├── .gitignore
├── .pylintrc
├── README.rst
├── data
├── 3DMOT2015Labels.zip
├── Train.zip
├── data_arxiepiskopi.rar
├── data_university_students.rar
├── data_zara.rar
├── ewap_dataset_light.tgz
└── trajnet_original
│ ├── biwi
│ └── biwi_hotel.txt
│ ├── crowds
│ ├── arxiepiskopi1.txt
│ ├── crowds_zara02.txt
│ ├── crowds_zara03.txt
│ ├── students001.txt
│ └── students003.txt
│ ├── mot
│ └── PETS09-S2L1.txt
│ └── stanford
│ ├── bookstore_0.txt
│ ├── bookstore_1.txt
│ ├── bookstore_2.txt
│ ├── bookstore_3.txt
│ ├── coupa_3.txt
│ ├── deathCircle_0.txt
│ ├── deathCircle_1.txt
│ ├── deathCircle_2.txt
│ ├── deathCircle_3.txt
│ ├── deathCircle_4.txt
│ ├── gates_0.txt
│ ├── gates_1.txt
│ ├── gates_3.txt
│ ├── gates_4.txt
│ ├── gates_5.txt
│ ├── gates_6.txt
│ ├── gates_7.txt
│ ├── gates_8.txt
│ ├── hyang_4.txt
│ ├── hyang_5.txt
│ ├── hyang_6.txt
│ ├── hyang_7.txt
│ ├── hyang_9.txt
│ ├── nexus_0.txt
│ ├── nexus_1.txt
│ ├── nexus_2.txt
│ ├── nexus_3.txt
│ ├── nexus_4.txt
│ ├── nexus_7.txt
│ ├── nexus_8.txt
│ └── nexus_9.txt
├── edinburgh_informatics_forum_urls.txt
├── scripts
└── convert_original.py
├── setup.py
├── setup_orca.sh
├── setup_social_force.sh
└── trajnetdataset
├── __init__.py
├── controlled_data.py
├── convert.py
├── get_type.py
├── orca_helper.py
├── readers.py
└── scene.py
/.gitignore:
--------------------------------------------------------------------------------
1 | data/raw/
2 | data/3DMOT2015Labels/
3 | data/cvpr2015_pedestrianWalkingPathDataset.rar
4 | data/Wildtrack_dataset_full.zip
5 | data/miverva.zip
6 | output*
7 | trajnetdataset/private
8 |
9 | # Python
10 | venv*/
11 | *.pyc
12 | *.egg-info/
13 | dist/
14 | .cache
15 | .idea
16 |
17 | # Editors
18 | .vscode/
19 |
20 | # OS
21 | .DS_Store
22 |
23 | # backup
24 | backup/
25 |
26 |
--------------------------------------------------------------------------------
/.pylintrc:
--------------------------------------------------------------------------------
1 | [BASIC]
2 |
3 | variable-rgx=[a-z0-9_]{1,30}$
4 | good-names=n,nx,ny,xy,sc
5 |
6 | [TYPECHECK]
7 |
8 | # List of members which are set dynamically and missed by pylint inference
9 | # system, and so shouldn't trigger E1101 when accessed. Python regular
10 | # expressions are accepted.
11 | generated-members=numpy.*,torch.*,scipy.*
12 |
13 | disable=missing-docstring
14 |
--------------------------------------------------------------------------------
/README.rst:
--------------------------------------------------------------------------------
1 | NEW: Converting new external dataset into TrajNet++ format. `Tutorial `_
2 |
3 | Install
4 | -------
5 |
6 | .. code-block:: sh
7 |
8 | pip install -e '.[test,plot]'
9 | sh setup_orca.sh
10 | sh setup_social_force.sh
11 |
12 |
13 | Prepare Synthetic Dataset
14 | -------------------------
15 |
16 | .. code-block:: sh
17 |
18 | python -m trajnetdataset.controlled_data --mode 'trajnet' --num_scenes 1000
19 |
20 |
21 | Converting Synthetic Dataset to TrajNet++
22 | -----------------------------------------
23 |
24 | A command to categorize synthetic data into TrajNet++ format will be printed at the end of preparation command above.
25 |
26 |
27 |
28 | Preparing Real World Data
29 | -------------------------
30 |
31 | Existing real world data:
32 |
33 | .. code-block::
34 |
35 | data/
36 | data_arxiepiskopi.rar
37 | data_university_students.rar
38 | data_zara.rar
39 | ewap_dataset_light.tgz
40 | # 3DMOT2015Labels # from: https://motchallenge.net/data/3DMOT2015Labels.zip (video file at http://cs.binghamton.edu/~mrldata/public/PETS2009/S2_L1.tar.bz2)
41 | Train.zip # from trajnet.epfl.ch
42 | cvpr2015_pedestrianWalkingPathDataset.rar # from http://www.ee.cuhk.edu.hk/~syi/ (website not accessible but data are also here: https://www.dropbox.com/s/7y90xsxq0l0yv8d/cvpr2015_pedestrianWalkingPathDataset.rar?dl=0.+63)
43 | cff_dataset.zip # from https://www.dropbox.com/s/cnnk2ofreeoshuz/cff_dataset.zip?dl=0
44 |
45 | Extract:
46 |
47 | .. code-block:: sh
48 |
49 | # biwi
50 | mkdir -p data/raw/biwi
51 | tar -xzf data/ewap_dataset_light.tgz --strip-components=1 -C data/raw/biwi
52 |
53 | # crowds
54 | mkdir -p data/raw/crowds
55 | unrar e data/data_arxiepiskopi.rar data/raw/crowds
56 | unrar e data/data_university_students.rar data/raw/crowds
57 | unrar e data/data_zara.rar data/raw/crowds
58 |
59 | # cff
60 | mkdir -p data/raw/cff_dataset
61 | unzip data/cff_dataset.zip -d data/raw/
62 | rm -r data/raw/__MACOSX
63 |
64 | # Wildtrack: https://www.epfl.ch/labs/cvlab/data/data-wildtrack/
65 | mkdir -p data/raw/wildtrack
66 | unzip data/Wildtrack_dataset_full.zip -d data/raw/wildtrack
67 |
68 | # L-CAS: https://drive.google.com/drive/folders/1CPV9XeJsZzvtTxPQ9u1ppLGs_29e-XdQ
69 | mkdir -p data/raw/lcas
70 | cp data/lcas_pedestrian_dataset/minerva/train/data.csv data/raw/lcas
71 |
72 | # pedestrian walking dataset
73 | mkdir -p data/raw/syi
74 | unrar e data/cvpr2015_pedestrianWalkingPathDataset.rar data/raw/syi
75 |
76 | PETS09 S2L1 ground truth -- not used because people behavior is not normal
77 | mkdir -p data/raw/mot
78 | unzip data/3DMOT2015Labels.zip -d data/
79 | cp data/3DMOT2015Labels/train/PETS09-S2L1/gt/gt.txt data/raw/mot/pets2009_s2l1.txt
80 |
81 | # Edinburgh Informatics Forum tracker -- not used because tracks are not good enough
82 | mkdir -p data/raw/edinburgh
83 | wget -i edinburgh_informatics_forum_urls.txt -P data/raw/edinburgh/
84 |
85 |
86 | Converting Real World Dataset
87 | -----------------------------
88 |
89 | .. code-block:: sh
90 |
91 | python -m trajnetdataset.convert
92 |
93 | The above command performs the following operations:
94 |
95 | * Step 1. readers.py: reads the raw data files and converts them to trackrows in .ndjson format
96 | * Step 2. scene.py: prepares different scenes given the obtained trackrows
97 | * Step 3. get_type.py: categorizes each scene based on our defined trajectory categorization
98 |
99 | .. code-block:: sh
100 |
101 | # create plots to check new dataset
102 | python -m trajnetplusplustools.summarize output/train/*.ndjson
103 |
104 | # obtain new dataset statistics
105 | python -m trajnetplusplustools.dataset_stats output/train/*.ndjson
106 |
107 | # visualize sample scenes
108 | python -m trajnetplusplustools.trajectories output/train/*.ndjson
109 |
110 |
111 | Converting Other Real World Datasets
112 | ------------------------------------
113 |
114 | Refer to this example tutorial: `Tutorial `_
115 |
116 |
117 | More Synthetic Toy Dataset Examples
118 | -----------------------------------
119 |
120 | Checkout the `toy `_ branch
121 |
122 |
123 | Difference in generated data in TrajNet++
124 | -----------------------------------------
125 |
126 | * partial tracks are now included (for correct occupancy maps)
127 | * pedestrians that appear in multiple chunks had the same id before (might be a problem for some input readers)
128 | * explicit index of scenes with annotation of the primary pedestrian
129 |
130 | # * the primary pedestrian has to move by more than 1 meter
131 | * at one point, the primary pedestrian has to be <3m away from another pedestrian
132 |
133 | Citation
134 | ========
135 |
136 | If you find this code useful in your research then please cite
137 |
138 | .. code-block::
139 |
140 | @article{Kothari2020HumanTF,
141 | author={Kothari, Parth and Kreiss, Sven and Alahi, Alexandre},
142 | journal={IEEE Transactions on Intelligent Transportation Systems},
143 | title={Human Trajectory Forecasting in Crowds: A Deep Learning Perspective},
144 | year={2021},
145 | volume={},
146 | number={},
147 | pages={1-15},
148 | doi={10.1109/TITS.2021.3069362}
149 | }
150 |
151 |
152 | References
153 | ----------
154 |
155 | * ``eth``:
156 |
157 | .. code-block::
158 |
159 | @article{Pellegrini2009YoullNW,
160 | title={You'll never walk alone: Modeling social behavior for multi-target tracking},
161 | author={Stefano Pellegrini and Andreas Ess and Konrad Schindler and Luc Van Gool},
162 | journal={2009 IEEE 12th International Conference on Computer Vision},
163 | year={2009},
164 | pages={261-268}
165 | }
166 |
167 | * ``ucy``:
168 |
169 | .. code-block::
170 |
171 | @article{Lerner2007CrowdsBE,
172 | title={Crowds by Example},
173 | author={Alon Lerner and Yiorgos Chrysanthou and Dani Lischinski},
174 | journal={Comput. Graph. Forum},
175 | year={2007},
176 | volume={26},
177 | pages={655-664}
178 | }
179 |
180 | * ``wildtrack``:
181 |
182 | .. code-block::
183 |
184 | @inproceedings{chavdarova-et-al-2018,
185 | author = "Chavdarova, T. and Baqué, P. and Bouquet, S. and Maksai, A. and Jose, C. and Bagautdinov, T. and Lettry, L. and Fua, P. and Van Gool, L. and Fleuret, F.",
186 | title = {{WILDTRACK}: A Multi-camera {HD} Dataset for Dense Unscripted Pedestrian Detection},
187 | journal = "Proceedings of the IEEE international conference on Computer Vision and Pattern Recognition (CVPR)",
188 | year = 2018,
189 | }
190 |
191 | * ``L-CAS``:
192 |
193 | .. code-block::
194 |
195 | @article{Sun20173DOFPT,
196 | title={3DOF Pedestrian Trajectory Prediction Learned from Long-Term Autonomous Mobile Robot Deployment Data},
197 | author={Li Sun and Zhi Yan and Sergi Molina Mellado and Marc Hanheide and Tom Duckett},
198 | journal={2018 IEEE International Conference on Robotics and Automation (ICRA)},
199 | year={2017},
200 | pages={1-7}
201 | }
202 |
203 | * ``CFF``:
204 |
205 | .. code-block::
206 |
207 | @article{Alahi2014SociallyAwareLC,
208 | title={Socially-Aware Large-Scale Crowd Forecasting},
209 | author={Alexandre Alahi and Vignesh Ramanathan and Fei-Fei Li},
210 | journal={2014 IEEE Conference on Computer Vision and Pattern Recognition},
211 | year={2014},
212 | pages={2211-2218}
213 | }
214 |
215 | * ``syi``: Shuai Yi, Hongsheng Li, and Xiaogang Wang. Understanding Pedestrian Behaviors from Stationary Crowd Groups. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015).
216 | * ``edinburgh``: B. Majecka, "Statistical models of pedestrian behaviour in the Forum", MSc Dissertation, School of Informatics, University of Edinburgh, 2009.
217 |
--------------------------------------------------------------------------------
/data/3DMOT2015Labels.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vita-epfl/trajnetplusplusdataset/75e697d6b2f55c0ade2b2b5f7bbf53a5f34b2d50/data/3DMOT2015Labels.zip
--------------------------------------------------------------------------------
/data/Train.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vita-epfl/trajnetplusplusdataset/75e697d6b2f55c0ade2b2b5f7bbf53a5f34b2d50/data/Train.zip
--------------------------------------------------------------------------------
/data/data_arxiepiskopi.rar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vita-epfl/trajnetplusplusdataset/75e697d6b2f55c0ade2b2b5f7bbf53a5f34b2d50/data/data_arxiepiskopi.rar
--------------------------------------------------------------------------------
/data/data_university_students.rar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vita-epfl/trajnetplusplusdataset/75e697d6b2f55c0ade2b2b5f7bbf53a5f34b2d50/data/data_university_students.rar
--------------------------------------------------------------------------------
/data/data_zara.rar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vita-epfl/trajnetplusplusdataset/75e697d6b2f55c0ade2b2b5f7bbf53a5f34b2d50/data/data_zara.rar
--------------------------------------------------------------------------------
/data/ewap_dataset_light.tgz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vita-epfl/trajnetplusplusdataset/75e697d6b2f55c0ade2b2b5f7bbf53a5f34b2d50/data/ewap_dataset_light.tgz
--------------------------------------------------------------------------------
/data/trajnet_original/crowds/arxiepiskopi1.txt:
--------------------------------------------------------------------------------
1 | 0 1 -18.56 -3.86
2 | 10 1 -18.06 -3.86
3 | 20 1 -17.56 -3.85
4 | 30 1 -17.05 -3.85
5 | 40 1 -16.55 -3.84
6 | 50 1 -16.05 -3.84
7 | 60 1 -15.55 -3.83
8 | 70 1 -15.05 -3.83
9 | 80 1 -14.55 -3.82
10 | 90 1 -14.11 -3.83
11 | 100 1 -13.69 -3.85
12 | 110 1 -13.28 -3.86
13 | 120 1 -12.86 -3.88
14 | 130 1 -12.44 -3.9
15 | 140 1 -12.03 -3.91
16 | 150 1 -11.61 -3.93
17 | 160 1 -11.21 -3.94
18 | 170 1 -10.85 -3.94
19 | 180 1 -10.49 -3.93
20 | 190 1 -10.13 -3.93
21 | 0 3 -23.16 -6.48
22 | 10 3 -22.49 -6.46
23 | 20 3 -21.82 -6.44
24 | 30 3 -21.16 -6.42
25 | 40 3 -20.49 -6.41
26 | 50 3 -19.82 -6.39
27 | 60 3 -19.23 -6.41
28 | 70 3 -18.68 -6.44
29 | 80 3 -18.13 -6.48
30 | 90 3 -17.58 -6.52
31 | 100 3 -17.11 -6.53
32 | 110 3 -16.77 -6.5
33 | 120 3 -16.43 -6.46
34 | 130 3 -16.24 -6.42
35 | 140 3 -16.41 -6.36
36 | 150 3 -16.58 -6.3
37 | 160 3 -16.75 -6.24
38 | 170 3 -16.92 -6.18
39 | 180 3 -17.08 -6.12
40 | 190 3 -17.04 -6.06
41 | 0 6 -23.47 -5.88
42 | 10 6 -23.45 -6.01
43 | 20 6 -23.43 -6.13
44 | 30 6 -23.41 -6.25
45 | 40 6 -23.38 -6.37
46 | 50 6 -23.36 -6.5
47 | 60 6 -23.0 -6.44
48 | 70 6 -22.63 -6.39
49 | 80 6 -22.27 -6.34
50 | 90 6 -21.9 -6.29
51 | 100 6 -21.55 -6.26
52 | 110 6 -21.21 -6.23
53 | 120 6 -20.86 -6.2
54 | 130 6 -20.51 -6.17
55 | 140 6 -20.17 -6.14
56 | 150 6 -19.77 -6.05
57 | 160 6 -19.38 -5.97
58 | 170 6 -18.98 -5.88
59 | 180 6 -18.59 -5.79
60 | 190 6 -18.19 -5.71
61 | 0 9 -17.62 -3.0
62 | 10 9 -17.23 -3.03
63 | 20 9 -16.85 -3.06
64 | 30 9 -16.47 -3.09
65 | 40 9 -16.09 -3.13
66 | 50 9 -15.71 -3.16
67 | 60 9 -15.33 -3.19
68 | 70 9 -14.95 -3.22
69 | 80 9 -14.56 -3.26
70 | 90 9 -14.18 -3.29
71 | 100 9 -13.8 -3.32
72 | 110 9 -13.42 -3.35
73 | 120 9 -13.04 -3.39
74 | 130 9 -12.66 -3.42
75 | 140 9 -12.21 -3.44
76 | 150 9 -11.76 -3.47
77 | 160 9 -11.3 -3.5
78 | 170 9 -10.85 -3.52
79 | 180 9 -10.4 -3.55
80 | 190 9 -9.95 -3.57
81 | 0 10 -16.67 -2.18
82 | 10 10 -16.32 -2.19
83 | 20 10 -15.97 -2.19
84 | 30 10 -15.62 -2.2
85 | 40 10 -15.27 -2.2
86 | 50 10 -14.92 -2.21
87 | 60 10 -14.58 -2.22
88 | 70 10 -14.32 -2.35
89 | 80 10 -14.05 -2.47
90 | 90 10 -13.74 -2.58
91 | 100 10 -13.33 -2.65
92 | 110 10 -12.92 -2.73
93 | 120 10 -12.5 -2.8
94 | 130 10 -12.09 -2.88
95 | 140 10 -11.68 -2.95
96 | 150 10 -11.27 -3.03
97 | 160 10 -10.83 -3.06
98 | 170 10 -10.38 -3.08
99 | 180 10 -9.93 -3.1
100 | 190 10 -9.48 -3.11
101 | 0 12 -18.35 -1.43
102 | 10 12 -17.92 -1.36
103 | 20 12 -17.49 -1.28
104 | 30 12 -17.06 -1.21
105 | 40 12 -16.63 -1.14
106 | 50 12 -16.2 -1.06
107 | 60 12 -15.74 -1.09
108 | 70 12 -15.27 -1.13
109 | 80 12 -14.8 -1.16
110 | 90 12 -14.33 -1.19
111 | 100 12 -13.86 -1.22
112 | 110 12 -13.4 -1.25
113 | 120 12 -12.93 -1.28
114 | 130 12 -12.46 -1.31
115 | 140 12 -12.03 -1.35
116 | 150 12 -11.67 -1.41
117 | 160 12 -11.31 -1.48
118 | 170 12 -10.96 -1.54
119 | 180 12 -10.56 -1.6
120 | 190 12 -10.15 -1.65
121 | 0 14 -19.85 -2.26
122 | 10 14 -19.57 -2.18
123 | 20 14 -19.29 -2.09
124 | 30 14 -19.0 -2.0
125 | 40 14 -18.72 -1.91
126 | 50 14 -18.35 -1.81
127 | 60 14 -17.76 -1.66
128 | 70 14 -17.17 -1.51
129 | 80 14 -16.58 -1.36
130 | 90 14 -16.04 -1.26
131 | 100 14 -15.64 -1.29
132 | 110 14 -15.23 -1.33
133 | 120 14 -14.83 -1.36
134 | 130 14 -14.43 -1.39
135 | 140 14 -14.02 -1.42
136 | 150 14 -13.62 -1.45
137 | 160 14 -13.19 -1.46
138 | 170 14 -12.75 -1.45
139 | 180 14 -12.3 -1.44
140 | 190 14 -11.85 -1.43
141 | 0 16 -21.95 -1.57
142 | 10 16 -21.47 -1.42
143 | 20 16 -20.99 -1.28
144 | 30 16 -20.51 -1.13
145 | 40 16 -20.03 -0.99
146 | 50 16 -19.55 -0.85
147 | 60 16 -19.11 -0.77
148 | 70 16 -18.73 -0.81
149 | 80 16 -18.35 -0.84
150 | 90 16 -17.84 -0.75
151 | 100 16 -17.32 -0.64
152 | 110 16 -16.91 -0.53
153 | 120 16 -16.66 -0.42
154 | 130 16 -16.41 -0.3
155 | 140 16 -16.16 -0.19
156 | 150 16 -15.91 -0.07
157 | 160 16 -15.74 -0.1
158 | 170 16 -15.6 -0.17
159 | 180 16 -15.46 -0.23
160 | 190 16 -15.32 -0.29
161 | 0 19 -20.99 -0.86
162 | 10 19 -20.59 -0.78
163 | 20 19 -20.19 -0.7
164 | 30 19 -19.79 -0.62
165 | 40 19 -19.39 -0.53
166 | 50 19 -18.99 -0.45
167 | 60 19 -18.67 -0.31
168 | 70 19 -18.34 -0.17
169 | 80 19 -18.02 -0.02
170 | 90 19 -17.7 0.12
171 | 100 19 -17.44 0.21
172 | 110 19 -17.3 0.21
173 | 120 19 -17.15 0.22
174 | 130 19 -17.01 0.22
175 | 140 19 -16.86 0.23
176 | 150 19 -16.57 0.22
177 | 160 19 -16.04 0.2
178 | 170 19 -15.52 0.17
179 | 180 19 -15.0 0.15
180 | 190 19 -14.47 0.12
181 | 0 22 -22.07 -0.65
182 | 10 22 -21.7 -0.56
183 | 20 22 -21.34 -0.47
184 | 30 22 -20.97 -0.38
185 | 40 22 -20.61 -0.29
186 | 50 22 -20.24 -0.2
187 | 60 22 -19.87 -0.11
188 | 70 22 -19.51 -0.02
189 | 80 22 -19.19 -0.0
190 | 90 22 -18.89 -0.03
191 | 100 22 -18.59 -0.07
192 | 110 22 -18.3 -0.1
193 | 120 22 -18.0 -0.13
194 | 130 22 -17.71 -0.16
195 | 140 22 -17.41 -0.19
196 | 150 22 -17.12 -0.22
197 | 160 22 -16.87 -0.45
198 | 170 22 -16.63 -0.72
199 | 180 22 -16.39 -1.0
200 | 190 22 -16.15 -1.27
201 | 0 25 -22.5 -3.8
202 | 10 25 -21.92 -3.74
203 | 20 25 -21.33 -3.68
204 | 30 25 -20.75 -3.61
205 | 40 25 -20.16 -3.55
206 | 50 25 -19.58 -3.48
207 | 60 25 -19.0 -3.42
208 | 70 25 -18.41 -3.35
209 | 80 25 -17.83 -3.29
210 | 90 25 -17.24 -3.23
211 | 100 25 -16.74 -3.19
212 | 110 25 -16.27 -3.17
213 | 120 25 -15.8 -3.14
214 | 130 25 -15.33 -3.12
215 | 140 25 -14.86 -3.1
216 | 150 25 -14.39 -3.07
217 | 160 25 -13.93 -3.06
218 | 170 25 -13.46 -3.07
219 | 180 25 -13.0 -3.07
220 | 190 25 -12.53 -3.08
221 | 0 27 -22.95 -2.85
222 | 10 27 -22.39 -2.77
223 | 20 27 -21.83 -2.7
224 | 30 27 -21.28 -2.63
225 | 40 27 -20.72 -2.55
226 | 50 27 -20.17 -2.48
227 | 60 27 -19.61 -2.41
228 | 70 27 -19.01 -2.4
229 | 80 27 -18.36 -2.47
230 | 90 27 -17.71 -2.53
231 | 100 27 -17.05 -2.6
232 | 110 27 -16.44 -2.59
233 | 120 27 -15.84 -2.56
234 | 130 27 -15.24 -2.54
235 | 140 27 -14.64 -2.51
236 | 150 27 -14.07 -2.5
237 | 160 27 -13.8 -2.58
238 | 170 27 -13.52 -2.67
239 | 180 27 -13.08 -2.65
240 | 190 27 -12.62 -2.62
241 | 0 29 -19.48 -3.82
242 | 10 29 -19.09 -3.85
243 | 20 29 -18.71 -3.88
244 | 30 29 -18.32 -3.91
245 | 40 29 -17.94 -3.94
246 | 50 29 -17.55 -3.97
247 | 60 29 -17.16 -4.01
248 | 70 29 -16.73 -4.12
249 | 80 29 -16.31 -4.22
250 | 90 29 -15.88 -4.32
251 | 100 29 -15.45 -4.43
252 | 110 29 -15.02 -4.53
253 | 120 29 -14.52 -4.56
254 | 130 29 -14.01 -4.58
255 | 140 29 -13.5 -4.6
256 | 150 29 -12.98 -4.62
257 | 160 29 -12.48 -4.63
258 | 170 29 -12.04 -4.65
259 | 180 29 -11.59 -4.67
260 | 190 29 -11.14 -4.68
261 | 0 30 -23.7 -4.91
262 | 10 30 -23.14 -4.81
263 | 20 30 -22.58 -4.72
264 | 30 30 -22.02 -4.63
265 | 40 30 -21.46 -4.53
266 | 50 30 -20.9 -4.44
267 | 60 30 -20.38 -4.35
268 | 70 30 -19.86 -4.26
269 | 80 30 -19.34 -4.17
270 | 90 30 -18.81 -4.08
271 | 100 30 -18.29 -3.99
272 | 110 30 -17.77 -3.91
273 | 120 30 -17.23 -3.92
274 | 130 30 -16.69 -3.94
275 | 140 30 -16.14 -3.96
276 | 150 30 -15.6 -3.98
277 | 160 30 -15.2 -4.03
278 | 170 30 -14.83 -4.08
279 | 180 30 -14.46 -4.14
280 | 190 30 -14.18 -4.18
281 | 0 32 -24.25 -5.48
282 | 10 32 -23.76 -5.44
283 | 20 32 -23.27 -5.4
284 | 30 32 -22.78 -5.36
285 | 40 32 -22.29 -5.32
286 | 50 32 -21.8 -5.28
287 | 60 32 -21.31 -5.24
288 | 70 32 -20.82 -5.2
289 | 80 32 -20.25 -5.14
290 | 90 32 -19.63 -5.07
291 | 100 32 -19.02 -5.0
292 | 110 32 -18.4 -4.93
293 | 120 32 -17.79 -4.86
294 | 130 32 -17.17 -4.79
295 | 140 32 -16.56 -4.72
296 | 150 32 -15.94 -4.64
297 | 160 32 -15.57 -4.65
298 | 170 32 -15.27 -4.68
299 | 180 32 -14.96 -4.7
300 | 190 32 -14.66 -4.73
301 | 0 34 -30.22 -3.46
302 | 10 34 -29.62 -3.42
303 | 20 34 -29.02 -3.39
304 | 30 34 -28.42 -3.35
305 | 40 34 -27.82 -3.32
306 | 50 34 -27.22 -3.28
307 | 60 34 -26.62 -3.25
308 | 70 34 -26.02 -3.21
309 | 80 34 -25.42 -3.17
310 | 90 34 -24.82 -3.14
311 | 100 34 -24.22 -3.1
312 | 110 34 -23.62 -3.07
313 | 120 34 -23.14 -3.09
314 | 130 34 -22.69 -3.13
315 | 140 34 -22.23 -3.17
316 | 150 34 -21.78 -3.21
317 | 160 34 -21.32 -3.25
318 | 170 34 -20.87 -3.29
319 | 180 34 -20.41 -3.33
320 | 190 34 -19.96 -3.37
321 | 0 37 -28.59 -4.36
322 | 10 37 -28.03 -4.32
323 | 20 37 -27.47 -4.28
324 | 30 37 -26.91 -4.23
325 | 40 37 -26.35 -4.19
326 | 50 37 -25.79 -4.15
327 | 60 37 -25.23 -4.1
328 | 70 37 -24.67 -4.06
329 | 80 37 -24.11 -4.01
330 | 90 37 -23.55 -3.94
331 | 100 37 -22.99 -3.88
332 | 110 37 -22.44 -3.82
333 | 120 37 -21.88 -3.75
334 | 130 37 -21.32 -3.69
335 | 140 37 -20.76 -3.63
336 | 150 37 -20.2 -3.57
337 | 160 37 -19.64 -3.5
338 | 170 37 -19.16 -3.46
339 | 180 37 -18.68 -3.42
340 | 190 37 -18.21 -3.37
341 | 0 40 -28.45 -5.09
342 | 10 40 -27.92 -5.01
343 | 20 40 -27.38 -4.93
344 | 30 40 -26.85 -4.85
345 | 40 40 -26.32 -4.77
346 | 50 40 -25.78 -4.69
347 | 60 40 -25.25 -4.61
348 | 70 40 -24.71 -4.53
349 | 80 40 -24.19 -4.48
350 | 90 40 -23.67 -4.42
351 | 100 40 -23.15 -4.37
352 | 110 40 -22.63 -4.32
353 | 120 40 -22.11 -4.26
354 | 130 40 -21.59 -4.21
355 | 140 40 -21.07 -4.16
356 | 150 40 -20.55 -4.1
357 | 160 40 -20.04 -4.05
358 | 170 40 -19.52 -4.0
359 | 180 40 -19.0 -3.94
360 | 190 40 -18.48 -3.89
361 | 0 43 -28.57 -5.56
362 | 10 43 -27.92 -5.49
363 | 20 43 -27.27 -5.43
364 | 30 43 -26.62 -5.36
365 | 40 43 -25.97 -5.29
366 | 50 43 -25.32 -5.23
367 | 60 43 -24.67 -5.16
368 | 70 43 -24.09 -5.1
369 | 80 43 -23.59 -5.04
370 | 90 43 -23.08 -4.99
371 | 100 43 -22.57 -4.93
372 | 110 43 -22.06 -4.87
373 | 120 43 -21.56 -4.82
374 | 130 43 -21.05 -4.76
375 | 140 43 -20.54 -4.7
376 | 150 43 -20.04 -4.65
377 | 160 43 -19.53 -4.59
378 | 170 43 -19.05 -4.53
379 | 180 43 -18.59 -4.46
380 | 190 43 -18.12 -4.39
381 | 0 46 -30.1 -7.03
382 | 10 46 -29.43 -6.91
383 | 20 46 -28.75 -6.79
384 | 30 46 -28.08 -6.67
385 | 40 46 -27.4 -6.55
386 | 50 46 -26.72 -6.43
387 | 60 46 -26.05 -6.31
388 | 70 46 -25.37 -6.19
389 | 80 46 -24.71 -6.07
390 | 90 46 -24.1 -5.96
391 | 100 46 -23.49 -5.85
392 | 110 46 -22.87 -5.73
393 | 120 46 -22.26 -5.62
394 | 130 46 -21.65 -5.51
395 | 140 46 -21.04 -5.4
396 | 150 46 -20.46 -5.29
397 | 160 46 -19.93 -5.2
398 | 170 46 -19.39 -5.11
399 | 180 46 -18.86 -5.02
400 | 190 46 -18.32 -4.93
401 | 0 49 -31.92 -6.81
402 | 10 49 -31.42 -6.83
403 | 20 49 -30.92 -6.85
404 | 30 49 -30.42 -6.87
405 | 40 49 -29.91 -6.89
406 | 50 49 -29.41 -6.91
407 | 60 49 -28.91 -6.94
408 | 70 49 -28.41 -6.96
409 | 80 49 -27.91 -6.98
410 | 90 49 -27.41 -7.0
411 | 100 49 -26.9 -7.02
412 | 110 49 -26.31 -6.96
413 | 120 49 -25.73 -6.91
414 | 130 49 -25.14 -6.86
415 | 140 49 -24.56 -6.8
416 | 150 49 -23.97 -6.75
417 | 160 49 -23.38 -6.7
418 | 170 49 -22.8 -6.64
419 | 180 49 -22.21 -6.59
420 | 190 49 -21.64 -6.52
421 | 0 55 -35.21 -5.59
422 | 10 55 -35.14 -5.58
423 | 20 55 -35.07 -5.57
424 | 30 55 -35.0 -5.56
425 | 40 55 -34.93 -5.54
426 | 50 55 -34.86 -5.53
427 | 60 55 -34.79 -5.52
428 | 70 55 -34.72 -5.51
429 | 80 55 -34.65 -5.49
430 | 90 55 -34.58 -5.48
431 | 100 55 -34.52 -5.47
432 | 110 55 -34.45 -5.46
433 | 120 55 -34.38 -5.44
434 | 130 55 -34.31 -5.43
435 | 140 55 -34.16 -5.47
436 | 150 55 -33.98 -5.53
437 | 160 55 -33.8 -5.58
438 | 170 55 -33.62 -5.64
439 | 180 55 -33.44 -5.7
440 | 190 55 -33.19 -5.74
441 | 0 58 -34.13 -4.87
442 | 10 58 -34.15 -4.89
443 | 20 58 -34.18 -4.91
444 | 30 58 -34.2 -4.94
445 | 40 58 -34.23 -4.96
446 | 50 58 -34.25 -4.98
447 | 60 58 -34.28 -5.0
448 | 70 58 -34.3 -5.02
449 | 80 58 -34.32 -5.05
450 | 90 58 -34.35 -5.07
451 | 100 58 -34.37 -5.09
452 | 110 58 -34.4 -5.11
453 | 120 58 -34.42 -5.13
454 | 130 58 -34.45 -5.16
455 | 140 58 -34.47 -5.18
456 | 150 58 -34.5 -5.2
457 | 160 58 -34.12 -5.19
458 | 170 58 -33.63 -5.16
459 | 180 58 -33.15 -5.14
460 | 190 58 -32.66 -5.11
461 | 30 52 -34.17 -6.3
462 | 40 52 -32.98 -6.06
463 | 50 52 -32.51 -6.09
464 | 60 52 -32.04 -6.13
465 | 70 52 -31.57 -6.16
466 | 80 52 -31.1 -6.2
467 | 90 52 -30.64 -6.23
468 | 100 52 -30.14 -6.26
469 | 110 52 -29.37 -6.25
470 | 120 52 -28.59 -6.24
471 | 130 52 -27.82 -6.23
472 | 140 52 -27.05 -6.22
473 | 150 52 -26.28 -6.21
474 | 160 52 -25.51 -6.2
475 | 170 52 -25.0 -6.21
476 | 180 52 -24.66 -6.25
477 | 190 52 -24.31 -6.28
478 | 200 52 -23.97 -6.31
479 | 210 52 -23.63 -6.34
480 | 220 52 -23.6 -6.22
481 | 200 2 -9.77 -3.92
482 | 210 2 -9.41 -3.92
483 | 220 2 -9.05 -3.91
484 | 230 2 -8.68 -4.0
485 | 240 2 -8.32 -4.08
486 | 250 2 -7.95 -4.17
487 | 260 2 -7.59 -4.25
488 | 270 2 -7.22 -4.33
489 | 280 2 -6.86 -4.42
490 | 290 2 -6.6 -4.59
491 | 300 2 -6.35 -4.77
492 | 310 2 -6.1 -4.94
493 | 320 2 -5.85 -5.12
494 | 330 2 -5.6 -5.3
495 | 340 2 -5.34 -5.48
496 | 350 2 -5.07 -5.64
497 | 360 2 -4.8 -5.79
498 | 370 2 -4.6 -5.98
499 | 380 2 -4.49 -6.21
500 | 390 2 -4.38 -6.44
501 | 200 4 -16.68 -6.01
502 | 210 4 -16.32 -5.96
503 | 220 4 -15.96 -5.91
504 | 230 4 -15.59 -5.86
505 | 240 4 -15.23 -5.81
506 | 250 4 -14.87 -5.77
507 | 260 4 -14.51 -5.72
508 | 270 4 -14.14 -5.67
509 | 280 4 -13.78 -5.62
510 | 290 4 -13.42 -5.57
511 | 300 4 -13.06 -5.52
512 | 310 4 -12.7 -5.47
513 | 320 4 -12.33 -5.42
514 | 330 4 -11.98 -5.39
515 | 340 4 -11.7 -5.48
516 | 350 4 -11.42 -5.57
517 | 360 4 -11.14 -5.66
518 | 370 4 -10.85 -5.76
519 | 380 4 -10.57 -5.85
520 | 390 4 -10.22 -5.91
521 | 200 7 -17.8 -5.62
522 | 210 7 -17.35 -5.54
523 | 220 7 -16.88 -5.45
524 | 230 7 -16.41 -5.37
525 | 240 7 -15.95 -5.28
526 | 250 7 -15.48 -5.2
527 | 260 7 -15.01 -5.11
528 | 270 7 -14.55 -5.03
529 | 280 7 -14.08 -4.94
530 | 290 7 -13.61 -4.86
531 | 300 7 -13.16 -4.78
532 | 310 7 -12.75 -4.74
533 | 320 7 -12.34 -4.7
534 | 330 7 -11.93 -4.65
535 | 340 7 -11.52 -4.61
536 | 350 7 -11.11 -4.57
537 | 360 7 -10.71 -4.52
538 | 370 7 -10.3 -4.48
539 | 380 7 -9.95 -4.48
540 | 390 7 -9.62 -4.48
541 | 200 11 -9.03 -3.13
542 | 210 11 -8.58 -3.15
543 | 220 11 -8.12 -3.17
544 | 230 11 -7.71 -3.19
545 | 240 11 -7.38 -3.22
546 | 250 11 -7.06 -3.25
547 | 260 11 -6.73 -3.29
548 | 270 11 -6.4 -3.32
549 | 280 11 -6.07 -3.35
550 | 290 11 -5.74 -3.38
551 | 300 11 -5.35 -3.41
552 | 310 11 -4.95 -3.43
553 | 320 11 -4.54 -3.46
554 | 330 11 -4.13 -3.48
555 | 340 11 -3.76 -3.53
556 | 350 11 -3.4 -3.58
557 | 360 11 -3.04 -3.64
558 | 370 11 -2.76 -3.73
559 | 380 11 -2.53 -3.84
560 | 390 11 -2.29 -3.95
561 | 200 13 -9.73 -1.71
562 | 210 13 -9.32 -1.76
563 | 220 13 -8.9 -1.82
564 | 230 13 -8.49 -1.87
565 | 240 13 -8.07 -1.93
566 | 250 13 -7.69 -1.99
567 | 260 13 -7.35 -2.05
568 | 270 13 -7.0 -2.12
569 | 280 13 -6.66 -2.19
570 | 290 13 -6.31 -2.25
571 | 300 13 -5.97 -2.32
572 | 310 13 -5.65 -2.4
573 | 320 13 -5.35 -2.5
574 | 330 13 -5.04 -2.59
575 | 340 13 -4.74 -2.69
576 | 350 13 -4.44 -2.78
577 | 360 13 -4.13 -2.87
578 | 370 13 -3.83 -2.95
579 | 380 13 -3.53 -3.02
580 | 390 13 -3.22 -3.1
581 | 200 15 -11.46 -1.44
582 | 210 15 -11.09 -1.46
583 | 220 15 -10.72 -1.47
584 | 230 15 -10.35 -1.48
585 | 240 15 -9.98 -1.49
586 | 250 15 -9.61 -1.51
587 | 260 15 -9.24 -1.52
588 | 270 15 -8.89 -1.54
589 | 280 15 -8.55 -1.56
590 | 290 15 -8.21 -1.57
591 | 300 15 -7.88 -1.59
592 | 310 15 -7.54 -1.61
593 | 320 15 -7.21 -1.63
594 | 330 15 -6.79 -1.72
595 | 340 15 -6.38 -1.81
596 | 350 15 -5.97 -1.9
597 | 360 15 -5.58 -1.98
598 | 370 15 -5.24 -2.02
599 | 380 15 -4.89 -2.07
600 | 390 15 -4.55 -2.11
601 | 200 17 -15.17 -0.36
602 | 210 17 -15.03 -0.42
603 | 220 17 -14.89 -0.49
604 | 230 17 -14.67 -0.7
605 | 240 17 -14.42 -0.98
606 | 250 17 -14.17 -1.27
607 | 260 17 -13.92 -1.55
608 | 270 17 -13.67 -1.83
609 | 280 17 -13.31 -2.09
610 | 290 17 -12.95 -2.35
611 | 300 17 -12.59 -2.61
612 | 310 17 -12.23 -2.85
613 | 320 17 -11.87 -3.04
614 | 330 17 -11.51 -3.23
615 | 340 17 -11.16 -3.42
616 | 350 17 -10.8 -3.61
617 | 360 17 -10.45 -3.62
618 | 370 17 -10.1 -3.61
619 | 380 17 -9.75 -3.61
620 | 390 17 -9.41 -3.6
621 | 200 20 -14.06 0.01
622 | 210 20 -13.81 -0.23
623 | 220 20 -13.57 -0.47
624 | 230 20 -13.32 -0.72
625 | 240 20 -13.08 -0.96
626 | 250 20 -12.83 -1.2
627 | 260 20 -12.61 -1.45
628 | 270 20 -12.46 -1.74
629 | 280 20 -12.32 -2.02
630 | 290 20 -12.05 -2.28
631 | 300 20 -11.76 -2.53
632 | 310 20 -11.46 -2.78
633 | 320 20 -11.08 -2.88
634 | 330 20 -10.7 -2.98
635 | 340 20 -10.32 -3.08
636 | 350 20 -9.95 -3.18
637 | 360 20 -9.55 -3.16
638 | 370 20 -9.16 -3.13
639 | 380 20 -8.77 -3.1
640 | 390 20 -8.43 -3.1
641 | 200 23 -15.92 -1.6
642 | 210 23 -15.68 -1.93
643 | 220 23 -15.44 -2.27
644 | 230 23 -15.21 -2.61
645 | 240 23 -14.95 -2.93
646 | 250 23 -14.49 -3.11
647 | 260 23 -14.02 -3.29
648 | 270 23 -13.56 -3.47
649 | 280 23 -13.27 -3.63
650 | 290 23 -12.98 -3.8
651 | 300 23 -12.69 -3.96
652 | 310 23 -12.4 -4.12
653 | 320 23 -11.99 -4.09
654 | 330 23 -11.58 -4.05
655 | 340 23 -11.17 -4.01
656 | 350 23 -10.76 -3.97
657 | 360 23 -10.41 -3.96
658 | 370 23 -10.1 -3.97
659 | 380 23 -9.79 -3.98
660 | 390 23 -9.49 -3.99
661 | 200 26 -12.07 -3.08
662 | 210 26 -11.6 -3.09
663 | 220 26 -11.13 -3.09
664 | 230 26 -10.73 -3.12
665 | 240 26 -10.35 -3.14
666 | 250 26 -9.97 -3.17
667 | 260 26 -9.59 -3.2
668 | 270 26 -9.21 -3.22
669 | 280 26 -8.82 -3.25
670 | 290 26 -8.44 -3.28
671 | 300 26 -8.06 -3.31
672 | 310 26 -7.68 -3.33
673 | 320 26 -7.3 -3.36
674 | 330 26 -6.94 -3.36
675 | 340 26 -6.57 -3.36
676 | 350 26 -6.2 -3.35
677 | 360 26 -5.84 -3.35
678 | 370 26 -5.48 -3.36
679 | 380 26 -5.14 -3.41
680 | 390 26 -4.79 -3.45
681 | 200 28 -12.16 -2.59
682 | 210 28 -11.81 -2.62
683 | 220 28 -11.56 -2.72
684 | 230 28 -11.31 -2.81
685 | 240 28 -10.98 -2.85
686 | 250 28 -10.53 -2.8
687 | 260 28 -10.08 -2.75
688 | 270 28 -9.63 -2.7
689 | 280 28 -9.2 -2.64
690 | 290 28 -8.79 -2.57
691 | 300 28 -8.39 -2.5
692 | 310 28 -7.98 -2.43
693 | 320 28 -7.55 -2.41
694 | 330 28 -7.1 -2.42
695 | 340 28 -6.65 -2.43
696 | 350 28 -6.19 -2.47
697 | 360 28 -5.72 -2.61
698 | 370 28 -5.25 -2.76
699 | 380 28 -4.81 -2.84
700 | 390 28 -4.41 -2.83
701 | 200 31 -13.92 -4.2
702 | 210 31 -13.67 -4.23
703 | 220 31 -13.42 -4.25
704 | 230 31 -13.15 -4.25
705 | 240 31 -12.87 -4.2
706 | 250 31 -12.58 -4.15
707 | 260 31 -12.3 -4.09
708 | 270 31 -12.01 -4.04
709 | 280 31 -11.74 -4.05
710 | 290 31 -11.47 -4.06
711 | 300 31 -11.2 -4.07
712 | 310 31 -10.93 -4.08
713 | 320 31 -10.66 -4.09
714 | 330 31 -10.38 -4.1
715 | 340 31 -10.07 -4.16
716 | 350 31 -9.76 -4.22
717 | 360 31 -9.39 -4.25
718 | 370 31 -8.99 -4.26
719 | 380 31 -8.59 -4.26
720 | 390 31 -8.19 -4.26
721 | 200 33 -14.35 -4.75
722 | 210 33 -14.05 -4.78
723 | 220 33 -13.74 -4.8
724 | 230 33 -13.45 -4.82
725 | 240 33 -13.21 -4.81
726 | 250 33 -12.97 -4.8
727 | 260 33 -12.73 -4.79
728 | 270 33 -12.49 -4.78
729 | 280 33 -12.24 -4.77
730 | 290 33 -11.92 -4.73
731 | 300 33 -11.59 -4.69
732 | 310 33 -11.26 -4.65
733 | 320 33 -10.93 -4.61
734 | 330 33 -10.61 -4.57
735 | 340 33 -10.26 -4.59
736 | 350 33 -9.91 -4.63
737 | 360 33 -9.56 -4.67
738 | 370 33 -9.2 -4.7
739 | 380 33 -8.85 -4.74
740 | 390 33 -8.5 -4.76
741 | 200 35 -19.56 -3.38
742 | 210 35 -19.15 -3.4
743 | 220 35 -18.74 -3.42
744 | 230 35 -18.33 -3.44
745 | 240 35 -17.92 -3.46
746 | 250 35 -17.52 -3.48
747 | 260 35 -17.11 -3.5
748 | 270 35 -16.7 -3.51
749 | 280 35 -16.29 -3.5
750 | 290 35 -15.88 -3.49
751 | 300 35 -15.46 -3.48
752 | 310 35 -15.05 -3.47
753 | 320 35 -14.64 -3.46
754 | 330 35 -14.23 -3.45
755 | 340 35 -13.82 -3.44
756 | 350 35 -13.41 -3.43
757 | 360 35 -13.0 -3.42
758 | 370 35 -12.61 -3.41
759 | 380 35 -12.28 -3.4
760 | 390 35 -11.94 -3.39
761 | 200 38 -17.73 -3.33
762 | 210 38 -17.25 -3.29
763 | 220 38 -16.78 -3.25
764 | 230 38 -16.3 -3.2
765 | 240 38 -15.82 -3.16
766 | 250 38 -15.35 -3.12
767 | 260 38 -14.89 -3.09
768 | 270 38 -14.5 -3.1
769 | 280 38 -14.11 -3.11
770 | 290 38 -13.72 -3.13
771 | 300 38 -13.33 -3.14
772 | 310 38 -12.94 -3.15
773 | 320 38 -12.55 -3.16
774 | 330 38 -12.16 -3.18
775 | 340 38 -11.8 -3.16
776 | 350 38 -11.45 -3.13
777 | 360 38 -11.11 -3.09
778 | 370 38 -10.76 -3.05
779 | 380 38 -10.42 -3.01
780 | 390 38 -10.08 -2.97
781 | 200 41 -17.97 -3.84
782 | 210 41 -17.53 -3.8
783 | 220 41 -17.1 -3.76
784 | 230 41 -16.67 -3.73
785 | 240 41 -16.23 -3.69
786 | 250 41 -15.8 -3.65
787 | 260 41 -15.37 -3.62
788 | 270 41 -14.89 -3.6
789 | 280 41 -14.4 -3.59
790 | 290 41 -13.93 -3.58
791 | 300 41 -13.61 -3.59
792 | 310 41 -13.28 -3.6
793 | 320 41 -12.96 -3.61
794 | 330 41 -12.64 -3.62
795 | 340 41 -12.31 -3.63
796 | 350 41 -11.98 -3.63
797 | 360 41 -11.64 -3.59
798 | 370 41 -11.29 -3.55
799 | 380 41 -10.94 -3.51
800 | 390 41 -10.6 -3.47
801 | 200 44 -17.66 -4.32
802 | 210 44 -17.2 -4.26
803 | 220 44 -16.74 -4.19
804 | 230 44 -16.27 -4.12
805 | 240 44 -15.81 -4.05
806 | 250 44 -15.41 -4.02
807 | 260 44 -15.06 -4.02
808 | 270 44 -14.71 -4.02
809 | 280 44 -14.36 -4.01
810 | 290 44 -14.02 -4.01
811 | 300 44 -13.67 -4.01
812 | 310 44 -13.32 -4.0
813 | 320 44 -12.97 -3.98
814 | 330 44 -12.62 -3.96
815 | 340 44 -12.27 -3.94
816 | 350 44 -11.92 -3.92
817 | 360 44 -11.58 -3.91
818 | 370 44 -11.25 -3.91
819 | 380 44 -10.92 -3.9
820 | 390 44 -10.6 -3.9
821 | 200 47 -17.78 -4.84
822 | 210 47 -17.32 -4.77
823 | 220 47 -16.94 -4.73
824 | 230 47 -16.55 -4.68
825 | 240 47 -16.16 -4.64
826 | 250 47 -15.77 -4.59
827 | 260 47 -15.39 -4.55
828 | 270 47 -15.0 -4.5
829 | 280 47 -14.62 -4.47
830 | 290 47 -14.27 -4.47
831 | 300 47 -13.91 -4.47
832 | 310 47 -13.56 -4.47
833 | 320 47 -13.2 -4.47
834 | 330 47 -12.86 -4.47
835 | 340 47 -12.54 -4.47
836 | 350 47 -12.22 -4.48
837 | 360 47 -11.9 -4.48
838 | 370 47 -11.58 -4.48
839 | 380 47 -11.26 -4.48
840 | 390 47 -10.94 -4.49
841 | 200 50 -21.07 -6.41
842 | 210 50 -20.51 -6.3
843 | 220 50 -19.94 -6.19
844 | 230 50 -19.38 -6.08
845 | 240 50 -18.81 -5.97
846 | 250 50 -18.59 -5.88
847 | 260 50 -18.72 -5.82
848 | 270 50 -18.85 -5.76
849 | 280 50 -18.98 -5.7
850 | 290 50 -19.11 -5.64
851 | 300 50 -19.24 -5.58
852 | 310 50 -19.37 -5.51
853 | 320 50 -19.51 -5.45
854 | 330 50 -19.63 -5.33
855 | 340 50 -19.75 -5.13
856 | 350 50 -19.87 -4.92
857 | 360 50 -19.92 -4.72
858 | 370 50 -19.84 -4.54
859 | 380 50 -19.75 -4.35
860 | 390 50 -19.67 -4.16
861 | 200 56 -32.33 -5.63
862 | 210 56 -31.47 -5.53
863 | 220 56 -30.61 -5.43
864 | 230 56 -29.75 -5.32
865 | 240 56 -28.89 -5.22
866 | 250 56 -28.03 -5.11
867 | 260 56 -27.24 -5.0
868 | 270 56 -26.5 -4.88
869 | 280 56 -25.75 -4.77
870 | 290 56 -25.01 -4.65
871 | 300 56 -24.26 -4.53
872 | 310 56 -23.52 -4.41
873 | 320 56 -22.77 -4.3
874 | 330 56 -22.09 -4.19
875 | 340 56 -21.48 -4.11
876 | 350 56 -20.87 -4.02
877 | 360 56 -20.27 -3.94
878 | 370 56 -19.66 -3.85
879 | 380 56 -19.06 -3.77
880 | 390 56 -18.45 -3.68
881 | 200 59 -32.18 -5.09
882 | 210 59 -31.7 -5.07
883 | 220 59 -30.91 -4.96
884 | 230 59 -30.08 -4.83
885 | 240 59 -29.25 -4.71
886 | 250 59 -28.43 -4.59
887 | 260 59 -27.6 -4.47
888 | 270 59 -26.78 -4.35
889 | 280 59 -25.95 -4.23
890 | 290 59 -25.12 -4.11
891 | 300 59 -24.3 -3.98
892 | 310 59 -23.47 -3.86
893 | 320 59 -22.71 -3.75
894 | 330 59 -22.1 -3.67
895 | 340 59 -21.49 -3.58
896 | 350 59 -20.87 -3.5
897 | 360 59 -20.26 -3.41
898 | 370 59 -19.65 -3.33
899 | 380 59 -19.04 -3.24
900 | 390 59 -18.43 -3.16
901 | 230 53 -23.79 -6.01
902 | 240 53 -23.98 -5.79
903 | 250 53 -24.17 -5.58
904 | 260 53 -24.33 -5.39
905 | 270 53 -24.43 -5.28
906 | 280 53 -24.52 -5.17
907 | 290 53 -24.38 -5.1
908 | 300 53 -23.89 -5.08
909 | 310 53 -23.41 -5.06
910 | 320 53 -22.92 -5.04
911 | 330 53 -22.43 -5.02
912 | 340 53 -21.91 -4.96
913 | 350 53 -21.27 -4.76
914 | 360 53 -20.63 -4.55
915 | 370 53 -20.19 -4.33
916 | 380 53 -20.08 -4.09
917 | 390 53 -19.97 -3.85
918 | 400 53 -19.76 -3.7
919 | 410 53 -19.33 -3.77
920 | 420 53 -18.89 -3.83
921 | 400 5 -9.57 -5.86
922 | 410 5 -8.92 -5.8
923 | 420 5 -8.3 -5.75
924 | 430 5 -8.0 -5.74
925 | 440 5 -7.7 -5.73
926 | 450 5 -7.43 -5.72
927 | 460 5 -7.22 -5.72
928 | 470 5 -7.0 -5.73
929 | 480 5 -6.79 -5.73
930 | 490 5 -6.58 -5.74
931 | 500 5 -6.37 -5.74
932 | 510 5 -6.16 -5.74
933 | 520 5 -5.79 -5.66
934 | 530 5 -5.39 -5.55
935 | 540 5 -4.99 -5.44
936 | 550 5 -4.6 -5.33
937 | 560 5 -4.2 -5.22
938 | 570 5 -3.91 -5.17
939 | 580 5 -3.74 -5.19
940 | 590 5 -3.56 -5.2
941 | 400 8 -9.29 -4.49
942 | 410 8 -8.96 -4.49
943 | 420 8 -8.63 -4.5
944 | 430 8 -8.31 -4.5
945 | 440 8 -8.0 -4.5
946 | 450 8 -7.68 -4.49
947 | 460 8 -7.37 -4.49
948 | 470 8 -7.05 -4.49
949 | 480 8 -6.74 -4.48
950 | 490 8 -6.41 -4.48
951 | 500 8 -6.07 -4.46
952 | 510 8 -5.73 -4.44
953 | 520 8 -5.39 -4.43
954 | 530 8 -5.05 -4.41
955 | 540 8 -4.71 -4.4
956 | 550 8 -4.38 -4.38
957 | 560 8 -4.1 -4.38
958 | 570 8 -3.83 -4.38
959 | 580 8 -3.55 -4.37
960 | 590 8 -3.27 -4.37
961 | 400 18 -9.06 -3.59
962 | 410 18 -8.71 -3.59
963 | 420 18 -8.37 -3.58
964 | 430 18 -8.02 -3.57
965 | 440 18 -7.67 -3.56
966 | 450 18 -7.31 -3.51
967 | 460 18 -6.95 -3.45
968 | 470 18 -6.59 -3.4
969 | 480 18 -6.24 -3.35
970 | 490 18 -5.88 -3.29
971 | 500 18 -5.52 -3.24
972 | 510 18 -5.28 -3.27
973 | 520 18 -5.03 -3.3
974 | 530 18 -4.79 -3.33
975 | 540 18 -4.55 -3.37
976 | 550 18 -4.3 -3.4
977 | 560 18 -4.06 -3.43
978 | 570 18 -3.72 -3.4
979 | 580 18 -3.35 -3.36
980 | 590 18 -2.99 -3.32
981 | 400 21 -8.11 -3.12
982 | 410 21 -7.79 -3.13
983 | 420 21 -7.44 -3.08
984 | 430 21 -7.09 -3.04
985 | 440 21 -6.75 -2.99
986 | 450 21 -6.4 -2.94
987 | 460 21 -6.05 -2.89
988 | 470 21 -5.71 -2.86
989 | 480 21 -5.44 -2.91
990 | 490 21 -5.16 -2.97
991 | 500 21 -4.89 -3.03
992 | 510 21 -4.62 -3.09
993 | 520 21 -4.33 -3.14
994 | 530 21 -3.99 -3.17
995 | 540 21 -3.65 -3.2
996 | 550 21 -3.36 -3.22
997 | 560 21 -3.07 -3.24
998 | 570 21 -2.78 -3.26
999 | 580 21 -2.54 -3.37
1000 | 590 21 -2.29 -3.5
1001 | 400 24 -9.18 -4.0
1002 | 410 24 -8.87 -4.01
1003 | 420 24 -8.56 -4.01
1004 | 430 24 -8.26 -4.02
1005 | 440 24 -7.95 -4.03
1006 | 450 24 -7.64 -4.04
1007 | 460 24 -7.34 -4.05
1008 | 470 24 -7.04 -4.06
1009 | 480 24 -6.75 -4.07
1010 | 490 24 -6.45 -4.08
1011 | 500 24 -6.15 -4.09
1012 | 510 24 -5.83 -4.08
1013 | 520 24 -5.48 -4.02
1014 | 530 24 -5.12 -3.96
1015 | 540 24 -4.76 -3.91
1016 | 550 24 -4.41 -3.86
1017 | 560 24 -4.12 -3.89
1018 | 570 24 -3.83 -3.92
1019 | 580 24 -3.54 -3.95
1020 | 590 24 -3.25 -3.98
1021 | 400 36 -11.6 -3.37
1022 | 410 36 -11.26 -3.36
1023 | 420 36 -10.92 -3.35
1024 | 430 36 -10.58 -3.33
1025 | 440 36 -10.24 -3.33
1026 | 450 36 -9.91 -3.36
1027 | 460 36 -9.58 -3.39
1028 | 470 36 -9.25 -3.42
1029 | 480 36 -8.92 -3.45
1030 | 490 36 -8.59 -3.48
1031 | 500 36 -8.24 -3.48
1032 | 510 36 -7.89 -3.48
1033 | 520 36 -7.53 -3.48
1034 | 530 36 -7.18 -3.48
1035 | 540 36 -6.83 -3.48
1036 | 550 36 -6.47 -3.48
1037 | 560 36 -6.14 -3.47
1038 | 570 36 -5.85 -3.45
1039 | 580 36 -5.56 -3.43
1040 | 590 36 -5.27 -3.41
1041 | 400 39 -9.73 -2.94
1042 | 410 39 -9.39 -2.9
1043 | 420 39 -9.07 -2.88
1044 | 430 39 -8.75 -2.87
1045 | 440 39 -8.43 -2.85
1046 | 450 39 -8.11 -2.84
1047 | 460 39 -7.8 -2.82
1048 | 470 39 -7.48 -2.81
1049 | 480 39 -7.16 -2.79
1050 | 490 39 -6.84 -2.78
1051 | 500 39 -6.53 -2.78
1052 | 510 39 -6.21 -2.77
1053 | 520 39 -5.89 -2.77
1054 | 530 39 -5.57 -2.77
1055 | 540 39 -5.26 -2.77
1056 | 550 39 -4.94 -2.77
1057 | 560 39 -4.63 -2.76
1058 | 570 39 -4.34 -2.73
1059 | 580 39 -4.05 -2.7
1060 | 590 39 -3.76 -2.67
1061 | 400 42 -10.25 -3.43
1062 | 410 42 -9.9 -3.38
1063 | 420 42 -9.56 -3.34
1064 | 430 42 -9.21 -3.3
1065 | 440 42 -8.86 -3.27
1066 | 450 42 -8.49 -3.25
1067 | 460 42 -8.12 -3.23
1068 | 470 42 -7.76 -3.22
1069 | 480 42 -7.39 -3.2
1070 | 490 42 -7.02 -3.19
1071 | 500 42 -6.67 -3.17
1072 | 510 42 -6.35 -3.17
1073 | 520 42 -6.04 -3.16
1074 | 530 42 -5.72 -3.16
1075 | 540 42 -5.41 -3.16
1076 | 550 42 -5.1 -3.14
1077 | 560 42 -4.8 -3.12
1078 | 570 42 -4.5 -3.11
1079 | 580 42 -4.2 -3.11
1080 | 590 42 -3.9 -3.13
1081 | 400 45 -10.27 -3.89
1082 | 410 45 -9.94 -3.89
1083 | 420 45 -9.61 -3.89
1084 | 430 45 -9.3 -3.88
1085 | 440 45 -8.98 -3.88
1086 | 450 45 -8.67 -3.88
1087 | 460 45 -8.36 -3.87
1088 | 470 45 -8.05 -3.87
1089 | 480 45 -7.73 -3.87
1090 | 490 45 -7.39 -3.84
1091 | 500 45 -7.03 -3.81
1092 | 510 45 -6.67 -3.78
1093 | 520 45 -6.31 -3.74
1094 | 530 45 -5.95 -3.71
1095 | 540 45 -5.61 -3.69
1096 | 550 45 -5.31 -3.68
1097 | 560 45 -5.02 -3.68
1098 | 570 45 -4.72 -3.68
1099 | 580 45 -4.4 -3.66
1100 | 590 45 -4.07 -3.62
1101 | 400 48 -10.62 -4.49
1102 | 410 48 -10.29 -4.49
1103 | 420 48 -9.97 -4.49
1104 | 430 48 -9.65 -4.5
1105 | 440 48 -9.3 -4.48
1106 | 450 48 -8.93 -4.45
1107 | 460 48 -8.56 -4.42
1108 | 470 48 -8.19 -4.39
1109 | 480 48 -7.81 -4.35
1110 | 490 48 -7.44 -4.32
1111 | 500 48 -7.07 -4.29
1112 | 510 48 -6.7 -4.26
1113 | 520 48 -6.38 -4.26
1114 | 530 48 -6.09 -4.26
1115 | 540 48 -5.79 -4.26
1116 | 550 48 -5.49 -4.26
1117 | 560 48 -5.19 -4.26
1118 | 570 48 -4.9 -4.26
1119 | 580 48 -4.57 -4.24
1120 | 590 48 -4.24 -4.21
1121 | 400 51 -19.37 -3.88
1122 | 410 51 -18.56 -3.4
1123 | 420 51 -17.76 -2.91
1124 | 430 51 -17.02 -2.51
1125 | 440 51 -16.57 -2.46
1126 | 450 51 -16.12 -2.41
1127 | 460 51 -15.67 -2.36
1128 | 470 51 -15.21 -2.32
1129 | 480 51 -14.76 -2.27
1130 | 490 51 -14.31 -2.22
1131 | 500 51 -13.83 -2.32
1132 | 510 51 -13.35 -2.42
1133 | 520 51 -12.86 -2.52
1134 | 530 51 -12.38 -2.62
1135 | 540 51 -11.9 -2.73
1136 | 550 51 -11.42 -2.96
1137 | 560 51 -10.95 -3.19
1138 | 570 51 -10.48 -3.43
1139 | 580 51 -10.1 -3.67
1140 | 590 51 -9.73 -3.91
1141 | 400 57 -17.84 -3.6
1142 | 410 57 -17.24 -3.52
1143 | 420 57 -16.63 -3.43
1144 | 430 57 -16.03 -3.35
1145 | 440 57 -15.48 -3.3
1146 | 450 57 -14.96 -3.27
1147 | 460 57 -14.44 -3.25
1148 | 470 57 -13.93 -3.23
1149 | 480 57 -13.41 -3.2
1150 | 490 57 -12.9 -3.18
1151 | 500 57 -12.38 -3.15
1152 | 510 57 -11.87 -3.13
1153 | 520 57 -11.36 -3.1
1154 | 530 57 -10.88 -3.08
1155 | 540 57 -10.4 -3.06
1156 | 550 57 -9.92 -3.04
1157 | 560 57 -9.44 -3.01
1158 | 570 57 -8.96 -2.99
1159 | 580 57 -8.52 -2.98
1160 | 590 57 -8.11 -2.99
1161 | 400 60 -17.81 -3.07
1162 | 410 60 -17.2 -2.99
1163 | 420 60 -16.59 -2.9
1164 | 430 60 -16.05 -2.87
1165 | 440 60 -15.53 -2.85
1166 | 450 60 -15.01 -2.83
1167 | 460 60 -14.49 -2.8
1168 | 470 60 -13.96 -2.78
1169 | 480 60 -13.44 -2.76
1170 | 490 60 -12.92 -2.74
1171 | 500 60 -12.4 -2.71
1172 | 510 60 -11.92 -2.69
1173 | 520 60 -11.43 -2.67
1174 | 530 60 -10.95 -2.64
1175 | 540 60 -10.46 -2.62
1176 | 550 60 -9.98 -2.59
1177 | 560 60 -9.49 -2.57
1178 | 570 60 -9.04 -2.57
1179 | 580 60 -8.61 -2.6
1180 | 590 60 -8.18 -2.62
1181 | 430 54 -18.4 -3.88
1182 | 440 54 -17.68 -3.89
1183 | 450 54 -16.97 -3.9
1184 | 460 54 -16.25 -3.91
1185 | 470 54 -15.53 -3.91
1186 | 480 54 -14.82 -3.92
1187 | 490 54 -14.18 -3.92
1188 | 500 54 -13.6 -3.92
1189 | 510 54 -13.01 -3.91
1190 | 520 54 -12.42 -3.9
1191 | 530 54 -11.84 -3.9
1192 | 540 54 -11.26 -3.9
1193 | 550 54 -10.7 -3.92
1194 | 560 54 -10.13 -3.93
1195 | 570 54 -9.56 -3.94
1196 | 580 54 -9.11 -3.99
1197 | 590 54 -8.67 -4.04
1198 | 600 54 -8.24 -4.09
1199 | 610 54 -7.8 -4.14
1200 | 620 54 -7.37 -4.19
--------------------------------------------------------------------------------
/data/trajnet_original/stanford/deathCircle_2.txt:
--------------------------------------------------------------------------------
1 | 0 2 3.869 9.358
2 | 12 2 3.909 9.042
3 | 24 2 4.106 9.2
4 | 36 2 4.541 9.595
5 | 48 2 5.014 9.516
6 | 60 2 5.528 9.595
7 | 72 2 4.935 10.977
8 | 84 2 5.607 10.404
9 | 96 2 5.488 12.437
10 | 108 2 6.278 10.977
11 | 120 2 6.791 11.213
12 | 132 2 6.791 11.213
13 | 144 2 6.87 11.292
14 | 156 2 6.949 11.371
15 | 168 2 7.028 11.45
16 | 180 2 7.028 11.628
17 | 192 2 6.436 11.055
18 | 204 2 6.515 11.055
19 | 216 2 6.594 11.055
20 | 228 2 6.673 11.055
21 | 0 4 -17.333 -0.809
22 | 12 4 -17.886 -1.046
23 | 24 4 -18.439 -1.204
24 | 36 4 -18.992 -1.204
25 | 48 4 -19.544 -1.204
26 | 60 4 -19.702 -1.204
27 | 72 4 -19.939 -1.362
28 | 84 4 -20.729 -1.362
29 | 96 4 -21.519 -1.204
30 | 108 4 -22.308 -1.046
31 | 120 4 -22.861 -1.046
32 | 132 4 -23.414 -1.046
33 | 144 4 -23.888 -1.204
34 | 156 4 -24.44 -1.362
35 | 168 4 -24.914 -1.52
36 | 180 4 -25.467 -1.52
37 | 192 4 -25.98 -1.52
38 | 204 4 -26.454 -1.52
39 | 216 4 -26.967 -1.52
40 | 228 4 -26.692 -1.513
41 | 0 5 -12.931 0.336
42 | 12 5 -12.694 0.336
43 | 24 5 -12.319 0.336
44 | 36 5 -12.082 0.257
45 | 48 5 -11.845 0.257
46 | 60 5 -11.608 0.257
47 | 72 5 -11.371 0.257
48 | 84 5 -11.213 0.257
49 | 96 5 -11.055 0.415
50 | 108 5 -10.898 0.573
51 | 120 5 -11.055 0.73
52 | 132 5 -11.687 0.73
53 | 144 5 -12.319 0.73
54 | 156 5 -12.398 0.73
55 | 168 5 -12.319 0.73
56 | 180 5 -12.319 0.73
57 | 192 5 -12.24 0.73
58 | 204 5 -12.24 0.73
59 | 216 5 -12.161 0.73
60 | 228 5 -12.082 0.573
61 | 0 6 -26.099 0.809
62 | 12 6 -26.099 0.809
63 | 24 6 -26.099 0.809
64 | 36 6 -26.099 0.809
65 | 48 6 -26.099 0.809
66 | 60 6 -26.099 0.809
67 | 72 6 -26.099 0.809
68 | 84 6 -26.099 0.809
69 | 96 6 -26.099 0.809
70 | 108 6 -26.099 0.809
71 | 120 6 -26.099 0.809
72 | 132 6 -26.099 0.809
73 | 144 6 -26.099 0.809
74 | 156 6 -26.099 0.809
75 | 168 6 -26.099 0.809
76 | 180 6 -26.099 0.809
77 | 192 6 -26.099 0.809
78 | 204 6 -26.099 0.809
79 | 216 6 -26.099 0.809
80 | 228 6 -26.099 0.809
81 | 0 7 -24.243 13.326
82 | 12 7 -23.098 13.148
83 | 24 7 -21.835 12.812
84 | 36 7 -20.571 12.655
85 | 48 7 -19.071 12.339
86 | 60 7 -17.728 12.181
87 | 72 7 -16.781 12.181
88 | 84 7 -15.063 11.865
89 | 96 7 -13.8 12.023
90 | 108 7 -12.556 11.865
91 | 120 7 -11.371 10.878
92 | 132 7 -10.187 10.246
93 | 144 7 -9.871 9.279
94 | 156 7 -9.16 9.121
95 | 168 7 -8.529 7.995
96 | 180 7 -7.897 6.85
97 | 192 7 -7.107 5.429
98 | 204 7 -6.396 4.126
99 | 216 7 -6.317 2.823
100 | 228 7 -5.844 1.56
101 | 0 10 -10.503 1.204
102 | 12 10 -10.424 1.382
103 | 24 10 -10.305 1.954
104 | 36 10 -10.226 2.349
105 | 48 10 -10.226 2.685
106 | 60 10 -10.266 2.922
107 | 72 10 -10.266 3.159
108 | 84 10 -10.266 3.001
109 | 96 10 -10.266 2.527
110 | 108 10 -10.266 2.172
111 | 120 10 -10.266 2.014
112 | 132 10 -10.266 2.369
113 | 144 10 -10.266 2.527
114 | 156 10 -10.266 2.685
115 | 168 10 -10.266 3.001
116 | 180 10 -10.266 3.159
117 | 192 10 -10.266 3.475
118 | 204 10 -10.345 3.633
119 | 216 10 -10.345 3.633
120 | 228 10 -10.345 3.633
121 | 0 11 -2.645 35.141
122 | 12 11 -2.724 34.983
123 | 24 11 -3.317 34.825
124 | 36 11 -3.869 34.568
125 | 48 11 -4.501 34.568
126 | 60 11 -5.054 34.568
127 | 72 11 -4.975 34.41
128 | 84 11 -4.896 34.41
129 | 96 11 -4.817 34.252
130 | 108 11 -4.738 34.252
131 | 120 11 -4.659 34.094
132 | 132 11 -4.58 33.936
133 | 144 11 -4.501 33.936
134 | 156 11 -4.422 33.778
135 | 168 11 -4.343 33.778
136 | 180 11 -4.264 33.778
137 | 192 11 -4.62 34.094
138 | 204 11 -4.975 34.41
139 | 216 11 -5.37 34.568
140 | 228 11 -5.725 34.904
141 | 0 12 -0.948 34.805
142 | 12 12 -1.027 34.805
143 | 24 12 -1.5 34.805
144 | 36 12 -2.053 34.904
145 | 48 12 -2.448 35.062
146 | 60 12 -2.843 35.062
147 | 72 12 -3.159 35.062
148 | 84 12 -3.396 35.062
149 | 96 12 -3.554 35.062
150 | 108 12 -3.79 35.062
151 | 120 12 -3.948 35.062
152 | 132 12 -4.146 35.062
153 | 144 12 -4.343 35.062
154 | 156 12 -4.541 35.062
155 | 168 12 -4.778 35.062
156 | 180 12 -4.935 35.062
157 | 192 12 -5.172 35.062
158 | 204 12 -5.33 35.062
159 | 216 12 -5.567 35.062
160 | 228 12 -5.725 35.062
161 | 0 14 0.296 44.636
162 | 12 14 0.296 44.005
163 | 24 14 0.296 43.531
164 | 36 14 0.296 42.86
165 | 48 14 0.296 42.386
166 | 60 14 0.296 41.754
167 | 72 14 0.296 41.28
168 | 84 14 0.375 40.609
169 | 96 14 0.533 40.135
170 | 108 14 0.691 39.504
171 | 120 14 0.77 39.01
172 | 132 14 0.612 38.674
173 | 144 14 0.691 38.043
174 | 156 14 0.77 37.253
175 | 168 14 0.987 36.582
176 | 180 14 1.224 36.029
177 | 192 14 1.54 35.95
178 | 204 14 1.974 35.634
179 | 216 14 2.527 35.318
180 | 228 14 3.08 34.805
181 | 0 15 1.066 29.593
182 | 12 15 3.198 29.119
183 | 24 15 4.62 28.606
184 | 36 15 6.515 27.816
185 | 48 15 8.331 27.185
186 | 60 15 10.068 26.355
187 | 72 15 11.806 25.724
188 | 84 15 13.464 25.566
189 | 96 15 15.182 25.408
190 | 108 15 16.978 25.25
191 | 120 15 18.873 25.052
192 | 132 15 20.768 25.052
193 | 144 15 22.743 24.579
194 | 156 15 24.796 24.105
195 | 168 15 26.77 24.105
196 | 180 15 26.585 24.275
197 | 192 15 25.36 24.531
198 | 204 15 24.135 24.786
199 | 216 15 22.91 25.041
200 | 228 15 21.685 25.296
201 | 0 16 -23.453 28.448
202 | 12 16 -22.98 28.29
203 | 24 16 -22.506 28.132
204 | 36 16 -21.953 27.974
205 | 48 16 -21.479 27.974
206 | 60 16 -20.847 27.816
207 | 72 16 -20.295 27.816
208 | 84 16 -19.663 27.816
209 | 96 16 -19.11 27.658
210 | 108 16 -18.557 27.658
211 | 120 16 -17.926 27.658
212 | 132 16 -17.373 27.5
213 | 144 16 -16.741 27.5
214 | 156 16 -16.188 27.5
215 | 168 16 -15.636 27.5
216 | 180 16 -15.083 27.5
217 | 192 16 -14.55 27.5
218 | 204 16 -13.997 27.5
219 | 216 16 -13.444 27.5
220 | 228 16 -12.891 27.5
221 | 0 26 4.264 32.318
222 | 12 26 3.83 32.396
223 | 24 26 3.435 32.554
224 | 36 26 3.04 32.791
225 | 48 26 2.645 32.87
226 | 60 26 2.29 33.048
227 | 72 26 1.895 33.048
228 | 84 26 1.5 33.048
229 | 96 26 1.027 33.226
230 | 108 26 0.651 33.384
231 | 120 26 0.257 33.542
232 | 132 26 -0.197 33.384
233 | 144 26 -0.671 33.384
234 | 156 26 -1.066 33.226
235 | 168 26 -1.54 33.226
236 | 180 26 -1.935 33.226
237 | 192 26 -2.33 33.226
238 | 204 26 -2.724 33.384
239 | 216 26 -3.119 33.384
240 | 228 26 -3.593 33.384
241 | 0 27 2.685 34.726
242 | 12 27 2.369 34.726
243 | 24 27 2.053 34.904
244 | 36 27 1.816 35.062
245 | 48 27 1.5 35.239
246 | 60 27 1.185 35.555
247 | 72 27 0.79 35.713
248 | 84 27 0.494 35.713
249 | 96 27 0.099 35.555
250 | 108 27 -0.276 35.397
251 | 120 27 -0.671 35.397
252 | 132 27 -1.106 35.397
253 | 144 27 -1.5 35.397
254 | 156 27 -1.856 35.476
255 | 168 27 -2.29 35.476
256 | 180 27 -2.606 35.397
257 | 192 27 -3.001 35.397
258 | 204 27 -3.396 35.239
259 | 216 27 -3.711 35.239
260 | 228 27 -4.106 35.239
261 | 0 28 1.5 33.542
262 | 12 28 1.185 33.542
263 | 24 28 0.869 33.699
264 | 36 28 0.651 33.857
265 | 48 28 0.336 34.015
266 | 60 28 -0.197 33.857
267 | 72 28 -0.829 33.384
268 | 84 28 -1.382 33.226
269 | 96 28 -1.619 33.384
270 | 108 28 -1.935 33.542
271 | 120 28 -2.172 33.857
272 | 132 28 -2.645 33.699
273 | 144 28 -3.04 33.542
274 | 156 28 -3.435 33.384
275 | 168 28 -3.83 33.226
276 | 180 28 -4.146 33.384
277 | 192 28 -4.541 33.542
278 | 204 28 -4.857 33.857
279 | 216 28 -5.172 34.173
280 | 228 28 -5.567 34.331
281 | 144 30 7.028 30.225
282 | 156 30 6.396 30.383
283 | 168 30 5.844 30.541
284 | 180 30 5.37 30.699
285 | 192 30 4.817 31.034
286 | 204 30 4.264 31.37
287 | 216 30 3.711 31.844
288 | 228 30 3.08 32.16
289 | 240 30 2.448 32.633
290 | 252 30 1.816 32.633
291 | 264 30 1.106 32.633
292 | 276 30 0.415 32.633
293 | 288 30 -0.217 32.949
294 | 300 30 -0.75 33.147
295 | 312 30 -1.382 33.305
296 | 324 30 -2.014 33.463
297 | 336 30 -2.566 33.62
298 | 348 30 -3.119 33.778
299 | 360 30 -3.83 33.778
300 | 372 30 -4.462 33.778
301 | 156 17 -8.252 33.147
302 | 168 17 -7.936 32.949
303 | 180 17 -7.699 32.791
304 | 192 17 -7.699 32.318
305 | 204 17 -7.778 31.844
306 | 216 17 -7.778 31.528
307 | 228 17 -7.778 31.686
308 | 240 17 -7.778 31.844
309 | 252 17 -7.699 31.844
310 | 264 17 -7.699 32.002
311 | 276 17 -7.857 32.16
312 | 288 17 -8.094 32.318
313 | 300 17 -8.331 32.475
314 | 312 17 -8.489 32.475
315 | 324 17 -8.726 32.318
316 | 336 17 -8.884 32.318
317 | 348 17 -8.647 32.791
318 | 360 17 -8.41 33.147
319 | 372 17 -8.41 33.147
320 | 384 17 -8.41 33.147
--------------------------------------------------------------------------------
/data/trajnet_original/stanford/deathCircle_4.txt:
--------------------------------------------------------------------------------
1 | 0 0 12.084 -9.238
2 | 12 0 12.396 -9.55
3 | 24 0 12.708 -9.745
4 | 36 0 13.097 -9.901
5 | 48 0 13.409 -10.057
6 | 60 0 13.818 -10.213
7 | 72 0 14.13 -10.369
8 | 84 0 14.52 -10.525
9 | 96 0 14.832 -10.681
10 | 108 0 15.222 -11.031
11 | 120 0 15.456 -11.187
12 | 132 0 15.709 -11.343
13 | 144 0 15.865 -11.655
14 | 156 0 16.099 -11.85
15 | 168 0 16.333 -12.162
16 | 180 0 16.567 -12.318
17 | 192 0 16.8 -12.474
18 | 204 0 17.034 -12.785
19 | 216 0 17.268 -12.98
20 | 228 0 17.502 -13.292
21 | 0 8 -8.517 -0.253
22 | 12 8 -8.517 1.286
23 | 24 8 -8.517 2.904
24 | 36 8 -8.517 4.522
25 | 48 8 -8.517 6.139
26 | 60 8 -8.673 7.601
27 | 72 8 -8.829 9.219
28 | 84 8 -9.297 10.447
29 | 96 8 -9.687 11.733
30 | 108 8 -10.018 12.708
31 | 120 8 -9.375 10.252
32 | 132 8 -8.751 7.913
33 | 144 8 -9.765 8.322
34 | 156 8 -14.929 15.943
35 | 168 8 -16.683 16.099
36 | 180 8 -18.418 16.274
37 | 192 8 -20.192 16.508
38 | 204 8 -21.946 16.664
39 | 216 8 -23.68 16.82
40 | 228 8 -23.36 16.494
41 | 0 46 3.235 31.574
42 | 12 46 2.924 31.399
43 | 24 46 2.69 31.243
44 | 36 46 2.417 31.087
45 | 48 46 2.144 31.087
46 | 60 46 1.871 30.911
47 | 72 46 1.715 30.755
48 | 84 46 1.637 30.599
49 | 96 46 1.481 30.424
50 | 108 46 1.403 30.424
51 | 120 46 1.325 30.268
52 | 132 46 1.247 30.112
53 | 144 46 1.15 29.937
54 | 156 46 0.994 29.781
55 | 168 46 0.994 29.625
56 | 180 46 1.072 29.138
57 | 192 46 1.247 28.806
58 | 204 46 1.325 28.319
59 | 216 46 1.481 28.007
60 | 228 46 1.559 27.52
61 | 0 26 0.175 51.629
62 | 12 26 0.175 51.629
63 | 24 26 0.175 51.629
64 | 36 26 0.175 51.629
65 | 48 26 0.175 51.629
66 | 60 26 0.175 51.629
67 | 72 26 0.175 51.629
68 | 84 26 0.175 51.629
69 | 96 26 0.175 51.629
70 | 108 26 0.175 51.629
71 | 120 26 0.175 51.629
72 | 132 26 0.175 51.629
73 | 144 26 0.175 51.629
74 | 156 26 0.175 51.629
75 | 168 26 0.175 51.629
76 | 180 26 0.175 51.629
77 | 192 26 0.175 51.629
78 | 204 26 0.175 51.629
79 | 216 26 0.175 51.629
80 | 228 26 0.175 51.629
81 | 72 35 -14.169 -7.465
82 | 84 35 -15.358 -7.133
83 | 96 35 -16.528 -6.822
84 | 108 35 -17.716 -6.49
85 | 120 35 -18.886 -6.159
86 | 132 35 -20.075 -5.847
87 | 144 35 -21.244 -5.516
88 | 156 35 -25.532 -5.847
89 | 168 35 -27.091 -6.003
90 | 180 35 -27.091 -6.003
91 | 192 35 -27.091 -6.003
92 | 204 35 -26.527 -6.065
93 | 216 35 -25.911 -6.133
94 | 228 35 -25.296 -6.201
95 | 240 35 -24.68 -6.269
96 | 252 35 -24.065 -6.337
97 | 264 35 -23.449 -6.405
98 | 276 35 -22.834 -6.473
99 | 288 35 -22.218 -6.541
100 | 300 35 -21.603 -6.609
101 | 216 52 18.36 22.511
102 | 228 52 18.847 22.667
103 | 240 52 19.315 22.667
104 | 252 52 19.938 22.336
105 | 264 52 20.659 22.004
106 | 276 52 21.283 22.004
107 | 288 52 21.907 22.004
108 | 300 52 22.297 22.004
109 | 312 52 22.297 22.004
110 | 324 52 22.297 22.004
111 | 336 52 22.297 22.004
112 | 348 52 22.297 22.004
113 | 360 52 22.297 22.004
114 | 372 52 22.297 22.004
115 | 384 52 22.297 22.004
116 | 396 52 22.297 22.004
117 | 408 52 22.297 22.004
118 | 420 52 22.297 22.004
119 | 432 52 22.297 22.004
120 | 444 52 22.297 22.004
--------------------------------------------------------------------------------
/data/trajnet_original/stanford/gates_5.txt:
--------------------------------------------------------------------------------
1 | 0 45 -3.475 41.241
2 | 12 45 -3.749 40.83
3 | 24 45 -4.023 40.522
4 | 36 45 -4.211 40.111
5 | 48 45 -4.417 39.666
6 | 60 45 -4.622 39.238
7 | 72 45 -4.828 38.81
8 | 84 45 -5.033 38.365
9 | 96 45 -5.17 37.954
10 | 108 45 -5.239 37.646
11 | 120 45 -5.239 37.235
12 | 132 45 -5.307 36.79
13 | 144 45 -5.376 36.516
14 | 156 45 -5.513 36.071
15 | 168 45 -5.718 35.797
16 | 180 45 -5.992 35.352
17 | 192 45 -6.197 35.078
18 | 204 45 -6.386 34.65
19 | 216 45 -6.591 34.222
20 | 228 45 -6.796 33.931
21 | 0 18 15.75 30.918
22 | 12 18 15.202 30.918
23 | 24 18 14.654 30.918
24 | 36 18 14.124 30.918
25 | 48 18 13.576 31.209
26 | 60 18 13.045 31.483
27 | 72 18 12.566 31.637
28 | 84 18 12.018 31.928
29 | 96 18 11.47 32.202
30 | 108 18 10.922 32.356
31 | 120 18 10.392 32.647
32 | 132 18 9.861 32.921
33 | 144 18 9.313 33.212
34 | 156 18 8.834 33.366
35 | 168 18 8.286 33.64
36 | 180 18 7.738 33.931
37 | 192 18 7.207 34.222
38 | 204 18 6.728 34.359
39 | 216 18 6.197 34.65
40 | 228 18 5.649 34.941
41 | 0 21 -17.411 32.133
42 | 12 21 -17.548 31.723
43 | 24 21 -17.616 31.278
44 | 36 21 -17.753 30.832
45 | 48 21 -17.822 30.422
46 | 60 21 -17.941 29.976
47 | 72 21 -18.01 29.566
48 | 84 21 -18.147 29.12
49 | 96 21 -18.215 28.71
50 | 108 21 -18.215 28.128
51 | 120 21 -18.147 27.408
52 | 132 21 -18.147 26.689
53 | 144 21 -18.078 25.97
54 | 156 21 -18.01 25.388
55 | 168 21 -18.01 24.806
56 | 180 21 -18.01 24.258
57 | 192 21 -17.941 23.676
58 | 204 21 -17.941 23.094
59 | 216 21 -17.873 22.683
60 | 228 21 -17.822 22.238
61 | 144 7 23.522 31.432
62 | 156 7 23.043 31.432
63 | 168 7 22.564 31.432
64 | 180 7 22.084 31.432
65 | 192 7 21.605 31.432
66 | 204 7 21.074 31.432
67 | 216 7 20.595 31.569
68 | 228 7 20.064 31.569
69 | 240 7 19.996 31.705
70 | 252 7 19.996 31.705
71 | 264 7 19.311 31.705
72 | 276 7 17.958 31.842
73 | 288 7 17.274 31.705
74 | 300 7 16.606 31.705
75 | 312 7 16.058 31.705
76 | 324 7 15.579 31.705
77 | 336 7 15.168 31.842
78 | 348 7 14.689 31.842
79 | 360 7 14.226 31.997
80 | 372 7 13.747 32.151
81 | 192 27 22.529 21.879
82 | 204 27 20.766 21.879
83 | 216 27 19.071 21.879
84 | 228 27 17.308 21.742
85 | 240 27 15.545 21.742
86 | 252 27 13.918 21.451
87 | 264 27 12.292 21.023
88 | 276 27 10.734 20.732
89 | 288 27 9.108 20.304
90 | 300 27 7.481 19.876
91 | 312 27 6.197 19.157
92 | 324 27 5.102 18.147
93 | 336 27 4.092 17.291
94 | 348 27 2.996 16.281
95 | 360 27 1.917 15.288
96 | 372 27 0.856 13.781
97 | 384 27 -0.223 11.624
98 | 396 27 -0.959 9.69
99 | 408 27 -1.233 8.166
100 | 420 27 -1.849 6.043
101 | 240 46 -7.002 33.503
102 | 252 46 -7.139 33.212
103 | 264 46 -7.344 32.784
104 | 276 46 -7.481 32.51
105 | 288 46 -7.67 32.065
106 | 300 46 -7.807 31.637
107 | 312 46 -7.875 31.209
108 | 324 46 -8.012 30.918
109 | 336 46 -8.149 30.49
110 | 348 46 -8.217 30.045
111 | 360 46 -8.423 29.771
112 | 372 46 -8.628 29.326
113 | 384 46 -8.902 29.052
114 | 396 46 -9.108 28.624
115 | 408 46 -9.313 28.333
116 | 420 46 -9.45 27.905
117 | 432 46 -9.655 27.614
118 | 444 46 -9.775 27.186
119 | 456 46 -9.912 26.758
120 | 468 46 -10.049 26.33
121 | 240 19 5.17 35.215
122 | 252 19 4.622 35.352
123 | 264 19 4.143 35.66
124 | 276 19 3.612 35.934
125 | 288 19 3.082 36.071
126 | 300 19 2.602 36.379
127 | 312 19 2.054 36.653
128 | 324 19 1.507 36.79
129 | 336 19 0.959 36.944
130 | 348 19 0.36 37.098
131 | 360 19 -0.188 37.372
132 | 372 19 -0.719 37.509
133 | 384 19 -1.267 37.663
134 | 396 19 -1.883 37.8
135 | 408 19 -2.431 37.8
136 | 420 19 -2.979 37.8
137 | 432 19 -3.51 37.663
138 | 444 19 -4.04 37.663
139 | 456 19 -4.588 37.509
140 | 468 19 -5.136 37.509
141 | 240 22 -17.753 21.656
142 | 252 22 -17.753 21.245
143 | 264 22 -17.685 20.663
144 | 276 22 -17.616 20.218
145 | 288 22 -17.548 19.807
146 | 300 22 -17.479 19.362
147 | 312 22 -17.274 18.78
148 | 324 22 -17.068 18.369
149 | 336 22 -16.88 17.924
150 | 348 22 -16.674 17.376
151 | 360 22 -16.469 16.931
152 | 372 22 -16.264 16.486
153 | 384 22 -16.058 15.938
154 | 396 22 -15.853 15.493
155 | 408 22 -15.716 15.082
156 | 420 22 -15.579 14.637
157 | 432 22 -15.442 14.055
158 | 444 22 -15.236 13.644
159 | 456 22 -15.099 13.199
160 | 468 22 -15.099 12.617
161 | 336 35 -5.855 40.745
162 | 348 35 -5.855 40.317
163 | 360 35 -5.855 39.735
164 | 372 35 -5.855 39.307
165 | 384 35 -5.855 38.879
166 | 396 35 -5.855 38.297
167 | 408 35 -5.923 37.732
168 | 420 35 -5.923 37.167
169 | 432 35 -5.992 36.294
170 | 444 35 -5.992 35.575
171 | 456 35 -6.129 34.873
172 | 468 35 -6.317 34.291
173 | 480 35 -6.523 33.572
174 | 492 35 -6.728 32.989
175 | 504 35 -6.933 32.425
176 | 516 35 -7.173 31.997
177 | 528 35 -7.447 31.5
178 | 540 35 -7.652 31.055
179 | 552 35 -7.909 30.558
180 | 564 35 -8.183 30.062
181 | 384 8 13.285 32.288
182 | 396 8 12.737 32.561
183 | 408 8 12.189 32.853
184 | 420 8 11.504 33.007
185 | 432 8 10.837 33.144
186 | 444 8 10.289 33.281
187 | 456 8 9.827 33.417
188 | 468 8 9.279 33.572
189 | 480 8 8.731 33.726
190 | 492 8 8.252 34.0
191 | 504 8 7.635 34.0
192 | 516 8 7.139 34.222
193 | 528 8 6.625 34.496
194 | 540 8 6.146 34.804
195 | 552 8 5.684 34.804
196 | 564 8 5.273 34.804
197 | 576 8 4.793 34.873
198 | 588 8 4.383 34.873
199 | 600 8 3.92 35.301
200 | 612 8 3.441 35.797
201 | 420 39 0.462 44.032
202 | 432 39 0.599 43.33
203 | 444 39 0.736 42.611
204 | 456 39 0.942 42.046
205 | 468 39 1.061 41.464
206 | 480 39 1.198 40.882
207 | 492 39 1.541 40.471
208 | 504 39 1.883 40.231
209 | 516 39 2.26 40.026
210 | 528 39 2.602 39.803
211 | 540 39 2.962 39.598
212 | 552 39 3.338 39.307
213 | 564 39 3.818 38.879
214 | 576 39 4.28 38.588
215 | 588 39 4.691 38.091
216 | 600 39 5.136 37.663
217 | 612 39 5.581 37.15
218 | 624 39 5.992 36.722
219 | 636 39 6.454 36.157
220 | 648 39 6.865 35.729
221 | 480 47 -10.255 26.039
222 | 492 47 -10.392 25.611
223 | 504 47 -10.46 25.183
224 | 516 47 -10.426 24.892
225 | 528 47 -10.357 24.601
226 | 540 47 -10.255 24.31
227 | 552 47 -10.22 24.036
228 | 564 47 -10.152 23.745
229 | 576 47 -10.152 23.385
230 | 588 47 -10.289 22.82
231 | 600 47 -10.426 22.375
232 | 612 47 -10.563 21.81
233 | 624 47 -10.7 21.228
234 | 636 47 -10.837 20.8
235 | 648 47 -10.974 20.235
236 | 660 47 -11.111 19.807
237 | 672 47 -11.248 19.225
238 | 684 47 -11.299 18.934
239 | 696 47 -11.436 18.506
240 | 708 47 -11.573 18.215
241 | 480 20 -5.684 37.509
242 | 492 20 -6.3 37.509
243 | 504 20 -6.831 37.372
244 | 516 20 -7.344 37.235
245 | 528 20 -7.841 37.098
246 | 540 20 -8.389 36.944
247 | 552 20 -8.902 36.653
248 | 564 20 -9.45 36.516
249 | 576 20 -9.981 36.311
250 | 588 20 -10.597 36.003
251 | 600 20 -11.145 35.866
252 | 612 20 -11.676 35.592
253 | 624 20 -12.223 35.352
254 | 636 20 -12.634 34.941
255 | 648 20 -13.062 34.496
256 | 660 20 -13.507 34.222
257 | 672 20 -13.987 33.777
258 | 684 20 -14.466 33.64
259 | 696 20 -14.997 33.503
260 | 708 20 -15.545 33.366
261 | 480 23 -15.099 11.898
262 | 492 23 -15.099 11.35
263 | 504 23 -15.168 10.7
264 | 516 23 -15.305 10.255
265 | 528 23 -15.442 9.758
266 | 540 23 -15.579 9.399
267 | 552 23 -15.716 8.902
268 | 564 23 -15.853 8.457
269 | 576 23 -15.99 8.046
270 | 588 23 -16.127 7.601
271 | 600 23 -16.229 7.259
272 | 612 23 -16.366 6.814
273 | 624 23 -16.503 6.54
274 | 636 23 -16.623 6.095
275 | 648 23 -16.76 5.821
276 | 660 23 -16.897 5.53
277 | 672 23 -17.034 5.102
278 | 684 23 -17.171 4.965
279 | 696 23 -17.308 4.657
280 | 708 23 -17.445 4.383
281 | 576 36 -8.423 29.617
282 | 588 36 -8.697 29.052
283 | 600 36 -8.902 28.624
284 | 612 36 -9.176 28.196
285 | 624 36 -9.382 27.614
286 | 636 36 -9.638 27.186
287 | 648 36 -9.844 26.758
288 | 660 36 -10.118 26.193
289 | 672 36 -10.323 25.748
290 | 684 36 -10.392 25.183
291 | 696 36 -10.46 24.601
292 | 708 36 -10.597 24.036
293 | 720 36 -10.666 23.454
294 | 732 36 -10.802 22.889
295 | 744 36 -10.871 22.307
296 | 756 36 -11.008 21.588
297 | 768 36 -11.076 21.023
298 | 780 36 -11.213 20.304
299 | 792 36 -11.333 19.722
300 | 804 36 -11.539 19.448
301 | 624 9 2.962 36.294
302 | 636 9 2.431 36.722
303 | 648 9 1.883 37.013
304 | 660 9 1.335 37.441
305 | 672 9 0.668 37.441
306 | 684 9 0.051 37.441
307 | 696 9 -0.565 37.441
308 | 708 9 -1.164 37.441
309 | 720 9 -1.712 37.304
310 | 732 9 -2.26 37.304
311 | 744 9 -2.79 37.167
312 | 756 9 -3.338 37.013
313 | 768 9 -3.749 36.876
314 | 780 9 -4.229 36.722
315 | 792 9 -4.691 36.585
316 | 804 9 -5.307 36.722
317 | 816 9 -5.923 36.876
318 | 828 9 -6.523 37.013
319 | 840 9 -7.07 37.167
320 | 852 9 -7.618 37.013
321 | 660 40 7.276 35.301
322 | 672 40 7.687 34.856
323 | 684 40 8.08 34.428
324 | 696 40 8.491 34.0
325 | 708 40 8.834 33.572
326 | 720 40 9.245 33.281
327 | 732 40 9.587 32.853
328 | 744 40 9.912 32.425
329 | 756 40 10.255 31.997
330 | 768 40 10.597 31.569
331 | 780 40 10.871 30.986
332 | 792 40 11.145 30.422
333 | 804 40 11.47 29.994
334 | 816 40 11.744 29.411
335 | 828 40 12.018 28.829
336 | 840 40 12.429 28.401
337 | 852 40 12.908 28.128
338 | 864 40 13.37 27.836
339 | 876 40 13.85 27.545
340 | 888 40 14.363 27.408
341 | 720 48 -11.641 17.787
342 | 732 48 -11.778 17.513
343 | 744 48 -11.847 17.068
344 | 756 48 -11.984 16.794
345 | 768 48 -12.121 16.349
346 | 780 48 -12.189 16.075
347 | 792 48 -12.258 15.647
348 | 804 48 -12.258 15.219
349 | 816 48 -12.258 14.928
350 | 828 48 -12.223 14.5
351 | 840 48 -12.189 14.055
352 | 852 48 -12.189 13.627
353 | 864 48 -12.155 13.199
354 | 876 48 -12.155 12.908
355 | 888 48 -12.155 12.48
356 | 900 48 -12.086 12.206
357 | 912 48 -12.018 11.761
358 | 924 48 -11.881 11.487
359 | 936 48 -11.813 11.042
360 | 948 48 -11.744 10.768
361 | 792 34 -0.924 8.68
362 | 804 34 -1.609 8.68
363 | 816 34 -2.157 8.834
364 | 828 34 -2.688 8.834
365 | 840 34 -3.236 8.971
366 | 852 34 -3.783 8.971
367 | 864 34 -4.588 8.971
368 | 876 34 -5.547 8.834
369 | 888 34 -6.42 8.748
370 | 900 34 -7.173 8.611
371 | 912 34 -7.824 8.32
372 | 924 34 -8.423 8.183
373 | 936 34 -9.005 7.892
374 | 948 34 -9.81 7.464
375 | 960 34 -10.563 6.899
376 | 972 34 -11.385 6.454
377 | 984 34 -12.292 6.18
378 | 996 34 -13.165 5.735
379 | 1008 34 -13.816 5.307
380 | 1020 34 -14.535 4.879
381 | 816 37 -11.813 19.003
382 | 828 37 -12.018 18.729
383 | 840 37 -12.292 18.438
384 | 852 37 -12.497 18.01
385 | 864 37 -12.566 17.428
386 | 876 37 -12.634 16.863
387 | 888 37 -12.771 16.435
388 | 900 37 -12.84 15.853
389 | 912 37 -12.977 15.288
390 | 924 37 -13.045 14.706
391 | 936 37 -13.233 14.141
392 | 948 37 -13.37 13.559
393 | 960 37 -13.576 12.994
394 | 972 37 -13.781 12.412
395 | 984 37 -13.918 11.847
396 | 996 37 -14.124 11.265
397 | 1008 37 -14.295 10.751
398 | 1020 37 -14.466 10.409
399 | 1032 37 -14.671 9.964
400 | 1044 37 -14.877 9.621
401 | 864 10 -8.08 36.876
402 | 876 10 -8.56 36.722
403 | 888 10 -9.039 36.722
404 | 900 10 -9.587 36.585
405 | 912 10 -10.186 36.294
406 | 924 10 -10.734 36.157
407 | 936 10 -11.282 36.003
408 | 948 10 -11.813 35.866
409 | 960 10 -12.36 35.729
410 | 972 10 -12.908 35.575
411 | 984 10 -13.37 35.575
412 | 996 10 -13.918 35.438
413 | 1008 10 -14.466 35.301
414 | 1020 10 -14.997 35.078
415 | 1032 10 -15.545 34.941
416 | 1044 10 -16.092 34.719
417 | 1056 10 -16.623 34.564
418 | 1068 10 -17.171 34.291
419 | 1080 10 -17.719 34.154
420 | 1092 10 -18.198 33.931
421 | 900 41 14.774 27.117
422 | 912 41 15.168 26.826
423 | 924 41 15.613 26.689
424 | 936 41 16.058 26.398
425 | 948 41 16.503 26.261
426 | 960 41 16.897 25.902
427 | 972 41 17.308 25.388
428 | 984 41 17.719 24.96
429 | 996 41 18.13 24.532
430 | 1008 41 18.455 24.036
431 | 1020 41 18.763 23.608
432 | 1032 41 19.14 23.231
433 | 1044 41 19.448 22.82
434 | 1056 41 19.79 22.444
435 | 1068 41 20.081 22.033
436 | 1080 41 20.458 21.656
437 | 1092 41 20.766 21.245
438 | 1104 41 21.177 20.869
439 | 1116 41 21.588 20.732
440 | 1128 41 22.187 20.732
441 | 960 49 -11.676 10.477
442 | 972 49 -11.607 10.049
443 | 984 49 -11.539 9.758
444 | 996 49 -11.47 9.33
445 | 1008 49 -11.402 8.902
446 | 1020 49 -11.333 8.543
447 | 1032 49 -11.282 8.183
448 | 1044 49 -11.213 7.824
449 | 1056 49 -11.145 7.464
450 | 1068 49 -11.076 7.173
451 | 1080 49 -11.042 6.831
452 | 1092 49 -10.974 6.454
453 | 1104 49 -10.905 6.112
454 | 1116 49 -10.837 5.735
455 | 1128 49 -10.768 5.393
456 | 1140 49 -10.7 5.102
457 | 1152 49 -10.631 4.674
458 | 1164 49 -10.563 4.383
459 | 1176 49 -10.529 3.955
460 | 1188 49 -10.46 3.664
461 | 996 15 -15.476 15.699
462 | 1008 15 -15.887 15.699
463 | 1020 15 -16.092 15.87
464 | 1032 15 -16.298 15.938
465 | 1044 15 -16.486 16.007
466 | 1056 15 -16.692 16.075
467 | 1068 15 -16.692 16.075
468 | 1080 15 -16.692 16.075
469 | 1092 15 -16.692 16.075
470 | 1104 15 -16.692 16.075
471 | 1116 15 -16.692 16.075
472 | 1128 15 -16.692 16.075
473 | 1140 15 -16.623 16.075
474 | 1152 15 -16.623 16.075
475 | 1164 15 -16.623 16.075
476 | 1176 15 -16.623 16.075
477 | 1188 15 -16.623 15.938
478 | 1200 15 -16.623 15.938
479 | 1212 15 -16.555 15.938
480 | 1224 15 -16.555 15.938
481 | 1044 13 -8.731 41.601
482 | 1056 13 -8.936 41.173
483 | 1068 13 -9.073 40.745
484 | 1080 13 -9.21 40.317
485 | 1092 13 -9.416 39.752
486 | 1104 13 -9.553 39.307
487 | 1116 13 -9.81 38.879
488 | 1128 13 -10.152 38.588
489 | 1140 13 -10.563 38.314
490 | 1152 13 -10.905 38.006
491 | 1164 13 -11.23 37.732
492 | 1176 13 -11.641 37.458
493 | 1188 13 -11.915 37.15
494 | 1200 13 -12.258 36.876
495 | 1212 13 -12.532 36.585
496 | 1224 13 -12.805 36.294
497 | 1236 13 -13.148 36.02
498 | 1248 13 -13.405 35.711
499 | 1260 13 -13.679 35.506
500 | 1272 13 -14.021 35.078
501 | 1044 42 -9.724 42.251
502 | 1056 42 -9.912 41.806
503 | 1068 42 -10.118 41.395
504 | 1080 42 -10.323 40.95
505 | 1092 42 -10.494 40.676
506 | 1104 42 -10.7 40.231
507 | 1116 42 -10.974 39.957
508 | 1128 42 -11.23 39.683
509 | 1140 42 -11.504 39.375
510 | 1152 42 -11.778 39.238
511 | 1164 42 -12.121 38.964
512 | 1176 42 -12.395 38.656
513 | 1188 42 -12.737 38.519
514 | 1200 42 -13.079 38.245
515 | 1212 42 -13.405 38.074
516 | 1224 42 -13.747 37.937
517 | 1236 42 -14.089 37.663
518 | 1248 42 -14.432 37.526
519 | 1260 42 -14.689 37.389
520 | 1272 42 -15.031 36.944
521 | 1104 11 -18.609 33.64
522 | 1116 11 -19.003 33.366
523 | 1128 11 -19.414 33.058
524 | 1140 11 -19.807 32.921
525 | 1152 11 -20.287 32.647
526 | 1164 11 -21.04 32.51
527 | 1176 11 -22.067 32.339
528 | 1188 11 -22.392 32.065
529 | 1200 11 -22.803 31.637
530 | 1212 11 -23.132 31.342
531 | 1224 11 -23.146 31.326
532 | 1236 11 -23.16 31.309
533 | 1248 11 -23.174 31.293
534 | 1260 11 -23.188 31.277
535 | 1272 11 -23.202 31.26
536 | 1284 11 -23.216 31.244
537 | 1296 11 -23.23 31.228
538 | 1308 11 -23.244 31.212
539 | 1320 11 -23.258 31.195
540 | 1332 11 -23.272 31.179
541 | 1200 50 -10.392 3.236
542 | 1212 50 -10.392 2.79
543 | 1224 50 -10.323 2.38
544 | 1236 50 -10.255 1.935
545 | 1248 50 -10.255 1.524
546 | 1260 50 -10.186 1.079
547 | 1272 50 -10.118 0.805
548 | 1284 50 -10.118 0.36
549 | 1296 50 -10.049 -0.068
550 | 1308 50 -9.981 -0.496
551 | 1320 50 -9.981 -0.924
552 | 1332 50 -9.912 -1.352
553 | 1344 50 -9.844 -1.798
554 | 1356 50 -9.844 -2.208
555 | 1368 50 -9.775 -2.517
556 | 1380 50 -9.775 -2.927
557 | 1392 50 -9.775 -3.373
558 | 1404 50 -9.707 -3.801
559 | 1416 50 -9.707 -4.092
560 | 1428 50 -9.707 -4.502
561 | 1236 16 -16.555 15.938
562 | 1248 16 -16.555 15.938
563 | 1260 16 -16.555 15.938
564 | 1272 16 -16.555 15.938
565 | 1284 16 -16.486 15.938
566 | 1296 16 -16.486 15.938
567 | 1308 16 -16.486 15.784
568 | 1320 16 -16.486 15.784
569 | 1332 16 -16.486 15.784
570 | 1344 16 -16.486 15.784
571 | 1356 16 -16.435 15.784
572 | 1368 16 -16.435 15.784
573 | 1380 16 -16.435 15.784
574 | 1392 16 -16.435 15.784
575 | 1404 16 -16.435 15.784
576 | 1416 16 -16.435 15.784
577 | 1428 16 -16.298 15.493
578 | 1440 16 -16.161 15.356
579 | 1452 16 -16.058 15.082
580 | 1464 16 -15.921 14.774
581 | 1284 14 -14.363 34.787
582 | 1296 14 -14.637 34.513
583 | 1308 14 -14.963 34.205
584 | 1320 14 -15.305 33.931
585 | 1332 14 -15.579 33.657
586 | 1344 14 -15.99 33.486
587 | 1356 14 -16.332 33.212
588 | 1368 14 -16.726 32.938
589 | 1380 14 -17.068 32.63
590 | 1392 14 -17.479 32.493
591 | 1404 14 -17.822 32.219
592 | 1416 14 -18.164 32.082
593 | 1428 14 -18.489 31.774
594 | 1440 14 -18.832 31.637
595 | 1452 14 -19.311 31.363
596 | 1464 14 -19.722 31.192
597 | 1476 14 -20.133 30.918
598 | 1488 14 -20.526 30.781
599 | 1500 14 -20.937 30.644
600 | 1512 14 -21.348 31.123
601 | 1284 43 -15.305 36.67
602 | 1296 43 -15.579 36.362
603 | 1308 43 -15.853 36.088
604 | 1320 43 -16.127 35.643
605 | 1332 43 -16.401 35.369
606 | 1344 43 -16.794 35.232
607 | 1356 43 -17.137 35.078
608 | 1368 43 -17.548 34.924
609 | 1380 43 -17.89 34.787
610 | 1392 43 -18.284 34.513
611 | 1404 43 -18.626 34.376
612 | 1416 43 -19.037 33.931
613 | 1428 43 -19.448 33.657
614 | 1440 43 -19.79 33.349
615 | 1452 43 -20.184 33.075
616 | 1464 43 -20.526 32.938
617 | 1476 43 -20.869 32.767
618 | 1488 43 -21.28 32.63
619 | 1500 43 -21.554 32.493
620 | 1512 43 -21.879 32.219
621 | 1344 12 -23.286 31.163
622 | 1356 12 -23.3 31.147
623 | 1368 12 -23.314 31.13
624 | 1380 12 -23.329 31.114
625 | 1392 12 -23.343 31.098
626 | 1404 12 -23.357 31.081
627 | 1416 12 -23.371 31.065
628 | 1428 12 -23.385 31.049
629 | 1440 12 -23.399 31.033
630 | 1452 12 -23.413 31.016
631 | 1464 12 -23.427 31.0
632 | 1476 12 -23.441 30.984
633 | 1488 12 -23.455 30.968
634 | 1500 12 -23.469 30.951
635 | 1512 12 -23.483 30.935
636 | 1524 12 -23.497 30.919
637 | 1536 12 -23.511 30.903
638 | 1548 12 -23.525 30.886
639 | 1560 12 -23.539 30.87
640 | 1572 12 -23.553 30.854
641 | 1440 51 -9.638 -4.948
642 | 1452 51 -9.638 -5.376
643 | 1464 51 -9.638 -5.667
644 | 1476 51 -9.57 -6.095
645 | 1488 51 -9.57 -6.523
646 | 1500 51 -9.501 -6.796
647 | 1512 51 -9.536 -7.242
648 | 1524 51 -9.536 -7.601
649 | 1536 51 -9.536 -7.961
650 | 1548 51 -9.536 -8.389
651 | 1560 51 -9.57 -8.748
652 | 1572 51 -9.536 -9.108
653 | 1584 51 -9.536 -9.45
654 | 1596 51 -9.536 -9.895
655 | 1608 51 -9.57 -10.255
656 | 1620 51 -9.57 -10.614
657 | 1632 51 -9.57 -11.042
658 | 1644 51 -9.553 -11.402
659 | 1656 51 -9.587 -11.761
660 | 1668 51 -9.587 -12.104
661 | 1476 17 -15.784 14.5
662 | 1488 17 -15.647 14.192
663 | 1500 17 -15.51 14.055
664 | 1512 17 -15.51 13.336
665 | 1524 17 -15.442 12.703
666 | 1536 17 -15.373 12.052
667 | 1548 17 -15.373 11.333
668 | 1560 17 -15.305 10.768
669 | 1572 17 -15.236 10.118
670 | 1584 17 -15.168 9.484
671 | 1596 17 -15.339 8.902
672 | 1608 17 -15.75 8.32
673 | 1620 17 -16.161 7.738
674 | 1632 17 -16.503 7.19
675 | 1644 17 -16.914 6.608
676 | 1656 17 -17.308 6.026
677 | 1668 17 -17.582 5.598
678 | 1680 17 -17.924 5.17
679 | 1692 17 -18.181 4.725
680 | 1704 17 -18.455 4.314
--------------------------------------------------------------------------------
/data/trajnet_original/stanford/gates_6.txt:
--------------------------------------------------------------------------------
1 | 24 18 20.578 32.048
2 | 36 18 20.372 30.85
3 | 48 18 20.338 30.199
4 | 60 18 20.338 29.617
5 | 72 18 20.304 28.915
6 | 84 18 20.304 28.333
7 | 96 18 20.287 27.768
8 | 108 18 20.252 27.117
9 | 120 18 20.252 26.552
10 | 132 18 20.252 25.97
11 | 144 18 20.287 25.388
12 | 156 18 20.321 24.96
13 | 168 18 20.372 24.395
14 | 180 18 20.407 23.813
15 | 192 18 20.407 23.385
16 | 204 18 20.407 22.82
17 | 216 18 20.372 22.238
18 | 228 18 20.372 21.656
19 | 240 18 20.407 21.228
20 | 252 18 20.441 20.954
21 | 108 20 -15.733 11.761
22 | 120 20 -16.11 11.761
23 | 132 20 -16.486 11.915
24 | 144 20 -16.863 11.915
25 | 156 20 -17.239 12.052
26 | 168 20 -17.616 12.206
27 | 180 20 -17.753 12.206
28 | 192 20 -17.804 12.343
29 | 204 20 -17.873 12.343
30 | 216 20 -17.924 12.48
31 | 228 20 -17.993 12.634
32 | 240 20 -18.061 12.634
33 | 252 20 -18.13 12.771
34 | 264 20 -18.181 12.771
35 | 276 20 -18.249 12.925
36 | 288 20 -18.301 13.062
37 | 300 20 -18.369 13.062
38 | 312 20 -18.369 13.199
39 | 324 20 -18.369 13.199
40 | 336 20 -18.369 13.199
41 | 120 21 20.287 32.989
42 | 132 21 20.013 31.86
43 | 144 21 19.842 30.695
44 | 156 21 19.636 29.566
45 | 168 21 19.465 28.401
46 | 180 21 19.225 27.408
47 | 192 21 19.02 26.261
48 | 204 21 18.814 25.114
49 | 216 21 18.78 24.258
50 | 228 21 18.78 23.248
51 | 240 21 18.78 22.375
52 | 252 21 18.78 21.519
53 | 264 21 18.643 20.663
54 | 276 21 18.027 20.081
55 | 288 21 17.376 19.516
56 | 300 21 16.76 18.934
57 | 312 21 15.733 18.506
58 | 324 21 14.226 18.232
59 | 336 21 13.165 18.078
60 | 348 21 12.343 18.078
61 | 336 2 -6.232 49.048
62 | 348 2 -6.163 48.209
63 | 360 2 -6.112 47.627
64 | 372 2 -6.043 47.062
65 | 384 2 -5.923 46.48
66 | 396 2 -5.855 45.898
67 | 408 2 -5.735 45.333
68 | 420 2 -5.667 44.768
69 | 432 2 -5.547 44.186
70 | 444 2 -5.478 43.604
71 | 456 2 -5.41 43.039
72 | 468 2 -5.29 42.474
73 | 480 2 -5.221 41.892
74 | 492 2 -5.102 41.31
75 | 504 2 -5.033 40.83
76 | 516 2 -4.999 40.385
77 | 528 2 -4.965 39.957
78 | 540 2 -4.93 39.529
79 | 552 2 -4.913 39.016
80 | 564 2 -4.879 38.656
81 | 360 22 11.453 17.941
82 | 372 22 10.631 17.941
83 | 384 22 9.741 17.941
84 | 396 22 8.919 17.787
85 | 408 22 8.063 17.787
86 | 420 22 7.242 17.787
87 | 432 22 6.351 17.65
88 | 444 22 5.461 17.65
89 | 456 22 4.639 17.513
90 | 468 22 3.749 17.513
91 | 480 22 2.927 17.513
92 | 492 22 2.243 16.657
93 | 504 22 1.592 15.853
94 | 516 22 0.856 15.134
95 | 528 22 0.171 14.415
96 | 540 22 -0.548 13.696
97 | 552 22 -1.301 12.977
98 | 564 22 -2.02 12.275
99 | 576 22 -2.842 12.121
100 | 588 22 -3.664 11.984
101 | 576 3 -4.845 37.954
102 | 588 3 -4.845 37.235
103 | 600 3 -4.776 36.516
104 | 612 3 -4.776 35.797
105 | 624 3 -4.776 34.941
106 | 636 3 -4.725 34.222
107 | 648 3 -4.725 33.503
108 | 660 3 -4.657 32.784
109 | 672 3 -4.657 32.356
110 | 684 3 -4.588 31.928
111 | 696 3 -4.588 31.5
112 | 708 3 -4.537 31.055
113 | 720 3 -4.468 30.781
114 | 732 3 -4.468 30.199
115 | 744 3 -4.4 29.771
116 | 756 3 -4.4 29.343
117 | 768 3 -4.348 28.915
118 | 780 3 -4.348 28.487
119 | 792 3 -4.092 27.768
120 | 804 3 -3.835 26.895
121 | 756 15 20.783 32.031
122 | 768 15 20.064 31.346
123 | 780 15 19.996 31.346
124 | 792 15 19.123 31.072
125 | 804 15 18.609 30.918
126 | 816 15 18.113 30.764
127 | 828 15 17.599 30.558
128 | 840 15 17.102 30.422
129 | 852 15 16.589 30.285
130 | 864 15 16.024 29.976
131 | 876 15 15.459 29.703
132 | 888 15 14.894 29.411
133 | 900 15 14.329 29.12
134 | 912 15 13.747 28.983
135 | 924 15 13.182 28.983
136 | 936 15 12.549 28.983
137 | 948 15 11.984 28.847
138 | 960 15 11.419 28.847
139 | 972 15 10.854 28.847
140 | 984 15 10.22 28.847
141 | 816 4 -3.527 26.107
142 | 828 4 -3.27 25.251
143 | 840 4 -2.962 24.395
144 | 852 4 -2.636 23.676
145 | 864 4 -2.636 22.957
146 | 876 4 -2.636 22.238
147 | 888 4 -2.636 21.673
148 | 900 4 -2.585 21.228
149 | 912 4 -2.585 20.663
150 | 924 4 -2.517 20.235
151 | 936 4 -2.448 19.79
152 | 948 4 -2.38 19.225
153 | 960 4 -2.38 18.797
154 | 972 4 -2.328 18.369
155 | 984 4 -2.191 17.787
156 | 996 4 -2.003 17.222
157 | 1008 4 -1.952 16.572
158 | 1020 4 -1.883 15.938
159 | 1032 4 -1.849 15.219
160 | 1044 4 -1.78 14.637
161 | 996 16 9.587 28.847
162 | 1008 16 8.988 28.778
163 | 1020 16 8.44 28.761
164 | 1032 16 7.858 28.692
165 | 1044 16 7.327 28.692
166 | 1056 16 6.745 28.692
167 | 1068 16 6.18 28.624
168 | 1080 16 5.615 28.538
169 | 1092 16 5.05 28.538
170 | 1104 16 4.485 28.401
171 | 1116 16 3.972 28.401
172 | 1128 16 3.407 28.401
173 | 1140 16 2.773 28.264
174 | 1152 16 2.208 28.264
175 | 1164 16 1.575 28.264
176 | 1176 16 0.959 28.264
177 | 1188 16 0.325 28.264
178 | 1200 16 -0.308 28.264
179 | 1212 16 -0.873 28.264
180 | 1224 16 -1.507 28.264
181 | 1092 7 -11.984 19.157
182 | 1104 7 -12.326 19.431
183 | 1116 7 -12.377 19.876
184 | 1128 7 -12.446 20.458
185 | 1140 7 -12.514 20.869
186 | 1152 7 -12.566 21.314
187 | 1164 7 -12.634 21.879
188 | 1176 7 -12.566 22.307
189 | 1188 7 -12.446 22.889
190 | 1200 7 -12.326 23.471
191 | 1212 7 -12.189 24.036
192 | 1224 7 -12.069 24.464
193 | 1236 7 -11.881 25.046
194 | 1248 7 -11.761 25.611
195 | 1260 7 -11.761 26.039
196 | 1272 7 -11.761 26.621
197 | 1284 7 -11.761 27.032
198 | 1296 7 -11.761 27.614
199 | 1308 7 -11.624 28.059
200 | 1320 7 -11.248 28.624
201 | 1092 10 20.15 32.989
202 | 1104 10 19.773 32.853
203 | 1116 10 19.345 32.716
204 | 1128 10 18.951 32.425
205 | 1140 10 18.523 32.288
206 | 1152 10 18.01 31.997
207 | 1164 10 17.496 31.705
208 | 1176 10 17.0 31.569
209 | 1188 10 16.555 31.278
210 | 1200 10 15.99 31.141
211 | 1212 10 15.425 31.141
212 | 1224 10 14.791 31.141
213 | 1236 10 14.226 31.141
214 | 1248 10 13.593 30.986
215 | 1260 10 13.028 30.986
216 | 1272 10 12.395 30.986
217 | 1284 10 11.83 30.986
218 | 1296 10 11.265 30.986
219 | 1308 10 10.7 30.986
220 | 1320 10 10.135 30.986
221 | 1104 5 20.287 2.585
222 | 1116 5 20.081 2.294
223 | 1128 5 19.91 2.157
224 | 1140 5 19.705 2.157
225 | 1152 5 19.664 2.196
226 | 1164 5 19.681 2.261
227 | 1176 5 19.699 2.328
228 | 1188 5 19.717 2.394
229 | 1200 5 19.734 2.46
230 | 1212 5 19.752 2.526
231 | 1224 5 19.77 2.592
232 | 1236 5 19.787 2.658
233 | 1248 5 19.805 2.724
234 | 1260 5 19.822 2.79
235 | 1272 5 19.84 2.856
236 | 1284 5 19.858 2.922
237 | 1296 5 19.876 2.988
238 | 1308 5 19.893 3.054
239 | 1320 5 19.911 3.12
240 | 1332 5 19.929 3.186
241 | 1236 17 -2.071 28.264
242 | 1248 17 -2.705 28.264
243 | 1260 17 -3.27 28.264
244 | 1272 17 -3.903 28.264
245 | 1284 17 -4.468 28.264
246 | 1296 17 -5.102 28.264
247 | 1308 17 -5.598 28.128
248 | 1320 17 -6.112 28.128
249 | 1332 17 -6.608 28.128
250 | 1344 17 -7.19 28.128
251 | 1356 17 -7.687 27.991
252 | 1368 17 -8.32 27.991
253 | 1380 17 -8.885 27.991
254 | 1392 17 -9.45 27.991
255 | 1404 17 -10.015 27.991
256 | 1416 17 -10.648 27.991
257 | 1428 17 -11.282 28.128
258 | 1440 17 -11.967 28.401
259 | 1452 17 -12.6 28.538
260 | 1464 17 -13.114 28.401
261 | 1332 8 -10.871 28.915
262 | 1344 8 -10.494 29.343
263 | 1356 8 -10.118 29.634
264 | 1368 8 -9.741 29.908
265 | 1380 8 -9.227 30.045
266 | 1392 8 -8.731 30.353
267 | 1404 8 -8.286 30.49
268 | 1416 8 -7.789 30.764
269 | 1428 8 -7.396 31.072
270 | 1440 8 -7.088 31.483
271 | 1452 8 -6.762 31.928
272 | 1464 8 -6.454 32.356
273 | 1476 8 -6.146 32.784
274 | 1488 8 -6.146 33.212
275 | 1500 8 -6.146 33.64
276 | 1512 8 -6.232 34.085
277 | 1524 8 -6.3 34.582
278 | 1536 8 -6.368 35.078
279 | 1548 8 -6.403 35.575
280 | 1560 8 -6.454 36.088
281 | 1332 11 9.553 30.986
282 | 1344 11 8.988 30.986
283 | 1356 11 8.491 30.986
284 | 1368 11 8.115 30.986
285 | 1380 11 7.738 30.986
286 | 1392 11 7.361 30.986
287 | 1404 11 6.985 30.986
288 | 1416 11 6.54 30.85
289 | 1428 11 5.718 30.558
290 | 1440 11 4.896 30.267
291 | 1452 11 4.074 29.976
292 | 1464 11 3.321 29.839
293 | 1476 11 2.808 29.839
294 | 1488 11 2.311 29.976
295 | 1500 11 1.815 30.13
296 | 1512 11 0.257 30.353
297 | 1524 11 0.068 30.199
298 | 1536 11 -0.496 30.199
299 | 1548 11 -1.01 30.199
300 | 1560 11 -1.507 30.199
301 | 1344 6 19.946 3.252
302 | 1356 6 19.964 3.318
303 | 1368 6 19.982 3.385
304 | 1380 6 19.999 3.451
305 | 1392 6 20.017 3.516
306 | 1404 6 20.034 3.582
307 | 1416 6 20.052 3.649
308 | 1428 6 20.07 3.715
309 | 1440 6 20.087 3.781
310 | 1452 6 20.105 3.847
311 | 1464 6 20.123 3.913
312 | 1476 6 20.141 3.979
313 | 1488 6 20.158 4.045
314 | 1500 6 20.176 4.111
315 | 1512 6 20.194 4.177
316 | 1524 6 20.211 4.243
317 | 1536 6 20.229 4.309
318 | 1548 6 20.247 4.375
319 | 1560 6 20.264 4.441
320 | 1572 6 20.282 4.507
321 | 1380 13 20.407 34.941
322 | 1392 13 20.15 34.496
323 | 1404 13 19.961 34.222
324 | 1416 13 19.722 33.777
325 | 1428 13 19.516 33.366
326 | 1440 13 19.14 33.212
327 | 1452 13 18.832 32.921
328 | 1464 13 18.523 32.784
329 | 1476 13 18.01 32.51
330 | 1488 13 17.702 32.065
331 | 1500 13 17.376 31.791
332 | 1512 13 17.0 31.414
333 | 1524 13 16.623 31.123
334 | 1536 13 16.247 30.85
335 | 1548 13 15.87 30.558
336 | 1560 13 15.51 30.285
337 | 1572 13 15.065 30.113
338 | 1584 13 14.637 29.976
339 | 1596 13 14.261 29.839
340 | 1608 13 13.816 29.703
341 | 1572 9 -6.523 36.585
342 | 1584 9 -6.54 37.081
343 | 1596 9 -6.608 37.595
344 | 1608 9 -6.677 38.074
345 | 1620 9 -6.711 38.588
346 | 1632 9 -6.779 39.101
347 | 1644 9 -6.848 39.598
348 | 1656 9 -6.865 40.163
349 | 1668 9 -6.916 40.608
350 | 1680 9 -6.985 41.104
351 | 1692 9 -7.019 41.601
352 | 1704 9 -7.088 42.114
353 | 1716 9 -7.156 42.611
354 | 1728 9 -7.173 43.107
355 | 1740 9 -7.242 43.621
356 | 1752 9 -7.31 44.117
357 | 1764 9 -7.379 44.699
358 | 1776 9 -7.43 45.418
359 | 1788 9 -7.498 45.983
360 | 1800 9 -7.567 46.548
361 | 1572 12 -2.071 30.045
362 | 1584 12 -2.585 30.045
363 | 1596 12 -3.15 30.045
364 | 1608 12 -3.646 30.045
365 | 1620 12 -4.16 29.908
366 | 1632 12 -4.725 29.908
367 | 1644 12 -5.221 29.908
368 | 1656 12 -5.804 29.908
369 | 1668 12 -6.3 29.771
370 | 1680 12 -6.796 29.771
371 | 1692 12 -7.379 29.771
372 | 1704 12 -7.875 29.771
373 | 1716 12 -8.44 29.634
374 | 1728 12 -8.954 29.634
375 | 1740 12 -9.45 29.634
376 | 1752 12 -10.015 29.634
377 | 1764 12 -10.648 29.703
378 | 1776 12 -11.213 29.771
379 | 1788 12 -11.847 29.908
380 | 1800 12 -12.412 30.045
381 | 1620 14 13.439 29.566
382 | 1632 14 13.011 29.411
383 | 1644 14 12.566 29.411
384 | 1656 14 12.189 29.257
385 | 1668 14 11.744 29.257
386 | 1680 14 11.299 29.257
387 | 1692 14 10.785 29.411
388 | 1704 14 10.34 29.411
389 | 1716 14 9.895 29.566
390 | 1728 14 9.467 29.566
391 | 1740 14 9.039 29.566
392 | 1752 14 8.645 29.566
393 | 1764 14 8.269 29.566
394 | 1776 14 7.841 29.566
395 | 1788 14 7.447 29.566
396 | 1800 14 7.07 29.566
397 | 1812 14 6.642 29.566
398 | 1824 14 6.249 29.411
399 | 1836 14 5.872 29.411
400 | 1848 14 5.444 29.411
--------------------------------------------------------------------------------
/data/trajnet_original/stanford/gates_7.txt:
--------------------------------------------------------------------------------
1 | 336 26 8.944 27.742
2 | 348 26 8.241 27.015
3 | 360 26 7.65 27.015
4 | 372 26 7.151 26.833
5 | 384 26 6.561 26.833
6 | 396 26 6.039 26.833
7 | 408 26 5.448 26.652
8 | 420 26 4.949 26.652
9 | 432 26 4.359 26.652
10 | 444 26 3.859 26.47
11 | 456 26 3.269 26.47
12 | 468 26 2.77 26.266
13 | 480 26 2.179 26.266
14 | 492 26 1.68 26.266
15 | 504 26 1.135 26.175
16 | 516 26 0.636 26.175
17 | 528 26 0.182 26.175
18 | 540 26 -0.318 26.175
19 | 552 26 -0.817 26.175
20 | 564 26 -1.43 25.903
21 | 444 11 -30.92 27.492
22 | 456 11 -29.83 26.561
23 | 468 11 -29.149 26.561
24 | 480 11 -28.582 26.357
25 | 492 11 -27.991 25.994
26 | 504 11 -27.469 25.994
27 | 516 11 -26.97 26.379
28 | 528 11 -26.448 26.652
29 | 540 11 -26.039 26.924
30 | 552 11 -25.539 27.106
31 | 564 11 -24.949 27.106
32 | 576 11 -24.359 26.924
33 | 588 11 -23.678 26.743
34 | 600 11 -23.088 26.561
35 | 612 11 -22.497 26.379
36 | 624 11 -21.998 25.994
37 | 636 11 -21.589 25.608
38 | 648 11 -21.158 25.063
39 | 660 11 -20.727 24.495
40 | 672 11 -20.409 24.109
41 | 504 17 -19.41 20.749
42 | 516 17 -19.728 20.749
43 | 528 17 -20.136 20.749
44 | 540 17 -20.5 20.568
45 | 552 17 -20.908 20.568
46 | 564 17 -21.226 20.363
47 | 576 17 -21.589 20.363
48 | 588 17 -21.998 20.182
49 | 600 17 -22.339 20.182
50 | 612 17 -22.77 20.182
51 | 624 17 -22.997 19.978
52 | 636 17 -23.179 19.978
53 | 648 17 -23.451 19.978
54 | 660 17 -23.587 19.978
55 | 672 17 -23.86 19.978
56 | 684 17 -24.041 19.978
57 | 696 17 -24.268 19.796
58 | 708 17 -24.45 19.796
59 | 720 17 -24.677 19.796
60 | 732 17 -24.858 19.796
61 | 504 21 17.912 4.608
62 | 516 21 17.912 4.608
63 | 528 21 17.912 4.608
64 | 540 21 17.912 4.608
65 | 552 21 17.912 4.608
66 | 564 21 17.912 4.608
67 | 576 21 17.912 4.608
68 | 588 21 17.912 4.608
69 | 600 21 17.912 4.608
70 | 612 21 17.912 4.608
71 | 624 21 17.912 4.608
72 | 636 21 17.912 4.608
73 | 648 21 17.912 4.608
74 | 660 21 17.912 4.608
75 | 672 21 17.912 4.608
76 | 684 21 17.912 4.608
77 | 696 21 17.912 4.608
78 | 708 21 17.912 4.608
79 | 720 21 17.912 4.608
80 | 732 21 17.912 4.608
81 | 576 19 21.499 17.367
82 | 588 19 20.818 17.367
83 | 600 19 20.227 17.367
84 | 612 19 19.637 17.367
85 | 624 19 19.047 17.367
86 | 636 19 18.547 17.367
87 | 648 19 18.116 17.185
88 | 660 19 17.707 17.185
89 | 672 19 17.367 17.004
90 | 684 19 16.867 16.799
91 | 696 19 16.277 16.799
92 | 708 19 15.687 16.618
93 | 720 19 15.097 16.618
94 | 732 19 14.506 16.413
95 | 744 19 13.825 16.413
96 | 756 19 13.235 16.413
97 | 768 19 12.736 16.799
98 | 780 19 12.145 17.004
99 | 792 19 11.555 17.185
100 | 804 19 10.965 17.185
101 | 576 27 -2.02 25.721
102 | 588 27 -2.702 25.335
103 | 600 27 -3.292 24.949
104 | 612 27 -3.95 24.768
105 | 624 27 -4.54 24.404
106 | 636 27 -5.04 24.404
107 | 648 27 -5.63 24.404
108 | 660 27 -6.22 24.223
109 | 672 27 -6.811 24.223
110 | 684 27 -7.31 24.041
111 | 696 27 -7.9 24.041
112 | 708 27 -8.49 24.041
113 | 720 27 -9.081 24.041
114 | 732 27 -9.58 24.404
115 | 744 27 -10.17 24.586
116 | 756 27 -10.761 24.768
117 | 768 27 -11.351 24.949
118 | 780 27 -11.941 24.949
119 | 792 27 -12.531 24.768
120 | 804 27 -13.122 24.586
121 | 624 31 -29.217 31.51
122 | 636 31 -29.989 30.193
123 | 648 31 -30.579 29.467
124 | 660 31 -31.17 28.899
125 | 672 31 -31.328 28.241
126 | 684 31 -31.736 27.67
127 | 696 31 -31.733 27.662
128 | 708 31 -31.731 27.654
129 | 720 31 -31.729 27.646
130 | 732 31 -31.726 27.638
131 | 744 31 -31.724 27.629
132 | 756 31 -31.721 27.621
133 | 768 31 -31.719 27.613
134 | 780 31 -31.717 27.605
135 | 792 31 -31.714 27.597
136 | 804 31 -31.712 27.589
137 | 816 31 -31.709 27.58
138 | 828 31 -31.707 27.572
139 | 840 31 -31.704 27.564
140 | 852 31 -31.702 27.556
141 | 684 12 -20.0 23.564
142 | 696 12 -19.546 23.179
143 | 708 12 -19.138 22.702
144 | 720 12 -18.729 22.339
145 | 732 12 -18.275 21.885
146 | 744 12 -17.821 21.385
147 | 756 12 -17.412 20.931
148 | 768 12 -17.004 20.568
149 | 780 12 -16.64 20.159
150 | 792 12 -16.096 19.705
151 | 804 12 -15.596 19.342
152 | 816 12 -15.097 18.979
153 | 828 12 -14.597 18.57
154 | 840 12 -14.098 18.207
155 | 852 12 -13.598 17.844
156 | 864 12 -13.099 17.48
157 | 876 12 -12.599 17.072
158 | 888 12 -12.145 16.708
159 | 900 12 -11.646 16.164
160 | 912 12 -11.237 15.755
161 | 744 22 17.912 4.608
162 | 756 22 17.912 4.608
163 | 768 22 17.912 4.608
164 | 780 22 17.912 4.608
165 | 792 22 17.912 4.608
166 | 804 22 17.912 4.608
167 | 816 22 17.912 4.608
168 | 828 22 17.912 4.608
169 | 840 22 17.912 4.608
170 | 852 22 17.912 4.608
171 | 864 22 17.912 4.608
172 | 876 22 17.912 4.608
173 | 888 22 17.912 4.608
174 | 900 22 17.912 4.608
175 | 912 22 17.912 4.608
176 | 924 22 17.912 4.608
177 | 936 22 17.912 4.608
178 | 948 22 17.912 4.608
179 | 960 22 17.912 4.608
180 | 972 22 17.912 4.608
181 | 816 28 -13.712 24.586
182 | 828 28 -14.302 24.768
183 | 840 28 -14.892 24.949
184 | 852 28 -15.483 25.131
185 | 864 28 -16.073 25.335
186 | 876 28 -16.572 25.539
187 | 888 28 -17.004 25.539
188 | 900 28 -17.412 25.539
189 | 912 28 -17.844 25.539
190 | 924 28 -18.434 25.721
191 | 936 28 -19.024 25.721
192 | 948 28 -19.614 25.721
193 | 960 28 -20.363 25.903
194 | 972 28 -21.022 26.084
195 | 984 28 -21.703 26.266
196 | 996 28 -22.202 26.266
197 | 1008 28 -22.793 26.175
198 | 1020 28 -23.428 26.084
199 | 1032 28 -24.018 26.175
200 | 1044 28 -24.609 26.084
201 | 864 33 -31.699 27.548
202 | 876 33 -31.697 27.54
203 | 888 33 -31.694 27.531
204 | 900 33 -31.692 27.523
205 | 912 33 -31.689 27.515
206 | 924 33 -31.687 27.507
207 | 936 33 -31.685 27.499
208 | 948 33 -31.682 27.49
209 | 960 33 -31.68 27.482
210 | 972 33 -31.677 27.474
211 | 984 33 -31.675 27.466
212 | 996 33 -31.673 27.458
213 | 1008 33 -31.67 27.45
214 | 1020 33 -31.668 27.442
215 | 1032 33 -31.665 27.434
216 | 1044 33 -31.663 27.426
217 | 1056 33 -31.66 27.417
218 | 1068 33 -31.658 27.409
219 | 1080 33 -31.655 27.401
220 | 1092 33 -31.653 27.393
221 | 900 5 -30.261 31.782
222 | 912 5 -30.171 30.693
223 | 924 5 -29.853 30.284
224 | 936 5 -29.58 30.103
225 | 948 5 -29.263 29.921
226 | 960 5 -28.604 29.558
227 | 972 5 -27.855 29.376
228 | 984 5 -26.992 29.194
229 | 996 5 -26.266 28.786
230 | 1008 5 -25.676 28.423
231 | 1020 5 -25.085 28.059
232 | 1032 5 -24.404 27.878
233 | 1044 5 -23.723 27.696
234 | 1056 5 -23.133 27.378
235 | 1068 5 -22.452 27.106
236 | 1080 5 -21.794 26.833
237 | 1092 5 -21.203 26.652
238 | 1104 5 -20.454 26.47
239 | 1116 5 -19.682 26.198
240 | 1128 5 -18.933 25.971
241 | 924 13 -10.829 15.392
242 | 936 13 -10.466 15.029
243 | 948 13 -10.057 14.461
244 | 960 13 -9.648 14.075
245 | 972 13 -9.285 13.712
246 | 984 13 -8.967 13.167
247 | 996 13 -8.695 12.577
248 | 1008 13 -8.513 11.85
249 | 1020 13 -8.377 11.26
250 | 1032 13 -8.241 10.624
251 | 1044 13 -8.127 9.943
252 | 1056 13 -7.968 9.399
253 | 1068 13 -7.878 8.649
254 | 1080 13 -7.741 8.082
255 | 1092 13 -7.582 7.446
256 | 1104 13 -7.492 6.765
257 | 1116 13 -7.355 6.129
258 | 1128 13 -7.196 5.539
259 | 1140 13 -7.083 4.904
260 | 1152 13 -6.992 4.223
261 | 1104 34 -31.65 27.385
262 | 1116 34 -31.648 27.377
263 | 1128 34 -31.645 27.368
264 | 1140 34 -31.643 27.36
265 | 1152 34 -31.641 27.352
266 | 1164 34 -31.638 27.344
267 | 1176 34 -31.636 27.336
268 | 1188 34 -31.633 27.327
269 | 1200 34 -31.631 27.319
270 | 1212 34 -31.629 27.311
271 | 1224 34 -31.626 27.303
272 | 1236 34 -31.624 27.295
273 | 1248 34 -31.621 27.287
274 | 1260 34 -31.619 27.278
275 | 1272 34 -31.616 27.27
276 | 1284 34 -31.614 27.262
277 | 1296 34 -31.611 27.254
278 | 1308 34 -31.609 27.246
279 | 1320 34 -31.606 27.238
280 | 1332 34 -31.604 27.229
281 | 1140 6 -18.184 25.698
282 | 1152 6 -17.321 25.517
283 | 1164 6 -16.663 25.335
284 | 1176 6 -16.005 25.154
285 | 1188 6 -15.324 24.972
286 | 1200 6 -14.643 24.972
287 | 1212 6 -13.962 24.79
288 | 1224 6 -13.281 24.586
289 | 1236 6 -12.622 24.382
290 | 1248 6 -11.873 24.382
291 | 1260 6 -11.101 24.2
292 | 1272 6 -10.42 24.2
293 | 1284 6 -9.694 24.2
294 | 1296 6 -8.922 24.018
295 | 1308 6 -8.15 24.018
296 | 1320 6 -7.492 23.837
297 | 1332 6 -6.833 23.655
298 | 1344 6 -6.061 23.474
299 | 1356 6 -5.38 23.269
300 | 1368 6 -4.699 23.088
301 | 1164 14 -6.811 3.678
302 | 1176 14 -6.674 2.951
303 | 1188 14 -6.606 2.361
304 | 1200 14 -6.447 1.816
305 | 1212 14 -6.311 1.044
306 | 1224 14 -6.175 0.499
307 | 1236 14 -6.061 -0.272
308 | 1248 14 -5.948 -0.817
309 | 1260 14 -5.812 -1.476
310 | 1272 14 -5.63 -2.134
311 | 1284 14 -5.562 -2.679
312 | 1296 14 -5.426 -3.36
313 | 1308 14 -5.267 -3.996
314 | 1320 14 -5.176 -4.677
315 | 1332 14 -5.062 -5.221
316 | 1344 14 -4.881 -5.88
317 | 1356 14 -4.745 -6.538
318 | 1368 14 -4.677 -7.174
319 | 1380 14 -4.518 -7.855
320 | 1392 14 -4.381 -8.4
321 | 1296 30 -31.465 28.604
322 | 1308 30 -30.784 28.99
323 | 1320 30 -30.034 29.376
324 | 1332 30 -29.535 29.921
325 | 1344 30 -29.104 30.488
326 | 1356 30 -28.695 31.238
327 | 1368 30 -28.513 31.419
328 | 1380 30 -28.513 31.419
329 | 1392 30 -28.513 31.419
330 | 1404 30 -28.513 31.419
331 | 1416 30 -28.513 31.419
332 | 1428 30 -28.513 31.419
333 | 1440 30 -28.513 31.419
334 | 1452 30 -28.513 31.419
335 | 1464 30 -28.513 31.419
336 | 1476 30 -28.513 31.419
337 | 1488 30 -28.513 31.419
338 | 1500 30 -28.513 31.419
339 | 1512 30 -28.513 31.419
340 | 1524 30 -28.513 31.419
341 | 1380 7 -4.041 23.088
342 | 1392 7 -3.292 23.088
343 | 1404 7 -2.611 23.088
344 | 1416 7 -1.839 23.088
345 | 1428 7 -1.112 23.088
346 | 1440 7 -0.431 23.088
347 | 1452 7 0.25 23.269
348 | 1464 7 0.931 23.269
349 | 1476 7 1.589 23.269
350 | 1488 7 2.27 23.474
351 | 1500 7 2.77 23.474
352 | 1512 7 3.224 23.655
353 | 1524 7 3.7 23.928
354 | 1536 7 4.2 24.223
355 | 1548 7 5.085 24.404
356 | 1560 7 6.107 24.404
357 | 1572 7 7.106 24.404
358 | 1584 7 7.946 24.404
359 | 1596 7 8.377 24.949
360 | 1608 7 8.786 24.404
361 | 1500 32 -22.815 22.157
362 | 1512 32 -23.406 22.157
363 | 1524 32 -23.996 22.248
364 | 1536 32 -24.631 22.157
365 | 1548 32 -25.267 22.157
366 | 1560 32 -25.948 21.975
367 | 1572 32 -26.629 21.975
368 | 1584 32 -27.219 21.771
369 | 1596 32 -27.719 21.771
370 | 1608 32 -28.218 21.771
371 | 1620 32 -28.809 21.771
372 | 1632 32 -29.49 21.975
373 | 1644 32 -30.171 22.157
374 | 1656 32 -30.715 21.771
375 | 1668 32 -31.079 21.022
376 | 1680 32 -31.465 20.273
377 | 1692 32 -31.465 20.068
378 | 1704 32 -31.465 20.068
379 | 1716 32 -31.465 19.887
380 | 1728 32 -31.465 19.887
381 | 1500 37 18.956 3.859
382 | 1512 37 18.911 3.768
383 | 1524 37 18.911 3.768
384 | 1536 37 18.911 3.678
385 | 1548 37 18.911 3.678
386 | 1560 37 18.911 3.678
387 | 1572 37 18.911 3.587
388 | 1584 37 18.911 3.587
389 | 1596 37 18.911 3.587
390 | 1608 37 18.911 3.496
391 | 1620 37 18.911 3.496
392 | 1632 37 18.82 3.496
393 | 1644 37 18.82 3.496
394 | 1656 37 18.82 3.496
395 | 1668 37 18.82 3.496
396 | 1680 37 18.82 3.496
397 | 1692 37 18.774 3.496
398 | 1704 37 18.774 3.496
399 | 1716 37 18.774 3.496
400 | 1728 37 18.774 3.496
401 | 1620 8 9.467 24.404
402 | 1632 8 9.966 23.655
403 | 1644 8 10.466 22.906
404 | 1656 8 11.147 22.52
405 | 1668 8 11.987 22.339
406 | 1680 8 12.826 22.134
407 | 1692 8 13.326 21.589
408 | 1704 8 13.825 21.203
409 | 1716 8 14.325 20.84
410 | 1728 8 14.847 20.84
411 | 1740 8 15.346 20.84
412 | 1752 8 15.846 20.84
413 | 1764 8 16.368 20.84
414 | 1776 8 16.958 20.636
415 | 1788 8 17.617 20.454
416 | 1800 8 18.366 20.273
417 | 1812 8 19.047 20.091
418 | 1824 8 19.887 19.909
419 | 1836 8 20.636 19.909
420 | 1848 8 21.067 19.524
421 | 1740 38 18.774 3.496
422 | 1752 38 18.684 3.496
423 | 1764 38 18.684 3.496
424 | 1776 38 18.684 3.496
425 | 1788 38 18.684 3.496
426 | 1800 38 18.684 3.496
427 | 1812 38 18.593 3.496
428 | 1824 38 18.593 3.496
429 | 1836 38 18.593 3.496
430 | 1848 38 18.593 3.496
431 | 1860 38 18.593 3.496
432 | 1872 38 18.502 3.496
433 | 1884 38 18.502 3.496
434 | 1896 38 18.411 3.496
435 | 1908 38 18.411 3.496
436 | 1920 38 18.32 3.496
437 | 1932 38 18.32 3.496
438 | 1944 38 18.32 3.496
439 | 1956 38 18.32 3.496
440 | 1968 38 18.32 3.496
441 | 1860 9 21.726 19.342
442 | 1872 9 21.724 19.245
443 | 1884 9 21.723 19.147
444 | 1896 9 21.722 19.05
445 | 1908 9 21.721 18.952
446 | 1920 9 21.719 18.855
447 | 1932 9 21.718 18.758
448 | 1944 9 21.717 18.66
449 | 1956 9 21.716 18.563
450 | 1968 9 21.715 18.466
451 | 1980 9 21.713 18.368
452 | 1992 9 21.712 18.271
453 | 2004 9 21.711 18.173
454 | 2016 9 21.71 18.076
455 | 2028 9 21.708 17.978
456 | 2040 9 21.707 17.881
457 | 2052 9 21.706 17.784
458 | 2064 9 21.705 17.686
459 | 2076 9 21.703 17.589
460 | 2088 9 21.362 17.548
461 | 1968 10 -21.317 20.545
462 | 1980 10 -20.999 20.727
463 | 1992 10 -20.068 21.68
464 | 2004 10 -20.409 21.226
465 | 2016 10 -20.046 21.022
466 | 2028 10 -19.637 20.749
467 | 2040 10 -19.319 20.659
468 | 2052 10 -19.115 20.159
469 | 2064 10 -19.297 21.317
470 | 2076 10 -18.479 20.091
471 | 2088 10 -17.98 19.614
472 | 2100 10 -17.753 19.614
473 | 2112 10 -17.503 19.069
474 | 2124 10 -17.39 19.251
475 | 2136 10 -17.117 18.684
476 | 2148 10 -16.958 17.753
477 | 2160 10 -16.754 17.276
478 | 2172 10 -16.527 18.002
479 | 2184 10 -16.368 17.548
480 | 2196 10 -16.164 15.959
--------------------------------------------------------------------------------
/data/trajnet_original/stanford/hyang_7.txt:
--------------------------------------------------------------------------------
1 | 0 0 -0.566 -0.319
2 | 12 0 -0.425 -0.903
3 | 24 0 -0.195 -1.469
4 | 36 0 0.018 -2.036
5 | 48 0 0.23 -2.602
6 | 60 0 0.443 -3.168
7 | 72 0 0.867 -3.593
8 | 84 0 1.31 -3.894
9 | 96 0 1.735 -4.036
10 | 108 0 2.159 -4.195
11 | 120 0 2.584 -4.478
12 | 132 0 3.08 -4.62
13 | 144 0 3.576 -4.761
14 | 156 0 4.071 -4.832
15 | 168 0 4.567 -4.974
16 | 180 0 5.08 -5.045
17 | 192 0 5.576 -5.115
18 | 204 0 6.001 -5.257
19 | 216 0 6.443 -5.257
20 | 228 0 6.939 -5.257
21 | 0 8 -3.434 13.488
22 | 12 8 -3.434 13.488
23 | 24 8 -3.434 13.488
24 | 36 8 -3.434 13.488
25 | 48 8 -3.434 13.488
26 | 60 8 -3.434 13.488
27 | 72 8 -3.434 13.488
28 | 84 8 -3.434 13.488
29 | 96 8 -3.434 13.488
30 | 108 8 -3.434 13.488
31 | 120 8 -3.434 13.488
32 | 132 8 -3.434 13.488
33 | 144 8 -3.434 13.488
34 | 156 8 -3.434 13.488
35 | 168 8 -3.434 13.488
36 | 180 8 -3.434 13.488
37 | 192 8 -3.434 13.488
38 | 204 8 -3.434 13.488
39 | 216 8 -3.434 13.488
40 | 228 8 -3.434 13.488
41 | 0 10 -2.584 13.488
42 | 12 10 -2.584 13.488
43 | 24 10 -2.584 13.488
44 | 36 10 -2.584 13.488
45 | 48 10 -2.584 13.488
46 | 60 10 -2.584 13.488
47 | 72 10 -2.584 13.488
48 | 84 10 -2.584 13.488
49 | 96 10 -2.584 13.488
50 | 108 10 -2.584 13.488
51 | 120 10 -2.584 13.488
52 | 132 10 -2.584 13.488
53 | 144 10 -2.584 13.488
54 | 156 10 -2.584 13.488
55 | 168 10 -2.584 13.488
56 | 180 10 -2.584 13.488
57 | 192 10 -2.584 13.488
58 | 204 10 -2.584 13.488
59 | 216 10 -2.584 13.488
60 | 228 10 -2.584 13.488
61 | 0 12 -1.628 13.771
62 | 12 12 -1.628 13.771
63 | 24 12 -1.628 13.771
64 | 36 12 -1.628 13.771
65 | 48 12 -1.628 13.771
66 | 60 12 -1.628 13.771
67 | 72 12 -1.628 13.771
68 | 84 12 -1.628 13.771
69 | 96 12 -1.628 13.771
70 | 108 12 -1.628 13.771
71 | 120 12 -1.628 13.771
72 | 132 12 -1.628 13.771
73 | 144 12 -1.628 13.771
74 | 156 12 -1.628 13.771
75 | 168 12 -1.628 13.771
76 | 180 12 -1.628 13.771
77 | 192 12 -1.628 13.771
78 | 204 12 -1.628 13.771
79 | 216 12 -1.628 13.771
80 | 228 12 -1.628 13.771
81 | 0 14 -1.735 14.709
82 | 12 14 -1.735 14.709
83 | 24 14 -1.735 14.709
84 | 36 14 -1.735 14.709
85 | 48 14 -1.735 14.709
86 | 60 14 -1.735 14.709
87 | 72 14 -1.735 14.709
88 | 84 14 -1.735 14.709
89 | 96 14 -1.735 14.709
90 | 108 14 -1.735 14.709
91 | 120 14 -1.735 14.709
92 | 132 14 -1.735 14.709
93 | 144 14 -1.735 14.709
94 | 156 14 -1.735 14.709
95 | 168 14 -1.735 14.709
96 | 180 14 -1.735 14.709
97 | 192 14 -1.735 14.709
98 | 204 14 -1.735 14.709
99 | 216 14 -1.735 14.709
100 | 228 14 -1.735 14.709
101 | 0 16 23.683 -5.399
102 | 12 16 23.825 -5.682
103 | 24 16 24.002 -5.824
104 | 36 16 24.179 -5.965
105 | 48 16 24.356 -6.248
106 | 60 16 24.533 -6.39
107 | 72 16 24.71 -6.532
108 | 84 16 24.852 -6.673
109 | 96 16 25.064 -6.956
110 | 108 16 25.241 -7.098
111 | 120 16 25.312 -7.098
112 | 132 16 25.312 -7.098
113 | 144 16 25.312 -7.098
114 | 156 16 25.312 -6.956
115 | 168 16 25.312 -6.956
116 | 180 16 25.312 -6.815
117 | 192 16 25.312 -6.815
118 | 204 16 25.312 -6.815
119 | 216 16 25.312 -6.673
120 | 228 16 25.312 -6.673
121 | 0 17 0.336 5.257
122 | 12 17 0.195 4.407
123 | 24 17 0.124 3.699
124 | 36 17 -0.018 2.903
125 | 48 17 -0.089 2.106
126 | 60 17 -0.159 1.328
127 | 72 17 -0.23 0.62
128 | 84 17 -0.23 -0.23
129 | 96 17 -0.159 -1.115
130 | 108 17 -0.089 -1.823
131 | 120 17 -0.089 -2.673
132 | 132 17 -0.018 -3.522
133 | 144 17 0.053 -4.266
134 | 156 17 0.195 -4.974
135 | 168 17 0.336 -5.682
136 | 180 17 0.478 -6.248
137 | 192 17 0.62 -6.956
138 | 204 17 0.62 -7.7
139 | 216 17 0.62 -8.549
140 | 228 17 0.62 -9.257
141 | 0 19 8.284 11.488
142 | 12 19 8.284 11.488
143 | 24 19 8.284 11.488
144 | 36 19 8.284 11.488
145 | 48 19 8.284 11.488
146 | 60 19 8.284 11.488
147 | 72 19 8.284 11.488
148 | 84 19 8.284 11.488
149 | 96 19 8.284 11.488
150 | 108 19 8.284 11.488
151 | 120 19 8.284 11.488
152 | 132 19 8.284 11.488
153 | 144 19 8.284 11.488
154 | 156 19 8.284 11.488
155 | 168 19 8.284 11.488
156 | 180 19 8.284 11.488
157 | 192 19 8.284 11.488
158 | 204 19 8.284 11.488
159 | 216 19 8.284 11.488
160 | 228 19 8.284 11.488
161 | 0 21 -1.451 9.257
162 | 12 21 -1.522 9.7
163 | 24 21 -1.593 10.142
164 | 36 21 -1.664 10.638
165 | 48 21 -1.664 11.134
166 | 60 21 -1.735 11.629
167 | 72 21 -1.735 12.054
168 | 84 21 -1.522 12.196
169 | 96 21 -1.239 12.479
170 | 108 21 -1.027 12.762
171 | 120 21 -0.956 13.346
172 | 132 21 -0.814 13.93
173 | 144 21 -0.814 14.497
174 | 156 21 -0.885 14.78
175 | 168 21 -1.097 15.346
176 | 180 21 -1.31 15.771
177 | 192 21 -1.451 16.338
178 | 204 21 -1.664 16.939
179 | 216 21 -1.876 17.506
180 | 228 21 -1.947 17.931
181 | 0 24 17.807 9.912
182 | 12 24 17.311 9.771
183 | 24 24 16.816 9.771
184 | 36 24 16.373 9.771
185 | 48 24 15.877 9.771
186 | 60 24 15.382 9.771
187 | 72 24 14.939 9.771
188 | 84 24 14.444 9.771
189 | 96 24 13.948 9.629
190 | 108 24 13.523 9.629
191 | 120 24 13.028 9.629
192 | 132 24 12.532 9.629
193 | 144 24 12.107 9.629
194 | 156 24 11.612 9.629
195 | 168 24 11.169 9.629
196 | 180 24 10.673 9.629
197 | 192 24 10.178 9.488
198 | 204 24 9.735 9.488
199 | 216 24 9.24 9.488
200 | 228 24 8.744 9.488
201 | 0 26 17.701 8.62
202 | 12 26 17.205 8.62
203 | 24 26 16.709 8.62
204 | 36 26 16.196 8.62
205 | 48 26 15.771 8.62
206 | 60 26 15.276 8.62
207 | 72 26 14.762 8.62
208 | 84 26 14.338 8.62
209 | 96 26 13.842 8.62
210 | 108 26 13.346 8.62
211 | 120 26 12.921 8.62
212 | 132 26 12.426 8.62
213 | 144 26 11.93 8.62
214 | 156 26 11.505 8.62
215 | 168 26 10.992 8.62
216 | 180 26 10.496 8.62
217 | 192 26 10.072 8.62
218 | 204 26 9.558 8.62
219 | 216 26 9.063 8.62
220 | 228 26 8.638 8.62
221 | 0 28 -20.338 10.266
222 | 12 28 -19.842 10.266
223 | 24 28 -19.258 10.266
224 | 36 28 -18.692 10.355
225 | 48 28 -18.125 10.426
226 | 60 28 -17.559 10.496
227 | 72 28 -16.993 10.496
228 | 84 28 -16.426 10.496
229 | 96 28 -15.86 10.638
230 | 108 28 -15.276 10.638
231 | 120 28 -14.709 10.638
232 | 132 28 -14.125 10.638
233 | 144 28 -13.559 10.638
234 | 156 28 -12.921 10.638
235 | 168 28 -12.355 10.638
236 | 180 28 -11.718 10.638
237 | 192 28 -11.151 10.78
238 | 204 28 -10.585 10.78
239 | 216 28 -9.93 10.78
240 | 228 28 -9.434 10.921
241 | 0 30 -20.409 9.346
242 | 12 30 -19.913 9.346
243 | 24 30 -19.329 9.346
244 | 36 30 -18.763 9.346
245 | 48 30 -18.196 9.488
246 | 60 30 -17.63 9.488
247 | 72 30 -17.134 9.488
248 | 84 30 -16.568 9.629
249 | 96 30 -16.001 9.629
250 | 108 30 -15.417 9.629
251 | 120 30 -14.886 9.771
252 | 132 30 -14.302 9.771
253 | 144 30 -13.771 9.771
254 | 156 30 -13.205 9.912
255 | 168 30 -12.674 9.912
256 | 180 30 -12.107 9.912
257 | 192 30 -11.541 10.054
258 | 204 30 -11.045 10.054
259 | 216 30 -10.62 10.054
260 | 228 30 -10.107 10.054
261 | 0 32 9.629 10.921
262 | 12 32 9.629 10.921
263 | 24 32 9.629 10.921
264 | 36 32 9.629 10.921
265 | 48 32 9.629 10.921
266 | 60 32 9.629 10.921
267 | 72 32 9.629 10.921
268 | 84 32 9.629 10.921
269 | 96 32 9.629 10.921
270 | 108 32 9.629 10.921
271 | 120 32 9.629 10.921
272 | 132 32 9.629 10.921
273 | 144 32 9.629 10.921
274 | 156 32 9.629 10.921
275 | 168 32 9.629 10.921
276 | 180 32 9.629 10.921
277 | 192 32 9.629 10.921
278 | 204 32 9.629 10.921
279 | 216 32 9.629 10.921
280 | 228 32 9.629 10.921
281 | 0 34 17.347 -3.239
282 | 12 34 16.993 -3.381
283 | 24 34 16.709 -3.381
284 | 36 34 16.408 -3.522
285 | 48 34 16.054 -3.522
286 | 60 34 15.771 -3.522
287 | 72 34 15.488 -3.682
288 | 84 34 15.205 -3.682
289 | 96 34 14.833 -3.682
290 | 108 34 14.55 -3.823
291 | 120 34 14.267 -3.823
292 | 132 34 13.983 -3.823
293 | 144 34 13.629 -3.965
294 | 156 34 13.346 -3.965
295 | 168 34 13.063 -3.965
296 | 180 34 12.78 -4.107
297 | 192 34 12.426 -4.107
298 | 204 34 12.072 -4.107
299 | 216 34 11.718 -4.107
300 | 228 34 11.435 -4.195
301 | 0 36 1.735 -1.186
302 | 12 36 1.735 -1.186
303 | 24 36 1.735 -1.186
304 | 36 36 1.735 -1.186
305 | 48 36 1.735 -1.186
306 | 60 36 1.735 -1.186
307 | 72 36 1.735 -1.186
308 | 84 36 1.735 -1.186
309 | 96 36 1.805 -1.186
310 | 108 36 1.805 -1.186
311 | 120 36 1.805 -1.186
312 | 132 36 1.805 -1.186
313 | 144 36 1.805 -1.186
314 | 156 36 1.805 -1.186
315 | 168 36 1.805 -1.186
316 | 180 36 1.805 -1.186
317 | 192 36 1.876 -1.186
318 | 204 36 1.876 -1.186
319 | 216 36 1.876 -1.186
320 | 228 36 1.876 -1.186
321 | 0 38 1.204 12.479
322 | 12 38 1.133 11.913
323 | 24 38 1.133 11.346
324 | 36 38 1.062 10.78
325 | 48 38 1.062 10.196
326 | 60 38 1.009 9.629
327 | 72 38 0.974 9.045
328 | 84 38 0.938 8.479
329 | 96 38 0.938 7.912
330 | 108 38 0.903 7.487
331 | 120 38 0.867 6.903
332 | 132 38 0.867 6.337
333 | 144 38 0.726 5.77
334 | 156 38 0.549 5.045
335 | 168 38 0.372 4.478
336 | 180 38 0.195 3.912
337 | 192 38 0.124 3.328
338 | 204 38 0.089 2.62
339 | 216 38 0.089 2.036
340 | 228 38 0.018 1.469
341 | 0 40 0.549 12.638
342 | 12 40 0.478 12.054
343 | 24 40 0.407 11.488
344 | 36 40 0.336 10.921
345 | 48 40 0.266 10.337
346 | 60 40 0.195 9.771
347 | 72 40 0.124 9.204
348 | 84 40 0.053 8.62
349 | 96 40 -0.018 8.054
350 | 108 40 -0.089 7.487
351 | 120 40 -0.177 6.903
352 | 132 40 -0.319 6.337
353 | 144 40 -0.389 5.77
354 | 156 40 -0.46 5.186
355 | 168 40 -0.602 4.62
356 | 180 40 -0.673 4.053
357 | 192 40 -0.743 3.469
358 | 204 40 -0.885 2.903
359 | 216 40 -0.956 2.336
360 | 228 40 -1.027 1.752
361 | 0 42 1.08 26.498
362 | 12 42 1.044 25.931
363 | 24 42 1.044 25.365
364 | 36 42 1.044 24.94
365 | 48 42 1.044 24.374
366 | 60 42 1.044 23.949
367 | 72 42 1.044 23.347
368 | 84 42 1.044 22.922
369 | 96 42 1.044 22.356
370 | 108 42 1.044 21.931
371 | 120 42 1.044 21.365
372 | 132 42 1.044 20.94
373 | 144 42 1.044 20.373
374 | 156 42 1.044 19.913
375 | 168 42 1.044 19.347
376 | 180 42 1.044 18.922
377 | 192 42 1.044 18.356
378 | 204 42 1.044 17.931
379 | 216 42 1.044 17.364
380 | 228 42 1.009 16.939
381 | 0 44 -22.374 5.469
382 | 12 44 -21.807 5.469
383 | 24 44 -21.241 5.469
384 | 36 44 -20.657 5.469
385 | 48 44 -20.019 5.469
386 | 60 44 -19.453 5.469
387 | 72 44 -18.869 5.469
388 | 84 44 -18.232 5.469
389 | 96 44 -17.665 5.469
390 | 108 44 -17.099 5.469
391 | 120 44 -16.532 5.469
392 | 132 44 -15.895 5.469
393 | 144 44 -15.311 5.469
394 | 156 44 -14.745 5.469
395 | 168 44 -14.09 5.469
396 | 180 44 -13.523 5.469
397 | 192 44 -12.957 5.469
398 | 204 44 -12.32 5.469
399 | 216 44 -11.753 5.469
400 | 228 44 -11.187 5.469
401 | 0 46 3.894 -3.522
402 | 12 46 3.894 -3.522
403 | 24 46 3.894 -3.522
404 | 36 46 3.894 -3.522
405 | 48 46 3.894 -3.522
406 | 60 46 3.894 -3.522
407 | 72 46 3.894 -3.522
408 | 84 46 3.894 -3.522
409 | 96 46 3.894 -3.522
410 | 108 46 3.894 -3.522
411 | 120 46 3.894 -3.522
412 | 132 46 3.894 -3.522
413 | 144 46 3.894 -3.522
414 | 156 46 3.894 -3.522
415 | 168 46 3.894 -3.522
416 | 180 46 3.894 -3.522
417 | 192 46 3.894 -3.522
418 | 204 46 3.894 -3.522
419 | 216 46 3.894 -3.522
420 | 228 46 3.894 -3.522
421 | 12 6 19.541 46.96
422 | 24 6 19.825 46.818
423 | 36 6 20.055 46.677
424 | 48 6 20.338 46.535
425 | 60 6 20.621 46.252
426 | 72 6 20.904 45.827
427 | 84 6 21.258 45.402
428 | 96 6 21.542 44.977
429 | 108 6 21.896 44.694
430 | 120 6 22.338 44.552
431 | 132 6 22.763 44.411
432 | 144 6 23.188 44.252
433 | 156 6 23.542 44.11
434 | 168 6 23.967 43.951
435 | 180 6 24.391 43.809
436 | 192 6 24.745 43.809
437 | 204 6 24.958 43.809
438 | 216 6 25.17 43.809
439 | 228 6 25.56 43.809
440 | 240 6 25.424 43.888
441 | 180 5 -9.151 49.243
442 | 192 5 -8.992 48.323
443 | 204 5 -8.709 48.181
444 | 216 5 -8.425 48.11
445 | 228 5 -8.213 47.898
446 | 240 5 -7.93 47.756
447 | 252 5 -7.576 47.544
448 | 264 5 -7.293 47.261
449 | 276 5 -6.939 47.101
450 | 288 5 -6.585 46.818
451 | 300 5 -6.408 46.677
452 | 312 5 -6.337 46.535
453 | 324 5 -6.16 46.252
454 | 336 5 -6.018 45.969
455 | 348 5 -5.877 45.685
456 | 360 5 -5.806 45.402
457 | 372 5 -5.806 45.402
458 | 384 5 -5.806 45.402
459 | 396 5 -5.806 45.402
460 | 408 5 -5.806 45.402
461 | 204 23 2.797 48.535
462 | 216 23 2.726 48.181
463 | 228 23 2.69 47.898
464 | 240 23 2.655 47.615
465 | 252 23 2.655 47.331
466 | 264 23 2.655 46.889
467 | 276 23 2.655 46.464
468 | 288 23 2.655 46.039
469 | 300 23 2.655 45.615
470 | 312 23 2.655 45.19
471 | 324 23 2.655 44.623
472 | 336 23 2.655 44.181
473 | 348 23 2.655 43.738
474 | 360 23 2.655 43.313
475 | 372 23 2.655 42.889
476 | 384 23 2.655 42.464
477 | 396 23 2.655 42.039
478 | 408 23 2.655 41.614
479 | 420 23 2.655 41.03
480 | 432 23 2.655 40.605
481 | 240 1 7.363 -5.399
482 | 252 1 7.788 -5.399
483 | 264 1 8.284 -5.54
484 | 276 1 8.709 -5.54
485 | 288 1 9.134 -5.54
486 | 300 1 9.558 -5.682
487 | 312 1 10.072 -5.682
488 | 324 1 10.496 -5.682
489 | 336 1 10.921 -5.824
490 | 348 1 11.417 -5.824
491 | 360 1 11.859 -5.824
492 | 372 1 12.284 -5.824
493 | 384 1 12.638 -5.824
494 | 396 1 12.992 -5.824
495 | 408 1 13.417 -5.824
496 | 420 1 13.771 -5.824
497 | 432 1 14.125 -5.824
498 | 444 1 14.55 -5.824
499 | 456 1 14.904 -5.824
500 | 468 1 15.276 -5.824
501 | 240 9 -3.434 13.488
502 | 252 9 -3.434 13.488
503 | 264 9 -3.434 13.488
504 | 276 9 -3.434 13.488
505 | 288 9 -3.434 13.488
506 | 300 9 -3.434 13.488
507 | 312 9 -3.434 13.488
508 | 324 9 -3.434 13.488
509 | 336 9 -3.434 13.488
510 | 348 9 -3.434 13.488
511 | 360 9 -3.434 13.488
512 | 372 9 -3.434 13.488
513 | 384 9 -3.434 13.488
514 | 396 9 -3.434 13.488
515 | 408 9 -3.434 13.488
516 | 420 9 -3.434 13.488
517 | 432 9 -3.434 13.488
518 | 444 9 -3.434 13.488
519 | 456 9 -3.434 13.488
520 | 468 9 -3.434 13.488
521 | 240 11 -2.584 13.488
522 | 252 11 -2.584 13.488
523 | 264 11 -2.584 13.488
524 | 276 11 -2.584 13.488
525 | 288 11 -2.584 13.488
526 | 300 11 -2.584 13.488
527 | 312 11 -2.584 13.488
528 | 324 11 -2.584 13.488
529 | 336 11 -2.584 13.488
530 | 348 11 -2.584 13.488
531 | 360 11 -2.584 13.488
532 | 372 11 -2.584 13.488
533 | 384 11 -2.584 13.488
534 | 396 11 -2.584 13.488
535 | 408 11 -2.584 13.488
536 | 420 11 -2.584 13.488
537 | 432 11 -2.584 13.488
538 | 444 11 -2.584 13.488
539 | 456 11 -2.584 13.488
540 | 468 11 -2.584 13.488
541 | 240 13 -1.628 13.771
542 | 252 13 -1.628 13.771
543 | 264 13 -1.628 13.771
544 | 276 13 -1.628 13.771
545 | 288 13 -1.628 13.771
546 | 300 13 -1.628 13.771
547 | 312 13 -1.628 13.771
548 | 324 13 -1.628 13.771
549 | 336 13 -1.628 13.771
550 | 348 13 -1.628 13.771
551 | 360 13 -1.628 13.771
552 | 372 13 -1.628 13.771
553 | 384 13 -1.628 13.771
554 | 396 13 -1.628 13.771
555 | 408 13 -1.628 13.771
556 | 420 13 -1.628 13.771
557 | 432 13 -1.628 13.771
558 | 444 13 -1.628 13.771
559 | 456 13 -1.628 13.771
560 | 468 13 -1.628 13.771
561 | 240 15 -1.735 14.709
562 | 252 15 -1.735 14.709
563 | 264 15 -1.735 14.709
564 | 276 15 -1.735 14.709
565 | 288 15 -1.735 14.709
566 | 300 15 -1.735 14.709
567 | 312 15 -1.735 14.709
568 | 324 15 -1.735 14.709
569 | 336 15 -1.735 14.709
570 | 348 15 -1.735 14.709
571 | 360 15 -1.735 14.709
572 | 372 15 -1.735 14.709
573 | 384 15 -1.735 14.709
574 | 396 15 -1.735 14.709
575 | 408 15 -1.735 14.709
576 | 420 15 -1.735 14.709
577 | 432 15 -1.735 14.709
578 | 444 15 -1.735 14.709
579 | 456 15 -1.735 14.709
580 | 468 15 -1.735 14.709
581 | 240 18 0.69 -9.965
582 | 252 18 0.761 -10.691
583 | 264 18 0.832 -11.559
584 | 276 18 0.903 -12.267
585 | 288 18 0.974 -12.975
586 | 300 18 1.115 -13.683
587 | 312 18 1.115 -14.568
588 | 324 18 1.204 -15.417
589 | 336 18 1.274 -16.267
590 | 348 18 1.345 -17.117
591 | 360 18 1.416 -17.63
592 | 372 18 1.416 -18.267
593 | 384 18 1.362 -17.983
594 | 396 18 1.232 -16.453
595 | 408 18 1.102 -14.923
596 | 420 18 0.972 -13.393
597 | 432 18 0.842 -11.863
598 | 444 18 0.712 -10.333
599 | 456 18 0.582 -8.803
600 | 468 18 0.452 -7.272
601 | 240 20 8.284 11.488
602 | 252 20 8.284 11.488
603 | 264 20 8.284 11.488
604 | 276 20 8.284 11.488
605 | 288 20 8.284 11.488
606 | 300 20 8.284 11.488
607 | 312 20 8.284 11.488
608 | 324 20 8.284 11.488
609 | 336 20 8.284 11.488
610 | 348 20 8.284 11.488
611 | 360 20 8.284 11.488
612 | 372 20 8.284 11.488
613 | 384 20 8.284 11.488
614 | 396 20 8.284 11.488
615 | 408 20 8.284 11.488
616 | 420 20 8.284 11.488
617 | 432 20 8.284 11.488
618 | 444 20 8.284 11.488
619 | 456 20 8.284 11.488
620 | 468 20 8.284 11.488
621 | 240 22 -1.947 18.356
622 | 252 22 -2.018 18.78
623 | 264 22 -2.018 19.347
624 | 276 22 -2.089 19.772
625 | 288 22 -2.089 20.214
626 | 300 22 -2.159 20.657
627 | 312 22 -2.159 21.081
628 | 324 22 -2.23 21.648
629 | 336 22 -2.301 22.073
630 | 348 22 -2.301 22.497
631 | 360 22 -2.301 22.922
632 | 372 22 -2.301 23.506
633 | 384 22 -2.301 23.949
634 | 396 22 -2.301 24.515
635 | 408 22 -2.301 24.94
636 | 420 22 -2.301 25.507
637 | 432 22 -2.23 25.931
638 | 444 22 -2.23 26.356
639 | 456 22 -2.23 26.94
640 | 468 22 -2.23 27.383
641 | 240 25 8.319 9.488
642 | 252 25 7.824 9.488
643 | 264 25 7.328 9.488
644 | 276 25 6.903 9.488
645 | 288 25 6.478 9.488
646 | 300 25 6.107 9.629
647 | 312 25 5.682 9.771
648 | 324 25 5.328 9.912
649 | 336 25 4.974 10.054
650 | 348 25 4.531 10.196
651 | 360 25 4.177 10.355
652 | 372 25 3.823 10.496
653 | 384 25 3.399 10.638
654 | 396 25 3.115 10.921
655 | 408 25 2.832 11.346
656 | 420 25 2.62 11.913
657 | 432 25 2.336 12.337
658 | 444 25 2.266 12.762
659 | 456 25 2.195 13.063
660 | 468 25 2.124 13.488
661 | 240 27 8.142 8.62
662 | 252 27 7.647 8.62
663 | 264 27 7.222 8.62
664 | 276 27 6.726 8.62
665 | 288 27 6.231 8.62
666 | 300 27 5.717 8.762
667 | 312 27 5.222 8.903
668 | 324 27 4.638 9.045
669 | 336 27 4.142 9.187
670 | 348 27 3.717 9.488
671 | 360 27 3.434 9.771
672 | 372 27 3.151 10.196
673 | 384 27 2.868 10.496
674 | 396 27 2.584 10.921
675 | 408 27 2.23 11.204
676 | 420 27 1.947 11.629
677 | 432 27 1.664 11.913
678 | 444 27 1.381 12.337
679 | 456 27 1.31 12.78
680 | 468 27 1.239 13.205
681 | 240 29 -8.992 10.921
682 | 252 29 -8.496 11.063
683 | 264 29 -8.071 11.063
684 | 276 29 -7.647 11.063
685 | 288 29 -7.293 11.204
686 | 300 29 -7.08 11.204
687 | 312 29 -6.868 11.346
688 | 324 29 -6.62 11.346
689 | 336 29 -6.337 11.488
690 | 348 29 -5.983 11.488
691 | 360 29 -5.558 11.488
692 | 372 29 -5.186 11.488
693 | 384 29 -4.832 11.488
694 | 396 29 -4.478 11.629
695 | 408 29 -4.124 11.771
696 | 420 29 -3.753 12.054
697 | 432 29 -3.469 12.196
698 | 444 29 -3.115 12.337
699 | 456 29 -2.761 12.479
700 | 468 29 -2.62 12.621
701 | 240 31 -9.611 10.196
702 | 252 31 -9.098 10.196
703 | 264 31 -8.603 10.196
704 | 276 31 -8.178 10.337
705 | 288 31 -7.894 10.337
706 | 300 31 -7.54 10.479
707 | 312 31 -7.257 10.638
708 | 324 31 -6.903 10.638
709 | 336 31 -6.62 10.78
710 | 348 31 -6.266 10.78
711 | 360 31 -5.983 10.921
712 | 372 31 -5.7 11.063
713 | 384 31 -5.257 11.063
714 | 396 31 -4.903 11.063
715 | 408 31 -4.478 11.063
716 | 420 31 -4.124 11.204
717 | 432 31 -3.753 11.346
718 | 444 31 -3.399 11.488
719 | 456 31 -3.045 11.629
720 | 468 31 -2.832 11.629
721 | 240 33 9.629 10.921
722 | 252 33 9.629 10.921
723 | 264 33 9.629 10.921
724 | 276 33 9.629 10.921
725 | 288 33 9.629 10.921
726 | 300 33 9.629 10.921
727 | 312 33 9.629 10.921
728 | 324 33 9.629 10.921
729 | 336 33 9.629 10.921
730 | 348 33 9.629 10.921
731 | 360 33 9.629 10.921
732 | 372 33 9.629 10.921
733 | 384 33 9.629 10.921
734 | 396 33 9.629 10.921
735 | 408 33 9.629 10.921
736 | 420 33 9.629 10.921
737 | 432 33 9.629 10.921
738 | 444 33 9.629 10.921
739 | 456 33 9.629 10.921
740 | 468 33 9.629 10.921
741 | 240 35 11.063 -4.195
742 | 252 35 10.709 -4.195
743 | 264 35 10.426 -4.195
744 | 276 35 9.983 -4.337
745 | 288 35 9.558 -4.337
746 | 300 35 9.134 -4.478
747 | 312 35 8.709 -4.478
748 | 324 35 8.284 -4.62
749 | 336 35 7.788 -4.62
750 | 348 35 7.222 -4.62
751 | 360 35 6.726 -4.62
752 | 372 35 6.142 -4.62
753 | 384 35 5.646 -4.62
754 | 396 35 5.08 -4.549
755 | 408 35 4.638 -4.549
756 | 420 35 4.142 -4.407
757 | 432 35 3.646 -4.266
758 | 444 35 3.222 -4.266
759 | 456 35 2.726 -4.124
760 | 468 35 2.23 -3.965
761 | 240 37 1.876 -1.186
762 | 252 37 1.876 -1.186
763 | 264 37 1.876 -1.186
764 | 276 37 1.876 -1.186
765 | 288 37 1.947 -1.328
766 | 300 37 2.018 -1.328
767 | 312 37 2.018 -1.328
768 | 324 37 2.089 -1.328
769 | 336 37 2.089 -1.328
770 | 348 37 1.947 -1.328
771 | 360 37 1.876 -1.328
772 | 372 37 1.805 -1.328
773 | 384 37 1.664 -1.328
774 | 396 37 1.593 -1.328
775 | 408 37 1.593 -1.186
776 | 420 37 1.593 -1.186
777 | 432 37 1.593 -1.186
778 | 444 37 1.593 -1.186
779 | 456 37 1.593 -1.186
780 | 468 37 1.593 -1.186
781 | 240 39 -0.053 0.903
782 | 252 39 -0.195 0.336
783 | 264 39 -0.283 -0.106
784 | 276 39 -0.283 -0.673
785 | 288 39 -0.283 -1.097
786 | 300 39 -0.053 -1.682
787 | 312 39 0.23 -2.248
788 | 324 39 0.584 -2.673
789 | 336 39 1.009 -2.956
790 | 348 39 1.451 -3.257
791 | 360 39 1.947 -3.54
792 | 372 39 2.372 -3.823
793 | 384 39 2.797 -4.107
794 | 396 39 3.292 -4.39
795 | 408 39 3.788 -4.531
796 | 420 39 4.284 -4.691
797 | 432 39 4.779 -4.832
798 | 444 39 5.292 -4.974
799 | 456 39 5.788 -4.974
800 | 468 39 6.372 -4.974
801 | 240 41 -1.027 1.186
802 | 252 41 -1.027 0.62
803 | 264 41 -1.027 0.035
804 | 276 41 -1.027 -0.531
805 | 288 41 -0.991 -0.956
806 | 300 41 -0.779 -1.682
807 | 312 41 -0.566 -2.39
808 | 324 41 -0.283 -2.956
809 | 336 41 0.124 -3.257
810 | 348 41 0.62 -3.54
811 | 360 41 1.133 -3.965
812 | 372 41 1.664 -4.319
813 | 384 41 2.159 -4.691
814 | 396 41 2.655 -5.045
815 | 408 41 3.186 -5.328
816 | 420 41 3.717 -5.54
817 | 432 41 4.213 -5.54
818 | 444 41 4.85 -5.682
819 | 456 41 5.505 -5.824
820 | 468 41 6.16 -5.824
821 | 240 43 0.938 16.338
822 | 252 43 0.867 15.913
823 | 264 43 0.797 15.346
824 | 276 43 0.726 14.922
825 | 288 43 0.655 14.355
826 | 300 43 0.584 13.93
827 | 312 43 0.513 13.346
828 | 324 43 0.513 12.762
829 | 336 43 0.443 12.337
830 | 348 43 0.372 11.771
831 | 360 43 0.301 11.346
832 | 372 43 0.23 10.78
833 | 384 43 0.159 10.355
834 | 396 43 0.089 9.912
835 | 408 43 0.018 9.328
836 | 420 43 -0.053 8.903
837 | 432 43 -0.124 8.337
838 | 444 43 -0.195 7.912
839 | 456 43 -0.266 7.346
840 | 468 43 -0.336 6.921
841 | 240 45 -10.603 5.469
842 | 252 45 -9.965 5.469
843 | 264 45 -9.399 5.469
844 | 276 45 -8.815 5.469
845 | 288 45 -8.178 5.469
846 | 300 45 -7.611 5.469
847 | 312 45 -7.045 5.469
848 | 324 45 -6.408 5.469
849 | 336 45 -5.841 5.611
850 | 348 45 -5.186 5.611
851 | 360 45 -4.62 5.611
852 | 372 45 -3.983 5.753
853 | 384 45 -3.328 5.753
854 | 396 45 -2.69 5.753
855 | 408 45 -2.124 5.894
856 | 420 45 -1.487 5.894
857 | 432 45 -0.85 5.894
858 | 444 45 -0.195 6.036
859 | 456 45 0.372 6.036
860 | 468 45 1.009 6.195
861 | 240 47 3.894 -3.522
862 | 252 47 3.894 -3.522
863 | 264 47 3.894 -3.522
864 | 276 47 3.894 -3.522
865 | 288 47 3.894 -3.522
866 | 300 47 3.894 -3.522
867 | 312 47 3.894 -3.522
868 | 324 47 3.894 -3.522
869 | 336 47 3.894 -3.522
870 | 348 47 3.894 -3.522
871 | 360 47 3.894 -3.522
872 | 372 47 3.894 -3.522
873 | 384 47 3.894 -3.522
874 | 396 47 3.894 -3.522
875 | 408 47 3.894 -3.522
876 | 420 47 3.894 -3.522
877 | 432 47 3.894 -3.522
878 | 444 47 3.894 -3.522
879 | 456 47 3.894 -3.522
880 | 468 47 3.894 -3.522
881 | 252 7 25.238 43.974
882 | 264 7 25.051 44.059
883 | 276 7 24.865 44.145
884 | 288 7 24.679 44.231
885 | 300 7 24.492 44.317
886 | 312 7 24.306 44.402
887 | 324 7 24.12 44.488
888 | 336 7 23.933 44.574
889 | 348 7 23.747 44.66
890 | 360 7 23.56 44.746
891 | 372 7 23.374 44.831
892 | 384 7 23.188 44.917
893 | 396 7 23.001 45.003
894 | 408 7 22.815 45.089
895 | 420 7 22.628 45.175
896 | 432 7 22.442 45.26
897 | 444 7 22.256 45.347
898 | 456 7 22.069 45.432
899 | 468 7 21.883 45.518
900 | 480 7 21.697 45.604
--------------------------------------------------------------------------------
/data/trajnet_original/stanford/hyang_9.txt:
--------------------------------------------------------------------------------
1 | 276 2 -0.209 -14.395
2 | 288 2 0.057 -14.395
3 | 300 2 0.589 -14.167
4 | 312 2 1.084 -14.015
5 | 324 2 1.578 -13.786
6 | 336 2 2.073 -13.634
7 | 348 2 2.643 -13.634
8 | 360 2 3.214 -13.634
9 | 372 2 3.86 -13.634
10 | 384 2 4.431 -13.786
11 | 396 2 5.077 -13.786
12 | 408 2 5.648 -13.786
13 | 420 2 6.294 -13.786
14 | 432 2 6.865 -13.634
15 | 444 2 7.435 -13.634
16 | 456 2 8.044 -13.482
17 | 468 2 8.69 -13.482
18 | 480 2 9.337 -13.482
19 | 492 2 9.907 -13.482
20 | 504 2 10.402 -13.558
--------------------------------------------------------------------------------
/data/trajnet_original/stanford/nexus_4.txt:
--------------------------------------------------------------------------------
1 | 60 15 17.642 -21.038
2 | 72 15 17.711 -20.372
3 | 84 15 17.872 -19.524
4 | 96 15 18.055 -18.514
5 | 108 15 18.124 -17.665
6 | 120 15 18.285 -16.839
7 | 132 15 18.445 -15.991
8 | 144 15 18.445 -15.646
9 | 156 15 18.445 -15.142
10 | 168 15 18.514 -14.637
11 | 180 15 18.514 -14.316
12 | 192 15 18.606 -13.811
13 | 204 15 18.606 -13.306
14 | 216 15 18.698 -12.962
15 | 228 15 18.698 -12.457
16 | 240 15 18.789 -11.953
17 | 252 15 18.789 -11.609
18 | 264 15 18.789 -10.943
19 | 276 15 18.789 -10.026
20 | 288 15 18.698 -9.177
21 | 60 39 17.941 12.503
22 | 72 39 17.941 12.503
23 | 84 39 17.986 12.503
24 | 96 39 18.032 12.503
25 | 108 39 18.078 12.503
26 | 120 39 18.124 12.503
27 | 132 39 18.17 12.503
28 | 144 39 18.216 12.503
29 | 156 39 18.239 12.503
30 | 168 39 18.239 12.503
31 | 180 39 18.331 12.343
32 | 192 39 18.331 12.343
33 | 204 39 18.331 12.343
34 | 216 39 18.331 12.343
35 | 228 39 18.331 12.343
36 | 240 39 18.331 12.343
37 | 252 39 18.331 12.343
38 | 264 39 18.331 12.343
39 | 276 39 18.399 12.343
40 | 288 39 18.399 12.343
41 | 72 30 14.752 22.942
42 | 84 30 15.165 22.942
43 | 96 30 15.578 22.85
44 | 108 30 16.036 22.85
45 | 120 30 16.449 22.69
46 | 132 30 16.862 22.69
47 | 144 30 17.275 22.598
48 | 156 30 17.688 22.598
49 | 168 30 18.147 22.437
50 | 180 30 18.652 22.437
51 | 192 30 19.157 22.437
52 | 204 30 19.638 22.277
53 | 216 30 20.12 22.277
54 | 228 30 20.625 22.277
55 | 240 30 21.175 22.277
56 | 252 30 21.772 22.277
57 | 264 30 22.254 22.277
58 | 276 30 22.827 22.277
59 | 288 30 23.332 22.277
60 | 300 30 23.791 22.093
61 | 72 31 13.169 20.74
62 | 84 31 13.582 20.74
63 | 96 31 13.995 20.74
64 | 108 31 14.385 20.74
65 | 120 31 14.798 20.74
66 | 132 31 15.211 20.74
67 | 144 31 15.623 20.74
68 | 156 31 16.036 20.74
69 | 168 31 16.541 20.602
70 | 180 31 17.023 20.602
71 | 192 31 17.596 20.602
72 | 204 31 18.078 20.418
73 | 216 31 18.652 20.418
74 | 228 31 19.157 20.418
75 | 240 31 19.638 20.235
76 | 252 31 20.028 20.235
77 | 264 31 20.441 20.235
78 | 276 31 20.854 20.235
79 | 288 31 21.267 20.235
80 | 300 31 21.772 20.097
81 | 72 32 13.283 22.185
82 | 84 32 13.696 22.185
83 | 96 32 14.109 22.185
84 | 108 32 14.522 22.185
85 | 120 32 14.935 22.024
86 | 132 32 15.348 22.024
87 | 144 32 15.761 22.024
88 | 156 32 16.174 22.024
89 | 168 32 16.633 21.841
90 | 180 32 17.138 21.841
91 | 192 32 17.642 21.68
92 | 204 32 18.101 21.68
93 | 216 32 18.606 21.52
94 | 228 32 19.111 21.52
95 | 240 32 19.615 21.52
96 | 252 32 19.982 21.52
97 | 264 32 20.487 21.52
98 | 276 32 20.9 21.52
99 | 288 32 21.405 21.52
100 | 300 32 21.887 21.336
101 | 72 55 20.212 18.331
102 | 84 55 19.868 18.331
103 | 96 55 19.547 18.331
104 | 108 55 19.225 18.239
105 | 120 55 18.904 18.147
106 | 132 55 18.583 18.055
107 | 144 55 18.239 18.055
108 | 156 55 17.918 18.055
109 | 168 55 17.505 17.895
110 | 180 55 17.115 17.895
111 | 192 55 16.702 17.895
112 | 204 55 16.289 17.895
113 | 216 55 15.876 17.895
114 | 228 55 15.463 17.895
115 | 240 55 15.142 17.734
116 | 252 55 14.82 17.734
117 | 264 55 14.476 17.734
118 | 276 55 14.155 17.734
119 | 288 55 13.811 17.734
120 | 300 55 13.536 17.734
121 | 72 57 20.579 16.633
122 | 84 57 20.235 16.633
123 | 96 57 19.914 16.633
124 | 108 57 19.684 16.449
125 | 120 57 19.363 16.449
126 | 132 57 19.088 16.312
127 | 144 57 18.767 16.312
128 | 156 57 18.445 16.312
129 | 168 57 18.124 16.128
130 | 180 57 17.711 16.128
131 | 192 57 17.39 15.945
132 | 204 57 16.977 15.945
133 | 216 57 16.656 15.807
134 | 228 57 16.243 15.807
135 | 240 57 15.922 15.623
136 | 252 57 15.509 15.623
137 | 264 57 15.188 15.623
138 | 276 57 14.866 15.623
139 | 288 57 14.522 15.623
140 | 300 57 14.132 15.623
141 | 72 67 14.522 21.52
142 | 84 67 14.935 21.52
143 | 96 67 15.348 21.428
144 | 108 67 15.761 21.336
145 | 120 67 16.151 21.267
146 | 132 67 16.495 21.175
147 | 144 67 16.885 21.084
148 | 156 67 17.298 21.084
149 | 168 67 17.803 20.923
150 | 180 67 18.376 20.762
151 | 192 67 18.858 20.579
152 | 204 67 19.432 20.418
153 | 216 67 20.005 20.418
154 | 228 67 20.487 20.258
155 | 240 67 20.992 20.258
156 | 252 67 21.474 20.258
157 | 264 67 21.978 20.258
158 | 276 67 22.46 20.258
159 | 288 67 22.942 20.258
160 | 300 67 23.447 20.258
161 | 84 63 14.155 15.784
162 | 96 63 14.155 16.289
163 | 108 63 14.155 16.793
164 | 120 63 14.155 17.206
165 | 132 63 14.155 17.642
166 | 144 63 14.155 18.078
167 | 156 63 14.155 18.583
168 | 168 63 14.155 19.225
169 | 180 63 14.155 19.914
170 | 192 63 14.316 20.097
171 | 204 63 14.476 20.418
172 | 216 63 14.729 20.74
173 | 228 63 14.889 21.107
174 | 240 63 15.142 21.428
175 | 252 63 15.302 21.611
176 | 264 63 15.463 21.932
177 | 276 63 15.623 22.437
178 | 288 63 15.784 22.942
179 | 300 63 15.968 23.263
180 | 312 63 16.036 23.768
181 | 96 6 -4.336 36.959
182 | 108 6 -4.955 36.042
183 | 120 6 -5.368 36.042
184 | 132 6 -5.69 35.881
185 | 144 6 -6.011 35.881
186 | 156 6 -6.263 35.721
187 | 168 6 -6.263 35.721
188 | 180 6 -6.332 35.721
189 | 192 6 -6.332 35.721
190 | 204 6 -6.424 35.721
191 | 216 6 -6.424 35.721
192 | 228 6 -6.516 35.721
193 | 240 6 -6.516 35.721
194 | 252 6 -6.516 35.721
195 | 264 6 -6.584 35.721
196 | 276 6 -6.584 35.721
197 | 288 6 -6.676 35.721
198 | 300 6 -6.676 35.721
199 | 312 6 -6.745 35.721
200 | 324 6 -6.745 35.721
201 | 108 41 -1.124 35.881
202 | 120 41 -1.629 35.881
203 | 132 41 -1.904 36.042
204 | 144 41 -2.225 36.042
205 | 156 41 -2.363 36.042
206 | 168 41 -2.363 36.042
207 | 180 41 -2.363 36.042
208 | 192 41 -2.455 36.042
209 | 204 41 -2.455 36.042
210 | 216 41 -2.455 36.042
211 | 228 41 -2.547 36.042
212 | 240 41 -2.547 36.042
213 | 252 41 -2.547 35.881
214 | 264 41 -2.547 35.881
215 | 276 41 -2.638 35.881
216 | 288 41 -2.638 35.881
217 | 300 41 -2.638 35.881
218 | 312 41 -2.684 35.881
219 | 324 41 -2.684 35.881
220 | 336 41 -2.684 35.881
221 | 120 24 -18.308 22.69
222 | 132 24 -18.032 22.529
223 | 144 24 -17.711 22.345
224 | 156 24 -17.482 22.345
225 | 168 24 -17.161 22.185
226 | 180 24 -16.816 22.185
227 | 192 24 -16.564 22.024
228 | 204 24 -16.243 22.024
229 | 216 24 -15.83 22.024
230 | 228 24 -15.509 22.024
231 | 240 24 -15.188 21.841
232 | 252 24 -14.866 21.841
233 | 264 24 -14.545 21.841
234 | 276 24 -14.132 21.841
235 | 288 24 -13.788 21.68
236 | 300 24 -13.444 21.68
237 | 312 24 -13.123 21.68
238 | 324 24 -12.802 21.68
239 | 336 24 -12.389 21.52
240 | 348 24 -12.067 21.52
241 | 120 27 -18.17 24.043
242 | 132 27 -17.918 23.86
243 | 144 27 -17.688 23.699
244 | 156 27 -17.413 23.538
245 | 168 27 -17.138 23.538
246 | 180 27 -16.908 23.355
247 | 192 27 -16.633 23.194
248 | 204 27 -16.266 23.194
249 | 216 27 -15.899 23.194
250 | 228 27 -15.578 23.194
251 | 240 27 -15.256 23.034
252 | 252 27 -14.843 23.034
253 | 264 27 -14.522 23.034
254 | 276 27 -14.201 23.034
255 | 288 27 -13.788 22.85
256 | 300 27 -13.467 22.85
257 | 312 27 -13.146 22.85
258 | 324 27 -12.825 22.85
259 | 336 27 -12.412 22.69
260 | 348 27 -12.09 22.69
261 | 120 48 4.221 30.673
262 | 132 48 4.038 29.825
263 | 144 48 3.969 29.159
264 | 156 48 3.808 28.31
265 | 168 48 3.717 27.645
266 | 180 48 3.625 26.819
267 | 192 48 3.487 26.131
268 | 204 48 3.395 25.466
269 | 216 48 3.304 24.961
270 | 228 48 3.235 24.456
271 | 240 48 3.143 23.951
272 | 252 48 3.074 23.447
273 | 264 48 2.982 22.942
274 | 276 48 2.891 22.437
275 | 288 48 2.822 21.932
276 | 300 48 2.822 21.588
277 | 312 48 2.661 20.923
278 | 324 48 2.501 20.258
279 | 336 48 2.34 19.569
280 | 348 48 2.157 19.065
281 | 120 49 -5.988 18.491
282 | 132 49 -5.644 18.147
283 | 144 49 -5.231 17.986
284 | 156 49 -4.91 17.803
285 | 168 49 -4.497 17.642
286 | 180 49 -4.015 17.642
287 | 192 49 -3.441 17.642
288 | 204 49 -2.96 17.642
289 | 216 49 -2.363 17.803
290 | 228 49 -1.881 17.803
291 | 240 49 -1.308 17.803
292 | 252 49 -0.826 17.986
293 | 264 49 -0.413 17.986
294 | 276 49 0.069 18.078
295 | 288 49 0.482 18.078
296 | 300 49 0.734 17.895
297 | 312 49 0.987 17.574
298 | 324 49 1.216 17.206
299 | 336 49 1.629 17.206
300 | 348 49 2.042 17.069
301 | 120 68 -17.78 24.777
302 | 132 68 -17.551 24.777
303 | 144 68 -17.321 24.777
304 | 156 68 -17.046 24.777
305 | 168 68 -16.816 24.777
306 | 180 68 -16.587 24.777
307 | 192 68 -16.312 24.64
308 | 204 68 -15.899 24.64
309 | 216 68 -15.578 24.64
310 | 228 68 -15.256 24.456
311 | 240 68 -14.843 24.456
312 | 252 68 -14.522 24.273
313 | 264 68 -14.201 24.273
314 | 276 68 -13.788 24.135
315 | 288 68 -13.467 24.135
316 | 300 68 -13.054 24.135
317 | 312 68 -12.733 23.951
318 | 324 68 -12.412 23.951
319 | 336 68 -11.999 23.768
320 | 348 68 -11.677 23.768
321 | 144 21 -26.934 23.791
322 | 156 21 -26.337 23.791
323 | 168 21 -25.787 23.699
324 | 180 21 -25.282 23.607
325 | 192 21 -24.731 23.447
326 | 204 21 -24.135 23.447
327 | 216 21 -23.607 23.447
328 | 228 21 -23.08 23.447
329 | 240 21 -22.506 23.286
330 | 252 21 -21.978 23.286
331 | 264 21 -21.382 23.286
332 | 276 21 -20.831 23.286
333 | 288 21 -20.327 23.103
334 | 300 21 -19.776 23.103
335 | 312 21 -19.179 23.103
336 | 324 21 -18.629 23.103
337 | 336 21 -18.124 23.103
338 | 348 21 -17.574 23.103
339 | 360 21 -16.977 23.103
340 | 372 21 -16.472 23.103
341 | 180 53 13.926 34.436
342 | 192 53 14.063 34.803
343 | 204 53 14.339 35.308
344 | 216 53 14.568 35.812
345 | 228 53 14.798 36.134
346 | 240 53 15.073 36.638
347 | 252 53 15.302 37.143
348 | 264 53 15.532 37.464
349 | 276 53 15.807 37.969
350 | 288 53 16.036 38.474
351 | 300 53 16.266 38.841
352 | 312 53 16.541 39.345
353 | 324 53 16.771 39.85
354 | 336 53 17.0 40.171
355 | 348 53 17.275 40.676
356 | 360 53 17.505 41.181
357 | 372 53 17.734 41.502
358 | 384 53 18.009 42.007
359 | 396 53 18.239 42.511
360 | 408 53 18.468 43.016
361 | 216 45 7.823 39.254
362 | 228 45 7.41 38.749
363 | 240 45 6.997 38.244
364 | 252 45 6.584 37.739
365 | 264 45 6.355 37.395
366 | 276 45 6.08 37.051
367 | 288 45 5.85 36.73
368 | 300 45 5.598 36.386
369 | 312 45 5.345 36.042
370 | 324 45 5.024 35.721
371 | 336 45 4.703 35.216
372 | 348 45 4.382 34.711
373 | 360 45 4.061 34.367
374 | 372 45 3.877 33.702
375 | 384 45 3.785 33.197
376 | 396 45 3.717 32.509
377 | 408 45 3.464 32.004
378 | 420 45 3.051 31.683
379 | 432 45 2.661 31.178
380 | 444 45 2.248 30.834
381 | 228 12 -31.178 21.244
382 | 240 12 -31.178 21.244
383 | 252 12 -30.444 21.428
384 | 264 12 -29.71 21.611
385 | 276 12 -29.389 21.611
386 | 288 12 -29.067 21.428
387 | 300 12 -28.723 21.244
388 | 312 12 -28.379 21.107
389 | 324 12 -27.989 21.107
390 | 336 12 -27.645 20.923
391 | 348 12 -27.324 20.74
392 | 360 12 -27.003 20.74
393 | 372 12 -26.177 20.74
394 | 384 12 -25.328 20.74
395 | 396 12 -24.938 20.74
396 | 408 12 -25.259 20.418
397 | 420 12 -24.984 20.097
398 | 432 12 -24.617 19.73
399 | 444 12 -24.227 19.73
400 | 456 12 -23.745 19.73
401 | 228 50 -31.545 20.808
402 | 240 50 -31.201 20.074
403 | 252 50 -30.742 20.074
404 | 264 50 -30.237 20.074
405 | 276 50 -29.664 20.074
406 | 288 50 -29.182 19.914
407 | 300 50 -28.677 19.914
408 | 312 50 -28.173 19.914
409 | 324 50 -27.714 19.914
410 | 336 50 -27.209 19.914
411 | 348 50 -26.704 19.753
412 | 360 50 -26.154 19.753
413 | 372 50 -25.649 19.753
414 | 384 50 -25.144 19.753
415 | 396 50 -24.915 19.569
416 | 408 50 -25.144 19.248
417 | 420 50 -25.007 19.065
418 | 432 50 -24.686 18.904
419 | 444 50 -24.364 18.744
420 | 456 50 -23.951 18.56
421 | 276 59 25.534 17.941
422 | 288 59 24.869 16.977
423 | 300 59 24.387 16.793
424 | 312 59 23.814 16.472
425 | 324 59 23.309 16.289
426 | 336 59 22.827 16.289
427 | 348 59 22.345 16.289
428 | 360 59 21.772 16.289
429 | 372 59 21.267 16.289
430 | 384 59 20.785 16.197
431 | 396 59 20.212 16.059
432 | 408 59 19.547 15.876
433 | 420 59 18.973 15.876
434 | 432 59 18.331 15.876
435 | 444 59 17.711 15.876
436 | 456 59 17.046 15.876
437 | 468 59 16.403 15.784
438 | 480 59 15.715 15.623
439 | 492 59 15.417 15.555
440 | 504 59 14.912 15.463
441 | 276 61 4.657 -19.34
442 | 288 61 4.336 -19.845
443 | 300 61 4.107 -20.212
444 | 312 61 3.762 -20.717
445 | 324 61 3.51 -20.946
446 | 336 61 3.189 -21.29
447 | 348 61 2.868 -21.634
448 | 360 61 2.961 -21.503
449 | 372 61 3.072 -21.346
450 | 384 61 3.184 -21.188
451 | 396 61 3.296 -21.03
452 | 408 61 3.407 -20.873
453 | 420 61 3.519 -20.715
454 | 432 61 3.631 -20.558
455 | 444 61 3.742 -20.4
456 | 456 61 3.854 -20.243
457 | 468 61 3.966 -20.085
458 | 480 61 4.077 -19.928
459 | 492 61 4.189 -19.77
460 | 504 61 4.301 -19.613
461 | 300 16 18.606 -8.511
462 | 312 16 18.606 -8.007
463 | 324 16 18.606 -7.318
464 | 336 16 18.606 -6.814
465 | 348 16 18.606 -6.309
466 | 360 16 18.606 -5.804
467 | 372 16 18.606 -5.139
468 | 384 16 18.606 -4.634
469 | 396 16 18.606 -4.13
470 | 408 16 18.606 -3.625
471 | 420 16 18.606 -2.96
472 | 432 16 18.606 -2.455
473 | 444 16 18.606 -1.95
474 | 456 16 18.606 -1.262
475 | 468 16 18.606 -0.757
476 | 480 16 18.606 -0.252
477 | 492 16 18.606 0.229
478 | 504 16 18.56 0.826
479 | 516 16 18.606 1.17
480 | 528 16 18.629 1.583
481 | 300 40 18.399 12.343
482 | 312 40 18.399 12.343
483 | 324 40 18.399 12.343
484 | 336 40 18.399 12.343
485 | 348 40 18.399 12.343
486 | 360 40 18.399 12.343
487 | 372 40 18.399 12.343
488 | 384 40 18.399 12.182
489 | 396 40 18.331 11.838
490 | 408 40 18.239 11.677
491 | 420 40 18.17 11.333
492 | 432 40 18.032 11.173
493 | 444 40 18.032 11.173
494 | 456 40 18.032 11.333
495 | 468 40 17.941 11.333
496 | 480 40 17.941 11.333
497 | 492 40 17.895 11.173
498 | 504 40 17.895 10.989
499 | 516 40 17.895 10.989
500 | 528 40 17.895 10.989
501 | 312 56 13.215 17.734
502 | 324 56 12.802 17.551
503 | 336 56 12.389 17.551
504 | 348 56 11.976 17.39
505 | 360 56 11.563 17.229
506 | 372 56 11.15 17.229
507 | 384 56 10.691 17.046
508 | 396 56 10.278 16.885
509 | 408 56 9.865 16.885
510 | 420 56 9.452 16.725
511 | 432 56 9.039 16.541
512 | 444 56 8.718 16.381
513 | 456 56 8.305 16.22
514 | 468 56 7.892 16.22
515 | 480 56 7.479 16.036
516 | 492 56 7.066 15.876
517 | 504 56 6.699 15.532
518 | 516 56 6.47 15.119
519 | 528 56 6.263 14.683
520 | 540 56 6.034 14.27
521 | 312 58 13.765 15.623
522 | 324 58 13.375 15.44
523 | 336 58 12.985 15.44
524 | 348 58 12.572 15.44
525 | 360 58 12.159 15.302
526 | 372 58 11.746 15.302
527 | 384 58 11.333 15.119
528 | 396 58 10.92 15.119
529 | 408 58 10.507 15.119
530 | 420 58 10.094 14.935
531 | 432 58 9.773 14.798
532 | 444 58 9.36 14.614
533 | 456 58 8.947 14.43
534 | 468 58 8.626 14.362
535 | 480 58 8.213 14.201
536 | 492 58 7.8 14.018
537 | 504 58 7.479 13.857
538 | 516 58 7.296 13.696
539 | 528 58 7.112 13.444
540 | 540 58 6.906 13.26
541 | 324 64 16.197 24.135
542 | 336 64 16.289 24.456
543 | 348 64 16.358 24.777
544 | 360 64 16.449 25.144
545 | 372 64 16.518 25.466
546 | 384 64 16.61 25.787
547 | 396 64 16.61 25.97
548 | 408 64 16.61 25.97
549 | 420 64 16.518 25.97
550 | 432 64 16.518 25.97
551 | 444 64 16.449 25.97
552 | 456 64 16.449 25.787
553 | 468 64 16.358 25.787
554 | 480 64 16.289 25.787
555 | 492 64 16.289 25.787
556 | 504 64 16.289 25.649
557 | 516 64 16.289 25.649
558 | 528 64 16.289 25.649
559 | 540 64 16.289 25.649
560 | 552 64 16.289 25.649
561 | 336 7 -6.676 35.721
562 | 348 7 -6.424 35.721
563 | 360 7 -6.194 35.721
564 | 372 7 -5.942 35.721
565 | 384 7 -6.103 35.721
566 | 396 7 -6.837 35.216
567 | 408 7 -7.617 34.803
568 | 420 7 -7.708 34.803
569 | 432 7 -7.708 34.803
570 | 444 7 -7.708 34.803
571 | 456 7 -7.708 34.803
572 | 468 7 -7.708 34.803
573 | 480 7 -7.708 34.803
574 | 492 7 -7.708 34.803
575 | 504 7 -7.708 34.619
576 | 516 7 -7.433 34.619
577 | 528 7 -7.296 34.619
578 | 540 7 -7.112 34.619
579 | 552 7 -6.928 34.619
580 | 564 7 -6.699 34.619
581 | 348 42 -2.684 35.721
582 | 360 42 -2.638 35.537
583 | 372 42 -2.455 35.537
584 | 384 42 -2.363 35.376
585 | 396 42 -2.638 35.216
586 | 408 42 -3.281 35.032
587 | 420 42 -3.923 34.872
588 | 432 42 -4.015 34.872
589 | 444 42 -4.107 34.872
590 | 456 42 -4.175 34.872
591 | 468 42 -4.244 34.872
592 | 480 42 -4.244 35.032
593 | 492 42 -4.244 35.032
594 | 504 42 -4.244 34.964
595 | 516 42 -4.061 34.964
596 | 528 42 -3.831 34.964
597 | 540 42 -3.694 34.964
598 | 552 42 -3.51 34.872
599 | 564 42 -3.327 34.872
600 | 576 42 -3.143 34.872
601 | 360 25 -11.655 21.52
602 | 372 25 -11.287 21.336
603 | 384 25 -10.92 21.336
604 | 396 25 -10.553 21.336
605 | 408 25 -10.14 21.175
606 | 420 25 -9.819 21.175
607 | 432 25 -9.406 21.175
608 | 444 25 -9.039 21.015
609 | 456 25 -8.672 21.015
610 | 468 25 -8.305 20.831
611 | 480 25 -7.892 20.831
612 | 492 25 -7.571 20.831
613 | 504 25 -7.135 20.671
614 | 516 25 -6.63 20.671
615 | 528 25 -6.125 20.602
616 | 540 25 -5.644 20.51
617 | 552 25 -5.162 20.418
618 | 564 25 -4.657 20.418
619 | 576 25 -4.175 20.235
620 | 588 25 -3.694 20.235
621 | 360 28 -11.677 22.69
622 | 372 28 -11.356 22.529
623 | 384 28 -10.943 22.529
624 | 396 28 -10.599 22.529
625 | 408 28 -10.255 22.345
626 | 420 28 -9.842 22.345
627 | 432 28 -9.521 22.345
628 | 444 28 -9.108 22.185
629 | 456 28 -8.787 22.185
630 | 468 28 -8.374 22.024
631 | 480 28 -8.053 22.024
632 | 492 28 -7.64 22.024
633 | 504 28 -7.273 21.841
634 | 516 28 -6.791 21.841
635 | 528 28 -6.309 21.68
636 | 540 28 -5.804 21.68
637 | 552 28 -5.323 21.588
638 | 564 28 -4.795 21.428
639 | 576 28 -4.29 21.428
640 | 588 28 -3.808 21.267
641 | 360 62 12.457 -2.592
642 | 372 62 12.32 -3.281
643 | 384 62 12.228 -3.969
644 | 396 62 12.159 -4.474
645 | 408 62 12.067 -4.978
646 | 420 62 12.067 -5.483
647 | 432 62 12.067 -5.988
648 | 444 62 12.067 -6.653
649 | 456 62 12.067 -7.158
650 | 468 62 12.067 -7.663
651 | 480 62 12.067 -8.167
652 | 492 62 12.067 -8.672
653 | 504 62 12.067 -9.337
654 | 516 62 12.067 -9.842
655 | 528 62 12.113 -10.439
656 | 540 62 12.159 -10.943
657 | 552 62 12.205 -11.54
658 | 564 62 12.251 -12.113
659 | 576 62 12.251 -12.71
660 | 588 62 12.274 -13.306
661 | 360 69 -11.264 23.63
662 | 372 69 -10.943 23.63
663 | 384 69 -10.53 23.63
664 | 396 69 -10.209 23.447
665 | 408 69 -9.842 23.447
666 | 420 69 -9.475 23.263
667 | 432 69 -9.108 23.263
668 | 444 69 -8.695 23.125
669 | 456 69 -8.374 23.125
670 | 468 69 -7.961 23.125
671 | 480 69 -7.64 22.942
672 | 492 69 -7.227 22.942
673 | 504 69 -6.906 22.758
674 | 516 69 -6.447 22.758
675 | 528 69 -5.942 22.69
676 | 540 69 -5.437 22.69
677 | 552 69 -4.978 22.621
678 | 564 69 -4.565 22.529
679 | 576 69 -4.061 22.529
680 | 588 69 -3.602 22.345
681 | 384 22 -16.013 22.942
682 | 396 22 -15.738 22.781
683 | 408 22 -15.509 22.437
684 | 420 22 -15.325 22.093
685 | 432 22 -15.096 21.932
686 | 444 22 -14.866 21.588
687 | 456 22 -14.545 21.428
688 | 468 22 -13.949 21.428
689 | 480 22 -13.398 21.428
690 | 492 22 -12.802 21.428
691 | 504 22 -12.251 21.428
692 | 516 22 -11.655 21.428
693 | 528 22 -11.104 21.428
694 | 540 22 -10.507 21.428
695 | 552 22 -9.957 21.428
696 | 564 22 -9.36 21.428
697 | 576 22 -8.81 21.428
698 | 588 22 -8.213 21.428
699 | 600 22 -7.663 21.428
700 | 612 22 -7.066 21.428
701 | 420 54 18.652 43.521
702 | 432 54 18.881 44.026
703 | 444 54 19.157 44.53
704 | 456 54 19.386 45.035
705 | 468 54 19.569 45.54
706 | 480 54 19.799 46.044
707 | 492 54 20.028 46.549
708 | 504 54 20.372 46.733
709 | 516 54 20.74 47.146
710 | 528 54 21.107 47.582
711 | 540 54 21.52 47.995
712 | 552 54 21.887 48.407
713 | 564 54 22.254 48.752
714 | 576 54 22.621 49.188
715 | 588 54 23.034 49.6
716 | 600 54 23.401 49.922
717 | 612 54 23.768 50.358
718 | 624 54 24.135 50.679
719 | 636 54 24.548 51.183
720 | 648 54 24.892 51.596
721 | 456 46 1.835 30.329
722 | 468 46 1.354 30.008
723 | 480 46 0.849 29.664
724 | 492 46 0.367 29.159
725 | 504 46 -0.206 28.815
726 | 516 46 -0.711 28.654
727 | 528 46 -1.193 28.494
728 | 540 46 -1.721 28.31
729 | 552 46 -2.202 28.15
730 | 564 46 -2.707 27.989
731 | 576 46 -3.281 27.829
732 | 588 46 -3.762 27.645
733 | 600 46 -4.267 27.484
734 | 612 46 -4.795 27.324
735 | 624 46 -5.277 27.14
736 | 636 46 -5.781 26.98
737 | 648 46 -6.103 26.819
738 | 660 46 -6.263 26.636
739 | 672 46 -6.424 26.636
740 | 684 46 -6.584 26.475
741 | 468 13 -23.332 19.73
742 | 480 13 -22.827 19.73
743 | 492 13 -22.414 19.661
744 | 504 13 -21.932 19.592
745 | 516 13 -21.451 19.592
746 | 528 13 -20.946 19.592
747 | 540 13 -20.441 19.592
748 | 552 13 -19.937 19.592
749 | 564 13 -19.432 19.501
750 | 576 13 -18.904 19.501
751 | 588 13 -18.422 19.501
752 | 600 13 -17.872 19.501
753 | 612 13 -17.39 19.409
754 | 624 13 -16.725 19.409
755 | 636 13 -16.174 19.409
756 | 648 13 -15.509 19.409
757 | 660 13 -14.935 19.409
758 | 672 13 -14.293 19.409
759 | 684 13 -13.696 19.409
760 | 696 13 -13.054 19.409
761 | 468 51 -23.493 18.56
762 | 480 51 -22.988 18.468
763 | 492 51 -22.506 18.468
764 | 504 51 -22.024 18.468
765 | 516 51 -21.52 18.468
766 | 528 51 -20.992 18.468
767 | 540 51 -20.51 18.468
768 | 552 51 -19.982 18.468
769 | 564 51 -19.478 18.56
770 | 576 51 -18.927 18.56
771 | 588 51 -18.468 18.56
772 | 600 51 -17.918 18.56
773 | 612 51 -17.413 18.744
774 | 624 51 -16.771 18.744
775 | 636 51 -16.128 18.744
776 | 648 51 -15.509 18.744
777 | 660 51 -14.889 18.904
778 | 672 51 -14.247 18.904
779 | 684 51 -13.605 18.904
780 | 696 51 -12.962 18.904
781 | 516 60 14.201 15.463
782 | 528 60 13.605 15.463
783 | 540 60 13.054 15.463
784 | 552 60 12.435 15.279
785 | 564 60 11.953 15.279
786 | 576 60 11.448 15.188
787 | 588 60 10.943 15.119
788 | 600 60 10.439 15.05
789 | 612 60 9.934 14.866
790 | 624 60 9.429 14.866
791 | 636 60 8.97 14.775
792 | 648 60 8.466 14.683
793 | 660 60 7.961 14.614
794 | 672 60 7.502 14.614
795 | 684 60 7.158 14.614
796 | 696 60 6.906 14.683
797 | 708 60 6.676 14.775
798 | 720 60 6.401 14.775
799 | 732 60 6.08 14.775
800 | 744 60 5.85 14.683
801 | 540 17 18.606 1.927
802 | 552 17 18.56 2.409
803 | 564 17 18.422 2.914
804 | 576 17 18.147 3.418
805 | 588 17 17.918 3.923
806 | 600 17 17.688 4.267
807 | 612 17 17.275 4.611
808 | 624 17 16.771 4.933
809 | 636 17 16.358 5.277
810 | 648 17 15.945 5.621
811 | 660 17 15.623 6.125
812 | 672 17 15.394 6.791
813 | 684 17 15.05 7.296
814 | 696 17 14.798 7.961
815 | 708 17 14.522 8.466
816 | 720 17 14.201 9.154
817 | 732 17 13.88 9.819
818 | 744 17 13.559 10.324
819 | 756 17 13.467 10.989
820 | 768 17 13.329 11.494
821 | 564 65 16.289 25.557
822 | 576 65 16.289 25.557
823 | 588 65 16.289 25.557
824 | 600 65 16.358 25.466
825 | 612 65 16.358 25.374
826 | 624 65 16.358 25.374
827 | 636 65 16.358 25.374
828 | 648 65 16.358 25.374
829 | 660 65 16.358 25.374
830 | 672 65 16.358 25.305
831 | 684 65 16.358 25.305
832 | 696 65 16.449 25.213
833 | 708 65 16.449 25.213
834 | 720 65 16.449 25.121
835 | 732 65 16.449 25.121
836 | 744 65 16.449 25.121
837 | 756 65 16.449 25.121
838 | 768 65 16.449 25.03
839 | 780 65 16.449 25.03
840 | 792 65 16.518 24.961
841 | 576 8 -6.561 34.619
842 | 588 8 -6.332 34.619
843 | 600 8 -6.148 34.619
844 | 612 8 -5.965 34.619
845 | 624 8 -5.781 34.528
846 | 636 8 -5.552 34.528
847 | 648 8 -5.414 34.528
848 | 660 8 -5.185 34.528
849 | 672 8 -5.047 34.528
850 | 684 8 -4.795 34.528
851 | 696 8 -4.634 34.528
852 | 708 8 -4.451 34.528
853 | 720 8 -4.221 34.528
854 | 732 8 -4.038 34.528
855 | 744 8 -3.808 34.528
856 | 756 8 -3.487 34.528
857 | 768 8 -3.074 34.528
858 | 780 8 -2.982 34.528
859 | 792 8 -2.914 34.528
860 | 804 8 -2.822 34.528
861 | 588 43 -3.005 34.78
862 | 600 43 -2.822 34.78
863 | 612 43 -2.592 34.78
864 | 624 43 -2.409 34.711
865 | 636 43 -2.248 34.711
866 | 648 43 -2.088 34.711
867 | 660 43 -1.881 34.711
868 | 672 43 -1.721 34.619
869 | 684 43 -1.56 34.619
870 | 696 43 -1.354 34.619
871 | 708 43 -1.147 34.528
872 | 720 43 -0.987 34.528
873 | 732 43 -0.826 34.528
874 | 744 43 -0.574 34.459
875 | 756 43 -0.252 34.459
876 | 768 43 0.161 34.459
877 | 780 43 0.252 34.367
878 | 792 43 0.321 34.367
879 | 804 43 0.321 34.367
880 | 816 43 0.413 34.367
881 | 600 26 -3.189 20.097
882 | 612 26 -2.707 20.097
883 | 624 26 -2.202 20.005
884 | 636 26 -1.721 19.914
885 | 648 26 -1.239 19.822
886 | 660 26 -0.688 19.822
887 | 672 26 -0.138 20.005
888 | 684 26 0.459 20.327
889 | 696 26 1.193 20.602
890 | 708 26 2.157 20.923
891 | 720 26 3.166 21.336
892 | 732 26 3.625 21.336
893 | 744 26 4.13 21.336
894 | 756 26 4.634 21.428
895 | 768 26 5.093 21.428
896 | 780 26 5.69 21.588
897 | 792 26 6.194 21.428
898 | 804 26 6.653 21.267
899 | 816 26 7.158 21.267
900 | 828 26 7.663 21.084
901 | 600 29 -3.327 21.267
902 | 612 29 -2.776 21.084
903 | 624 29 -2.294 20.992
904 | 636 29 -1.789 20.923
905 | 648 29 -1.308 20.854
906 | 660 29 -0.78 20.854
907 | 672 29 -0.275 20.992
908 | 684 29 0.275 21.359
909 | 696 29 1.055 21.68
910 | 708 29 2.042 22.001
911 | 720 29 3.074 22.368
912 | 732 29 3.556 22.368
913 | 744 29 4.107 22.368
914 | 756 29 4.657 22.506
915 | 768 29 5.208 22.506
916 | 780 29 5.758 22.69
917 | 792 29 6.263 22.506
918 | 804 29 6.768 22.368
919 | 816 29 7.227 22.185
920 | 828 29 7.731 22.001
921 | 600 70 -3.097 22.345
922 | 612 70 -2.661 22.277
923 | 624 70 -2.225 22.185
924 | 636 70 -1.721 22.093
925 | 648 70 -1.216 22.093
926 | 660 70 -0.734 22.093
927 | 672 70 -0.161 22.345
928 | 684 70 0.39 22.69
929 | 696 70 1.216 22.942
930 | 708 70 2.202 23.125
931 | 720 70 3.189 23.263
932 | 732 70 3.694 23.263
933 | 744 70 4.175 23.263
934 | 756 70 4.657 23.447
935 | 768 70 5.162 23.447
936 | 780 70 5.713 23.63
937 | 792 70 6.217 23.447
938 | 804 70 6.722 23.355
939 | 816 70 7.204 23.194
940 | 828 70 7.686 23.103
941 | 624 23 -6.516 21.428
942 | 636 23 -5.919 21.428
943 | 648 23 -5.368 21.428
944 | 660 23 -4.772 21.428
945 | 672 23 -4.175 21.588
946 | 684 23 -3.189 21.772
947 | 696 23 -2.179 21.932
948 | 708 23 -1.193 22.093
949 | 720 23 -0.367 22.277
950 | 732 23 0.436 22.437
951 | 744 23 1.239 22.598
952 | 756 23 1.927 22.598
953 | 768 23 2.432 22.598
954 | 780 23 2.891 22.437
955 | 792 23 3.395 22.277
956 | 804 23 3.9 22.277
957 | 816 23 4.359 22.093
958 | 828 23 4.955 22.093
959 | 840 23 5.437 21.932
960 | 852 23 5.919 21.772
961 | 660 11 -32.027 16.725
962 | 672 11 -31.637 16.816
963 | 684 11 -30.903 16.954
964 | 696 11 -29.205 17.459
965 | 708 11 -27.507 17.964
966 | 720 11 -25.764 18.399
967 | 732 11 -24.594 18.399
968 | 744 11 -23.447 18.399
969 | 756 11 -22.529 18.239
970 | 768 11 -21.726 18.239
971 | 780 11 -20.923 18.055
972 | 792 11 -20.189 18.055
973 | 804 11 -19.363 17.895
974 | 816 11 -18.537 17.895
975 | 828 11 -17.711 17.895
976 | 840 11 -17.069 17.734
977 | 852 11 -16.518 17.551
978 | 864 11 -15.968 17.551
979 | 876 11 -15.371 17.39
980 | 888 11 -14.866 17.39
981 | 672 19 25.488 -3.028
982 | 684 19 24.984 -3.212
983 | 696 19 24.433 -3.533
984 | 708 19 23.928 -3.785
985 | 720 19 23.424 -4.13
986 | 732 19 22.965 -4.474
987 | 744 19 22.46 -4.978
988 | 756 19 22.047 -5.3
989 | 768 19 21.634 -5.804
990 | 780 19 21.13 -6.148
991 | 792 19 20.762 -6.653
992 | 804 19 20.349 -7.158
993 | 816 19 20.074 -7.823
994 | 828 19 19.845 -8.511
995 | 840 19 19.524 -9.177
996 | 852 19 19.248 -9.842
997 | 864 19 19.019 -10.53
998 | 876 19 18.927 -11.196
999 | 888 19 18.927 -11.861
1000 | 900 19 18.927 -12.366
1001 | 672 20 12.113 5.781
1002 | 684 20 12.779 5.781
1003 | 696 20 13.421 5.781
1004 | 708 20 14.063 5.781
1005 | 720 20 14.568 5.781
1006 | 732 20 15.05 5.781
1007 | 744 20 15.532 5.781
1008 | 756 20 16.036 5.713
1009 | 768 20 16.541 5.713
1010 | 780 20 17.023 5.713
1011 | 792 20 17.551 5.713
1012 | 804 20 17.918 5.208
1013 | 816 20 18.331 4.772
1014 | 828 20 18.56 4.107
1015 | 840 20 18.652 3.418
1016 | 852 20 18.789 2.776
1017 | 864 20 18.858 2.088
1018 | 876 20 18.927 1.399
1019 | 888 20 18.927 0.757
1020 | 900 20 18.927 0.069
1021 | 696 10 -32.532 17.229
1022 | 708 10 -31.499 17.39
1023 | 720 10 -30.26 17.734
1024 | 732 10 -29.067 18.239
1025 | 744 10 -27.92 18.491
1026 | 756 10 -26.957 18.491
1027 | 768 10 -26.062 18.491
1028 | 780 10 -25.121 18.491
1029 | 792 10 -24.387 18.308
1030 | 804 10 -23.768 18.308
1031 | 816 10 -23.194 18.308
1032 | 828 10 -22.552 18.147
1033 | 840 10 -21.978 18.147
1034 | 852 10 -21.359 18.147
1035 | 864 10 -20.717 18.147
1036 | 876 10 -20.12 18.147
1037 | 888 10 -19.638 18.147
1038 | 900 10 -19.065 18.308
1039 | 912 10 -18.491 18.308
1040 | 924 10 -18.009 18.491
1041 | 696 47 -6.516 26.314
1042 | 708 47 -6.011 26.131
1043 | 720 47 -5.529 26.131
1044 | 732 47 -5.598 25.81
1045 | 744 47 -5.69 25.466
1046 | 756 47 -5.781 25.121
1047 | 768 47 -5.85 24.8
1048 | 780 47 -5.896 24.617
1049 | 792 47 -6.286 24.456
1050 | 804 47 -6.63 24.296
1051 | 816 47 -6.974 24.112
1052 | 828 47 -7.296 23.951
1053 | 840 47 -7.617 23.791
1054 | 852 47 -7.938 23.607
1055 | 864 47 -8.351 23.607
1056 | 876 47 -8.856 23.607
1057 | 888 47 -9.314 23.607
1058 | 900 47 -9.819 23.791
1059 | 912 47 -10.324 23.791
1060 | 924 47 -10.806 23.791
1061 | 696 71 25.167 16.381
1062 | 708 71 24.479 16.541
1063 | 720 71 23.768 16.725
1064 | 732 71 23.057 16.885
1065 | 744 71 22.414 17.046
1066 | 756 71 21.68 17.229
1067 | 768 71 21.038 17.39
1068 | 780 71 20.717 17.39
1069 | 792 71 20.304 17.39
1070 | 804 71 19.959 17.39
1071 | 816 71 19.638 17.39
1072 | 828 71 19.225 17.39
1073 | 840 71 18.904 17.39
1074 | 852 71 18.491 17.39
1075 | 864 71 18.147 17.39
1076 | 876 71 17.757 17.229
1077 | 888 71 17.344 17.229
1078 | 900 71 16.931 17.229
1079 | 912 71 16.541 17.229
1080 | 924 71 16.128 17.229
1081 | 696 72 25.03 15.05
1082 | 708 72 24.387 15.371
1083 | 720 72 23.722 15.555
1084 | 732 72 23.103 15.784
1085 | 744 72 22.46 16.059
1086 | 756 72 21.795 16.289
1087 | 768 72 21.152 16.472
1088 | 780 72 20.74 16.472
1089 | 792 72 20.372 16.381
1090 | 804 72 19.959 16.381
1091 | 816 72 19.592 16.289
1092 | 828 72 19.179 16.128
1093 | 840 72 18.812 16.128
1094 | 852 72 18.422 16.036
1095 | 864 72 18.009 16.036
1096 | 876 72 17.596 15.876
1097 | 888 72 17.184 15.876
1098 | 900 72 16.862 15.876
1099 | 912 72 16.449 15.876
1100 | 924 72 16.036 15.715
1101 | 708 14 -11.494 19.661
1102 | 720 14 -10.484 19.822
1103 | 732 14 -9.819 20.005
1104 | 744 14 -9.154 20.166
1105 | 756 14 -8.511 20.327
1106 | 768 14 -7.823 20.51
1107 | 780 14 -7.181 20.671
1108 | 792 14 -6.493 20.671
1109 | 804 14 -5.85 20.831
1110 | 816 14 -5.162 21.015
1111 | 828 14 -4.657 21.015
1112 | 840 14 -4.244 21.015
1113 | 852 14 -3.831 21.015
1114 | 864 14 -3.441 20.831
1115 | 876 14 -3.028 20.831
1116 | 888 14 -2.547 20.831
1117 | 900 14 -2.134 20.671
1118 | 912 14 -1.721 20.671
1119 | 924 14 -1.308 20.671
1120 | 936 14 -0.895 20.51
1121 | 708 52 -11.861 19.065
1122 | 720 52 -10.966 19.065
1123 | 732 52 -10.301 19.248
1124 | 744 52 -9.567 19.409
1125 | 756 52 -8.924 19.569
1126 | 768 52 -8.236 19.753
1127 | 780 52 -7.548 19.914
1128 | 792 52 -6.814 19.914
1129 | 804 52 -6.171 20.074
1130 | 816 52 -5.437 20.258
1131 | 828 52 -4.933 20.258
1132 | 840 52 -4.474 20.258
1133 | 852 52 -4.061 20.074
1134 | 864 52 -3.556 20.074
1135 | 876 52 -3.143 19.914
1136 | 888 52 -2.661 19.753
1137 | 900 52 -2.179 19.753
1138 | 912 52 -1.767 19.569
1139 | 924 52 -1.262 19.569
1140 | 936 52 -0.849 19.409
1141 | 720 73 25.58 47.329
1142 | 732 73 24.846 46.48
1143 | 744 73 24.112 45.632
1144 | 756 73 23.378 44.806
1145 | 768 73 23.011 44.301
1146 | 780 73 22.988 43.957
1147 | 792 73 22.827 43.613
1148 | 804 73 22.667 43.291
1149 | 816 73 22.552 42.947
1150 | 828 73 22.414 42.695
1151 | 840 73 22.254 42.443
1152 | 852 73 22.139 42.098
1153 | 864 73 22.001 41.869
1154 | 876 73 21.841 41.502
1155 | 888 73 21.726 41.273
1156 | 900 73 21.542 40.928
1157 | 912 73 21.451 40.676
1158 | 924 73 21.313 40.355
1159 | 936 73 21.13 40.08
1160 | 948 73 21.084 39.85
1161 | 756 33 25.076 15.715
1162 | 768 33 24.433 15.876
1163 | 780 33 23.837 16.036
1164 | 792 33 23.378 16.036
1165 | 804 33 22.873 15.876
1166 | 816 33 22.46 15.876
1167 | 828 33 21.955 15.715
1168 | 840 33 21.497 15.715
1169 | 852 33 20.992 15.532
1170 | 864 33 20.579 15.371
1171 | 876 33 20.074 15.371
1172 | 888 33 19.615 15.211
1173 | 900 33 19.111 15.211
1174 | 912 33 18.698 15.027
1175 | 924 33 18.193 14.866
1176 | 936 33 17.734 14.866
1177 | 948 33 17.229 14.706
1178 | 960 33 16.816 14.706
1179 | 972 33 16.312 14.522
1180 | 984 33 15.853 14.362
1181 | 780 18 13.192 11.999
1182 | 792 18 13.146 12.503
1183 | 804 18 13.008 13.192
1184 | 816 18 12.916 13.696
1185 | 828 18 12.847 14.201
1186 | 840 18 12.687 14.706
1187 | 852 18 12.503 15.211
1188 | 864 18 12.182 15.715
1189 | 876 18 11.953 16.036
1190 | 888 18 11.632 16.449
1191 | 900 18 11.287 16.885
1192 | 912 18 10.966 17.321
1193 | 924 18 10.622 17.642
1194 | 936 18 10.301 18.055
1195 | 948 18 10.072 18.468
1196 | 960 18 9.75 18.835
1197 | 972 18 9.75 19.157
1198 | 984 18 9.819 19.409
1199 | 996 18 9.75 19.914
1200 | 1008 18 9.613 20.418
1201 | 804 66 16.518 24.961
1202 | 816 66 16.518 24.961
1203 | 828 66 16.518 24.892
1204 | 840 66 16.518 24.892
1205 | 852 66 16.518 24.892
1206 | 864 66 16.518 24.892
1207 | 876 66 16.518 24.8
1208 | 888 66 16.61 24.708
1209 | 900 66 16.61 24.708
1210 | 912 66 16.61 24.708
1211 | 924 66 16.61 24.708
1212 | 936 66 16.61 24.617
1213 | 948 66 16.61 24.617
1214 | 960 66 16.61 24.617
1215 | 972 66 16.61 24.617
1216 | 984 66 16.702 24.617
1217 | 996 66 16.702 24.617
1218 | 1008 66 16.771 24.8
1219 | 1020 66 16.839 24.8
1220 | 1032 66 17.023 25.121
1221 | 816 9 -2.753 34.528
1222 | 828 9 -2.661 34.528
1223 | 840 9 -2.615 34.528
1224 | 852 9 -2.524 34.528
1225 | 864 9 -2.455 34.528
1226 | 876 9 -2.386 34.528
1227 | 888 9 -2.294 34.528
1228 | 900 9 -2.202 34.619
1229 | 912 9 -1.973 34.459
1230 | 924 9 -1.881 34.459
1231 | 936 9 -2.111 34.459
1232 | 948 9 -2.524 34.275
1233 | 960 9 -3.028 34.115
1234 | 972 9 -1.721 34.275
1235 | 984 9 -1.973 34.275
1236 | 996 9 -2.202 34.459
1237 | 1008 9 -2.455 34.459
1238 | 1020 9 -2.684 34.551
1239 | 1032 9 -2.982 34.688
1240 | 1044 9 -3.281 34.78
1241 | 828 44 0.459 34.367
1242 | 840 44 0.482 34.367
1243 | 852 44 0.528 34.367
1244 | 864 44 0.596 34.367
1245 | 876 44 0.596 34.367
1246 | 888 44 0.688 34.367
1247 | 900 44 0.78 34.436
1248 | 912 44 0.872 34.298
1249 | 924 44 0.941 34.298
1250 | 936 44 0.688 34.298
1251 | 948 44 0.459 34.298
1252 | 960 44 0.206 34.298
1253 | 972 44 1.606 33.61
1254 | 984 44 1.354 33.931
1255 | 996 44 1.101 34.298
1256 | 1008 44 0.941 34.298
1257 | 1020 44 0.688 34.367
1258 | 1032 44 0.459 34.459
1259 | 1044 44 0.206 34.459
1260 | 1056 44 0.0 34.551
--------------------------------------------------------------------------------
/edinburgh_informatics_forum_urls.txt:
--------------------------------------------------------------------------------
1 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Aug24.zip
2 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Aug25.zip
3 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Aug26.zip
4 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Aug27.zip
5 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Aug28.zip
6 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Aug29.zip
7 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Au30.zip"
8 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep01.zip
9 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep02.zip
10 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep04.zip
11 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep05.zip
12 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep06.zip
13 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep10.zip
14 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep11.zip
15 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep12.zip
16 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep13.zip
17 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep14.zip
18 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep16.zip
19 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep18.zip
20 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep19.zip
21 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep20.zip
22 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep21.zip
23 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep22.zip
24 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep23.zip
25 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep24.zip
26 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep25.zip
27 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep27.zip
28 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep28.zip
29 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep29.zip
30 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Sep30.zip
31 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct02.zip
32 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct03.zip
33 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct04.zip
34 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct05.zip
35 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct06.zip
36 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct07.zip
37 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct08.zip
38 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct09.zip
39 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct10.zip
40 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct11.zip
41 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct12.zip
42 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct13.zip
43 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct14.zip
44 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Oct15.zip
45 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec06.zip
46 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec11.zip
47 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec14.zip
48 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec15.zip
49 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec16.zip
50 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec18.zip
51 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec19.zip
52 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec20.zip
53 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec21.zip
54 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec22.zip
55 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec23.zip
56 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec24.zip
57 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec29.zip
58 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec30.zip
59 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Dec31.zip
60 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan01.zip
61 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan02.zip
62 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan03.zip
63 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan04.zip
64 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan04.zip
65 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan06.zip
66 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan07.zip
67 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan08.zip
68 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan10.zip
69 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan11.zip
70 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan12.zip
71 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan13.zip
72 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan14.zip
73 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan15.zip
74 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan16.zip
75 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan17.zip
76 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan18.zip
77 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jan19.zip
78 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.May29.zip
79 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.May30.zip
80 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.May31.zip
81 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun02.zip
82 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun03.zip
83 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun04.zip
84 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun05.zip
85 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun06.zip
86 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun08.zip
87 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun09.zip
88 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun11.zip
89 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun12.zip
90 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun14.zip
91 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun16.zip
92 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun17.zip
93 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun18.zip
94 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun20.zip
95 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun22.zip
96 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun24.zip
97 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun25.zip
98 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun26.zip
99 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun29.zip
100 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jun30.zip
101 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul01.zip
102 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul02.zip
103 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul04.zip
104 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul11.zip
105 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul12.zip
106 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul13.zip
107 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul14.zip
108 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul17.zip
109 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul18.zip
110 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul19.zip
111 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul20.zip
112 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul21.zip
113 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul22.zip
114 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul23.zip
115 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul25.zip
116 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul26.zip
117 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul27.zip
118 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul28.zip
119 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul29.zip
120 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Jul30.zip
121 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/SINGH/tracks.Aug01.zip
122 |
--------------------------------------------------------------------------------
/scripts/convert_original.py:
--------------------------------------------------------------------------------
1 | """Trying to reproduce original Trajnet dataset."""
2 |
3 | import pysparkling
4 | import trajnetdataset
5 | import trajnetplusplustools
6 |
7 |
8 | def main():
9 | sc = pysparkling.Context()
10 |
11 | biwi_train = (sc
12 | .textFile('data/raw/biwi/seq_hotel/obsmat.txt')
13 | .map(trajnetdataset.readers.biwi)
14 | .cache())
15 |
16 | good_start_frames = set(biwi_train
17 | .groupBy(lambda r: r.pedestrian)
18 | .filter(lambda kv: len(kv[1]) >= 20)
19 | .values()
20 | .map(lambda rs: rs[0].frame)
21 | .collect())
22 |
23 | # good_start_frames_filtered = []
24 | # for f in sorted(good_start_frames):
25 | # if good_start_frames_filtered and \
26 | # f <= good_start_frames_filtered[-1] + 20:
27 | # continue
28 | # good_start_frames_filtered.append(f)
29 | # print(len(good_start_frames), len(good_start_frames_filtered))
30 | # print(good_start_frames_filtered)
31 | good_start_frames_filtered = good_start_frames
32 |
33 | good_frames = {f
34 | for s in good_start_frames_filtered
35 | for f in range(s, s + 200, 10)}
36 | print(sorted(good_frames))
37 |
38 | (biwi_train
39 | .filter(lambda r: r.frame in good_frames)
40 |
41 | # filter out short pedestrian paths
42 | .groupBy(lambda r: r.pedestrian)
43 | .filter(lambda kv: len(kv[1]) >= 20)
44 | .mapValues(lambda rs: rs[:20])
45 | .values()
46 | .flatMap(lambda v: v)
47 |
48 | # write output
49 | .sortBy(lambda r: (r.pedestrian, r.frame))
50 | .map(trajnetplusplustools.writers.trajnet_tracks)
51 | .saveAsTextFile('data/train/biwi/biwi_hotel.ndjson'))
52 |
53 |
54 | if __name__ == '__main__':
55 | main()
56 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | """setup trajnetplusplusdataset"""
2 |
3 | from setuptools import setup
4 |
5 | # extract version from __init__.py
6 | with open('trajnetdataset/__init__.py', 'r') as f:
7 | VERSION_LINE = [l for l in f if l.startswith('__version__')][0]
8 | VERSION = VERSION_LINE.split('=')[1].strip()[1:-1]
9 |
10 |
11 | setup(
12 | name='trajnetdataset',
13 | version=VERSION,
14 | packages=[
15 | 'trajnetdataset',
16 | ],
17 | license='MIT',
18 | description='Trajnet++ dataset.',
19 | long_description=open('README.rst').read(),
20 | author='Sven Kreiss',
21 | author_email='me@svenkreiss.com',
22 | url='https://github.com/vita-epfl/trajnetplusplusdataset',
23 |
24 | install_requires=[
25 | 'pysparkling',
26 | 'scipy',
27 | 'trajnetplusplustools',
28 | ],
29 | extras_require={
30 | 'test': [
31 | 'pylint',
32 | 'pytest',
33 | ],
34 | 'plot': [
35 | 'matplotlib',
36 | ]
37 | },
38 | )
39 |
--------------------------------------------------------------------------------
/setup_orca.sh:
--------------------------------------------------------------------------------
1 | ## Additional Requirements (ORCA)
2 | wget https://github.com/sybrenstuvel/Python-RVO2/archive/master.zip
3 | unzip master.zip
4 | rm master.zip
5 |
6 | ## Setting up ORCA (steps provided in the Python-RVO2 repo)
7 | cd Python-RVO2-main/
8 | pip install cmake
9 | pip install cython
10 | python setup.py build
11 | python setup.py install
12 | cd ../
13 | rm -rf Python-RVO2-main/
14 |
--------------------------------------------------------------------------------
/setup_social_force.sh:
--------------------------------------------------------------------------------
1 | ## Additional Requirements (Social Force)
2 | wget https://github.com/svenkreiss/socialforce/archive/refs/heads/main.zip
3 | unzip main.zip
4 | rm main.zip
5 |
6 | ## Setting up Social Force
7 | cd socialforce-main/
8 | pip install -e .
9 | cd ../
10 |
--------------------------------------------------------------------------------
/trajnetdataset/__init__.py:
--------------------------------------------------------------------------------
1 | __version__ = '0.1.0'
2 |
3 | from . import readers
4 |
--------------------------------------------------------------------------------
/trajnetdataset/controlled_data.py:
--------------------------------------------------------------------------------
1 | """ Generating Controlled data for pretraining collision avoidance """
2 |
3 | import random
4 | import argparse
5 | import os
6 | import itertools
7 |
8 | import numpy as np
9 | from numpy.linalg import norm
10 | import matplotlib.pyplot as plt
11 |
12 | import rvo2
13 | import pickle
14 | import socialforce
15 | from socialforce.potentials import PedPedPotential
16 | from socialforce.field_of_view import FieldOfView
17 |
18 | def generate_circle_crossing(num_ped, sim=None, radius=4, mode=None):
19 | positions = []
20 | goals = []
21 | speed = []
22 | agent_list = []
23 | if mode == 'trajnet':
24 | radius = 10 ## 10 (TrajNet++)
25 | for _ in range(num_ped):
26 | while True:
27 | angle = random.uniform(0, 1) * np.pi * 2
28 | # add some noise to simulate all the possible cases robot could meet with human
29 | px_noise = (random.uniform(0, 1) - 0.5) ## human.v_pref
30 | py_noise = (random.uniform(0, 1) - 0.5) ## human.v_pref
31 | px = radius * np.cos(angle) + px_noise
32 | py = radius * np.sin(angle) + py_noise
33 | collide = False
34 | for agent in agent_list:
35 | min_dist = 0.8
36 | if mode == 'trajnet':
37 | min_dist = 2 ## min_dist ~ 2*human.radius + discomfort_dist ## 2 (TrajNet++)
38 | if norm((px - agent[0], py - agent[1])) < min_dist or \
39 | norm((px - agent[2], py - agent[3])) < min_dist:
40 | collide = True
41 | break
42 | if not collide:
43 | break
44 |
45 | positions.append((px, py))
46 | goals.append((-px, -py))
47 | if sim is not None:
48 | sim.addAgent((px, py))
49 | velocity = np.array([-2 * px, -2 * py])
50 | magnitude = np.linalg.norm(velocity)
51 | init_vel = 1 * velocity / magnitude if magnitude > 1 else velocity
52 | speed.append([init_vel[0], init_vel[1]])
53 | agent_list.append([px, py, -px, -py])
54 | trajectories = [[positions[i]] for i in range(num_ped)]
55 | return trajectories, positions, goals, speed
56 |
57 | def generate_orca_trajectory(sim_scene, num_ped, min_dist=3, react_time=1.5, end_range=1.0, mode=None):
58 | """ Simulating Scenario using ORCA """
59 | ## Default: (1 / 60., 1.5, 5, 1.5, 2, 0.4, 2)
60 | sampling_rate = 1
61 |
62 | ## Circle Crossing
63 | if sim_scene == 'circle_crossing':
64 | fps = 100
65 | sampling_rate = fps / 2.5
66 | sim = rvo2.PyRVOSimulator(1/fps, 10, 10, 5, 5, 0.3, 1)
67 | if mode == 'trajnet':
68 | sim = rvo2.PyRVOSimulator(1/fps, 4, 10, 4, 5, 0.6, 1.5) ## (TrajNet++)
69 | trajectories, _, goals, speed = generate_circle_crossing(num_ped, sim, mode=mode)
70 | else:
71 | raise NotImplementedError
72 |
73 | # run
74 | done = False
75 | reaching_goal_by_ped = [False] * num_ped
76 | count = 0
77 | valid = True
78 | ##Simulate a scene
79 | while not done and count < 6000:
80 | count += 1
81 | sim.doStep()
82 | reaching_goal = []
83 | for i in range(num_ped):
84 | if count == 1:
85 | trajectories[i].pop(0)
86 | position = sim.getAgentPosition(i)
87 |
88 | ## Append only if Goal not reached
89 | if not reaching_goal_by_ped[i]:
90 | if count % sampling_rate == 0:
91 | trajectories[i].append(position)
92 |
93 | # check if this agent reaches the goal
94 | if np.linalg.norm(np.array(position) - np.array(goals[i])) < end_range:
95 | reaching_goal.append(True)
96 | sim.setAgentPrefVelocity(i, (0, 0))
97 | reaching_goal_by_ped[i] = True
98 | else:
99 | reaching_goal.append(False)
100 | velocity = np.array((goals[i][0] - position[0], goals[i][1] - position[1]))
101 | speed = np.linalg.norm(velocity)
102 | pref_vel = 1 * velocity / speed if speed > 1 else velocity
103 | sim.setAgentPrefVelocity(i, tuple(pref_vel.tolist()))
104 | done = all(reaching_goal)
105 |
106 | if not done or not are_smoothes(trajectories):
107 | valid = False
108 |
109 | return trajectories, valid, goals
110 |
111 | def generate_sf_trajectory(sim_scene, num_ped, sf_params=[0.5, 2.1, 0.3], end_range=0.2):
112 | """ Simulating Scenario using SF """
113 | ## Default: (0.5, 2.1, 0.3)
114 | sampling_rate = 1
115 |
116 | ## Circle Crossing
117 | if sim_scene == 'circle_crossing':
118 | fps = 10
119 | sampling_rate = fps / 2.5
120 | trajectories, positions, goals, speed = generate_circle_crossing(num_ped)
121 | else:
122 | raise NotImplementedError
123 |
124 | initial_state = np.array([[positions[i][0], positions[i][1], speed[i][0], speed[i][1],
125 | goals[i][0], goals[i][1]] for i in range(num_ped)])
126 |
127 | ped_ped = PedPedPotential(1./fps, v0=sf_params[1], sigma=sf_params[2])
128 | field_of_view = FieldOfView()
129 | s = socialforce.Simulator(initial_state, ped_ped=ped_ped, field_of_view=field_of_view,
130 | delta_t=1./fps, tau=sf_params[0])
131 |
132 | # run
133 | reaching_goal = [False] * num_ped
134 | done = False
135 | count = 0
136 |
137 | #Simulate a scene
138 | while not done and count < 500:
139 | count += 1
140 | position = np.stack(s.step().state.copy())
141 | for i in range(len(initial_state)):
142 | if count % sampling_rate == 0:
143 | trajectories[i].append((position[i, 0], position[i, 1]))
144 | # check if this agent reaches the goal
145 | if np.linalg.norm(position[i, :2] - np.array(goals[i])) < end_range:
146 | reaching_goal[i] = True
147 | else:
148 | s.state[i, :4] = position[i, :4]
149 | done = all(reaching_goal)
150 |
151 | return trajectories, count
152 |
153 |
154 | def getAngle(a, b, c):
155 | """
156 | Return angle formed by 3 points
157 | """
158 | ba = a - b
159 | bc = c - b
160 | cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
161 | angle = np.arccos(cosine_angle)
162 | return angle
163 |
164 | def are_smoothes(trajectories):
165 | """
166 | Check if there is no sharp turns in the trajectories
167 | """
168 | is_smooth = True
169 | for i, _ in enumerate(trajectories):
170 | trajectory = np.array(trajectories[i])
171 | for j in range(0, len(trajectory[:, 0]) - 3):
172 | p1 = np.array([trajectory[j, 0], trajectory[j, 1]])
173 | p2 = np.array([trajectory[j+1, 0], trajectory[j+1, 1]])
174 | p3 = np.array([trajectory[j+2, 0], trajectory[j+2, 1]])
175 |
176 | angle = getAngle(p1, p2, p3)
177 | if angle <= np.pi / 2:
178 | is_smooth = False
179 | # plt.scatter(p1[0], p1[1], color='red', marker='X')
180 | return is_smooth
181 |
182 | def find_collisions(trajectories, max_steps):
183 | """
184 | Look for collisions in the trajectories
185 | """
186 | for timestep in range(max_steps):
187 | positions = []
188 | for ped, _ in enumerate(trajectories):
189 | traj = np.array(trajectories[ped])
190 | if timestep < len(traj):
191 | positions.append(traj[timestep])
192 |
193 | # Check if distance between 2 points is smaller than 0.1m
194 | # If yes -> collision detected
195 | for combi in itertools.combinations(positions, 2):
196 | distance = (np.linalg.norm(combi[0]-combi[1]))
197 | if distance < 0.2:
198 | return True
199 |
200 | return False
201 |
202 | def write_to_txt(trajectories, path, count, frame, dict_dest=None, goals=None):
203 | """ Write Trajectories to the text file """
204 |
205 | last_frame = 0
206 | with open(path, 'a') as fo:
207 | track_data = []
208 | for i, _ in enumerate(trajectories):
209 | for t, _ in enumerate(trajectories[i]):
210 |
211 | track_data.append('{}, {}, {}, {}'.format(t+frame, count+i,
212 | trajectories[i][t][0],
213 | trajectories[i][t][1]))
214 |
215 | if t == len(trajectories[i])-1 and t+frame > last_frame:
216 | last_frame = t+frame
217 | if goals:
218 | dict_dest[count+i] = goals[i]
219 |
220 | for track in track_data:
221 | fo.write(track)
222 | fo.write('\n')
223 |
224 | return last_frame
225 |
226 | def viz(trajectories, mode=None):
227 | """ Visualize Trajectories """
228 | for i, _ in enumerate(trajectories):
229 | trajectory = np.array(trajectories[i])
230 | plt.plot(trajectory[:, 0], trajectory[:, 1])
231 |
232 | plt.xlim(-5, 5)
233 | plt.ylim(-5, 5)
234 | if mode == 'trajnet':
235 | plt.xlim(-15, 15) ## TrajNet++
236 | plt.ylim(-15, 15) ## TrajNet++
237 | plt.show()
238 | plt.close()
239 |
240 | def predict_all(input_paths, goals, n_predict=12):
241 |
242 | pred_length = n_predict
243 |
244 | fps = 100
245 | sampling_rate = fps / 2.5
246 |
247 | sim = rvo2.PyRVOSimulator(1/fps, 4, 10, 4, 5, 0.6, 1.5) ## (TrajNet++)
248 | trajectories = [[input_paths[i][-1]] for i, _ in enumerate(input_paths)]
249 | [sim.addAgent((p[-1][0],p[-1][1])) for p in input_paths]
250 |
251 | num_ped = len(trajectories)
252 | reaching_goal_by_ped = [False] * num_ped
253 | count = 0
254 | end_range = 1.0
255 | done = False
256 |
257 | for i in range(num_ped):
258 | velocity = np.array((input_paths[i][-1][0] - input_paths[i][-3][0], input_paths[i][-1][1] - input_paths[i][-3][1]))
259 | velocity = velocity/0.8
260 | sim.setAgentVelocity(i, tuple(velocity.tolist()))
261 |
262 | velocity = np.array((goals[i][0] - input_paths[i][-1][0], goals[i][1] - input_paths[i][-1][1]))
263 | speed = np.linalg.norm(velocity)
264 | pref_vel = 1 * velocity / speed if speed > 1 else velocity
265 | sim.setAgentPrefVelocity(i, tuple(pref_vel.tolist()))
266 |
267 | ##Simulate a scene
268 | while (not done) and count < sampling_rate * pred_length + 1:
269 | # print("Count: ", count)
270 | count += 1
271 | sim.doStep()
272 | reaching_goal = []
273 | for i in range(num_ped):
274 | if count == 1:
275 | trajectories[i].pop(0)
276 | position = sim.getAgentPosition(i)
277 |
278 | ## Append only if Goal not reached
279 | if not reaching_goal_by_ped[i]:
280 | if count % sampling_rate == 0:
281 | trajectories[i].append(position)
282 |
283 | # check if this agent reaches the goal
284 | if np.linalg.norm(np.array(position) - np.array(goals[i])) < end_range:
285 | reaching_goal.append(True)
286 | sim.setAgentPrefVelocity(i, (0, 0))
287 | reaching_goal_by_ped[i] = True
288 | else:
289 | reaching_goal.append(False)
290 | velocity = np.array((goals[i][0] - position[0], goals[i][1] - position[1]))
291 | speed = np.linalg.norm(velocity)
292 | pref_vel = 1 * velocity / speed if speed > 1 else velocity
293 | sim.setAgentPrefVelocity(i, tuple(pref_vel.tolist()))
294 |
295 | done = all(reaching_goal)
296 |
297 | return trajectories
298 |
299 | def evaluate_sensitivity(trajectories, goals, mode=None, ade_thresh=0.11, fde_thresh=0.2, iters=20):
300 | observation = np.array([trajectory[10:15] for trajectory in trajectories])
301 | observation = np.round(observation, 2)
302 | goals = np.array(goals)
303 |
304 | trajectories_re_list = []
305 | for k in range(iters):
306 | observation_re = add_noise(observation.copy())
307 | trajectories_re = predict_all(observation_re, goals)
308 | for m, _ in enumerate(trajectories_re):
309 | diff_ade = np.mean(np.linalg.norm(np.array(trajectories[m][15:27]) - np.array(trajectories_re[m]), axis=1))
310 | diff_fde = np.linalg.norm(np.array(trajectories[m][26]) - np.array(trajectories_re[m][-1]))
311 | if diff_ade > ade_thresh or diff_fde > fde_thresh:
312 | print("INVALID", diff_ade, diff_fde)
313 | trajectories_re_list.append(np.array(trajectories_re))
314 |
315 | visualize_sensitivity(trajectories, trajectories_re_list, mode=mode)
316 |
317 | def visualize_sensitivity(trajectories, trajectories_pred_scenes, mode=None):
318 | """ Visualize Trajectories """
319 | plt.grid(linestyle='dotted')
320 | for i, _ in enumerate(trajectories):
321 | trajectory = np.array(trajectories[i])
322 | if i == 0:
323 | plt.plot(trajectory[:, 0], trajectory[:, 1], linestyle='solid',
324 | color='black', marker='o', markersize=1.0, zorder=1.9)
325 | else:
326 | plt.plot(trajectory[:, 0], trajectory[:, 1], linestyle='None',
327 | color='black', marker='o', markersize=1.0, zorder=0.9)
328 |
329 | for i, _ in enumerate(trajectories_pred_scenes):
330 | trajectory_set = np.array(trajectories_pred_scenes[i])
331 | for j, _ in enumerate(trajectory_set):
332 | trajectory = trajectory_set[j]
333 | plt.plot(trajectory[:, 0], trajectory[:, 1], linestyle='solid',
334 | color='blue', alpha=0.4, linewidth=2)
335 |
336 | plt.xlim(-5, 5)
337 | plt.ylim(-5, 5)
338 | if mode == 'trajnet':
339 | plt.xlim(-7, 7) ## TrajNet++
340 | plt.ylim(-7, 7) ## TrajNet++
341 | plt.show()
342 | plt.close()
343 |
344 | def add_noise(observation):
345 | ## Last Position Noise
346 | # observation[0][-1] += np.random.uniform(0, 0.04, (2,))
347 |
348 | ## Last Position Noise
349 | thresh = 0.005
350 | observation += np.random.uniform(-thresh, thresh, observation.shape)
351 | return observation
352 |
353 | def write_goals(filename, dict_dest):
354 | # Make goal folders and write save goals (.pkl files)
355 | if not os.path.isdir('./goal_files'):
356 | os.makedirs('./goal_files')
357 |
358 | if not os.path.isdir('./goal_files/train'):
359 | os.makedirs('./goal_files/train')
360 | with open('goal_files/train/' + filename + '.pkl', 'wb') as f:
361 | pickle.dump(dict_dest, f)
362 |
363 | if not os.path.isdir('./goal_files/val'):
364 | os.makedirs('./goal_files/val')
365 | with open('goal_files/val/' + filename + '.pkl', 'wb') as f:
366 | pickle.dump(dict_dest, f)
367 |
368 | if not os.path.isdir('./goal_files/test_private'):
369 | os.makedirs('./goal_files/test_private')
370 | with open('goal_files/test_private/' + filename + '.pkl', 'wb') as f:
371 | pickle.dump(dict_dest, f)
372 |
373 | def main():
374 | parser = argparse.ArgumentParser()
375 | parser.add_argument('--simulator', default='orca',
376 | choices=('orca', 'social_force'))
377 | parser.add_argument('--simulation_scene', default='circle_crossing',
378 | choices=('circle_crossing'))
379 | parser.add_argument('--mode', default=None,
380 | help='Set to trajnet for trajnet-based dataset generation')
381 | parser.add_argument('--num_ped', type=int, default=6,
382 | help='Number of ped in scene, if mode=trajnet then num_ped is randomly chosen from (4, 5, 6)')
383 | parser.add_argument('--num_scenes', type=int, default=100,
384 | help='Number of scenes')
385 | parser.add_argument('--seed', type=int, default=42)
386 | args = parser.parse_args()
387 |
388 | np.seterr('ignore')
389 | # Set Seed
390 | random.seed(args.seed)
391 | np.random.seed(args.seed)
392 |
393 | ##Decide the number of scenes & agents per scene
394 | num_scenes = args.num_scenes
395 | num_ped = args.num_ped
396 | mode = args.mode
397 | min_dist, react_time = 1.5, 1.5
398 |
399 | if not os.path.isdir('./data'):
400 | os.makedirs('./data')
401 | if not os.path.isdir('./data/raw'):
402 | os.makedirs('./data/raw')
403 | if not os.path.isdir('./data/raw/controlled'):
404 | os.makedirs('./data/raw/controlled')
405 |
406 | ## Text File To Write the Scene
407 | output_file = 'data/raw/controlled/'
408 | output_file = output_file \
409 | + args.simulator + '_' \
410 | + args.simulation_scene + '_' \
411 | + str(num_ped) + 'ped_' \
412 | + str(num_scenes) + 'scenes_' \
413 | + '.txt'
414 |
415 | goal_filename = args.simulator + '_' \
416 | + args.simulation_scene + '_' \
417 | + str(num_ped) + 'ped_' \
418 | + str(num_scenes) + 'scenes_'
419 |
420 | ## removes the file, if previously generated
421 | if os.path.isfile(output_file):
422 | os.remove(output_file)
423 |
424 | count = 0
425 | last_frame = -5
426 |
427 | dict_dest = {}
428 |
429 | for i in range(num_scenes):
430 | if mode == 'trajnet':
431 | num_ped = random.choice([4, 5, 6]) ## TrajNet++
432 | ## Print every 10th scene
433 | if (i+1) % 10 == 0:
434 | print(i)
435 |
436 | ##Generate scenes
437 | if args.simulator == 'orca':
438 | trajectories, valid, goals = generate_orca_trajectory(sim_scene=args.simulation_scene,
439 | num_ped=num_ped,
440 | min_dist=min_dist,
441 | react_time=react_time,
442 | mode=mode)
443 | ## To evaluate sensitivity of ORCA
444 | # evaluate_sensitivity(trajectories, goals, mode)
445 |
446 | elif args.simulator == 'social_force':
447 | trajectories, valid = generate_sf_trajectory(sim_scene=args.simulation_scene,
448 | num_ped=num_ped,
449 | sf_params=[0.5, 1.0, 0.1])
450 | else:
451 | raise NotImplementedError
452 |
453 | ## Visualizing scenes
454 | # viz(trajectories, mode=mode)
455 |
456 | ## Write if the scene is valid
457 | if valid:
458 | last_frame = write_to_txt(trajectories, output_file,
459 | count=count, frame=last_frame+5,
460 | dict_dest=dict_dest,
461 | goals=goals)
462 | count += num_ped
463 |
464 | ## Write Goal Dict of ORCA
465 | write_goals(goal_filename, dict_dest)
466 |
467 | print(f'ORCA trajectories stored at: {output_file}')
468 | print(f'Goal information stored at: goal_files/train/{goal_filename}.pkl \n \n')
469 |
470 | print(f'You can convert this trajectories into TrajNet++ format using the following command \n')
471 | print(f'python -m trajnetdataset.convert --direct --synthetic --mode trajnet --linear_threshold 0.3 --acceptance 0.0 0.0 1.0 0.0 \
472 | --orca_file {output_file} --goal_file goal_files/train/{goal_filename}.pkl --output_filename orca_synthetic')
473 |
474 | if __name__ == '__main__':
475 | main()
476 |
--------------------------------------------------------------------------------
/trajnetdataset/convert.py:
--------------------------------------------------------------------------------
1 | """Create Trajnet data from original datasets."""
2 | import argparse
3 | import shutil
4 | import numpy as np
5 | import random
6 |
7 | import pysparkling
8 | import scipy.io
9 |
10 | from . import readers
11 | from .scene import Scenes
12 | from .get_type import trajectory_type
13 |
14 | import warnings
15 | warnings.filterwarnings("ignore")
16 |
17 | def biwi(sc, input_file):
18 | print('processing ' + input_file)
19 | return (sc
20 | .textFile(input_file)
21 | .map(readers.biwi)
22 | .cache())
23 |
24 |
25 | def crowds(sc, input_file):
26 | print('processing ' + input_file)
27 | return (sc
28 | .wholeTextFiles(input_file)
29 | .values()
30 | .flatMap(readers.crowds)
31 | .cache())
32 |
33 |
34 | def mot(sc, input_file):
35 | """Was 7 frames per second in original recording."""
36 | print('processing ' + input_file)
37 | return (sc
38 | .textFile(input_file)
39 | .map(readers.mot)
40 | .filter(lambda r: r.frame % 2 == 0)
41 | .cache())
42 |
43 |
44 | def edinburgh(sc, input_file):
45 | print('processing ' + input_file)
46 | return (sc
47 | .wholeTextFiles(input_file)
48 | .zipWithIndex()
49 | .flatMap(readers.edinburgh)
50 | .cache())
51 |
52 |
53 | def syi(sc, input_file):
54 | print('processing ' + input_file)
55 | return (sc
56 | .wholeTextFiles(input_file)
57 | .flatMap(readers.syi)
58 | .cache())
59 |
60 |
61 | def dukemtmc(sc, input_file):
62 | print('processing ' + input_file)
63 | contents = scipy.io.loadmat(input_file)['trainData']
64 | return (sc
65 | .parallelize(readers.dukemtmc(contents))
66 | .cache())
67 |
68 |
69 | def wildtrack(sc, input_file):
70 | print('processing ' + input_file)
71 | return (sc
72 | .wholeTextFiles(input_file)
73 | .flatMap(readers.wildtrack)
74 | .cache())
75 |
76 | def cff(sc, input_file):
77 | print('processing ' + input_file)
78 | return (sc
79 | .textFile(input_file)
80 | .map(readers.cff)
81 | .filter(lambda r: r is not None)
82 | .cache())
83 |
84 | def lcas(sc, input_file):
85 | print('processing ' + input_file)
86 | return (sc
87 | .textFile(input_file)
88 | .map(readers.lcas)
89 | .cache())
90 |
91 | def controlled(sc, input_file):
92 | print('processing ' + input_file)
93 | return (sc
94 | .textFile(input_file)
95 | .map(readers.controlled)
96 | .cache())
97 |
98 | def get_trackrows(sc, input_file):
99 | print('processing ' + input_file)
100 | return (sc
101 | .textFile(input_file)
102 | .map(readers.get_trackrows)
103 | .filter(lambda r: r is not None)
104 | .cache())
105 |
106 | def standard(sc, input_file):
107 | print('processing ' + input_file)
108 | return (sc
109 | .textFile(input_file)
110 | .map(readers.standard)
111 | .cache())
112 |
113 | def car_data(sc, input_file):
114 | print('processing ' + input_file)
115 | return (sc
116 | .wholeTextFiles(input_file)
117 | .flatMap(readers.car_data)
118 | .cache())
119 |
120 | def write(input_rows, output_file, args):
121 | """ Write Valid Scenes without categorization """
122 |
123 | print(" Entering Writing ")
124 | ## To handle two different time stamps 7:00 and 17:00 of cff
125 | if args.order_frames:
126 | frames = sorted(set(input_rows.map(lambda r: r.frame).toLocalIterator()),
127 | key=lambda frame: frame % 100000)
128 | else:
129 | frames = sorted(set(input_rows.map(lambda r: r.frame).toLocalIterator()))
130 |
131 | # split
132 | train_split_index = int(len(frames) * args.train_fraction)
133 | val_split_index = train_split_index + int(len(frames) * args.val_fraction)
134 | train_frames = set(frames[:train_split_index])
135 | val_frames = set(frames[train_split_index:val_split_index])
136 | test_frames = set(frames[val_split_index:])
137 |
138 | # train dataset
139 | train_rows = input_rows.filter(lambda r: r.frame in train_frames)
140 | train_output = output_file.format(split='train')
141 | train_scenes = Scenes(fps=args.fps, start_scene_id=0, args=args).rows_to_file(train_rows, train_output)
142 |
143 | # validation dataset
144 | val_rows = input_rows.filter(lambda r: r.frame in val_frames)
145 | val_output = output_file.format(split='val')
146 | val_scenes = Scenes(fps=args.fps, start_scene_id=train_scenes.scene_id, args=args).rows_to_file(val_rows, val_output)
147 |
148 | # public test dataset
149 | test_rows = input_rows.filter(lambda r: r.frame in test_frames)
150 | test_output = output_file.format(split='test')
151 | test_scenes = Scenes(fps=args.fps, start_scene_id=val_scenes.scene_id, args=args) # !!! Chunk Stride
152 | test_scenes.rows_to_file(test_rows, test_output)
153 |
154 | # private test dataset
155 | private_test_output = output_file.format(split='test_private')
156 | private_test_scenes = Scenes(fps=args.fps, start_scene_id=val_scenes.scene_id, args=args)
157 | private_test_scenes.rows_to_file(test_rows, private_test_output)
158 |
159 | def categorize(sc, input_file, args):
160 | """ Categorize the Scenes """
161 |
162 | print(" Entering Categorizing ")
163 | test_fraction = 1 - args.train_fraction - args.val_fraction
164 |
165 | train_id = 0
166 | if args.train_fraction:
167 | print("Categorizing Training Set")
168 | train_rows = get_trackrows(sc, input_file.replace('split', '').format('train'))
169 | train_id = trajectory_type(train_rows, input_file.replace('split', '').format('train'),
170 | fps=args.fps, track_id=0, args=args)
171 |
172 | val_id = train_id
173 | if args.val_fraction:
174 | print("Categorizing Validation Set")
175 | val_rows = get_trackrows(sc, input_file.replace('split', '').format('val'))
176 | val_id = trajectory_type(val_rows, input_file.replace('split', '').format('val'),
177 | fps=args.fps, track_id=train_id, args=args)
178 |
179 |
180 | if test_fraction:
181 | print("Categorizing Test Set")
182 | test_rows = get_trackrows(sc, input_file.replace('split', '').format('test_private'))
183 | _ = trajectory_type(test_rows, input_file.replace('split', '').format('test_private'),
184 | fps=args.fps, track_id=val_id, args=args)
185 |
186 | def edit_goal_file(old_filename, new_filename):
187 | """ Rename goal files.
188 | The name of goal files should be identical to the data files
189 | """
190 |
191 | shutil.copy("goal_files/train/" + old_filename, "goal_files/train/" + new_filename)
192 | shutil.copy("goal_files/val/" + old_filename, "goal_files/val/" + new_filename)
193 | shutil.copy("goal_files/test_private/" + old_filename, "goal_files/test_private/" + new_filename)
194 |
195 | def main():
196 | parser = argparse.ArgumentParser()
197 | parser.add_argument('--obs_len', type=int, default=9,
198 | help='Length of observation')
199 | parser.add_argument('--pred_len', type=int, default=12,
200 | help='Length of prediction')
201 | parser.add_argument('--train_fraction', default=0.6, type=float,
202 | help='Training set fraction')
203 | parser.add_argument('--val_fraction', default=0.2, type=float,
204 | help='Validation set fraction')
205 | parser.add_argument('--fps', default=2.5, type=float,
206 | help='fps')
207 | parser.add_argument('--order_frames', action='store_true',
208 | help='For CFF')
209 | parser.add_argument('--chunk_stride', type=int, default=2,
210 | help='Sampling Stride')
211 | parser.add_argument('--min_length', default=0.0, type=float,
212 | help='Min Length of Primary Trajectory')
213 | parser.add_argument('--synthetic', action='store_true',
214 | help='convert synthetic datasets (if false, convert real)')
215 | parser.add_argument('--direct', action='store_true',
216 | help='directy convert synthetic datasets using commandline')
217 | parser.add_argument('--all_present', action='store_true',
218 | help='filter scenes where all pedestrians present at all times')
219 | parser.add_argument('--orca_file', default=None,
220 | help='Txt file for ORCA trajectories, required in direct mode')
221 | parser.add_argument('--goal_file', default=None,
222 | help='Pkl file for goals (required for ORCA sensitive scene filtering)')
223 | parser.add_argument('--output_filename', default=None,
224 | help='name of the output dataset filename constructed in .ndjson format, required in direct mode')
225 | parser.add_argument('--mode', default='default', choices=('default', 'trajnet'),
226 | help='mode of ORCA scene generation (required for ORCA sensitive scene filtering)')
227 |
228 | ## For Trajectory categorizing and filtering
229 | categorizers = parser.add_argument_group('categorizers')
230 | categorizers.add_argument('--static_threshold', type=float, default=1.0,
231 | help='Type I static threshold')
232 | categorizers.add_argument('--linear_threshold', type=float, default=0.5,
233 | help='Type II linear threshold (0.3 for Synthetic)')
234 | categorizers.add_argument('--inter_dist_thresh', type=float, default=5,
235 | help='Type IIId distance threshold for cone')
236 | categorizers.add_argument('--inter_pos_range', type=float, default=15,
237 | help='Type IIId angle threshold for cone (degrees)')
238 | categorizers.add_argument('--grp_dist_thresh', type=float, default=0.8,
239 | help='Type IIIc distance threshold for group')
240 | categorizers.add_argument('--grp_std_thresh', type=float, default=0.2,
241 | help='Type IIIc std deviation for group')
242 | categorizers.add_argument('--acceptance', nargs='+', type=float, default=[0.1, 1, 1, 1],
243 | help='acceptance ratio of different trajectory (I, II, III, IV) types')
244 |
245 | args = parser.parse_args()
246 | # Set Seed
247 | random.seed(42)
248 | np.random.seed(42)
249 |
250 | sc = pysparkling.Context()
251 |
252 | # Real datasets conversion
253 | if not args.synthetic:
254 | write(biwi(sc, 'data/raw/biwi/seq_hotel/obsmat.txt'),
255 | 'output_pre/{split}/biwi_hotel.ndjson', args)
256 | categorize(sc, 'output_pre/{split}/biwi_hotel.ndjson', args)
257 | write(crowds(sc, 'data/raw/crowds/crowds_zara01.vsp'),
258 | 'output_pre/{split}/crowds_zara01.ndjson', args)
259 | categorize(sc, 'output_pre/{split}/crowds_zara01.ndjson', args)
260 | write(crowds(sc, 'data/raw/crowds/crowds_zara03.vsp'),
261 | 'output_pre/{split}/crowds_zara03.ndjson', args)
262 | categorize(sc, 'output_pre/{split}/crowds_zara03.ndjson', args)
263 | write(crowds(sc, 'data/raw/crowds/students001.vsp'),
264 | 'output_pre/{split}/crowds_students001.ndjson', args)
265 | categorize(sc, 'output_pre/{split}/crowds_students001.ndjson', args)
266 | write(crowds(sc, 'data/raw/crowds/students003.vsp'),
267 | 'output_pre/{split}/crowds_students003.ndjson', args)
268 | categorize(sc, 'output_pre/{split}/crowds_students003.ndjson', args)
269 |
270 | # # # new datasets
271 | # write(lcas(sc, 'data/raw/lcas/test/data.csv'),
272 | # 'output_pre/{split}/lcas.ndjson', args)
273 | # categorize(sc, 'output_pre/{split}/lcas.ndjson', args)
274 |
275 | # args.fps = 2
276 | # write(wildtrack(sc, 'data/raw/wildtrack/Wildtrack_dataset/annotations_positions/*.json'),
277 | # 'output_pre/{split}/wildtrack.ndjson', args)
278 | # categorize(sc, 'output_pre/{split}/wildtrack.ndjson', args)
279 | # args.fps = 2.5 # (Default)
280 |
281 | # # CFF: More trajectories
282 | # # Chunk_stride > 20 preferred & order_frames.
283 | # args.chunk_stride = 20
284 | # args.order_frames = True
285 | # write(cff(sc, 'data/raw/cff_dataset/al_position2013-02-06.csv'),
286 | # 'output_pre/{split}/cff_06.ndjson', args)
287 | # categorize(sc, 'output_pre/{split}/cff_06.ndjson', args)
288 | # args.chunk_stride = 2 # (Default)
289 | # args.order_frames = False # (Default)
290 |
291 | # Direct synthetic datasets conversion
292 | elif args.direct:
293 | # Note: Generate Trajectories First! See command below
294 | ## 'python -m trajnetdataset.controlled_data '
295 | print("Direct Synthetic Data Converion")
296 | assert args.orca_file is not None
297 | assert args.goal_file is not None
298 | assert args.output_filename is not None
299 | write(controlled(sc, args.orca_file), 'output_pre/{split}/' + f'{args.output_filename}.ndjson', args)
300 | categorize(sc, 'output_pre/{split}/' + f'{args.output_filename}.ndjson', args)
301 | edit_goal_file(args.goal_file.split('/')[-1], f'{args.output_filename}.pkl')
302 |
303 | # Manual synthetic datasets conversion
304 | else:
305 | # Note: Generate Trajectories First! See command below
306 | ## 'python -m trajnetdataset.controlled_data '
307 | print("Manual Synthetic Data Converion")
308 | write(controlled(sc, 'data/raw/controlled/orca_circle_crossing_5ped_1000scenes_.txt'),
309 | 'output_pre/{split}/orca_five_synth.ndjson', args)
310 | categorize(sc, 'output_pre/{split}/orca_five_synth.ndjson', args)
311 | edit_goal_file('orca_circle_crossing_5ped_1000scenes_.pkl', 'orca_five_synth.pkl')
312 |
313 | if __name__ == '__main__':
314 | main()
315 |
--------------------------------------------------------------------------------
/trajnetdataset/get_type.py:
--------------------------------------------------------------------------------
1 | """ Categorization of Primary Pedestrian """
2 |
3 | import numpy as np
4 | import pysparkling
5 |
6 | import trajnetplusplustools
7 | from trajnetplusplustools.kalman import predict as kalman_predict
8 | from trajnetplusplustools.interactions import check_interaction, group
9 | from trajnetplusplustools.interactions import get_interaction_type
10 |
11 | import pickle
12 | from .orca_helper import predict_all
13 |
14 | def get_type(scene, args):
15 | '''
16 | Categorization of Single Scene
17 | :param scene: All trajectories as TrackRows, args
18 | :return: The type of the traj
19 | '''
20 |
21 | ## Get xy-coordinates from trackRows
22 | scene_xy = trajnetplusplustools.Reader.paths_to_xy(scene)
23 |
24 | ## Type 1
25 | def euclidean_distance(row1, row2):
26 | """Euclidean distance squared between two rows."""
27 | return np.sqrt((row1.x - row2.x) ** 2 + (row1.y - row2.y) ** 2)
28 |
29 | ## Type 2
30 | def linear_system(scene, obs_len, pred_len):
31 | '''
32 | return: True if the traj is linear according to Kalman
33 | '''
34 | kalman_prediction, _ = kalman_predict(scene, obs_len, pred_len)[0]
35 | return trajnetplusplustools.metrics.final_l2(scene[0], kalman_prediction)
36 |
37 | ## Type 3
38 | def interaction(rows, pos_range, dist_thresh, obs_len):
39 | '''
40 | :return: Determine if interaction exists and type (optionally)
41 | '''
42 | interaction_matrix = check_interaction(rows, pos_range=pos_range, \
43 | dist_thresh=dist_thresh, obs_len=obs_len)
44 | return np.any(interaction_matrix)
45 |
46 | ## Category Tags
47 | mult_tag = []
48 | sub_tag = []
49 |
50 | # Static
51 | if euclidean_distance(scene[0][0], scene[0][-1]) < args.static_threshold:
52 | mult_tag.append(1)
53 |
54 | # Linear
55 | elif linear_system(scene, args.obs_len, args.pred_len) < args.linear_threshold:
56 | mult_tag.append(2)
57 |
58 | # Interactions
59 | elif interaction(scene_xy, args.inter_pos_range, args.inter_dist_thresh, args.obs_len) \
60 | or np.any(group(scene_xy, args.grp_dist_thresh, args.grp_std_thresh, args.obs_len)):
61 | mult_tag.append(3)
62 |
63 | # Non-Linear (No explainable reason)
64 | else:
65 | mult_tag.append(4)
66 |
67 | # Interaction Types
68 | if mult_tag[0] == 3:
69 | sub_tag = get_interaction_type(scene_xy, args.inter_pos_range,
70 | args.inter_dist_thresh, args.obs_len)
71 | else:
72 | sub_tag = []
73 |
74 | return mult_tag[0], mult_tag, sub_tag
75 |
76 | def check_collision(scene, n_predictions):
77 | '''
78 | Skip the track if collision occurs between primanry and others
79 | return: True if collision occurs
80 | '''
81 | ped_interest = scene[0]
82 | for ped_other in scene[1:]:
83 | if trajnetplusplustools.metrics.collision(ped_interest, ped_other, n_predictions):
84 | return True
85 | return False
86 |
87 | def add_noise(observation):
88 | ## Last Position Noise
89 | # observation[0][-1] += np.random.uniform(0, 0.04, (2,))
90 |
91 | ## Last Position Noise
92 | thresh = 0.005 ## 0.01 for num_ped 3
93 | observation += np.random.uniform(-thresh, thresh, observation.shape)
94 | return observation
95 |
96 | def orca_validity(scene, goals, pred_len=12, obs_len=9, mode='trajnet', iters=5): #iters 15 for original
97 | '''
98 | Check ORCA can reconstruct scene on rounding (To clean in future)
99 | '''
100 | scene_xy = trajnetplusplustools.Reader.paths_to_xy(scene)
101 | for _ in range(iters):
102 | observation = add_noise(scene_xy[:obs_len].copy())
103 | orca_pred = predict_all(observation, goals, mode, pred_len)
104 | if len(orca_pred[0]) != pred_len:
105 | # print("Length Invalid")
106 | return True
107 | for m, _ in enumerate(orca_pred):
108 | if len(orca_pred[m]) != pred_len:
109 | continue
110 | diff_ade = np.mean(np.linalg.norm(np.array(scene_xy[-pred_len:, m]) - np.array(orca_pred[m]), axis=1))
111 | diff_fde = np.linalg.norm(np.array(scene_xy[-1, m]) - np.array(orca_pred[m][-1]))
112 | if diff_ade > 0.11 or diff_fde > 0.2: ## (0.08, 0.1) for num_ped 3
113 | # print("ORCA Invalid")
114 | return True
115 | return False
116 |
117 | def all_ped_present(scene):
118 | """
119 | Consider only those scenes where all pedestrians are present
120 | Note: Different from removing incomplete trajectories
121 | Useful for generating dataset for fast_parallel code: https://github.com/vita-epfl/trajnetplusplusbaselines/tree/fast_parallel
122 | """
123 | scene_xy = trajnetplusplustools.Reader.paths_to_xy(scene)
124 | return (not np.isnan(scene_xy).any())
125 |
126 | def write(rows, path, new_scenes, new_frames):
127 | """ Writing scenes with categories """
128 | output_path = path.replace('output_pre', 'output')
129 | pysp_tracks = rows.filter(lambda r: r.frame in new_frames).map(trajnetplusplustools.writers.trajnet)
130 | pysp_scenes = pysparkling.Context().parallelize(new_scenes).map(trajnetplusplustools.writers.trajnet)
131 | pysp_scenes.union(pysp_tracks).saveAsTextFile(output_path)
132 |
133 | def trajectory_type(rows, path, fps, track_id=0, args=None):
134 | """ Categorization of all scenes """
135 |
136 | ## Read
137 | reader = trajnetplusplustools.Reader(path, scene_type='paths')
138 | scenes = [s for _, s in reader.scenes()]
139 | ## Filtered Frames and Scenes
140 | new_frames = set()
141 | new_scenes = []
142 |
143 | start_frames = set()
144 | ###########################################################################
145 | # scenes_test helps to handle both test and test_private simultaneously
146 | # scenes_test correspond to Test
147 | ###########################################################################
148 | test = 'test' in path
149 | if test:
150 | path_test = path.replace('test_private', 'test')
151 | reader_test = trajnetplusplustools.Reader(path_test, scene_type='paths')
152 | scenes_test = [s for _, s in reader_test.scenes()]
153 | ## Filtered Test Frames and Test Scenes
154 | new_frames_test = set()
155 | new_scenes_test = []
156 |
157 | ## For ORCA (Sensitivity)
158 | orca_sensitivity = False
159 | if args.goal_file is not None:
160 | goal_dict = pickle.load(open(args.goal_file, "rb"))
161 | orca_sensitivity = True
162 | print("Checking sensitivity to initial conditions")
163 |
164 | ## Initialize Tag Stats to be collected
165 | tags = {1: [], 2: [], 3: [], 4: []}
166 | mult_tags = {1: [], 2: [], 3: [], 4: []}
167 | sub_tags = {1: [], 2: [], 3: [], 4: []}
168 | col_count = 0
169 |
170 | if not scenes:
171 | raise Exception('No scenes found')
172 |
173 | for index, scene in enumerate(scenes):
174 | if (index+1) % 50 == 0:
175 | print(index)
176 |
177 | ## Primary Path
178 | ped_interest = scene[0]
179 |
180 | # if ped_interest[0].frame in start_frames:
181 | # # print("Got common start")
182 | # continue
183 |
184 | # Assert Test Scene length
185 | if test:
186 | assert len(scenes_test[index][0]) >= args.obs_len, \
187 | 'Scene Test not adequate length'
188 |
189 | ## Check Collision
190 | ## Used in CFF Datasets to account for imperfect tracking
191 | # if check_collision(scene, args.pred_len):
192 | # col_count += 1
193 | # continue
194 |
195 | # ## Consider only those scenes where all pedestrians are present
196 | # # Note: Different from removing incomplete trajectories
197 | if args.all_present and (not all_ped_present(scene)):
198 | continue
199 |
200 | ## Get Tag
201 | tag, mult_tag, sub_tag = get_type(scene, args)
202 |
203 | if np.random.uniform() < args.acceptance[tag - 1]:
204 | ## Check Validity
205 | ## Used in ORCA Datasets to account for rounding sensitivity
206 | if orca_sensitivity:
207 | goals = [goal_dict[path[0].pedestrian] for path in scene]
208 | # print('Type III')
209 | if orca_validity(scene, goals, args.pred_len, args.obs_len, args.mode):
210 | col_count += 1
211 | continue
212 |
213 | ## Update Tags
214 | tags[tag].append(track_id)
215 | for tt in mult_tag:
216 | mult_tags[tt].append(track_id)
217 | for st in sub_tag:
218 | sub_tags[st].append(track_id)
219 |
220 | ## Define Scene_Tag
221 | scene_tag = []
222 | scene_tag.append(tag)
223 | scene_tag.append(sub_tag)
224 |
225 | ## Filtered scenes and Frames
226 | # start_frames |= set(ped_interest[i].frame for i in range(len(ped_interest[0:1])))
227 | # print(start_frames)
228 | new_frames |= set(ped_interest[i].frame for i in range(len(ped_interest)))
229 | new_scenes.append(
230 | trajnetplusplustools.data.SceneRow(track_id, ped_interest[0].pedestrian,
231 | ped_interest[0].frame, ped_interest[-1].frame,
232 | fps, scene_tag))
233 |
234 | ## Append to list of scenes_test as well if Test Set
235 | if test:
236 | new_frames_test |= set(ped_interest[i].frame for i in range(args.obs_len))
237 | new_scenes_test.append(
238 | trajnetplusplustools.data.SceneRow(track_id, ped_interest[0].pedestrian,
239 | ped_interest[0].frame, ped_interest[-1].frame,
240 | fps, 0))
241 |
242 | track_id += 1
243 |
244 |
245 | # Writes the Final Scenes and Frames
246 | write(rows, path, new_scenes, new_frames)
247 | if test:
248 | write(rows, path_test, new_scenes_test, new_frames_test)
249 |
250 | ## Stats
251 |
252 | # Number of collisions found
253 | print("Col Count: ", col_count)
254 |
255 | if scenes:
256 | print("Total Scenes: ", index)
257 |
258 | # Types:
259 | print("Main Tags")
260 | print("Type 1: ", len(tags[1]), "Type 2: ", len(tags[2]),
261 | "Type 3: ", len(tags[3]), "Type 4: ", len(tags[4]))
262 | print("Sub Tags")
263 | print("LF: ", len(sub_tags[1]), "CA: ", len(sub_tags[2]),
264 | "Group: ", len(sub_tags[3]), "Others: ", len(sub_tags[4]))
265 |
266 | return track_id
267 |
--------------------------------------------------------------------------------
/trajnetdataset/orca_helper.py:
--------------------------------------------------------------------------------
1 | import rvo2
2 | import numpy as np
3 |
4 | def predict_all(input_paths, goals, mode, pred_length):
5 | fps = 100
6 | sampling_rate = fps / 2.5
7 | if mode == 'trajnet':
8 | sim = rvo2.PyRVOSimulator(1/fps, 4, 10, 4, 5, 0.6, 1.5) ## (TrajNet++)
9 | else:
10 | sim = rvo2.PyRVOSimulator(1/fps, 10, 10, 5, 5, 0.3, 1) ## Default
11 |
12 | # initialize
13 | trajectories = [[(p[0], p[1])] for p in input_paths[-1]]
14 | [sim.addAgent((p[0], p[1])) for p in input_paths[-1]]
15 | num_ped = len(trajectories)
16 |
17 | for i in range(num_ped):
18 | velocity = np.array((input_paths[-1][i][0] - input_paths[-3][i][0], input_paths[-1][i][1] - input_paths[-3][i][1]))
19 | velocity = velocity/0.8
20 | sim.setAgentVelocity(i, tuple(velocity.tolist()))
21 | velocity = np.array((goals[i][0] - input_paths[-1][i][0], goals[i][1] - input_paths[-1][i][1]))
22 | speed = np.linalg.norm(velocity)
23 | pref_vel = 1 * velocity / speed if speed > 1 else velocity
24 | sim.setAgentPrefVelocity(i, tuple(pref_vel.tolist()))
25 |
26 | reaching_goal_by_ped = [False] * num_ped
27 | count = 0
28 | end_range = 1.0
29 | done = False
30 | ##Simulate a scene
31 | while count < sampling_rate * pred_length + 1:
32 | count += 1
33 | sim.doStep()
34 | reaching_goal = []
35 | for i in range(num_ped):
36 | if count == 1:
37 | trajectories[i].pop(0)
38 | position = sim.getAgentPosition(i)
39 |
40 | ## Append only if Goal not reached
41 | if not reaching_goal_by_ped[i]:
42 | if count % sampling_rate == 0:
43 | trajectories[i].append(position)
44 |
45 | # check if this agent reaches the goal
46 | if np.linalg.norm(np.array(position) - np.array(goals[i])) < end_range:
47 | reaching_goal.append(True)
48 | sim.setAgentPrefVelocity(i, (0, 0))
49 | reaching_goal_by_ped[i] = True
50 | else:
51 | reaching_goal.append(False)
52 | velocity = np.array((goals[i][0] - position[0], goals[i][1] - position[1]))
53 | speed = np.linalg.norm(velocity)
54 | pref_vel = 1 * velocity / speed if speed > 1 else velocity
55 | sim.setAgentPrefVelocity(i, tuple(pref_vel.tolist()))
56 |
57 | # states = np.array(trajectories[0])
58 | # return states
59 | return trajectories
--------------------------------------------------------------------------------
/trajnetdataset/readers.py:
--------------------------------------------------------------------------------
1 | """ Read Raw files as TrackRows """
2 |
3 | import json
4 | import os
5 | import xml.etree.ElementTree
6 |
7 | import numpy as np
8 | import scipy.interpolate
9 |
10 | from trajnetplusplustools import TrackRow
11 |
12 |
13 | def biwi(line):
14 | line = [e for e in line.split(' ') if e != '']
15 | return TrackRow(int(float(line[0]) - 1), # shift from 1-index to 0-index
16 | int(float(line[1])),
17 | float(line[2]),
18 | float(line[4]))
19 |
20 | def crowds_interpolate_person(ped_id, person_xyf):
21 | ## Earlier
22 | # xs = np.array([x for x, _, _ in person_xyf]) / 720 * 12 # 0.0167
23 | # ys = np.array([y for _, y, _ in person_xyf]) / 576 * 12 # 0.0208
24 |
25 | ## Pixel-to-meter scale conversion according to
26 | ## https://github.com/agrimgupta92/sgan/issues/5
27 | xs = np.array([x for x, _, _ in person_xyf]) * 0.0210
28 | ys = np.array([y for _, y, _ in person_xyf]) * 0.0239
29 |
30 | fs = np.array([f for _, _, f in person_xyf])
31 |
32 | kind = 'linear'
33 | if len(fs) > 5:
34 | kind = 'cubic'
35 |
36 | x_fn = scipy.interpolate.interp1d(fs, xs, kind=kind)
37 | y_fn = scipy.interpolate.interp1d(fs, ys, kind=kind)
38 |
39 | frames = np.arange(min(fs) // 10 * 10 + 10, max(fs), 10)
40 | return [TrackRow(int(f), ped_id, x, y)
41 | for x, y, f in np.stack([x_fn(frames), y_fn(frames), frames]).T]
42 |
43 |
44 | def crowds(whole_file):
45 | pedestrians = []
46 | current_pedestrian = []
47 | for line in whole_file.split('\n'):
48 | if '- Num of control points' in line or \
49 | '- the number of splines' in line:
50 | if current_pedestrian:
51 | pedestrians.append(current_pedestrian)
52 | current_pedestrian = []
53 | continue
54 |
55 | # strip comments
56 | if ' - ' in line:
57 | line = line[:line.find(' - ')]
58 |
59 | # tokenize
60 | entries = [e for e in line.split(' ') if e]
61 | if len(entries) != 4:
62 | continue
63 |
64 | x, y, f, _ = entries
65 | current_pedestrian.append([float(x), float(y), int(f)])
66 |
67 | if current_pedestrian:
68 | pedestrians.append(current_pedestrian)
69 |
70 | return [row
71 | for i, p in enumerate(pedestrians)
72 | for row in crowds_interpolate_person(i, p)]
73 |
74 |
75 | def mot_xml(file_name):
76 | """PETS2009 dataset.
77 |
78 | Original frame rate is 7 frames / sec.
79 | """
80 | tree = xml.etree.ElementTree.parse(file_name)
81 | root = tree.getroot()
82 | for frame in root:
83 | f = int(frame.attrib['number'])
84 | if f % 2 != 0: # reduce to 3.5 rows / sec
85 | continue
86 |
87 | for ped in frame.find('objectlist'):
88 | p = ped.attrib['id']
89 | box = ped.find('box')
90 | x = box.attrib['xc']
91 | y = box.attrib['yc']
92 |
93 | yield TrackRow(f, int(p), float(x) / 100.0, float(y) / 100.0)
94 |
95 |
96 | def mot(line):
97 | """Line reader for MOT files.
98 |
99 | MOT format:
100 | , , , , , , , , ,
101 | """
102 | line = [e for e in line.split(',') if e != '']
103 | return TrackRow(int(float(line[0])),
104 | int(float(line[1])),
105 | float(line[7]),
106 | float(line[8]))
107 |
108 |
109 | def edinburgh(filename_content_index):
110 | """Edinburgh Informatics Forum data reader.
111 |
112 | Original frame rate is 9fps.
113 | Every pixel corresponds to 24.7mm.
114 | http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/
115 | """
116 | (_, whole_file), index = filename_content_index
117 |
118 | for line in whole_file.splitlines():
119 | line = line.strip()
120 | if not line.startswith('TRACK.R'):
121 | continue
122 |
123 | # get to track id
124 | line = line[7:]
125 | track_id, _, coordinates = line.partition('=')
126 | track_id = int(track_id) + index * 1000000
127 |
128 | # parse track
129 | for coordinates in coordinates.split(';'):
130 | if not coordinates:
131 | continue
132 | x, y, frame = coordinates.strip('[] ').split(' ')
133 | frame = int(frame) + index * 1000000
134 | if frame % 3 != 0: # downsample frame rate
135 | continue
136 | yield TrackRow(frame, track_id, float(x) * 0.0247, float(y) * 0.0247)
137 |
138 |
139 | def syi(filename_content):
140 | """Tracking dataset in Grand Central.
141 |
142 | Yi_Pedestrian_Travel_Time_ICCV_2015_paper.pdf states that original
143 | frame rate is 25fps.
144 |
145 | Input rows are sampled every 20 frames. Assuming 25fps at recording,
146 | need to interpolate an additional row to get to 2.5 rows per second.
147 | """
148 | filename, whole_file = filename_content
149 | track_id = int(os.path.basename(filename).replace('.txt', ''))
150 |
151 | chunk = []
152 | last_row = None
153 | for line in whole_file.split('\n'):
154 | if not line:
155 | continue
156 | chunk.append(int(line))
157 | if len(chunk) < 3:
158 | continue
159 |
160 | # rough approximation of mapping to world coordinates (main concourse is 37m x 84m)
161 | new_row = TrackRow(chunk[2], track_id, chunk[0] * 30.0 / 1920, chunk[1] * 70.0 / 1080)
162 |
163 | # interpolate one row to increase frame rate
164 | if last_row is not None:
165 | interpolated_row = TrackRow(
166 | int((last_row.frame + new_row.frame) / 2),
167 | track_id,
168 | (last_row.x + new_row.x) / 2,
169 | (last_row.y + new_row.y) / 2,
170 | )
171 | yield interpolated_row
172 |
173 | yield new_row
174 | chunk = []
175 | last_row = new_row
176 |
177 |
178 | def dukemtmc(input_array, query_camera=5):
179 | """DukeMTMC dataset.
180 |
181 | Recorded at 59.940059 fps.
182 |
183 | Line format:
184 | [camera, ID, frame, left, top, width, height, worldX, worldY, feetX, feetyY]
185 | """
186 | for line in input_array:
187 | camera, person, frame, _, _, _, _, world_x, world_y, _, _ = line
188 |
189 | camera = int(camera)
190 | if camera != query_camera:
191 | continue
192 |
193 | frame = int(frame)
194 | if frame % 24 != 0:
195 | continue
196 |
197 | yield TrackRow(frame, int(person), world_x, world_y)
198 |
199 |
200 | def wildtrack(filename_content):
201 | filename, content = filename_content
202 |
203 | frame = int(os.path.basename(filename).replace('.json', ''))
204 | for entry in json.loads(content):
205 | ped_id = entry['personID']
206 | position_id = entry['positionID']
207 |
208 | x = -3.0 + 0.025 * (position_id % 480)
209 | y = -9.0 + 0.025 * (position_id / 480)
210 |
211 | yield TrackRow(frame, ped_id, x, y)
212 |
213 |
214 | def trajnet_original(line):
215 | line = [e for e in line.split(' ') if e != '']
216 | return TrackRow(int(float(line[0])),
217 | int(float(line[1])),
218 | float(line[2]),
219 | float(line[3]))
220 |
221 | def cff(line):
222 | line = [e for e in line.split(';') if e != '']
223 |
224 | ## Time Stamp
225 | time = [t for t in line[0].split(':') if t != '']
226 |
227 | ## Check Line Entry Valid
228 | if len(line) != 5:
229 | return None
230 |
231 | ## Check Time Entry Valid
232 | if len(time) != 4:
233 | return None
234 |
235 | ## Check Location
236 | if line[1] != 'PIW':
237 | return None
238 |
239 | ## Check Time Format
240 | if time[0][-3:] == 'T07':
241 | ped_id = int(line[4])
242 | f = 0
243 | elif time[0][-3:] == 'T17':
244 | ped_id = 100000 + int(line[4])
245 | f = 100000
246 | else:
247 | # "Time Format Incorrect"
248 | return None
249 |
250 | ## Extract Frame
251 | f += int(time[-3])*1000 + int(time[-2])*10 + int(time[-1][0])
252 |
253 | if f % 4 == 0:
254 | return TrackRow(f, # shift from 1-index to 0-index
255 | ped_id,
256 | float(line[2])/1000,
257 | float(line[3])/1000)
258 | return None
259 |
260 |
261 | def lcas(line):
262 | line = [e for e in line.split(',') if e != '']
263 | return TrackRow(int(float(line[0])),
264 | int(float(line[1])),
265 | float(line[2]),
266 | float(line[3]))
267 |
268 | def controlled(line):
269 | line = [e for e in line.split(', ') if e != '']
270 | return TrackRow(int(float(line[0])),
271 | int(float(line[1])),
272 | float(line[2]),
273 | float(line[3]))
274 |
275 | def get_trackrows(line):
276 | line = json.loads(line)
277 | track = line.get('track')
278 | if track is not None:
279 | return TrackRow(track['f'], track['p'], track['x'], track['y'],
280 | track.get('prediction_number'))
281 | return None
282 |
283 | def standard(line):
284 | line = [e for e in line.split('\t') if e != '']
285 | return TrackRow(int(float(line[0])),
286 | int(float(line[1])),
287 | float(line[2]),
288 | float(line[3]))
289 |
290 | def car_data(filename_content):
291 | frame_id = int(filename_content[0].split('.')[0].split('/')[-1])
292 | ratio = 5.0 / 162 ## 162 pix = 5 m
293 | lines = filename_content[1].split('\n')
294 | ## First Line: ID, Front1x, Front1y, Front2x, Front2y, Back1x, Back1y, Back2x, Back2y, Type, Occlusion
295 | assert lines[0] == 'ID,Front1x,Front1y,Front2x,Front2y,Back1x,Back1y,Back2x,Back2y,Type,Occlusion'
296 | ## Last Line: ""
297 | assert lines[-1] == ''
298 |
299 | for line in lines[1:-1]:
300 | id_, F1x, F1y, F2x, F2y, B1x, B1y, B2x, B2y, type_, occ = line.split(',')
301 |
302 | if int(type_) != 2:
303 | continue
304 |
305 | if int(frame_id) % 12 != 0:
306 | continue
307 |
308 | yield TrackRow(frame_id, int(id_), ratio * float(F1x), ratio * float(F1y))
309 |
--------------------------------------------------------------------------------
/trajnetdataset/scene.py:
--------------------------------------------------------------------------------
1 | """ Preparng Scenes for TrajNet """
2 | import os
3 | from collections import defaultdict
4 |
5 | import trajnetplusplustools
6 | from trajnetplusplustools import SceneRow
7 |
8 |
9 | class Scenes(object):
10 | def __init__(self, fps, start_scene_id=0, args=None):
11 | self.scene_id = start_scene_id
12 | self.chunk_size = args.obs_len + args.pred_len
13 | self.chunk_stride = args.chunk_stride
14 | self.obs_len = args.obs_len
15 | self.visible_chunk = None
16 | self.frames = set()
17 | self.fps = fps
18 | self.min_length = args.min_length
19 |
20 | @staticmethod
21 | def euclidean_distance_2(row1, row2):
22 | """Euclidean distance squared between two rows."""
23 | return (row1.x - row2.x)**2 + (row1.y - row2.y)**2
24 |
25 | @staticmethod
26 | def close_pedestrians(rows, cell_size=10):
27 | """Fast computation of spatially close pedestrians.
28 |
29 | By frame, get the list of pedestrian ids that or close to other
30 | pedestrians. Approximate with multi-occupancy of discrete grid cells.
31 | """
32 | sparse_occupancy = defaultdict(list)
33 | for row in rows:
34 | x = int(row.x // cell_size * cell_size)
35 | y = int(row.y // cell_size * cell_size)
36 | sparse_occupancy[(x, y)].append(row.pedestrian)
37 | return {ped_id
38 | for cell in sparse_occupancy.values() if len(cell) > 1
39 | for ped_id in cell}
40 |
41 | @staticmethod
42 | def continuous_frames(frames, tolerance=1.5):
43 | increments = [f2 - f1 for f1, f2 in zip(frames[:-1], frames[1:])]
44 | median_increment = sorted(increments)[int(len(increments) / 2)]
45 | ok = median_increment * tolerance > max(increments)
46 |
47 | # if not ok:
48 | # print('!!!!!!!!! DETECTED GAP IN FRAMES')
49 | # print(increments)
50 |
51 | return ok
52 |
53 | def from_rows(self, rows):
54 | count_by_frame = rows.groupBy(lambda r: r.frame).mapValues(len).collectAsMap()
55 | occupancy_by_frame = (rows
56 | .groupBy(lambda r: r.frame)
57 | .mapValues(self.close_pedestrians)
58 | .collectAsMap())
59 |
60 | def to_scene_row(ped_frames):
61 | ped_id, scene_frames = ped_frames
62 | row = SceneRow(self.scene_id, ped_id, scene_frames[0], scene_frames[-1], self.fps, 0)
63 | self.scene_id += 1
64 | return row
65 |
66 | # scenes: pedestrian of interest, [frames]
67 | scenes = (
68 | rows
69 | .groupBy(lambda r: r.pedestrian)
70 | .filter(lambda p_path: len(p_path[1]) >= self.chunk_size)
71 | .mapValues(lambda path: sorted(path, key=lambda p: p.frame))
72 | .flatMapValues(lambda path: [
73 | [path[ii].frame for ii in range(i, i + self.chunk_size)]
74 | for i in range(0, len(path) - self.chunk_size + 1, self.chunk_stride)
75 | # filter for pedestrians moving by more than min_length meter
76 | if self.euclidean_distance_2(path[i], path[i+self.chunk_size-1]) > self.min_length
77 | ])
78 |
79 | # filter out scenes with large gaps in frame numbers
80 | .filter(lambda ped_frames: self.continuous_frames(ped_frames[1]))
81 |
82 | # filter for scenes that have some activity
83 | .filter(lambda ped_frames:
84 | sum(count_by_frame[f] for f in ped_frames[1]) >= 2.0 * self.chunk_size)
85 |
86 | # require some proximity to other pedestrians
87 | .filter(lambda ped_frames:
88 | ped_frames[0] in {p
89 | for frame in ped_frames[1]
90 | for p in occupancy_by_frame[frame]})
91 |
92 | .cache()
93 | )
94 |
95 | self.frames |= set(scenes
96 | .flatMap(lambda ped_frames:
97 | ped_frames[1]
98 | if self.visible_chunk is None
99 | else ped_frames[1][:self.visible_chunk])
100 | .toLocalIterator())
101 |
102 | return scenes.map(to_scene_row)
103 |
104 |
105 | def rows_to_file(self, rows, output_file):
106 | if '/test/' in output_file:
107 | print('Output File: ', output_file)
108 | self.visible_chunk = self.obs_len
109 | else:
110 | self.visible_chunk = None
111 | scenes = self.from_rows(rows)
112 | tracks = rows.filter(lambda r: r.frame in self.frames)
113 | all_data = rows.context.union((scenes, tracks))
114 |
115 | ## removes the file, if previously generated
116 | if os.path.isfile(output_file):
117 | os.remove(output_file)
118 |
119 | ## write scenes and tracks
120 | all_data.map(trajnetplusplustools.writers.trajnet).saveAsTextFile(output_file)
121 |
122 | return self
123 |
--------------------------------------------------------------------------------