├── README.md
└── 水下目标检测竞赛介绍(光学)20200305.pdf
/README.md:
--------------------------------------------------------------------------------
1 | # Underwater Object Detection [Optical]
2 |
3 |
4 | ### Papers
5 |
6 | * **Reveal of Domain Effect:** Xingyu Chen, Yue Lu, Zhengxing Wu, Junzhi Yu, Li Wen.
7 | `"Reveal of Domain Effect: How Visual Restoration Contributes to Object Detection in Aquatic Scenes."` ArXiv (2020).
8 | [[paper](https://arxiv.org/abs/2003.01913)] **Very Interesting Insights on Image Restoration and Object Detection!!**:star2:
9 |
10 | * **SWIPENet+IMA:** Long Chen, Zhihua Liu, Lei Tong, Zheheng Jiang, Shengke Wang, Junyu Dong, Huiyu Zhou.
11 | `"Underwater Object Detection using Invert Multi-Class Adaboost with Deep Learning."` ArXiv (2020).
12 | [[paper](https://arxiv.org/abs/2005.11552)]
13 |
14 | * **RoIMix:** Wei-Hong Lin, Jia-Xing Zhong, Shan Liu, Thomas Li, Ge Li.
15 | `"RoIMix: Proposal-Fusion among Multiple Images for Underwater Object Detection."` ArXiv (2019).
16 | [[paper](https://arxiv.org/abs/1911.03029)]
17 | [[知乎](https://zhuanlan.zhihu.com/p/100398417)]
18 |
19 | * Xingyu Chen, Zhengxing Wu, Junzhi Yu, Li Wen.
20 | `"Rethinking Temporal Object Detection from Robotic Perspectives."` ArXiv (2019).
21 | [[paper](https://arxiv.org/abs/1912.10406)]
22 |
23 | * Hong Liu, Pinhao Song, Runwei Ding.
24 | `"WQT and DG-YOLO: Towards Domain Generalization in Underwater Object Detection."` ArXiv (2020).
25 | [[paper](https://arxiv.org/abs/2004.06333)]
26 |
27 | * Hongbo Yang, Ping Liu, YuZhen Hu, JingNan Fu.
28 | `"Research on Underwater Object Recognition Based on YOLOv3."` Microsystem Technologies (2020).
29 | [[paper](https://link.springer.com/article/10.1007/s00542-019-04694-8)]
30 |
31 | * Hui Li, Xi Yang, ZhenMing Li, TianLun Zhang.
32 | `"Underwater image enhancement with Image Colorfulness Measure."` ArXiv (2020).
33 | [[paper](https://arxiv.org/abs/2004.08609)]
34 |
35 | * Sen Lin, Kaichen Chi.
36 | `"Underwater Image Enhancement Based on Structure-Texture Reconstruction."` ArXiv (2020).
37 | [[paper](https://arxiv.org/abs/2004.05430)]
38 |
39 | * Monika Roznere, Alberto Quattrini Li.
40 | `"Real-time Model-based Image Color Correction for Underwater Robots."` ArXiv (2020).
41 | [[paper](https://arxiv.org/abs/1904.06437)]
42 |
43 | * **UWCNN:** Chongyi Li, Saeed Anwar, Fatih Porikli.
44 | `"Underwater Scene Prior Inspired Deep Underwater Image and Video Enhancement."` Pattern Recognition (2020).
45 | [[paper](https://www.sciencedirect.com/science/article/abs/pii/S0031320319303401)]
46 | [[code](https://github.com/saeed-anwar/UWCNN)]
47 |
48 | * Yuan Zhou, Kangming Yan.
49 | `"Domain Adaptive Adversarial Learning Based on Physics Model Feedback for Underwater Image Enhancement."` ArXiv (2020).
50 | [[paper](https://arxiv.org/abs/2002.09315)]
51 |
52 | * **UWGAN:** Nan Wang, Yabin Zhou, Fenglei Han, Haitao Zhu, Yaojing Zheng.
53 | `"UWGAN: Underwater GAN for Real-world Underwater Color Restoration and Dehazing."` ArXiv (2019).
54 | [[paper](https://arxiv.org/abs/1912.10269)]
55 | [[code](https://github.com/infrontofme/UWGAN_UIE)]
56 |
57 | * **AIO:** Pritish Uplavikar, Zhenyu Wu, Zhangyang Wang.
58 | `"All-In-One Underwater Image Enhancement using Domain-Adversarial Learning."` CVPRW (2019).
59 | [[paper](http://openaccess.thecvf.com/content_CVPRW_2019/html/UG2_Prize_Challenge/Uplavikar_All-in-One_Underwater_Image_Enhancement_Using_Domain-Adversarial_Learning_CVPRW_2019_paper.html)]
60 | [[code](https://github.com/TAMU-VITA/All-In-One-Underwater-Image-Enhancement-using-Domain-Adversarial-Learning)]
61 |
62 | * **UWStereoNet:** Katherine A. Skinner, Junming Zhang, Elizabeth A. Olson, Matthew Johnson-Roberson.
63 | `"UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery."` ICRA (2019).
64 | [[paper](https://ieeexplore.ieee.org/document/8794272)]
65 | [[code](https://github.com/junming259/UWStereoNet_disparity)]`Only for Disparity`
66 |
67 | * **Water-Net:** Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, Dacheng Tao.
68 | `"An Underwater Image Enhancement Benchmark Dataset and Beyond."` IEEE Transactions on Image Processing (2019)
69 | [[paper](https://arxiv.org/pdf/1901.05495.pdf)]
70 | [[project](https://github.com/Li-Chongyi/Water-Net_Code)]
71 |
72 | * **WaterGAN:** Jie Li, Katherine A. Skinner, Ryan Eustice, M. Johnson-Roberson.
73 | `"WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images."` IEEE Robotics and Automation Letters (2017).
74 | [[paper](https://arxiv.org/abs/1702.07392)]
75 | [[code](https://github.com/kskin/WaterGAN)]
76 |
77 |
78 | ### Benchmarks & Surverys
79 |
80 | * **RUIE:** Risheng Liu, Xin Fan, Ming Zhu, Minjun Hou, Zhongxuan Luog.
81 | `"Real-world Underwater Enhancement: Challenges, Benchmarks, and Solution."` ArXiv (2019).
82 | [[paper](https://arxiv.org/abs/1901.05320)]
83 | [[project](https://github.com/dlut-dimt/Underwater-image-enhancement-algorithms)]
84 |
85 | * **UDD:** Zhihui Wang, Chongwei Liu, Shijie Wang, Tao Tang, Yulong Tao, Caifei Yang, Haojie Li, Xing Liu, Xin Fan.
86 | `"An Underwater Open-sea Farm Object Detection Dataset for Underwater Robot Picking."`
87 | [[paper](https://arxiv.org/pdf/2003.01446)]
88 |
89 | * **UIEB:** Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, Dacheng Tao.
90 | `"An Underwater Image Enhancement Benchmark Dataset and Beyond."` IEEE TIP (2019)
91 | [[paper](https://arxiv.org/pdf/1901.05495.pdf)]
92 | [[project](https://li-chongyi.github.io/proj_benchmark.html)]
93 |
94 | * **OUC:** Long Chen, Lei Tong, Feixiang Zhou, Zheheng Jiang, Zhenyang Li, Jialin Lv, Junyu Dong, Huiyu Zhou.
95 | `"A Benchmark Dataset for both Underwater Image Enhancement and Underwater Object Detection."` ArXiv (2020).
96 | [[paper](https://arxiv.org/abs/2006.15789)]
97 |
98 | * Yan Wang, Wei Song, Giancarlo Fortino, Li-Zhe Qi, Wenqiang Zhang, Antonio Liotta.
99 | `"An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging."` IEEE Access (2019).
100 | [[paper](https://ieeexplore.ieee.org/document/8782094)]
101 | [[code](https://github.com/wangyanckxx/Single-Underwater-Image-Enhancement-and-Color-Restoration)]
102 |
103 | * Saeed Anwar, Chongyi Li, Fatih Porikli.
104 | `"Deep Underwater Image Enhancement."` ArXiv (2018).
105 | [[paper](https://arxiv.org/abs/1807.03528)]
106 |
107 | * Min Han, Zhiyu Lyu, Tie Qiu, Meiling Xu.
108 | `"A Review on Intelligence Dehazing and Color Restoration for Underwater Images."`
109 | IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018).
110 | [[paper](https://ieeexplore.ieee.org/document/8267119)]
111 |
112 |
113 | ### 中文文献
114 |
115 | * 朱世伟,杭仁龙,刘青山.
116 | `"基于类加权YOLO网络的水下目标检测."` 南京师大学报(自然科学版) (2020)
117 | [[论文](https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=NJSF202001020&v=MDkwMjNMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FmWU9abkZ5N2hWYnJMS3lmWWFMRzRITkhNcm85SFpJUjhlWDE=)]
118 |
119 | * 徐凤强,董鹏,王辉兵,付先平.
120 | `"基于水下机器人的海产品智能检测与自主抓取系统."` 北京航空航天大学学报 (2019)
121 | [[论文](https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=BJHK201912006&v=MjExODk5ak5yWTlGWW9SOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWZZT1puRnk3aFdyL0xKeWZEWmJHNEg=)]
122 |
123 | * 刘有用,张江梅,王坤朋,冯兴华,杨秀洪.
124 | `"不平衡数据集下的水下目标快速识别方法."` 计算机工程与应用 (2019)
125 | [[论文](http://kns.cnki.net/KCMS/detail/11.2127.TP.20190719.1443.018.html)]
126 |
127 |
128 | ### Related Resources
129 |
130 | * **水下目标检测竞赛介绍(光学)202003**
131 | [[Slides](https://github.com/wangdongdut/Underwater-Object-Detection/blob/master/%E6%B0%B4%E4%B8%8B%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B%E7%AB%9E%E8%B5%9B%E4%BB%8B%E7%BB%8D%EF%BC%88%E5%85%89%E5%AD%A6%EF%BC%8920200305.pdf)]
132 | [[Video1](https://www.bilibili.com/video/BV1yE411u7fm?from=search&seid=6344384280060127467)]
133 | [[Video2](https://www.bilibili.com/video/BV1kE411P7hm?from=search&seid=6344384280060127467)]
134 |
135 | * **some underwater datasets:** https://github.com/xahidbuffon/underwater_datasets
136 |
137 | * **detectron2:** https://github.com/facebookresearch/detectron2
138 | [[model zoo](https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md)]
139 | [[detectron](https://github.com/facebookresearch/Detectron/)]
140 | [[maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark)]
141 |
142 | * **mmdetection:** https://github.com/open-mmlab/mmdetection
143 | [[model zoo](https://github.com/open-mmlab/mmdetection/blob/master/docs/MODEL_ZOO.md)]
144 |
145 | * **tensorflow detection model zoo:** https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
146 |
147 | * **simpledet:** https://github.com/TuSimple/simpledet
148 | [[model zoo](https://github.com/TuSimple/simpledet/blob/master/MODEL_ZOO.md)]
149 |
150 | * **darknet/yolo:** https://pjreddie.com/darknet/
151 |
152 | * **awesome-object-detection:** https://github.com/amusi/awesome-object-detection
153 |
154 | * Zhengxia Zou, Zhenwei Shi, Yuhong Guo, Jieping Ye.
155 | `"Object Detection in 20 Years: A Survey."` ArXiv (2019).
156 | [[paper](https://arxiv.org/abs/1905.05055)]:star2:
157 |
158 | * Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, Matti Pietikäinen.
159 | `"Deep Learning for Generic Object Detection: A Survey."`
160 | IJCV (2019).
161 | [[paper](https://link.springer.com/article/10.1007/s11263-019-01247-4)]:star2:
162 |
163 | * Zhi Zhang, Tong He, Hang Zhang, Zhongyue Zhang, Junyuan Xie, Mu Li.
164 | `"Bag of Freebies for Training Object Detection Neural Networks."`
165 | ArXiv (2019). [[paper](https://arxiv.org/abs/1902.04103)]:star2:
166 |
167 | * **About Anchor-free Object Detection:**
168 | [[AnchorFreeDetectionList](https://github.com/VCBE123/AnchorFreeDetection)]
169 | [[物体检测的轮回: anchor-based 与 anchor-free](https://zhuanlan.zhihu.com/p/62372897)]
170 |
171 | * **TensorRT:** https://developer.nvidia.com/tensorrt
172 |
173 | * **TVM:** https://tvm.apache.org/
174 |
175 | ### Related Codes:star2::star2::star2:
176 |
177 | * https://github.com/milleniums/underwater-object-detection-mmdetection
178 |
179 | * https://github.com/DataXujing/EfficientDet_pytorch
180 |
181 | * https://github.com/sankin97/Underwater_detection
182 |
183 | * https://github.com/zhengye1995/underwater-object-detection
184 |
185 | * https://github.com/Wakinguup/Underwater_detection
186 |
187 | ### Detection Reports:
188 | * [**目标检测的过去、现在与将来**[俞刚-深蓝学院公开课]](https://www.bilibili.com/video/BV1154y1v7BZ?from=search&seid=11991442565688432154):https://www.bilibili.com/video/BV1154y1v7BZ?from=search&seid=11991442565688432154
189 |
190 | * [**视觉目标检测年度进展概述**[VALSE 2020 APR-叶齐祥]](https://www.bilibili.com/video/BV19V411z7L3?from=search&seid=12691654838979826409):https://www.bilibili.com/video/BV19V411z7L3?from=search&seid=12691654838979826409
191 |
192 | * [**深度目标检测**[Valse Webinar 20200429]](https://www.bilibili.com/video/BV1kt4y1y7E3?from=search&seid=12410496426535668823):https://www.bilibili.com/video/BV1kt4y1y7E3?from=search&seid=12410496426535668823
193 |
194 | * [**基于深度学习的目标检测技术**[深度学习大讲堂]](https://www.bilibili.com/video/BV1JW411n7cP):https://www.bilibili.com/video/BV1JW411n7cP
195 |
196 | * [**Detection and Segmentation**[Stanford University CS231n]](https://www.youtube.com/watch?v=nDPWywWRIRo&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=11): https://www.youtube.com/watch?v=nDPWywWRIRo&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=11
197 |
198 |
199 | ### 比赛相关:
200 |
201 | * **Old Data**
202 | [[下载地址](https://pan.baidu.com/s/1puJ0BRvoTTaPjk4_KzhEKw)(0hct)]
203 |
204 | * **比赛经验**
205 | * `天池CV赛事老司机,手把手带你入门目标检测赛题`[[Video](https://www.bilibili.com/video/BV1T54y197Xt?from=search&seid=13601651463352031714)][[blog](https://blog.csdn.net/qq_40662074/article/details/104975300)]
206 | * `Kaggle实战目标检测奇淫技巧合集`[[blog](https://mp.weixin.qq.com/s?__biz=MzIwMTE1NjQxMQ==&mid=2247487104&idx=1&sn=a41a6e37be1e169b316d67765d2d9eae&chksm=96f37cd4a184f5c2abb99b5e050642df5e82f172beb19a06c562b91b610f9ed624eb46a2ec81&mpshare=1&scene=23&srcid=#rd)]
207 |
--------------------------------------------------------------------------------
/水下目标检测竞赛介绍(光学)20200305.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wangdongdut/Underwater-Object-Detection/c0d8e9c8d9bd894f6ce1f439e236aeabef05ed56/水下目标检测竞赛介绍(光学)20200305.pdf
--------------------------------------------------------------------------------