 |
23 | # Plot each tensor
24 | for i in range(num_tensors):
25 | ax = axes_flat[i]
26 |
27 | image_tensor = tensors[i]
28 | assert image_tensor.dim() == 3 # Make sure shape is CxWxH
29 |
30 | image = image_tensor.numpy()
31 | image = image.transpose(1, 2, 0)
32 | image = image.squeeze() # remove singleton dimensions if any exist
33 |
34 | ax.imshow(image, cmap=cmap)
35 |
36 | if len(titles) > i and titles[i] is not None:
37 | ax.set_title(titles[i])
38 |
39 | # If there are more axes than tensors, remove their frames
40 | for j in range(num_tensors, len(axes_flat)):
41 | axes_flat[j].axis('off')
42 |
43 | return fig, axes
44 |
45 |
46 | def dataset_first_n(dataset, n, show_classes=False, class_labels=None, **kw):
47 | """
48 | Plots first n images of a dataset containing tensor images.
49 | """
50 |
51 | # [(img0, cls0), ..., # (imgN, clsN)]
52 | first_n = list(itertools.islice(dataset, n))
53 |
54 | # Split (image, class) tuples
55 | first_n_images, first_n_classes = zip(*first_n)
56 |
57 | if show_classes:
58 | titles = first_n_classes
59 | if class_labels:
60 | titles = [class_labels[cls] for cls in first_n_classes]
61 | else:
62 | titles = []
63 |
64 | return tensors_as_images(first_n_images, titles=titles, **kw)
65 |
--------------------------------------------------------------------------------
/older version/t03/imgs/linear_discriminant.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t03/imgs/linear_discriminant.png
--------------------------------------------------------------------------------
/older version/t03/imgs/mlp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t03/imgs/mlp.png
--------------------------------------------------------------------------------
/older version/t03/imgs/neuron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t03/imgs/neuron.png
--------------------------------------------------------------------------------
/older version/t03/imgs/nonlinear_datasets.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t03/imgs/nonlinear_datasets.png
--------------------------------------------------------------------------------
/older version/t03/imgs/overfit_1-2-4HL_3N.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t03/imgs/overfit_1-2-4HL_3N.jpg
--------------------------------------------------------------------------------
/older version/t03/imgs/overfit_1HL_3-6-20N.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t03/imgs/overfit_1HL_3-6-20N.jpg
--------------------------------------------------------------------------------
/older version/t03/imgs/perceptron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t03/imgs/perceptron.png
--------------------------------------------------------------------------------
/older version/t03/imgs/perceptron_db.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t03/imgs/perceptron_db.png
--------------------------------------------------------------------------------
/older version/t04/img/1x1_conv.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/1x1_conv.png
--------------------------------------------------------------------------------
/older version/t04/img/arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/arch.png
--------------------------------------------------------------------------------
/older version/t04/img/cat_translation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/cat_translation.png
--------------------------------------------------------------------------------
/older version/t04/img/classification.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/classification.png
--------------------------------------------------------------------------------
/older version/t04/img/cnn_filters.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/cnn_filters.png
--------------------------------------------------------------------------------
/older version/t04/img/cnn_layer.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/cnn_layer.jpeg
--------------------------------------------------------------------------------
/older version/t04/img/cnn_layers.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/cnn_layers.jpeg
--------------------------------------------------------------------------------
/older version/t04/img/conv.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/conv.gif
--------------------------------------------------------------------------------
/older version/t04/img/deeper_meme.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/deeper_meme.jpeg
--------------------------------------------------------------------------------
/older version/t04/img/depthcol.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/depthcol.jpeg
--------------------------------------------------------------------------------
/older version/t04/img/feature_hierarchy.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/feature_hierarchy.png
--------------------------------------------------------------------------------
/older version/t04/img/filter_resp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/filter_resp.png
--------------------------------------------------------------------------------
/older version/t04/img/fully_conv.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/fully_conv.png
--------------------------------------------------------------------------------
/older version/t04/img/maxpool.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/maxpool.png
--------------------------------------------------------------------------------
/older version/t04/img/mlp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/mlp.png
--------------------------------------------------------------------------------
/older version/t04/img/net_archs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/net_archs.png
--------------------------------------------------------------------------------
/older version/t04/img/overfit_1-2-4HL_3N.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/overfit_1-2-4HL_3N.jpg
--------------------------------------------------------------------------------
/older version/t04/img/overfit_1HL_3-6-20N.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/overfit_1HL_3-6-20N.jpg
--------------------------------------------------------------------------------
/older version/t04/img/pooling_invariance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/pooling_invariance.png
--------------------------------------------------------------------------------
/older version/t04/img/receptive_field.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/receptive_field.png
--------------------------------------------------------------------------------
/older version/t04/img/receptive_field2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/receptive_field2.png
--------------------------------------------------------------------------------
/older version/t04/img/regression.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/regression.png
--------------------------------------------------------------------------------
/older version/t04/img/resnet_arch_table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/resnet_arch_table.png
--------------------------------------------------------------------------------
/older version/t04/img/resnet_block.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/resnet_block.png
--------------------------------------------------------------------------------
/older version/t04/img/resnet_block2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/resnet_block2.png
--------------------------------------------------------------------------------
/older version/t04/img/resnet_plain_deep_error.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/resnet_plain_deep_error.png
--------------------------------------------------------------------------------
/older version/t04/img/toeplitz.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/toeplitz.png
--------------------------------------------------------------------------------
/older version/t04/img/vanilla_dnn_scale.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/vanilla_dnn_scale.png
--------------------------------------------------------------------------------
/older version/t04/img/zf1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/zf1.png
--------------------------------------------------------------------------------
/older version/t04/img/zf2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t04/img/zf2.png
--------------------------------------------------------------------------------
/older version/t05/DJIA_30/all_stocks_2006-01-01_to_2018-01-01.csv.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/DJIA_30/all_stocks_2006-01-01_to_2018-01-01.csv.gz
--------------------------------------------------------------------------------
/older version/t05/imgs/backprop-graph.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/backprop-graph.png
--------------------------------------------------------------------------------
/older version/t05/imgs/backprop-modular.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/backprop-modular.png
--------------------------------------------------------------------------------
/older version/t05/imgs/bilevel.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/bilevel.png
--------------------------------------------------------------------------------
/older version/t05/imgs/enc-pred-dec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/enc-pred-dec.png
--------------------------------------------------------------------------------
/older version/t05/imgs/sgd-init.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/sgd-init.png
--------------------------------------------------------------------------------
/older version/t05/imgs/sgd-loss.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/sgd-loss.png
--------------------------------------------------------------------------------
/older version/t05/imgs/sgd-lr-schedule.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/sgd-lr-schedule.png
--------------------------------------------------------------------------------
/older version/t05/imgs/sgd-lr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/sgd-lr.png
--------------------------------------------------------------------------------
/older version/t05/imgs/sgd-zigzag.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t05/imgs/sgd-zigzag.png
--------------------------------------------------------------------------------
/older version/t06/img/bptt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/bptt.png
--------------------------------------------------------------------------------
/older version/t06/img/causal_convolution.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/causal_convolution.png
--------------------------------------------------------------------------------
/older version/t06/img/cnn_filters.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/cnn_filters.png
--------------------------------------------------------------------------------
/older version/t06/img/mlp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/mlp.png
--------------------------------------------------------------------------------
/older version/t06/img/rnn_cell.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/rnn_cell.png
--------------------------------------------------------------------------------
/older version/t06/img/rnn_layered.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/rnn_layered.png
--------------------------------------------------------------------------------
/older version/t06/img/rnn_unrolled.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/rnn_unrolled.png
--------------------------------------------------------------------------------
/older version/t06/img/rnn_use_cases.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/rnn_use_cases.jpeg
--------------------------------------------------------------------------------
/older version/t06/img/sentiment_analysis.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/sentiment_analysis.png
--------------------------------------------------------------------------------
/older version/t06/img/tbptt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/tbptt.png
--------------------------------------------------------------------------------
/older version/t06/img/tcn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/tcn.png
--------------------------------------------------------------------------------
/older version/t06/img/word_embeddings.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t06/img/word_embeddings.png
--------------------------------------------------------------------------------
/older version/t07/img/GRU.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/GRU.png
--------------------------------------------------------------------------------
/older version/t07/img/attention-layer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/attention-layer.png
--------------------------------------------------------------------------------
/older version/t07/img/bahdanau2015-annotated.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/bahdanau2015-annotated.png
--------------------------------------------------------------------------------
/older version/t07/img/bahdanau2015.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/bahdanau2015.png
--------------------------------------------------------------------------------
/older version/t07/img/enc_dec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/enc_dec.png
--------------------------------------------------------------------------------
/older version/t07/img/rnn_layered.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/rnn_layered.png
--------------------------------------------------------------------------------
/older version/t07/img/rnn_unrolled.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/rnn_unrolled.png
--------------------------------------------------------------------------------
/older version/t07/img/seq2seq1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/seq2seq1.png
--------------------------------------------------------------------------------
/older version/t07/img/sutskever2014_pca.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/sutskever2014_pca.png
--------------------------------------------------------------------------------
/older version/t07/img/xu2015_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/xu2015_1.png
--------------------------------------------------------------------------------
/older version/t07/img/xu2015_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t07/img/xu2015_2.png
--------------------------------------------------------------------------------
/older version/t08/img/cifar10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/cifar10.png
--------------------------------------------------------------------------------
/older version/t08/img/cifar10_100.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/cifar10_100.png
--------------------------------------------------------------------------------
/older version/t08/img/cnn_feature_vis.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/cnn_feature_vis.png
--------------------------------------------------------------------------------
/older version/t08/img/data_dist.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/data_dist.jpg
--------------------------------------------------------------------------------
/older version/t08/img/ganin_da.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/ganin_da.png
--------------------------------------------------------------------------------
/older version/t08/img/ganin_da2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/ganin_da2.png
--------------------------------------------------------------------------------
/older version/t08/img/ganin_da3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/ganin_da3.png
--------------------------------------------------------------------------------
/older version/t08/img/mnist_m.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/mnist_m.png
--------------------------------------------------------------------------------
/older version/t08/img/pan_yang.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/pan_yang.png
--------------------------------------------------------------------------------
/older version/t08/img/target-dist-shift.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/target-dist-shift.png
--------------------------------------------------------------------------------
/older version/t08/img/temp-dist.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/temp-dist.jpg
--------------------------------------------------------------------------------
/older version/t08/img/tl_example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/tl_example.png
--------------------------------------------------------------------------------
/older version/t08/img/transfer-learning-medical.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/transfer-learning-medical.png
--------------------------------------------------------------------------------
/older version/t08/img/transfer_learning_digits.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/transfer_learning_digits.png
--------------------------------------------------------------------------------
/older version/t08/img/transferlearning.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/transferlearning.png
--------------------------------------------------------------------------------
/older version/t08/img/zf1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/zf1.png
--------------------------------------------------------------------------------
/older version/t08/img/zf2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t08/img/zf2.png
--------------------------------------------------------------------------------
/older version/t08/tut7/data.py:
--------------------------------------------------------------------------------
1 | import torch.utils.data as data
2 | from PIL import Image
3 | import os
4 |
5 |
6 | class MNISTMDataset(data.Dataset):
7 | def __init__(self, data_root, data_list, transform=None):
8 | self.root = data_root
9 | self.transform = transform
10 |
11 | f = open(data_list, 'r')
12 | data_list = f.readlines()
13 | f.close()
14 |
15 | self.n_data = len(data_list)
16 |
17 | self.img_paths = []
18 | self.img_labels = []
19 |
20 | for data in data_list:
21 | self.img_paths.append(data[:-3])
22 | self.img_labels.append(data[-2])
23 |
24 | def __getitem__(self, item):
25 | img_paths, labels = self.img_paths[item], self.img_labels[item]
26 | imgs = Image.open(os.path.join(self.root, img_paths)).convert('RGB')
27 |
28 | if self.transform is not None:
29 | imgs = self.transform(imgs)
30 | labels = int(labels)
31 |
32 | return imgs, labels
33 |
34 | def __len__(self):
35 | return self.n_data
--------------------------------------------------------------------------------
/older version/t08/tut7/plot_utils.py:
--------------------------------------------------------------------------------
1 | import math
2 | import itertools
3 |
4 | import numpy as np
5 | import matplotlib.pyplot as plt
6 |
7 |
8 | def tensors_as_images(tensors, nrows=1, figsize=(8, 8), titles=[],
9 | wspace=0.1, hspace=0.2, cmap=None):
10 | """
11 | Plots a sequence of pytorch tensors as images.
12 |
13 | :param tensors: A sequence of pytorch tensors, should have shape CxWxH
14 | """
15 | assert nrows > 0
16 |
17 | num_tensors = len(tensors)
18 |
19 | ncols = math.ceil(num_tensors / nrows)
20 |
21 | fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize,
22 | gridspec_kw=dict(wspace=wspace, hspace=hspace),
23 | subplot_kw=dict(yticks=[], xticks=[]))
24 | axes_flat = axes.reshape(-1)
25 |
26 | # Plot each tensor
27 | for i in range(num_tensors):
28 | ax = axes_flat[i]
29 |
30 | image_tensor = tensors[i]
31 | assert image_tensor.dim() == 3 # Make sure shape is CxWxH
32 |
33 | image = image_tensor.numpy()
34 | image = image.transpose(1, 2, 0)
35 | image = image.squeeze() # remove singleton dimensions if any exist
36 |
37 | # Scale to range 0..1
38 | min, max = np.min(image), np.max(image)
39 | image = (image-min) / (max-min)
40 |
41 | ax.imshow(image, cmap=cmap)
42 |
43 | if len(titles) > i and titles[i] is not None:
44 | ax.set_title(titles[i])
45 |
46 | # If there are more axes than tensors, remove their frames
47 | for j in range(num_tensors, len(axes_flat)):
48 | axes_flat[j].axis('off')
49 |
50 | return fig, axes
51 |
52 |
53 | def dataset_first_n(dataset, n, show_classes=False, class_labels=None,
54 | random_start=True, **kw):
55 | """
56 | Plots first n images of a dataset containing tensor images.
57 | """
58 |
59 | if random_start:
60 | start = np.random.randint(0, len(dataset) - n)
61 | stop = start + n
62 | else:
63 | start = 0
64 | stop = n
65 |
66 | # [(img0, cls0), ..., # (imgN, clsN)]
67 | first_n = list(itertools.islice(dataset, start, stop))
68 |
69 | # Split (image, class) tuples
70 | first_n_images, first_n_classes = zip(*first_n)
71 |
72 | if show_classes:
73 | titles = first_n_classes
74 | if class_labels:
75 | titles = [class_labels[cls] for cls in first_n_classes]
76 | else:
77 | titles = []
78 |
79 | return tensors_as_images(first_n_images, titles=titles, **kw)
80 |
--------------------------------------------------------------------------------
/older version/t09/.gitignore:
--------------------------------------------------------------------------------
1 | out/
2 |
--------------------------------------------------------------------------------
/older version/t09/atari_wrappers.py:
--------------------------------------------------------------------------------
1 | """
2 | This file was taken from the OpenAI baselines repo:
3 | https://github.com/openai/baselines/
4 | """
5 |
6 | import numpy as np
7 | import os
8 | os.environ.setdefault('PATH', '')
9 | from collections import deque
10 | import gym
11 | from gym import spaces
12 | import cv2
13 | cv2.ocl.setUseOpenCL(False)
14 | #from .wrappers import TimeLimit
15 | from gym.wrappers import TimeLimit
16 |
17 |
18 | class NoopResetEnv(gym.Wrapper):
19 | def __init__(self, env, noop_max=30):
20 | """Sample initial states by taking random number of no-ops on reset.
21 | No-op is assumed to be action 0.
22 | """
23 | gym.Wrapper.__init__(self, env)
24 | self.noop_max = noop_max
25 | self.override_num_noops = None
26 | self.noop_action = 0
27 | assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
28 |
29 | def reset(self, **kwargs):
30 | """ Do no-op action for a number of steps in [1, noop_max]."""
31 | self.env.reset(**kwargs)
32 | if self.override_num_noops is not None:
33 | noops = self.override_num_noops
34 | else:
35 | noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101
36 | assert noops > 0
37 | obs = None
38 | for _ in range(noops):
39 | obs, _, done, _ = self.env.step(self.noop_action)
40 | if done:
41 | obs = self.env.reset(**kwargs)
42 | return obs
43 |
44 | def step(self, ac):
45 | return self.env.step(ac)
46 |
47 | class FireResetEnv(gym.Wrapper):
48 | def __init__(self, env):
49 | """Take action on reset for environments that are fixed until firing."""
50 | gym.Wrapper.__init__(self, env)
51 | assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
52 | assert len(env.unwrapped.get_action_meanings()) >= 3
53 |
54 | def reset(self, **kwargs):
55 | self.env.reset(**kwargs)
56 | obs, _, done, _ = self.env.step(1)
57 | if done:
58 | self.env.reset(**kwargs)
59 | obs, _, done, _ = self.env.step(2)
60 | if done:
61 | self.env.reset(**kwargs)
62 | return obs
63 |
64 | def step(self, ac):
65 | return self.env.step(ac)
66 |
67 | class EpisodicLifeEnv(gym.Wrapper):
68 | def __init__(self, env):
69 | """Make end-of-life == end-of-episode, but only reset on true game over.
70 | Done by DeepMind for the DQN and co. since it helps value estimation.
71 | """
72 | gym.Wrapper.__init__(self, env)
73 | self.lives = 0
74 | self.was_real_done = True
75 |
76 | def step(self, action):
77 | obs, reward, done, info = self.env.step(action)
78 | self.was_real_done = done
79 | # check current lives, make loss of life terminal,
80 | # then update lives to handle bonus lives
81 | lives = self.env.unwrapped.ale.lives()
82 | if lives < self.lives and lives > 0:
83 | # for Qbert sometimes we stay in lives == 0 condition for a few frames
84 | # so it's important to keep lives > 0, so that we only reset once
85 | # the environment advertises done.
86 | done = True
87 | self.lives = lives
88 | return obs, reward, done, info
89 |
90 | def reset(self, **kwargs):
91 | """Reset only when lives are exhausted.
92 | This way all states are still reachable even though lives are episodic,
93 | and the learner need not know about any of this behind-the-scenes.
94 | """
95 | if self.was_real_done:
96 | obs = self.env.reset(**kwargs)
97 | else:
98 | # no-op step to advance from terminal/lost life state
99 | obs, _, _, _ = self.env.step(0)
100 | self.lives = self.env.unwrapped.ale.lives()
101 | return obs
102 |
103 | class MaxAndSkipEnv(gym.Wrapper):
104 | def __init__(self, env, skip=4):
105 | """Return only every `skip`-th frame"""
106 | gym.Wrapper.__init__(self, env)
107 | # most recent raw observations (for max pooling across time steps)
108 | self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8)
109 | self._skip = skip
110 |
111 | def step(self, action):
112 | """Repeat action, sum reward, and max over last observations."""
113 | total_reward = 0.0
114 | done = None
115 | for i in range(self._skip):
116 | obs, reward, done, info = self.env.step(action)
117 | if i == self._skip - 2: self._obs_buffer[0] = obs
118 | if i == self._skip - 1: self._obs_buffer[1] = obs
119 | total_reward += reward
120 | if done:
121 | break
122 | # Note that the observation on the done=True frame
123 | # doesn't matter
124 | max_frame = self._obs_buffer.max(axis=0)
125 |
126 | return max_frame, total_reward, done, info
127 |
128 | def reset(self, **kwargs):
129 | return self.env.reset(**kwargs)
130 |
131 | class ClipRewardEnv(gym.RewardWrapper):
132 | def __init__(self, env):
133 | gym.RewardWrapper.__init__(self, env)
134 |
135 | def reward(self, reward):
136 | """Bin reward to {+1, 0, -1} by its sign."""
137 | return np.sign(reward)
138 |
139 |
140 | class WarpFrame(gym.ObservationWrapper):
141 | def __init__(self, env, width=84, height=84, grayscale=True, dict_space_key=None):
142 | """
143 | Warp frames to 84x84 as done in the Nature paper and later work.
144 | If the environment uses dictionary observations, `dict_space_key` can be specified which indicates which
145 | observation should be warped.
146 | """
147 | super().__init__(env)
148 | self._width = width
149 | self._height = height
150 | self._grayscale = grayscale
151 | self._key = dict_space_key
152 | if self._grayscale:
153 | num_colors = 1
154 | else:
155 | num_colors = 3
156 |
157 | new_space = gym.spaces.Box(
158 | low=0,
159 | high=255,
160 | shape=(self._height, self._width, num_colors),
161 | dtype=np.uint8,
162 | )
163 | if self._key is None:
164 | original_space = self.observation_space
165 | self.observation_space = new_space
166 | else:
167 | original_space = self.observation_space.spaces[self._key]
168 | self.observation_space.spaces[self._key] = new_space
169 | assert original_space.dtype == np.uint8 and len(original_space.shape) == 3
170 |
171 | def observation(self, obs):
172 | if self._key is None:
173 | frame = obs
174 | else:
175 | frame = obs[self._key]
176 |
177 | if self._grayscale:
178 | frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
179 | frame = cv2.resize(
180 | frame, (self._width, self._height), interpolation=cv2.INTER_AREA
181 | )
182 | if self._grayscale:
183 | frame = np.expand_dims(frame, -1)
184 |
185 | if self._key is None:
186 | obs = frame
187 | else:
188 | obs = obs.copy()
189 | obs[self._key] = frame
190 | return obs
191 |
192 |
193 | class FrameStack(gym.Wrapper):
194 | def __init__(self, env, k):
195 | """Stack k last frames.
196 | Returns lazy array, which is much more memory efficient.
197 | See Also
198 | --------
199 | baselines.common.atari_wrappers.LazyFrames
200 | """
201 | gym.Wrapper.__init__(self, env)
202 | self.k = k
203 | self.frames = deque([], maxlen=k)
204 | shp = env.observation_space.shape
205 | self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype)
206 |
207 | def reset(self):
208 | ob = self.env.reset()
209 | for _ in range(self.k):
210 | self.frames.append(ob)
211 | return self._get_ob()
212 |
213 | def step(self, action):
214 | ob, reward, done, info = self.env.step(action)
215 | self.frames.append(ob)
216 | return self._get_ob(), reward, done, info
217 |
218 | def _get_ob(self):
219 | assert len(self.frames) == self.k
220 | return LazyFrames(list(self.frames))
221 |
222 | class ScaledFloatFrame(gym.ObservationWrapper):
223 | def __init__(self, env):
224 | gym.ObservationWrapper.__init__(self, env)
225 | self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32)
226 |
227 | def observation(self, observation):
228 | # careful! This undoes the memory optimization, use
229 | # with smaller replay buffers only.
230 | return np.array(observation).astype(np.float32) / 255.0
231 |
232 | class LazyFrames(object):
233 | def __init__(self, frames):
234 | """This object ensures that common frames between the observations are only stored once.
235 | It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay
236 | buffers.
237 | This object should only be converted to numpy array before being passed to the model.
238 | You'd not believe how complex the previous solution was."""
239 | self._frames = frames
240 | self._out = None
241 |
242 | def _force(self):
243 | if self._out is None:
244 | self._out = np.concatenate(self._frames, axis=-1)
245 | self._frames = None
246 | return self._out
247 |
248 | def __array__(self, dtype=None):
249 | out = self._force()
250 | if dtype is not None:
251 | out = out.astype(dtype)
252 | return out
253 |
254 | def __len__(self):
255 | return len(self._force())
256 |
257 | def __getitem__(self, i):
258 | return self._force()[..., i]
259 |
260 | def make_atari(env_id, max_episode_steps=None):
261 | env = gym.make(env_id)
262 | assert 'NoFrameskip' in env.spec.id
263 | env = NoopResetEnv(env, noop_max=30)
264 | env = MaxAndSkipEnv(env, skip=4)
265 | if max_episode_steps is not None:
266 | env = TimeLimit(env, max_episode_steps=max_episode_steps)
267 | return env
268 |
269 | def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False):
270 | """Configure environment for DeepMind-style Atari.
271 | """
272 | if episode_life:
273 | env = EpisodicLifeEnv(env)
274 | if 'FIRE' in env.unwrapped.get_action_meanings():
275 | env = FireResetEnv(env)
276 | env = WarpFrame(env)
277 | if scale:
278 | env = ScaledFloatFrame(env)
279 | if clip_rewards:
280 | env = ClipRewardEnv(env)
281 | if frame_stack:
282 | env = FrameStack(env, 4)
283 | return env
284 |
--------------------------------------------------------------------------------
/older version/t09/img/deepmind_arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/deepmind_arch.png
--------------------------------------------------------------------------------
/older version/t09/img/deepmind_frames.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/deepmind_frames.png
--------------------------------------------------------------------------------
/older version/t09/img/deepmind_results1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/deepmind_results1.png
--------------------------------------------------------------------------------
/older version/t09/img/deepmind_results2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/deepmind_results2.png
--------------------------------------------------------------------------------
/older version/t09/img/mdp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/mdp.png
--------------------------------------------------------------------------------
/older version/t09/img/mdp2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/mdp2.png
--------------------------------------------------------------------------------
/older version/t09/img/mdp_transition_prob.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/mdp_transition_prob.png
--------------------------------------------------------------------------------
/older version/t09/img/q_expectation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/q_expectation.png
--------------------------------------------------------------------------------
/older version/t09/img/rl_episodes.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/rl_episodes.png
--------------------------------------------------------------------------------
/older version/t09/img/rl_fields.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/rl_fields.png
--------------------------------------------------------------------------------
/older version/t09/img/rl_setting.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/rl_setting.png
--------------------------------------------------------------------------------
/older version/t09/img/rl_setting2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/rl_setting2.png
--------------------------------------------------------------------------------
/older version/t09/img/space-invaders-atari-2600.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/space-invaders-atari-2600.jpg
--------------------------------------------------------------------------------
/older version/t09/img/v_expectation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t09/img/v_expectation.png
--------------------------------------------------------------------------------
/older version/t10/img/conv.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t10/img/conv.gif
--------------------------------------------------------------------------------
/older version/t10/img/gcn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t10/img/gcn.png
--------------------------------------------------------------------------------
/older version/t10/img/laplacian_eigenfunctions.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t10/img/laplacian_eigenfunctions.png
--------------------------------------------------------------------------------
/older version/t10/img/random_graph.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t10/img/random_graph.png
--------------------------------------------------------------------------------
/older version/t10/img/spectral_generalization.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t10/img/spectral_generalization.png
--------------------------------------------------------------------------------
/older version/t10/img/toeplitz.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t10/img/toeplitz.png
--------------------------------------------------------------------------------
/older version/t11/img/block_scheduling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/block_scheduling.png
--------------------------------------------------------------------------------
/older version/t11/img/execution_model.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/execution_model.png
--------------------------------------------------------------------------------
/older version/t11/img/grid_blocks.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/grid_blocks.png
--------------------------------------------------------------------------------
/older version/t11/img/hetero.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/hetero.png
--------------------------------------------------------------------------------
/older version/t11/img/host_device.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/host_device.png
--------------------------------------------------------------------------------
/older version/t11/img/kernel.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/kernel.png
--------------------------------------------------------------------------------
/older version/t11/img/kernel_geom.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/kernel_geom.png
--------------------------------------------------------------------------------
/older version/t11/img/matmul_noshared.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/matmul_noshared.png
--------------------------------------------------------------------------------
/older version/t11/img/matmul_shared.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/matmul_shared.png
--------------------------------------------------------------------------------
/older version/t11/img/mem_global.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/mem_global.png
--------------------------------------------------------------------------------
/older version/t11/img/mem_local.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/mem_local.png
--------------------------------------------------------------------------------
/older version/t11/img/mem_shared.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/mem_shared.png
--------------------------------------------------------------------------------
/older version/t11/img/numba_flowchart.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/numba_flowchart.png
--------------------------------------------------------------------------------
/older version/t11/img/sm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/sm.png
--------------------------------------------------------------------------------
/older version/t11/img/thread_id_1d.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/older version/t11/img/thread_id_1d.png
--------------------------------------------------------------------------------
/run-all.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 |
3 | set -x
4 |
5 | # Runs all the tutotial notebooks
6 | jupyter nbconvert --execute --inplace --to notebook --ExecutePreprocessor.timeout=300 ./t*/*.ipynb
7 |
--------------------------------------------------------------------------------
/t00 - python, numpy, torch/demo_package/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | Demo package init file.
3 | This file used to be required for defining a python pacakge, until python 3.3.
4 | """
5 |
6 | # Package init code can be written here
7 |
--------------------------------------------------------------------------------
/t00 - python, numpy, torch/demo_package/demo_module.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import math
3 |
4 |
5 | def demo_func(a=1):
6 | """
7 | Just a demo
8 | """
9 | print(f'this is a demo, a={a}')
10 |
11 |
12 | # This will be executed when this module is imported for the first time
13 | demo_func(17)
14 |
15 |
16 | if __name__ == '__main__':
17 | """
18 | This will be executed when the script is run from the command line.
19 | """
20 | demo_func(a=42)
21 |
22 |
--------------------------------------------------------------------------------
/t01 - linear models/imgs/error_types.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t01 - linear models/imgs/error_types.png
--------------------------------------------------------------------------------
/t01 - linear models/imgs/neuron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t01 - linear models/imgs/neuron.png
--------------------------------------------------------------------------------
/t01 - linear models/imgs/perceptron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t01 - linear models/imgs/perceptron.png
--------------------------------------------------------------------------------
/t01 - linear models/imgs/sgd1d.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t01 - linear models/imgs/sgd1d.png
--------------------------------------------------------------------------------
/t01 - linear models/imgs/sgd2d_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t01 - linear models/imgs/sgd2d_2.png
--------------------------------------------------------------------------------
/t01 - linear models/plot_utils.py:
--------------------------------------------------------------------------------
1 | import itertools
2 | import math
3 | import matplotlib.pyplot as plt
4 |
5 |
6 | def tensors_as_images(tensors, nrows=1, figsize=(8, 8), titles=[],
7 | wspace=0.1, hspace=0.2, cmap=None):
8 | """
9 | Plots a sequence of pytorch tensors as images.
10 | :param tensors: A sequence of pytorch tensors, should have shape CxWxH
11 | """
12 | assert nrows > 0
13 |
14 | num_tensors = len(tensors)
15 |
16 | ncols = math.ceil(num_tensors / nrows)
17 |
18 | fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize,
19 | gridspec_kw=dict(wspace=wspace, hspace=hspace),
20 | subplot_kw=dict(yticks=[], xticks=[]))
21 | axes_flat = axes.reshape(-1)
22 |
23 | # Plot each tensor
24 | for i in range(num_tensors):
25 | ax = axes_flat[i]
26 |
27 | image_tensor = tensors[i]
28 | assert image_tensor.dim() == 3 # Make sure shape is CxWxH
29 |
30 | image = image_tensor.numpy()
31 | image = image.transpose(1, 2, 0)
32 | image = image.squeeze() # remove singleton dimensions if any exist
33 |
34 | ax.imshow(image, cmap=cmap)
35 |
36 | if len(titles) > i and titles[i] is not None:
37 | ax.set_title(titles[i])
38 |
39 | # If there are more axes than tensors, remove their frames
40 | for j in range(num_tensors, len(axes_flat)):
41 | axes_flat[j].axis('off')
42 |
43 | return fig, axes
44 |
45 |
46 | def dataset_first_n(dataset, n, show_classes=False, class_labels=None, **kw):
47 | """
48 | Plots first n images of a dataset containing tensor images.
49 | """
50 |
51 | # [(img0, cls0), ..., # (imgN, clsN)]
52 | first_n = list(itertools.islice(dataset, n))
53 |
54 | # Split (image, class) tuples
55 | first_n_images, first_n_classes = zip(*first_n)
56 |
57 | if show_classes:
58 | titles = first_n_classes
59 | if class_labels:
60 | titles = [class_labels[cls] for cls in first_n_classes]
61 | else:
62 | titles = []
63 |
64 | return tensors_as_images(first_n_images, titles=titles, **kw)
65 |
--------------------------------------------------------------------------------
/t02 - mlp/imgs/linear_discriminant.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t02 - mlp/imgs/linear_discriminant.png
--------------------------------------------------------------------------------
/t02 - mlp/imgs/mlp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t02 - mlp/imgs/mlp.png
--------------------------------------------------------------------------------
/t02 - mlp/imgs/neuron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t02 - mlp/imgs/neuron.png
--------------------------------------------------------------------------------
/t02 - mlp/imgs/nonlinear_datasets.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t02 - mlp/imgs/nonlinear_datasets.png
--------------------------------------------------------------------------------
/t02 - mlp/imgs/overfit_1-2-4HL_3N.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t02 - mlp/imgs/overfit_1-2-4HL_3N.jpg
--------------------------------------------------------------------------------
/t02 - mlp/imgs/overfit_1HL_3-6-20N.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t02 - mlp/imgs/overfit_1HL_3-6-20N.jpg
--------------------------------------------------------------------------------
/t02 - mlp/imgs/perceptron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t02 - mlp/imgs/perceptron.png
--------------------------------------------------------------------------------
/t02 - mlp/imgs/perceptron_db.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t02 - mlp/imgs/perceptron_db.png
--------------------------------------------------------------------------------
/t02 - mlp/plot_utils.py:
--------------------------------------------------------------------------------
1 | import itertools
2 | import math
3 | import matplotlib.pyplot as plt
4 |
5 |
6 | def tensors_as_images(tensors, nrows=1, figsize=(8, 8), titles=[],
7 | wspace=0.1, hspace=0.2, cmap=None):
8 | """
9 | Plots a sequence of pytorch tensors as images.
10 | :param tensors: A sequence of pytorch tensors, should have shape CxWxH
11 | """
12 | assert nrows > 0
13 |
14 | num_tensors = len(tensors)
15 |
16 | ncols = math.ceil(num_tensors / nrows)
17 |
18 | fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize,
19 | gridspec_kw=dict(wspace=wspace, hspace=hspace),
20 | subplot_kw=dict(yticks=[], xticks=[]))
21 | axes_flat = axes.reshape(-1)
22 |
23 | # Plot each tensor
24 | for i in range(num_tensors):
25 | ax = axes_flat[i]
26 |
27 | image_tensor = tensors[i]
28 | assert image_tensor.dim() == 3 # Make sure shape is CxWxH
29 |
30 | image = image_tensor.numpy()
31 | image = image.transpose(1, 2, 0)
32 | image = image.squeeze() # remove singleton dimensions if any exist
33 |
34 | ax.imshow(image, cmap=cmap)
35 |
36 | if len(titles) > i and titles[i] is not None:
37 | ax.set_title(titles[i])
38 |
39 | # If there are more axes than tensors, remove their frames
40 | for j in range(num_tensors, len(axes_flat)):
41 | axes_flat[j].axis('off')
42 |
43 | return fig, axes
44 |
45 |
46 | def dataset_first_n(dataset, n, show_classes=False, class_labels=None, **kw):
47 | """
48 | Plots first n images of a dataset containing tensor images.
49 | """
50 |
51 | # [(img0, cls0), ..., # (imgN, clsN)]
52 | first_n = list(itertools.islice(dataset, n))
53 |
54 | # Split (image, class) tuples
55 | first_n_images, first_n_classes = zip(*first_n)
56 |
57 | if show_classes:
58 | titles = first_n_classes
59 | if class_labels:
60 | titles = [class_labels[cls] for cls in first_n_classes]
61 | else:
62 | titles = []
63 |
64 | return tensors_as_images(first_n_images, titles=titles, **kw)
65 |
--------------------------------------------------------------------------------
/t03 - CNN/img/1x1_conv.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/1x1_conv.png
--------------------------------------------------------------------------------
/t03 - CNN/img/arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/arch.png
--------------------------------------------------------------------------------
/t03 - CNN/img/cat_translation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/cat_translation.png
--------------------------------------------------------------------------------
/t03 - CNN/img/classification.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/classification.png
--------------------------------------------------------------------------------
/t03 - CNN/img/cnn_filters.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/cnn_filters.png
--------------------------------------------------------------------------------
/t03 - CNN/img/cnn_layer.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/cnn_layer.jpeg
--------------------------------------------------------------------------------
/t03 - CNN/img/cnn_layers.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/cnn_layers.jpeg
--------------------------------------------------------------------------------
/t03 - CNN/img/conv.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/conv.gif
--------------------------------------------------------------------------------
/t03 - CNN/img/deeper_meme.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/deeper_meme.jpeg
--------------------------------------------------------------------------------
/t03 - CNN/img/depthcol.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/depthcol.jpeg
--------------------------------------------------------------------------------
/t03 - CNN/img/feature_hierarchy.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/feature_hierarchy.png
--------------------------------------------------------------------------------
/t03 - CNN/img/filter_resp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/filter_resp.png
--------------------------------------------------------------------------------
/t03 - CNN/img/fully_conv.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/fully_conv.png
--------------------------------------------------------------------------------
/t03 - CNN/img/maxpool.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/maxpool.png
--------------------------------------------------------------------------------
/t03 - CNN/img/mlp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/mlp.png
--------------------------------------------------------------------------------
/t03 - CNN/img/net_archs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/net_archs.png
--------------------------------------------------------------------------------
/t03 - CNN/img/overfit_1-2-4HL_3N.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/overfit_1-2-4HL_3N.jpg
--------------------------------------------------------------------------------
/t03 - CNN/img/overfit_1HL_3-6-20N.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/overfit_1HL_3-6-20N.jpg
--------------------------------------------------------------------------------
/t03 - CNN/img/pooling_invariance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/pooling_invariance.png
--------------------------------------------------------------------------------
/t03 - CNN/img/receptive_field.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/receptive_field.png
--------------------------------------------------------------------------------
/t03 - CNN/img/receptive_field2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/receptive_field2.png
--------------------------------------------------------------------------------
/t03 - CNN/img/regression.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/regression.png
--------------------------------------------------------------------------------
/t03 - CNN/img/resnet_arch_table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/resnet_arch_table.png
--------------------------------------------------------------------------------
/t03 - CNN/img/resnet_block.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/resnet_block.png
--------------------------------------------------------------------------------
/t03 - CNN/img/resnet_block2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/resnet_block2.png
--------------------------------------------------------------------------------
/t03 - CNN/img/resnet_plain_deep_error.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/resnet_plain_deep_error.png
--------------------------------------------------------------------------------
/t03 - CNN/img/toeplitz.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/toeplitz.png
--------------------------------------------------------------------------------
/t03 - CNN/img/vanilla_dnn_scale.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/vanilla_dnn_scale.png
--------------------------------------------------------------------------------
/t03 - CNN/img/zf1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/zf1.png
--------------------------------------------------------------------------------
/t03 - CNN/img/zf2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t03 - CNN/img/zf2.png
--------------------------------------------------------------------------------
/t04 - optimization/DJIA_30/all_stocks_2006-01-01_to_2018-01-01.csv.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/DJIA_30/all_stocks_2006-01-01_to_2018-01-01.csv.gz
--------------------------------------------------------------------------------
/t04 - optimization/imgs/Figure1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/Figure1.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/Figure4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/Figure4.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/backprop-graph.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/backprop-graph.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/backprop-modular.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/backprop-modular.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/bilevel.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/bilevel.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/enc-pred-dec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/enc-pred-dec.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/figure2-highres.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/figure2-highres.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/flat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/flat.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/lr.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/lr.gif
--------------------------------------------------------------------------------
/t04 - optimization/imgs/paraboloid.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/paraboloid.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/scheduler.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/scheduler.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/sgd-init.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/sgd-init.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/sgd-loss.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/sgd-loss.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/sgd-lr-schedule.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/sgd-lr-schedule.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/sgd-lr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/sgd-lr.png
--------------------------------------------------------------------------------
/t04 - optimization/imgs/sgd-zigzag.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t04 - optimization/imgs/sgd-zigzag.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/Figure1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/Figure1.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/Figure4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/Figure4.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/add_mult.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/add_mult.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/backprop-graph.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/backprop-graph.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/backprop-modular.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/backprop-modular.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/backwardAD.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/backwardAD.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/bilevel.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/bilevel.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/chain.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/chain.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/chain_forward.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/chain_forward.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/chain_forwardAD.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/chain_forwardAD.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/chain_reverseAD.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/chain_reverseAD.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/enc-pred-dec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/enc-pred-dec.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/example_forward.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/example_forward.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/example_forwardAD.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/example_forwardAD.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/example_graph.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/example_graph.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/example_reverseAD.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/example_reverseAD.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/figure2-highres.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/figure2-highres.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/flat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/flat.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/forwardAD.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/forwardAD.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/sgd-init.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/sgd-init.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/sgd-loss.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/sgd-loss.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/sgd-lr-schedule.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/sgd-lr-schedule.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/sgd-lr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/sgd-lr.png
--------------------------------------------------------------------------------
/t05 - automatic differentiation/imgs/sgd-zigzag.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t05 - automatic differentiation/imgs/sgd-zigzag.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/fl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/fl.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/instance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/instance.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/panoptic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/panoptic.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_cat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_cat.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_catdog.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_catdog.jpeg
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_detection.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_detection.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_detectron.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_detectron.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_diagram.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_diagram.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_dog.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_dog.jpg
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_faster_rcnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_faster_rcnn.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_faster_rcnn_arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_faster_rcnn_arch.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_nms.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_nms.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_pyramid.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_pyramid.PNG
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_rcnn-family-summary.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_rcnn-family-summary.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_rcnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_rcnn.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_rcnn2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_rcnn2.jpg
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_roi1.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_roi1.PNG
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_roi2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_roi2.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_rpn_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_rpn_1.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_rpn_2.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_rpn_2.jpeg
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_selective_search.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_selective_search.jpg
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_size.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_size.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_sliding.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_sliding.gif
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_small_big_obj.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_small_big_obj.PNG
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_speed.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_speed.jpg
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_ssd_2.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_ssd_2.PNG
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_ssd_arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_ssd_arch.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_svm.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_svm.PNG
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_warp.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_warp.PNG
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_yolo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_yolo.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_yolo_arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_yolo_arch.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_yolov2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_yolov2.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_yolov4arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_yolov4arch.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_objdet_yolov4res.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_objdet_yolov4res.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/tut_seg_iou.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/tut_seg_iou.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/yolo2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/yolo2.jpg
--------------------------------------------------------------------------------
/t06- Object detection/assets/yolo8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/yolo8.png
--------------------------------------------------------------------------------
/t06- Object detection/assets/רשימת-מסמכים-נדרשים-לדוקטור.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/assets/רשימת-מסמכים-נדרשים-לדוקטור.xlsx
--------------------------------------------------------------------------------
/t06- Object detection/imgs/ap_prac.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/imgs/ap_prac.png
--------------------------------------------------------------------------------
/t06- Object detection/imgs/confmat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/imgs/confmat.png
--------------------------------------------------------------------------------
/t06- Object detection/imgs/pr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/imgs/pr.png
--------------------------------------------------------------------------------
/t06- Object detection/imgs/prauc.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/imgs/prauc.png
--------------------------------------------------------------------------------
/t06- Object detection/imgs/prgraph.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/imgs/prgraph.png
--------------------------------------------------------------------------------
/t06- Object detection/imgs/tut_objdet_roi1.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t06- Object detection/imgs/tut_objdet_roi1.PNG
--------------------------------------------------------------------------------
/t07 - transfer learning/img/cifar10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/cifar10.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/cifar10_100.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/cifar10_100.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/cnn_feature_vis.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/cnn_feature_vis.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/data_dist.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/data_dist.jpg
--------------------------------------------------------------------------------
/t07 - transfer learning/img/ganin_da.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/ganin_da.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/ganin_da2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/ganin_da2.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/ganin_da3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/ganin_da3.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/mnist_m.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/mnist_m.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/pan_yang.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/pan_yang.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/target-dist-shift.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/target-dist-shift.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/temp-dist.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/temp-dist.jpg
--------------------------------------------------------------------------------
/t07 - transfer learning/img/tl_example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/tl_example.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/transfer-learning-medical.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/transfer-learning-medical.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/transfer_learning_digits.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/transfer_learning_digits.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/transferlearning.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/transferlearning.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/zf1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/zf1.png
--------------------------------------------------------------------------------
/t07 - transfer learning/img/zf2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t07 - transfer learning/img/zf2.png
--------------------------------------------------------------------------------
/t07 - transfer learning/tut7/data.py:
--------------------------------------------------------------------------------
1 | import torch.utils.data as data
2 | from PIL import Image
3 | import os
4 |
5 |
6 | class MNISTMDataset(data.Dataset):
7 | def __init__(self, data_root, data_list, transform=None):
8 | self.root = data_root
9 | self.transform = transform
10 |
11 | f = open(data_list, 'r')
12 | data_list = f.readlines()
13 | f.close()
14 |
15 | self.n_data = len(data_list)
16 |
17 | self.img_paths = []
18 | self.img_labels = []
19 |
20 | for data in data_list:
21 | self.img_paths.append(data[:-3])
22 | self.img_labels.append(data[-2])
23 |
24 | def __getitem__(self, item):
25 | img_paths, labels = self.img_paths[item], self.img_labels[item]
26 | imgs = Image.open(os.path.join(self.root, img_paths)).convert('RGB')
27 |
28 | if self.transform is not None:
29 | imgs = self.transform(imgs)
30 | labels = int(labels)
31 |
32 | return imgs, labels
33 |
34 | def __len__(self):
35 | return self.n_data
--------------------------------------------------------------------------------
/t07 - transfer learning/tut7/plot_utils.py:
--------------------------------------------------------------------------------
1 | import math
2 | import itertools
3 |
4 | import numpy as np
5 | import matplotlib.pyplot as plt
6 |
7 |
8 | def tensors_as_images(tensors, nrows=1, figsize=(8, 8), titles=[],
9 | wspace=0.1, hspace=0.2, cmap=None):
10 | """
11 | Plots a sequence of pytorch tensors as images.
12 |
13 | :param tensors: A sequence of pytorch tensors, should have shape CxWxH
14 | """
15 | assert nrows > 0
16 |
17 | num_tensors = len(tensors)
18 |
19 | ncols = math.ceil(num_tensors / nrows)
20 |
21 | fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize,
22 | gridspec_kw=dict(wspace=wspace, hspace=hspace),
23 | subplot_kw=dict(yticks=[], xticks=[]))
24 | axes_flat = axes.reshape(-1)
25 |
26 | # Plot each tensor
27 | for i in range(num_tensors):
28 | ax = axes_flat[i]
29 |
30 | image_tensor = tensors[i]
31 | assert image_tensor.dim() == 3 # Make sure shape is CxWxH
32 |
33 | image = image_tensor.numpy()
34 | image = image.transpose(1, 2, 0)
35 | image = image.squeeze() # remove singleton dimensions if any exist
36 |
37 | # Scale to range 0..1
38 | min, max = np.min(image), np.max(image)
39 | image = (image-min) / (max-min)
40 |
41 | ax.imshow(image, cmap=cmap)
42 |
43 | if len(titles) > i and titles[i] is not None:
44 | ax.set_title(titles[i])
45 |
46 | # If there are more axes than tensors, remove their frames
47 | for j in range(num_tensors, len(axes_flat)):
48 | axes_flat[j].axis('off')
49 |
50 | return fig, axes
51 |
52 |
53 | def dataset_first_n(dataset, n, show_classes=False, class_labels=None,
54 | random_start=True, **kw):
55 | """
56 | Plots first n images of a dataset containing tensor images.
57 | """
58 |
59 | if random_start:
60 | start = np.random.randint(0, len(dataset) - n)
61 | stop = start + n
62 | else:
63 | start = 0
64 | stop = n
65 |
66 | # [(img0, cls0), ..., # (imgN, clsN)]
67 | first_n = list(itertools.islice(dataset, start, stop))
68 |
69 | # Split (image, class) tuples
70 | first_n_images, first_n_classes = zip(*first_n)
71 |
72 | if show_classes:
73 | titles = first_n_classes
74 | if class_labels:
75 | titles = [class_labels[cls] for cls in first_n_classes]
76 | else:
77 | titles = []
78 |
79 | return tensors_as_images(first_n_images, titles=titles, **kw)
80 |
--------------------------------------------------------------------------------
/t08- RNN/img/bptt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/bptt.png
--------------------------------------------------------------------------------
/t08- RNN/img/causal_convolution.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/causal_convolution.png
--------------------------------------------------------------------------------
/t08- RNN/img/cnn_filters.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/cnn_filters.png
--------------------------------------------------------------------------------
/t08- RNN/img/mlp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/mlp.png
--------------------------------------------------------------------------------
/t08- RNN/img/rnn_cell.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/rnn_cell.png
--------------------------------------------------------------------------------
/t08- RNN/img/rnn_layered.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/rnn_layered.png
--------------------------------------------------------------------------------
/t08- RNN/img/rnn_unrolled.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/rnn_unrolled.png
--------------------------------------------------------------------------------
/t08- RNN/img/rnn_use_cases.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/rnn_use_cases.jpeg
--------------------------------------------------------------------------------
/t08- RNN/img/sentiment_analysis.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/sentiment_analysis.png
--------------------------------------------------------------------------------
/t08- RNN/img/tasks.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/tasks.png
--------------------------------------------------------------------------------
/t08- RNN/img/tbptt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/tbptt.png
--------------------------------------------------------------------------------
/t08- RNN/img/tcn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/tcn.png
--------------------------------------------------------------------------------
/t08- RNN/img/word_embeddings.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t08- RNN/img/word_embeddings.png
--------------------------------------------------------------------------------
/t09- Attention/img/GRU.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/GRU.png
--------------------------------------------------------------------------------
/t09- Attention/img/att.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/att.png
--------------------------------------------------------------------------------
/t09- Attention/img/attention-glasses.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/attention-glasses.png
--------------------------------------------------------------------------------
/t09- Attention/img/attention-layer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/attention-layer.png
--------------------------------------------------------------------------------
/t09- Attention/img/attention-text.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/attention-text.png
--------------------------------------------------------------------------------
/t09- Attention/img/bahdanau2015-annotated.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/bahdanau2015-annotated.png
--------------------------------------------------------------------------------
/t09- Attention/img/bahdanau2015.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/bahdanau2015.png
--------------------------------------------------------------------------------
/t09- Attention/img/bleu.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/bleu.png
--------------------------------------------------------------------------------
/t09- Attention/img/enc_dec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/enc_dec.png
--------------------------------------------------------------------------------
/t09- Attention/img/rnn_layered.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/rnn_layered.png
--------------------------------------------------------------------------------
/t09- Attention/img/rnn_unrolled.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/rnn_unrolled.png
--------------------------------------------------------------------------------
/t09- Attention/img/seq2seq1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/seq2seq1.png
--------------------------------------------------------------------------------
/t09- Attention/img/sutskever2014_pca.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/sutskever2014_pca.png
--------------------------------------------------------------------------------
/t09- Attention/img/xu2015_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/xu2015_1.png
--------------------------------------------------------------------------------
/t09- Attention/img/xu2015_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t09- Attention/img/xu2015_2.png
--------------------------------------------------------------------------------
/t10- Transformers/img/GRU.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/GRU.png
--------------------------------------------------------------------------------
/t10- Transformers/img/Hydra29.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/Hydra29.webp
--------------------------------------------------------------------------------
/t10- Transformers/img/SesameStreet-Season46-ShowOpen-29.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/SesameStreet-Season46-ShowOpen-29.webp
--------------------------------------------------------------------------------
/t10- Transformers/img/aiayn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/aiayn.png
--------------------------------------------------------------------------------
/t10- Transformers/img/att.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/att.png
--------------------------------------------------------------------------------
/t10- Transformers/img/attention-glasses.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/attention-glasses.png
--------------------------------------------------------------------------------
/t10- Transformers/img/attention-layer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/attention-layer.png
--------------------------------------------------------------------------------
/t10- Transformers/img/attention-text.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/attention-text.png
--------------------------------------------------------------------------------
/t10- Transformers/img/attention_jay.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/attention_jay.png
--------------------------------------------------------------------------------
/t10- Transformers/img/bahdanau2015-annotated.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/bahdanau2015-annotated.png
--------------------------------------------------------------------------------
/t10- Transformers/img/bahdanau2015.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/bahdanau2015.png
--------------------------------------------------------------------------------
/t10- Transformers/img/bayer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/bayer.png
--------------------------------------------------------------------------------
/t10- Transformers/img/before.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/before.png
--------------------------------------------------------------------------------
/t10- Transformers/img/bert.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/bert.png
--------------------------------------------------------------------------------
/t10- Transformers/img/bleu.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/bleu.png
--------------------------------------------------------------------------------
/t10- Transformers/img/description-image.avif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/description-image.avif
--------------------------------------------------------------------------------
/t10- Transformers/img/dnns-13.jpg.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/dnns-13.jpg.webp
--------------------------------------------------------------------------------
/t10- Transformers/img/enc_dec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/enc_dec.png
--------------------------------------------------------------------------------
/t10- Transformers/img/gpt2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/gpt2.png
--------------------------------------------------------------------------------
/t10- Transformers/img/matrix_att_jay.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/matrix_att_jay.png
--------------------------------------------------------------------------------
/t10- Transformers/img/matrix_att_jay2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/matrix_att_jay2.png
--------------------------------------------------------------------------------
/t10- Transformers/img/mhatt_jay.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/mhatt_jay.png
--------------------------------------------------------------------------------
/t10- Transformers/img/q.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/q.png
--------------------------------------------------------------------------------
/t10- Transformers/img/rnn_layered.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/rnn_layered.png
--------------------------------------------------------------------------------
/t10- Transformers/img/rnn_unrolled.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/rnn_unrolled.png
--------------------------------------------------------------------------------
/t10- Transformers/img/seq2seq1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/seq2seq1.png
--------------------------------------------------------------------------------
/t10- Transformers/img/size.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/size.png
--------------------------------------------------------------------------------
/t10- Transformers/img/ss.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/ss.PNG
--------------------------------------------------------------------------------
/t10- Transformers/img/sutskever2014_pca.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/sutskever2014_pca.png
--------------------------------------------------------------------------------
/t10- Transformers/img/train.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/train.png
--------------------------------------------------------------------------------
/t10- Transformers/img/xu2015_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/xu2015_1.png
--------------------------------------------------------------------------------
/t10- Transformers/img/xu2015_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t10- Transformers/img/xu2015_2.png
--------------------------------------------------------------------------------
/t11- VAE/img/gau.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t11- VAE/img/gau.png
--------------------------------------------------------------------------------
/t11- VAE/img/gen_disc.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t11- VAE/img/gen_disc.jpg
--------------------------------------------------------------------------------
/t11- VAE/img/gmm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t11- VAE/img/gmm.png
--------------------------------------------------------------------------------
/t11- VAE/img/vae.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vistalab-technion/cs236781-tutorials/02cc21d2c5b9d734d872c0d5da41750edf03ebdd/t11- VAE/img/vae.png
--------------------------------------------------------------------------------
/t111- efficient CNN/bonus tutorial-efficient CNNs.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "slideshow": {
7 | "slide_type": "slide"
8 | }
9 | },
10 | "source": [
11 | "$$\n",
12 | "\\newcommand{\\mat}[1]{\\boldsymbol {#1}}\n",
13 | "\\newcommand{\\mattr}[1]{\\boldsymbol {#1}^\\top}\n",
14 | "\\newcommand{\\matinv}[1]{\\boldsymbol {#1}^{-1}}\n",
15 | "\\newcommand{\\vec}[1]{\\boldsymbol {#1}}\n",
16 | "\\newcommand{\\vectr}[1]{\\boldsymbol {#1}^\\top}\n",
17 | "\\newcommand{\\rvar}[1]{\\mathrm {#1}}\n",
18 | "\\newcommand{\\rvec}[1]{\\boldsymbol{\\mathrm{#1}}}\n",
19 | "\\newcommand{\\diag}{\\mathop{\\mathrm {diag}}}\n",
20 | "\\newcommand{\\set}[1]{\\mathbb {#1}}\n",
21 | "\\newcommand{\\norm}[1]{\\left\\lVert#1\\right\\rVert}\n",
22 | "\\newcommand{\\pderiv}[2]{\\frac{\\partial #1}{\\partial #2}}\n",
23 | "\\newcommand{\\bb}[1]{\\boldsymbol{#1}}\n",
24 | "$$\n",
25 | "\n",
26 | "\n",
27 | "# CS236781: Deep Learning\n",
28 | "# Bonus Tutorial: Efficient and special CNNs"
29 | ]
30 | },
31 | {
32 | "cell_type": "markdown",
33 | "metadata": {
34 | "slideshow": {
35 | "slide_type": "subslide"
36 | }
37 | },
38 | "source": [
39 | "## Introduction\n",
40 | "\n",
41 | "In this tutorial, we will cover:\n",
42 | "\n",
43 | "- Recup over resnets\n",
44 | "- Batch Normalization\n",
45 | "- SqueezeNet\n",
46 | "- Depthwise Separable Convolutions\n",
47 | "- MobileNet\n",
48 | "- MobileNet v2\n",
49 | "- MobileNet v3\n",
50 | "- ShuffleNet \n",
51 | "- EfficientNet "
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 1,
57 | "metadata": {
58 | "execution": {
59 | "iopub.execute_input": "2022-03-24T07:23:40.304945Z",
60 | "iopub.status.busy": "2022-03-24T07:23:40.300065Z",
61 | "iopub.status.idle": "2022-03-24T07:23:41.606026Z",
62 | "shell.execute_reply": "2022-03-24T07:23:41.605724Z"
63 | },
64 | "slideshow": {
65 | "slide_type": "subslide"
66 | }
67 | },
68 | "outputs": [],
69 | "source": [
70 | "# Setup\n",
71 | "%matplotlib inline\n",
72 | "import os\n",
73 | "import sys\n",
74 | "import torch\n",
75 | "import torchvision\n",
76 | "import matplotlib.pyplot as plt"
77 | ]
78 | },
79 | {
80 | "cell_type": "code",
81 | "execution_count": 2,
82 | "metadata": {
83 | "execution": {
84 | "iopub.execute_input": "2022-03-24T07:23:41.608025Z",
85 | "iopub.status.busy": "2022-03-24T07:23:41.607915Z",
86 | "iopub.status.idle": "2022-03-24T07:23:41.621298Z",
87 | "shell.execute_reply": "2022-03-24T07:23:41.621040Z"
88 | },
89 | "slideshow": {
90 | "slide_type": "fragment"
91 | }
92 | },
93 | "outputs": [],
94 | "source": [
95 | "plt.rcParams['font.size'] = 20\n",
96 | "data_dir = os.path.expanduser('~/.pytorch-datasets')"
97 | ]
98 | },
99 | {
100 | "cell_type": "markdown",
101 | "metadata": {
102 | "slideshow": {
103 | "slide_type": "slide"
104 | }
105 | },
106 | "source": [
107 | "## Theory Reminders"
108 | ]
109 | },
110 | {
111 | "cell_type": "markdown",
112 | "metadata": {
113 | "slideshow": {
114 | "slide_type": "fragment"
115 | }
116 | },
117 | "source": [
118 | "### Convolution neural networks (CNNs)"
119 | ]
120 | },
121 | {
122 | "cell_type": "markdown",
123 | "metadata": {
124 | "slideshow": {
125 | "slide_type": "slide"
126 | }
127 | },
128 | "source": [
129 | "