├── README.md └── 水下目标检测竞赛介绍(光学)20200305.pdf /README.md: -------------------------------------------------------------------------------- 1 | # Underwater Object Detection [Optical] 2 | 3 | 4 | ### Papers 5 | 6 | * **Reveal of Domain Effect:** Xingyu Chen, Yue Lu, Zhengxing Wu, Junzhi Yu, Li Wen.
7 | `"Reveal of Domain Effect: How Visual Restoration Contributes to Object Detection in Aquatic Scenes."` ArXiv (2020). 8 | [[paper](https://arxiv.org/abs/2003.01913)] **Very Interesting Insights on Image Restoration and Object Detection!!**:star2: 9 | 10 | * **SWIPENet+IMA:** Long Chen, Zhihua Liu, Lei Tong, Zheheng Jiang, Shengke Wang, Junyu Dong, Huiyu Zhou.
11 | `"Underwater Object Detection using Invert Multi-Class Adaboost with Deep Learning."` ArXiv (2020). 12 | [[paper](https://arxiv.org/abs/2005.11552)] 13 | 14 | * **RoIMix:** Wei-Hong Lin, Jia-Xing Zhong, Shan Liu, Thomas Li, Ge Li.
15 | `"RoIMix: Proposal-Fusion among Multiple Images for Underwater Object Detection."` ArXiv (2019). 16 | [[paper](https://arxiv.org/abs/1911.03029)] 17 | [[知乎](https://zhuanlan.zhihu.com/p/100398417)] 18 | 19 | * Xingyu Chen, Zhengxing Wu, Junzhi Yu, Li Wen.
20 | `"Rethinking Temporal Object Detection from Robotic Perspectives."` ArXiv (2019). 21 | [[paper](https://arxiv.org/abs/1912.10406)] 22 | 23 | * Hong Liu, Pinhao Song, Runwei Ding.
24 | `"WQT and DG-YOLO: Towards Domain Generalization in Underwater Object Detection."` ArXiv (2020). 25 | [[paper](https://arxiv.org/abs/2004.06333)] 26 | 27 | * Hongbo Yang, Ping Liu, YuZhen Hu, JingNan Fu.
28 | `"Research on Underwater Object Recognition Based on YOLOv3."` Microsystem Technologies (2020). 29 | [[paper](https://link.springer.com/article/10.1007/s00542-019-04694-8)] 30 | 31 | * Hui Li, Xi Yang, ZhenMing Li, TianLun Zhang.
32 | `"Underwater image enhancement with Image Colorfulness Measure."` ArXiv (2020). 33 | [[paper](https://arxiv.org/abs/2004.08609)] 34 | 35 | * Sen Lin, Kaichen Chi.
36 | `"Underwater Image Enhancement Based on Structure-Texture Reconstruction."` ArXiv (2020). 37 | [[paper](https://arxiv.org/abs/2004.05430)] 38 | 39 | * Monika Roznere, Alberto Quattrini Li.
40 | `"Real-time Model-based Image Color Correction for Underwater Robots."` ArXiv (2020). 41 | [[paper](https://arxiv.org/abs/1904.06437)] 42 | 43 | * **UWCNN:** Chongyi Li, Saeed Anwar, Fatih Porikli.
44 | `"Underwater Scene Prior Inspired Deep Underwater Image and Video Enhancement."` Pattern Recognition (2020). 45 | [[paper](https://www.sciencedirect.com/science/article/abs/pii/S0031320319303401)] 46 | [[code](https://github.com/saeed-anwar/UWCNN)] 47 | 48 | * Yuan Zhou, Kangming Yan.
49 | `"Domain Adaptive Adversarial Learning Based on Physics Model Feedback for Underwater Image Enhancement."` ArXiv (2020). 50 | [[paper](https://arxiv.org/abs/2002.09315)] 51 | 52 | * **UWGAN:** Nan Wang, Yabin Zhou, Fenglei Han, Haitao Zhu, Yaojing Zheng.
53 | `"UWGAN: Underwater GAN for Real-world Underwater Color Restoration and Dehazing."` ArXiv (2019). 54 | [[paper](https://arxiv.org/abs/1912.10269)] 55 | [[code](https://github.com/infrontofme/UWGAN_UIE)] 56 | 57 | * **AIO:** Pritish Uplavikar, Zhenyu Wu, Zhangyang Wang.
58 | `"All-In-One Underwater Image Enhancement using Domain-Adversarial Learning."` CVPRW (2019). 59 | [[paper](http://openaccess.thecvf.com/content_CVPRW_2019/html/UG2_Prize_Challenge/Uplavikar_All-in-One_Underwater_Image_Enhancement_Using_Domain-Adversarial_Learning_CVPRW_2019_paper.html)] 60 | [[code](https://github.com/TAMU-VITA/All-In-One-Underwater-Image-Enhancement-using-Domain-Adversarial-Learning)] 61 | 62 | * **UWStereoNet:** Katherine A. Skinner, Junming Zhang, Elizabeth A. Olson, Matthew Johnson-Roberson.
63 | `"UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery."` ICRA (2019). 64 | [[paper](https://ieeexplore.ieee.org/document/8794272)] 65 | [[code](https://github.com/junming259/UWStereoNet_disparity)]`Only for Disparity` 66 | 67 | * **Water-Net:** Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, Dacheng Tao.
68 | `"An Underwater Image Enhancement Benchmark Dataset and Beyond."` IEEE Transactions on Image Processing (2019) 69 | [[paper](https://arxiv.org/pdf/1901.05495.pdf)] 70 | [[project](https://github.com/Li-Chongyi/Water-Net_Code)] 71 | 72 | * **WaterGAN:** Jie Li, Katherine A. Skinner, Ryan Eustice, M. Johnson-Roberson.
73 | `"WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images."` IEEE Robotics and Automation Letters (2017). 74 | [[paper](https://arxiv.org/abs/1702.07392)] 75 | [[code](https://github.com/kskin/WaterGAN)] 76 | 77 | 78 | ### Benchmarks & Surverys 79 | 80 | * **RUIE:** Risheng Liu, Xin Fan, Ming Zhu, Minjun Hou, Zhongxuan Luog.
81 | `"Real-world Underwater Enhancement: Challenges, Benchmarks, and Solution."` ArXiv (2019). 82 | [[paper](https://arxiv.org/abs/1901.05320)] 83 | [[project](https://github.com/dlut-dimt/Underwater-image-enhancement-algorithms)] 84 | 85 | * **UDD:** Zhihui Wang, Chongwei Liu, Shijie Wang, Tao Tang, Yulong Tao, Caifei Yang, Haojie Li, Xing Liu, Xin Fan.
86 | `"An Underwater Open-sea Farm Object Detection Dataset for Underwater Robot Picking."` 87 | [[paper](https://arxiv.org/pdf/2003.01446)] 88 | 89 | * **UIEB:** Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, Dacheng Tao.
90 | `"An Underwater Image Enhancement Benchmark Dataset and Beyond."` IEEE TIP (2019) 91 | [[paper](https://arxiv.org/pdf/1901.05495.pdf)] 92 | [[project](https://li-chongyi.github.io/proj_benchmark.html)] 93 | 94 | * **OUC:** Long Chen, Lei Tong, Feixiang Zhou, Zheheng Jiang, Zhenyang Li, Jialin Lv, Junyu Dong, Huiyu Zhou.
95 | `"A Benchmark Dataset for both Underwater Image Enhancement and Underwater Object Detection."` ArXiv (2020). 96 | [[paper](https://arxiv.org/abs/2006.15789)] 97 | 98 | * Yan Wang, Wei Song, Giancarlo Fortino, Li-Zhe Qi, Wenqiang Zhang, Antonio Liotta.
99 | `"An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging."` IEEE Access (2019). 100 | [[paper](https://ieeexplore.ieee.org/document/8782094)] 101 | [[code](https://github.com/wangyanckxx/Single-Underwater-Image-Enhancement-and-Color-Restoration)] 102 | 103 | * Saeed Anwar, Chongyi Li, Fatih Porikli.
104 | `"Deep Underwater Image Enhancement."` ArXiv (2018). 105 | [[paper](https://arxiv.org/abs/1807.03528)] 106 | 107 | * Min Han, Zhiyu Lyu, Tie Qiu, Meiling Xu.
108 | `"A Review on Intelligence Dehazing and Color Restoration for Underwater Images."` 109 | IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018). 110 | [[paper](https://ieeexplore.ieee.org/document/8267119)] 111 | 112 | 113 | ### 中文文献 114 | 115 | * 朱世伟,杭仁龙,刘青山.
116 | `"基于类加权YOLO网络的水下目标检测."` 南京师大学报(自然科学版) (2020) 117 | [[论文](https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=NJSF202001020&v=MDkwMjNMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FmWU9abkZ5N2hWYnJMS3lmWWFMRzRITkhNcm85SFpJUjhlWDE=)] 118 | 119 | * 徐凤强,董鹏,王辉兵,付先平.
120 | `"基于水下机器人的海产品智能检测与自主抓取系统."` 北京航空航天大学学报 (2019) 121 | [[论文](https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=BJHK201912006&v=MjExODk5ak5yWTlGWW9SOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWZZT1puRnk3aFdyL0xKeWZEWmJHNEg=)] 122 | 123 | * 刘有用,张江梅,王坤朋,冯兴华,杨秀洪. 124 | `"不平衡数据集下的水下目标快速识别方法."` 计算机工程与应用 (2019) 125 | [[论文](http://kns.cnki.net/KCMS/detail/11.2127.TP.20190719.1443.018.html)] 126 | 127 | 128 | ### Related Resources 129 | 130 | * **水下目标检测竞赛介绍(光学)202003** 131 | [[Slides](https://github.com/wangdongdut/Underwater-Object-Detection/blob/master/%E6%B0%B4%E4%B8%8B%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B%E7%AB%9E%E8%B5%9B%E4%BB%8B%E7%BB%8D%EF%BC%88%E5%85%89%E5%AD%A6%EF%BC%8920200305.pdf)] 132 | [[Video1](https://www.bilibili.com/video/BV1yE411u7fm?from=search&seid=6344384280060127467)] 133 | [[Video2](https://www.bilibili.com/video/BV1kE411P7hm?from=search&seid=6344384280060127467)] 134 | 135 | * **some underwater datasets:** https://github.com/xahidbuffon/underwater_datasets 136 | 137 | * **detectron2:** https://github.com/facebookresearch/detectron2
138 | [[model zoo](https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md)] 139 | [[detectron](https://github.com/facebookresearch/Detectron/)] 140 | [[maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark)] 141 | 142 | * **mmdetection:** https://github.com/open-mmlab/mmdetection
143 | [[model zoo](https://github.com/open-mmlab/mmdetection/blob/master/docs/MODEL_ZOO.md)] 144 | 145 | * **tensorflow detection model zoo:** https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md 146 | 147 | * **simpledet:** https://github.com/TuSimple/simpledet
148 | [[model zoo](https://github.com/TuSimple/simpledet/blob/master/MODEL_ZOO.md)] 149 | 150 | * **darknet/yolo:** https://pjreddie.com/darknet/ 151 | 152 | * **awesome-object-detection:** https://github.com/amusi/awesome-object-detection 153 | 154 | * Zhengxia Zou, Zhenwei Shi, Yuhong Guo, Jieping Ye.
155 | `"Object Detection in 20 Years: A Survey."` ArXiv (2019). 156 | [[paper](https://arxiv.org/abs/1905.05055)]:star2: 157 | 158 | * Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, Matti Pietikäinen.
159 | `"Deep Learning for Generic Object Detection: A Survey."` 160 | IJCV (2019). 161 | [[paper](https://link.springer.com/article/10.1007/s11263-019-01247-4)]:star2: 162 | 163 | * Zhi Zhang, Tong He, Hang Zhang, Zhongyue Zhang, Junyuan Xie, Mu Li.
164 | `"Bag of Freebies for Training Object Detection Neural Networks."` 165 | ArXiv (2019). [[paper](https://arxiv.org/abs/1902.04103)]:star2: 166 | 167 | * **About Anchor-free Object Detection:**
168 | [[AnchorFreeDetectionList](https://github.com/VCBE123/AnchorFreeDetection)]
169 | [[物体检测的轮回: anchor-based 与 anchor-free](https://zhuanlan.zhihu.com/p/62372897)] 170 | 171 | * **TensorRT:** https://developer.nvidia.com/tensorrt 172 | 173 | * **TVM:** https://tvm.apache.org/ 174 | 175 | ### Related Codes:star2::star2::star2: 176 | 177 | * https://github.com/milleniums/underwater-object-detection-mmdetection 178 | 179 | * https://github.com/DataXujing/EfficientDet_pytorch 180 | 181 | * https://github.com/sankin97/Underwater_detection 182 | 183 | * https://github.com/zhengye1995/underwater-object-detection 184 | 185 | * https://github.com/Wakinguup/Underwater_detection 186 | 187 | ### Detection Reports: 188 | * [**目标检测的过去、现在与将来**[俞刚-深蓝学院公开课]](https://www.bilibili.com/video/BV1154y1v7BZ?from=search&seid=11991442565688432154):https://www.bilibili.com/video/BV1154y1v7BZ?from=search&seid=11991442565688432154 189 | 190 | * [**视觉目标检测年度进展概述**[VALSE 2020 APR-叶齐祥]](https://www.bilibili.com/video/BV19V411z7L3?from=search&seid=12691654838979826409):https://www.bilibili.com/video/BV19V411z7L3?from=search&seid=12691654838979826409 191 | 192 | * [**深度目标检测**[Valse Webinar 20200429]](https://www.bilibili.com/video/BV1kt4y1y7E3?from=search&seid=12410496426535668823):https://www.bilibili.com/video/BV1kt4y1y7E3?from=search&seid=12410496426535668823 193 | 194 | * [**基于深度学习的目标检测技术**[深度学习大讲堂]](https://www.bilibili.com/video/BV1JW411n7cP):https://www.bilibili.com/video/BV1JW411n7cP 195 | 196 | * [**Detection and Segmentation**[Stanford University CS231n]](https://www.youtube.com/watch?v=nDPWywWRIRo&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=11): https://www.youtube.com/watch?v=nDPWywWRIRo&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=11 197 | 198 | 199 | ### 比赛相关: 200 | 201 | * **Old Data** 202 | [[下载地址](https://pan.baidu.com/s/1puJ0BRvoTTaPjk4_KzhEKw)(0hct)] 203 | 204 | * **比赛经验** 205 | * `天池CV赛事老司机,手把手带你入门目标检测赛题`[[Video](https://www.bilibili.com/video/BV1T54y197Xt?from=search&seid=13601651463352031714)][[blog](https://blog.csdn.net/qq_40662074/article/details/104975300)] 206 | * `Kaggle实战目标检测奇淫技巧合集`[[blog](https://mp.weixin.qq.com/s?__biz=MzIwMTE1NjQxMQ==&mid=2247487104&idx=1&sn=a41a6e37be1e169b316d67765d2d9eae&chksm=96f37cd4a184f5c2abb99b5e050642df5e82f172beb19a06c562b91b610f9ed624eb46a2ec81&mpshare=1&scene=23&srcid=#rd)] 207 | -------------------------------------------------------------------------------- /水下目标检测竞赛介绍(光学)20200305.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wangdongdut/Underwater-Object-Detection/c0d8e9c8d9bd894f6ce1f439e236aeabef05ed56/水下目标检测竞赛介绍(光学)20200305.pdf --------------------------------------------------------------------------------