├── LICENSE
├── README.md
├── capex.py
├── dsg.py
├── exampleruns.py
└── opex.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ChemEngDPpy
2 | Python code for mechanical design, sizing & capex/opex calculations
3 |
4 | The intention is to use these quickly as "black-box" functions for the purposes for TAC optimization in the
5 | detailed design of the main equipment (e.g. PFR wall thickness requirement, sizing of pumps/compressors etc.)
6 |
7 | - ***QUICK START***:
8 |
9 | - Download the required `.py` files directly to your project path; or
10 |
11 | - Use Git or checkout with SVN using the git URL.
12 |
13 | - Then, see `exampleruns.py` for usage examples (it's very intuitive)
14 |
15 | To use, download the required `.py` files into the same folder as your existing code, and call the following
16 | functions depending on your situation.
17 |
18 | Quick tips:
19 |
20 | - Always use the docstrings to check the required units to avoid unit conversion errors!
21 |
22 | - Use named arguments as far as possible to avoid ambiguities!
23 |
24 | ------------------------------------------------
25 |
26 | ## Project Structure
27 |
28 | - dsg: For Mechanical Design & Ancillary Equipment Sizing
29 |
30 | - capex: For CAPEX Calculation and Reporting
31 |
32 | - opex: For OPEX Calculation and Reporting
33 |
34 | ------------------------------------------------
35 |
36 | ## Implementation Methods
37 |
38 | Quick tip: Always use the docstrings to check the required units to avoid unit conversion errors, and use
39 | named arguments as far as possible to avoid ambiguities!
40 |
41 | Some definitions first:
42 |
43 | - ***Design inputs***: Properties that are critical and required to conduct equipment design/sizing
44 |
45 | - ***Design variables***: Properties that are determined after conducting equipment design/sizing
46 |
47 | - ***Additional tags***: Properties that are not critical to equipment design/sizing,
48 | but are important for the purposes of cost estimation.
49 | These can be supplied in the equipment object creation for ease of cost estimation later
50 |
51 | For example:
52 |
53 | - *Pressure* is a *design input* for vessels (to determine final shell thickness),
54 | a *design variable* for pumps/compressor (to determine power requirement),
55 | and is an *additional tag* for heat exchangers (to determine pressure factor)
56 |
57 | - *Volume* is a *design variable* for vessels, but is not relevant for other equipment categories
58 |
59 | - Operating temperature is a *design input* for vessels (to determine final shell thickness based on MOC properties),
60 | a *design input* for heat exchangers (to determine heat exchange area)
61 | a *design variable* for compressors (specifically the outlet temperature),
62 | and is not relevant to pumps (pump sizing in this library assumes negligible temperature change)
63 |
64 | There are two major methods for using this library:
65 |
66 | 1. ***Method 1 (scalar framework)***: Using scalar input - scalar output to retrieve only the key design variables; or
67 |
68 | 2. ***Method 2 (OOP framework)***: Using the library's object-oriented programming (OOP) framework.
69 | Generally, common chemical plant equipment (vessels, pumps, compressors, heat exchangers etc.)
70 | are also created as optional outputs and alternative inputs for the various functions.
71 |
72 | For example in equipment design, use:
73 |
74 | ```python
75 | # Method 1 (scalar framework)
76 | comppower, compeff, T2, _ = dsg.sizecompressor(m=1e5, P1=100, P2=300, T1=323.15, cp=1.02, cv=0.72, Z=0.99)
77 | ```
78 |
79 | to just retrieve the power rating and temperature of the sized compressor as well as its estimated adiabatic efficiency
80 | (as in Method 1), or use:
81 |
82 | ```python
83 | # Method 2 (OOP framework)
84 | _, _, _, K100 = dsg.sizecompressor(m=1e5, P1=100, P2=300, T1=323.15, cp=1.02, cv=0.72, Z=0.99,
85 | etype='rotary', mat='CS', id='K400')
86 | ```
87 |
88 | to create a `Compressor()` object containing all relevant design inputs (i.e. the inputs), design variables
89 | (i.e. `comppower`, `compeff` and `T2`) and additional tags.
90 |
91 | Additional tags can be supplied in the equipment object creation for ease of cost estimation later, such as:
92 |
93 | - `category` for **equipment category** (e.g. pumps, compressors etc. - automatically created when the respective
94 | `dsg.size(...)` or `dsg.design(...)` functions are called - see below or docstrings)
95 |
96 | - `etype` for **equipment type** (e.g. centrifugal pumps, rotary pumps etc. - see `capex` documentation below for
97 | list of supported chemical plant equipments)
98 |
99 | - `mat` for **material type** (e.g. carbon steel, stainless steel, cast iron etc. - see `capex` documentation
100 | below for list of supported material types)
101 |
102 | - `id` to specify an **equipment name** for semantic purposes
103 |
104 | - `P` to specify a designed operating pressure for equipment where pressure is neither a required design input
105 | nor a design variable. Most notably, this include heat exchangers whereby the pressure specification is only to
106 | determine the pressure factor `FP` for capital cost estimation of heat exchangers.
107 |
108 | Key exceptions to this include:
109 |
110 | - Mechanical design for pressure/vacuum vessels is *only* conducted using the OOP framework (Method 2), due the
111 | large number of critical design variables in the mechanical design.
112 |
113 | - For reactors and distillation columns, design the pressure/vacuum vessel and internals (e.g. distillation trays,
114 | mixers/impellers, packings) *separately* (i.e. as separate objects), as combined object support is not available yet (#TODO).
115 |
116 | - CAPEX reporting can *only* be conducted using the OOP framework (Method 2).
117 |
118 | As another example in capital cost estimation for equipment, use
119 |
120 | 1. *Method 1 (scalar framework)*:
121 |
122 | ```python
123 | # Method 1 (scalar framework)
124 | # manually supply cost coefficients, min/max capacity for validity range (optional),
125 | # exponential factor for extrapolation (optional)...
126 | capex.eqptpurcost(A=20, Ktuple=(3.5565, 0.3776, 0.0905, 0.1, 628., 0.5))
127 | # ... or just retrieve from capex.eqptcostlib
128 | capex.eqptpurcost(A=20, Ktuple=capex.eqptcostlib['vessel']['horizontal'])
129 | ```
130 |
131 | to size a horizontal vessel of volume `A` = 20 m^3, and then calling all the subsequent functions in order (see `capex`
132 | documentation). However, using
133 |
134 | 2. *Method 2 (OOP framework)*:
135 |
136 | ```python
137 | # Method 2 (OOP framework)
138 | capex.eqptpurcost(eqpt=V100)
139 | ```
140 |
141 | , where `V100` is the output (a `MechDesign()` object in this context) retrieved from `dsg.designvertpres`,
142 | is so much easier.
143 |
144 | In fact, using the OOP framework (Method 2), we can just create a list of all the relevant
145 | equipment objects and perform the entire capex estimation directly:
146 |
147 | ```python
148 | eqptlist = [V100, V200, V300, K400, K500, P600, P700, HX800, HX900]
149 | FCI, capexreport = capex.econreport(eqptlist, planttype='green', pbp=3, year=2019, currency='SGD', \
150 | reporttype='numpy', verbose=True)
151 | ```
152 |
153 | See `exampleruns.py` for more sample implementations.
154 |
155 | Further possible uses of the OOP framework (Method 2) could be to:
156 |
157 | - Perform optimization on equipment type or material selection,
158 | using the tags `etype`, `mat` etc. as categorical decision variables for capex minimization
159 |
160 | - Determine the best type of heat exchanger and utilities to use by minizing both capex and opex. This is similar
161 | to above, with utilities selection being an additional categorical decision variable which influences both
162 | heat exchange area and cost of utilities.
163 |
164 | - Find the optimal configuration for multi-stage compression with minimal electricity consumption and stream cooling,
165 | using the number of compressors, compression ratios, heat exchange area for cooling etc. as decision variables.
166 |
167 | However, this implementation is left to the user to do. (#TODO add examples)
168 |
169 | ------------------------------------------------
170 |
171 | ## Mechanical Design & Ancillary Equipment Sizing - dsg
172 |
173 | Constants:
174 |
175 | - `dsg.Patm` = 14.696 - standard atmospheric pressure (psi)
176 |
177 | - `dsg.Patmb` = 1.01325 - standard atmospheric pressure (bar)
178 |
179 | - `dsg.Troom` = 77 - ambient temperature (degF)
180 |
181 | - `dsg.tmin` = 1/4 - universal minimum allowable vessel thickness (in)
182 |
183 | - `dsg.tc` = 0.125 - corrosion allowance (in) for both corrosive and non-corrosive conditions (default is 1/8)
184 |
185 | - `dsg.rhosteel` = 0.2836 - density of SA-285C/SA-387B/carbon/low-alloy steels (lb/in^3)
186 |
187 | - `dsg.g` = 9.80665 - standard Earth gravitational acceleration (m/s^2)
188 |
189 | - `dsg.R` = 8.31446261815324 - universal ideal gas constant (J/(K.mol))
190 |
191 | - `dsg.Ta` = 10. - minimum heat exchanger temperature approach (K)
192 |
193 | Functions:
194 |
195 | - `dsg.designhorzpres` - perform entire mechanical design for horizontal pressure vessels
196 |
197 | - `dsg.designvertpres` - perform entire mechanical design for vertical pressure vessels
198 |
199 | - `dsg.designvac` - perform entire mechanical design for vacuum vessels
200 |
201 | - `dsg.sizecompressor` - conducts compressor sizing
202 |
203 | - `dsg.sizepump` - conducts pump sizing
204 |
205 | - `dsg.sizeHE_heater` - conducts heat exchanger sizing for heating stream
206 |
207 | - `dsg.sizeHE_cooler` - conducts heat exchanger sizing for cooling stream
208 |
209 | To call intermediate functions (e.g. calculate shell thickness, calculate max. allowable stress, calculate wind
210 | allowance etc.), refer to documentation within code.
211 |
212 | ------------------------------------------------
213 |
214 | ## CAPEX Calculation - capex
215 |
216 | Constants:
217 |
218 | - `capex.CEPCI[20yy]` - retrieves annual CEPCI index for 20yy (where yy = 01, 18 or 19)
219 |
220 | - `capex.USSG[20yy]` - retrieves USD:SGD forex rate for 20yy year-average (where yy = 01, 18 or 19)
221 |
222 | - `capex.CPI['zz'][20yy]` - retrieves country zz's consumer price index (CPI) for 20yy year-average
223 | (where yy = 01, 16, 18 or 19 and zz = 'SG' or 'US')
224 |
225 | - Reference year for CAPCOST = 2001 (as of Turton et al. 5th Ed.)
226 |
227 | - Reference year for utilities cost = 2016 (as of Turton et al. 5th Ed.)
228 |
229 | - `capex.eqptcostlib['eqptcategory']['eqpttype']` - retrieves a tuple of equipment cost correlation parameters
230 | `(K1, K2, K3, Amin, Amax, n)` where `(K1, K2, K3)` = cost correlation params, `(Amin, Amax)` = min/max capacity
231 | (range of validity), and `n` = cost exponent used in the exponential costing rule, from which the
232 | purchased equipment cost `Cpo` can then be calculated.
233 |
234 | - `capex.pressurefaclib['eqptcategory']['eqpttype']` - retrieves a tuple of equipment pressure factor correlation parameters
235 | `(C1, C2, C3, Pmin, Pmax)` where `(C1, C2, C3)` = pressure factor correlation params, and `(Pmin, Pmax)` = min/max pressure
236 | (range of validity), from which the pressure factor `FP` can then be calculated.
237 |
238 | - `capex.matfaclib['eqptcategory']['eqpttype']['mat']` - retrieves equipment material factor `FM` (a float)
239 |
240 | - `capex.baremodlib['eqptcategory']['eqpttype']` - retrieves a tuple of equipment bare module correlation parameters
241 | `(B1, B2)`, such that the bare module factor `FBM = B1 + B2 * FP * FM`.
242 |
243 | Supported equipment categories, types and materials (`mat`):
244 |
245 | - `compressor`
246 | - `centrifugal`, `axial`, `reciprocating`, `rotary`
247 | - `CS` (carbon steel)
248 | - `SS` (stainless steel)
249 | - `Ni` (nickel alloy)
250 |
251 | - `pump`
252 | - `reciprocating`, `positivedisp`
253 | - `Fe` (cast iron)
254 | - `CS`
255 | - `SS`
256 | - `Ni`
257 | - `Ti` (titanium alloy)
258 | - `centrifugal`
259 | - `Fe`
260 | - `CS`
261 | - `SS`
262 | - `Ni`
263 |
264 | - `heatexc`
265 | - `fixedtube`, `utube`, `kettle`, `doublepipe`, `multipipe`
266 | - `CS/CS`
267 | - `CS/SS` and `SS/CS` (shell/tube order does not matter)
268 | - `SS/SS`
269 | - `CS/Ni` and `Ni/CS`
270 | - `Ni/Ni`
271 | - `CS/Ti` and `Ti/CS`
272 | - `Ti/Ti`
273 |
274 | - `vessel`
275 | - `horizontal`, `vertical`
276 | - `CS`
277 | - `SS`
278 | - `Ni`
279 | - `Ti`
280 |
281 | - `trays`
282 | - `sieve`, `valve`
283 | - `CS`
284 | - `SS`
285 | - `Ni`
286 | - `demister`
287 | - `SS`
288 | - `FC` (fluorocarbon)
289 | - `Ni`
290 |
291 | Functions:
292 |
293 | - `capex.eqptpurcost` - calculates purchased equipment cost (`Cpo`)
294 |
295 | - `capex.pressurefacves` - calculates pressure factor for vessels (`FP`)
296 |
297 | - `capex.pressurefacanc` - calculates pressure factor for ancillary equipment (`FP`)
298 |
299 | - `capex.baremodfac` - calculates bare module factor (`FBM`)
300 |
301 | - `capex.baremodcost` - calculates bare module cost (`CBM`)
302 |
303 | - `capex.totmodcost` - calculates total module cost (`CTM`)
304 |
305 | - `capex.grasscost` - calculates grassroots cost (`CGR`)
306 |
307 | - `capex.annualcapex` - calculates total annualised capital cost estimated (`ACC`),
308 | based on an assumed payback period (`pbp`). If a value of pbp is assumed, note that this should only be
309 | used for ACC estimation for optimization purposes! Alternatively, calculate pbp based on projected revenue estimates.
310 |
311 | ------------------------------------------------
312 |
313 | ## OPEX Calculation - opex
314 |
315 | Constants:
316 |
317 | - `opex.SF` - retrieves stream factor for plant operation
318 |
319 | - `opex.runtime` - retrieves operational runtime per annum
320 |
321 | - `opex.shiftdur` - retrieves duration of one workshift
322 |
323 | - `opex.shiftperweek` - retrieves number of shifts per year
324 |
325 | - `opex.yearww` - retrieves number of work weeks per year after leave entitlements
326 |
327 | - `opex.util['xxx']` - utility cost for xxx (USD/GJ basis), where xxx =
328 |
329 | - `"HPS"` for high-pressure steam (41 barg, 254 degC)
330 |
331 | - `"MPS"` for medium-pressure steam (10 barg, 184 degC)
332 |
333 | - `"LPS"` for low-pressure steam (5 barg, 160 degC)
334 |
335 | - `"CW"` for cooling water (30-45 degC)
336 |
337 | - `"ChW"` for chilled water (5 degC)
338 |
339 | - `"LTR"` for low temperature refrigerant (-20 degC)
340 |
341 | - `"VLTR"` for very low temperature refrigerant (-50 degC)
342 |
343 | - `"elec"` for electricity (110-440 V)
344 |
345 | Functions:
346 |
347 | - `opex.labourcost` - calculates annualised labour cost (`COL`)
348 |
349 | - `opex.costofraw` - calculates annualised cost of raw materials (`CRM`)
350 |
351 | - `opex.costofutil` - calculates annualised cost of utilities (`CUT`)
352 |
353 | - `opex.costofwaste` - (placeholder function for user's customised waste treatment calculation)
354 |
355 | - `opex.costofmanfc` - calculates all components of annualised total cost of manufacture (`COM`)
356 |
357 | To call intermediate functions (e.g. calculate number of operators per shift etc.), refer to documentation within code.
--------------------------------------------------------------------------------
/capex.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import dsg
3 | import warnings
4 | import time
5 | from typing import Tuple, Any, List
6 |
7 | # CEPCI Index
8 | # To access, e.g. CEPCI[2019]
9 | CEPCI = {
10 | 2019: 607.5,
11 | 2018: 603.1,
12 | 2001: 394.3
13 | }
14 |
15 | # USD to SGD forex rate (annualised average)
16 | # To access, e.g. USSG[2019]
17 | USSG = {
18 | 2019: 1.3493,
19 | 2018: 1.3912,
20 | 2001: 1.7912
21 | }
22 |
23 | # Consumer price index
24 | # To access, e.g. CPI['SG'][2019]
25 | CPI = {
26 | 'SG': { # SG benchmark 2010 = 100
27 | 2019: 115.0,
28 | 2018: 113.8,
29 | 2016: 112.6,
30 | 2001: 86.05
31 | },
32 | 'US': { # US benchmark 1983 = 100
33 | 2019: 257.0,
34 | 2018: 251.2,
35 | 2016: 240.0,
36 | 2001: 176.7
37 | }
38 | }
39 |
40 |
41 | # Equipment cost correlation parameters
42 | # A tuple of (K1, K2, K3, Amin, Amax, n)
43 | # where (K1, K2, K3) = cost correlation params, (Amin, Amax) = min/max capacity (range of validity), n = cost exponent
44 | # To access, e.g. eqptcostlib['pump']['centrifugal']
45 | eqptcostlib = {
46 | 'compressor': {
47 | 'centrifugal': (2.2897, 1.3604, -0.1027, 450., 3000., 0.67),
48 | 'axial': (2.2897, 1.3604, -0.1027, 450., 3000., 0.67),
49 | 'reciprocating': (2.2897, 1.3604, -0.1027, 450., 3000., 0.84),
50 | 'rotary': (5.0355, -1.8002, 0.8253, 18., 950., 0.6)
51 | },
52 | 'pump': {
53 | 'reciprocating': (3.8696, 0.3161, 0.1220, .1, 200., 0.6),
54 | 'positivedisp': (3.4771, 0.1350, 0.1438, 1., 100., 0.6),
55 | 'centrifugal': (3.3892, 0.0536, 0.1538, 1., 300., 0.67),
56 | },
57 | 'heatexc': {
58 | 'fixedtube': (4.3247, -0.3030, 0.1634, 10., 1000., 0.62),
59 | 'utube': (4.1884, -0.2503, 0.1974, 10., 1000., 0.53),
60 | 'kettle': (4.4646, -0.5277, 0.3955, 10., 1000., 0.59),
61 | 'doublepipe': (3.3444, 0.2745, -0.0472, 1., 10., 0.59),
62 | 'multipipe': (2.7652, 0.7282,0.0783, 10., 100., 0.6)
63 | },
64 | 'vessel': {
65 | 'horizontal': (3.5565, 0.3776, 0.0905, 0.1, 628., 0.5),
66 | 'vertical': (3.4974, 0.4485, 0.1074, 0.3, 520., 0.6)
67 | },
68 | 'trays': {
69 | 'sieve': (2.9949, 0.4465, 0.3961, 0.7, 12.3, 0.86),
70 | 'valve': (3.3322, 0.4838, 0.3434, 0.7, 10.5, 1.0),
71 | 'demister': (3.2353, 0.4838, 0.3434, 0.7, 10.5, 1.0)
72 | },
73 | 'mixer': {
74 | 'impeller': (3.8511, 0.7009, -0.0003, 5., 150., 0.6),
75 | 'propeller': (4.3207, 0.0359, 0.1346, 5., 500., 0.5),
76 | 'turbine': (3.4092, 0.4896, 0.0030, 5., 150., 0.3)
77 | }
78 | }
79 |
80 |
81 | # Equipment pressure factor correlation parameters
82 | # A tuple of (C1, C2, C3, Pmin, Pmax)
83 | # where (C1, C2, C3) = pressure factor correlation params, (Pmin, Pmax) = min/max pressure (range of validity)
84 | # To access, e.g. pressurefaclib['pump']['centrifugal']
85 | pressurefaclib = {
86 | 'compressor': {
87 | 'centrifugal': (0., 0., 0., -np.inf, np.inf),
88 | 'axial': (0., 0., 0., -np.inf, np.inf),
89 | 'reciprocating': (0., 0., 0., -np.inf, np.inf),
90 | 'rotary': (0., 0., 0., -np.inf, np.inf)
91 | },
92 | 'pump': {
93 | 'reciprocating': (-0.245382, 0.259016, -0.01363, 10., 100.),
94 | 'positivedisp': (-0.245382, 0.259016, -0.01363, 10., 100.),
95 | 'centrifugal': (-0.3935, 0.3957, -0.00226, 10., 100.),
96 | },
97 | 'heatexc': {
98 | 'fixedtube': (0.03881, -0.11272, 0.08183, 5., 140.),
99 | 'utube': (0.03881, -0.11272, 0.08183, 5., 140.),
100 | 'kettle': (0.03881, -0.11272, 0.08183, 5., 140.),
101 | 'doublepipe': (0.6072, -0.9120, 0.3327, 40., 100.),
102 | 'multipipe': (0.6072, -0.9120, 0.3327, 40., 100.)
103 | }, # use the pressure factor equation for vessels instead
104 | 'trays': {
105 | 'sieve': (0., 0., 0., -np.inf, np.inf),
106 | 'valve': (0., 0., 0., -np.inf, np.inf),
107 | 'demister': (0., 0., 0., -np.inf, np.inf)
108 | },
109 | 'mixer': {
110 | 'impeller': (0., 0., 0., -np.inf, np.inf),
111 | 'propeller': (0., 0., 0., -np.inf, np.inf),
112 | 'turbine': (0., 0., 0., -np.inf, np.inf)
113 | }
114 | }
115 |
116 |
117 | # Equipment material factors
118 | # To access, e.g. matfaclib['pump']['centrifugal']['SS']
119 | matfaclib = {
120 | 'compressor': {
121 | 'centrifugal': {
122 | 'CS': 2.8, # CS = carbon steel
123 | 'SS': 5.8 / 2.8, # SS = stainless steel
124 | 'Ni': 11.5 / 2.8 # Ni = nickel alloy
125 | },
126 | 'axial': {
127 | 'CS': 3.8,
128 | 'SS': 8.0 / 3.8,
129 | 'Ni': 15.9 / 3.8
130 | },
131 | 'reciprocating': {
132 | 'CS': 3.4,
133 | 'SS': 7.0 / 3.4,
134 | 'Ni': 13.9 / 3.4
135 | },
136 | 'rotary': {
137 | 'CS': 2.4,
138 | 'SS': 5.0 / 2.4,
139 | 'Ni': 9.9 / 2.4
140 | }
141 | },
142 | 'pump': {
143 | 'reciprocating': {
144 | 'Fe': 1.0, # Fe = cast iron
145 | 'CS': 1.5,
146 | 'SS': 2.4,
147 | 'Ni': 4.0,
148 | 'Ti': 6.5 # Ti = titanium alloy
149 | },
150 | 'positivedisp': {
151 | 'Fe': 1.0,
152 | 'CS': 1.4,
153 | 'SS': 2.7,
154 | 'Ni': 4.7,
155 | 'Ti': 10.7
156 | },
157 | 'centrifugal': {
158 | 'Fe': 1.0,
159 | 'CS': 1.6,
160 | 'SS': 2.3,
161 | 'Ni': 4.4
162 | }
163 | },
164 | 'heatexc': {
165 | HXtype: {
166 | 'CS/CS': 1.0,
167 | 'CS/SS': 1.8,
168 | 'SS/CS': 1.8, # duplicate
169 | 'SS/SS': 2.9,
170 | 'CS/Ni': 2.8,
171 | 'Ni/CS': 2.8, # duplicate
172 | 'Ni/Ni': 3.8,
173 | 'CS/Ti': 4.6,
174 | 'Ti/CS': 4.6, # duplicate
175 | 'Ti/Ti': 11.4
176 | }
177 | for HXtype in ['fixedtube', 'utube', 'kettle', 'doublepipe', 'multipipe']
178 | },
179 | 'vessel': {
180 | vestype: {
181 | 'CS': 1.0,
182 | 'SS': 3.1,
183 | 'Ni': 7.1,
184 | 'Ti': 9.4
185 | }
186 | for vestype in ['horizontal', 'vertical']
187 | },
188 | 'trays': {
189 | 'sieve': {
190 | 'CS': 1.0,
191 | 'SS': 1.8,
192 | 'Ni': 5.6
193 | },
194 | 'valve': {
195 | 'CS': 1.0,
196 | 'SS': 1.8,
197 | 'Ni': 5.6
198 | },
199 | 'demister': {
200 | 'SS': 1.0,
201 | 'FC': 1.8, # FC = fluorocarbon
202 | 'Ni': 5.6
203 | }
204 | }
205 | }
206 |
207 | # Equipment bare module correlation parameters
208 | # A tuple of (B1, B2)
209 | # where (B1, B2) = bare module correlation params
210 | # To access, e.g. baremodlib['pump']['centrifugal']
211 | baremodlib = {
212 | 'compressor': { # FBM = (B2 for CS) * FM = (B2 for CS) * (B2 for material / B2 for CS)
213 | 'centrifugal': (0., 2.8),
214 | 'axial': (0., 3.8),
215 | 'reciprocating': (0., 3.4),
216 | 'rotary': (0., 2.4)
217 | },
218 | 'pump': { # FBM = B1 + B2 * FM * FP
219 | 'reciprocating': (1.89, 1.35),
220 | 'positivedisp': (1.89, 1.35),
221 | 'centrifugal': (1.89, 1.35),
222 | },
223 | 'heatexc': { # FBM = B1 + B2 * FM * FP
224 | 'fixedtube': (1.63, 1.66),
225 | 'utube': (1.63, 1.66),
226 | 'kettle': (1.63, 1.66),
227 | 'doublepipe': (1.74, 1.55),
228 | 'multipipe': (1.74, 1.55)
229 | },
230 | 'vessel': { # FBM = B1 + B2 * FM * FP
231 | 'horizontal': (1.49, 1.52),
232 | 'vertical': (2.25, 1.82)
233 | },
234 | 'trays': { # FBM = FM for trays. Assuming tray quantity factor Fq = 1.
235 | 'sieve': (0., 1.),
236 | 'valve': (0., 1.),
237 | 'demister': (0., 1.)
238 | },
239 | 'mixer': { # FBM = 1.38 (constant)
240 | 'impeller': (1.38, 0.),
241 | 'propeller': (1.38, 0.),
242 | 'turbine': (1.38, 0.)
243 | }
244 | }
245 |
246 |
247 | def eqptpurcost(A: float=None, Ktuple: Tuple[float]=None, eqpt: Any=None) -> (float, Any):
248 |
249 | """
250 | Calculate equipment purchased cost (Cp^o) cost at ambient pressure and using carbon steel as MOC
251 | Two methods of calculation:
252 | Method 1 - Specify A and Ktuple manually:
253 | :param A: equipment capacity (various units)
254 | :param Ktuple: tuple of cost correlation factors (K1, K2, K3, Amin [optional], Amax [optional], n [optional])
255 | Optional inputs within Ktuple refer to minimum/maximum capacity and exponential factor respectively
256 | :return: Cpo: equipment purchased cost ($)
257 | Method 2 - Specify the equipment object directly
258 | :param eqpt: equipment object as generated by the dsg.size(...) or dsg.design(...) functions
259 | :return: Cpo: equipment purchased cost ($)
260 | :return: eqpt: the same equipment object with Cpo updated
261 | """
262 |
263 | # Method 1 - Specify A and Ktuple manually
264 | if A is not None and Ktuple is not None:
265 | pass
266 |
267 | # Method 2 - Specify the equipment object directly
268 | elif eqpt is not None:
269 | # For vessel convert in^3 to m^3
270 | try:
271 | A = eqpt.comppower if eqpt.category is 'compressor' \
272 | else eqpt.pumppower if eqpt.category is 'pump' \
273 | else eqpt.area if eqpt.category is 'heatexc' \
274 | else (eqpt.Vi*1.639e-5) if eqpt.category is 'vessel' \
275 | else eqpt.area if eqpt.category is 'trays' \
276 | else eqpt.mixerpower if eqpt.category is 'mixer' \
277 | else None
278 | Ktuple = eqptcostlib[eqpt.category][eqpt.etype]
279 | except KeyError:
280 | raise KeyError('Equipment category and/or type (eqpt.category and/or eqpt.etype) not supported!')
281 |
282 | else:
283 | raise ValueError('Specify either (A + Ktuple) or eqpt!')
284 |
285 | if len(Ktuple) == 6:
286 | if A < Ktuple[3]:
287 | warnings.warn('Extrapolating {}={} below minimum capacity of {}! Switching to exponential rule!'.format(eqpt.id, A, Ktuple[3]))
288 | Cpo = pow(10., Ktuple[0] + Ktuple[1] * np.log10(Ktuple[3]) + Ktuple[2] * (np.log10(Ktuple[3])) ** 2)
289 | Cpo *= pow(A / Ktuple[3], Ktuple[5])
290 | elif A > Ktuple[4]:
291 | warnings.warn('Extrapolating {}={} above maximum capacity of {}! Switching to exponential rule!'.format(eqpt.id, A, Ktuple[4]))
292 | Cpo = pow(10., Ktuple[0] + Ktuple[1] * np.log10(Ktuple[4]) + Ktuple[2] * (np.log10(Ktuple[4])) ** 2)
293 | Cpo *= pow(A / Ktuple[4], Ktuple[5])
294 | else:
295 | Cpo = pow(10., Ktuple[0] + Ktuple[1] * np.log10(A) + Ktuple[2] * (np.log10(A)) ** 2)
296 | else:
297 | Cpo = pow(10., Ktuple[0] + Ktuple[1] * np.log10(A) + Ktuple[2] * (np.log10(A)) ** 2)
298 |
299 | if eqpt is None:
300 | return Cpo
301 | else:
302 | eqpt.Cpo = Cpo
303 | return Cpo, eqpt
304 |
305 |
306 | def pressurefacves(D: float=None, ts: float=None, P: float=None, eqpt: Any=None) -> (float, Any):
307 |
308 | """
309 | Calculate pressure factor (F_P) for vessels
310 | Two methods of calculation:
311 | Method 1 - Specify D, ts and P manually:
312 | :param D: vessel internal diameter (m)
313 | :param ts: vessel thickness (in)
314 | :param P: pressure (barg)
315 | :return: FP: amplification factor for pressure
316 | Method 2 - Specify the equipment object directly:
317 | :param eqpt: equipment object as generated by the dsg.design(...) functions
318 | :return: FP: amplification factor for pressure
319 | :return: eqpt: the same equipment object with FP updated
320 | """
321 |
322 | # Method 1 - Specify A and Ktuple manually
323 | if D is not None and ts is not None and P is not None:
324 | pass
325 |
326 | # Method 2 - Specify the equipment object directly
327 | elif eqpt is not None:
328 |
329 | if eqpt.category is not 'vessel':
330 | raise ValueError('Use pressurefacanc(P, Ctuple, eqpt) for ancillary equipment instead!')
331 |
332 | D = eqpt.Di / 39.37 # convert inch to m
333 | ts = eqpt.ts # in inch
334 | P = eqpt.Pd * 0.06895 # convert psig to barg
335 |
336 | if P < -0.5:
337 | FP = 1.25
338 | elif P > -0.5 and ts < dsg.tmin:
339 | FP = 1
340 | else:
341 | FP = max(((P+1)*D / (2*(850-0.6*(P+1))) + 0.00315) / 0.0063, 1)
342 |
343 | if eqpt is None:
344 | return FP
345 | else:
346 | eqpt.FP = FP
347 | return FP, eqpt
348 |
349 |
350 | def pressurefacanc(P: float=None, Ctuple: Tuple[float]=None, eqpt: Any=None) -> (float, Any):
351 |
352 | """
353 | Calculate pressure factor (F_P) for ancillary equipment (e.g. pumps and exchangers)
354 | at specified elevated pressure and MOC
355 | Two methods of calculation:
356 | Method 1 - Specify P and Ctuple manually:
357 | :param P: pressure (barg)
358 | :param Ctuple: tuple of pressure correlation factors (C1, C2, C3, Pmin [optional], Pmax [optional])
359 | Optional inputs within Ctuple refer to minimum/maximum pressure respectively
360 | :return: FP: amplification factor for pressure
361 | Method 2 - Specify the equipment object directly:
362 | :param eqpt: equipment object as generated by the dsg.design(...) functions
363 | :return: FP: amplification factor for pressure
364 | :return: eqpt: the same equipment object with FP updated
365 | """
366 |
367 | # Method 1 - Specify P and Ctuple manually
368 | if P is not None and Ctuple is not None:
369 | pass
370 |
371 | # Method 2 - Specify the equipment object directly
372 | elif eqpt is not None:
373 |
374 | if eqpt.category is 'vessel':
375 | raise ValueError('Use pressurefacves(D, ts, P, eqpt) for vessels instead!')
376 |
377 | try:
378 | # Compressor: P2 in bar, but assume pressure doesn't affect bare module factor anyways
379 | # Pump: P2 in kPa
380 | # Heat Exchanger: P in bar
381 | # Vessel: Pd in psig, but vessel pressure calculations is not done here anyways
382 | # Trays: Assume 1 atm, dummy pressure because pressure doesn't affect bare module factor
383 | # Mixer: Assume 1 atm, dummy pressure because pressure doesn't affect bare module factor
384 | P = (eqpt.P2 - dsg.Patmb) if eqpt.category is 'compressor' \
385 | else (eqpt.P2 - dsg.Patmb*100.)/100. if eqpt.category is 'pump' \
386 | else (eqpt.P - dsg.Patmb) if eqpt.category is 'heatexc' \
387 | else (eqpt.Pd * 0.06895) if eqpt.category is 'vessel' \
388 | else dsg.Patmb if eqpt.category is 'trays' \
389 | else dsg.Patmb if eqpt.category is 'mixer' \
390 | else None
391 | Ctuple = pressurefaclib[eqpt.category][eqpt.etype]
392 | except KeyError:
393 | raise KeyError('Equipment category and/or type (eqpt.category and/or eqpt.etype) not supported!')
394 |
395 | else:
396 | raise ValueError('Specify either (P + Ctuple) or eqpt!')
397 |
398 | if len(Ctuple) == 5:
399 | if P < Ctuple[3]:
400 | warnings.warn('Equipment {} pressure={} below minimum pressure of {} for pressure factor correlation! Using FP = 1 instead!'.format(eqpt.id, P, Ctuple[3]))
401 | FP = 1. # borrowing quadratic-exponential relation
402 | elif P > Ctuple[4]:
403 | warnings.warn('Equipment {} pressure={} above maximum pressure of {} for pressure factor correlation! Using max P instead!'.format(eqpt.id, P, Ctuple[3]))
404 | FP = max(1., eqptpurcost(A=Ctuple[4], Ktuple=tuple(Ctuple[0:3]))) # borrowing quadratic-exponential relation
405 | else:
406 | FP = max(1., eqptpurcost(A=P, Ktuple=Ctuple[0:3])) # borrowing quadratic-exponential relation
407 | else:
408 | FP = max(1., eqptpurcost(A=P, Ktuple=Ctuple[0:3])) # borrowing quadratic-exponential relation
409 |
410 | if eqpt is None:
411 | return FP
412 | else:
413 | eqpt.FP = FP
414 | return FP, eqpt
415 |
416 |
417 | def baremodfac(Btuple: Tuple[float]=None, FM: float=None, FP: float=None, eqpt: Any=None) -> (float, Any):
418 |
419 | """
420 | Calculate bare module factor (F_BM) at specified elevated pressure and MOC
421 | Two methods of calculation:
422 | Method 1 - Specify Btuple, FM and FP manually:
423 | :param Btuple: tuple of bare module correlation factors (B1, B2)
424 | :param FM: amplification factor for material of construction (MOC)
425 | :param FP: amplification factor for pressure
426 | :return: FBM: bare module factor (dimensionless)
427 | Method 2 - Specify the equipment object directly:
428 | :param eqpt: equipment object as generated by the dsg.design(...) or dsg.size(...) functions
429 | :return: FBM: bare module factor (dimensionless)
430 | :return: eqpt: the same equipment object with FBM updated
431 | """
432 |
433 | # Method 1 - Specify Btuple, FM and FP manually
434 | if Btuple is not None and FM is not None and FP is not None:
435 | pass
436 |
437 | # Method 2 - Specify the equipment object directly
438 | elif eqpt is not None:
439 | try:
440 | Btuple = baremodlib[eqpt.category][eqpt.etype]
441 | FM = matfaclib[eqpt.category][eqpt.etype][eqpt.mat]
442 | if eqpt.category is 'vessel':
443 | FP, eqpt = pressurefacves(eqpt=eqpt)
444 | else:
445 | FP, eqpt = pressurefacanc(eqpt=eqpt)
446 | except KeyError:
447 | raise KeyError('Equipment category and/or type and/or material ' +
448 | '(eqpt.category and/or eqpt.etype and/or eqpt.mat) not supported!')
449 |
450 | else:
451 | raise ValueError('Specify either (Btuple + FM + FP) or eqpt!')
452 |
453 | FBM = max(1., Btuple[0] + Btuple[1] * FM * FP)
454 |
455 | if eqpt is None:
456 | return FBM
457 | else:
458 | eqpt.FBM = FBM
459 | eqpt.FM = FM
460 | return FBM, eqpt
461 |
462 |
463 | def baremodcost(Cpo=None, FBM=None, eqpt=None):
464 |
465 | """
466 | Calculate bare module cost (CBM) at specified elevated pressure and MOC
467 | Two methods of calculation:
468 | Method 1 - Specify Cpo and FBM manually:
469 | :param Cpo: equipment purchased cost ($)
470 | :param FBM: bare module factor (dimensionless)
471 | :return: CBM: bare module cost ($)
472 | Method 2 - Specify the equipment object directly:
473 | :param eqpt: equipment object as generated by the dsg.design(...) or dsg.size(...) functions
474 | :return: CBM: bare module cost ($)
475 | :return: eqpt: the same equipment object with CBM updated
476 | """
477 |
478 | # Method 1 - Specify Cpo and FBM manually:
479 | if Cpo is not None and FBM is not None:
480 | pass
481 |
482 | # Method 2 - Specify the equipment object directly:
483 | elif eqpt is not None:
484 | Cpo, eqpt = eqptpurcost(eqpt=eqpt)
485 | FBM, eqpt = baremodfac(eqpt=eqpt)
486 |
487 | else:
488 | raise ValueError('Specify either (Cpo + FBM) or eqpt!')
489 |
490 | CBM = FBM * Cpo
491 |
492 | if eqpt is None:
493 | return CBM
494 | else:
495 | eqpt.CBM = CBM
496 | return CBM, eqpt
497 |
498 |
499 | def totmodcost(CBM: float=None, eqpt: float=None) -> (float, Any):
500 |
501 | """
502 | Calculate total module cost (CTM) at specified elevated pressure and MOC
503 | Two methods of calculation:
504 | Method 1 - Specify CBM manually:
505 | :param CBM: bare module cost ($)
506 | :return: CTM = total module cost ($)
507 | Method 2 - Specify the equipment object directly:
508 | :param eqpt: equipment object as generated by the dsg.design(...) or dsg.size(...) functions
509 | :return: CTM = total module cost ($)
510 | :return: eqpt: the same equipment object with CTM updated
511 | """
512 |
513 | # Method 1 - Specify CBM manually:
514 | if CBM is not None:
515 | pass
516 |
517 | # Method 2 - Specify the equipment object directly:
518 | elif eqpt is not None:
519 | CBM, eqpt = baremodcost(eqpt=eqpt)
520 |
521 | else:
522 | raise ValueError('Specify either CBM or eqpt!')
523 |
524 | CTM = 1.18 * CBM
525 |
526 | if eqpt is None:
527 | return CTM
528 | else:
529 | eqpt.CTM = CTM
530 | return CTM, eqpt
531 |
532 |
533 | def grasscost(CTM: float=None, Cpo: float=None, eqpt: Any=None) -> (float, Any):
534 |
535 | """
536 | Calculate grassroots cost (CGR)
537 | Two methods of calculation:
538 | Method 1 - Specify CTM and Cpo manually:
539 | :param CTM: total module cost ($)
540 | :param Cpo: purchased equipment cost at ambient pressure and carbon steel MOC ($)
541 | :return: CGR: grassroots cost ($)
542 | Method 2 - Specify the equipment object directly:
543 | :param eqpt: equipment object as generated by the dsg.design(...) or dsg.size(...) functions
544 | :return: CGR: grassroots cost ($)
545 | :return: eqpt: the same equipment object with CTM updated
546 | """
547 |
548 | # Method 1 - Specify CTM and Cpo manually:
549 | if CTM is not None and Cpo is not None:
550 | pass
551 |
552 | # Method 2 - Specify the equipment object directly:
553 | elif eqpt is not None:
554 | CTM, eqpt = totmodcost(eqpt=eqpt) # this will update eqpt.Cpo too if all goes well
555 | Cpo = eqpt.Cpo
556 |
557 | else:
558 | raise ValueError('Specify either CBM or eqpt!')
559 |
560 | CGR = CTM + 0.5 * Cpo
561 |
562 | if eqpt is None:
563 | return CGR
564 | else:
565 | eqpt.CGR = CGR
566 | return CGR, eqpt
567 |
568 |
569 | def annualcapex(FCI: float=None, pbp: float=None, eqpt: Any=None, planttype: str='brown') -> (float, Any):
570 |
571 | """
572 | Estimate total annualised capital cost based on assumed payback period
573 | Two methods of calculation:
574 | Method 1 - Specify FCI and pbp manually:
575 | :param FCI: fixed capital investment (= CTM or total module cost for brownfield projects, or =CGR or grassroots cost
576 | for greenfield projects) ($)
577 | :param pbp: payback period estimate (yr, default = 3). If a value of pbp is assumed, note that this should only be
578 | used for optimisation purposes! Alternatively, calculate pbp based on projected revenue estimates.
579 | :return: ACC: annualised capital cost estimate ($/yr)
580 | Method 2 - Specify eqpt directly, then pbp and planttype:
581 | :param eqpt: equipment object as generated by the dsg.design(...) or dsg.size(...) functions
582 | :param pbp: payback period estimate, as described in Method 1
583 | :param planttype: 'brown' for brownfield project (using CTM) or 'green' for greenfield project (using CGR)
584 | :return: ACC: annualised capital cost estimate ($/yr)
585 | """
586 |
587 | if pbp is None:
588 | pbp = 3
589 | warnings.warn('Payback period (pbp) not specified - 3 years is assumed')
590 |
591 | if FCI is not None:
592 | pass
593 |
594 | elif eqpt is not None:
595 | if 'brown' in str.lower(planttype):
596 | _, eqpt = grasscost(eqpt=eqpt)
597 | FCI = eqpt.CTM
598 | elif 'green' in str.lower(planttype):
599 | FCI, eqpt = grasscost(eqpt=eqpt)
600 | else:
601 | raise ValueError('planttype should be \'brown\' for brownfield project (default) ' +
602 | 'or \'green\' for greenfield project!')
603 |
604 | ACC = FCI / pbp
605 |
606 | if eqpt is None:
607 | return ACC
608 | else:
609 | eqpt.ACC = ACC
610 | return ACC, eqpt
611 |
612 |
613 | def econreport(eqptlist: List[Any], planttype: str='green', reporttype: str='numpy',
614 | pbp: float=3., year: int=2019, currency: str='SGD', verbose: bool=False) -> (float, Any):
615 |
616 | """
617 | Generates an economic capex report of the plant
618 | :param eqptlist: List of equipment objects as generated by the dsg.design(...) or dsg.size(...) functions
619 | :param planttype: Type of project ('green' for greenfield [default] or 'brown' for brownfield)
620 | :param reporttype: Data structure of report ('list' for 2D list, 'dict' for dictionary, or numpy for numpy array [default])
621 | :param pbp: payback period estimate (yr, default = 3). If a value of pbp is assumed, note that this should only be
622 | used for optimisation purposes! Alternatively, calculate pbp based on projected revenue estimates.
623 | :param year: Year for CEPCI updating (integer, either 2001, 2018 or 2019 [default])
624 | :param currency: Currency (string, either 'USD' or 'SGD' [default])
625 | :param verbose: True to print economic capex report, False to print nothing [default]
626 | :return: report: The capex report formatted according to the reporttype input ('list', 'dict' or 'numpy')
627 | """
628 | report_list = [['Equipment'], ['Purchased eqpt. cost (Cpo)'], ['Bare mod. cost (CBM)'], ['Total mod. cost (CTM)'],
629 | ['Grassroots cost (CGR)'], ['Annualised capital cost (ACC)']]
630 | report_dict = {eqpt.id: {'Cpo': None, 'CBM': None, 'CTM': None, 'CGR': None, 'ACC': None} for eqpt in eqptlist}
631 | report_dict['Total'] = {'Cpo': None, 'CBM': None, 'CTM': None, 'CGR': None, 'ACC': None}
632 |
633 | yearcurrfac = CEPCI[year] / CEPCI[2001] * (USSG[year] if currency is 'SGD' else 1.)
634 |
635 | for eqpt in eqptlist:
636 | ACC, eqpt = annualcapex(pbp=pbp, eqpt=eqpt, planttype=planttype)
637 |
638 | eqpt.Cpo = round(eqpt.Cpo * yearcurrfac, 2)
639 | eqpt.CBM = round(eqpt.CBM * yearcurrfac, 2)
640 | eqpt.CTM = round(eqpt.CTM * yearcurrfac, 2)
641 | eqpt.CGR = round(eqpt.CGR * yearcurrfac, 2)
642 | eqpt.ACC = round(eqpt.ACC * yearcurrfac, 2)
643 |
644 | i = list.index(eqptlist, eqpt)
645 | report_list[0].append(eqpt.id)
646 | report_list[1].append(eqpt.Cpo)
647 | report_list[2].append(eqpt.CBM)
648 | report_list[3].append(eqpt.CTM)
649 | report_list[4].append(eqpt.CGR)
650 | report_list[5].append(eqpt.ACC)
651 |
652 | report_dict[eqpt.id]['Cpo'] = eqpt.Cpo
653 | report_dict[eqpt.id]['CBM'] = eqpt.CBM
654 | report_dict[eqpt.id]['CTM'] = eqpt.CTM
655 | report_dict[eqpt.id]['CGR'] = eqpt.CGR
656 | report_dict[eqpt.id]['ACC'] = eqpt.ACC
657 |
658 | if verbose:
659 | time.sleep(0.1)
660 | print(eqpt.spec())
661 | print(eqpt.econ())
662 |
663 | report_list[0].append('Total')
664 | for i in range(1, 5+1):
665 | report_list[i].append(round(sum(report_list[i][1:len(eqptlist)+1]), 2))
666 |
667 | report_numpy = np.array(report_list)
668 |
669 | report_dict['Total']['Cpo'] = round(sum([eqpt.Cpo for eqpt in eqptlist]), 2)
670 | report_dict['Total']['CBM'] = round(sum([eqpt.CBM for eqpt in eqptlist]), 2)
671 | report_dict['Total']['CTM'] = round(sum([eqpt.CTM for eqpt in eqptlist]), 2)
672 | report_dict['Total']['CGR'] = round(sum([eqpt.CGR for eqpt in eqptlist]), 2)
673 | report_dict['Total']['ACC'] = round(sum([eqpt.ACC for eqpt in eqptlist]), 2)
674 |
675 | FCI = round(report_dict['Total']['CGR'] if planttype is 'green' else report_dict['Total']['CTM'], 2)
676 |
677 | if verbose:
678 | time.sleep(0.1)
679 | print('----------------------------')
680 | print('TOTAL PLANT COST (' + str.upper(planttype) + 'FIELD): $' + str(FCI))
681 | print('----------------------------')
682 | print('CAPEX REPORT:')
683 | print(report_list if reporttype is 'list' else report_dict if reporttype is 'dict' else report_numpy)
684 | print('----------------------------')
685 |
686 | return FCI, report_list if reporttype is 'list' else report_dict if reporttype is 'dict' else report_numpy
687 |
--------------------------------------------------------------------------------
/dsg.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import warnings
3 | import capex
4 |
5 | Patm = 14.696 # Standard atmospheric pressure (psi)
6 | Patmb = 1.01325 # Standard atmospheric pressure (bar)
7 | Troom = 77. # Ambient temperature (degF)
8 | tmin = 1/4 # Universal minimum allowable vessel thickness (in)
9 | tc = 0.125 # Corrosion allowance (in) for both corrosive and non-corrosive conditions (default is 1/8)
10 | rhosteel = 0.2836 # Density of SA-285C/SA-387B/carbon/low-alloy steels (lb/in^3)
11 |
12 | g = 9.80665 # standard Earth gravitational acceleration (m/s^2)
13 | R = 8.31446261815324 # universal ideal gas constant (J/(K.mol))
14 | Ta = 10. # minimum heat exchanger temperature approach (K)
15 |
16 |
17 | class MechDesign(object):
18 | def __init__(self, Po=Patm, To=Troom, Di=None, L=None, rho=rhosteel,
19 | Pd=None, Td=None, MOC=None, Smax=None, E=0.85, tp=tmin, tc=None, ts=None, tsfinal=None,
20 | tv=None, tw=None,
21 | Do=None, W=None, V=None, Vi=None,
22 | EM=None, tE=None, tEC=None,
23 | category='vessel', etype=None, mat=None, id=None,
24 | Cpo=None, FP=None, FM=None, FBM=None, CBM=None, CTM=None, CGR=None, ACC=None):
25 | self.Po = Po
26 | self.To = To
27 | self.Di = Di
28 | self.L = L
29 | self.rho = rho
30 | self.Pd = Pd
31 | self.Td = Td
32 | self.MOC = MOC
33 | self.Smax = Smax
34 | self.E = E
35 | self.tp = tp
36 | self.tc = tc
37 | self.ts = ts
38 | self.tsfinal = tsfinal
39 | self.tv = tv
40 | self.tw = tw
41 | self.Do = Do
42 | self.W = W
43 | self.V = V
44 | self.Vi = Vi
45 | self.EM = EM
46 | self.tE = tE
47 | self.tEC = tEC
48 | self.category = category
49 | self.etype = etype
50 | self.mat = mat
51 | self.id = id
52 | self.Cpo = Cpo
53 | self.FP = FP
54 | self.FM = FM
55 | self.FBM = FBM
56 | self.CBM = CBM
57 | self.CTM = CTM
58 | self.CGR = CGR
59 | self.ACC = ACC
60 |
61 | def __repr__(self):
62 | return '%s: MechDesign(Pd=%spsig, Td=%sdegF, tsfinal=%sin, L=%sin, Do=%sin, W=%slb, V=%sin^3, etype=%s, mat=%s)' \
63 | % (self.id, round(self.Pd, 2), self.Td, self.tsfinal, self.L, self.Do, int(self.W), int(self.V), self.etype, self.mat)
64 |
65 | def spec(self):
66 | return '---Design specs for {}:---\n{}\n----------------------------'.format(self.id, vars(self))
67 |
68 | def econ(self):
69 | return '---Econ report for {}:---\nCpo=${}\nCBM=${}\nCTM=${}\nCGR=${}\nACC=${}\n----------------------------'.format(self.id, round(self.Cpo, 2), round(self.CBM, 2), round(self.CTM, 2), round(self.CGR, 2), round(self.ACC, 2))
70 |
71 |
72 | class Mixer(object):
73 | def __init__(self, mixerpower=None,
74 | category='mixer', etype=None, mat=None, id=None,
75 | Cpo=None, FP=None, FM=None, FBM=None, CBM=None, CTM=None, CGR=None, ACC=None):
76 | self.mixerpower = mixerpower
77 | self.category = category
78 | self.etype = etype
79 | self.mat = mat
80 | self.id = id
81 | self.Cpo = Cpo
82 | self.FP = FP
83 | self.FM = FM
84 | self.FBM = FBM
85 | self.CBM = CBM
86 | self.CTM = CTM
87 | self.CGR = CGR
88 | self.ACC = ACC
89 |
90 | def __repr__(self):
91 | return '%s: Mixer(mixerpower=%skW, etype=%s, mat=%s)' \
92 | % (self.id, self.mixerpower, self.etype, self.mat)
93 |
94 | def spec(self):
95 | return '---Design specs for {}:---\n{}\n----------------------------'.format(self.id, vars(self))
96 |
97 | def econ(self):
98 | return '---Econ report for {}:---\nCpo=${}\nCBM=${}\nCTM=${}\nCGR=${}\nACC=${}\n----------------------------'.format(self.id, round(self.Cpo, 2), round(self.CBM, 2), round(self.CTM, 2), round(self.CGR, 2), round(self.ACC, 2))
99 |
100 |
101 | class Trays(object):
102 | def __init__(self, numtrays=None, area=None,
103 | category='trays', etype=None, mat=None, id=None,
104 | Cpo=None, FP=None, FM=None, FBM=None, CBM=None, CTM=None, CGR=None, ACC=None):
105 | self.numtrays = numtrays
106 | self.area = area
107 | self.category = category
108 | self.etype = etype
109 | self.mat = mat
110 | self.id = id
111 | self.Cpo = Cpo
112 | self.FP = FP
113 | self.FM = FM
114 | self.FBM = FBM
115 | self.CBM = CBM
116 | self.CTM = CTM
117 | self.CGR = CGR
118 | self.ACC = ACC
119 |
120 | def __repr__(self):
121 | return '%s: Trays(numtrays=%s, area=%s, etype=%s, mat=%s)' \
122 | % (self.id, self.numtrays, self.area, self.etype, self.mat)
123 |
124 | def spec(self):
125 | return '---Design specs for {}:---\n{}\n----------------------------'.format(self.id, vars(self))
126 |
127 | def econ(self):
128 | return '---Econ report for {}:---\nCpo=${}\nCBM=${}\nCTM=${}\nCGR=${}\nACC=${}\n----------------------------'.format(self.id, round(self.Cpo, 2), round(self.CBM, 2), round(self.CTM, 2), round(self.CGR, 2), round(self.ACC, 2))
129 |
130 |
131 | class Reactor(MechDesign, Mixer):
132 | def __init__(self):
133 | super().__init__(self)
134 |
135 | def __repr__(self):
136 | return super().__repr__(self)
137 |
138 |
139 | class Distillation(MechDesign, Trays):
140 | def __init__(self):
141 | super().__init__(self)
142 |
143 | def __repr__(self):
144 | return super().__repr__(self)
145 |
146 |
147 | class Compressor(object):
148 | def __init__(self, m=None, P1=Patm, P2=None, T1=Troom, T2=None, cp=None, cv=None, Z=None,
149 | compeff=None, comppower=None,
150 | category='compressor', etype=None, mat=None, id=None,
151 | Cpo=None, FP=None, FM=None, FBM=None, CBM=None, CTM=None, CGR=None, ACC=None):
152 | self.m = m
153 | self.P1 = P1
154 | self.P2 = P2
155 | self.T1 = T1
156 | self.T2 = T2
157 | self.cp = cp
158 | self.cv = cv
159 | self.Z = Z
160 | self.compeff = compeff
161 | self.comppower = comppower
162 | self.category = category
163 | self.etype = etype
164 | self.mat = mat
165 | self.id = id
166 | self.Cpo = Cpo
167 | self.FP = FP
168 | self.FM = FM
169 | self.FBM = FBM
170 | self.CBM = CBM
171 | self.CTM = CTM
172 | self.CGR = CGR
173 | self.ACC = ACC
174 |
175 | def __repr__(self):
176 | return '%s: Compressor(P1=%sbar, P2=%sbar, compeff=%s, comppower=%skW, etype=%s, mat=%s)' \
177 | % (self.id, self.P1, self.P2, round(self.compeff, 3), round(self.comppower, 3), self.etype, self.mat)
178 |
179 | def spec(self):
180 | return '---Design specs for {}:---\n{}\n----------------------------'.format(self.id, vars(self))
181 |
182 | def econ(self):
183 | return '---Econ report for {}:---\nCpo=${}\nCBM=${}\nCTM=${}\nCGR=${}\nACC=${}\n----------------------------'.format(self.id, round(self.Cpo, 2), round(self.CBM, 2), round(self.CTM, 2), round(self.CGR, 2), round(self.ACC, 2))
184 |
185 |
186 | class Pump(object):
187 | def __init__(self, Q=None, P1=None, P2=None, dP=None, rho=1000,
188 | pumpeff=0.75, pumppower=None,
189 | category='pump', etype=None, mat=None, id=None,
190 | Cpo=None, FP=None, FM=None, FBM=None, CBM=None, CTM=None, CGR=None, ACC=None):
191 | self.Q = Q
192 | self.P1 = P1
193 | self.P2 = P2
194 | self.dP = dP
195 | self.rho = rho
196 | self.pumpeff = pumpeff
197 | self.pumppower = pumppower
198 | self.category = category
199 | self.etype = etype
200 | self.mat = mat
201 | self.id = id
202 | self.Cpo = Cpo
203 | self.FP = FP
204 | self.FM = FM
205 | self.FBM = FBM
206 | self.CBM = CBM
207 | self.CTM = CTM
208 | self.CGR = CGR
209 | self.ACC = ACC
210 |
211 | def __repr__(self):
212 | return '%s: Pump(P1=%skPa, P2=%skPa, pumpeff=%s, pumppower=%skW, etype=%s, mat=%s)' \
213 | % (self.id, self.P1, self.P2, round(self.pumpeff, 3), round(self.pumppower, 3), self.etype, self.mat)
214 |
215 | def spec(self):
216 | return '---Design specs for {}:---\n{}\n----------------------------'.format(self.id, vars(self))
217 |
218 | def econ(self):
219 | return '---Econ report for {}:---\nCpo=${}\nCBM=${}\nCTM=${}\nCGR=${}\nACC=${}\n----------------------------'.format(self.id, round(self.Cpo, 2), round(self.CBM, 2), round(self.CTM, 2), round(self.CGR, 2), round(self.ACC, 2))
220 |
221 |
222 | class HeatExc(object):
223 | def __init__(self, mh=None, mc=None, cph=None, cpc=None, Thin=None, Thout=None, Tcin=None, Tcout=None,
224 | U=None, F=0.9, Ns=1, area=None, P=None,
225 | category='heatexc', etype=None, mat=None, id=None,
226 | Cpo=None, FP=None, FM=None, FBM=None, CBM=None, CTM=None, CGR=None, ACC=None):
227 | self.mh = mh
228 | self.mc = mc
229 | self.cph = cph
230 | self.cpc = cpc
231 | self.Thin = Thin
232 | self.Thout = Thout
233 | self.Tcin = Tcin
234 | self.Tcout = Tcout
235 | self.U = U
236 | self.F = F
237 | self.Ns = Ns
238 | self.area = area
239 | self.P = P
240 | self.category = category
241 | self.etype = etype
242 | self.mat = mat
243 | self.id = id
244 | self.Cpo = Cpo
245 | self.FP = FP
246 | self.FM = FM
247 | self.FBM = FBM
248 | self.CBM = CBM
249 | self.CTM = CTM
250 | self.CGR = CGR
251 | self.ACC = ACC
252 |
253 | def __repr__(self):
254 | return '%s: HeatExc(Thin=%sdegC, Thout=%sdegC, Tcin=%sdegC, Tcout=%sdegC, F=%s, Ns=%s, area=%sm^2, etype=%s, mat=%s)' \
255 | % (self.id, self.Thin, self.Thout, self.Tcin, self.Tcout, round(self.F, 3), self.Ns, round(self.area, 2), self.etype, self.mat)
256 |
257 | def spec(self):
258 | return '---Design specs for {}:---\n{}\n----------------------------'.format(self.id, vars(self))
259 |
260 | def econ(self):
261 | return '---Econ report for {}:---\nCpo=${}\nCBM=${}\nCTM=${}\nCGR=${}\nACC=${}\n----------------------------'.format(self.id, round(self.Cpo, 2), round(self.CBM, 2), round(self.CTM, 2), round(self.CGR, 2), round(self.ACC, 2))
262 |
263 |
264 | def stepwise_leq(a, b, x):
265 |
266 | if len(b) != len(a) + 1:
267 | raise ValueError('len(b) should be len(a) + 1 !')
268 |
269 | a = (-np.inf,) + a + (np.inf,)
270 |
271 | for i in range(0, len(a)):
272 | if a[i] <= x < a[i + 1]:
273 | y = b[i]
274 | break
275 |
276 | if y == 'error':
277 | raise ValueError('Input out of supported range!')
278 |
279 | return y
280 |
281 |
282 | def stepwise_req(a, b, x):
283 |
284 | if len(b) != len(a) + 1:
285 | raise ValueError('len(b) should be len(a) + 1 !')
286 |
287 | a = (-np.inf,) + a + (np.inf,)
288 |
289 | for i in range(0, len(a)):
290 | if a[i] < x <= a[i + 1]:
291 | y = b[i]
292 | break
293 |
294 | if y == 'error':
295 | raise ValueError('Input out of supported range!')
296 |
297 | return y
298 |
299 |
300 | def designP(Po: float) -> float:
301 |
302 | """
303 | Calculate design pressure for pressure and vacuum vessels
304 | :param Po: most deviated operating pressure (psig)
305 | :return: Pd design pressure (psig)
306 | """
307 |
308 | expo = np.exp(0.60608 + 0.91615 * np.log(Po) + 0.0015655 * pow((np.log(Po)), 2.))
309 | a = (0., 5., 10., 10.e3)
310 | b = (Po, 10., max(10., expo), expo, 'error')
311 | Pd = stepwise_leq(a, b, Po)
312 |
313 | return Pd
314 |
315 |
316 | def designT(To: float, heuristic: str='towler') -> float:
317 |
318 | """
319 | Calculate design temperature for pressure and vacuum vessels
320 | :param To: most deviated operating temperature (degF)
321 | :param heuristic: either 'Towler' or 'Turton' (optional)
322 | :return: Td design temperature (degF)
323 | """
324 |
325 | if 'towler' in str.lower(heuristic):
326 | if To < Troom:
327 | Td = To - 25
328 | else:
329 | Td = To + 50
330 | elif 'turton' in str.lower(heuristic):
331 | if -22 <= To <= 644:
332 | Td = To + 45
333 | else:
334 | raise ValueError('To temperature input out of supported range using Turton heuristic!')
335 | else:
336 | raise ValueError('Heuristic not supported! Please check heuristic input!')
337 | return Td
338 |
339 |
340 | def maxstress(Td: float, MOC: str='387B') -> (float, float):
341 |
342 | """
343 | Calculate maximum allowable stress for pressure vessel material
344 | :param Td: design temperature (degF)
345 | :param MOC: user-specified material of construction (optional input)
346 | :return: Smax maximum allowable stress for pressure vessel MOC (psi)
347 | :return: MOC prescribed material of construction which is in stainless steel family (string, optional).
348 | If MOC is not user-specified, the returned MOC will be a default value (SA-285C or SA-387B).
349 | """
350 |
351 | if '317L' in str.upper(MOC):
352 |
353 | MOC = '317L'
354 | a = (-20., 68., 200., 400., 600., 800., 1000., 1200., 1400., 1600.)
355 | b = ('error', 25286., 22957., 20957., 19400., 17633., 16733., 15767., 12857., 8300., 'error')
356 |
357 | elif '316Ti' in str.upper(MOC):
358 |
359 | MOC = '316Ti'
360 | a = (-22., 302., 392., 482., 572., 617., 662., 707., 752., 797., 842., 887.,
361 | 932., 977., 1022., 1067., 1112.)
362 | b = ('error', 20015., 19435., 18130., 16969., 16824., 16534., 16244., 16099., 15954., 15809., 15664., 15519.,
363 | 15374., 15229., 14475., 11647., 'error')
364 |
365 | elif '316L' in str.upper(MOC):
366 |
367 | MOC = '316L'
368 | a = (-22., 302., 392., 482., 572., 617., 662., 707., 752., 797., 842., 887.)
369 | b = ('error', 16679., 15809., 14939., 14214., 13880., 13648., 13460., 13184., 12908., 12734., 12560., 'error')
370 |
371 | elif '304' in str.upper(MOC):
372 |
373 | MOC = '304'
374 | a = (-22., 149., 212., 257., 302., 392., 482., 572., 617., 662., 707., 752., 797., 842., 887.,
375 | 932., 977., 1022., 1067., 1112.)
376 | b = ('error', 20015., 19870., 19435., 18855., 18275., 17695., 16824., 16534., 16099., 15809., 15519.,
377 | 15229., 14939., 14649., 14402., 14214., 13532., 11545., 9485., 'error')
378 |
379 | else: # use default MOCs
380 |
381 | a = (-20., 650., 750., 800., 850., 900.)
382 | b = ('error', 13750., 15000., 14750., 14200., 13100., 'error')
383 | c = ('error', '285C', '387B', '387B', '387B', '387B', 'error')
384 | MOC = stepwise_leq(a, c, Td)
385 |
386 | Smax = stepwise_leq(a, b, Td)
387 |
388 | return Smax, MOC
389 |
390 |
391 | def elasmod(Td: float, MOC :str='carbon') -> (float, float):
392 |
393 | """
394 | Calculate modulus of elasticity for vacuum vessel material
395 | :param Td: design pressure (degF)
396 | :param MOC: material of construction (only either 'carbon' or 'low-alloy', string)
397 | :return: EM modulus of elasticity for vacuum vessel MOC (psi)
398 | :return: MOC returns the input MOC for consistency with the equivalent computation for pressure vessels (optional string)
399 | """
400 |
401 | if 'carbon' in str.lower(MOC):
402 | MOC = 'carbon'
403 | a = (-20., 200., 400., 650.)
404 | b = (30.2e6, 29.5e6, 28.3e6, 26.0e6, 'error')
405 | EM = stepwise_req(a, b, Td)
406 |
407 | elif 'low' in str.lower(MOC) and 'alloy' in str.lower(MOC):
408 | MOC = 'low-alloy'
409 | a = (-20., 200., 400., 650., 700., 800., 900.)
410 | b = (30.2e6, 29.5e6, 28.6e6, 27.0e6, 26.6e6, 25.7e6, 24.5e6, 'error')
411 | EM = stepwise_req(a, b, Td)
412 |
413 | else:
414 | raise ValueError('Specified MOC not found! Please check MOC input!')
415 |
416 | return EM, MOC
417 |
418 |
419 | def wallthk(Pd: float, Di: float, Smax: float) -> (float, float):
420 |
421 | """
422 | Calculate cylindrical shell wall thickness for pressure vessels, including minimum thickness check for structural rigidity
423 | :param Pd: design pressure (psig)
424 | :param Di: internal diameter (in)
425 | :param Smax: maximum allowable stress (psi)
426 | :return: tp: cylindrical shell wall thickness for pressure
427 | :return: E: fractional weld efficiency used (string, optional)
428 | """
429 |
430 | E = 0.85 # first assume 10% X-ray spot check
431 | tp = Pd * Di / (2*Smax*E - 1.2*Pd)
432 |
433 | if tp > 1.25: # tp not large enough, 100% X-ray check needed
434 | E = 1
435 | tp = Pd * Di / (2*Smax*E - 1.2*Pd)
436 |
437 | # Check if minimum wall thickness to provide rigidity satisfied
438 |
439 | a = (48., 72., 96., 120., 144.)
440 | b = (max(1/4, tp), max(5/16, tp), max(3/8, tp), max(7/16, tp), max(1/2, tp), 'error')
441 | tp = stepwise_leq(a, b, tp)
442 |
443 | return tp, E
444 |
445 |
446 | def wallthkvac(Pd: float, Do: float, Di: float, L: float, EM: float) -> (float, float, float):
447 |
448 | """
449 | Calculate cylindrical shell wall thickness for vacuum vessels
450 | :param Pd: design pressure (psig)
451 | :param Do: external diameter (in)
452 | :param Di: internal diameter (in)
453 | :param L: vessel length (in)
454 | :param EM: modulus of elasticity (psi)
455 | :return: tp: cylindrical shell wall thickness for vacuum vessels (in)
456 | :return: tE: necessary thickness for vacuum vessels (in, optional)
457 | :return: tEC: correction factor for vacuum vessels (in, optional)
458 | """
459 |
460 | tE = pow(1.3 * Do * (Pd * L / (EM * Do)), 0.4)
461 | if tE / Do > 0.05:
462 | warnings.warn('tE is > 0.05*Do, which is' +
463 | ' outside the validity range for tE computation!' +
464 | ' Nevertheless carrying on with calculation - beware!')
465 |
466 | tEC = L * (0.18*Di - 2.2)*1e-5 - 0.19
467 | tp = tE + tEC
468 |
469 | return tp, tE, tEC
470 |
471 |
472 | def shellthkhorz(tp: float) -> float:
473 |
474 | """
475 | Calculate shell thickness for horizontal vessels
476 | :param tp: wall thickness (in)
477 | :return: ts: shell thickness with corrosion allowance for horizontal vessels (in)
478 | """
479 |
480 | ts = tp + tc
481 |
482 | return ts
483 |
484 |
485 | def windalw(Do: float, L: float, Smax: float) -> float:
486 |
487 | """
488 | Calculate wind/earthquake allowance for vertical vessels
489 | Caution: Using WINDALW requires an assumed value of Do
490 | which is dependent on tw. If Do is unknown, use
491 | SHELLTHKVERT directly instead which internally calls WINDALW.
492 | :param Do: external diameter (in)
493 | :param L: internal tangent-to-tangent height (in)
494 | :param Smax: maximum allowable stress (psi)
495 | :return: tw: wind/earthquake allowance for vertical vessels (in)
496 | """
497 |
498 | tw = 0.22 * (Do + 18.) * (L ** 2.) / (Smax * Do ** 2.)
499 |
500 | return tw
501 |
502 |
503 | def shellthkvert(tp: float, Di: float, L: float, Smax: float) -> (float, float, float):
504 |
505 | """
506 | Calculate shell thickness for vertical vessels
507 | :param tp: wall thickness (in)
508 | :param Di: internal diameter (in)
509 | :param L: internal tangent-to-tangent height (in)
510 | :param Smax: maximum allowable stress of MOC (psi)
511 | :return: ts: shell thickness with wind allowance after adding corrosion allowance for vertical vessels (in)
512 | :return: tv: shell thickness with wind allowance before adding corrosion allowance for vertical vessels (in)
513 | :return: tw: wind allowance (in, optional)
514 | """
515 |
516 | ts0 = 2. * tp # dummy initialisation
517 | Do = Di + 2. * ts0
518 | tw = windalw(Do, L, Smax)
519 | tv = (tp + (tp+tw)) / 2.
520 | ts1 = tv + tc # add corrosion allowance
521 |
522 | reltol = 1e-9
523 | i = 0
524 | while abs(ts1 - ts0) / ts0 > reltol and i < 1e3:
525 | ts0 = ts1
526 | i += 1
527 | Do = Di + 2. * ts0
528 | tw = windalw(Do, L, Smax)
529 | tv = (tp + (tp+tw)) / 2.
530 | ts1 = tv + tc # add corrosion allowance
531 |
532 | if i == 1e3:
533 | warnings.warn('Vertical vessel thickness failed to converge!' +
534 | ' Nevertheless carrying on with calculation - beware!')
535 |
536 | ts = ts1
537 |
538 | return ts, tv, tw
539 |
540 |
541 | def ceilplatethk(ts: float) -> float:
542 |
543 | """
544 | Round up metal plate thickness to nearest increment
545 | :param ts: shell wall thickness before before rounding to nearest increment (in)
546 | :return: tsfinal: final shell wall thickness after rounding to nearest increment (in)
547 | """
548 |
549 | if ts > 3.:
550 | warnings.warn('Calculated ts not in supported range.' +
551 | ' Assuming metal plate thickness in increments' +
552 | ' of 1/4 inches above 3 inches!')
553 |
554 | a = (3/16, 1/2, 2., 3.)
555 | b = ('error', 1/16, 1/8, 1/4, 1/4)
556 | acc = stepwise_req(a, b, ts)
557 |
558 | tsfinal = np.ceil(ts / acc) * acc
559 |
560 | return tsfinal
561 |
562 |
563 | def vesselweight(Di: float, tsfinal: float, L: float, rho: float=rhosteel) -> float:
564 |
565 | """
566 | Calculate final weight of vessel of the vessel with the shell and two 2:1 elliptical heads
567 | :param Di: internal diameter (in)
568 | :param tsfinal: shell thickness with corrosion allowance, rounded to nearest thickness increment for metal plates (in)
569 | :param L: internal tangent-to-tangent length/height (in)
570 | :param rho: density of material of construction (MOC) (lb/in^3)
571 | :return: W: weight of vessel (lb)
572 | """
573 |
574 | W = np.pi * (Di+tsfinal) * (L+0.8*Di) * tsfinal * rho
575 |
576 | return W
577 |
578 |
579 | def vesselvol(Do: float, L: float) -> float:
580 |
581 | """
582 | Calculate final external volume of vessel with the shell and two 2:1 elliptical heads
583 | :param Do: external diameter (in)
584 | :param L: internal tangent-to-tangent length/height (in)
585 | :return: volume of vessel (in^3)
586 | """
587 |
588 | Vcyl = np.pi * pow(Do, 2.) / 4. * L
589 | H = Do / 4.
590 | Vheads = 4. / 3. * np.pi * H * pow((Do / 2.), 2.)
591 | V = Vcyl + Vheads
592 |
593 | return V
594 |
595 |
596 | def designhorzpres(Di: float, L: float, Po: float=Patm, To: float=Troom, rho: float=rhosteel, MOC: str='387B',
597 | mat: str='SS', id: str='UnnamedVessel') -> MechDesign():
598 |
599 | """
600 | The main function to be called for designing horizontal pressure vessels
601 | Example implementation:
602 | md = designhorzpres(Di=78, L=480, Po=470, To=850)
603 | :param Di: internal diameter (in)
604 | :param L: tangent-to-tangent horizontal length (in)
605 | :param Po: most deviated operating pressure from ambient pressure (psig)
606 | :param To: most deviated operating temperature from ambient temperature (degF)
607 | :param rho: density of material of construction (lb/in^3, optional)
608 | :param MOC: material of construction (string e.g. '387B' [default] or '317L' etc., optional)
609 | :param mat: category of material of construction (string e.g. 'CS' or 'SS' [default] etc., optional)
610 | :param id: id/name of equipment (string, e.g. V100, optional)
611 | :return: md: MechDesign object (optional) consisting of:
612 | Pd = design pressure (psig)
613 | Td = design pressure (degF)
614 | MOC = material of construction to use (string)
615 | Smax = maximum allowable stress of MOC used (psi)
616 | E = weld efficiency to use (dimensionless)
617 | tp = wall thickness (in)
618 | tc = corrosion allowance used (= 1/8 in)
619 | ts = tp with tc (in)
620 | tsfinal = ts rounded up to next increment in metal plate thickness (in)
621 | Do = external diameter (in)
622 | W = total vessel weight (lb)
623 | V = total vessel external volume (in^3)
624 | Vi = total vessel internal volume (in^3)
625 | """
626 |
627 | md = MechDesign()
628 | md.Po = Po
629 | md.To = To
630 | md.Di = Di
631 | md.L = L
632 | md.rho = rho
633 |
634 | md.Pd = designP(Po)
635 | md.Td = designT(To)
636 | md.Smax, md.MOC = maxstress(md.Td, MOC)
637 | md.tp, md.E = wallthk(md.Pd, Di, md.Smax)
638 | md.tc = tc
639 | md.ts = shellthkhorz(md.tp)
640 | md.tsfinal = ceilplatethk(md.ts)
641 | md.Do = Di + 2. * md.tsfinal
642 | md.W = vesselweight(Di, md.tsfinal, L, rho)
643 | md.V = vesselvol(md.Do, L)
644 | md.Vi = np.pi * (Di ** 2.) / 4. * L
645 |
646 | md.id = id
647 | md.category = 'vessel'
648 | md.etype = 'horizontal'
649 | if mat is not None:
650 | md.mat = mat if mat in capex.matfaclib['vessel']['horizontal'].keys() else None
651 | else:
652 | md.mat = 'SS' if MOC in ['317L', '316L', '304'] else 'CS' if MOC in ['285C', '387B', 'low-alloy', 'carbon'] else 'Ti' if MOC in ['316Ti'] else None
653 | if md.mat is None:
654 | md.mat = 'SS'
655 | warnings.warn('Type of MOC (mat variable) cannot be identified and is assumed to be stainless steel! ' +
656 | 'You can specify a mat input (mat=' + capex.matfaclib['vessel']['horizontal'].keys())
657 |
658 | return md
659 |
660 |
661 | def designvertpres(Di: float, L: float, Po: float=Patm, To: float=Troom, rho: float=rhosteel,
662 | MOC: str='387B', mat: str='SS', id: str='UnnamedVessel') -> MechDesign():
663 |
664 | """
665 | The main function to be called for designing vertical pressure vessels
666 | Example implementation:
667 | md = designhorzpres(Di=120, L=2544, Po=95.5, To=150)
668 | :param Di: internal diameter (in)
669 | :param L: tangent-to-tangent horizontal height (in)
670 | :param Po: most deviated operating pressure from ambient pressure (psig)
671 | :param To: most deviated operating temperature from ambient temperature (degF)
672 | :param rho: density of material of construction (lb/in^3, optional)
673 | :param MOC: material of construction (string e.g. '387B' [default] or '317L' etc., optional)
674 | :param mat: category of material of construction (string e.g. 'CS' or 'SS' [default] etc., optional)
675 | :param id: id/name of equipment (string, e.g. V100, optional)
676 | :return: md: MechDesign object (optional) consisting of:
677 | Pd = design pressure (psig)
678 | Td = design pressure (degF)
679 | MOC = material of construction to use (string)
680 | Smax = maximum allowable stress of MOC used (psi)
681 | E = weld efficiency to use (dimensionless)
682 | tp = wall thickness (in)
683 | tc = corrosion allowance used (= 1/8 in)
684 | tw = wind/earthquake allowance for vertical vessels (in)
685 | tv = tp with tw without tc (in)
686 | ts = tp with tc (in)
687 | tsfinal = ts rounded up to next increment in metal plate thickness (in)
688 | Do = external diameter (in)
689 | W = total vessel weight (lb)
690 | V = total vessel external volume (in^3)
691 | Vi = total vessel internal volume (in^3)
692 | """
693 |
694 | md = MechDesign()
695 | md.Po = Po
696 | md.To = To
697 | md.Di = Di
698 | md.L = L
699 | md.rho = rho
700 |
701 | md.Pd = designP(Po)
702 | md.Td = designT(To)
703 | md.Smax, md.MOC = maxstress(md.Td, MOC)
704 | md.tp, md.E = wallthk(md.Pd, Di, md.Smax)
705 | md.tc = tc
706 | md.ts, md.tv, md.tw = shellthkvert(md.tp, Di, L, md.Smax)
707 | md.tsfinal = ceilplatethk(md.ts)
708 | md.Do = Di + 2. * md.tsfinal
709 | md.W = vesselweight(Di, md.tsfinal, L, rho)
710 | md.V = vesselvol(md.Do, L)
711 | md.Vi = np.pi * (Di ** 2.) / 4. * L
712 |
713 | md.id = id
714 | md.category = 'vessel'
715 | md.etype = 'vertical'
716 | if mat is not None:
717 | md.mat = mat if mat in capex.matfaclib['vessel']['horizontal'].keys() else None
718 | else:
719 | md.mat = 'SS' if MOC in ['317L', '316L', '304'] else 'CS' if MOC in ['285C', '387B', 'low-alloy', 'carbon'] else 'Ti' if MOC in ['316Ti'] else None
720 | if md.mat is None:
721 | md.mat = 'SS'
722 | warnings.warn('Type of MOC (mat variable) cannot be identified and is assumed to be stainless steel! ' +
723 | 'You can specify a mat input (mat=' + capex.matfaclib['vessel']['vertical'].keys())
724 |
725 | return md
726 |
727 |
728 | def designvac(Di: float, L: float, Po: float=Patm, To: float=Troom, rho: float=rhosteel,
729 | MOC: str='carbon', etype: str=None, mat: str='CS', id: str='UnnamedVessel') -> MechDesign():
730 |
731 | """
732 | The main function to be called for designing vacuum vessels
733 | Example implementation:
734 | md = dsg.designvac(Di=168., L=1080., Po=7.977, To=257.)
735 | :param Di: internal diameter (in)
736 | :param L: tangent-to-tangent horizontal length/height (in)
737 | :param Po: most deviated operating pressure from ambient pressure (psig)
738 | :param To: most deviated operating temperature from ambient temperature (degF)
739 | :param rho: density of material of construction (lb/in^3, optional)
740 | :param MOC: material of construction (string e.g. 'carbon' as default, optional)
741 | :param etype: type of vessel ('horizontal' or 'vertical')
742 | :param mat: category of material of construction (string e.g. 'CS' [default] or 'SS' etc., optional)
743 | :param id: id/name of equipment (string, e.g. V100, optional)
744 | :return: md: MechDesign object (optional) consisting of:
745 | Pd = design pressure (psig)
746 | Td = design pressure (degF)
747 | MOC = material of construction to use (string)
748 | EM = modulus of elasticity of MOC used (psi)
749 | tE = vacuum wall thickness (in)
750 | tEC = vacuum wall correction factor (in)
751 | tp = tE with tEC (in)
752 | tc = corrosion allowance used (= 1/8 in)
753 | ts = tp with tc (in)
754 | tsfinal = ts rounded up to next increment in metal plate thickness (in)
755 | Do = external diameter (in)
756 | W = total vessel weight (lb)
757 | V = total vessel external volume (in^3)
758 | Vi = total vessel internal volume (in^3)
759 | """
760 |
761 | md = MechDesign()
762 | md.Po = Po
763 | md.To = To
764 | md.Di = Di
765 | md.L = L
766 | md.rho = rho
767 |
768 | md.Pd = Patm - Po
769 | md.Td = designT(To)
770 | if -20 < md.Td <= 650:
771 | [md.EM, md.MOC] = elasmod(md.Td, 'carbon')
772 | elif 650 < md.Td < 900:
773 | [md.EM, md.MOC] = elasmod(md.Td, 'low-alloy')
774 | else:
775 | raise ValueError('Td out of supported range for both carbon and low-alloy steel!')
776 |
777 | ts0 = 1 # dummy initialisation
778 | md.Do = Di + 2. * ts0
779 | md.tp, md.tE, md.tEC = wallthkvac(md.Pd, md.Do, Di, L, md.EM)
780 | md.tc = tc
781 | ts1 = shellthkhorz(md.tp) # horz/vert orientation does not matter for vacuum
782 |
783 | reltol = 1.e-9
784 | i = 0
785 | while abs(ts1 - ts0) / ts0 > reltol and i < 1e3:
786 | ts0 = ts1
787 | i += 1
788 | md.Do = Di + 2. * ts0
789 | md.tp, md.tE, md.tEC = wallthkvac(md.Pd, md.Do, Di, L, md.EM)
790 | md.tc = tc
791 | ts1 = shellthkhorz(md.tp)
792 |
793 | if i == 1e3:
794 | warnings.warn('Vacuum vessel thickness failed to converge! ' +
795 | 'Nevertheless carrying on with calculation - beware!')
796 |
797 | md.ts = ts1
798 | md.tsfinal = ceilplatethk(md.ts)
799 | md.Do = Di + 2. * md.tsfinal
800 | md.W = vesselweight(Di, md.tsfinal, L, rho)
801 | md.V = vesselvol(md.Do, L)
802 | md.Vi = np.pi * (Di ** 2.) / 4. * L
803 |
804 | md.id = id
805 | md.category = 'vessel'
806 | if etype is None:
807 | etype = 'vertical'
808 | warnings.warn('Assuming vacuum vessel is vertical! ' +
809 | 'You can specify a etype input (etype=' + str(capex.eqptcostlib['vessel'].keys()))
810 | md.etype = str.lower(etype) if (str.lower(etype) in capex.eqptcostlib['vessel'].keys()) else None
811 |
812 | if mat is not None:
813 | md.mat = mat if mat in capex.matfaclib['vessel']['horizontal'].keys() else None
814 | else:
815 | md.mat = 'SS' if MOC in ['317L', '316L', '304'] else 'CS' if MOC in ['285C', '387B', 'low-alloy', 'carbon'] else 'Ti' if MOC in ['316Ti'] else None
816 | if md.mat is None:
817 | md.mat = 'CS'
818 | warnings.warn('Type of MOC (mat variable) cannot be identified and is assumed to be carbon steel! ' +
819 | 'You can specify a mat input (mat=' + str(capex.matfaclib['vessel']['vertical'].keys()))
820 |
821 | return md
822 |
823 |
824 | def sizecompressor(m: float, P1: float, P2: float, T1: float, cp: float, cv: float, Z: float=1.,
825 | etype: str=None, mat: str=None, id: str='UnnamedCompressor') -> (float, float, float, Compressor()):
826 |
827 | """
828 | Conducts compressor sizing by determining required compressor power
829 | based on its flow rate and inlet/outlet pressures
830 | Example implementation:
831 | comppower, compeff, T2, compressor = dsg.sizecompressor(m=1e5, P1=100, P2=300, T1=323.15, cp=1.02, cv=0.72, Z=0.99)
832 | :param m: mass flow rate through compressor (kg/h)
833 | :param P1: gas inlet pressure (bar)
834 | :param P2: gas inlet pressure (bar)
835 | :param T1: gas inlet temperature (K)
836 | :param cp: constant-pressure heat capacity of gas
837 | :param cv: constant-volume heat capacity of gas
838 | :param Z: gas compressibility factor (optional, default = 1)
839 | :param etype: type of equipment (string, e.g. 'centrifugal' [default] or 'axial' etc., optional)
840 | :param mat: category of material of construction (string e.g. 'CS' or 'SS' [default] etc., optional)
841 | :param id: id/name of equipment (string, e.g. K100, optional)
842 | :return: comppower: required compressor power (kW)
843 | :return: compeff: compressor efficiency (optional, dimensionless)
844 | :return: gas outlet temperature (optional, K)
845 | :return: compressor: Compressor object (optional)
846 | """
847 |
848 | if P2/P1 > 4.:
849 | warnings.warn('Compression ratio > 4 is too large -' +
850 | ' check that outlet temperature is not too high!' +
851 | ' Nevertheless continuing calculation...')
852 | elif P2/P1 < 1.:
853 | raise ValueError('Outlet pressure smaller than inlet pressure!')
854 |
855 | m = m / 3600.
856 | k = cp / cv
857 | a = (k - 1) / k
858 | power = (m * Z * R * T1) * (pow((P2 / P1), a) - 1.) / a # useful power
859 | power /= 1000. # convert Pa to kPa
860 |
861 | compeff = np.interp(P2 / P1, [1., 1.5, 2., 3., 6., 10.],
862 | [0.65-np.spacing(1), 0.65, 0.75, 0.8, 0.85, 0.85+np.spacing(1)])
863 |
864 | comppower = power / compeff
865 |
866 | T2 = T1 * pow(P2 / P1, a)
867 |
868 | if T2 > 273.15 + 200:
869 | warnings.warn('Gas outlet temperature too high! ' +
870 | 'Consider reducing compression ratio P2/P1! ' +
871 | 'Nevertheless continuing calculation...')
872 |
873 | compressor = Compressor()
874 | compressor.m = m
875 | compressor.P1 = P1
876 | compressor.P2 = P2
877 | compressor.T1 = T1
878 | compressor.T2 = T2
879 | compressor.cp = cp
880 | compressor.cv = cv
881 | compressor.Z = Z
882 | compressor.compeff = compeff
883 | compressor.comppower = comppower
884 |
885 | compressor.id = id
886 | compressor.category = 'compressor'
887 | if etype is None:
888 | etype = 'centrifugal'
889 | warnings.warn('Assuming compressor is centrifugal! ' +
890 | 'You can specify a etype input (etype=' + str(capex.eqptcostlib['compressor'].keys()))
891 | compressor.etype = str.lower(etype) if (str.lower(etype) in capex.eqptcostlib['compressor'].keys()) else None
892 |
893 | if mat is None:
894 | mat = 'SS'
895 | warnings.warn('Assuming compressor material is stainless steel! ' +
896 | 'You can specify a mat input (mat=' + str(capex.matfaclib['compressor']['centrifugal'].keys()))
897 | compressor.mat = mat if (mat in capex.matfaclib['compressor']['centrifugal'].keys()) else None
898 |
899 | return comppower, compeff, T2, compressor
900 |
901 |
902 | def sizepump(Q: float, dP: float=None, P1: float=None, P2: float=None, rho: float=1000., pumpeff: float=None,
903 | etype: str=None, mat: str=None, id: str='UnnamedPump') -> (float, float, Pump()):
904 |
905 | """
906 | Conducts pump sizing by determining required pump power
907 | based on its flow rate and pressure differential (discharge - suction pressure)
908 | Example implementation:
909 | pumppower, pumpeff, pump = dsg.sizepump(Q=35, dP=500)
910 | :param Q: volumetric flow rate through pump (m^3/h)
911 | :param P1: suction/inlet pressure (kPa)
912 | :param P2: discharge/outlet pressure (kPa)
913 | :param rho: stream density (kg/m^3) (optional, default = 1000)
914 | :param pumpeff: pump efficiency (optional, default = 0.75)
915 | :param etype: type of equipment (string, e.g. 'centrifugal' [default] or 'reciprocating' etc., optional)
916 | :param mat: category of material of construction (string e.g. 'CS' or 'SS' [default] etc., optional)
917 | :param id: id/name of equipment (string, e.g. P100, optional)
918 | :return: pumppower = required pump power (kW)
919 | :return: pumpeff = pump efficiency (optional output - if it is not specified in input, it will be calculated)
920 | :return: pump: Pump object (optional)
921 | """
922 |
923 | if dP is None:
924 | if P1 is None or P2 is None:
925 | raise ValueError('dP, P1 or P2 not specified!')
926 | elif P2 > P1:
927 | dP = P2 - P1
928 | else:
929 | raise ValueError('Outlet pressure lower than inlet pressure!')
930 |
931 | power = (Q / 3600.) * dP # useful power in kW
932 |
933 | H = dP / (rho * g) # required head in m
934 | H_ft = H * 3.281 # required head in ft
935 | Q_gpm = Q * 4.403 # flowrate in gal/min (gpm)
936 |
937 | if pumpeff is None:
938 | if 50 <= H_ft <= 300 and 100 <= Q_gpm <= 1000:
939 | a = np.array([80., -0.2855, 3.78e-4, -2.38e-7, 5.39e-4, -6.39e-7, 4.e-10])
940 | b = np.array([1, H_ft, H_ft*Q_gpm, H_ft*pow(Q_gpm, 2),
941 | pow(H_ft, 2), pow(H_ft, 2)*Q_gpm, pow(H_ft, 2)*pow(Q_gpm, 2)])
942 | pumpeff = (a @ b.T) / 100.
943 | elif 0 <= power <= 300:
944 | # Maximum useful power for centrifugal pumps = 300 kW
945 | pumpeff = np.interp(power, [0., 2., 5., 10., 30., 55., 300.],
946 | [0.55-np.spacing(1), 0.55, 0.6, 0.65, 0.7, 0.75, 0.75+np.spacing(1)])
947 | else:
948 | pumpeff = 0.75
949 |
950 | pumppower = power / pumpeff
951 |
952 | pump = Pump()
953 | pump.Q = Q
954 | pump.P1 = P1
955 | pump.P2 = P2
956 | pump.dP = dP
957 | pump.rho = rho
958 | pump.pumpeff = pumpeff
959 | pump.pumppower = pumppower
960 |
961 | pump.id = id
962 | pump.category = 'pump'
963 | if etype is None:
964 | etype = 'centrifugal'
965 | warnings.warn('Assuming pump is centrifugal! ' +
966 | 'You can specify a type einput (etype=' + str(capex.eqptcostlib['pump'].keys()))
967 | pump.etype = str.lower(etype) if (str.lower(etype) in capex.eqptcostlib['pump'].keys()) else None
968 |
969 | if mat is None:
970 | mat = 'SS'
971 | warnings.warn('Assuming pump material is stainless steel! ' +
972 | 'You can specify a mat input (mat=' + str(capex.matfaclib['pump']['centrifugal'].keys()))
973 | pump.mat = mat if (mat in capex.matfaclib['pump']['centrifugal'].keys()) else None
974 |
975 | return pumppower, pumpeff, pump
976 |
977 |
978 | def sizeHE_heater(mc: float, cpc: float, Tcin: float, Tcout: float, Thin: float, Thout: float,
979 | U: float, F: float=None, Ns: int=1, etype: str=None, mat: str=None,
980 | P: float=None, id: str='UnnamedHX') -> (float, float, HeatExc()):
981 |
982 | """
983 | Conducts shell-and-tube heat exchanger sizing (counterflow arrangement), where cold process stream is heated,
984 | by determining required heat exchange area
985 | Example implementation:
986 | area, F, HX = dsg.sizeHE_heater(mc=31715, cpc=3246, Tcin=89, Tcout=101, Thin=160, Thout=156, U=850)
987 | :param mc: cold stream mass flow rate (kg/h)
988 | :param cpc: heat capacity of cold stream % J/(kg.K)
989 | :param Tcin: cold stream inlet temperature (degC)
990 | :param Tcout: cold stream outlet temperature (degC)
991 | :param Thin: hot stream inlet temperature (degC)
992 | :param Thout: hot stream outlet temperature (degC)
993 | :param U: heat transfer coefficient (W/(m^2.degC))
994 | :param F: user-specified correction factor (if not specified, F will be calculated)
995 | :param Ns: number of shell passes (default = 1)
996 | :param etype: type of equipment (string, e.g. 'utube' [default] or 'doublepipe' etc., optional)
997 | :param mat: category of material of construction (string e.g. 'CS/CS' or 'SS/CS' [default] etc., optional)
998 | :param id: id/name of equipment (string, e.g. HX100, optional)
999 | :param P: operating pressure, for cost calculation purposes only (bar, optional)
1000 | :return: area: required heat exchange area (m^2)
1001 | :return: F: correction factor (optional output - if F is not specified in input, F will be calculated)
1002 | :return: HX: HeatExc object (optional)
1003 | """
1004 |
1005 | if Thout > Thin:
1006 | raise ValueError('Hot stream outlet cannot be hotter than inlet!')
1007 | elif Tcout < Tcin:
1008 | raise ValueError('Cold stream outlet cannot be colder than inlet!')
1009 | elif Tcout > Thout:
1010 | warnings.warn('Potential temperature cross - Cold stream outlet is hotter than hot stream inlet! Nevertheless continuing with calculations...')
1011 | elif Thout - Tcin < Ta:
1012 | raise ValueError('Minimum temperature not fulfilled for hot outlet / cold inlet side!')
1013 | elif Thin - Tcout < Ta:
1014 | raise ValueError('Minimum temperature not fulfilled for hot inlet / cold outlet side!')
1015 |
1016 | mc /= 3600. # convert kg/h to kg/s
1017 |
1018 | Q = mc * cpc * (Tcout - Tcin) # calculate heat transfer rate in W
1019 |
1020 | if (Thout - Tcin) == (Thin - Tcout):
1021 | LMTD = Thout - Tcin
1022 | else:
1023 | LMTD = ((Thin-Tcout) - (Thout-Tcin)) / np.log((Thin-Tcout) / (Thout-Tcin))
1024 |
1025 | if F is None:
1026 | r = (Thin - Thout) / (Tcout - Tcin)
1027 | p = (Tcout - Tcin) / (Thin - Tcin)
1028 | if r == 1:
1029 | w = (Ns - Ns * p) / (Ns - Ns * p + p)
1030 | F = (np.sqrt(2) * (1 - w) / w) / \
1031 | (np.log(w / (1 - w) + 1 / np.sqrt(2)) / np.log(w / (1 - w) - 1 / np.sqrt(2)))
1032 | else:
1033 | w = pow((1 - p * r) / (1 - p), 1 / Ns)
1034 | s = np.sqrt(r ** 2 + 1) / (r - 1)
1035 | F = s * np.log(w) / np.log((1 + w - s + s * w) / (1 + w + s - s * w))
1036 |
1037 | area = Q / (U * F * LMTD)
1038 |
1039 | HX = HeatExc()
1040 | HX.mh = None
1041 | HX.mc = mc
1042 | HX.cph = None
1043 | HX.cpc = cpc
1044 | HX.Thin = Thin
1045 | HX.Thout = Thout
1046 | HX.Tcin = Tcin
1047 | HX.Tcout = Tcout
1048 | HX.U = U
1049 | HX.F = F
1050 | HX.Ns = Ns
1051 | HX.area = area
1052 | HX.P = P
1053 |
1054 | HX.id = id
1055 | HX.category = 'heatexc'
1056 | if etype is None:
1057 | etype = 'utube'
1058 | warnings.warn('Assuming heat exchanger is U-tube! ' +
1059 | 'You can specify a etype input (etype=' + str(capex.eqptcostlib['heatexc'].keys()))
1060 | HX.etype = str.lower(etype) if (str.lower(etype) in capex.eqptcostlib['heatexc'].keys()) else None
1061 |
1062 | if mat is None:
1063 | mat = 'CS/SS'
1064 | warnings.warn('Assuming hext exchanger material is carbon steel/stainless steel (or vice versa)! ' +
1065 | 'You can specify a mat input (mat=' + str(capex.matfaclib['heatexc']['utube'].keys()))
1066 | HX.mat = mat if (mat in capex.matfaclib['heatexc']['utube'].keys()) else None
1067 |
1068 | return area, F, HX
1069 |
1070 |
1071 | def sizeHE_cooler(mh: float, cph: float, Thin: float, Thout: float, Tcin: float, Tcout: float,
1072 | U: float, F: float=None, Ns: int=1, etype: str=None, mat: str=None,
1073 | P: float=None, id: str='UnnamedHX') -> (float, float, HeatExc()):
1074 |
1075 | """
1076 | Conducts shell-and-tube heat exchanger sizing (counterflow arrangement), where hot process stream is cooled,
1077 | by determining required heat exchange area
1078 | Example implementation:
1079 | area, F, HX = dsg.sizeHE_cooler(mh=31715, cph=3246, Thin=89, Thout=60, Tcin=5, Tcout=10, U=850)
1080 | :param mh: hot stream mass flow rate (kg/h)
1081 | :param cph: heat capacity of hot stream % J/(kg.K)
1082 | :param Thin: hot stream inlet temperature (degC)
1083 | :param Thout: hot stream outlet temperature (degC)
1084 | :param Tcin: cold stream inlet temperature (degC)
1085 | :param Tcout: cold stream outlet temperature (degC)
1086 | :param U: heat transfer coefficient (W/(m^2.degC))
1087 | :param F: user-specified correction factor (if not specified, F will be calculated)
1088 | :param Ns: number of shell passes (default = 1)
1089 | :param etype: type of equipment (string, e.g. 'utube' [default] or 'doublepipe' etc., optional)
1090 | :param mat: category of material of construction (string e.g. 'CS/CS' or 'SS/CS' [default] etc., optional)
1091 | :param id: id/name of equipment (string, e.g. HX100, optional)
1092 | :param P: operating pressure, for cost calculation purposes only (bar, optional)
1093 | :return: area: required heat exchange area (m^2)
1094 | :return: F: correction factor (optional output - if F is not specified in input, F will be calculated)
1095 | :return: HX: HeatExc object (optional)
1096 | """
1097 |
1098 | if Thout > Thin:
1099 | raise ValueError('Hot stream outlet cannot be hotter than inlet!')
1100 | elif Tcout < Tcin:
1101 | raise ValueError('Cold stream outlet cannot be colder than inlet!')
1102 | elif Tcout > Thout:
1103 | warnings.warn('Potential temperature cross - Cold stream outlet is hotter than hot stream inlet! Nevertheless continuing with calculations...')
1104 | elif Thout - Tcin < Ta:
1105 | raise ValueError('Minimum temperature not fulfilled for hot outlet / cold inlet side!')
1106 | elif Thin - Tcout < Ta:
1107 | raise ValueError('Minimum temperature not fulfilled for hot inlet / cold outlet side!')
1108 |
1109 | mh /= 3600. # convert kg/h to kg/s
1110 |
1111 | Q = mh * cph * (Thin - Thout) # calculate heat transfer rate
1112 |
1113 | if (Thout - Tcin) == (Thin - Tcout):
1114 | LMTD = Thout - Tcin
1115 | else:
1116 | LMTD = ((Thin - Tcout) - (Thout - Tcin)) / np.log((Thin - Tcout) / (Thout - Tcin))
1117 |
1118 | if F is None:
1119 | r = (Thin - Thout) / (Tcout - Tcin)
1120 | p = (Tcout - Tcin) / (Thin - Tcin)
1121 | if r == 1:
1122 | w = (Ns - Ns * p) / (Ns - Ns * p + p)
1123 | F = (np.sqrt(2) * (1 - w) / w) / \
1124 | (np.log(w / (1 - w) + 1 / np.sqrt(2)) / np.log(w / (1 - w) - 1 / np.sqrt(2)))
1125 | else:
1126 | w = pow((1 - p * r) / (1 - p), 1 / Ns)
1127 | s = np.sqrt(r ** 2 + 1) / (r - 1)
1128 | F = s * np.log(w) / np.log((1 + w - s + s * w) / (1 + w + s - s * w))
1129 |
1130 | area = Q / (U * F * LMTD)
1131 |
1132 | HX = HeatExc()
1133 | HX.mh = mh
1134 | HX.mc = None
1135 | HX.cph = cph
1136 | HX.cpc = None
1137 | HX.Thin = Thin
1138 | HX.Thout = Thout
1139 | HX.Tcin = Tcin
1140 | HX.Tcout = Tcout
1141 | HX.U = U
1142 | HX.F = F
1143 | HX.Ns = Ns
1144 | HX.area = area
1145 | HX.P = P
1146 |
1147 | HX.id = id
1148 | HX.category = 'heatexc'
1149 | if etype is None:
1150 | etype = 'utube'
1151 | warnings.warn('Assuming heat exchanger is U-tube! ' +
1152 | 'You can specify a etype input (etype=' + str(capex.eqptcostlib['heatexc'].keys()))
1153 | HX.etype = str.lower(etype) if (str.lower(etype) in capex.eqptcostlib['heatexc'].keys()) else None
1154 |
1155 | if mat is None:
1156 | HX.mat = 'CS/SS'
1157 | warnings.warn('Assuming hext exchanger material is carbon steel/stainless steel (or vice versa)! ' +
1158 | 'You can specify a mat input (mat=' + str(capex.matfaclib['heatexc']['utube'].keys()))
1159 | HX.mat = mat if (mat in capex.matfaclib['heatexc']['utube'].keys()) else None
1160 |
1161 | return area, F, HX
1162 |
--------------------------------------------------------------------------------
/exampleruns.py:
--------------------------------------------------------------------------------
1 | import dsg
2 | import capex
3 | import opex
4 | import time
5 |
6 | """Note: It is best to always use keyword (named) arguments for this ChemEngDPpy library to avoid ambiguity"""
7 |
8 | """Step 1: Design and size all equipment"""
9 |
10 | # Example 1: Horizontal pressure vessel V100
11 | # Di = 78 in, L = 480 in, Po = 470 psig, To = 800 degF, MOC = '317L',
12 | V100 = dsg.designhorzpres(Di=78., L=480., Po=470., To=800., MOC='317L', id='V100')
13 | print(V100)
14 |
15 | # Example 2: Vertical pressure vessel V200
16 | # Di = 120 in, L = 2544 in, Po = 95.5 psig, To = 150 degF, auto-select a suitable MOC
17 | V200 = dsg.designhorzpres(Di=120., L=2544., Po=95.5, To=150, id='V200')
18 | print(V200)
19 |
20 | # Example 3: Vacuum vessel V300
21 | # Di = 168 in, L = 1080 in, Po = 7.977 psig, To = 257 degF, specify vertical for costing purposes
22 | V300 = dsg.designvac(Di=168., L=1080., Po=7.977, To=257., etype='vertical', id='V300')
23 | print(V300)
24 |
25 | # Example 4: Compressor K400 sizing for required power and outlet temperature
26 | # m = 1e5 kg/h, P1 = 2 bar, P2 = 6 bar, T1 = 323.15 K,
27 | # cp = 1.02, cv = 0.72, Z = 0.99
28 | # Specify rotary compressor using carbon steel for costing purposes
29 | K400_comppower, K400_compeff, K400_T2, K400 = \
30 | dsg.sizecompressor(m=1e5, P1=2, P2=6, T1=323.15, cp=1.02, cv=0.72, Z=0.99, etype='rotary', mat='CS', id='K400')
31 | print(K400)
32 |
33 | # Example 5: Compressor K400 sizing for required power and outlet temperature
34 | # m = 4e5 kg/h, P1 = 1.5 bar, P2 = 6.5 bar, T1 = 290 K,
35 | # cp = 1.02, cv = 0.72, Z = 0.99
36 | # Specify rotary compressor using carbon steel for costing purposes
37 | K500_comppower, K500_compeff, K500_T2, K500 = \
38 | dsg.sizecompressor(m=4e5, P1=1.5, P2=6., T1=290, cp=1.02, cv=0.72, Z=0.99, etype='centrifugal', mat='SS', id='K500')
39 | print(K500)
40 |
41 | # Example 6: Pump sizing for required power
42 | # Q = 40 m^3/h, P1 = 200 kPa, P2 = 700 kPa, rho = 1200 kg/m^3
43 | # Specify positive displacement pump using stainless steel for costing purposes
44 | P600_pumppower, P600_pumpeff, P600 = \
45 | dsg.sizepump(Q=40, P1=200, P2=700, rho=1200, etype='positivedisp', mat='SS', id='P600')
46 | print(P600)
47 |
48 | # Example 7: Pump sizing for required power
49 | # Q = 100 m^3/h, P1 = 180 kPa, P2 = 800 kPa, rho = 990 kg/m^3
50 | # Specify positive displacement pump using stainless steel for costing purposes
51 | P700_pumppower, P700_pumpeff, P700 = \
52 | dsg.sizepump(Q=100, P1=180, P2=800, rho=990, etype='centrifugal', mat='Ni', id='P700')
53 | print(P700)
54 |
55 | # Example 8: Heat exchanger sizing for required heat exchange area (for
56 | # heating process stream)
57 | # mc = 31715 kg/h, cpc = 3246 J/(kg.K), Tcin = 89 degC, Tcout = 101 degC,
58 | # Thin = 160 degC, Thout = 156 degC, U = 850 W/(m^2.degC), Ns = 2
59 | # Specify pressure = 2 bar, double pipe HX using CS (shell) and Ni (tube) for costing purposes
60 | HX800_area, HX800_F, HX800 = dsg.sizeHE_heater(mc=31715, cpc=3246, Tcin=89, Tcout=101, Thin=160, Thout=156, U=850, P=2, \
61 | Ns=2, etype='doublepipe', mat='CS/Ti', id='HX800')
62 | print(HX800)
63 |
64 | # Example 9: Heat exchanger sizing for required heat exchange area (for
65 | # cooling process stream)
66 | # mc = 31715 kg/h, cph = 3246 J/(kg.K), Thin = 89 degC, Thout = 60 degC,
67 | # Tcin = 5 degC, Tcout = 10 degC, U = 850 W/(m^2.degC), Ns = 1 (default)
68 | # Specify pressure = 4 bar, kettle reboiler HX using CS (shell) and SS (tube) for costing purposes
69 | HX900_area, HX900_F, HX900 = dsg.sizeHE_cooler(mh=31715, cph=3246, Thin=89, Thout=60, Tcin=5, Tcout=10, U=850, P=4, \
70 | etype='kettle', mat='CS/SS', id='HX900')
71 | print(HX900)
72 |
73 | """Step 2: Calculate all equipment capital"""
74 |
75 | time.sleep(0.1)
76 |
77 | # Example 8: Calculating capital of equipment, assuming greenfield project
78 | eqptlist = [V100, V200, V300, K400, K500, P600, P700, HX800, HX900]
79 | FCI, capexreport = capex.econreport(eqptlist, planttype='green', pbp=3, year=2019, currency='SGD', \
80 | reporttype='numpy', verbose=True)
81 |
82 | """Step 3: Calculate all manufacturing costs"""
83 |
84 | time.sleep(0.1)
85 |
86 | # Example 9: Calculating cost of manufacturing
87 |
88 | COL, Nop = opex.labourcost(wage=42750., eqptlist=eqptlist)
89 |
90 | print('Number of workers required : ' + str(int(Nop)))
91 |
92 | CRM = opex.costofraw(rawmaterialtuple=(19779., 12606., 325., 240.), unitpricetuple=(89.94, 0.25, 477.74, 1512.39))
93 |
94 | CUT = opex.costofutil(utiltuple=(0., 671069., 30815., 889354., 105723., 0., 0., 30643.), year=2019, currency='SGD')
95 |
96 | CWT = 0. # Waste treatment cost has to be calculated manually
97 |
98 | COMd, d, COM, DMC, FMC, GE, report_dict = opex.costofmanfc(FCI=FCI, COL=COL, CRM=CRM, CWT=CWT, CUT=CUT, verbose=True)
--------------------------------------------------------------------------------
/opex.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import capex
3 | import time
4 | from typing import List, Tuple, Any
5 |
6 | runtime = 8000 # Operational runtime (h/yr)
7 | shiftdur = 8 # Duration per workshift (h/shift)
8 | shiftperwk = 5 # Number of workshifts per week
9 | yearww = 49 # Number of work weeks per year
10 | SF = runtime / (365*24) # Stream factor
11 |
12 |
13 | # Utility Costs (per GJ basis)
14 | # From "Analysis, Synthesis & Design of Chemical Processes, 5th Ed. by Turton et al.", year=2016
15 | utilprice = {
16 | 'LPS': 4.54, # Utility cost for LPS (5 barg, 160 degC) ($/GJ)
17 | 'MPS': 4.77, # Utility cost for MPS (10 barg, 184 degC) ($/GJ)
18 | 'HPS': 5.66, # Utility cost for HPS (41 barg, 254 degC) ($/GJ)
19 | 'CW': 0.378, # Utility cost for cooling water (30-45 degC) ($/GJ)
20 | 'ChW': 4.77, # Utility cost for chilled water (5 degC) ($/GJ)
21 | 'LTR': 8.49, # Utility cost for low temperature refrigerant (-20 degC) ($/GJ)
22 | 'VLTR': 14.12, # Utility cost for very low temperature refrigerant (-50 degC) ($/GJ)
23 | 'elec': 18.72 # Utility cost for electricity (110-440 V) ($/GJ)
24 | }
25 |
26 |
27 | def operatorspershift(P: int=0, Nnp: int=0):
28 |
29 | """
30 | Calculate number of operators per shift
31 | :param P: number of processing steps involving particulate solids (P=0 for fluid-processing plants)
32 | :param Nnp: number of non-particulate/fluid handling equipment/steps (include compressors, towers, reactors,
33 | heaters and exchangers; exclude pumps, vessels and tanks)
34 | :return: NOL: number of operators required per shift
35 | """
36 |
37 | NOL = round(np.sqrt(6.29 + 31.7 * P ** 2. + 0.23 * Nnp))
38 |
39 | return NOL
40 |
41 |
42 | def labourcost(P: int=None, Nnp: int=None, wage: float=42750., eqptlist: List[Any]=None) -> (float, float):
43 |
44 | """
45 | Calculate annualised labour cost
46 | Two methods of calculation:
47 | Method 1 - Specify P, Nnp and wage manually:
48 | :param P: number of processing steps involving particulate solids (P=0 for fluid-processing plants)
49 | :param Nnp: number of non-particulate/fluid handling equipment/steps (include compressors, towers, reactors,
50 | heaters and exchangers; exclude pumps, vessels and tanks)
51 | :param wage: annualised per-operator wage ($/yr, using the desired currency and year)
52 | Method 2 - Specify the list of equipment objects directly, then specify wage:
53 | :param eqptlist: list of equipment objects as generated by the dsg.design(...) or dsg.size(...) functions
54 | :param wage: annualised per-operator wage ($/yr, using the desired currency and year)
55 | :return: COL: annualised labour cost ($/yr)
56 | :return: NOL: total number of operators required
57 | """
58 |
59 | if eqptlist is None:
60 | pass
61 |
62 | elif P is None and Nnp is None:
63 | P = 0
64 | Nnp = 0
65 | for eqpt in eqptlist:
66 | P += 1 if eqpt.category in ['crystallizer'] else 0
67 | Nnp += 1 if eqpt.category in ['compressor', 'vessel', 'heatexc'] else 0
68 |
69 | else:
70 | raise ValueError('Specify either (P + Nnp) or eqptlist!')
71 |
72 | NOL = operatorspershift(P, Nnp)
73 | shiftperyr = runtime / shiftdur
74 | shiftperopperyr = yearww * shiftperwk
75 | Nop = round(shiftperyr / shiftperopperyr * NOL)
76 | COL = Nop * wage
77 |
78 | return COL, Nop
79 |
80 |
81 | def costofutil(utiltuple: Tuple[float]=None, HPS: float=0., MPS: float=0., LPS: float=0.,
82 | CW: float=0., ChW: float=0., LTR: float=0., VLTR: float=0., elec: float=0.,
83 | year: int=2019, currency: str='SGD'):
84 |
85 | """
86 | Calculates the annualised cost of utilities
87 | Either key in utilities as a tuple, or as separate numerical inputs (see param):
88 | :param utiltuple: tuple containing annual consumption of each type of utility (GJ/yr), in the following order:
89 | HPS, MPS, LPS, CW, ChW, LTR, VLTR, elec
90 | :param HPS: annual consumption of high-pressure steam (GJ/yr)
91 | :param MPS: annual consumption of medium-pressure steam (GJ/yr)
92 | :param LPS: annual consumption of low-pressure steam (GJ/yr)
93 | :param CW: annual consumption of cooling water (GJ/yr)
94 | :param ChW: annual consumption of chilled water (GJ/yr)
95 | :param LTR: annual consumption of low-temperature refrigerant (GJ/yr)
96 | :param VLTR: annual consumption of very low-temperature refrigerant (GJ/yr)
97 | :param elec: annual consumption of electricity (GJ/yr)
98 | :param year: Year for CPI updating (integer, either 2001, 2018 or 2019 [default])
99 | :param currency: Currency (string, either 'USD' or 'SGD' [default])
100 | :return: CUT: annualised cost of utilities ($/yr)
101 | """
102 |
103 | a = np.array([utilprice['HPS'], utilprice['MPS'], utilprice['LPS'],
104 | utilprice['CW'], utilprice['ChW'],
105 | utilprice['LTR'], utilprice['VLTR'], utilprice['elec']])
106 |
107 | if utiltuple is not None:
108 | b = np.array(utiltuple)
109 | else:
110 | b = np.array([HPS, MPS, LPS, CW, ChW, LTR, VLTR, elec])
111 |
112 | yearcurrfac = capex.CPI['US'][year] / capex.CPI['US'][2016] * (capex.USSG[year] if currency is 'SGD' else 1.)
113 |
114 | CUT = (a @ b.T) * yearcurrfac
115 |
116 | return CUT
117 |
118 |
119 | def costofraw(rawmaterialtuple: Tuple[float]=(0.,), unitpricetuple: Tuple[float]=(0.,)) -> float:
120 |
121 | """
122 | Calculates the annualised cost of raw materials
123 | :param rawmaterialtuple: annual flow of raw materials, in a tuple (flow/yr)
124 | :param unitpricetuple: per-flow unit cost price of raw materials, in a tuple in the same order as rawmaterials
125 | ($/flow, using the desired currency and year)
126 | :return: CRM: annualised cost of raw materials ($/yr)
127 | """
128 |
129 | if type(rawmaterialtuple) is tuple:
130 | a = np.array(rawmaterialtuple)
131 | else:
132 | raise TypeError('rawmaterials should be of type tuple')
133 |
134 | if type(unitpricetuple) is tuple:
135 | b = np.array(unitpricetuple)
136 | else:
137 | raise TypeError('rawmaterials should be of type tuple')
138 |
139 | if a.size != b.size:
140 | raise ValueError('Number of unit prices do not match number of raw materials!')
141 |
142 | CRM = a @ b.T
143 |
144 | return CRM
145 |
146 |
147 | def costofwaste():
148 | # TODO User has to create this function on his/her own if necessary,
149 | # because there are many possible sources of waste treatment
150 | raise NotImplementedError
151 |
152 |
153 | def costofmanfc(FCI: float=0., COL: float=0., CRM: float=0., CWT: float=0., CUT: float=0.,
154 | verbose: bool=False) -> (float, float, float, float, float, float, dict):
155 |
156 | """
157 | Estimate annualised cost of manufacture.
158 | :param FCI: fixed capital investment (= CTM or total module cost for brownfield projects, or =CGR or grassroots cost
159 | for greenfield projects) ($)
160 | :param COL: annualised labour cost ($/yr)
161 | :param CRM: annualised cost of raw materials ($/yr)
162 | :param CWT: annualised cost of waste treatment ($/yr)
163 | :param CUT: annualised cost of utilities ($/yr)
164 | :return: COMd: annualised cost of manufacturing without depreciation ($/yr)
165 | :return: d: annualised depreciation ($/yr)
166 | :return: COM: annualised cost of manufacturing with depreciation ($/yr)
167 | :return: DMC: annualised direct manufacturing costs ($/yr)
168 | :return: FMC: annualised fixed manufacturing costs ($/yr)
169 | :return: GE: annualised general expenses ($/yr)
170 | :param verbose: True to print economic capex report, False to print nothing [default]
171 | :return: report: The opex report
172 | """
173 |
174 | report_dict = dict()
175 |
176 | COMd = 0.18 * FCI + 2.73 * COL + 1.23 * (CRM + CWT + CUT)
177 | d = 0.1 * FCI
178 | COM = COMd + d
179 | DMC = CRM + CWT + CUT + 1.33 * COL + 0.069 * FCI + 0.03 * COM
180 | FMC = 0.708 * COL + 0.068 * FCI
181 | GE = 0.177 * COL + 0.009 * FCI + 0.16 * COM
182 |
183 | report_dict['COMd'] = round(COMd, 2)
184 | report_dict['d'] = round(d, 2)
185 | report_dict['COM'] = round(COM, 2)
186 | report_dict['DMC'] = round(DMC, 2)
187 | report_dict['FMC'] = round(FMC, 2)
188 | report_dict['GE'] = round(GE, 2)
189 | report_dict['FCI'] = round(FCI, 2)
190 | report_dict['COL'] = round(COL, 2)
191 | report_dict['CRM'] = round(CRM, 2)
192 | report_dict['CWT'] = round(CWT, 2)
193 | report_dict['CUT'] = round(CUT, 2)
194 |
195 | if verbose:
196 | time.sleep(0.1)
197 | print('----------------------------')
198 | print('OPEX REPORT:')
199 | print(str(report_dict))
200 | print('----------------------------')
201 |
202 | return COMd, d, COM, DMC, FMC, GE, report_dict
203 |
--------------------------------------------------------------------------------