├── README.md
├── VGG_mean.mat
├── demo_a_fcn.m
├── demo_m_fcn.m
├── example.avi
├── example
├── flow_x_0001.jpg
├── flow_x_0002.jpg
├── flow_x_0003.jpg
├── flow_x_0004.jpg
├── flow_x_0005.jpg
├── flow_x_0006.jpg
├── flow_x_0007.jpg
├── flow_x_0008.jpg
├── flow_x_0009.jpg
├── flow_x_0010.jpg
├── flow_x_0011.jpg
├── flow_x_0012.jpg
├── flow_x_0013.jpg
├── flow_x_0014.jpg
├── flow_x_0015.jpg
├── flow_x_0016.jpg
├── flow_x_0017.jpg
├── flow_x_0018.jpg
├── flow_x_0019.jpg
├── flow_x_0020.jpg
├── flow_y_0001.jpg
├── flow_y_0002.jpg
├── flow_y_0003.jpg
├── flow_y_0004.jpg
├── flow_y_0005.jpg
├── flow_y_0006.jpg
├── flow_y_0007.jpg
├── flow_y_0008.jpg
├── flow_y_0009.jpg
├── flow_y_0010.jpg
├── flow_y_0011.jpg
├── flow_y_0012.jpg
├── flow_y_0013.jpg
├── flow_y_0014.jpg
├── flow_y_0015.jpg
├── flow_y_0016.jpg
├── flow_y_0017.jpg
├── flow_y_0018.jpg
├── flow_y_0019.jpg
└── flow_y_0020.jpg
└── proto
├── actionness_a-fcn_scale_1_deploy.prototxt
├── actionness_a-fcn_scale_2_deploy.prototxt
├── actionness_a-fcn_scale_3_deploy.prototxt
├── actionness_a-fcn_scale_4_deploy.prototxt
├── actionness_m-fcn_scale_1_deploy.prototxt
├── actionness_m-fcn_scale_2_deploy.prototxt
├── actionness_m-fcn_scale_3_deploy.prototxt
└── actionness_m-fcn_scale_4_deploy.prototxt
/README.md:
--------------------------------------------------------------------------------
1 | # Actionness Estimation Using Hybrid FCNs
2 | Here we provide the code of actionness estimation with hybrid fully convolutional networks from the following paper:
3 |
4 | Actionness Estimation Using Hybrid Fully Convolutional Netoworks
5 | Limin Wang, Yu Qiao, Xiaou Tang, and Luc Van Gool, in CVPR, 2016
6 |
7 | ### Updates
8 |
9 | - Jul 22, 2016
10 | * Initilaize repo of actionness estimation.
11 |
12 | ### Demo code
13 | - **demo_a_fcn.m**: an example showing actionness estimation with A-FCN.
14 | - **demo_m_fcn.m**: an example showing actionness estimation with M-FCN.
15 | - For optical flow extraction, we use TVL1 Optical Flow
16 | You need download our dense flow code and compile it by yourself. [Dense Flow](https://github.com/wanglimin/dense_flow)
17 |
18 | ### Download
19 | - Actionness estimation models (A-FCN) on the dataset of Stanford 40:
20 | http://mmlab.siat.ac.cn/actionness/stanford40_actionness_a-fcn.caffemodel
21 | - Actionness estimation models (A-FCN and M-FCN) on the dataset of UCF Sports:
22 | http://mmlab.siat.ac.cn/actionness/ucf_sports_actionness_a-fcn.caffemodel
23 | http://mmlab.siat.ac.cn/actionness/ucf_sports_actionness_m-fcn.caffemodel
24 | - Actionness estimation models (A-FCN and M-FCN) on the dataset of JHMDB:
25 | http://mmlab.siat.ac.cn/actionness/jhmdb_split1_actionness_a-fcn.caffemodel
26 | http://mmlab.siat.ac.cn/actionness/jhmdb_split1_actionness_m-fcn.caffemodel
27 | http://mmlab.siat.ac.cn/actionness/jhmdb_split2_actionness_a-fcn.caffemodel
28 | http://mmlab.siat.ac.cn/actionness/jhmdb_split2_actionness_m-fcn.caffemodel
29 | http://mmlab.siat.ac.cn/actionness/jhmdb_split3_actionness_a-fcn.caffemodel
30 | http://mmlab.siat.ac.cn/actionness/jhmdb_split3_actionness_m-fcn.caffemodel
31 |
32 | ### Questions
33 | Contact
34 | - [Limin Wang](http://wanglimin.github.io/)
35 |
36 |
37 |
--------------------------------------------------------------------------------
/VGG_mean.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/VGG_mean.mat
--------------------------------------------------------------------------------
/demo_a_fcn.m:
--------------------------------------------------------------------------------
1 | % demo code of actionness estimation
2 | rgb_video = 'example.avi';
3 | flow_video = 'example/';
4 | gpu_id = 0;
5 |
6 |
7 | % Read video
8 | vidObj = VideoReader(rgb_video);
9 | video = read(vidObj);
10 |
11 | % Data preparation
12 | IMAGE_MEAN = load('VGG_mean.mat');
13 | IMAGE_MEAN = IMAGE_MEAN.image_mean;
14 | IMAGE_MEAN = imresize(IMAGE_MEAN,[240,320]);
15 | test_image = single(video(:,:,[3,2,1],:));
16 | test_image = bsxfun(@minus,test_image,IMAGE_MEAN);
17 | test_image = permute(test_image,[2,1,3,4]);
18 |
19 | batch_size = 50;
20 | num_images = size(test_image,4);
21 | num_batches = ceil(num_images/batch_size);
22 |
23 | model_file = 'jhmdb_split1_actionness_a-fcn.caffemodel';
24 |
25 | % Multi-scale test
26 | scale = 1;
27 | model_def_file = ['proto/actionness_a-fcn_scale_', num2str(scale), '_deploy.prototxt'];
28 | caffe.reset_all();
29 | caffe.set_mode_gpu();
30 | caffe.set_device(gpu_id);
31 | net = caffe.Net(model_def_file, model_file, 'test');
32 |
33 | a_fcn_scale_1 = zeros(10, 13, 2, size(test_image,4));
34 | images = zeros(214, 160, 3, batch_size, 'single');
35 | for bb = 1 : num_batches
36 | range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
37 | tmp = test_image(:,:,:,range);
38 | for i =1:size(tmp,4)
39 | images(:,:,:,i) = imresize(tmp(:,:,:,i),[214, 160]);
40 | end
41 | net.blobs('data').set_data(images);
42 | net.forward_prefilled();
43 | prediction = permute(net.blobs('prob').get_data(), [2,1,3,4]);
44 | a_fcn_scale_1(:,:,:,range) = prediction(:,:,:,mod(range-1,batch_size)+1);
45 | end
46 |
47 | scale = 2;
48 | model_def_file = ['proto/actionness_a-fcn_scale_', num2str(scale), '_deploy.prototxt'];
49 | caffe.reset_all();
50 | caffe.set_mode_gpu();
51 | caffe.set_device(gpu_id);
52 | net = caffe.Net(model_def_file, model_file, 'test');
53 |
54 | a_fcn_scale_2 = zeros(15, 20, 2, size(test_image,4));
55 | images = zeros(320, 240, 3, batch_size, 'single');
56 | for bb = 1 : num_batches
57 | range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
58 | tmp = test_image(:,:,:,range);
59 | images(:,:,:,1:size(tmp,4)) = tmp;
60 | net.blobs('data').set_data(images);
61 | net.forward_prefilled();
62 | prediction = permute(net.blobs('prob').get_data(), [2,1,3,4]);
63 | a_fcn_scale_2(:,:,:,range) = prediction(:,:,:,mod(range-1,batch_size)+1);
64 | end
65 |
66 | scale = 3;
67 | model_def_file = ['proto/actionness_a-fcn_scale_', num2str(scale), '_deploy.prototxt'];
68 | caffe.reset_all();
69 | caffe.set_mode_gpu();
70 | caffe.set_device(gpu_id);
71 | net = caffe.Net(model_def_file, model_file, 'test');
72 |
73 | a_fcn_scale_3 = zeros(22, 30, 2, size(test_image,4));
74 | images = zeros(480, 360, 3, batch_size, 'single');
75 | for bb = 1 : num_batches
76 | range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
77 | tmp = test_image(:,:,:,range);
78 | for i =1:size(tmp,4)
79 | images(:,:,:,i) = imresize(tmp(:,:,:,i),[480, 360]);
80 | end
81 | net.blobs('data').set_data(images);
82 | net.forward_prefilled();
83 | prediction = permute(net.blobs('prob').get_data(), [2,1,3,4]);
84 | a_fcn_scale_3(:,:,:,range) = prediction(:,:,:,mod(range-1,batch_size)+1);
85 | end
86 |
87 | scale = 4;
88 | model_def_file = ['proto/actionness_a-fcn_scale_', num2str(scale), '_deploy.prototxt'];
89 | caffe.reset_all();
90 | caffe.set_mode_gpu();
91 | caffe.set_device(gpu_id);
92 | net = caffe.Net(model_def_file, model_file, 'test');
93 |
94 | a_fcn_scale_4 = zeros(30, 40, 2, size(test_image,4));
95 | images = zeros(640, 480, 3, batch_size, 'single');
96 | for bb = 1 : num_batches
97 | range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
98 | tmp = test_image(:,:,:,range);
99 | for i =1:size(tmp,4)
100 | images(:,:,:,i) = imresize(tmp(:,:,:,i),[640,480]);
101 | end
102 | net.blobs('data').set_data(images);
103 | net.forward_prefilled();
104 | prediction = permute(net.blobs('prob').get_data(), [2,1,3,4]);
105 | a_fcn_scale_4(:,:,:,range) = prediction(:,:,:,mod(range-1,batch_size)+1);
106 | end
107 |
108 |
109 | for i = 1:size(video);
110 | subplot(1,2,1);
111 | imshow(video(:,:,:,i));
112 | subplot(1,2,2);
113 | result = (imresize(a_fcn_scale_1(:,:,2,i),[240,320]) ...
114 | +imresize(a_fcn_scale_2(:,:,2,i),[240,320])...
115 | +imresize(a_fcn_scale_3(:,:,2,i),[240,320])...
116 | +imresize(a_fcn_scale_4(:,:,2,i),[240,320]))/4;
117 | imagesc(result);
118 | axis image; axis off;
119 | pause(1);
120 | end
--------------------------------------------------------------------------------
/demo_m_fcn.m:
--------------------------------------------------------------------------------
1 | % demo code of actionness estimation
2 | path_flow = 'example/';
3 | gpu_id = 0;
4 | filelist = dir([path_flow, '*.jpg']);
5 | duration = length(filelist)/2 + 1;
6 |
7 |
8 | % Read optical flow
9 | flow = zeros(240, 320, 4, duration);
10 | pre_flow_x = []; cur_flow_x = [];
11 | pre_flow_y = []; cur_flow_y = [];
12 | for k = 1:duration
13 | if k < duration
14 | name_x = sprintf('flow_x_%04d.jpg',k);
15 | name_y = sprintf('flow_y_%04d.jpg',k);
16 | if isempty(pre_flow_x)
17 | pre_flow_x = imresize(imread([path_flow,'/',name_x]),[240,320]);
18 | pre_flow_y = imresize(imread([path_flow,'/',name_y]),[240,320]);
19 | end
20 | cur_flow_x = imresize(imread([path_flow,'/',name_x]),[240,320]);
21 | cur_flow_y = imresize(imread([path_flow,'/',name_y]),[240,320]);
22 | end
23 | flow(:,:,:,k) = cat(3,pre_flow_x,pre_flow_y,cur_flow_x,cur_flow_y);
24 | pre_flow_x = cur_flow_x;
25 | pre_flow_y = cur_flow_y;
26 | end
27 |
28 |
29 |
30 | % Data preparation
31 | flow(:) = flow(:) -128;
32 | test_image = permute(flow,[2,1,3,4]);
33 |
34 | batch_size = 50;
35 | num_images = size(test_image,4);
36 | num_batches = ceil(num_images/batch_size);
37 |
38 | model_file = 'jhmdb_split1_actionness_m-fcn.caffemodel';
39 |
40 | % Multi-scale test
41 | scale = 1;
42 | model_def_file = ['proto/actionness_m-fcn_scale_', num2str(scale), '_deploy.prototxt'];
43 | caffe.reset_all();
44 | caffe.set_mode_gpu();
45 | caffe.set_device(gpu_id);
46 | net = caffe.Net(model_def_file, model_file, 'test');
47 |
48 | m_fcn_scale_1 = zeros(10, 13, 2, size(test_image,4));
49 | images = zeros(214, 160, 4, batch_size, 'single');
50 | for bb = 1 : num_batches
51 | range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
52 | tmp = test_image(:,:,:,range);
53 | for i =1:size(tmp,4)
54 | images(:,:,:,i) = imresize(tmp(:,:,:,i),[214, 160]);
55 | end
56 | net.blobs('data').set_data(images);
57 | net.forward_prefilled();
58 | prediction = permute(net.blobs('prob').get_data(), [2,1,3,4]);
59 | m_fcn_scale_1(:,:,:,range) = prediction(:,:,:,mod(range-1,batch_size)+1);
60 | end
61 |
62 | scale = 2;
63 | model_def_file = ['proto/actionness_m-fcn_scale_', num2str(scale), '_deploy.prototxt'];
64 | caffe.reset_all();
65 | caffe.set_mode_gpu();
66 | caffe.set_device(gpu_id);
67 | net = caffe.Net(model_def_file, model_file, 'test');
68 |
69 | m_fcn_scale_2 = zeros(15, 20, 2, size(test_image,4));
70 | images = zeros(320, 240, 4, batch_size, 'single');
71 | for bb = 1 : num_batches
72 | range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
73 | tmp = test_image(:,:,:,range);
74 | images(:,:,:,1:size(tmp,4)) = tmp;
75 | net.blobs('data').set_data(images);
76 | net.forward_prefilled();
77 | prediction = permute(net.blobs('prob').get_data(), [2,1,3,4]);
78 | m_fcn_scale_2(:,:,:,range) = prediction(:,:,:,mod(range-1,batch_size)+1);
79 | end
80 |
81 | scale = 3;
82 | model_def_file = ['proto/actionness_m-fcn_scale_', num2str(scale), '_deploy.prototxt'];
83 | caffe.reset_all();
84 | caffe.set_mode_gpu();
85 | caffe.set_device(gpu_id);
86 | net = caffe.Net(model_def_file, model_file, 'test');
87 |
88 | m_fcn_scale_3 = zeros(22, 30, 2, size(test_image,4));
89 | images = zeros(480, 360, 4, batch_size, 'single');
90 | for bb = 1 : num_batches
91 | range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
92 | tmp = test_image(:,:,:,range);
93 | for i =1:size(tmp,4)
94 | images(:,:,:,i) = imresize(tmp(:,:,:,i),[480, 360]);
95 | end
96 | net.blobs('data').set_data(images);
97 | net.forward_prefilled();
98 | prediction = permute(net.blobs('prob').get_data(), [2,1,3,4]);
99 | m_fcn_scale_3(:,:,:,range) = prediction(:,:,:,mod(range-1,batch_size)+1);
100 | end
101 |
102 | scale = 4;
103 | model_def_file = ['proto/actionness_m-fcn_scale_', num2str(scale), '_deploy.prototxt'];
104 | caffe.reset_all();
105 | caffe.set_mode_gpu();
106 | caffe.set_device(gpu_id);
107 | net = caffe.Net(model_def_file, model_file, 'test');
108 |
109 | m_fcn_scale_4 = zeros(30, 40, 2, size(test_image,4));
110 | images = zeros(640, 480, 4, batch_size, 'single');
111 | for bb = 1 : num_batches
112 | range = 1 + batch_size*(bb-1): min(num_images,batch_size*bb);
113 | tmp = test_image(:,:,:,range);
114 | for i =1:size(tmp,4)
115 | images(:,:,:,i) = imresize(tmp(:,:,:,i),[640,480]);
116 | end
117 | net.blobs('data').set_data(images);
118 | net.forward_prefilled();
119 | prediction = permute(net.blobs('prob').get_data(), [2,1,3,4]);
120 | m_fcn_scale_4(:,:,:,range) = prediction(:,:,:,mod(range-1,batch_size)+1);
121 | end
122 |
123 |
124 | for i = 1:size(video,4);
125 | subplot(1,2,1);
126 | imshow(video(:,:,:,i));
127 | subplot(1,2,2);
128 | result_a = (imresize(a_fcn_scale_1(:,:,2,i),[240,320]) ...
129 | +imresize(a_fcn_scale_2(:,:,2,i),[240,320])...
130 | +imresize(a_fcn_scale_3(:,:,2,i),[240,320])...
131 | +imresize(a_fcn_scale_4(:,:,2,i),[240,320]))/4;
132 | result_m = (imresize(m_fcn_scale_1(:,:,2,i),[240,320]) ...
133 | +imresize(m_fcn_scale_2(:,:,2,i),[240,320])...
134 | +imresize(m_fcn_scale_3(:,:,2,i),[240,320])...
135 | +imresize(m_fcn_scale_4(:,:,2,i),[240,320]))/4;
136 | imagesc(result_a + result_m);
137 | axis image; axis off;
138 | pause(1);
139 | end
140 |
--------------------------------------------------------------------------------
/example.avi:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example.avi
--------------------------------------------------------------------------------
/example/flow_x_0001.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0001.jpg
--------------------------------------------------------------------------------
/example/flow_x_0002.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0002.jpg
--------------------------------------------------------------------------------
/example/flow_x_0003.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0003.jpg
--------------------------------------------------------------------------------
/example/flow_x_0004.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0004.jpg
--------------------------------------------------------------------------------
/example/flow_x_0005.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0005.jpg
--------------------------------------------------------------------------------
/example/flow_x_0006.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0006.jpg
--------------------------------------------------------------------------------
/example/flow_x_0007.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0007.jpg
--------------------------------------------------------------------------------
/example/flow_x_0008.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0008.jpg
--------------------------------------------------------------------------------
/example/flow_x_0009.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0009.jpg
--------------------------------------------------------------------------------
/example/flow_x_0010.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0010.jpg
--------------------------------------------------------------------------------
/example/flow_x_0011.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0011.jpg
--------------------------------------------------------------------------------
/example/flow_x_0012.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0012.jpg
--------------------------------------------------------------------------------
/example/flow_x_0013.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0013.jpg
--------------------------------------------------------------------------------
/example/flow_x_0014.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0014.jpg
--------------------------------------------------------------------------------
/example/flow_x_0015.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0015.jpg
--------------------------------------------------------------------------------
/example/flow_x_0016.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0016.jpg
--------------------------------------------------------------------------------
/example/flow_x_0017.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0017.jpg
--------------------------------------------------------------------------------
/example/flow_x_0018.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0018.jpg
--------------------------------------------------------------------------------
/example/flow_x_0019.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0019.jpg
--------------------------------------------------------------------------------
/example/flow_x_0020.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_x_0020.jpg
--------------------------------------------------------------------------------
/example/flow_y_0001.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0001.jpg
--------------------------------------------------------------------------------
/example/flow_y_0002.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0002.jpg
--------------------------------------------------------------------------------
/example/flow_y_0003.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0003.jpg
--------------------------------------------------------------------------------
/example/flow_y_0004.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0004.jpg
--------------------------------------------------------------------------------
/example/flow_y_0005.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0005.jpg
--------------------------------------------------------------------------------
/example/flow_y_0006.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0006.jpg
--------------------------------------------------------------------------------
/example/flow_y_0007.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0007.jpg
--------------------------------------------------------------------------------
/example/flow_y_0008.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0008.jpg
--------------------------------------------------------------------------------
/example/flow_y_0009.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0009.jpg
--------------------------------------------------------------------------------
/example/flow_y_0010.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0010.jpg
--------------------------------------------------------------------------------
/example/flow_y_0011.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0011.jpg
--------------------------------------------------------------------------------
/example/flow_y_0012.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0012.jpg
--------------------------------------------------------------------------------
/example/flow_y_0013.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0013.jpg
--------------------------------------------------------------------------------
/example/flow_y_0014.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0014.jpg
--------------------------------------------------------------------------------
/example/flow_y_0015.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0015.jpg
--------------------------------------------------------------------------------
/example/flow_y_0016.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0016.jpg
--------------------------------------------------------------------------------
/example/flow_y_0017.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0017.jpg
--------------------------------------------------------------------------------
/example/flow_y_0018.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0018.jpg
--------------------------------------------------------------------------------
/example/flow_y_0019.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0019.jpg
--------------------------------------------------------------------------------
/example/flow_y_0020.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wanglimin/Actionness-Estimation/35221f84b765ee8b725f30648911df45b3788b54/example/flow_y_0020.jpg
--------------------------------------------------------------------------------
/proto/actionness_a-fcn_scale_1_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "A-FCN_Scale_1"
2 | input: "data"
3 | input_dim: 50
4 | input_dim: 3
5 | input_dim: 160
6 | input_dim: 214
7 | layer {
8 | name: "conv1"
9 | type: "Convolution"
10 | bottom: "data"
11 | top: "conv1"
12 | convolution_param {
13 | num_output: 96
14 | pad: 3
15 | kernel_size: 7
16 | stride: 2
17 | }
18 | }
19 | layer {
20 | name: "relu1"
21 | type: "ReLU"
22 | bottom: "conv1"
23 | top: "conv1"
24 | }
25 | layer {
26 | name: "norm1"
27 | type: "LRN"
28 | bottom: "conv1"
29 | top: "norm1"
30 | lrn_param {
31 | local_size: 5
32 | alpha: 0.0005
33 | beta: 0.75
34 | }
35 | }
36 | layer {
37 | name: "pool1"
38 | type: "Pooling"
39 | bottom: "norm1"
40 | top: "pool1"
41 | pooling_param {
42 | pool: MAX
43 | kernel_size: 3
44 | stride: 2
45 | }
46 | }
47 | layer {
48 | name: "conv2"
49 | type: "Convolution"
50 | bottom: "pool1"
51 | top: "conv2"
52 | convolution_param {
53 | num_output: 256
54 | pad: 2
55 | kernel_size: 5
56 | stride: 2
57 | }
58 | }
59 | layer {
60 | name: "relu2"
61 | type: "ReLU"
62 | bottom: "conv2"
63 | top: "conv2"
64 | }
65 | layer {
66 | name: "norm2"
67 | type: "LRN"
68 | bottom: "conv2"
69 | top: "norm2"
70 | lrn_param {
71 | local_size: 5
72 | alpha: 0.0005
73 | beta: 0.75
74 | }
75 | }
76 | layer {
77 | name: "pool2"
78 | type: "Pooling"
79 | bottom: "norm2"
80 | top: "pool2"
81 | pooling_param {
82 | pool: MAX
83 | kernel_size: 3
84 | stride: 2
85 | }
86 | }
87 | layer {
88 | name: "conv3"
89 | type: "Convolution"
90 | bottom: "pool2"
91 | top: "conv3"
92 | convolution_param {
93 | num_output: 512
94 | pad: 1
95 | kernel_size: 3
96 | }
97 | }
98 | layer {
99 | name: "relu3"
100 | type: "ReLU"
101 | bottom: "conv3"
102 | top: "conv3"
103 | }
104 | layer {
105 | name: "conv4"
106 | type: "Convolution"
107 | bottom: "conv3"
108 | top: "conv4"
109 | convolution_param {
110 | num_output: 512
111 | pad: 1
112 | kernel_size: 3
113 | }
114 | }
115 | layer {
116 | name: "relu4"
117 | type: "ReLU"
118 | bottom: "conv4"
119 | top: "conv4"
120 | }
121 | layer {
122 | name: "conv5"
123 | type: "Convolution"
124 | bottom: "conv4"
125 | top: "conv5"
126 | convolution_param {
127 | num_output: 512
128 | pad: 1
129 | kernel_size: 3
130 | }
131 | }
132 | layer {
133 | name: "relu5"
134 | type: "ReLU"
135 | bottom: "conv5"
136 | top: "conv5"
137 | }
138 | layer {
139 | name: "pool5"
140 | type: "Pooling"
141 | bottom: "conv5"
142 | top: "pool5"
143 | pooling_param {
144 | pool: MAX
145 | kernel_size: 3
146 | stride: 1
147 | pad: 1
148 | }
149 | }
150 | layer {
151 | name: "conv6"
152 | type: "Convolution"
153 | bottom: "pool5"
154 | top: "conv6"
155 | convolution_param {
156 | num_output: 1024
157 | kernel_size: 1
158 | }
159 | }
160 | layer {
161 | name: "relu6"
162 | type: "ReLU"
163 | bottom: "conv6"
164 | top: "conv6"
165 | }
166 | layer {
167 | name: "drop6"
168 | type: "Dropout"
169 | bottom: "conv6"
170 | top: "conv6"
171 | dropout_param {
172 | dropout_ratio: 0.4
173 | }
174 | }
175 | layer {
176 | name: "conv7"
177 | type: "Convolution"
178 | bottom: "conv6"
179 | top: "conv7"
180 | convolution_param {
181 | num_output: 512
182 | kernel_size: 1
183 | }
184 | }
185 | layer {
186 | name: "relu7"
187 | type: "ReLU"
188 | bottom: "conv7"
189 | top: "conv7"
190 | }
191 | layer {
192 | name: "drop7"
193 | type: "Dropout"
194 | bottom: "conv7"
195 | top: "conv7"
196 | dropout_param {
197 | dropout_ratio: 0.4
198 | }
199 | }
200 | layer {
201 | name: "conv8"
202 | type: "Convolution"
203 | bottom: "conv7"
204 | top: "conv8"
205 | convolution_param {
206 | num_output: 2
207 | kernel_size: 1
208 | }
209 | }
210 | layer {
211 | name: "prob"
212 | type: "Softmax"
213 | bottom: "conv8"
214 | top: "prob"
215 | }
--------------------------------------------------------------------------------
/proto/actionness_a-fcn_scale_2_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "A-FCN_Scale_2"
2 | input: "data"
3 | input_dim: 50
4 | input_dim: 3
5 | input_dim: 240
6 | input_dim: 320
7 | layer {
8 | name: "conv1"
9 | type: "Convolution"
10 | bottom: "data"
11 | top: "conv1"
12 | convolution_param {
13 | num_output: 96
14 | pad: 3
15 | kernel_size: 7
16 | stride: 2
17 | }
18 | }
19 | layer {
20 | name: "relu1"
21 | type: "ReLU"
22 | bottom: "conv1"
23 | top: "conv1"
24 | }
25 | layer {
26 | name: "norm1"
27 | type: "LRN"
28 | bottom: "conv1"
29 | top: "norm1"
30 | lrn_param {
31 | local_size: 5
32 | alpha: 0.0005
33 | beta: 0.75
34 | }
35 | }
36 | layer {
37 | name: "pool1"
38 | type: "Pooling"
39 | bottom: "norm1"
40 | top: "pool1"
41 | pooling_param {
42 | pool: MAX
43 | kernel_size: 3
44 | stride: 2
45 | }
46 | }
47 | layer {
48 | name: "conv2"
49 | type: "Convolution"
50 | bottom: "pool1"
51 | top: "conv2"
52 | convolution_param {
53 | num_output: 256
54 | pad: 2
55 | kernel_size: 5
56 | stride: 2
57 | }
58 | }
59 | layer {
60 | name: "relu2"
61 | type: "ReLU"
62 | bottom: "conv2"
63 | top: "conv2"
64 | }
65 | layer {
66 | name: "norm2"
67 | type: "LRN"
68 | bottom: "conv2"
69 | top: "norm2"
70 | lrn_param {
71 | local_size: 5
72 | alpha: 0.0005
73 | beta: 0.75
74 | }
75 | }
76 | layer {
77 | name: "pool2"
78 | type: "Pooling"
79 | bottom: "norm2"
80 | top: "pool2"
81 | pooling_param {
82 | pool: MAX
83 | kernel_size: 3
84 | stride: 2
85 | }
86 | }
87 | layer {
88 | name: "conv3"
89 | type: "Convolution"
90 | bottom: "pool2"
91 | top: "conv3"
92 | convolution_param {
93 | num_output: 512
94 | pad: 1
95 | kernel_size: 3
96 | }
97 | }
98 | layer {
99 | name: "relu3"
100 | type: "ReLU"
101 | bottom: "conv3"
102 | top: "conv3"
103 | }
104 | layer {
105 | name: "conv4"
106 | type: "Convolution"
107 | bottom: "conv3"
108 | top: "conv4"
109 | convolution_param {
110 | num_output: 512
111 | pad: 1
112 | kernel_size: 3
113 | }
114 | }
115 | layer {
116 | name: "relu4"
117 | type: "ReLU"
118 | bottom: "conv4"
119 | top: "conv4"
120 | }
121 | layer {
122 | name: "conv5"
123 | type: "Convolution"
124 | bottom: "conv4"
125 | top: "conv5"
126 | convolution_param {
127 | num_output: 512
128 | pad: 1
129 | kernel_size: 3
130 | }
131 | }
132 | layer {
133 | name: "relu5"
134 | type: "ReLU"
135 | bottom: "conv5"
136 | top: "conv5"
137 | }
138 | layer {
139 | name: "pool5"
140 | type: "Pooling"
141 | bottom: "conv5"
142 | top: "pool5"
143 | pooling_param {
144 | pool: MAX
145 | kernel_size: 3
146 | stride: 1
147 | pad: 1
148 | }
149 | }
150 | layer {
151 | name: "conv6"
152 | type: "Convolution"
153 | bottom: "pool5"
154 | top: "conv6"
155 | convolution_param {
156 | num_output: 1024
157 | kernel_size: 1
158 | }
159 | }
160 | layer {
161 | name: "relu6"
162 | type: "ReLU"
163 | bottom: "conv6"
164 | top: "conv6"
165 | }
166 | layer {
167 | name: "drop6"
168 | type: "Dropout"
169 | bottom: "conv6"
170 | top: "conv6"
171 | dropout_param {
172 | dropout_ratio: 0.4
173 | }
174 | }
175 | layer {
176 | name: "conv7"
177 | type: "Convolution"
178 | bottom: "conv6"
179 | top: "conv7"
180 | convolution_param {
181 | num_output: 512
182 | kernel_size: 1
183 | }
184 | }
185 | layer {
186 | name: "relu7"
187 | type: "ReLU"
188 | bottom: "conv7"
189 | top: "conv7"
190 | }
191 | layer {
192 | name: "drop7"
193 | type: "Dropout"
194 | bottom: "conv7"
195 | top: "conv7"
196 | dropout_param {
197 | dropout_ratio: 0.4
198 | }
199 | }
200 | layer {
201 | name: "conv8"
202 | type: "Convolution"
203 | bottom: "conv7"
204 | top: "conv8"
205 | convolution_param {
206 | num_output: 2
207 | kernel_size: 1
208 | }
209 | }
210 | layer {
211 | name: "prob"
212 | type: "Softmax"
213 | bottom: "conv8"
214 | top: "prob"
215 | }
--------------------------------------------------------------------------------
/proto/actionness_a-fcn_scale_3_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "A-FCN_Scale_3"
2 | input: "data"
3 | input_dim: 50
4 | input_dim: 3
5 | input_dim: 360
6 | input_dim: 480
7 | layer {
8 | name: "conv1"
9 | type: "Convolution"
10 | bottom: "data"
11 | top: "conv1"
12 | convolution_param {
13 | num_output: 96
14 | pad: 3
15 | kernel_size: 7
16 | stride: 2
17 | }
18 | }
19 | layer {
20 | name: "relu1"
21 | type: "ReLU"
22 | bottom: "conv1"
23 | top: "conv1"
24 | }
25 | layer {
26 | name: "norm1"
27 | type: "LRN"
28 | bottom: "conv1"
29 | top: "norm1"
30 | lrn_param {
31 | local_size: 5
32 | alpha: 0.0005
33 | beta: 0.75
34 | }
35 | }
36 | layer {
37 | name: "pool1"
38 | type: "Pooling"
39 | bottom: "norm1"
40 | top: "pool1"
41 | pooling_param {
42 | pool: MAX
43 | kernel_size: 3
44 | stride: 2
45 | }
46 | }
47 | layer {
48 | name: "conv2"
49 | type: "Convolution"
50 | bottom: "pool1"
51 | top: "conv2"
52 | convolution_param {
53 | num_output: 256
54 | pad: 2
55 | kernel_size: 5
56 | stride: 2
57 | }
58 | }
59 | layer {
60 | name: "relu2"
61 | type: "ReLU"
62 | bottom: "conv2"
63 | top: "conv2"
64 | }
65 | layer {
66 | name: "norm2"
67 | type: "LRN"
68 | bottom: "conv2"
69 | top: "norm2"
70 | lrn_param {
71 | local_size: 5
72 | alpha: 0.0005
73 | beta: 0.75
74 | }
75 | }
76 | layer {
77 | name: "pool2"
78 | type: "Pooling"
79 | bottom: "norm2"
80 | top: "pool2"
81 | pooling_param {
82 | pool: MAX
83 | kernel_size: 3
84 | stride: 2
85 | }
86 | }
87 | layer {
88 | name: "conv3"
89 | type: "Convolution"
90 | bottom: "pool2"
91 | top: "conv3"
92 | convolution_param {
93 | num_output: 512
94 | pad: 1
95 | kernel_size: 3
96 | }
97 | }
98 | layer {
99 | name: "relu3"
100 | type: "ReLU"
101 | bottom: "conv3"
102 | top: "conv3"
103 | }
104 | layer {
105 | name: "conv4"
106 | type: "Convolution"
107 | bottom: "conv3"
108 | top: "conv4"
109 | convolution_param {
110 | num_output: 512
111 | pad: 1
112 | kernel_size: 3
113 | }
114 | }
115 | layer {
116 | name: "relu4"
117 | type: "ReLU"
118 | bottom: "conv4"
119 | top: "conv4"
120 | }
121 | layer {
122 | name: "conv5"
123 | type: "Convolution"
124 | bottom: "conv4"
125 | top: "conv5"
126 | convolution_param {
127 | num_output: 512
128 | pad: 1
129 | kernel_size: 3
130 | }
131 | }
132 | layer {
133 | name: "relu5"
134 | type: "ReLU"
135 | bottom: "conv5"
136 | top: "conv5"
137 | }
138 | layer {
139 | name: "pool5"
140 | type: "Pooling"
141 | bottom: "conv5"
142 | top: "pool5"
143 | pooling_param {
144 | pool: MAX
145 | kernel_size: 3
146 | stride: 1
147 | pad: 1
148 | }
149 | }
150 | layer {
151 | name: "conv6"
152 | type: "Convolution"
153 | bottom: "pool5"
154 | top: "conv6"
155 | convolution_param {
156 | num_output: 1024
157 | kernel_size: 1
158 | }
159 | }
160 | layer {
161 | name: "relu6"
162 | type: "ReLU"
163 | bottom: "conv6"
164 | top: "conv6"
165 | }
166 | layer {
167 | name: "drop6"
168 | type: "Dropout"
169 | bottom: "conv6"
170 | top: "conv6"
171 | dropout_param {
172 | dropout_ratio: 0.4
173 | }
174 | }
175 | layer {
176 | name: "conv7"
177 | type: "Convolution"
178 | bottom: "conv6"
179 | top: "conv7"
180 | convolution_param {
181 | num_output: 512
182 | kernel_size: 1
183 | }
184 | }
185 | layer {
186 | name: "relu7"
187 | type: "ReLU"
188 | bottom: "conv7"
189 | top: "conv7"
190 | }
191 | layer {
192 | name: "drop7"
193 | type: "Dropout"
194 | bottom: "conv7"
195 | top: "conv7"
196 | dropout_param {
197 | dropout_ratio: 0.4
198 | }
199 | }
200 | layer {
201 | name: "conv8"
202 | type: "Convolution"
203 | bottom: "conv7"
204 | top: "conv8"
205 | convolution_param {
206 | num_output: 2
207 | kernel_size: 1
208 | }
209 | }
210 | layer {
211 | name: "prob"
212 | type: "Softmax"
213 | bottom: "conv8"
214 | top: "prob"
215 | }
--------------------------------------------------------------------------------
/proto/actionness_a-fcn_scale_4_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "A-FCN_Scale_4"
2 | input: "data"
3 | input_dim: 50
4 | input_dim: 3
5 | input_dim: 480
6 | input_dim: 640
7 | layer {
8 | name: "conv1"
9 | type: "Convolution"
10 | bottom: "data"
11 | top: "conv1"
12 | convolution_param {
13 | num_output: 96
14 | pad: 3
15 | kernel_size: 7
16 | stride: 2
17 | }
18 | }
19 | layer {
20 | name: "relu1"
21 | type: "ReLU"
22 | bottom: "conv1"
23 | top: "conv1"
24 | }
25 | layer {
26 | name: "norm1"
27 | type: "LRN"
28 | bottom: "conv1"
29 | top: "norm1"
30 | lrn_param {
31 | local_size: 5
32 | alpha: 0.0005
33 | beta: 0.75
34 | }
35 | }
36 | layer {
37 | name: "pool1"
38 | type: "Pooling"
39 | bottom: "norm1"
40 | top: "pool1"
41 | pooling_param {
42 | pool: MAX
43 | kernel_size: 3
44 | stride: 2
45 | }
46 | }
47 | layer {
48 | name: "conv2"
49 | type: "Convolution"
50 | bottom: "pool1"
51 | top: "conv2"
52 | convolution_param {
53 | num_output: 256
54 | pad: 2
55 | kernel_size: 5
56 | stride: 2
57 | }
58 | }
59 | layer {
60 | name: "relu2"
61 | type: "ReLU"
62 | bottom: "conv2"
63 | top: "conv2"
64 | }
65 | layer {
66 | name: "norm2"
67 | type: "LRN"
68 | bottom: "conv2"
69 | top: "norm2"
70 | lrn_param {
71 | local_size: 5
72 | alpha: 0.0005
73 | beta: 0.75
74 | }
75 | }
76 | layer {
77 | name: "pool2"
78 | type: "Pooling"
79 | bottom: "norm2"
80 | top: "pool2"
81 | pooling_param {
82 | pool: MAX
83 | kernel_size: 3
84 | stride: 2
85 | }
86 | }
87 | layer {
88 | name: "conv3"
89 | type: "Convolution"
90 | bottom: "pool2"
91 | top: "conv3"
92 | convolution_param {
93 | num_output: 512
94 | pad: 1
95 | kernel_size: 3
96 | }
97 | }
98 | layer {
99 | name: "relu3"
100 | type: "ReLU"
101 | bottom: "conv3"
102 | top: "conv3"
103 | }
104 | layer {
105 | name: "conv4"
106 | type: "Convolution"
107 | bottom: "conv3"
108 | top: "conv4"
109 | convolution_param {
110 | num_output: 512
111 | pad: 1
112 | kernel_size: 3
113 | }
114 | }
115 | layer {
116 | name: "relu4"
117 | type: "ReLU"
118 | bottom: "conv4"
119 | top: "conv4"
120 | }
121 | layer {
122 | name: "conv5"
123 | type: "Convolution"
124 | bottom: "conv4"
125 | top: "conv5"
126 | convolution_param {
127 | num_output: 512
128 | pad: 1
129 | kernel_size: 3
130 | }
131 | }
132 | layer {
133 | name: "relu5"
134 | type: "ReLU"
135 | bottom: "conv5"
136 | top: "conv5"
137 | }
138 | layer {
139 | name: "pool5"
140 | type: "Pooling"
141 | bottom: "conv5"
142 | top: "pool5"
143 | pooling_param {
144 | pool: MAX
145 | kernel_size: 3
146 | stride: 1
147 | pad: 1
148 | }
149 | }
150 | layer {
151 | name: "conv6"
152 | type: "Convolution"
153 | bottom: "pool5"
154 | top: "conv6"
155 | convolution_param {
156 | num_output: 1024
157 | kernel_size: 1
158 | }
159 | }
160 | layer {
161 | name: "relu6"
162 | type: "ReLU"
163 | bottom: "conv6"
164 | top: "conv6"
165 | }
166 | layer {
167 | name: "drop6"
168 | type: "Dropout"
169 | bottom: "conv6"
170 | top: "conv6"
171 | dropout_param {
172 | dropout_ratio: 0.4
173 | }
174 | }
175 | layer {
176 | name: "conv7"
177 | type: "Convolution"
178 | bottom: "conv6"
179 | top: "conv7"
180 | convolution_param {
181 | num_output: 512
182 | kernel_size: 1
183 | }
184 | }
185 | layer {
186 | name: "relu7"
187 | type: "ReLU"
188 | bottom: "conv7"
189 | top: "conv7"
190 | }
191 | layer {
192 | name: "drop7"
193 | type: "Dropout"
194 | bottom: "conv7"
195 | top: "conv7"
196 | dropout_param {
197 | dropout_ratio: 0.4
198 | }
199 | }
200 | layer {
201 | name: "conv8"
202 | type: "Convolution"
203 | bottom: "conv7"
204 | top: "conv8"
205 | convolution_param {
206 | num_output: 2
207 | kernel_size: 1
208 | }
209 | }
210 | layer {
211 | name: "prob"
212 | type: "Softmax"
213 | bottom: "conv8"
214 | top: "prob"
215 | }
--------------------------------------------------------------------------------
/proto/actionness_m-fcn_scale_1_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "M-FCN_Scale_1"
2 | input: "data"
3 | input_dim: 50
4 | input_dim: 4
5 | input_dim: 160
6 | input_dim: 214
7 | layer {
8 | name: "conv1"
9 | type: "Convolution"
10 | bottom: "data"
11 | top: "conv1"
12 | convolution_param {
13 | num_output: 96
14 | pad: 3
15 | kernel_size: 7
16 | stride: 2
17 | }
18 | }
19 | layer {
20 | name: "relu1"
21 | type: "ReLU"
22 | bottom: "conv1"
23 | top: "conv1"
24 | }
25 | layer {
26 | name: "norm1"
27 | type: "LRN"
28 | bottom: "conv1"
29 | top: "norm1"
30 | lrn_param {
31 | local_size: 5
32 | alpha: 0.0005
33 | beta: 0.75
34 | }
35 | }
36 | layer {
37 | name: "pool1"
38 | type: "Pooling"
39 | bottom: "norm1"
40 | top: "pool1"
41 | pooling_param {
42 | pool: MAX
43 | kernel_size: 3
44 | stride: 2
45 | }
46 | }
47 | layer {
48 | name: "conv2"
49 | type: "Convolution"
50 | bottom: "pool1"
51 | top: "conv2"
52 | convolution_param {
53 | num_output: 256
54 | pad: 2
55 | kernel_size: 5
56 | stride: 2
57 | }
58 | }
59 | layer {
60 | name: "relu2"
61 | type: "ReLU"
62 | bottom: "conv2"
63 | top: "conv2"
64 | }
65 | layer {
66 | name: "norm2"
67 | type: "LRN"
68 | bottom: "conv2"
69 | top: "norm2"
70 | lrn_param {
71 | local_size: 5
72 | alpha: 0.0005
73 | beta: 0.75
74 | }
75 | }
76 | layer {
77 | name: "pool2"
78 | type: "Pooling"
79 | bottom: "norm2"
80 | top: "pool2"
81 | pooling_param {
82 | pool: MAX
83 | kernel_size: 3
84 | stride: 2
85 | }
86 | }
87 | layer {
88 | name: "conv3"
89 | type: "Convolution"
90 | bottom: "pool2"
91 | top: "conv3"
92 | convolution_param {
93 | num_output: 512
94 | pad: 1
95 | kernel_size: 3
96 | }
97 | }
98 | layer {
99 | name: "relu3"
100 | type: "ReLU"
101 | bottom: "conv3"
102 | top: "conv3"
103 | }
104 | layer {
105 | name: "conv4"
106 | type: "Convolution"
107 | bottom: "conv3"
108 | top: "conv4"
109 | convolution_param {
110 | num_output: 512
111 | pad: 1
112 | kernel_size: 3
113 | }
114 | }
115 | layer {
116 | name: "relu4"
117 | type: "ReLU"
118 | bottom: "conv4"
119 | top: "conv4"
120 | }
121 | layer {
122 | name: "conv5"
123 | type: "Convolution"
124 | bottom: "conv4"
125 | top: "conv5"
126 | convolution_param {
127 | num_output: 512
128 | pad: 1
129 | kernel_size: 3
130 | }
131 | }
132 | layer {
133 | name: "relu5"
134 | type: "ReLU"
135 | bottom: "conv5"
136 | top: "conv5"
137 | }
138 | layer {
139 | name: "pool5"
140 | type: "Pooling"
141 | bottom: "conv5"
142 | top: "pool5"
143 | pooling_param {
144 | pool: MAX
145 | kernel_size: 3
146 | stride: 1
147 | pad: 1
148 | }
149 | }
150 | layer {
151 | name: "conv6"
152 | type: "Convolution"
153 | bottom: "pool5"
154 | top: "conv6"
155 | convolution_param {
156 | num_output: 1024
157 | kernel_size: 1
158 | }
159 | }
160 | layer {
161 | name: "relu6"
162 | type: "ReLU"
163 | bottom: "conv6"
164 | top: "conv6"
165 | }
166 | layer {
167 | name: "drop6"
168 | type: "Dropout"
169 | bottom: "conv6"
170 | top: "conv6"
171 | dropout_param {
172 | dropout_ratio: 0.4
173 | }
174 | }
175 | layer {
176 | name: "conv7"
177 | type: "Convolution"
178 | bottom: "conv6"
179 | top: "conv7"
180 | convolution_param {
181 | num_output: 512
182 | kernel_size: 1
183 | }
184 | }
185 | layer {
186 | name: "relu7"
187 | type: "ReLU"
188 | bottom: "conv7"
189 | top: "conv7"
190 | }
191 | layer {
192 | name: "drop7"
193 | type: "Dropout"
194 | bottom: "conv7"
195 | top: "conv7"
196 | dropout_param {
197 | dropout_ratio: 0.4
198 | }
199 | }
200 | layer {
201 | name: "conv8"
202 | type: "Convolution"
203 | bottom: "conv7"
204 | top: "conv8"
205 | convolution_param {
206 | num_output: 2
207 | kernel_size: 1
208 | }
209 | }
210 | layer {
211 | name: "prob"
212 | type: "Softmax"
213 | bottom: "conv8"
214 | top: "prob"
215 | }
--------------------------------------------------------------------------------
/proto/actionness_m-fcn_scale_2_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "M-FCN_Scale_2"
2 | input: "data"
3 | input_dim: 50
4 | input_dim: 4
5 | input_dim: 240
6 | input_dim: 320
7 | layer {
8 | name: "conv1"
9 | type: "Convolution"
10 | bottom: "data"
11 | top: "conv1"
12 | convolution_param {
13 | num_output: 96
14 | pad: 3
15 | kernel_size: 7
16 | stride: 2
17 | }
18 | }
19 | layer {
20 | name: "relu1"
21 | type: "ReLU"
22 | bottom: "conv1"
23 | top: "conv1"
24 | }
25 | layer {
26 | name: "norm1"
27 | type: "LRN"
28 | bottom: "conv1"
29 | top: "norm1"
30 | lrn_param {
31 | local_size: 5
32 | alpha: 0.0005
33 | beta: 0.75
34 | }
35 | }
36 | layer {
37 | name: "pool1"
38 | type: "Pooling"
39 | bottom: "norm1"
40 | top: "pool1"
41 | pooling_param {
42 | pool: MAX
43 | kernel_size: 3
44 | stride: 2
45 | }
46 | }
47 | layer {
48 | name: "conv2"
49 | type: "Convolution"
50 | bottom: "pool1"
51 | top: "conv2"
52 | convolution_param {
53 | num_output: 256
54 | pad: 2
55 | kernel_size: 5
56 | stride: 2
57 | }
58 | }
59 | layer {
60 | name: "relu2"
61 | type: "ReLU"
62 | bottom: "conv2"
63 | top: "conv2"
64 | }
65 | layer {
66 | name: "norm2"
67 | type: "LRN"
68 | bottom: "conv2"
69 | top: "norm2"
70 | lrn_param {
71 | local_size: 5
72 | alpha: 0.0005
73 | beta: 0.75
74 | }
75 | }
76 | layer {
77 | name: "pool2"
78 | type: "Pooling"
79 | bottom: "norm2"
80 | top: "pool2"
81 | pooling_param {
82 | pool: MAX
83 | kernel_size: 3
84 | stride: 2
85 | }
86 | }
87 | layer {
88 | name: "conv3"
89 | type: "Convolution"
90 | bottom: "pool2"
91 | top: "conv3"
92 | convolution_param {
93 | num_output: 512
94 | pad: 1
95 | kernel_size: 3
96 | }
97 | }
98 | layer {
99 | name: "relu3"
100 | type: "ReLU"
101 | bottom: "conv3"
102 | top: "conv3"
103 | }
104 | layer {
105 | name: "conv4"
106 | type: "Convolution"
107 | bottom: "conv3"
108 | top: "conv4"
109 | convolution_param {
110 | num_output: 512
111 | pad: 1
112 | kernel_size: 3
113 | }
114 | }
115 | layer {
116 | name: "relu4"
117 | type: "ReLU"
118 | bottom: "conv4"
119 | top: "conv4"
120 | }
121 | layer {
122 | name: "conv5"
123 | type: "Convolution"
124 | bottom: "conv4"
125 | top: "conv5"
126 | convolution_param {
127 | num_output: 512
128 | pad: 1
129 | kernel_size: 3
130 | }
131 | }
132 | layer {
133 | name: "relu5"
134 | type: "ReLU"
135 | bottom: "conv5"
136 | top: "conv5"
137 | }
138 | layer {
139 | name: "pool5"
140 | type: "Pooling"
141 | bottom: "conv5"
142 | top: "pool5"
143 | pooling_param {
144 | pool: MAX
145 | kernel_size: 3
146 | stride: 1
147 | pad: 1
148 | }
149 | }
150 | layer {
151 | name: "conv6"
152 | type: "Convolution"
153 | bottom: "pool5"
154 | top: "conv6"
155 | convolution_param {
156 | num_output: 1024
157 | kernel_size: 1
158 | }
159 | }
160 | layer {
161 | name: "relu6"
162 | type: "ReLU"
163 | bottom: "conv6"
164 | top: "conv6"
165 | }
166 | layer {
167 | name: "drop6"
168 | type: "Dropout"
169 | bottom: "conv6"
170 | top: "conv6"
171 | dropout_param {
172 | dropout_ratio: 0.4
173 | }
174 | }
175 | layer {
176 | name: "conv7"
177 | type: "Convolution"
178 | bottom: "conv6"
179 | top: "conv7"
180 | convolution_param {
181 | num_output: 512
182 | kernel_size: 1
183 | }
184 | }
185 | layer {
186 | name: "relu7"
187 | type: "ReLU"
188 | bottom: "conv7"
189 | top: "conv7"
190 | }
191 | layer {
192 | name: "drop7"
193 | type: "Dropout"
194 | bottom: "conv7"
195 | top: "conv7"
196 | dropout_param {
197 | dropout_ratio: 0.4
198 | }
199 | }
200 | layer {
201 | name: "conv8"
202 | type: "Convolution"
203 | bottom: "conv7"
204 | top: "conv8"
205 | convolution_param {
206 | num_output: 2
207 | kernel_size: 1
208 | }
209 | }
210 | layer {
211 | name: "prob"
212 | type: "Softmax"
213 | bottom: "conv8"
214 | top: "prob"
215 | }
--------------------------------------------------------------------------------
/proto/actionness_m-fcn_scale_3_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "M-FCN_Scale_4"
2 | input: "data"
3 | input_dim: 50
4 | input_dim: 4
5 | input_dim: 360
6 | input_dim: 480
7 | layer {
8 | name: "conv1"
9 | type: "Convolution"
10 | bottom: "data"
11 | top: "conv1"
12 | convolution_param {
13 | num_output: 96
14 | pad: 3
15 | kernel_size: 7
16 | stride: 2
17 | }
18 | }
19 | layer {
20 | name: "relu1"
21 | type: "ReLU"
22 | bottom: "conv1"
23 | top: "conv1"
24 | }
25 | layer {
26 | name: "norm1"
27 | type: "LRN"
28 | bottom: "conv1"
29 | top: "norm1"
30 | lrn_param {
31 | local_size: 5
32 | alpha: 0.0005
33 | beta: 0.75
34 | }
35 | }
36 | layer {
37 | name: "pool1"
38 | type: "Pooling"
39 | bottom: "norm1"
40 | top: "pool1"
41 | pooling_param {
42 | pool: MAX
43 | kernel_size: 3
44 | stride: 2
45 | }
46 | }
47 | layer {
48 | name: "conv2"
49 | type: "Convolution"
50 | bottom: "pool1"
51 | top: "conv2"
52 | convolution_param {
53 | num_output: 256
54 | pad: 2
55 | kernel_size: 5
56 | stride: 2
57 | }
58 | }
59 | layer {
60 | name: "relu2"
61 | type: "ReLU"
62 | bottom: "conv2"
63 | top: "conv2"
64 | }
65 | layer {
66 | name: "norm2"
67 | type: "LRN"
68 | bottom: "conv2"
69 | top: "norm2"
70 | lrn_param {
71 | local_size: 5
72 | alpha: 0.0005
73 | beta: 0.75
74 | }
75 | }
76 | layer {
77 | name: "pool2"
78 | type: "Pooling"
79 | bottom: "norm2"
80 | top: "pool2"
81 | pooling_param {
82 | pool: MAX
83 | kernel_size: 3
84 | stride: 2
85 | }
86 | }
87 | layer {
88 | name: "conv3"
89 | type: "Convolution"
90 | bottom: "pool2"
91 | top: "conv3"
92 | convolution_param {
93 | num_output: 512
94 | pad: 1
95 | kernel_size: 3
96 | }
97 | }
98 | layer {
99 | name: "relu3"
100 | type: "ReLU"
101 | bottom: "conv3"
102 | top: "conv3"
103 | }
104 | layer {
105 | name: "conv4"
106 | type: "Convolution"
107 | bottom: "conv3"
108 | top: "conv4"
109 | convolution_param {
110 | num_output: 512
111 | pad: 1
112 | kernel_size: 3
113 | }
114 | }
115 | layer {
116 | name: "relu4"
117 | type: "ReLU"
118 | bottom: "conv4"
119 | top: "conv4"
120 | }
121 | layer {
122 | name: "conv5"
123 | type: "Convolution"
124 | bottom: "conv4"
125 | top: "conv5"
126 | convolution_param {
127 | num_output: 512
128 | pad: 1
129 | kernel_size: 3
130 | }
131 | }
132 | layer {
133 | name: "relu5"
134 | type: "ReLU"
135 | bottom: "conv5"
136 | top: "conv5"
137 | }
138 | layer {
139 | name: "pool5"
140 | type: "Pooling"
141 | bottom: "conv5"
142 | top: "pool5"
143 | pooling_param {
144 | pool: MAX
145 | kernel_size: 3
146 | stride: 1
147 | pad: 1
148 | }
149 | }
150 | layer {
151 | name: "conv6"
152 | type: "Convolution"
153 | bottom: "pool5"
154 | top: "conv6"
155 | convolution_param {
156 | num_output: 1024
157 | kernel_size: 1
158 | }
159 | }
160 | layer {
161 | name: "relu6"
162 | type: "ReLU"
163 | bottom: "conv6"
164 | top: "conv6"
165 | }
166 | layer {
167 | name: "drop6"
168 | type: "Dropout"
169 | bottom: "conv6"
170 | top: "conv6"
171 | dropout_param {
172 | dropout_ratio: 0.4
173 | }
174 | }
175 | layer {
176 | name: "conv7"
177 | type: "Convolution"
178 | bottom: "conv6"
179 | top: "conv7"
180 | convolution_param {
181 | num_output: 512
182 | kernel_size: 1
183 | }
184 | }
185 | layer {
186 | name: "relu7"
187 | type: "ReLU"
188 | bottom: "conv7"
189 | top: "conv7"
190 | }
191 | layer {
192 | name: "drop7"
193 | type: "Dropout"
194 | bottom: "conv7"
195 | top: "conv7"
196 | dropout_param {
197 | dropout_ratio: 0.4
198 | }
199 | }
200 | layer {
201 | name: "conv8"
202 | type: "Convolution"
203 | bottom: "conv7"
204 | top: "conv8"
205 | convolution_param {
206 | num_output: 2
207 | kernel_size: 1
208 | }
209 | }
210 | layer {
211 | name: "prob"
212 | type: "Softmax"
213 | bottom: "conv8"
214 | top: "prob"
215 | }
--------------------------------------------------------------------------------
/proto/actionness_m-fcn_scale_4_deploy.prototxt:
--------------------------------------------------------------------------------
1 | name: "M-FCN_Scale_4"
2 | input: "data"
3 | input_dim: 50
4 | input_dim: 4
5 | input_dim: 480
6 | input_dim: 640
7 | layer {
8 | name: "conv1"
9 | type: "Convolution"
10 | bottom: "data"
11 | top: "conv1"
12 | convolution_param {
13 | num_output: 96
14 | pad: 3
15 | kernel_size: 7
16 | stride: 2
17 | }
18 | }
19 | layer {
20 | name: "relu1"
21 | type: "ReLU"
22 | bottom: "conv1"
23 | top: "conv1"
24 | }
25 | layer {
26 | name: "norm1"
27 | type: "LRN"
28 | bottom: "conv1"
29 | top: "norm1"
30 | lrn_param {
31 | local_size: 5
32 | alpha: 0.0005
33 | beta: 0.75
34 | }
35 | }
36 | layer {
37 | name: "pool1"
38 | type: "Pooling"
39 | bottom: "norm1"
40 | top: "pool1"
41 | pooling_param {
42 | pool: MAX
43 | kernel_size: 3
44 | stride: 2
45 | }
46 | }
47 | layer {
48 | name: "conv2"
49 | type: "Convolution"
50 | bottom: "pool1"
51 | top: "conv2"
52 | convolution_param {
53 | num_output: 256
54 | pad: 2
55 | kernel_size: 5
56 | stride: 2
57 | }
58 | }
59 | layer {
60 | name: "relu2"
61 | type: "ReLU"
62 | bottom: "conv2"
63 | top: "conv2"
64 | }
65 | layer {
66 | name: "norm2"
67 | type: "LRN"
68 | bottom: "conv2"
69 | top: "norm2"
70 | lrn_param {
71 | local_size: 5
72 | alpha: 0.0005
73 | beta: 0.75
74 | }
75 | }
76 | layer {
77 | name: "pool2"
78 | type: "Pooling"
79 | bottom: "norm2"
80 | top: "pool2"
81 | pooling_param {
82 | pool: MAX
83 | kernel_size: 3
84 | stride: 2
85 | }
86 | }
87 | layer {
88 | name: "conv3"
89 | type: "Convolution"
90 | bottom: "pool2"
91 | top: "conv3"
92 | convolution_param {
93 | num_output: 512
94 | pad: 1
95 | kernel_size: 3
96 | }
97 | }
98 | layer {
99 | name: "relu3"
100 | type: "ReLU"
101 | bottom: "conv3"
102 | top: "conv3"
103 | }
104 | layer {
105 | name: "conv4"
106 | type: "Convolution"
107 | bottom: "conv3"
108 | top: "conv4"
109 | convolution_param {
110 | num_output: 512
111 | pad: 1
112 | kernel_size: 3
113 | }
114 | }
115 | layer {
116 | name: "relu4"
117 | type: "ReLU"
118 | bottom: "conv4"
119 | top: "conv4"
120 | }
121 | layer {
122 | name: "conv5"
123 | type: "Convolution"
124 | bottom: "conv4"
125 | top: "conv5"
126 | convolution_param {
127 | num_output: 512
128 | pad: 1
129 | kernel_size: 3
130 | }
131 | }
132 | layer {
133 | name: "relu5"
134 | type: "ReLU"
135 | bottom: "conv5"
136 | top: "conv5"
137 | }
138 | layer {
139 | name: "pool5"
140 | type: "Pooling"
141 | bottom: "conv5"
142 | top: "pool5"
143 | pooling_param {
144 | pool: MAX
145 | kernel_size: 3
146 | stride: 1
147 | pad: 1
148 | }
149 | }
150 | layer {
151 | name: "conv6"
152 | type: "Convolution"
153 | bottom: "pool5"
154 | top: "conv6"
155 | convolution_param {
156 | num_output: 1024
157 | kernel_size: 1
158 | }
159 | }
160 | layer {
161 | name: "relu6"
162 | type: "ReLU"
163 | bottom: "conv6"
164 | top: "conv6"
165 | }
166 | layer {
167 | name: "drop6"
168 | type: "Dropout"
169 | bottom: "conv6"
170 | top: "conv6"
171 | dropout_param {
172 | dropout_ratio: 0.4
173 | }
174 | }
175 | layer {
176 | name: "conv7"
177 | type: "Convolution"
178 | bottom: "conv6"
179 | top: "conv7"
180 | convolution_param {
181 | num_output: 512
182 | kernel_size: 1
183 | }
184 | }
185 | layer {
186 | name: "relu7"
187 | type: "ReLU"
188 | bottom: "conv7"
189 | top: "conv7"
190 | }
191 | layer {
192 | name: "drop7"
193 | type: "Dropout"
194 | bottom: "conv7"
195 | top: "conv7"
196 | dropout_param {
197 | dropout_ratio: 0.4
198 | }
199 | }
200 | layer {
201 | name: "conv8"
202 | type: "Convolution"
203 | bottom: "conv7"
204 | top: "conv8"
205 | convolution_param {
206 | num_output: 2
207 | kernel_size: 1
208 | }
209 | }
210 | layer {
211 | name: "prob"
212 | type: "Softmax"
213 | bottom: "conv8"
214 | top: "prob"
215 | }
--------------------------------------------------------------------------------