├── .gitignore
├── README.md
├── assets
└── Item
│ └── Objectcomponents
│ └── weapon
│ ├── axe_1h_blacksmithing_d_01.blp
│ ├── axe_1h_blacksmithing_d_01.m2
│ ├── axe_1h_blacksmithing_d_01.png
│ └── axe_1h_blacksmithing_d_0100.skin
├── font
├── buttons.eot
├── buttons.svg
├── buttons.ttf
└── buttons.woff
├── images
└── modelviewer.png
├── index.html
└── scripts
├── gl-matrix.js
├── launcher.js
├── m2.js
└── modelviewer.js
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_Store
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | jsWoWModelViewer
2 | ================
3 |
4 | Display World of Warcraft Models (M2) in browser.
5 |
6 | It uses [jBinary](https://github.com/jDataView/jBinary) library for loading & parsing binary data and WebGL for rendering.
7 |
8 | Demo: http://vjeux.github.io/jsWoWModelViewer/
9 |
10 | [](http://vjeux.github.io/jsWoWModelViewer/)
11 |
--------------------------------------------------------------------------------
/assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_01.blp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vjeux/jsWoWModelViewer/fd4f055c60f1c29b11b051727b4a902d32df003e/assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_01.blp
--------------------------------------------------------------------------------
/assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_01.m2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vjeux/jsWoWModelViewer/fd4f055c60f1c29b11b051727b4a902d32df003e/assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_01.m2
--------------------------------------------------------------------------------
/assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vjeux/jsWoWModelViewer/fd4f055c60f1c29b11b051727b4a902d32df003e/assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_01.png
--------------------------------------------------------------------------------
/assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_0100.skin:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vjeux/jsWoWModelViewer/fd4f055c60f1c29b11b051727b4a902d32df003e/assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_0100.skin
--------------------------------------------------------------------------------
/font/buttons.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vjeux/jsWoWModelViewer/fd4f055c60f1c29b11b051727b4a902d32df003e/font/buttons.eot
--------------------------------------------------------------------------------
/font/buttons.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
38 |
--------------------------------------------------------------------------------
/font/buttons.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vjeux/jsWoWModelViewer/fd4f055c60f1c29b11b051727b4a902d32df003e/font/buttons.ttf
--------------------------------------------------------------------------------
/font/buttons.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vjeux/jsWoWModelViewer/fd4f055c60f1c29b11b051727b4a902d32df003e/font/buttons.woff
--------------------------------------------------------------------------------
/images/modelviewer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/vjeux/jsWoWModelViewer/fd4f055c60f1c29b11b051727b4a902d32df003e/images/modelviewer.png
--------------------------------------------------------------------------------
/index.html:
--------------------------------------------------------------------------------
1 |
2 |
3 | JS WoW Model Viewer
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
36 |
37 |
51 |
52 |
124 |
125 |
126 |
127 |
128 | Use your arrow keys and mouse for changing angles.
129 |
130 |
131 |
132 |
133 |
--------------------------------------------------------------------------------
/scripts/gl-matrix.js:
--------------------------------------------------------------------------------
1 | /**
2 | * @fileoverview gl-matrix - High performance matrix and vector operations for WebGL
3 | * @author Brandon Jones
4 | * @author Colin MacKenzie IV
5 | * @version 1.3.7
6 | */
7 |
8 | /*
9 | * Copyright (c) 2012 Brandon Jones, Colin MacKenzie IV
10 | *
11 | * This software is provided 'as-is', without any express or implied
12 | * warranty. In no event will the authors be held liable for any damages
13 | * arising from the use of this software.
14 | *
15 | * Permission is granted to anyone to use this software for any purpose,
16 | * including commercial applications, and to alter it and redistribute it
17 | * freely, subject to the following restrictions:
18 | *
19 | * 1. The origin of this software must not be misrepresented; you must not
20 | * claim that you wrote the original software. If you use this software
21 | * in a product, an acknowledgment in the product documentation would be
22 | * appreciated but is not required.
23 | *
24 | * 2. Altered source versions must be plainly marked as such, and must not
25 | * be misrepresented as being the original software.
26 | *
27 | * 3. This notice may not be removed or altered from any source
28 | * distribution.
29 | */
30 |
31 | // Updated to use a modification of the "returnExportsGlobal" pattern from https://github.com/umdjs/umd
32 |
33 | (function (root, factory) {
34 | if (typeof exports === 'object') {
35 | // Node. Does not work with strict CommonJS, but
36 | // only CommonJS-like enviroments that support module.exports,
37 | // like Node.
38 | module.exports = factory(global);
39 | } else if (typeof define === 'function' && define.amd) {
40 | // AMD. Register as an anonymous module.
41 | define([], function () {
42 | return factory(root);
43 | });
44 | } else {
45 | // Browser globals
46 | factory(root);
47 | }
48 | }(this, function (root) {
49 | "use strict";
50 |
51 | // Tweak to your liking
52 | var FLOAT_EPSILON = 0.000001;
53 |
54 | var glMath = {};
55 | (function() {
56 | if (typeof(Float32Array) != 'undefined') {
57 | var y = new Float32Array(1);
58 | var i = new Int32Array(y.buffer);
59 |
60 | /**
61 | * Fast way to calculate the inverse square root,
62 | * see http://jsperf.com/inverse-square-root/5
63 | *
64 | * If typed arrays are not available, a slower
65 | * implementation will be used.
66 | *
67 | * @param {Number} number the number
68 | * @returns {Number} Inverse square root
69 | */
70 | glMath.invsqrt = function(number) {
71 | var x2 = number * 0.5;
72 | y[0] = number;
73 | var threehalfs = 1.5;
74 |
75 | i[0] = 0x5f3759df - (i[0] >> 1);
76 |
77 | var number2 = y[0];
78 |
79 | return number2 * (threehalfs - (x2 * number2 * number2));
80 | };
81 | } else {
82 | glMath.invsqrt = function(number) { return 1.0 / Math.sqrt(number); };
83 | }
84 | })();
85 |
86 | /**
87 | * @class System-specific optimal array type
88 | * @name MatrixArray
89 | */
90 | var MatrixArray = null;
91 |
92 | // explicitly sets and returns the type of array to use within glMatrix
93 | function setMatrixArrayType(type) {
94 | MatrixArray = type;
95 | return MatrixArray;
96 | }
97 |
98 | // auto-detects and returns the best type of array to use within glMatrix, falling
99 | // back to Array if typed arrays are unsupported
100 | function determineMatrixArrayType() {
101 | MatrixArray = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
102 | return MatrixArray;
103 | }
104 |
105 | determineMatrixArrayType();
106 |
107 | /**
108 | * @class 3 Dimensional Vector
109 | * @name vec3
110 | */
111 | var vec3 = {};
112 |
113 | /**
114 | * Creates a new instance of a vec3 using the default array type
115 | * Any javascript array-like objects containing at least 3 numeric elements can serve as a vec3
116 | *
117 | * @param {vec3} [vec] vec3 containing values to initialize with
118 | *
119 | * @returns {vec3} New vec3
120 | */
121 | vec3.create = function (vec) {
122 | var dest = new MatrixArray(3);
123 |
124 | if (vec) {
125 | dest[0] = vec[0];
126 | dest[1] = vec[1];
127 | dest[2] = vec[2];
128 | } else {
129 | dest[0] = dest[1] = dest[2] = 0;
130 | }
131 |
132 | return dest;
133 | };
134 |
135 | /**
136 | * Creates a new instance of a vec3, initializing it with the given arguments
137 | *
138 | * @param {number} x X value
139 | * @param {number} y Y value
140 | * @param {number} z Z value
141 |
142 | * @returns {vec3} New vec3
143 | */
144 | vec3.createFrom = function (x, y, z) {
145 | var dest = new MatrixArray(3);
146 |
147 | dest[0] = x;
148 | dest[1] = y;
149 | dest[2] = z;
150 |
151 | return dest;
152 | };
153 |
154 | /**
155 | * Copies the values of one vec3 to another
156 | *
157 | * @param {vec3} vec vec3 containing values to copy
158 | * @param {vec3} dest vec3 receiving copied values
159 | *
160 | * @returns {vec3} dest
161 | */
162 | vec3.set = function (vec, dest) {
163 | dest[0] = vec[0];
164 | dest[1] = vec[1];
165 | dest[2] = vec[2];
166 |
167 | return dest;
168 | };
169 |
170 | /**
171 | * Compares two vectors for equality within a certain margin of error
172 | *
173 | * @param {vec3} a First vector
174 | * @param {vec3} b Second vector
175 | *
176 | * @returns {Boolean} True if a is equivalent to b
177 | */
178 | vec3.equal = function (a, b) {
179 | return a === b || (
180 | Math.abs(a[0] - b[0]) < FLOAT_EPSILON &&
181 | Math.abs(a[1] - b[1]) < FLOAT_EPSILON &&
182 | Math.abs(a[2] - b[2]) < FLOAT_EPSILON
183 | );
184 | };
185 |
186 | /**
187 | * Performs a vector addition
188 | *
189 | * @param {vec3} vec First operand
190 | * @param {vec3} vec2 Second operand
191 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
192 | *
193 | * @returns {vec3} dest if specified, vec otherwise
194 | */
195 | vec3.add = function (vec, vec2, dest) {
196 | if (!dest || vec === dest) {
197 | vec[0] += vec2[0];
198 | vec[1] += vec2[1];
199 | vec[2] += vec2[2];
200 | return vec;
201 | }
202 |
203 | dest[0] = vec[0] + vec2[0];
204 | dest[1] = vec[1] + vec2[1];
205 | dest[2] = vec[2] + vec2[2];
206 | return dest;
207 | };
208 |
209 | /**
210 | * Performs a vector subtraction
211 | *
212 | * @param {vec3} vec First operand
213 | * @param {vec3} vec2 Second operand
214 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
215 | *
216 | * @returns {vec3} dest if specified, vec otherwise
217 | */
218 | vec3.subtract = function (vec, vec2, dest) {
219 | if (!dest || vec === dest) {
220 | vec[0] -= vec2[0];
221 | vec[1] -= vec2[1];
222 | vec[2] -= vec2[2];
223 | return vec;
224 | }
225 |
226 | dest[0] = vec[0] - vec2[0];
227 | dest[1] = vec[1] - vec2[1];
228 | dest[2] = vec[2] - vec2[2];
229 | return dest;
230 | };
231 |
232 | /**
233 | * Performs a vector multiplication
234 | *
235 | * @param {vec3} vec First operand
236 | * @param {vec3} vec2 Second operand
237 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
238 | *
239 | * @returns {vec3} dest if specified, vec otherwise
240 | */
241 | vec3.multiply = function (vec, vec2, dest) {
242 | if (!dest || vec === dest) {
243 | vec[0] *= vec2[0];
244 | vec[1] *= vec2[1];
245 | vec[2] *= vec2[2];
246 | return vec;
247 | }
248 |
249 | dest[0] = vec[0] * vec2[0];
250 | dest[1] = vec[1] * vec2[1];
251 | dest[2] = vec[2] * vec2[2];
252 | return dest;
253 | };
254 |
255 | /**
256 | * Negates the components of a vec3
257 | *
258 | * @param {vec3} vec vec3 to negate
259 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
260 | *
261 | * @returns {vec3} dest if specified, vec otherwise
262 | */
263 | vec3.negate = function (vec, dest) {
264 | if (!dest) { dest = vec; }
265 |
266 | dest[0] = -vec[0];
267 | dest[1] = -vec[1];
268 | dest[2] = -vec[2];
269 | return dest;
270 | };
271 |
272 | /**
273 | * Multiplies the components of a vec3 by a scalar value
274 | *
275 | * @param {vec3} vec vec3 to scale
276 | * @param {number} val Value to scale by
277 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
278 | *
279 | * @returns {vec3} dest if specified, vec otherwise
280 | */
281 | vec3.scale = function (vec, val, dest) {
282 | if (!dest || vec === dest) {
283 | vec[0] *= val;
284 | vec[1] *= val;
285 | vec[2] *= val;
286 | return vec;
287 | }
288 |
289 | dest[0] = vec[0] * val;
290 | dest[1] = vec[1] * val;
291 | dest[2] = vec[2] * val;
292 | return dest;
293 | };
294 |
295 | /**
296 | * Generates a unit vector of the same direction as the provided vec3
297 | * If vector length is 0, returns [0, 0, 0]
298 | *
299 | * @param {vec3} vec vec3 to normalize
300 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
301 | *
302 | * @returns {vec3} dest if specified, vec otherwise
303 | */
304 | vec3.normalize = function (vec, dest) {
305 | if (!dest) { dest = vec; }
306 |
307 | var x = vec[0], y = vec[1], z = vec[2],
308 | len = Math.sqrt(x * x + y * y + z * z);
309 |
310 | if (!len) {
311 | dest[0] = 0;
312 | dest[1] = 0;
313 | dest[2] = 0;
314 | return dest;
315 | } else if (len === 1) {
316 | dest[0] = x;
317 | dest[1] = y;
318 | dest[2] = z;
319 | return dest;
320 | }
321 |
322 | len = 1 / len;
323 | dest[0] = x * len;
324 | dest[1] = y * len;
325 | dest[2] = z * len;
326 | return dest;
327 | };
328 |
329 | /**
330 | * Generates the cross product of two vec3s
331 | *
332 | * @param {vec3} vec First operand
333 | * @param {vec3} vec2 Second operand
334 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
335 | *
336 | * @returns {vec3} dest if specified, vec otherwise
337 | */
338 | vec3.cross = function (vec, vec2, dest) {
339 | if (!dest) { dest = vec; }
340 |
341 | var x = vec[0], y = vec[1], z = vec[2],
342 | x2 = vec2[0], y2 = vec2[1], z2 = vec2[2];
343 |
344 | dest[0] = y * z2 - z * y2;
345 | dest[1] = z * x2 - x * z2;
346 | dest[2] = x * y2 - y * x2;
347 | return dest;
348 | };
349 |
350 | /**
351 | * Caclulates the length of a vec3
352 | *
353 | * @param {vec3} vec vec3 to calculate length of
354 | *
355 | * @returns {number} Length of vec
356 | */
357 | vec3.length = function (vec) {
358 | var x = vec[0], y = vec[1], z = vec[2];
359 | return Math.sqrt(x * x + y * y + z * z);
360 | };
361 |
362 | /**
363 | * Caclulates the squared length of a vec3
364 | *
365 | * @param {vec3} vec vec3 to calculate squared length of
366 | *
367 | * @returns {number} Squared Length of vec
368 | */
369 | vec3.squaredLength = function (vec) {
370 | var x = vec[0], y = vec[1], z = vec[2];
371 | return x * x + y * y + z * z;
372 | };
373 |
374 | /**
375 | * Caclulates the dot product of two vec3s
376 | *
377 | * @param {vec3} vec First operand
378 | * @param {vec3} vec2 Second operand
379 | *
380 | * @returns {number} Dot product of vec and vec2
381 | */
382 | vec3.dot = function (vec, vec2) {
383 | return vec[0] * vec2[0] + vec[1] * vec2[1] + vec[2] * vec2[2];
384 | };
385 |
386 | /**
387 | * Generates a unit vector pointing from one vector to another
388 | *
389 | * @param {vec3} vec Origin vec3
390 | * @param {vec3} vec2 vec3 to point to
391 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
392 | *
393 | * @returns {vec3} dest if specified, vec otherwise
394 | */
395 | vec3.direction = function (vec, vec2, dest) {
396 | if (!dest) { dest = vec; }
397 |
398 | var x = vec[0] - vec2[0],
399 | y = vec[1] - vec2[1],
400 | z = vec[2] - vec2[2],
401 | len = Math.sqrt(x * x + y * y + z * z);
402 |
403 | if (!len) {
404 | dest[0] = 0;
405 | dest[1] = 0;
406 | dest[2] = 0;
407 | return dest;
408 | }
409 |
410 | len = 1 / len;
411 | dest[0] = x * len;
412 | dest[1] = y * len;
413 | dest[2] = z * len;
414 | return dest;
415 | };
416 |
417 | /**
418 | * Performs a linear interpolation between two vec3
419 | *
420 | * @param {vec3} vec First vector
421 | * @param {vec3} vec2 Second vector
422 | * @param {number} lerp Interpolation amount between the two inputs
423 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
424 | *
425 | * @returns {vec3} dest if specified, vec otherwise
426 | */
427 | vec3.lerp = function (vec, vec2, lerp, dest) {
428 | if (!dest) { dest = vec; }
429 |
430 | dest[0] = vec[0] + lerp * (vec2[0] - vec[0]);
431 | dest[1] = vec[1] + lerp * (vec2[1] - vec[1]);
432 | dest[2] = vec[2] + lerp * (vec2[2] - vec[2]);
433 |
434 | return dest;
435 | };
436 |
437 | /**
438 | * Calculates the euclidian distance between two vec3
439 | *
440 | * Params:
441 | * @param {vec3} vec First vector
442 | * @param {vec3} vec2 Second vector
443 | *
444 | * @returns {number} Distance between vec and vec2
445 | */
446 | vec3.dist = function (vec, vec2) {
447 | var x = vec2[0] - vec[0],
448 | y = vec2[1] - vec[1],
449 | z = vec2[2] - vec[2];
450 |
451 | return Math.sqrt(x*x + y*y + z*z);
452 | };
453 |
454 | // Pre-allocated to prevent unecessary garbage collection
455 | var unprojectMat = null;
456 | var unprojectVec = new MatrixArray(4);
457 | /**
458 | * Projects the specified vec3 from screen space into object space
459 | * Based on the Mesa gluUnProject implementation
460 | *
461 | * @param {vec3} vec Screen-space vector to project
462 | * @param {mat4} view View matrix
463 | * @param {mat4} proj Projection matrix
464 | * @param {vec4} viewport Viewport as given to gl.viewport [x, y, width, height]
465 | * @param {vec3} [dest] vec3 receiving unprojected result. If not specified result is written to vec
466 | *
467 | * @returns {vec3} dest if specified, vec otherwise
468 | */
469 | vec3.unproject = function (vec, view, proj, viewport, dest) {
470 | if (!dest) { dest = vec; }
471 |
472 | if(!unprojectMat) {
473 | unprojectMat = mat4.create();
474 | }
475 |
476 | var m = unprojectMat;
477 | var v = unprojectVec;
478 |
479 | v[0] = (vec[0] - viewport[0]) * 2.0 / viewport[2] - 1.0;
480 | v[1] = (vec[1] - viewport[1]) * 2.0 / viewport[3] - 1.0;
481 | v[2] = 2.0 * vec[2] - 1.0;
482 | v[3] = 1.0;
483 |
484 | mat4.multiply(proj, view, m);
485 | if(!mat4.inverse(m)) { return null; }
486 |
487 | mat4.multiplyVec4(m, v);
488 | if(v[3] === 0.0) { return null; }
489 |
490 | dest[0] = v[0] / v[3];
491 | dest[1] = v[1] / v[3];
492 | dest[2] = v[2] / v[3];
493 |
494 | return dest;
495 | };
496 |
497 | var xUnitVec3 = vec3.createFrom(1,0,0);
498 | var yUnitVec3 = vec3.createFrom(0,1,0);
499 | var zUnitVec3 = vec3.createFrom(0,0,1);
500 |
501 | var tmpvec3 = vec3.create();
502 | /**
503 | * Generates a quaternion of rotation between two given normalized vectors
504 | *
505 | * @param {vec3} a Normalized source vector
506 | * @param {vec3} b Normalized target vector
507 | * @param {quat4} [dest] quat4 receiving operation result.
508 | *
509 | * @returns {quat4} dest if specified, a new quat4 otherwise
510 | */
511 | vec3.rotationTo = function (a, b, dest) {
512 | if (!dest) { dest = quat4.create(); }
513 |
514 | var d = vec3.dot(a, b);
515 | var axis = tmpvec3;
516 | if (d >= 1.0) {
517 | quat4.set(identityQuat4, dest);
518 | } else if (d < (0.000001 - 1.0)) {
519 | vec3.cross(xUnitVec3, a, axis);
520 | if (vec3.length(axis) < 0.000001)
521 | vec3.cross(yUnitVec3, a, axis);
522 | if (vec3.length(axis) < 0.000001)
523 | vec3.cross(zUnitVec3, a, axis);
524 | vec3.normalize(axis);
525 | quat4.fromAngleAxis(Math.PI, axis, dest);
526 | } else {
527 | var s = Math.sqrt((1.0 + d) * 2.0);
528 | var sInv = 1.0 / s;
529 | vec3.cross(a, b, axis);
530 | dest[0] = axis[0] * sInv;
531 | dest[1] = axis[1] * sInv;
532 | dest[2] = axis[2] * sInv;
533 | dest[3] = s * 0.5;
534 | quat4.normalize(dest);
535 | }
536 | if (dest[3] > 1.0) dest[3] = 1.0;
537 | else if (dest[3] < -1.0) dest[3] = -1.0;
538 | return dest;
539 | };
540 |
541 | /**
542 | * Returns a string representation of a vector
543 | *
544 | * @param {vec3} vec Vector to represent as a string
545 | *
546 | * @returns {string} String representation of vec
547 | */
548 | vec3.str = function (vec) {
549 | return '[' + vec[0] + ', ' + vec[1] + ', ' + vec[2] + ']';
550 | };
551 |
552 | /**
553 | * @class 3x3 Matrix
554 | * @name mat3
555 | */
556 | var mat3 = {};
557 |
558 | /**
559 | * Creates a new instance of a mat3 using the default array type
560 | * Any javascript array-like object containing at least 9 numeric elements can serve as a mat3
561 | *
562 | * @param {mat3} [mat] mat3 containing values to initialize with
563 | *
564 | * @returns {mat3} New mat3
565 | */
566 | mat3.create = function (mat) {
567 | var dest = new MatrixArray(9);
568 |
569 | if (mat) {
570 | dest[0] = mat[0];
571 | dest[1] = mat[1];
572 | dest[2] = mat[2];
573 | dest[3] = mat[3];
574 | dest[4] = mat[4];
575 | dest[5] = mat[5];
576 | dest[6] = mat[6];
577 | dest[7] = mat[7];
578 | dest[8] = mat[8];
579 | } else {
580 | dest[0] = dest[1] =
581 | dest[2] = dest[3] =
582 | dest[4] = dest[5] =
583 | dest[6] = dest[7] =
584 | dest[8] = 0;
585 | }
586 |
587 | return dest;
588 | };
589 |
590 | /**
591 | * Creates a new instance of a mat3, initializing it with the given arguments
592 | *
593 | * @param {number} m00
594 | * @param {number} m01
595 | * @param {number} m02
596 | * @param {number} m10
597 | * @param {number} m11
598 | * @param {number} m12
599 | * @param {number} m20
600 | * @param {number} m21
601 | * @param {number} m22
602 |
603 | * @returns {mat3} New mat3
604 | */
605 | mat3.createFrom = function (m00, m01, m02, m10, m11, m12, m20, m21, m22) {
606 | var dest = new MatrixArray(9);
607 |
608 | dest[0] = m00;
609 | dest[1] = m01;
610 | dest[2] = m02;
611 | dest[3] = m10;
612 | dest[4] = m11;
613 | dest[5] = m12;
614 | dest[6] = m20;
615 | dest[7] = m21;
616 | dest[8] = m22;
617 |
618 | return dest;
619 | };
620 |
621 | /**
622 | * Calculates the determinant of a mat3
623 | *
624 | * @param {mat3} mat mat3 to calculate determinant of
625 | *
626 | * @returns {Number} determinant of mat
627 | */
628 | mat3.determinant = function (mat) {
629 | var a00 = mat[0], a01 = mat[1], a02 = mat[2],
630 | a10 = mat[3], a11 = mat[4], a12 = mat[5],
631 | a20 = mat[6], a21 = mat[7], a22 = mat[8];
632 |
633 | return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
634 | };
635 |
636 | /**
637 | * Calculates the inverse matrix of a mat3
638 | *
639 | * @param {mat3} mat mat3 to calculate inverse of
640 | * @param {mat3} [dest] mat3 receiving inverse matrix. If not specified result is written to mat
641 | *
642 | * @param {mat3} dest is specified, mat otherwise, null if matrix cannot be inverted
643 | */
644 | mat3.inverse = function (mat, dest) {
645 | var a00 = mat[0], a01 = mat[1], a02 = mat[2],
646 | a10 = mat[3], a11 = mat[4], a12 = mat[5],
647 | a20 = mat[6], a21 = mat[7], a22 = mat[8],
648 |
649 | b01 = a22 * a11 - a12 * a21,
650 | b11 = -a22 * a10 + a12 * a20,
651 | b21 = a21 * a10 - a11 * a20,
652 |
653 | d = a00 * b01 + a01 * b11 + a02 * b21,
654 | id;
655 |
656 | if (!d) { return null; }
657 | id = 1 / d;
658 |
659 | if (!dest) { dest = mat3.create(); }
660 |
661 | dest[0] = b01 * id;
662 | dest[1] = (-a22 * a01 + a02 * a21) * id;
663 | dest[2] = (a12 * a01 - a02 * a11) * id;
664 | dest[3] = b11 * id;
665 | dest[4] = (a22 * a00 - a02 * a20) * id;
666 | dest[5] = (-a12 * a00 + a02 * a10) * id;
667 | dest[6] = b21 * id;
668 | dest[7] = (-a21 * a00 + a01 * a20) * id;
669 | dest[8] = (a11 * a00 - a01 * a10) * id;
670 | return dest;
671 | };
672 |
673 | /**
674 | * Performs a matrix multiplication
675 | *
676 | * @param {mat3} mat First operand
677 | * @param {mat3} mat2 Second operand
678 | * @param {mat3} [dest] mat3 receiving operation result. If not specified result is written to mat
679 | *
680 | * @returns {mat3} dest if specified, mat otherwise
681 | */
682 | mat3.multiply = function (mat, mat2, dest) {
683 | if (!dest) { dest = mat; }
684 |
685 |
686 | // Cache the matrix values (makes for huge speed increases!)
687 | var a00 = mat[0], a01 = mat[1], a02 = mat[2],
688 | a10 = mat[3], a11 = mat[4], a12 = mat[5],
689 | a20 = mat[6], a21 = mat[7], a22 = mat[8],
690 |
691 | b00 = mat2[0], b01 = mat2[1], b02 = mat2[2],
692 | b10 = mat2[3], b11 = mat2[4], b12 = mat2[5],
693 | b20 = mat2[6], b21 = mat2[7], b22 = mat2[8];
694 |
695 | dest[0] = b00 * a00 + b01 * a10 + b02 * a20;
696 | dest[1] = b00 * a01 + b01 * a11 + b02 * a21;
697 | dest[2] = b00 * a02 + b01 * a12 + b02 * a22;
698 |
699 | dest[3] = b10 * a00 + b11 * a10 + b12 * a20;
700 | dest[4] = b10 * a01 + b11 * a11 + b12 * a21;
701 | dest[5] = b10 * a02 + b11 * a12 + b12 * a22;
702 |
703 | dest[6] = b20 * a00 + b21 * a10 + b22 * a20;
704 | dest[7] = b20 * a01 + b21 * a11 + b22 * a21;
705 | dest[8] = b20 * a02 + b21 * a12 + b22 * a22;
706 |
707 | return dest;
708 | };
709 |
710 | /**
711 | * Transforms the vec2 according to the given mat3.
712 | *
713 | * @param {mat3} matrix mat3 to multiply against
714 | * @param {vec2} vec the vector to multiply
715 | * @param {vec2} [dest] an optional receiving vector. If not given, vec is used.
716 | *
717 | * @returns {vec2} The multiplication result
718 | **/
719 | mat3.multiplyVec2 = function(matrix, vec, dest) {
720 | if (!dest) dest = vec;
721 | var x = vec[0], y = vec[1];
722 | dest[0] = x * matrix[0] + y * matrix[3] + matrix[6];
723 | dest[1] = x * matrix[1] + y * matrix[4] + matrix[7];
724 | return dest;
725 | };
726 |
727 | /**
728 | * Transforms the vec3 according to the given mat3
729 | *
730 | * @param {mat3} matrix mat3 to multiply against
731 | * @param {vec3} vec the vector to multiply
732 | * @param {vec3} [dest] an optional receiving vector. If not given, vec is used.
733 | *
734 | * @returns {vec3} The multiplication result
735 | **/
736 | mat3.multiplyVec3 = function(matrix, vec, dest) {
737 | if (!dest) dest = vec;
738 | var x = vec[0], y = vec[1], z = vec[2];
739 | dest[0] = x * matrix[0] + y * matrix[3] + z * matrix[6];
740 | dest[1] = x * matrix[1] + y * matrix[4] + z * matrix[7];
741 | dest[2] = x * matrix[2] + y * matrix[5] + z * matrix[8];
742 |
743 | return dest;
744 | };
745 |
746 | /**
747 | * Copies the values of one mat3 to another
748 | *
749 | * @param {mat3} mat mat3 containing values to copy
750 | * @param {mat3} dest mat3 receiving copied values
751 | *
752 | * @returns {mat3} dest
753 | */
754 | mat3.set = function (mat, dest) {
755 | dest[0] = mat[0];
756 | dest[1] = mat[1];
757 | dest[2] = mat[2];
758 | dest[3] = mat[3];
759 | dest[4] = mat[4];
760 | dest[5] = mat[5];
761 | dest[6] = mat[6];
762 | dest[7] = mat[7];
763 | dest[8] = mat[8];
764 | return dest;
765 | };
766 |
767 | /**
768 | * Compares two matrices for equality within a certain margin of error
769 | *
770 | * @param {mat3} a First matrix
771 | * @param {mat3} b Second matrix
772 | *
773 | * @returns {Boolean} True if a is equivalent to b
774 | */
775 | mat3.equal = function (a, b) {
776 | return a === b || (
777 | Math.abs(a[0] - b[0]) < FLOAT_EPSILON &&
778 | Math.abs(a[1] - b[1]) < FLOAT_EPSILON &&
779 | Math.abs(a[2] - b[2]) < FLOAT_EPSILON &&
780 | Math.abs(a[3] - b[3]) < FLOAT_EPSILON &&
781 | Math.abs(a[4] - b[4]) < FLOAT_EPSILON &&
782 | Math.abs(a[5] - b[5]) < FLOAT_EPSILON &&
783 | Math.abs(a[6] - b[6]) < FLOAT_EPSILON &&
784 | Math.abs(a[7] - b[7]) < FLOAT_EPSILON &&
785 | Math.abs(a[8] - b[8]) < FLOAT_EPSILON
786 | );
787 | };
788 |
789 | /**
790 | * Sets a mat3 to an identity matrix
791 | *
792 | * @param {mat3} dest mat3 to set
793 | *
794 | * @returns dest if specified, otherwise a new mat3
795 | */
796 | mat3.identity = function (dest) {
797 | if (!dest) { dest = mat3.create(); }
798 | dest[0] = 1;
799 | dest[1] = 0;
800 | dest[2] = 0;
801 | dest[3] = 0;
802 | dest[4] = 1;
803 | dest[5] = 0;
804 | dest[6] = 0;
805 | dest[7] = 0;
806 | dest[8] = 1;
807 | return dest;
808 | };
809 |
810 | /**
811 | * Transposes a mat3 (flips the values over the diagonal)
812 | *
813 | * Params:
814 | * @param {mat3} mat mat3 to transpose
815 | * @param {mat3} [dest] mat3 receiving transposed values. If not specified result is written to mat
816 | *
817 | * @returns {mat3} dest is specified, mat otherwise
818 | */
819 | mat3.transpose = function (mat, dest) {
820 | // If we are transposing ourselves we can skip a few steps but have to cache some values
821 | if (!dest || mat === dest) {
822 | var a01 = mat[1], a02 = mat[2],
823 | a12 = mat[5];
824 |
825 | mat[1] = mat[3];
826 | mat[2] = mat[6];
827 | mat[3] = a01;
828 | mat[5] = mat[7];
829 | mat[6] = a02;
830 | mat[7] = a12;
831 | return mat;
832 | }
833 |
834 | dest[0] = mat[0];
835 | dest[1] = mat[3];
836 | dest[2] = mat[6];
837 | dest[3] = mat[1];
838 | dest[4] = mat[4];
839 | dest[5] = mat[7];
840 | dest[6] = mat[2];
841 | dest[7] = mat[5];
842 | dest[8] = mat[8];
843 | return dest;
844 | };
845 |
846 | /**
847 | * Copies the elements of a mat3 into the upper 3x3 elements of a mat4
848 | *
849 | * @param {mat3} mat mat3 containing values to copy
850 | * @param {mat4} [dest] mat4 receiving copied values
851 | *
852 | * @returns {mat4} dest if specified, a new mat4 otherwise
853 | */
854 | mat3.toMat4 = function (mat, dest) {
855 | if (!dest) { dest = mat4.create(); }
856 |
857 | dest[15] = 1;
858 | dest[14] = 0;
859 | dest[13] = 0;
860 | dest[12] = 0;
861 |
862 | dest[11] = 0;
863 | dest[10] = mat[8];
864 | dest[9] = mat[7];
865 | dest[8] = mat[6];
866 |
867 | dest[7] = 0;
868 | dest[6] = mat[5];
869 | dest[5] = mat[4];
870 | dest[4] = mat[3];
871 |
872 | dest[3] = 0;
873 | dest[2] = mat[2];
874 | dest[1] = mat[1];
875 | dest[0] = mat[0];
876 |
877 | return dest;
878 | };
879 |
880 | /**
881 | * Returns a string representation of a mat3
882 | *
883 | * @param {mat3} mat mat3 to represent as a string
884 | *
885 | * @param {string} String representation of mat
886 | */
887 | mat3.str = function (mat) {
888 | return '[' + mat[0] + ', ' + mat[1] + ', ' + mat[2] +
889 | ', ' + mat[3] + ', ' + mat[4] + ', ' + mat[5] +
890 | ', ' + mat[6] + ', ' + mat[7] + ', ' + mat[8] + ']';
891 | };
892 |
893 | /**
894 | * @class 4x4 Matrix
895 | * @name mat4
896 | */
897 | var mat4 = {};
898 |
899 | /**
900 | * Creates a new instance of a mat4 using the default array type
901 | * Any javascript array-like object containing at least 16 numeric elements can serve as a mat4
902 | *
903 | * @param {mat4} [mat] mat4 containing values to initialize with
904 | *
905 | * @returns {mat4} New mat4
906 | */
907 | mat4.create = function (mat) {
908 | var dest = new MatrixArray(16);
909 |
910 | if (mat) {
911 | dest[0] = mat[0];
912 | dest[1] = mat[1];
913 | dest[2] = mat[2];
914 | dest[3] = mat[3];
915 | dest[4] = mat[4];
916 | dest[5] = mat[5];
917 | dest[6] = mat[6];
918 | dest[7] = mat[7];
919 | dest[8] = mat[8];
920 | dest[9] = mat[9];
921 | dest[10] = mat[10];
922 | dest[11] = mat[11];
923 | dest[12] = mat[12];
924 | dest[13] = mat[13];
925 | dest[14] = mat[14];
926 | dest[15] = mat[15];
927 | }
928 |
929 | return dest;
930 | };
931 |
932 | /**
933 | * Creates a new instance of a mat4, initializing it with the given arguments
934 | *
935 | * @param {number} m00
936 | * @param {number} m01
937 | * @param {number} m02
938 | * @param {number} m03
939 | * @param {number} m10
940 | * @param {number} m11
941 | * @param {number} m12
942 | * @param {number} m13
943 | * @param {number} m20
944 | * @param {number} m21
945 | * @param {number} m22
946 | * @param {number} m23
947 | * @param {number} m30
948 | * @param {number} m31
949 | * @param {number} m32
950 | * @param {number} m33
951 |
952 | * @returns {mat4} New mat4
953 | */
954 | mat4.createFrom = function (m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
955 | var dest = new MatrixArray(16);
956 |
957 | dest[0] = m00;
958 | dest[1] = m01;
959 | dest[2] = m02;
960 | dest[3] = m03;
961 | dest[4] = m10;
962 | dest[5] = m11;
963 | dest[6] = m12;
964 | dest[7] = m13;
965 | dest[8] = m20;
966 | dest[9] = m21;
967 | dest[10] = m22;
968 | dest[11] = m23;
969 | dest[12] = m30;
970 | dest[13] = m31;
971 | dest[14] = m32;
972 | dest[15] = m33;
973 |
974 | return dest;
975 | };
976 |
977 | /**
978 | * Copies the values of one mat4 to another
979 | *
980 | * @param {mat4} mat mat4 containing values to copy
981 | * @param {mat4} dest mat4 receiving copied values
982 | *
983 | * @returns {mat4} dest
984 | */
985 | mat4.set = function (mat, dest) {
986 | dest[0] = mat[0];
987 | dest[1] = mat[1];
988 | dest[2] = mat[2];
989 | dest[3] = mat[3];
990 | dest[4] = mat[4];
991 | dest[5] = mat[5];
992 | dest[6] = mat[6];
993 | dest[7] = mat[7];
994 | dest[8] = mat[8];
995 | dest[9] = mat[9];
996 | dest[10] = mat[10];
997 | dest[11] = mat[11];
998 | dest[12] = mat[12];
999 | dest[13] = mat[13];
1000 | dest[14] = mat[14];
1001 | dest[15] = mat[15];
1002 | return dest;
1003 | };
1004 |
1005 | /**
1006 | * Compares two matrices for equality within a certain margin of error
1007 | *
1008 | * @param {mat4} a First matrix
1009 | * @param {mat4} b Second matrix
1010 | *
1011 | * @returns {Boolean} True if a is equivalent to b
1012 | */
1013 | mat4.equal = function (a, b) {
1014 | return a === b || (
1015 | Math.abs(a[0] - b[0]) < FLOAT_EPSILON &&
1016 | Math.abs(a[1] - b[1]) < FLOAT_EPSILON &&
1017 | Math.abs(a[2] - b[2]) < FLOAT_EPSILON &&
1018 | Math.abs(a[3] - b[3]) < FLOAT_EPSILON &&
1019 | Math.abs(a[4] - b[4]) < FLOAT_EPSILON &&
1020 | Math.abs(a[5] - b[5]) < FLOAT_EPSILON &&
1021 | Math.abs(a[6] - b[6]) < FLOAT_EPSILON &&
1022 | Math.abs(a[7] - b[7]) < FLOAT_EPSILON &&
1023 | Math.abs(a[8] - b[8]) < FLOAT_EPSILON &&
1024 | Math.abs(a[9] - b[9]) < FLOAT_EPSILON &&
1025 | Math.abs(a[10] - b[10]) < FLOAT_EPSILON &&
1026 | Math.abs(a[11] - b[11]) < FLOAT_EPSILON &&
1027 | Math.abs(a[12] - b[12]) < FLOAT_EPSILON &&
1028 | Math.abs(a[13] - b[13]) < FLOAT_EPSILON &&
1029 | Math.abs(a[14] - b[14]) < FLOAT_EPSILON &&
1030 | Math.abs(a[15] - b[15]) < FLOAT_EPSILON
1031 | );
1032 | };
1033 |
1034 | /**
1035 | * Sets a mat4 to an identity matrix
1036 | *
1037 | * @param {mat4} dest mat4 to set
1038 | *
1039 | * @returns {mat4} dest
1040 | */
1041 | mat4.identity = function (dest) {
1042 | if (!dest) { dest = mat4.create(); }
1043 | dest[0] = 1;
1044 | dest[1] = 0;
1045 | dest[2] = 0;
1046 | dest[3] = 0;
1047 | dest[4] = 0;
1048 | dest[5] = 1;
1049 | dest[6] = 0;
1050 | dest[7] = 0;
1051 | dest[8] = 0;
1052 | dest[9] = 0;
1053 | dest[10] = 1;
1054 | dest[11] = 0;
1055 | dest[12] = 0;
1056 | dest[13] = 0;
1057 | dest[14] = 0;
1058 | dest[15] = 1;
1059 | return dest;
1060 | };
1061 |
1062 | /**
1063 | * Transposes a mat4 (flips the values over the diagonal)
1064 | *
1065 | * @param {mat4} mat mat4 to transpose
1066 | * @param {mat4} [dest] mat4 receiving transposed values. If not specified result is written to mat
1067 | *
1068 | * @param {mat4} dest is specified, mat otherwise
1069 | */
1070 | mat4.transpose = function (mat, dest) {
1071 | // If we are transposing ourselves we can skip a few steps but have to cache some values
1072 | if (!dest || mat === dest) {
1073 | var a01 = mat[1], a02 = mat[2], a03 = mat[3],
1074 | a12 = mat[6], a13 = mat[7],
1075 | a23 = mat[11];
1076 |
1077 | mat[1] = mat[4];
1078 | mat[2] = mat[8];
1079 | mat[3] = mat[12];
1080 | mat[4] = a01;
1081 | mat[6] = mat[9];
1082 | mat[7] = mat[13];
1083 | mat[8] = a02;
1084 | mat[9] = a12;
1085 | mat[11] = mat[14];
1086 | mat[12] = a03;
1087 | mat[13] = a13;
1088 | mat[14] = a23;
1089 | return mat;
1090 | }
1091 |
1092 | dest[0] = mat[0];
1093 | dest[1] = mat[4];
1094 | dest[2] = mat[8];
1095 | dest[3] = mat[12];
1096 | dest[4] = mat[1];
1097 | dest[5] = mat[5];
1098 | dest[6] = mat[9];
1099 | dest[7] = mat[13];
1100 | dest[8] = mat[2];
1101 | dest[9] = mat[6];
1102 | dest[10] = mat[10];
1103 | dest[11] = mat[14];
1104 | dest[12] = mat[3];
1105 | dest[13] = mat[7];
1106 | dest[14] = mat[11];
1107 | dest[15] = mat[15];
1108 | return dest;
1109 | };
1110 |
1111 | /**
1112 | * Calculates the determinant of a mat4
1113 | *
1114 | * @param {mat4} mat mat4 to calculate determinant of
1115 | *
1116 | * @returns {number} determinant of mat
1117 | */
1118 | mat4.determinant = function (mat) {
1119 | // Cache the matrix values (makes for huge speed increases!)
1120 | var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3],
1121 | a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7],
1122 | a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11],
1123 | a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15];
1124 |
1125 | return (a30 * a21 * a12 * a03 - a20 * a31 * a12 * a03 - a30 * a11 * a22 * a03 + a10 * a31 * a22 * a03 +
1126 | a20 * a11 * a32 * a03 - a10 * a21 * a32 * a03 - a30 * a21 * a02 * a13 + a20 * a31 * a02 * a13 +
1127 | a30 * a01 * a22 * a13 - a00 * a31 * a22 * a13 - a20 * a01 * a32 * a13 + a00 * a21 * a32 * a13 +
1128 | a30 * a11 * a02 * a23 - a10 * a31 * a02 * a23 - a30 * a01 * a12 * a23 + a00 * a31 * a12 * a23 +
1129 | a10 * a01 * a32 * a23 - a00 * a11 * a32 * a23 - a20 * a11 * a02 * a33 + a10 * a21 * a02 * a33 +
1130 | a20 * a01 * a12 * a33 - a00 * a21 * a12 * a33 - a10 * a01 * a22 * a33 + a00 * a11 * a22 * a33);
1131 | };
1132 |
1133 | /**
1134 | * Calculates the inverse matrix of a mat4
1135 | *
1136 | * @param {mat4} mat mat4 to calculate inverse of
1137 | * @param {mat4} [dest] mat4 receiving inverse matrix. If not specified result is written to mat
1138 | *
1139 | * @param {mat4} dest is specified, mat otherwise, null if matrix cannot be inverted
1140 | */
1141 | mat4.inverse = function (mat, dest) {
1142 | if (!dest) { dest = mat; }
1143 |
1144 | // Cache the matrix values (makes for huge speed increases!)
1145 | var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3],
1146 | a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7],
1147 | a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11],
1148 | a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15],
1149 |
1150 | b00 = a00 * a11 - a01 * a10,
1151 | b01 = a00 * a12 - a02 * a10,
1152 | b02 = a00 * a13 - a03 * a10,
1153 | b03 = a01 * a12 - a02 * a11,
1154 | b04 = a01 * a13 - a03 * a11,
1155 | b05 = a02 * a13 - a03 * a12,
1156 | b06 = a20 * a31 - a21 * a30,
1157 | b07 = a20 * a32 - a22 * a30,
1158 | b08 = a20 * a33 - a23 * a30,
1159 | b09 = a21 * a32 - a22 * a31,
1160 | b10 = a21 * a33 - a23 * a31,
1161 | b11 = a22 * a33 - a23 * a32,
1162 |
1163 | d = (b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06),
1164 | invDet;
1165 |
1166 | // Calculate the determinant
1167 | if (!d) { return null; }
1168 | invDet = 1 / d;
1169 |
1170 | dest[0] = (a11 * b11 - a12 * b10 + a13 * b09) * invDet;
1171 | dest[1] = (-a01 * b11 + a02 * b10 - a03 * b09) * invDet;
1172 | dest[2] = (a31 * b05 - a32 * b04 + a33 * b03) * invDet;
1173 | dest[3] = (-a21 * b05 + a22 * b04 - a23 * b03) * invDet;
1174 | dest[4] = (-a10 * b11 + a12 * b08 - a13 * b07) * invDet;
1175 | dest[5] = (a00 * b11 - a02 * b08 + a03 * b07) * invDet;
1176 | dest[6] = (-a30 * b05 + a32 * b02 - a33 * b01) * invDet;
1177 | dest[7] = (a20 * b05 - a22 * b02 + a23 * b01) * invDet;
1178 | dest[8] = (a10 * b10 - a11 * b08 + a13 * b06) * invDet;
1179 | dest[9] = (-a00 * b10 + a01 * b08 - a03 * b06) * invDet;
1180 | dest[10] = (a30 * b04 - a31 * b02 + a33 * b00) * invDet;
1181 | dest[11] = (-a20 * b04 + a21 * b02 - a23 * b00) * invDet;
1182 | dest[12] = (-a10 * b09 + a11 * b07 - a12 * b06) * invDet;
1183 | dest[13] = (a00 * b09 - a01 * b07 + a02 * b06) * invDet;
1184 | dest[14] = (-a30 * b03 + a31 * b01 - a32 * b00) * invDet;
1185 | dest[15] = (a20 * b03 - a21 * b01 + a22 * b00) * invDet;
1186 |
1187 | return dest;
1188 | };
1189 |
1190 | /**
1191 | * Copies the upper 3x3 elements of a mat4 into another mat4
1192 | *
1193 | * @param {mat4} mat mat4 containing values to copy
1194 | * @param {mat4} [dest] mat4 receiving copied values
1195 | *
1196 | * @returns {mat4} dest is specified, a new mat4 otherwise
1197 | */
1198 | mat4.toRotationMat = function (mat, dest) {
1199 | if (!dest) { dest = mat4.create(); }
1200 |
1201 | dest[0] = mat[0];
1202 | dest[1] = mat[1];
1203 | dest[2] = mat[2];
1204 | dest[3] = mat[3];
1205 | dest[4] = mat[4];
1206 | dest[5] = mat[5];
1207 | dest[6] = mat[6];
1208 | dest[7] = mat[7];
1209 | dest[8] = mat[8];
1210 | dest[9] = mat[9];
1211 | dest[10] = mat[10];
1212 | dest[11] = mat[11];
1213 | dest[12] = 0;
1214 | dest[13] = 0;
1215 | dest[14] = 0;
1216 | dest[15] = 1;
1217 |
1218 | return dest;
1219 | };
1220 |
1221 | /**
1222 | * Copies the upper 3x3 elements of a mat4 into a mat3
1223 | *
1224 | * @param {mat4} mat mat4 containing values to copy
1225 | * @param {mat3} [dest] mat3 receiving copied values
1226 | *
1227 | * @returns {mat3} dest is specified, a new mat3 otherwise
1228 | */
1229 | mat4.toMat3 = function (mat, dest) {
1230 | if (!dest) { dest = mat3.create(); }
1231 |
1232 | dest[0] = mat[0];
1233 | dest[1] = mat[1];
1234 | dest[2] = mat[2];
1235 | dest[3] = mat[4];
1236 | dest[4] = mat[5];
1237 | dest[5] = mat[6];
1238 | dest[6] = mat[8];
1239 | dest[7] = mat[9];
1240 | dest[8] = mat[10];
1241 |
1242 | return dest;
1243 | };
1244 |
1245 | /**
1246 | * Calculates the inverse of the upper 3x3 elements of a mat4 and copies the result into a mat3
1247 | * The resulting matrix is useful for calculating transformed normals
1248 | *
1249 | * Params:
1250 | * @param {mat4} mat mat4 containing values to invert and copy
1251 | * @param {mat3} [dest] mat3 receiving values
1252 | *
1253 | * @returns {mat3} dest is specified, a new mat3 otherwise, null if the matrix cannot be inverted
1254 | */
1255 | mat4.toInverseMat3 = function (mat, dest) {
1256 | // Cache the matrix values (makes for huge speed increases!)
1257 | var a00 = mat[0], a01 = mat[1], a02 = mat[2],
1258 | a10 = mat[4], a11 = mat[5], a12 = mat[6],
1259 | a20 = mat[8], a21 = mat[9], a22 = mat[10],
1260 |
1261 | b01 = a22 * a11 - a12 * a21,
1262 | b11 = -a22 * a10 + a12 * a20,
1263 | b21 = a21 * a10 - a11 * a20,
1264 |
1265 | d = a00 * b01 + a01 * b11 + a02 * b21,
1266 | id;
1267 |
1268 | if (!d) { return null; }
1269 | id = 1 / d;
1270 |
1271 | if (!dest) { dest = mat3.create(); }
1272 |
1273 | dest[0] = b01 * id;
1274 | dest[1] = (-a22 * a01 + a02 * a21) * id;
1275 | dest[2] = (a12 * a01 - a02 * a11) * id;
1276 | dest[3] = b11 * id;
1277 | dest[4] = (a22 * a00 - a02 * a20) * id;
1278 | dest[5] = (-a12 * a00 + a02 * a10) * id;
1279 | dest[6] = b21 * id;
1280 | dest[7] = (-a21 * a00 + a01 * a20) * id;
1281 | dest[8] = (a11 * a00 - a01 * a10) * id;
1282 |
1283 | return dest;
1284 | };
1285 |
1286 | /**
1287 | * Performs a matrix multiplication
1288 | *
1289 | * @param {mat4} mat First operand
1290 | * @param {mat4} mat2 Second operand
1291 | * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat
1292 | *
1293 | * @returns {mat4} dest if specified, mat otherwise
1294 | */
1295 | mat4.multiply = function (mat, mat2, dest) {
1296 | if (!dest) { dest = mat; }
1297 |
1298 | // Cache the matrix values (makes for huge speed increases!)
1299 | var a00 = mat[ 0], a01 = mat[ 1], a02 = mat[ 2], a03 = mat[3];
1300 | var a10 = mat[ 4], a11 = mat[ 5], a12 = mat[ 6], a13 = mat[7];
1301 | var a20 = mat[ 8], a21 = mat[ 9], a22 = mat[10], a23 = mat[11];
1302 | var a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15];
1303 |
1304 | // Cache only the current line of the second matrix
1305 | var b0 = mat2[0], b1 = mat2[1], b2 = mat2[2], b3 = mat2[3];
1306 | dest[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
1307 | dest[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
1308 | dest[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
1309 | dest[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
1310 |
1311 | b0 = mat2[4];
1312 | b1 = mat2[5];
1313 | b2 = mat2[6];
1314 | b3 = mat2[7];
1315 | dest[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
1316 | dest[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
1317 | dest[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
1318 | dest[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
1319 |
1320 | b0 = mat2[8];
1321 | b1 = mat2[9];
1322 | b2 = mat2[10];
1323 | b3 = mat2[11];
1324 | dest[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
1325 | dest[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
1326 | dest[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
1327 | dest[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
1328 |
1329 | b0 = mat2[12];
1330 | b1 = mat2[13];
1331 | b2 = mat2[14];
1332 | b3 = mat2[15];
1333 | dest[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
1334 | dest[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
1335 | dest[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
1336 | dest[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
1337 |
1338 | return dest;
1339 | };
1340 |
1341 | /**
1342 | * Transforms a vec3 with the given matrix
1343 | * 4th vector component is implicitly '1'
1344 | *
1345 | * @param {mat4} mat mat4 to transform the vector with
1346 | * @param {vec3} vec vec3 to transform
1347 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
1348 | *
1349 | * @returns {vec3} dest if specified, vec otherwise
1350 | */
1351 | mat4.multiplyVec3 = function (mat, vec, dest) {
1352 | if (!dest) { dest = vec; }
1353 |
1354 | var x = vec[0], y = vec[1], z = vec[2];
1355 |
1356 | dest[0] = mat[0] * x + mat[4] * y + mat[8] * z + mat[12];
1357 | dest[1] = mat[1] * x + mat[5] * y + mat[9] * z + mat[13];
1358 | dest[2] = mat[2] * x + mat[6] * y + mat[10] * z + mat[14];
1359 |
1360 | return dest;
1361 | };
1362 |
1363 | /**
1364 | * Transforms a vec4 with the given matrix
1365 | *
1366 | * @param {mat4} mat mat4 to transform the vector with
1367 | * @param {vec4} vec vec4 to transform
1368 | * @param {vec4} [dest] vec4 receiving operation result. If not specified result is written to vec
1369 | *
1370 | * @returns {vec4} dest if specified, vec otherwise
1371 | */
1372 | mat4.multiplyVec4 = function (mat, vec, dest) {
1373 | if (!dest) { dest = vec; }
1374 |
1375 | var x = vec[0], y = vec[1], z = vec[2], w = vec[3];
1376 |
1377 | dest[0] = mat[0] * x + mat[4] * y + mat[8] * z + mat[12] * w;
1378 | dest[1] = mat[1] * x + mat[5] * y + mat[9] * z + mat[13] * w;
1379 | dest[2] = mat[2] * x + mat[6] * y + mat[10] * z + mat[14] * w;
1380 | dest[3] = mat[3] * x + mat[7] * y + mat[11] * z + mat[15] * w;
1381 |
1382 | return dest;
1383 | };
1384 |
1385 | /**
1386 | * Translates a matrix by the given vector
1387 | *
1388 | * @param {mat4} mat mat4 to translate
1389 | * @param {vec3} vec vec3 specifying the translation
1390 | * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat
1391 | *
1392 | * @returns {mat4} dest if specified, mat otherwise
1393 | */
1394 | mat4.translate = function (mat, vec, dest) {
1395 | var x = vec[0], y = vec[1], z = vec[2],
1396 | a00, a01, a02, a03,
1397 | a10, a11, a12, a13,
1398 | a20, a21, a22, a23;
1399 |
1400 | if (!dest || mat === dest) {
1401 | mat[12] = mat[0] * x + mat[4] * y + mat[8] * z + mat[12];
1402 | mat[13] = mat[1] * x + mat[5] * y + mat[9] * z + mat[13];
1403 | mat[14] = mat[2] * x + mat[6] * y + mat[10] * z + mat[14];
1404 | mat[15] = mat[3] * x + mat[7] * y + mat[11] * z + mat[15];
1405 | return mat;
1406 | }
1407 |
1408 | a00 = mat[0]; a01 = mat[1]; a02 = mat[2]; a03 = mat[3];
1409 | a10 = mat[4]; a11 = mat[5]; a12 = mat[6]; a13 = mat[7];
1410 | a20 = mat[8]; a21 = mat[9]; a22 = mat[10]; a23 = mat[11];
1411 |
1412 | dest[0] = a00; dest[1] = a01; dest[2] = a02; dest[3] = a03;
1413 | dest[4] = a10; dest[5] = a11; dest[6] = a12; dest[7] = a13;
1414 | dest[8] = a20; dest[9] = a21; dest[10] = a22; dest[11] = a23;
1415 |
1416 | dest[12] = a00 * x + a10 * y + a20 * z + mat[12];
1417 | dest[13] = a01 * x + a11 * y + a21 * z + mat[13];
1418 | dest[14] = a02 * x + a12 * y + a22 * z + mat[14];
1419 | dest[15] = a03 * x + a13 * y + a23 * z + mat[15];
1420 | return dest;
1421 | };
1422 |
1423 | /**
1424 | * Scales a matrix by the given vector
1425 | *
1426 | * @param {mat4} mat mat4 to scale
1427 | * @param {vec3} vec vec3 specifying the scale for each axis
1428 | * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat
1429 | *
1430 | * @param {mat4} dest if specified, mat otherwise
1431 | */
1432 | mat4.scale = function (mat, vec, dest) {
1433 | var x = vec[0], y = vec[1], z = vec[2];
1434 |
1435 | if (!dest || mat === dest) {
1436 | mat[0] *= x;
1437 | mat[1] *= x;
1438 | mat[2] *= x;
1439 | mat[3] *= x;
1440 | mat[4] *= y;
1441 | mat[5] *= y;
1442 | mat[6] *= y;
1443 | mat[7] *= y;
1444 | mat[8] *= z;
1445 | mat[9] *= z;
1446 | mat[10] *= z;
1447 | mat[11] *= z;
1448 | return mat;
1449 | }
1450 |
1451 | dest[0] = mat[0] * x;
1452 | dest[1] = mat[1] * x;
1453 | dest[2] = mat[2] * x;
1454 | dest[3] = mat[3] * x;
1455 | dest[4] = mat[4] * y;
1456 | dest[5] = mat[5] * y;
1457 | dest[6] = mat[6] * y;
1458 | dest[7] = mat[7] * y;
1459 | dest[8] = mat[8] * z;
1460 | dest[9] = mat[9] * z;
1461 | dest[10] = mat[10] * z;
1462 | dest[11] = mat[11] * z;
1463 | dest[12] = mat[12];
1464 | dest[13] = mat[13];
1465 | dest[14] = mat[14];
1466 | dest[15] = mat[15];
1467 | return dest;
1468 | };
1469 |
1470 | /**
1471 | * Rotates a matrix by the given angle around the specified axis
1472 | * If rotating around a primary axis (X,Y,Z) one of the specialized rotation functions should be used instead for performance
1473 | *
1474 | * @param {mat4} mat mat4 to rotate
1475 | * @param {number} angle Angle (in radians) to rotate
1476 | * @param {vec3} axis vec3 representing the axis to rotate around
1477 | * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat
1478 | *
1479 | * @returns {mat4} dest if specified, mat otherwise
1480 | */
1481 | mat4.rotate = function (mat, angle, axis, dest) {
1482 | var x = axis[0], y = axis[1], z = axis[2],
1483 | len = Math.sqrt(x * x + y * y + z * z),
1484 | s, c, t,
1485 | a00, a01, a02, a03,
1486 | a10, a11, a12, a13,
1487 | a20, a21, a22, a23,
1488 | b00, b01, b02,
1489 | b10, b11, b12,
1490 | b20, b21, b22;
1491 |
1492 | if (!len) { return null; }
1493 | if (len !== 1) {
1494 | len = 1 / len;
1495 | x *= len;
1496 | y *= len;
1497 | z *= len;
1498 | }
1499 |
1500 | s = Math.sin(angle);
1501 | c = Math.cos(angle);
1502 | t = 1 - c;
1503 |
1504 | a00 = mat[0]; a01 = mat[1]; a02 = mat[2]; a03 = mat[3];
1505 | a10 = mat[4]; a11 = mat[5]; a12 = mat[6]; a13 = mat[7];
1506 | a20 = mat[8]; a21 = mat[9]; a22 = mat[10]; a23 = mat[11];
1507 |
1508 | // Construct the elements of the rotation matrix
1509 | b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
1510 | b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
1511 | b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
1512 |
1513 | if (!dest) {
1514 | dest = mat;
1515 | } else if (mat !== dest) { // If the source and destination differ, copy the unchanged last row
1516 | dest[12] = mat[12];
1517 | dest[13] = mat[13];
1518 | dest[14] = mat[14];
1519 | dest[15] = mat[15];
1520 | }
1521 |
1522 | // Perform rotation-specific matrix multiplication
1523 | dest[0] = a00 * b00 + a10 * b01 + a20 * b02;
1524 | dest[1] = a01 * b00 + a11 * b01 + a21 * b02;
1525 | dest[2] = a02 * b00 + a12 * b01 + a22 * b02;
1526 | dest[3] = a03 * b00 + a13 * b01 + a23 * b02;
1527 |
1528 | dest[4] = a00 * b10 + a10 * b11 + a20 * b12;
1529 | dest[5] = a01 * b10 + a11 * b11 + a21 * b12;
1530 | dest[6] = a02 * b10 + a12 * b11 + a22 * b12;
1531 | dest[7] = a03 * b10 + a13 * b11 + a23 * b12;
1532 |
1533 | dest[8] = a00 * b20 + a10 * b21 + a20 * b22;
1534 | dest[9] = a01 * b20 + a11 * b21 + a21 * b22;
1535 | dest[10] = a02 * b20 + a12 * b21 + a22 * b22;
1536 | dest[11] = a03 * b20 + a13 * b21 + a23 * b22;
1537 | return dest;
1538 | };
1539 |
1540 | /**
1541 | * Rotates a matrix by the given angle around the X axis
1542 | *
1543 | * @param {mat4} mat mat4 to rotate
1544 | * @param {number} angle Angle (in radians) to rotate
1545 | * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat
1546 | *
1547 | * @returns {mat4} dest if specified, mat otherwise
1548 | */
1549 | mat4.rotateX = function (mat, angle, dest) {
1550 | var s = Math.sin(angle),
1551 | c = Math.cos(angle),
1552 | a10 = mat[4],
1553 | a11 = mat[5],
1554 | a12 = mat[6],
1555 | a13 = mat[7],
1556 | a20 = mat[8],
1557 | a21 = mat[9],
1558 | a22 = mat[10],
1559 | a23 = mat[11];
1560 |
1561 | if (!dest) {
1562 | dest = mat;
1563 | } else if (mat !== dest) { // If the source and destination differ, copy the unchanged rows
1564 | dest[0] = mat[0];
1565 | dest[1] = mat[1];
1566 | dest[2] = mat[2];
1567 | dest[3] = mat[3];
1568 |
1569 | dest[12] = mat[12];
1570 | dest[13] = mat[13];
1571 | dest[14] = mat[14];
1572 | dest[15] = mat[15];
1573 | }
1574 |
1575 | // Perform axis-specific matrix multiplication
1576 | dest[4] = a10 * c + a20 * s;
1577 | dest[5] = a11 * c + a21 * s;
1578 | dest[6] = a12 * c + a22 * s;
1579 | dest[7] = a13 * c + a23 * s;
1580 |
1581 | dest[8] = a10 * -s + a20 * c;
1582 | dest[9] = a11 * -s + a21 * c;
1583 | dest[10] = a12 * -s + a22 * c;
1584 | dest[11] = a13 * -s + a23 * c;
1585 | return dest;
1586 | };
1587 |
1588 | /**
1589 | * Rotates a matrix by the given angle around the Y axis
1590 | *
1591 | * @param {mat4} mat mat4 to rotate
1592 | * @param {number} angle Angle (in radians) to rotate
1593 | * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat
1594 | *
1595 | * @returns {mat4} dest if specified, mat otherwise
1596 | */
1597 | mat4.rotateY = function (mat, angle, dest) {
1598 | var s = Math.sin(angle),
1599 | c = Math.cos(angle),
1600 | a00 = mat[0],
1601 | a01 = mat[1],
1602 | a02 = mat[2],
1603 | a03 = mat[3],
1604 | a20 = mat[8],
1605 | a21 = mat[9],
1606 | a22 = mat[10],
1607 | a23 = mat[11];
1608 |
1609 | if (!dest) {
1610 | dest = mat;
1611 | } else if (mat !== dest) { // If the source and destination differ, copy the unchanged rows
1612 | dest[4] = mat[4];
1613 | dest[5] = mat[5];
1614 | dest[6] = mat[6];
1615 | dest[7] = mat[7];
1616 |
1617 | dest[12] = mat[12];
1618 | dest[13] = mat[13];
1619 | dest[14] = mat[14];
1620 | dest[15] = mat[15];
1621 | }
1622 |
1623 | // Perform axis-specific matrix multiplication
1624 | dest[0] = a00 * c + a20 * -s;
1625 | dest[1] = a01 * c + a21 * -s;
1626 | dest[2] = a02 * c + a22 * -s;
1627 | dest[3] = a03 * c + a23 * -s;
1628 |
1629 | dest[8] = a00 * s + a20 * c;
1630 | dest[9] = a01 * s + a21 * c;
1631 | dest[10] = a02 * s + a22 * c;
1632 | dest[11] = a03 * s + a23 * c;
1633 | return dest;
1634 | };
1635 |
1636 | /**
1637 | * Rotates a matrix by the given angle around the Z axis
1638 | *
1639 | * @param {mat4} mat mat4 to rotate
1640 | * @param {number} angle Angle (in radians) to rotate
1641 | * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat
1642 | *
1643 | * @returns {mat4} dest if specified, mat otherwise
1644 | */
1645 | mat4.rotateZ = function (mat, angle, dest) {
1646 | var s = Math.sin(angle),
1647 | c = Math.cos(angle),
1648 | a00 = mat[0],
1649 | a01 = mat[1],
1650 | a02 = mat[2],
1651 | a03 = mat[3],
1652 | a10 = mat[4],
1653 | a11 = mat[5],
1654 | a12 = mat[6],
1655 | a13 = mat[7];
1656 |
1657 | if (!dest) {
1658 | dest = mat;
1659 | } else if (mat !== dest) { // If the source and destination differ, copy the unchanged last row
1660 | dest[8] = mat[8];
1661 | dest[9] = mat[9];
1662 | dest[10] = mat[10];
1663 | dest[11] = mat[11];
1664 |
1665 | dest[12] = mat[12];
1666 | dest[13] = mat[13];
1667 | dest[14] = mat[14];
1668 | dest[15] = mat[15];
1669 | }
1670 |
1671 | // Perform axis-specific matrix multiplication
1672 | dest[0] = a00 * c + a10 * s;
1673 | dest[1] = a01 * c + a11 * s;
1674 | dest[2] = a02 * c + a12 * s;
1675 | dest[3] = a03 * c + a13 * s;
1676 |
1677 | dest[4] = a00 * -s + a10 * c;
1678 | dest[5] = a01 * -s + a11 * c;
1679 | dest[6] = a02 * -s + a12 * c;
1680 | dest[7] = a03 * -s + a13 * c;
1681 |
1682 | return dest;
1683 | };
1684 |
1685 | /**
1686 | * Generates a frustum matrix with the given bounds
1687 | *
1688 | * @param {number} left Left bound of the frustum
1689 | * @param {number} right Right bound of the frustum
1690 | * @param {number} bottom Bottom bound of the frustum
1691 | * @param {number} top Top bound of the frustum
1692 | * @param {number} near Near bound of the frustum
1693 | * @param {number} far Far bound of the frustum
1694 | * @param {mat4} [dest] mat4 frustum matrix will be written into
1695 | *
1696 | * @returns {mat4} dest if specified, a new mat4 otherwise
1697 | */
1698 | mat4.frustum = function (left, right, bottom, top, near, far, dest) {
1699 | if (!dest) { dest = mat4.create(); }
1700 | var rl = (right - left),
1701 | tb = (top - bottom),
1702 | fn = (far - near);
1703 | dest[0] = (near * 2) / rl;
1704 | dest[1] = 0;
1705 | dest[2] = 0;
1706 | dest[3] = 0;
1707 | dest[4] = 0;
1708 | dest[5] = (near * 2) / tb;
1709 | dest[6] = 0;
1710 | dest[7] = 0;
1711 | dest[8] = (right + left) / rl;
1712 | dest[9] = (top + bottom) / tb;
1713 | dest[10] = -(far + near) / fn;
1714 | dest[11] = -1;
1715 | dest[12] = 0;
1716 | dest[13] = 0;
1717 | dest[14] = -(far * near * 2) / fn;
1718 | dest[15] = 0;
1719 | return dest;
1720 | };
1721 |
1722 | /**
1723 | * Generates a perspective projection matrix with the given bounds
1724 | *
1725 | * @param {number} fovy Vertical field of view
1726 | * @param {number} aspect Aspect ratio. typically viewport width/height
1727 | * @param {number} near Near bound of the frustum
1728 | * @param {number} far Far bound of the frustum
1729 | * @param {mat4} [dest] mat4 frustum matrix will be written into
1730 | *
1731 | * @returns {mat4} dest if specified, a new mat4 otherwise
1732 | */
1733 | mat4.perspective = function (fovy, aspect, near, far, dest) {
1734 | var top = near * Math.tan(fovy * Math.PI / 360.0),
1735 | right = top * aspect;
1736 | return mat4.frustum(-right, right, -top, top, near, far, dest);
1737 | };
1738 |
1739 | /**
1740 | * Generates a orthogonal projection matrix with the given bounds
1741 | *
1742 | * @param {number} left Left bound of the frustum
1743 | * @param {number} right Right bound of the frustum
1744 | * @param {number} bottom Bottom bound of the frustum
1745 | * @param {number} top Top bound of the frustum
1746 | * @param {number} near Near bound of the frustum
1747 | * @param {number} far Far bound of the frustum
1748 | * @param {mat4} [dest] mat4 frustum matrix will be written into
1749 | *
1750 | * @returns {mat4} dest if specified, a new mat4 otherwise
1751 | */
1752 | mat4.ortho = function (left, right, bottom, top, near, far, dest) {
1753 | if (!dest) { dest = mat4.create(); }
1754 | var rl = (right - left),
1755 | tb = (top - bottom),
1756 | fn = (far - near);
1757 | dest[0] = 2 / rl;
1758 | dest[1] = 0;
1759 | dest[2] = 0;
1760 | dest[3] = 0;
1761 | dest[4] = 0;
1762 | dest[5] = 2 / tb;
1763 | dest[6] = 0;
1764 | dest[7] = 0;
1765 | dest[8] = 0;
1766 | dest[9] = 0;
1767 | dest[10] = -2 / fn;
1768 | dest[11] = 0;
1769 | dest[12] = -(left + right) / rl;
1770 | dest[13] = -(top + bottom) / tb;
1771 | dest[14] = -(far + near) / fn;
1772 | dest[15] = 1;
1773 | return dest;
1774 | };
1775 |
1776 | /**
1777 | * Generates a look-at matrix with the given eye position, focal point, and up axis
1778 | *
1779 | * @param {vec3} eye Position of the viewer
1780 | * @param {vec3} center Point the viewer is looking at
1781 | * @param {vec3} up vec3 pointing "up"
1782 | * @param {mat4} [dest] mat4 frustum matrix will be written into
1783 | *
1784 | * @returns {mat4} dest if specified, a new mat4 otherwise
1785 | */
1786 | mat4.lookAt = function (eye, center, up, dest) {
1787 | if (!dest) { dest = mat4.create(); }
1788 |
1789 | var x0, x1, x2, y0, y1, y2, z0, z1, z2, len,
1790 | eyex = eye[0],
1791 | eyey = eye[1],
1792 | eyez = eye[2],
1793 | upx = up[0],
1794 | upy = up[1],
1795 | upz = up[2],
1796 | centerx = center[0],
1797 | centery = center[1],
1798 | centerz = center[2];
1799 |
1800 | if (eyex === centerx && eyey === centery && eyez === centerz) {
1801 | return mat4.identity(dest);
1802 | }
1803 |
1804 | //vec3.direction(eye, center, z);
1805 | z0 = eyex - centerx;
1806 | z1 = eyey - centery;
1807 | z2 = eyez - centerz;
1808 |
1809 | // normalize (no check needed for 0 because of early return)
1810 | len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
1811 | z0 *= len;
1812 | z1 *= len;
1813 | z2 *= len;
1814 |
1815 | //vec3.normalize(vec3.cross(up, z, x));
1816 | x0 = upy * z2 - upz * z1;
1817 | x1 = upz * z0 - upx * z2;
1818 | x2 = upx * z1 - upy * z0;
1819 | len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
1820 | if (!len) {
1821 | x0 = 0;
1822 | x1 = 0;
1823 | x2 = 0;
1824 | } else {
1825 | len = 1 / len;
1826 | x0 *= len;
1827 | x1 *= len;
1828 | x2 *= len;
1829 | }
1830 |
1831 | //vec3.normalize(vec3.cross(z, x, y));
1832 | y0 = z1 * x2 - z2 * x1;
1833 | y1 = z2 * x0 - z0 * x2;
1834 | y2 = z0 * x1 - z1 * x0;
1835 |
1836 | len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
1837 | if (!len) {
1838 | y0 = 0;
1839 | y1 = 0;
1840 | y2 = 0;
1841 | } else {
1842 | len = 1 / len;
1843 | y0 *= len;
1844 | y1 *= len;
1845 | y2 *= len;
1846 | }
1847 |
1848 | dest[0] = x0;
1849 | dest[1] = y0;
1850 | dest[2] = z0;
1851 | dest[3] = 0;
1852 | dest[4] = x1;
1853 | dest[5] = y1;
1854 | dest[6] = z1;
1855 | dest[7] = 0;
1856 | dest[8] = x2;
1857 | dest[9] = y2;
1858 | dest[10] = z2;
1859 | dest[11] = 0;
1860 | dest[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
1861 | dest[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
1862 | dest[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
1863 | dest[15] = 1;
1864 |
1865 | return dest;
1866 | };
1867 |
1868 | /**
1869 | * Creates a matrix from a quaternion rotation and vector translation
1870 | * This is equivalent to (but much faster than):
1871 | *
1872 | * mat4.identity(dest);
1873 | * mat4.translate(dest, vec);
1874 | * var quatMat = mat4.create();
1875 | * quat4.toMat4(quat, quatMat);
1876 | * mat4.multiply(dest, quatMat);
1877 | *
1878 | * @param {quat4} quat Rotation quaternion
1879 | * @param {vec3} vec Translation vector
1880 | * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to a new mat4
1881 | *
1882 | * @returns {mat4} dest if specified, a new mat4 otherwise
1883 | */
1884 | mat4.fromRotationTranslation = function (quat, vec, dest) {
1885 | if (!dest) { dest = mat4.create(); }
1886 |
1887 | // Quaternion math
1888 | var x = quat[0], y = quat[1], z = quat[2], w = quat[3],
1889 | x2 = x + x,
1890 | y2 = y + y,
1891 | z2 = z + z,
1892 |
1893 | xx = x * x2,
1894 | xy = x * y2,
1895 | xz = x * z2,
1896 | yy = y * y2,
1897 | yz = y * z2,
1898 | zz = z * z2,
1899 | wx = w * x2,
1900 | wy = w * y2,
1901 | wz = w * z2;
1902 |
1903 | dest[0] = 1 - (yy + zz);
1904 | dest[1] = xy + wz;
1905 | dest[2] = xz - wy;
1906 | dest[3] = 0;
1907 | dest[4] = xy - wz;
1908 | dest[5] = 1 - (xx + zz);
1909 | dest[6] = yz + wx;
1910 | dest[7] = 0;
1911 | dest[8] = xz + wy;
1912 | dest[9] = yz - wx;
1913 | dest[10] = 1 - (xx + yy);
1914 | dest[11] = 0;
1915 | dest[12] = vec[0];
1916 | dest[13] = vec[1];
1917 | dest[14] = vec[2];
1918 | dest[15] = 1;
1919 |
1920 | return dest;
1921 | };
1922 |
1923 | /**
1924 | * Returns a string representation of a mat4
1925 | *
1926 | * @param {mat4} mat mat4 to represent as a string
1927 | *
1928 | * @returns {string} String representation of mat
1929 | */
1930 | mat4.str = function (mat) {
1931 | return '[' + mat[0] + ', ' + mat[1] + ', ' + mat[2] + ', ' + mat[3] +
1932 | ', ' + mat[4] + ', ' + mat[5] + ', ' + mat[6] + ', ' + mat[7] +
1933 | ', ' + mat[8] + ', ' + mat[9] + ', ' + mat[10] + ', ' + mat[11] +
1934 | ', ' + mat[12] + ', ' + mat[13] + ', ' + mat[14] + ', ' + mat[15] + ']';
1935 | };
1936 |
1937 | /**
1938 | * @class Quaternion
1939 | * @name quat4
1940 | */
1941 | var quat4 = {};
1942 |
1943 | /**
1944 | * Creates a new instance of a quat4 using the default array type
1945 | * Any javascript array containing at least 4 numeric elements can serve as a quat4
1946 | *
1947 | * @param {quat4} [quat] quat4 containing values to initialize with
1948 | *
1949 | * @returns {quat4} New quat4
1950 | */
1951 | quat4.create = function (quat) {
1952 | var dest = new MatrixArray(4);
1953 |
1954 | if (quat) {
1955 | dest[0] = quat[0];
1956 | dest[1] = quat[1];
1957 | dest[2] = quat[2];
1958 | dest[3] = quat[3];
1959 | } else {
1960 | dest[0] = dest[1] = dest[2] = dest[3] = 0;
1961 | }
1962 |
1963 | return dest;
1964 | };
1965 |
1966 | /**
1967 | * Creates a new instance of a quat4, initializing it with the given arguments
1968 | *
1969 | * @param {number} x X value
1970 | * @param {number} y Y value
1971 | * @param {number} z Z value
1972 | * @param {number} w W value
1973 |
1974 | * @returns {quat4} New quat4
1975 | */
1976 | quat4.createFrom = function (x, y, z, w) {
1977 | var dest = new MatrixArray(4);
1978 |
1979 | dest[0] = x;
1980 | dest[1] = y;
1981 | dest[2] = z;
1982 | dest[3] = w;
1983 |
1984 | return dest;
1985 | };
1986 |
1987 | /**
1988 | * Copies the values of one quat4 to another
1989 | *
1990 | * @param {quat4} quat quat4 containing values to copy
1991 | * @param {quat4} dest quat4 receiving copied values
1992 | *
1993 | * @returns {quat4} dest
1994 | */
1995 | quat4.set = function (quat, dest) {
1996 | dest[0] = quat[0];
1997 | dest[1] = quat[1];
1998 | dest[2] = quat[2];
1999 | dest[3] = quat[3];
2000 |
2001 | return dest;
2002 | };
2003 |
2004 | /**
2005 | * Compares two quaternions for equality within a certain margin of error
2006 | *
2007 | * @param {quat4} a First vector
2008 | * @param {quat4} b Second vector
2009 | *
2010 | * @returns {Boolean} True if a is equivalent to b
2011 | */
2012 | quat4.equal = function (a, b) {
2013 | return a === b || (
2014 | Math.abs(a[0] - b[0]) < FLOAT_EPSILON &&
2015 | Math.abs(a[1] - b[1]) < FLOAT_EPSILON &&
2016 | Math.abs(a[2] - b[2]) < FLOAT_EPSILON &&
2017 | Math.abs(a[3] - b[3]) < FLOAT_EPSILON
2018 | );
2019 | };
2020 |
2021 | /**
2022 | * Creates a new identity Quat4
2023 | *
2024 | * @param {quat4} [dest] quat4 receiving copied values
2025 | *
2026 | * @returns {quat4} dest is specified, new quat4 otherwise
2027 | */
2028 | quat4.identity = function (dest) {
2029 | if (!dest) { dest = quat4.create(); }
2030 | dest[0] = 0;
2031 | dest[1] = 0;
2032 | dest[2] = 0;
2033 | dest[3] = 1;
2034 | return dest;
2035 | };
2036 |
2037 | var identityQuat4 = quat4.identity();
2038 |
2039 | /**
2040 | * Calculates the W component of a quat4 from the X, Y, and Z components.
2041 | * Assumes that quaternion is 1 unit in length.
2042 | * Any existing W component will be ignored.
2043 | *
2044 | * @param {quat4} quat quat4 to calculate W component of
2045 | * @param {quat4} [dest] quat4 receiving calculated values. If not specified result is written to quat
2046 | *
2047 | * @returns {quat4} dest if specified, quat otherwise
2048 | */
2049 | quat4.calculateW = function (quat, dest) {
2050 | var x = quat[0], y = quat[1], z = quat[2];
2051 |
2052 | if (!dest || quat === dest) {
2053 | quat[3] = -Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
2054 | return quat;
2055 | }
2056 | dest[0] = x;
2057 | dest[1] = y;
2058 | dest[2] = z;
2059 | dest[3] = -Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
2060 | return dest;
2061 | };
2062 |
2063 | /**
2064 | * Calculates the dot product of two quaternions
2065 | *
2066 | * @param {quat4} quat First operand
2067 | * @param {quat4} quat2 Second operand
2068 | *
2069 | * @return {number} Dot product of quat and quat2
2070 | */
2071 | quat4.dot = function(quat, quat2){
2072 | return quat[0]*quat2[0] + quat[1]*quat2[1] + quat[2]*quat2[2] + quat[3]*quat2[3];
2073 | };
2074 |
2075 | /**
2076 | * Calculates the inverse of a quat4
2077 | *
2078 | * @param {quat4} quat quat4 to calculate inverse of
2079 | * @param {quat4} [dest] quat4 receiving inverse values. If not specified result is written to quat
2080 | *
2081 | * @returns {quat4} dest if specified, quat otherwise
2082 | */
2083 | quat4.inverse = function(quat, dest) {
2084 | var q0 = quat[0], q1 = quat[1], q2 = quat[2], q3 = quat[3],
2085 | dot = q0*q0 + q1*q1 + q2*q2 + q3*q3,
2086 | invDot = dot ? 1.0/dot : 0;
2087 |
2088 | // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
2089 |
2090 | if(!dest || quat === dest) {
2091 | quat[0] *= -invDot;
2092 | quat[1] *= -invDot;
2093 | quat[2] *= -invDot;
2094 | quat[3] *= invDot;
2095 | return quat;
2096 | }
2097 | dest[0] = -quat[0]*invDot;
2098 | dest[1] = -quat[1]*invDot;
2099 | dest[2] = -quat[2]*invDot;
2100 | dest[3] = quat[3]*invDot;
2101 | return dest;
2102 | };
2103 |
2104 |
2105 | /**
2106 | * Calculates the conjugate of a quat4
2107 | * If the quaternion is normalized, this function is faster than quat4.inverse and produces the same result.
2108 | *
2109 | * @param {quat4} quat quat4 to calculate conjugate of
2110 | * @param {quat4} [dest] quat4 receiving conjugate values. If not specified result is written to quat
2111 | *
2112 | * @returns {quat4} dest if specified, quat otherwise
2113 | */
2114 | quat4.conjugate = function (quat, dest) {
2115 | if (!dest || quat === dest) {
2116 | quat[0] *= -1;
2117 | quat[1] *= -1;
2118 | quat[2] *= -1;
2119 | return quat;
2120 | }
2121 | dest[0] = -quat[0];
2122 | dest[1] = -quat[1];
2123 | dest[2] = -quat[2];
2124 | dest[3] = quat[3];
2125 | return dest;
2126 | };
2127 |
2128 | /**
2129 | * Calculates the length of a quat4
2130 | *
2131 | * Params:
2132 | * @param {quat4} quat quat4 to calculate length of
2133 | *
2134 | * @returns Length of quat
2135 | */
2136 | quat4.length = function (quat) {
2137 | var x = quat[0], y = quat[1], z = quat[2], w = quat[3];
2138 | return Math.sqrt(x * x + y * y + z * z + w * w);
2139 | };
2140 |
2141 | /**
2142 | * Generates a unit quaternion of the same direction as the provided quat4
2143 | * If quaternion length is 0, returns [0, 0, 0, 0]
2144 | *
2145 | * @param {quat4} quat quat4 to normalize
2146 | * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat
2147 | *
2148 | * @returns {quat4} dest if specified, quat otherwise
2149 | */
2150 | quat4.normalize = function (quat, dest) {
2151 | if (!dest) { dest = quat; }
2152 |
2153 | var x = quat[0], y = quat[1], z = quat[2], w = quat[3],
2154 | len = Math.sqrt(x * x + y * y + z * z + w * w);
2155 | if (len === 0) {
2156 | dest[0] = 0;
2157 | dest[1] = 0;
2158 | dest[2] = 0;
2159 | dest[3] = 0;
2160 | return dest;
2161 | }
2162 | len = 1 / len;
2163 | dest[0] = x * len;
2164 | dest[1] = y * len;
2165 | dest[2] = z * len;
2166 | dest[3] = w * len;
2167 |
2168 | return dest;
2169 | };
2170 |
2171 | /**
2172 | * Performs quaternion addition
2173 | *
2174 | * @param {quat4} quat First operand
2175 | * @param {quat4} quat2 Second operand
2176 | * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat
2177 | *
2178 | * @returns {quat4} dest if specified, quat otherwise
2179 | */
2180 | quat4.add = function (quat, quat2, dest) {
2181 | if(!dest || quat === dest) {
2182 | quat[0] += quat2[0];
2183 | quat[1] += quat2[1];
2184 | quat[2] += quat2[2];
2185 | quat[3] += quat2[3];
2186 | return quat;
2187 | }
2188 | dest[0] = quat[0]+quat2[0];
2189 | dest[1] = quat[1]+quat2[1];
2190 | dest[2] = quat[2]+quat2[2];
2191 | dest[3] = quat[3]+quat2[3];
2192 | return dest;
2193 | };
2194 |
2195 | /**
2196 | * Performs a quaternion multiplication
2197 | *
2198 | * @param {quat4} quat First operand
2199 | * @param {quat4} quat2 Second operand
2200 | * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat
2201 | *
2202 | * @returns {quat4} dest if specified, quat otherwise
2203 | */
2204 | quat4.multiply = function (quat, quat2, dest) {
2205 | if (!dest) { dest = quat; }
2206 |
2207 | var qax = quat[0], qay = quat[1], qaz = quat[2], qaw = quat[3],
2208 | qbx = quat2[0], qby = quat2[1], qbz = quat2[2], qbw = quat2[3];
2209 |
2210 | dest[0] = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
2211 | dest[1] = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
2212 | dest[2] = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
2213 | dest[3] = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
2214 |
2215 | return dest;
2216 | };
2217 |
2218 | /**
2219 | * Transforms a vec3 with the given quaternion
2220 | *
2221 | * @param {quat4} quat quat4 to transform the vector with
2222 | * @param {vec3} vec vec3 to transform
2223 | * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec
2224 | *
2225 | * @returns dest if specified, vec otherwise
2226 | */
2227 | quat4.multiplyVec3 = function (quat, vec, dest) {
2228 | if (!dest) { dest = vec; }
2229 |
2230 | var x = vec[0], y = vec[1], z = vec[2],
2231 | qx = quat[0], qy = quat[1], qz = quat[2], qw = quat[3],
2232 |
2233 | // calculate quat * vec
2234 | ix = qw * x + qy * z - qz * y,
2235 | iy = qw * y + qz * x - qx * z,
2236 | iz = qw * z + qx * y - qy * x,
2237 | iw = -qx * x - qy * y - qz * z;
2238 |
2239 | // calculate result * inverse quat
2240 | dest[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
2241 | dest[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
2242 | dest[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
2243 |
2244 | return dest;
2245 | };
2246 |
2247 | /**
2248 | * Multiplies the components of a quaternion by a scalar value
2249 | *
2250 | * @param {quat4} quat to scale
2251 | * @param {number} val Value to scale by
2252 | * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat
2253 | *
2254 | * @returns {quat4} dest if specified, quat otherwise
2255 | */
2256 | quat4.scale = function (quat, val, dest) {
2257 | if(!dest || quat === dest) {
2258 | quat[0] *= val;
2259 | quat[1] *= val;
2260 | quat[2] *= val;
2261 | quat[3] *= val;
2262 | return quat;
2263 | }
2264 | dest[0] = quat[0]*val;
2265 | dest[1] = quat[1]*val;
2266 | dest[2] = quat[2]*val;
2267 | dest[3] = quat[3]*val;
2268 | return dest;
2269 | };
2270 |
2271 | /**
2272 | * Calculates a 3x3 matrix from the given quat4
2273 | *
2274 | * @param {quat4} quat quat4 to create matrix from
2275 | * @param {mat3} [dest] mat3 receiving operation result
2276 | *
2277 | * @returns {mat3} dest if specified, a new mat3 otherwise
2278 | */
2279 | quat4.toMat3 = function (quat, dest) {
2280 | if (!dest) { dest = mat3.create(); }
2281 |
2282 | var x = quat[0], y = quat[1], z = quat[2], w = quat[3],
2283 | x2 = x + x,
2284 | y2 = y + y,
2285 | z2 = z + z,
2286 |
2287 | xx = x * x2,
2288 | xy = x * y2,
2289 | xz = x * z2,
2290 | yy = y * y2,
2291 | yz = y * z2,
2292 | zz = z * z2,
2293 | wx = w * x2,
2294 | wy = w * y2,
2295 | wz = w * z2;
2296 |
2297 | dest[0] = 1 - (yy + zz);
2298 | dest[1] = xy + wz;
2299 | dest[2] = xz - wy;
2300 |
2301 | dest[3] = xy - wz;
2302 | dest[4] = 1 - (xx + zz);
2303 | dest[5] = yz + wx;
2304 |
2305 | dest[6] = xz + wy;
2306 | dest[7] = yz - wx;
2307 | dest[8] = 1 - (xx + yy);
2308 |
2309 | return dest;
2310 | };
2311 |
2312 | /**
2313 | * Calculates a 4x4 matrix from the given quat4
2314 | *
2315 | * @param {quat4} quat quat4 to create matrix from
2316 | * @param {mat4} [dest] mat4 receiving operation result
2317 | *
2318 | * @returns {mat4} dest if specified, a new mat4 otherwise
2319 | */
2320 | quat4.toMat4 = function (quat, dest) {
2321 | if (!dest) { dest = mat4.create(); }
2322 |
2323 | var x = quat[0], y = quat[1], z = quat[2], w = quat[3],
2324 | x2 = x + x,
2325 | y2 = y + y,
2326 | z2 = z + z,
2327 |
2328 | xx = x * x2,
2329 | xy = x * y2,
2330 | xz = x * z2,
2331 | yy = y * y2,
2332 | yz = y * z2,
2333 | zz = z * z2,
2334 | wx = w * x2,
2335 | wy = w * y2,
2336 | wz = w * z2;
2337 |
2338 | dest[0] = 1 - (yy + zz);
2339 | dest[1] = xy + wz;
2340 | dest[2] = xz - wy;
2341 | dest[3] = 0;
2342 |
2343 | dest[4] = xy - wz;
2344 | dest[5] = 1 - (xx + zz);
2345 | dest[6] = yz + wx;
2346 | dest[7] = 0;
2347 |
2348 | dest[8] = xz + wy;
2349 | dest[9] = yz - wx;
2350 | dest[10] = 1 - (xx + yy);
2351 | dest[11] = 0;
2352 |
2353 | dest[12] = 0;
2354 | dest[13] = 0;
2355 | dest[14] = 0;
2356 | dest[15] = 1;
2357 |
2358 | return dest;
2359 | };
2360 |
2361 | /**
2362 | * Performs a spherical linear interpolation between two quat4
2363 | *
2364 | * @param {quat4} quat First quaternion
2365 | * @param {quat4} quat2 Second quaternion
2366 | * @param {number} slerp Interpolation amount between the two inputs
2367 | * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat
2368 | *
2369 | * @returns {quat4} dest if specified, quat otherwise
2370 | */
2371 | quat4.slerp = function (quat, quat2, slerp, dest) {
2372 | if (!dest) { dest = quat; }
2373 |
2374 | var cosHalfTheta = quat[0] * quat2[0] + quat[1] * quat2[1] + quat[2] * quat2[2] + quat[3] * quat2[3],
2375 | halfTheta,
2376 | sinHalfTheta,
2377 | ratioA,
2378 | ratioB;
2379 |
2380 | if (Math.abs(cosHalfTheta) >= 1.0) {
2381 | if (dest !== quat) {
2382 | dest[0] = quat[0];
2383 | dest[1] = quat[1];
2384 | dest[2] = quat[2];
2385 | dest[3] = quat[3];
2386 | }
2387 | return dest;
2388 | }
2389 |
2390 | halfTheta = Math.acos(cosHalfTheta);
2391 | sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta);
2392 |
2393 | if (Math.abs(sinHalfTheta) < 0.001) {
2394 | dest[0] = (quat[0] * 0.5 + quat2[0] * 0.5);
2395 | dest[1] = (quat[1] * 0.5 + quat2[1] * 0.5);
2396 | dest[2] = (quat[2] * 0.5 + quat2[2] * 0.5);
2397 | dest[3] = (quat[3] * 0.5 + quat2[3] * 0.5);
2398 | return dest;
2399 | }
2400 |
2401 | ratioA = Math.sin((1 - slerp) * halfTheta) / sinHalfTheta;
2402 | ratioB = Math.sin(slerp * halfTheta) / sinHalfTheta;
2403 |
2404 | dest[0] = (quat[0] * ratioA + quat2[0] * ratioB);
2405 | dest[1] = (quat[1] * ratioA + quat2[1] * ratioB);
2406 | dest[2] = (quat[2] * ratioA + quat2[2] * ratioB);
2407 | dest[3] = (quat[3] * ratioA + quat2[3] * ratioB);
2408 |
2409 | return dest;
2410 | };
2411 |
2412 | /**
2413 | * Creates a quaternion from the given 3x3 rotation matrix.
2414 | * If dest is omitted, a new quaternion will be created.
2415 | *
2416 | * @param {mat3} mat the rotation matrix
2417 | * @param {quat4} [dest] an optional receiving quaternion
2418 | *
2419 | * @returns {quat4} the quaternion constructed from the rotation matrix
2420 | *
2421 | */
2422 | quat4.fromRotationMatrix = function(mat, dest) {
2423 | if (!dest) dest = quat4.create();
2424 |
2425 | // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
2426 | // article "Quaternion Calculus and Fast Animation".
2427 |
2428 | var fTrace = mat[0] + mat[4] + mat[8];
2429 | var fRoot;
2430 |
2431 | if ( fTrace > 0.0 ) {
2432 | // |w| > 1/2, may as well choose w > 1/2
2433 | fRoot = Math.sqrt(fTrace + 1.0); // 2w
2434 | dest[3] = 0.5 * fRoot;
2435 | fRoot = 0.5/fRoot; // 1/(4w)
2436 | dest[0] = (mat[7]-mat[5])*fRoot;
2437 | dest[1] = (mat[2]-mat[6])*fRoot;
2438 | dest[2] = (mat[3]-mat[1])*fRoot;
2439 | } else {
2440 | // |w| <= 1/2
2441 | var s_iNext = quat4.fromRotationMatrix.s_iNext = quat4.fromRotationMatrix.s_iNext || [1,2,0];
2442 | var i = 0;
2443 | if ( mat[4] > mat[0] )
2444 | i = 1;
2445 | if ( mat[8] > mat[i*3+i] )
2446 | i = 2;
2447 | var j = s_iNext[i];
2448 | var k = s_iNext[j];
2449 |
2450 | fRoot = Math.sqrt(mat[i*3+i]-mat[j*3+j]-mat[k*3+k] + 1.0);
2451 | dest[i] = 0.5 * fRoot;
2452 | fRoot = 0.5 / fRoot;
2453 | dest[3] = (mat[k*3+j] - mat[j*3+k]) * fRoot;
2454 | dest[j] = (mat[j*3+i] + mat[i*3+j]) * fRoot;
2455 | dest[k] = (mat[k*3+i] + mat[i*3+k]) * fRoot;
2456 | }
2457 |
2458 | return dest;
2459 | };
2460 |
2461 | /**
2462 | * Alias. See the description for quat4.fromRotationMatrix().
2463 | */
2464 | mat3.toQuat4 = quat4.fromRotationMatrix;
2465 |
2466 | (function() {
2467 | var mat = mat3.create();
2468 |
2469 | /**
2470 | * Creates a quaternion from the 3 given vectors. They must be perpendicular
2471 | * to one another and represent the X, Y and Z axes.
2472 | *
2473 | * If dest is omitted, a new quat4 will be created.
2474 | *
2475 | * Example: The default OpenGL orientation has a view vector [0, 0, -1],
2476 | * right vector [1, 0, 0], and up vector [0, 1, 0]. A quaternion representing
2477 | * this orientation could be constructed with:
2478 | *
2479 | * quat = quat4.fromAxes([0, 0, -1], [1, 0, 0], [0, 1, 0], quat4.create());
2480 | *
2481 | * @param {vec3} view the view vector, or direction the object is pointing in
2482 | * @param {vec3} right the right vector, or direction to the "right" of the object
2483 | * @param {vec3} up the up vector, or direction towards the object's "up"
2484 | * @param {quat4} [dest] an optional receiving quat4
2485 | *
2486 | * @returns {quat4} dest
2487 | **/
2488 | quat4.fromAxes = function(view, right, up, dest) {
2489 | mat[0] = right[0];
2490 | mat[3] = right[1];
2491 | mat[6] = right[2];
2492 |
2493 | mat[1] = up[0];
2494 | mat[4] = up[1];
2495 | mat[7] = up[2];
2496 |
2497 | mat[2] = view[0];
2498 | mat[5] = view[1];
2499 | mat[8] = view[2];
2500 |
2501 | return quat4.fromRotationMatrix(mat, dest);
2502 | };
2503 | })();
2504 |
2505 | /**
2506 | * Sets a quat4 to the Identity and returns it.
2507 | *
2508 | * @param {quat4} [dest] quat4 to set. If omitted, a
2509 | * new quat4 will be created.
2510 | *
2511 | * @returns {quat4} dest
2512 | */
2513 | quat4.identity = function(dest) {
2514 | if (!dest) dest = quat4.create();
2515 | dest[0] = 0;
2516 | dest[1] = 0;
2517 | dest[2] = 0;
2518 | dest[3] = 1;
2519 | return dest;
2520 | };
2521 |
2522 | /**
2523 | * Sets a quat4 from the given angle and rotation axis,
2524 | * then returns it. If dest is not given, a new quat4 is created.
2525 | *
2526 | * @param {Number} angle the angle in radians
2527 | * @param {vec3} axis the axis around which to rotate
2528 | * @param {quat4} [dest] the optional quat4 to store the result
2529 | *
2530 | * @returns {quat4} dest
2531 | **/
2532 | quat4.fromAngleAxis = function(angle, axis, dest) {
2533 | // The quaternion representing the rotation is
2534 | // q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
2535 | if (!dest) dest = quat4.create();
2536 |
2537 | var half = angle * 0.5;
2538 | var s = Math.sin(half);
2539 | dest[3] = Math.cos(half);
2540 | dest[0] = s * axis[0];
2541 | dest[1] = s * axis[1];
2542 | dest[2] = s * axis[2];
2543 |
2544 | return dest;
2545 | };
2546 |
2547 | /**
2548 | * Stores the angle and axis in a vec4, where the XYZ components represent
2549 | * the axis and the W (4th) component is the angle in radians.
2550 | *
2551 | * If dest is not given, src will be modified in place and returned, after
2552 | * which it should not be considered not a quaternion (just an axis and angle).
2553 | *
2554 | * @param {quat4} quat the quaternion whose angle and axis to store
2555 | * @param {vec4} [dest] the optional vec4 to receive the data
2556 | *
2557 | * @returns {vec4} dest
2558 | */
2559 | quat4.toAngleAxis = function(src, dest) {
2560 | if (!dest) dest = src;
2561 | // The quaternion representing the rotation is
2562 | // q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
2563 |
2564 | var sqrlen = src[0]*src[0]+src[1]*src[1]+src[2]*src[2];
2565 | if (sqrlen > 0)
2566 | {
2567 | dest[3] = 2 * Math.acos(src[3]);
2568 | var invlen = glMath.invsqrt(sqrlen);
2569 | dest[0] = src[0]*invlen;
2570 | dest[1] = src[1]*invlen;
2571 | dest[2] = src[2]*invlen;
2572 | } else {
2573 | // angle is 0 (mod 2*pi), so any axis will do
2574 | dest[3] = 0;
2575 | dest[0] = 1;
2576 | dest[1] = 0;
2577 | dest[2] = 0;
2578 | }
2579 |
2580 | return dest;
2581 | };
2582 |
2583 | /**
2584 | * Returns a string representation of a quaternion
2585 | *
2586 | * @param {quat4} quat quat4 to represent as a string
2587 | *
2588 | * @returns {string} String representation of quat
2589 | */
2590 | quat4.str = function (quat) {
2591 | return '[' + quat[0] + ', ' + quat[1] + ', ' + quat[2] + ', ' + quat[3] + ']';
2592 | };
2593 |
2594 | /**
2595 | * @class 2 Dimensional Vector
2596 | * @name vec2
2597 | */
2598 | var vec2 = {};
2599 |
2600 | /**
2601 | * Creates a new vec2, initializing it from vec if vec
2602 | * is given.
2603 | *
2604 | * @param {vec2} [vec] the vector's initial contents
2605 | * @returns {vec2} a new 2D vector
2606 | */
2607 | vec2.create = function(vec) {
2608 | var dest = new MatrixArray(2);
2609 |
2610 | if (vec) {
2611 | dest[0] = vec[0];
2612 | dest[1] = vec[1];
2613 | } else {
2614 | dest[0] = 0;
2615 | dest[1] = 0;
2616 | }
2617 | return dest;
2618 | };
2619 |
2620 | /**
2621 | * Creates a new instance of a vec2, initializing it with the given arguments
2622 | *
2623 | * @param {number} x X value
2624 | * @param {number} y Y value
2625 |
2626 | * @returns {vec2} New vec2
2627 | */
2628 | vec2.createFrom = function (x, y) {
2629 | var dest = new MatrixArray(2);
2630 |
2631 | dest[0] = x;
2632 | dest[1] = y;
2633 |
2634 | return dest;
2635 | };
2636 |
2637 | /**
2638 | * Adds the vec2's together. If dest is given, the result
2639 | * is stored there. Otherwise, the result is stored in vecB.
2640 | *
2641 | * @param {vec2} vecA the first operand
2642 | * @param {vec2} vecB the second operand
2643 | * @param {vec2} [dest] the optional receiving vector
2644 | * @returns {vec2} dest
2645 | */
2646 | vec2.add = function(vecA, vecB, dest) {
2647 | if (!dest) dest = vecB;
2648 | dest[0] = vecA[0] + vecB[0];
2649 | dest[1] = vecA[1] + vecB[1];
2650 | return dest;
2651 | };
2652 |
2653 | /**
2654 | * Subtracts vecB from vecA. If dest is given, the result
2655 | * is stored there. Otherwise, the result is stored in vecB.
2656 | *
2657 | * @param {vec2} vecA the first operand
2658 | * @param {vec2} vecB the second operand
2659 | * @param {vec2} [dest] the optional receiving vector
2660 | * @returns {vec2} dest
2661 | */
2662 | vec2.subtract = function(vecA, vecB, dest) {
2663 | if (!dest) dest = vecB;
2664 | dest[0] = vecA[0] - vecB[0];
2665 | dest[1] = vecA[1] - vecB[1];
2666 | return dest;
2667 | };
2668 |
2669 | /**
2670 | * Multiplies vecA with vecB. If dest is given, the result
2671 | * is stored there. Otherwise, the result is stored in vecB.
2672 | *
2673 | * @param {vec2} vecA the first operand
2674 | * @param {vec2} vecB the second operand
2675 | * @param {vec2} [dest] the optional receiving vector
2676 | * @returns {vec2} dest
2677 | */
2678 | vec2.multiply = function(vecA, vecB, dest) {
2679 | if (!dest) dest = vecB;
2680 | dest[0] = vecA[0] * vecB[0];
2681 | dest[1] = vecA[1] * vecB[1];
2682 | return dest;
2683 | };
2684 |
2685 | /**
2686 | * Divides vecA by vecB. If dest is given, the result
2687 | * is stored there. Otherwise, the result is stored in vecB.
2688 | *
2689 | * @param {vec2} vecA the first operand
2690 | * @param {vec2} vecB the second operand
2691 | * @param {vec2} [dest] the optional receiving vector
2692 | * @returns {vec2} dest
2693 | */
2694 | vec2.divide = function(vecA, vecB, dest) {
2695 | if (!dest) dest = vecB;
2696 | dest[0] = vecA[0] / vecB[0];
2697 | dest[1] = vecA[1] / vecB[1];
2698 | return dest;
2699 | };
2700 |
2701 | /**
2702 | * Scales vecA by some scalar number. If dest is given, the result
2703 | * is stored there. Otherwise, the result is stored in vecA.
2704 | *
2705 | * This is the same as multiplying each component of vecA
2706 | * by the given scalar.
2707 | *
2708 | * @param {vec2} vecA the vector to be scaled
2709 | * @param {Number} scalar the amount to scale the vector by
2710 | * @param {vec2} [dest] the optional receiving vector
2711 | * @returns {vec2} dest
2712 | */
2713 | vec2.scale = function(vecA, scalar, dest) {
2714 | if (!dest) dest = vecA;
2715 | dest[0] = vecA[0] * scalar;
2716 | dest[1] = vecA[1] * scalar;
2717 | return dest;
2718 | };
2719 |
2720 | /**
2721 | * Calculates the euclidian distance between two vec2
2722 | *
2723 | * Params:
2724 | * @param {vec2} vecA First vector
2725 | * @param {vec2} vecB Second vector
2726 | *
2727 | * @returns {number} Distance between vecA and vecB
2728 | */
2729 | vec2.dist = function (vecA, vecB) {
2730 | var x = vecB[0] - vecA[0],
2731 | y = vecB[1] - vecA[1];
2732 | return Math.sqrt(x*x + y*y);
2733 | };
2734 |
2735 | /**
2736 | * Copies the values of one vec2 to another
2737 | *
2738 | * @param {vec2} vec vec2 containing values to copy
2739 | * @param {vec2} dest vec2 receiving copied values
2740 | *
2741 | * @returns {vec2} dest
2742 | */
2743 | vec2.set = function (vec, dest) {
2744 | dest[0] = vec[0];
2745 | dest[1] = vec[1];
2746 | return dest;
2747 | };
2748 |
2749 | /**
2750 | * Compares two vectors for equality within a certain margin of error
2751 | *
2752 | * @param {vec2} a First vector
2753 | * @param {vec2} b Second vector
2754 | *
2755 | * @returns {Boolean} True if a is equivalent to b
2756 | */
2757 | vec2.equal = function (a, b) {
2758 | return a === b || (
2759 | Math.abs(a[0] - b[0]) < FLOAT_EPSILON &&
2760 | Math.abs(a[1] - b[1]) < FLOAT_EPSILON
2761 | );
2762 | };
2763 |
2764 | /**
2765 | * Negates the components of a vec2
2766 | *
2767 | * @param {vec2} vec vec2 to negate
2768 | * @param {vec2} [dest] vec2 receiving operation result. If not specified result is written to vec
2769 | *
2770 | * @returns {vec2} dest if specified, vec otherwise
2771 | */
2772 | vec2.negate = function (vec, dest) {
2773 | if (!dest) { dest = vec; }
2774 | dest[0] = -vec[0];
2775 | dest[1] = -vec[1];
2776 | return dest;
2777 | };
2778 |
2779 | /**
2780 | * Normlize a vec2
2781 | *
2782 | * @param {vec2} vec vec2 to normalize
2783 | * @param {vec2} [dest] vec2 receiving operation result. If not specified result is written to vec
2784 | *
2785 | * @returns {vec2} dest if specified, vec otherwise
2786 | */
2787 | vec2.normalize = function (vec, dest) {
2788 | if (!dest) { dest = vec; }
2789 | var mag = vec[0] * vec[0] + vec[1] * vec[1];
2790 | if (mag > 0) {
2791 | mag = Math.sqrt(mag);
2792 | dest[0] = vec[0] / mag;
2793 | dest[1] = vec[1] / mag;
2794 | } else {
2795 | dest[0] = dest[1] = 0;
2796 | }
2797 | return dest;
2798 | };
2799 |
2800 | /**
2801 | * Computes the cross product of two vec2's. Note that the cross product must by definition
2802 | * produce a 3D vector. If a dest vector is given, it will contain the resultant 3D vector.
2803 | * Otherwise, a scalar number will be returned, representing the vector's Z coordinate, since
2804 | * its X and Y must always equal 0.
2805 | *
2806 | * Examples:
2807 | * var crossResult = vec3.create();
2808 | * vec2.cross([1, 2], [3, 4], crossResult);
2809 | * //=> [0, 0, -2]
2810 | *
2811 | * vec2.cross([1, 2], [3, 4]);
2812 | * //=> -2
2813 | *
2814 | * See http://stackoverflow.com/questions/243945/calculating-a-2d-vectors-cross-product
2815 | * for some interesting facts.
2816 | *
2817 | * @param {vec2} vecA left operand
2818 | * @param {vec2} vecB right operand
2819 | * @param {vec2} [dest] optional vec2 receiving result. If not specified a scalar is returned
2820 | *
2821 | */
2822 | vec2.cross = function (vecA, vecB, dest) {
2823 | var z = vecA[0] * vecB[1] - vecA[1] * vecB[0];
2824 | if (!dest) return z;
2825 | dest[0] = dest[1] = 0;
2826 | dest[2] = z;
2827 | return dest;
2828 | };
2829 |
2830 | /**
2831 | * Caclulates the length of a vec2
2832 | *
2833 | * @param {vec2} vec vec2 to calculate length of
2834 | *
2835 | * @returns {Number} Length of vec
2836 | */
2837 | vec2.length = function (vec) {
2838 | var x = vec[0], y = vec[1];
2839 | return Math.sqrt(x * x + y * y);
2840 | };
2841 |
2842 | /**
2843 | * Caclulates the squared length of a vec2
2844 | *
2845 | * @param {vec2} vec vec2 to calculate squared length of
2846 | *
2847 | * @returns {Number} Squared Length of vec
2848 | */
2849 | vec2.squaredLength = function (vec) {
2850 | var x = vec[0], y = vec[1];
2851 | return x * x + y * y;
2852 | };
2853 |
2854 | /**
2855 | * Caclulates the dot product of two vec2s
2856 | *
2857 | * @param {vec2} vecA First operand
2858 | * @param {vec2} vecB Second operand
2859 | *
2860 | * @returns {Number} Dot product of vecA and vecB
2861 | */
2862 | vec2.dot = function (vecA, vecB) {
2863 | return vecA[0] * vecB[0] + vecA[1] * vecB[1];
2864 | };
2865 |
2866 | /**
2867 | * Generates a 2D unit vector pointing from one vector to another
2868 | *
2869 | * @param {vec2} vecA Origin vec2
2870 | * @param {vec2} vecB vec2 to point to
2871 | * @param {vec2} [dest] vec2 receiving operation result. If not specified result is written to vecA
2872 | *
2873 | * @returns {vec2} dest if specified, vecA otherwise
2874 | */
2875 | vec2.direction = function (vecA, vecB, dest) {
2876 | if (!dest) { dest = vecA; }
2877 |
2878 | var x = vecA[0] - vecB[0],
2879 | y = vecA[1] - vecB[1],
2880 | len = x * x + y * y;
2881 |
2882 | if (!len) {
2883 | dest[0] = 0;
2884 | dest[1] = 0;
2885 | dest[2] = 0;
2886 | return dest;
2887 | }
2888 |
2889 | len = 1 / Math.sqrt(len);
2890 | dest[0] = x * len;
2891 | dest[1] = y * len;
2892 | return dest;
2893 | };
2894 |
2895 | /**
2896 | * Performs a linear interpolation between two vec2
2897 | *
2898 | * @param {vec2} vecA First vector
2899 | * @param {vec2} vecB Second vector
2900 | * @param {Number} lerp Interpolation amount between the two inputs
2901 | * @param {vec2} [dest] vec2 receiving operation result. If not specified result is written to vecA
2902 | *
2903 | * @returns {vec2} dest if specified, vecA otherwise
2904 | */
2905 | vec2.lerp = function (vecA, vecB, lerp, dest) {
2906 | if (!dest) { dest = vecA; }
2907 | dest[0] = vecA[0] + lerp * (vecB[0] - vecA[0]);
2908 | dest[1] = vecA[1] + lerp * (vecB[1] - vecA[1]);
2909 | return dest;
2910 | };
2911 |
2912 | /**
2913 | * Returns a string representation of a vector
2914 | *
2915 | * @param {vec2} vec Vector to represent as a string
2916 | *
2917 | * @returns {String} String representation of vec
2918 | */
2919 | vec2.str = function (vec) {
2920 | return '[' + vec[0] + ', ' + vec[1] + ']';
2921 | };
2922 |
2923 | /**
2924 | * @class 2x2 Matrix
2925 | * @name mat2
2926 | */
2927 | var mat2 = {};
2928 |
2929 | /**
2930 | * Creates a new 2x2 matrix. If src is given, the new matrix
2931 | * is initialized to those values.
2932 | *
2933 | * @param {mat2} [src] the seed values for the new matrix, if any
2934 | * @returns {mat2} a new matrix
2935 | */
2936 | mat2.create = function(src) {
2937 | var dest = new MatrixArray(4);
2938 |
2939 | if (src) {
2940 | dest[0] = src[0];
2941 | dest[1] = src[1];
2942 | dest[2] = src[2];
2943 | dest[3] = src[3];
2944 | } else {
2945 | dest[0] = dest[1] = dest[2] = dest[3] = 0;
2946 | }
2947 | return dest;
2948 | };
2949 |
2950 | /**
2951 | * Creates a new instance of a mat2, initializing it with the given arguments
2952 | *
2953 | * @param {number} m00
2954 | * @param {number} m01
2955 | * @param {number} m10
2956 | * @param {number} m11
2957 |
2958 | * @returns {mat2} New mat2
2959 | */
2960 | mat2.createFrom = function (m00, m01, m10, m11) {
2961 | var dest = new MatrixArray(4);
2962 |
2963 | dest[0] = m00;
2964 | dest[1] = m01;
2965 | dest[2] = m10;
2966 | dest[3] = m11;
2967 |
2968 | return dest;
2969 | };
2970 |
2971 | /**
2972 | * Copies the values of one mat2 to another
2973 | *
2974 | * @param {mat2} mat mat2 containing values to copy
2975 | * @param {mat2} dest mat2 receiving copied values
2976 | *
2977 | * @returns {mat2} dest
2978 | */
2979 | mat2.set = function (mat, dest) {
2980 | dest[0] = mat[0];
2981 | dest[1] = mat[1];
2982 | dest[2] = mat[2];
2983 | dest[3] = mat[3];
2984 | return dest;
2985 | };
2986 |
2987 | /**
2988 | * Compares two matrices for equality within a certain margin of error
2989 | *
2990 | * @param {mat2} a First matrix
2991 | * @param {mat2} b Second matrix
2992 | *
2993 | * @returns {Boolean} True if a is equivalent to b
2994 | */
2995 | mat2.equal = function (a, b) {
2996 | return a === b || (
2997 | Math.abs(a[0] - b[0]) < FLOAT_EPSILON &&
2998 | Math.abs(a[1] - b[1]) < FLOAT_EPSILON &&
2999 | Math.abs(a[2] - b[2]) < FLOAT_EPSILON &&
3000 | Math.abs(a[3] - b[3]) < FLOAT_EPSILON
3001 | );
3002 | };
3003 |
3004 | /**
3005 | * Sets a mat2 to an identity matrix
3006 | *
3007 | * @param {mat2} [dest] mat2 to set. If omitted a new one will be created.
3008 | *
3009 | * @returns {mat2} dest
3010 | */
3011 | mat2.identity = function (dest) {
3012 | if (!dest) { dest = mat2.create(); }
3013 | dest[0] = 1;
3014 | dest[1] = 0;
3015 | dest[2] = 0;
3016 | dest[3] = 1;
3017 | return dest;
3018 | };
3019 |
3020 | /**
3021 | * Transposes a mat2 (flips the values over the diagonal)
3022 | *
3023 | * @param {mat2} mat mat2 to transpose
3024 | * @param {mat2} [dest] mat2 receiving transposed values. If not specified result is written to mat
3025 | *
3026 | * @param {mat2} dest if specified, mat otherwise
3027 | */
3028 | mat2.transpose = function (mat, dest) {
3029 | // If we are transposing ourselves we can skip a few steps but have to cache some values
3030 | if (!dest || mat === dest) {
3031 | var a00 = mat[1];
3032 | mat[1] = mat[2];
3033 | mat[2] = a00;
3034 | return mat;
3035 | }
3036 |
3037 | dest[0] = mat[0];
3038 | dest[1] = mat[2];
3039 | dest[2] = mat[1];
3040 | dest[3] = mat[3];
3041 | return dest;
3042 | };
3043 |
3044 | /**
3045 | * Calculates the determinant of a mat2
3046 | *
3047 | * @param {mat2} mat mat2 to calculate determinant of
3048 | *
3049 | * @returns {Number} determinant of mat
3050 | */
3051 | mat2.determinant = function (mat) {
3052 | return mat[0] * mat[3] - mat[2] * mat[1];
3053 | };
3054 |
3055 | /**
3056 | * Calculates the inverse matrix of a mat2
3057 | *
3058 | * @param {mat2} mat mat2 to calculate inverse of
3059 | * @param {mat2} [dest] mat2 receiving inverse matrix. If not specified result is written to mat
3060 | *
3061 | * @param {mat2} dest is specified, mat otherwise, null if matrix cannot be inverted
3062 | */
3063 | mat2.inverse = function (mat, dest) {
3064 | if (!dest) { dest = mat; }
3065 | var a0 = mat[0], a1 = mat[1], a2 = mat[2], a3 = mat[3];
3066 | var det = a0 * a3 - a2 * a1;
3067 | if (!det) return null;
3068 |
3069 | det = 1.0 / det;
3070 | dest[0] = a3 * det;
3071 | dest[1] = -a1 * det;
3072 | dest[2] = -a2 * det;
3073 | dest[3] = a0 * det;
3074 | return dest;
3075 | };
3076 |
3077 | /**
3078 | * Performs a matrix multiplication
3079 | *
3080 | * @param {mat2} matA First operand
3081 | * @param {mat2} matB Second operand
3082 | * @param {mat2} [dest] mat2 receiving operation result. If not specified result is written to matA
3083 | *
3084 | * @returns {mat2} dest if specified, matA otherwise
3085 | */
3086 | mat2.multiply = function (matA, matB, dest) {
3087 | if (!dest) { dest = matA; }
3088 | var a11 = matA[0],
3089 | a12 = matA[1],
3090 | a21 = matA[2],
3091 | a22 = matA[3];
3092 | dest[0] = a11 * matB[0] + a12 * matB[2];
3093 | dest[1] = a11 * matB[1] + a12 * matB[3];
3094 | dest[2] = a21 * matB[0] + a22 * matB[2];
3095 | dest[3] = a21 * matB[1] + a22 * matB[3];
3096 | return dest;
3097 | };
3098 |
3099 | /**
3100 | * Rotates a 2x2 matrix by an angle
3101 | *
3102 | * @param {mat2} mat The matrix to rotate
3103 | * @param {Number} angle The angle in radians
3104 | * @param {mat2} [dest] Optional mat2 receiving the result. If omitted mat will be used.
3105 | *
3106 | * @returns {mat2} dest if specified, mat otherwise
3107 | */
3108 | mat2.rotate = function (mat, angle, dest) {
3109 | if (!dest) { dest = mat; }
3110 | var a11 = mat[0],
3111 | a12 = mat[1],
3112 | a21 = mat[2],
3113 | a22 = mat[3],
3114 | s = Math.sin(angle),
3115 | c = Math.cos(angle);
3116 | dest[0] = a11 * c + a12 * s;
3117 | dest[1] = a11 * -s + a12 * c;
3118 | dest[2] = a21 * c + a22 * s;
3119 | dest[3] = a21 * -s + a22 * c;
3120 | return dest;
3121 | };
3122 |
3123 | /**
3124 | * Multiplies the vec2 by the given 2x2 matrix
3125 | *
3126 | * @param {mat2} matrix the 2x2 matrix to multiply against
3127 | * @param {vec2} vec the vector to multiply
3128 | * @param {vec2} [dest] an optional receiving vector. If not given, vec is used.
3129 | *
3130 | * @returns {vec2} The multiplication result
3131 | **/
3132 | mat2.multiplyVec2 = function(matrix, vec, dest) {
3133 | if (!dest) dest = vec;
3134 | var x = vec[0], y = vec[1];
3135 | dest[0] = x * matrix[0] + y * matrix[1];
3136 | dest[1] = x * matrix[2] + y * matrix[3];
3137 | return dest;
3138 | };
3139 |
3140 | /**
3141 | * Scales the mat2 by the dimensions in the given vec2
3142 | *
3143 | * @param {mat2} matrix the 2x2 matrix to scale
3144 | * @param {vec2} vec the vector containing the dimensions to scale by
3145 | * @param {vec2} [dest] an optional receiving mat2. If not given, matrix is used.
3146 | *
3147 | * @returns {mat2} dest if specified, matrix otherwise
3148 | **/
3149 | mat2.scale = function(matrix, vec, dest) {
3150 | if (!dest) { dest = matrix; }
3151 | var a11 = matrix[0],
3152 | a12 = matrix[1],
3153 | a21 = matrix[2],
3154 | a22 = matrix[3],
3155 | b11 = vec[0],
3156 | b22 = vec[1];
3157 | dest[0] = a11 * b11;
3158 | dest[1] = a12 * b22;
3159 | dest[2] = a21 * b11;
3160 | dest[3] = a22 * b22;
3161 | return dest;
3162 | };
3163 |
3164 | /**
3165 | * Returns a string representation of a mat2
3166 | *
3167 | * @param {mat2} mat mat2 to represent as a string
3168 | *
3169 | * @param {String} String representation of mat
3170 | */
3171 | mat2.str = function (mat) {
3172 | return '[' + mat[0] + ', ' + mat[1] + ', ' + mat[2] + ', ' + mat[3] + ']';
3173 | };
3174 |
3175 | /**
3176 | * @class 4 Dimensional Vector
3177 | * @name vec4
3178 | */
3179 | var vec4 = {};
3180 |
3181 | /**
3182 | * Creates a new vec4, initializing it from vec if vec
3183 | * is given.
3184 | *
3185 | * @param {vec4} [vec] the vector's initial contents
3186 | * @returns {vec4} a new 2D vector
3187 | */
3188 | vec4.create = function(vec) {
3189 | var dest = new MatrixArray(4);
3190 |
3191 | if (vec) {
3192 | dest[0] = vec[0];
3193 | dest[1] = vec[1];
3194 | dest[2] = vec[2];
3195 | dest[3] = vec[3];
3196 | } else {
3197 | dest[0] = 0;
3198 | dest[1] = 0;
3199 | dest[2] = 0;
3200 | dest[3] = 0;
3201 | }
3202 | return dest;
3203 | };
3204 |
3205 | /**
3206 | * Creates a new instance of a vec4, initializing it with the given arguments
3207 | *
3208 | * @param {number} x X value
3209 | * @param {number} y Y value
3210 | * @param {number} z Z value
3211 | * @param {number} w W value
3212 |
3213 | * @returns {vec4} New vec4
3214 | */
3215 | vec4.createFrom = function (x, y, z, w) {
3216 | var dest = new MatrixArray(4);
3217 |
3218 | dest[0] = x;
3219 | dest[1] = y;
3220 | dest[2] = z;
3221 | dest[3] = w;
3222 |
3223 | return dest;
3224 | };
3225 |
3226 | /**
3227 | * Adds the vec4's together. If dest is given, the result
3228 | * is stored there. Otherwise, the result is stored in vecB.
3229 | *
3230 | * @param {vec4} vecA the first operand
3231 | * @param {vec4} vecB the second operand
3232 | * @param {vec4} [dest] the optional receiving vector
3233 | * @returns {vec4} dest
3234 | */
3235 | vec4.add = function(vecA, vecB, dest) {
3236 | if (!dest) dest = vecB;
3237 | dest[0] = vecA[0] + vecB[0];
3238 | dest[1] = vecA[1] + vecB[1];
3239 | dest[2] = vecA[2] + vecB[2];
3240 | dest[3] = vecA[3] + vecB[3];
3241 | return dest;
3242 | };
3243 |
3244 | /**
3245 | * Subtracts vecB from vecA. If dest is given, the result
3246 | * is stored there. Otherwise, the result is stored in vecB.
3247 | *
3248 | * @param {vec4} vecA the first operand
3249 | * @param {vec4} vecB the second operand
3250 | * @param {vec4} [dest] the optional receiving vector
3251 | * @returns {vec4} dest
3252 | */
3253 | vec4.subtract = function(vecA, vecB, dest) {
3254 | if (!dest) dest = vecB;
3255 | dest[0] = vecA[0] - vecB[0];
3256 | dest[1] = vecA[1] - vecB[1];
3257 | dest[2] = vecA[2] - vecB[2];
3258 | dest[3] = vecA[3] - vecB[3];
3259 | return dest;
3260 | };
3261 |
3262 | /**
3263 | * Multiplies vecA with vecB. If dest is given, the result
3264 | * is stored there. Otherwise, the result is stored in vecB.
3265 | *
3266 | * @param {vec4} vecA the first operand
3267 | * @param {vec4} vecB the second operand
3268 | * @param {vec4} [dest] the optional receiving vector
3269 | * @returns {vec4} dest
3270 | */
3271 | vec4.multiply = function(vecA, vecB, dest) {
3272 | if (!dest) dest = vecB;
3273 | dest[0] = vecA[0] * vecB[0];
3274 | dest[1] = vecA[1] * vecB[1];
3275 | dest[2] = vecA[2] * vecB[2];
3276 | dest[3] = vecA[3] * vecB[3];
3277 | return dest;
3278 | };
3279 |
3280 | /**
3281 | * Divides vecA by vecB. If dest is given, the result
3282 | * is stored there. Otherwise, the result is stored in vecB.
3283 | *
3284 | * @param {vec4} vecA the first operand
3285 | * @param {vec4} vecB the second operand
3286 | * @param {vec4} [dest] the optional receiving vector
3287 | * @returns {vec4} dest
3288 | */
3289 | vec4.divide = function(vecA, vecB, dest) {
3290 | if (!dest) dest = vecB;
3291 | dest[0] = vecA[0] / vecB[0];
3292 | dest[1] = vecA[1] / vecB[1];
3293 | dest[2] = vecA[2] / vecB[2];
3294 | dest[3] = vecA[3] / vecB[3];
3295 | return dest;
3296 | };
3297 |
3298 | /**
3299 | * Scales vecA by some scalar number. If dest is given, the result
3300 | * is stored there. Otherwise, the result is stored in vecA.
3301 | *
3302 | * This is the same as multiplying each component of vecA
3303 | * by the given scalar.
3304 | *
3305 | * @param {vec4} vecA the vector to be scaled
3306 | * @param {Number} scalar the amount to scale the vector by
3307 | * @param {vec4} [dest] the optional receiving vector
3308 | * @returns {vec4} dest
3309 | */
3310 | vec4.scale = function(vecA, scalar, dest) {
3311 | if (!dest) dest = vecA;
3312 | dest[0] = vecA[0] * scalar;
3313 | dest[1] = vecA[1] * scalar;
3314 | dest[2] = vecA[2] * scalar;
3315 | dest[3] = vecA[3] * scalar;
3316 | return dest;
3317 | };
3318 |
3319 | /**
3320 | * Copies the values of one vec4 to another
3321 | *
3322 | * @param {vec4} vec vec4 containing values to copy
3323 | * @param {vec4} dest vec4 receiving copied values
3324 | *
3325 | * @returns {vec4} dest
3326 | */
3327 | vec4.set = function (vec, dest) {
3328 | dest[0] = vec[0];
3329 | dest[1] = vec[1];
3330 | dest[2] = vec[2];
3331 | dest[3] = vec[3];
3332 | return dest;
3333 | };
3334 |
3335 | /**
3336 | * Compares two vectors for equality within a certain margin of error
3337 | *
3338 | * @param {vec4} a First vector
3339 | * @param {vec4} b Second vector
3340 | *
3341 | * @returns {Boolean} True if a is equivalent to b
3342 | */
3343 | vec4.equal = function (a, b) {
3344 | return a === b || (
3345 | Math.abs(a[0] - b[0]) < FLOAT_EPSILON &&
3346 | Math.abs(a[1] - b[1]) < FLOAT_EPSILON &&
3347 | Math.abs(a[2] - b[2]) < FLOAT_EPSILON &&
3348 | Math.abs(a[3] - b[3]) < FLOAT_EPSILON
3349 | );
3350 | };
3351 |
3352 | /**
3353 | * Negates the components of a vec4
3354 | *
3355 | * @param {vec4} vec vec4 to negate
3356 | * @param {vec4} [dest] vec4 receiving operation result. If not specified result is written to vec
3357 | *
3358 | * @returns {vec4} dest if specified, vec otherwise
3359 | */
3360 | vec4.negate = function (vec, dest) {
3361 | if (!dest) { dest = vec; }
3362 | dest[0] = -vec[0];
3363 | dest[1] = -vec[1];
3364 | dest[2] = -vec[2];
3365 | dest[3] = -vec[3];
3366 | return dest;
3367 | };
3368 |
3369 | /**
3370 | * Caclulates the length of a vec2
3371 | *
3372 | * @param {vec2} vec vec2 to calculate length of
3373 | *
3374 | * @returns {Number} Length of vec
3375 | */
3376 | vec4.length = function (vec) {
3377 | var x = vec[0], y = vec[1], z = vec[2], w = vec[3];
3378 | return Math.sqrt(x * x + y * y + z * z + w * w);
3379 | };
3380 |
3381 | /**
3382 | * Caclulates the squared length of a vec4
3383 | *
3384 | * @param {vec4} vec vec4 to calculate squared length of
3385 | *
3386 | * @returns {Number} Squared Length of vec
3387 | */
3388 | vec4.squaredLength = function (vec) {
3389 | var x = vec[0], y = vec[1], z = vec[2], w = vec[3];
3390 | return x * x + y * y + z * z + w * w;
3391 | };
3392 |
3393 | /**
3394 | * Performs a linear interpolation between two vec4
3395 | *
3396 | * @param {vec4} vecA First vector
3397 | * @param {vec4} vecB Second vector
3398 | * @param {Number} lerp Interpolation amount between the two inputs
3399 | * @param {vec4} [dest] vec4 receiving operation result. If not specified result is written to vecA
3400 | *
3401 | * @returns {vec4} dest if specified, vecA otherwise
3402 | */
3403 | vec4.lerp = function (vecA, vecB, lerp, dest) {
3404 | if (!dest) { dest = vecA; }
3405 | dest[0] = vecA[0] + lerp * (vecB[0] - vecA[0]);
3406 | dest[1] = vecA[1] + lerp * (vecB[1] - vecA[1]);
3407 | dest[2] = vecA[2] + lerp * (vecB[2] - vecA[2]);
3408 | dest[3] = vecA[3] + lerp * (vecB[3] - vecA[3]);
3409 | return dest;
3410 | };
3411 |
3412 | /**
3413 | * Returns a string representation of a vector
3414 | *
3415 | * @param {vec4} vec Vector to represent as a string
3416 | *
3417 | * @returns {String} String representation of vec
3418 | */
3419 | vec4.str = function (vec) {
3420 | return '[' + vec[0] + ', ' + vec[1] + ', ' + vec[2] + ', ' + vec[3] + ']';
3421 | };
3422 |
3423 | /*
3424 | * Exports
3425 | */
3426 |
3427 | if(root) {
3428 | root.glMatrixArrayType = MatrixArray;
3429 | root.MatrixArray = MatrixArray;
3430 | root.setMatrixArrayType = setMatrixArrayType;
3431 | root.determineMatrixArrayType = determineMatrixArrayType;
3432 | root.glMath = glMath;
3433 | root.vec2 = vec2;
3434 | root.vec3 = vec3;
3435 | root.vec4 = vec4;
3436 | root.mat2 = mat2;
3437 | root.mat3 = mat3;
3438 | root.mat4 = mat4;
3439 | root.quat4 = quat4;
3440 | }
3441 |
3442 | return {
3443 | glMatrixArrayType: MatrixArray,
3444 | MatrixArray: MatrixArray,
3445 | setMatrixArrayType: setMatrixArrayType,
3446 | determineMatrixArrayType: determineMatrixArrayType,
3447 | glMath: glMath,
3448 | vec2: vec2,
3449 | vec3: vec3,
3450 | vec4: vec4,
3451 | mat2: mat2,
3452 | mat3: mat3,
3453 | mat4: mat4,
3454 | quat4: quat4
3455 | };
3456 | }));
3457 |
--------------------------------------------------------------------------------
/scripts/launcher.js:
--------------------------------------------------------------------------------
1 | addEventListener('load', function () {
2 | var canvas = document.getElementById('gl');
3 |
4 | var viewer = new ModelViewer({
5 | file: 'assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_01.m2',
6 | glCanvas: canvas,
7 | playBtn: document.getElementById('play')
8 | });
9 |
10 | document.addEventListener('keydown', function (event) {
11 | switch (event.keyCode) {
12 | case 40: viewer.angleSpeed.X = 0.03; break;
13 | case 38: viewer.angleSpeed.X = -0.03; break;
14 | case 39: viewer.angleSpeed.Y = 0.03; break;
15 | case 37: viewer.angleSpeed.Y = -0.03; break;
16 | }
17 | });
18 |
19 | document.addEventListener('keyup', function (event) {
20 | switch (event.keyCode) {
21 | case 40:
22 | case 38:
23 | viewer.angleSpeed.X = 0;
24 | break;
25 |
26 | case 39:
27 | case 37:
28 | viewer.angleSpeed.Y = 0;
29 | break;
30 | }
31 | });
32 |
33 | var lastCoords = null,
34 | sizeMappings = {X: 'width', Y: 'height'};
35 |
36 | function getCoords(data) {
37 | return {X: data.clientY, Y: data.clientX};
38 | }
39 |
40 | function onDown(data) {
41 | lastCoords = getCoords(data);
42 | }
43 |
44 | function onUp() {
45 | lastCoords = null;
46 | }
47 |
48 | function onMove(data) {
49 | if (!lastCoords) return;
50 |
51 | var newCoords = getCoords(data);
52 |
53 | for (var name in newCoords) {
54 | viewer.angle[name] += (newCoords[name] - lastCoords[name]) / viewer[sizeMappings[name]] * 4;
55 | }
56 |
57 | lastCoords = newCoords;
58 | }
59 |
60 | canvas.addEventListener('mousedown', function (event) {
61 | onDown(event);
62 | event.preventDefault();
63 | });
64 | canvas.addEventListener('mouseup', onUp);
65 | canvas.addEventListener('mousemove', onMove);
66 |
67 | canvas.addEventListener('touchstart', function (event) { onDown(event.touches[0]) });
68 | canvas.addEventListener('touchend', onUp);
69 | canvas.addEventListener('touchmove', function (event) { onMove(event.touches[0]) });
70 | });
--------------------------------------------------------------------------------
/scripts/m2.js:
--------------------------------------------------------------------------------
1 | var M2 = function (filename, callback, description_entry) {
2 | this.filename = filename;
3 | this.callback = callback;
4 | this.description_entry = description_entry || 'm2';
5 | this.load(filename, callback);
6 | this.requestCount = 0;
7 | };
8 |
9 | M2.prototype = {
10 | typeSet: {
11 | 'jBinary.littleEndian': true,
12 | 'jBinary.all': 'm2',
13 |
14 | /* Common definitions */
15 |
16 | float2: ['array', 'float32', 2],
17 | float3: ['array', 'float32', 3],
18 | float4: ['array', 'float32', 4],
19 |
20 | nofs: {
21 | count: 'uint32',
22 | offset: 'uint32'
23 | },
24 |
25 | struct: jBinary.Template({
26 | baseType: 'nofs',
27 | params: ['innerType'],
28 | read: function () {
29 | var nofs = this.baseRead(),
30 | type =
31 | this.innerType === 'char'
32 | ? ['string0', nofs.count]
33 | : ['array', this.innerType, nofs.count];
34 |
35 | return this.binary.read(type, nofs.offset);
36 | }
37 | }),
38 |
39 | /* .skin File */
40 |
41 | skin: {
42 | skinID: 'uint32',
43 | indices: ['struct', 'uint16'],
44 | triangles: ['struct', 'uint16'],
45 | properties: ['struct', 'boneIndices'],
46 | submeshes: ['struct', 'submesh'],
47 | textureUnits: ['struct', 'textureUnit'],
48 | bones: 'uint32'
49 | },
50 |
51 | boneIndices: ['array', 'uint8', 4],
52 |
53 | submesh: {
54 | meshID: 'uint32',
55 | vertices: 'startn',
56 | triangles: 'startn',
57 | bones: 'startn',
58 | unk: 'uint16',
59 | rootBone: 'uint16',
60 | boundingBox: ['array', 'float3', 2],
61 | radius: 'float'
62 | },
63 |
64 | startn: {
65 | start: 'uint16',
66 | n: 'uint16'
67 | },
68 |
69 | textureUnit: {
70 | flags: 'uint16',
71 | shading: 'uint16',
72 | submeshIndex: 'uint16',
73 | submeshIndex2: 'uint16',
74 | colorIndex: 'int16',
75 | renderFlags: 'uint16',
76 | texUnitNumber: 'uint16',
77 | mode: 'uint16',
78 | texture: 'uint16',
79 | texUnitNumber2: 'uint16',
80 | transparency: 'uint16',
81 | textureAnim: 'uint16'
82 | },
83 |
84 | /* M2 File */
85 |
86 | m2: {
87 | tag: ['string', 4],
88 | version: 'uint32',
89 | name: ['struct', 'char'],
90 | globalModelFlag: 'uint32',
91 |
92 | globalSequences: ['struct', 'uint16'],
93 | animations: ['struct', 'animation'],
94 | animationLookup: ['struct', 'uint16'],
95 | bones: ['struct', 'bone'],
96 | keyBoneLookup: ['struct', 'uint16'],
97 | vertices: ['struct', 'vertex'],
98 | views: 'views',
99 | colors: ['struct', 'color'],
100 | textures: ['struct', 'texture'],
101 | transparencyLookup: ['struct', 'uint16'],
102 | uvAnimation: ['struct', 'uvAnimation'],
103 | texReplace: ['struct', 'int16'],
104 | renderFlags: ['struct', 'renderFlag'],
105 | boneLookup: ['struct', 'uint16'],
106 | texLookup: ['struct', 'uint16'],
107 | texUnits: ['struct', 'int16'],
108 | transLookup: ['struct', 'uint16'],
109 | uvAnimLookup: ['struct', 'uint16'],
110 | vertexBox: ['array', 'float3', 2],
111 | vertexRadius: 'float',
112 | boundingBox: ['array', 'float3', 2],
113 | boundingRadius: 'float',
114 | boundingTriangles: ['struct', 'boundingTriangle'],
115 | boundingVertices: ['struct', 'boundingVertex'],
116 | boundingNormals: ['struct', 'boundingNormal'],
117 | attachments: ['struct', 'attachment'],
118 | attachLookup: ['struct', 'uint16'],
119 | events: ['struct', 'event'],
120 | lights: ['struct', 'light'],
121 | cameras: ['struct', 'camera'],
122 | cameraLookup: ['struct', 'uint16'],
123 | ribbonEmitters: ['struct', 'ribbonEmitter'],
124 | particleEmitters: ['struct', 'particleEmitter']
125 | },
126 |
127 | views: jBinary.Type({
128 | read: function () {
129 | var m2 = this.binary.getContext(1);
130 | var num = this.binary.read('uint32');
131 | var views = [];
132 | for (var i = 0; i < num; ++i) {
133 | m2.pushRequest();
134 | (function (i, filename) {
135 | new M2(filename,
136 | function (skin) {
137 | views[i] = skin;
138 | m2.popRequest();
139 | },
140 | 'skin'
141 | );
142 | })(i, m2.filename.replace(/\.m2$/, '0' + i + '.skin'));
143 | }
144 | return views;
145 | }
146 | }),
147 |
148 | animation: {
149 | animationID: 'uint16',
150 | subAnimationID: 'uint16',
151 | length: 'uint32',
152 | movingSpeed: 'float',
153 | flags: 'uint32',
154 | probability: 'int16',
155 | unk1: 'uint16',
156 | unk2: 'uint32',
157 | unk3: 'uint32',
158 | playbackSpeed: 'uint32',
159 | minimumExtent: 'float3',
160 | maximumExtent: 'float3',
161 | boundRadius: 'float',
162 | nextAnimation: 'int16',
163 | index: 'uint16'
164 | },
165 |
166 | animationBlock: {
167 | interpolationType: 'uint16',
168 | globalSequenceID: 'int16',
169 | timestamps: 'nofs',
170 | keyFrame: 'nofs'
171 | },
172 |
173 | fakeAnimationBlock: {
174 | timestamps: 'nofs',
175 | keyFrame: 'nofs'
176 | },
177 |
178 | bone: {
179 | keyBoneID: 'int32',
180 | flags: 'uint32',
181 | parentBone: 'int16',
182 | unk: ['array', 'uint16', 3],
183 | translation: 'animationBlock',
184 | rotation: 'animationBlock',
185 | scaling: 'animationBlock',
186 | pivot: 'float3'
187 | },
188 |
189 | vertex: {
190 | position: 'float3',
191 | boneWeight: ['array', 'uint8', 4],
192 | boneIndices: ['array', 'uint8', 4],
193 | normal: 'float3',
194 | textureCoords: 'float2',
195 | unk: 'float2'
196 | },
197 |
198 | color: {
199 | color: 'animationBlock',
200 | alpha: 'animationBlock'
201 | },
202 |
203 | texture: {
204 | type: 'uint32',
205 | flags: 'uint32',
206 | filename: ['struct', 'char']
207 | },
208 |
209 | uvAnimation: {
210 | translation: 'animationBlock',
211 | rotation: 'animationBlock',
212 | scaling: 'animationBlock'
213 | },
214 |
215 | renderFlag: {
216 | flags: 'uint16',
217 | blendingMode: 'uint16'
218 | },
219 |
220 | ribbonEmitter: {
221 | unk1: 'uint32',
222 | boneID: 'uint32',
223 | position: 'float3',
224 | textures: 'nofs',
225 | blendRef: 'nofs',
226 | color: 'animationBlock',
227 | opacity: 'animationBlock',
228 | above: 'animationBlock',
229 | below: 'animationBlock',
230 | resolution: 'float',
231 | length: 'float',
232 | emissionAngle: 'float',
233 | renderFlags: 'uint32',
234 | unk2: 'animationBlock',
235 | unk3: 'animationBlock',
236 | unk4: 'uint32'
237 | },
238 |
239 | boundingTriangle: ['array', 'uint16', 3],
240 | boundingNormal: 'float3',
241 | boundingVertex: 'float3',
242 |
243 | attachment: {
244 | attachmentID: 'uint32',
245 | boneID: 'uint32',
246 | position: 'float3',
247 | data: 'animationBlock'
248 | },
249 |
250 | event: {
251 | name: ['string', 4],
252 | data: 'uint32',
253 | boneID: 'uint32',
254 | position: 'float3',
255 | interpolationType: 'uint16',
256 | globalSequence: 'uint16',
257 | timestamp: 'nofs'
258 | },
259 |
260 | light: {
261 | type: 'uint16',
262 | boneID: 'int16',
263 | position: 'float3',
264 | ambiantColor: 'animationBlock',
265 | ambientIntensity: 'animationBlock',
266 | diffuseColor: 'animationBlock',
267 | diffuseIntensity: 'animationBlock',
268 | attenuationStart: 'animationBlock',
269 | attenuationEnd: 'animationBlock',
270 | unk: 'animationBlock'
271 | },
272 |
273 | camera: {
274 | type: 'uint32',
275 | fov: 'float',
276 | farClipping: 'float',
277 | nearClipping: 'float',
278 | translationPos: 'animationBlock',
279 | position: 'float3',
280 | translationTar: 'animationBlock',
281 | target: 'float3',
282 | scaling: 'animationBlock'
283 | },
284 |
285 | particleEmitter: {
286 | unk1: 'uint32',
287 | flags1: 'uint16',
288 | flags2: 'uint16',
289 | position: 'float3',
290 | boneID: 'uint16',
291 | textureID: 'uint16',
292 | modelFilename: ['struct', 'char'],
293 | particleFilename: ['struct', 'char'],
294 | blendingType: 'uint8',
295 | emitterType: 'uint8',
296 | particleColor: 'uint16',
297 | particleType: 'uint8',
298 | headOrTail: 'uint8',
299 | textureTileRotation: 'uint16',
300 | textureRows: 'uint16',
301 | textureCols: 'uint16',
302 | emissionSpeed: 'animationBlock',
303 | speedVariation: 'animationBlock',
304 | verticalRange: 'animationBlock',
305 | horizontalRange: 'animationBlock',
306 | gravity: 'animationBlock',
307 | lifespan: 'animationBlock',
308 | unk2: 'uint32',
309 | emissionRate: 'animationBlock',
310 | unk3: 'uint32',
311 | emissionAreaLength: 'animationBlock',
312 | emissionAreaWidth: 'animationBlock',
313 | gravity2: 'animationBlock',
314 | particleColor: 'fakeAnimationBlock',
315 | particleOpacity: 'fakeAnimationBlock',
316 | particleSize: 'fakeAnimationBlock',
317 | unk4: 'uint32',
318 | intensity: 'fakeAnimationBlock',
319 | unk5: 'fakeAnimationBlock',
320 | unk6: 'float3',
321 | scale: 'float3',
322 | slowdown: 'float',
323 | unk7: 'float2',
324 | rotation: 'float',
325 | unk8: 'float3',
326 | rotation1: 'float3',
327 | rotation2: 'float3',
328 | translation: 'float3',
329 | unk9: 'float4',
330 | unk10: 'nofs',
331 | enabledIn: 'animationBlock'
332 | }
333 | },
334 |
335 | load: function (filename) {
336 | var that = this;
337 |
338 | jBinary.load(filename, this.typeSet, function (err, binary) {
339 | if (err) throw err;
340 | that.pushRequest();
341 | that.model = binary.inContext(that, function () { return this.read(that.description_entry) });
342 | that.popRequest();
343 | });
344 | },
345 |
346 | pushRequest: function () {
347 | this.requestCount += 1;
348 | },
349 |
350 | popRequest: function () {
351 | this.requestCount -= 1;
352 | if (this.requestCount === 0) {
353 | this.callback(this.model);
354 | }
355 | },
356 | };
357 |
--------------------------------------------------------------------------------
/scripts/modelviewer.js:
--------------------------------------------------------------------------------
1 | (function() {
2 | var lastTime = 0,
3 | vendors = ['ms', 'moz', 'webkit', 'o'],
4 | x, length, currTime, timeToCall;
5 |
6 | for(x = 0, length = vendors.length; x < length && !window.requestAnimationFrame; ++x) {
7 | window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame'];
8 | window.cancelAnimationFrame =
9 | window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame'];
10 | }
11 |
12 | if (!window.requestAnimationFrame) {
13 | window.requestAnimationFrame = function(callback, element) {
14 | currTime = new Date().getTime();
15 | timeToCall = Math.max(0, 16 - (currTime - lastTime));
16 | lastTime = currTime + timeToCall;
17 | return window.setTimeout(function() { callback(currTime + timeToCall); },
18 | timeToCall);
19 | };
20 | }
21 |
22 | if (!window.cancelAnimationFrame) {
23 | window.cancelAnimationFrame = function(id) {
24 | clearTimeout(id);
25 | };
26 | }
27 | })();
28 |
29 | var ModelViewer = function (opt) {
30 | this.opt = opt;
31 | this.width = window.innerWidth;
32 | this.height = window.innerHeight;
33 |
34 | this.pMatrix = mat4.create();
35 | this.mvMatrix = mat4.create();
36 |
37 | this.eye = vec3.create([0.0, -1.5, -0.1]);
38 | this.center = vec3.create([0.2, 3.2, 0.2]);
39 | this.up = vec3.create([0, 0, 1]);
40 |
41 | this.stopped = false;
42 |
43 | this.angle = {
44 | X: 0,
45 | Y: 0,
46 | Z: 0
47 | };
48 |
49 | this.angleSpeed = {
50 | X: 0,
51 | Y: 0,
52 | Z: 0.01
53 | };
54 |
55 | var that = this;
56 | opt.playBtn.addEventListener('click', function () {
57 | that.stopped && that.start() || that.stop();
58 | });
59 | new M2(opt.file, function (model) { that.parse(model); });
60 | };
61 |
62 | ModelViewer.prototype = {
63 | drawScene: function () {
64 | this.gl.clear(this.gl.COLOR_BUFFER_BIT | this.gl.DEPTH_BUFFER_BIT);
65 |
66 | mat4.perspective(45, this.width / this.height, 0.1, 100.0, this.pMatrix);
67 | mat4.identity(this.mvMatrix);
68 |
69 | mat4.lookAt(this.eye, this.center, this.up, this.mvMatrix);
70 |
71 | for (var name in this.angle) {
72 | mat4['rotate' + name](this.mvMatrix, this.angle[name]);
73 | this.angle[name] += this.angleSpeed[name];
74 | }
75 |
76 | // Vertex
77 | this.gl.bindBuffer(this.gl.ARRAY_BUFFER, this.glModel);
78 | this.gl.vertexAttribPointer(this.shaderProgram.vertexPositionAttribute, this.glModel.itemSize, this.gl.FLOAT, false, 0, 0);
79 |
80 | // Texture Coords
81 | this.gl.bindBuffer(this.gl.ARRAY_BUFFER, this.glTextureCoords);
82 | this.gl.vertexAttribPointer(this.shaderProgram.textureCoordAttribute, this.glTextureCoords.itemSize, this.gl.FLOAT, false, 0, 0);
83 |
84 | // Texture
85 | this.gl.activeTexture(this.gl.TEXTURE0);
86 | this.gl.bindTexture(this.gl.TEXTURE_2D, this.texture);
87 | this.gl.uniform1i(this.shaderProgram.samplerUniform, 0);
88 |
89 | // Vertex Index
90 | this.gl.bindBuffer(this.gl.ELEMENT_ARRAY_BUFFER, this.glVertexIndexBuffer);
91 |
92 | // Draw
93 | this.setMatrixUniforms();
94 | this.gl.drawElements(this.gl.TRIANGLES, this.glVertexIndexBuffer.numItems, this.gl.UNSIGNED_SHORT, 0);
95 |
96 | var that = this;
97 | window.requestAnimationFrame(function () { that.drawScene() });
98 | },
99 |
100 | initGL: function (canvas) {
101 | try {
102 | this.gl = canvas.getContext("experimental-webgl");
103 | } catch(e) {}
104 | if (!this.gl) {
105 | alert("Could not initialise WebGL, sorry :-(");
106 | }
107 | },
108 |
109 | getShader: function (gl, id) {
110 | var shaderScript = document.getElementById(id);
111 | if (!shaderScript) {
112 | return null;
113 | }
114 |
115 | var str = "";
116 | var k = shaderScript.firstChild;
117 | while (k) {
118 | if (k.nodeType == 3) {
119 | str += k.textContent;
120 | }
121 | k = k.nextSibling;
122 | }
123 |
124 | var shader;
125 | if (shaderScript.type == "x-shader/x-fragment") {
126 | shader = this.gl.createShader(this.gl.FRAGMENT_SHADER);
127 | } else if (shaderScript.type == "x-shader/x-vertex") {
128 | shader = this.gl.createShader(this.gl.VERTEX_SHADER);
129 | } else {
130 | return null;
131 | }
132 |
133 | this.gl.shaderSource(shader, str);
134 | this.gl.compileShader(shader);
135 |
136 | if (!this.gl.getShaderParameter(shader, this.gl.COMPILE_STATUS)) {
137 | alert(this.gl.getShaderInfoLog(shader));
138 | return null;
139 | }
140 |
141 | return shader;
142 | },
143 |
144 | initShaders: function () {
145 | var fragmentShader = this.getShader(gl, "shader-fs");
146 | var vertexShader = this.getShader(gl, "shader-vs");
147 |
148 | this.shaderProgram = this.gl.createProgram();
149 | this.gl.attachShader(this.shaderProgram, vertexShader);
150 | this.gl.attachShader(this.shaderProgram, fragmentShader);
151 | this.gl.linkProgram(this.shaderProgram);
152 |
153 | if (!this.gl.getProgramParameter(this.shaderProgram, this.gl.LINK_STATUS)) {
154 | alert("Could not initialise shaders");
155 | }
156 |
157 | this.gl.useProgram(this.shaderProgram);
158 |
159 | this.shaderProgram.vertexPositionAttribute = this.gl.getAttribLocation(this.shaderProgram, "aVertexPosition");
160 | this.gl.enableVertexAttribArray(this.shaderProgram.vertexPositionAttribute);
161 |
162 | this.shaderProgram.textureCoordAttribute = this.gl.getAttribLocation(this.shaderProgram, "aTextureCoord");
163 | this.gl.enableVertexAttribArray(this.shaderProgram.textureCoordAttribute);
164 |
165 | this.shaderProgram.pMatrixUniform = this.gl.getUniformLocation(this.shaderProgram, "uPMatrix");
166 | this.shaderProgram.mvMatrixUniform = this.gl.getUniformLocation(this.shaderProgram, "uMVMatrix");
167 | this.shaderProgram.samplerUniform = this.gl.getUniformLocation(this.shaderProgram, "uSampler");
168 | },
169 |
170 | setMatrixUniforms: function () {
171 | this.gl.uniformMatrix4fv(this.shaderProgram.pMatrixUniform, false, new Float32Array(this.pMatrix));
172 | this.gl.uniformMatrix4fv(this.shaderProgram.mvMatrixUniform, false, new Float32Array(this.mvMatrix));
173 | },
174 |
175 | glStart: function () {
176 | var canvas = this.opt.glCanvas;
177 | canvas.width = this.width;
178 | canvas.height = this.height;
179 |
180 | this.initGL(canvas);
181 | this.initShaders();
182 | this.createGLModel();
183 |
184 | this.gl.clearColor(0.0, 0.0, 0.0, 1.0);
185 | this.gl.clearDepth(1.0);
186 | this.gl.enable(this.gl.DEPTH_TEST);
187 | this.gl.depthFunc(this.gl.LEQUAL);
188 |
189 | this.drawScene();
190 | },
191 |
192 | start: function () {
193 | this.stopped = false;
194 | this.angleSpeed.Z = 0.01;
195 | this.opt.playBtn.setAttribute('class', 'icon-pause');
196 | return true;
197 | },
198 |
199 | stop: function () {
200 | this.stopped = true;
201 | this.angleSpeed.Z = 0;
202 | this.opt.playBtn.setAttribute('class', 'icon-play');
203 | return true;
204 | },
205 |
206 | createGLModel: function () {
207 | /* Vertex */
208 | var vertices = [];
209 | for (var i = 0; i < this.model.vertices.length; ++i) {
210 | for (var j = 0; j < 3; ++j) {
211 | vertices[i * 3 + j] = this.model.vertices[i].position[j];
212 | }
213 | }
214 |
215 | this.glModel = this.gl.createBuffer();
216 | this.gl.bindBuffer(this.gl.ARRAY_BUFFER, this.glModel);
217 | this.gl.bufferData(this.gl.ARRAY_BUFFER, new Float32Array(vertices), this.gl.STATIC_DRAW);
218 | this.glModel.itemSize = 3;
219 | this.glModel.numItems = this.model.vertices.length;
220 |
221 | /* Vertex Index */
222 | var indices = this.model.views[0].triangles;
223 | this.glVertexIndexBuffer = this.gl.createBuffer();
224 | this.gl.bindBuffer(this.gl.ELEMENT_ARRAY_BUFFER, this.glVertexIndexBuffer);
225 | this.gl.bufferData(this.gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices), this.gl.STATIC_DRAW);
226 | this.glVertexIndexBuffer.itemSize = 1;
227 | this.glVertexIndexBuffer.numItems = indices.length;
228 |
229 | /* Texture Coords */
230 | var coords = [];
231 | for (var i = 0; i < this.model.vertices.length; ++i) {
232 | for (var j = 0; j < 2; ++j) {
233 | coords[i * 2 + j] = this.model.vertices[i].textureCoords[j];
234 | }
235 | }
236 |
237 | this.glTextureCoords = this.gl.createBuffer();
238 | this.gl.bindBuffer(this.gl.ARRAY_BUFFER, this.glTextureCoords);
239 | this.gl.bufferData(this.gl.ARRAY_BUFFER, new Float32Array(coords), this.gl.STATIC_DRAW);
240 | this.glTextureCoords.itemSize = 2;
241 | this.glTextureCoords.numItems = this.model.vertices.length;
242 |
243 | /* Textures */
244 | this.createTexture('assets/Item/Objectcomponents/weapon/axe_1h_blacksmithing_d_01.png');
245 | },
246 |
247 | createTexture: function (path) {
248 | var that = this;
249 |
250 | this.texture = this.gl.createTexture();
251 | this.texture.image = new Image();
252 | this.texture.image.onload = function () {
253 | that.handleLoadedTexture(that.texture);
254 | that.start.call(that);
255 | }
256 | this.texture.image.src = path;
257 | },
258 |
259 | handleLoadedTexture: function (texture) {
260 | this.gl.bindTexture(this.gl.TEXTURE_2D, texture);
261 | this.gl.texImage2D(this.gl.TEXTURE_2D, 0, this.gl.RGBA, this.gl.RGBA, this.gl.UNSIGNED_BYTE, texture.image);
262 | this.gl.texParameteri(this.gl.TEXTURE_2D, this.gl.TEXTURE_MAG_FILTER, this.gl.LINEAR);
263 | this.gl.texParameteri(this.gl.TEXTURE_2D, this.gl.TEXTURE_MIN_FILTER, this.gl.LINEAR);
264 | this.gl.bindTexture(this.gl.TEXTURE_2D, null);
265 | },
266 |
267 | parse: function (data) {
268 | this.model = data;
269 | if (typeof console !== 'undefined') {
270 | console.log('Parsed Model', data);
271 | }
272 | this.glStart();
273 | }
274 | };
--------------------------------------------------------------------------------