├── .gitattributes
├── .gitignore
├── CMakeLists.txt
├── LICENSE
├── README.md
├── images
└── current.png
└── src
├── bus.cpp
├── bus.hpp
├── cdrom
├── cdrom_core.cpp
└── cdrom_core.hpp
├── cpu
├── cpu_code.cpp
├── cpu_core.cpp
├── cpu_core.hpp
├── decoder.cpp
└── disassembler.cpp
├── dma
├── dma_core.cpp
└── dma_core.hpp
├── gpu
├── gpu_core.cpp
├── gpu_core.hpp
├── gpu_draw.cpp
├── gpu_draw_gouraud.cpp
├── gpu_draw_texture.cpp
├── gpu_gp0.cpp
└── gpu_gp1.cpp
├── input
├── input.cpp
└── input.hpp
├── memory
├── vram.cpp
└── vram.hpp
├── psxact.cpp
├── renderer.cpp
├── renderer.hpp
├── spu
├── spu_core.cpp
└── spu_core.hpp
├── timer
├── timer_core.cpp
└── timer_core.hpp
└── utility.hpp
/.gitattributes:
--------------------------------------------------------------------------------
1 | # Automatically normalize line endings
2 | * text=auto
3 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | bin/
2 | cmake-build-*/
3 | .idea/
4 |
--------------------------------------------------------------------------------
/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required(VERSION 3.0)
2 | project(psxact)
3 |
4 | find_package(SDL2 REQUIRED)
5 |
6 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
7 |
8 | set(SOURCE_FILES
9 | src/cdrom/cdrom_core.cpp
10 | src/cdrom/cdrom_core.hpp
11 | src/cpu/cpu_code.cpp
12 | src/cpu/cpu_core.cpp
13 | src/cpu/cpu_core.hpp
14 | src/cpu/decoder.cpp
15 | src/cpu/disassembler.cpp
16 | src/dma/dma_core.cpp
17 | src/dma/dma_core.hpp
18 | src/gpu/gpu_gp0.cpp
19 | src/gpu/gpu_gp1.cpp
20 | src/gpu/gpu_core.cpp
21 | src/gpu/gpu_core.hpp
22 | src/gpu/gpu_draw.cpp
23 | src/gpu/gpu_draw_gouraud.cpp
24 | src/gpu/gpu_draw_texture.cpp
25 | src/input/input.cpp
26 | src/input/input.hpp
27 | src/memory/vram.cpp
28 | src/memory/vram.hpp
29 | src/spu/spu_core.cpp
30 | src/spu/spu_core.hpp
31 | src/timer/timer_core.cpp
32 | src/timer/timer_core.hpp
33 | src/bus.cpp
34 | src/bus.hpp
35 | src/psxact.cpp
36 | src/renderer.cpp
37 | src/renderer.hpp
38 | src/utility.hpp)
39 |
40 | add_executable(psxact ${SOURCE_FILES})
41 |
42 | target_link_libraries(psxact ${SDL2_LIBRARY})
43 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # PSXACT
2 |
3 | This project aims to emulate the PlayStation™ 1 console in an accurate
4 | fashion. No hacks or proprietary software will be used to accomplish this goal.
5 |
6 | This emulator is designed to work "out of the box", no plug-in hell required!
7 |
8 | ## Current Status
9 |
10 | Currently, the emulator can get through the BIOS, but hasn't booted any
11 | commercial games yet. A software rasterizer is used to attempt pixel accurate
12 | graphical output, the results are quite nice!
13 |
14 | 
15 |
16 | ## Usage
17 |
18 | The emulator requires a BIOS file, which can be dumped from a physical console.
19 |
20 | Once you have a BIOS file, PSXACT can be invoked via command line, using the
21 | following simple interface:
22 |
23 | ```
24 | $ psxact
25 | ```
26 |
27 | ## Building
28 |
29 | This project uses CMake for builds, and requires SDL2.
30 |
31 | I personally use the `FindSDL2.cmake` script available
32 | [here](https://github.com/tcbrindle/sdl2-cmake-scripts).
33 |
34 | ## Contributing
35 |
36 | If you'd like to contribute, please create a fork and issue pull requests! I am
37 | very open to newcomers, and will need all the help I can get to make the best
38 | PS1 emulator available.
39 |
40 | However, do try and follow the syntax used by the project when contributing, I
41 | **will** rewrite any code to make it match the project style before accepting.
42 |
--------------------------------------------------------------------------------
/images/current.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/whaison/psxact/4405d7a06915e7bfaabdce32d86cec416196ba1b/images/current.png
--------------------------------------------------------------------------------
/src/bus.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include "bus.hpp"
5 | #include "cdrom/cdrom_core.hpp"
6 | #include "cpu/cpu_core.hpp"
7 | #include "dma/dma_core.hpp"
8 | #include "gpu/gpu_core.hpp"
9 | #include "input/input.hpp"
10 | #include "spu/spu_core.hpp"
11 | #include "timer/timer_core.hpp"
12 | #include "utility.hpp"
13 |
14 | utility::memory_t<19> bios;
15 | utility::memory_t<21> wram;
16 | utility::memory_t<10> dmem;
17 |
18 | void bus::initialize(const std::string &bios_file_name, const std::string &game_file_name) {
19 | memset(bios.b, 0, size_t(bios.size));
20 | memset(wram.b, 0, size_t(wram.size));
21 | memset(dmem.b, 0, size_t(dmem.size));
22 |
23 | utility::read_all_bytes(bios_file_name.c_str(), bios);
24 | }
25 |
26 | void bus::irq(int interrupt) {
27 | cpu::state.i_stat |= (1 << interrupt);
28 | }
29 |
30 | uint32_t bus::read(int width, uint32_t address) {
31 | if (utility::between<0x00000000, 0x007fffff>(address)) {
32 | switch (width) {
33 | case BYTE: return utility::read_byte(wram, address);
34 | case HALF: return utility::read_half(wram, address);
35 | case WORD: return utility::read_word(wram, address);
36 | }
37 | }
38 |
39 | if (utility::between<0x1fc00000, 0x1fc7ffff>(address)) {
40 | switch (width) {
41 | case BYTE: return utility::read_byte(bios, address);
42 | case HALF: return utility::read_half(bios, address);
43 | case WORD: return utility::read_word(bios, address);
44 | }
45 | }
46 |
47 | if (utility::between<0x1f800000, 0x1f8003ff>(address)) {
48 | switch (width) {
49 | case BYTE: return utility::read_byte(dmem, address);
50 | case HALF: return utility::read_half(dmem, address);
51 | case WORD: return utility::read_word(dmem, address);
52 | }
53 | }
54 |
55 | if (utility::between<0x1f801040, 0x1f80104f>(address)) {
56 | return input::bus_read(width, address);
57 | }
58 |
59 | if (utility::between<0x1f801070, 0x1f801077>(address)) {
60 | return cpu::bus_read(width, address);
61 | }
62 |
63 | if (utility::between<0x1f801080, 0x1f8010ff>(address)) {
64 | return dma::bus_read(width, address);
65 | }
66 |
67 | if (utility::between<0x1f801100, 0x1f80110f>(address) ||
68 | utility::between<0x1f801110, 0x1f80111f>(address) ||
69 | utility::between<0x1f801120, 0x1f80112f>(address)) {
70 | return timer::bus_read(width, address);
71 | }
72 |
73 | if (utility::between<0x1f801800, 0x1f801803>(address)) {
74 | return cdrom::bus_read(width, address);
75 | }
76 |
77 | if (utility::between<0x1f801810, 0x1f801817>(address)) {
78 | return gpu::bus_read(width, address);
79 | }
80 |
81 | if (utility::between<0x1f801c00, 0x1f801fff>(address)) {
82 | return spu::bus_read(width, address);
83 | }
84 |
85 | if (utility::between<0x1f000000, 0x1f7fffff>(address) || // expansion region 1
86 | utility::between<0x1f802000, 0x1f802fff>(address) || // expansion region 2
87 | utility::between<0x1fa00000, 0x1fbfffff>(address)) { // expansion region 3
88 | return 0;
89 | }
90 |
91 | if (address == 0xfffe0130) {
92 | return 0;
93 | }
94 |
95 | printf("bus::read(%d, 0x%08x)\n", width, address);
96 | throw std::exception();
97 | }
98 |
99 | void bus::write(int width, uint32_t address, uint32_t data) {
100 | if (utility::between<0x00000000, 0x007fffff>(address)) {
101 | switch (width) {
102 | case BYTE: return utility::write_byte(wram, address, data);
103 | case HALF: return utility::write_half(wram, address, data);
104 | case WORD: return utility::write_word(wram, address, data);
105 | }
106 | }
107 |
108 | if (utility::between<0x1fc00000, 0x1fc7ffff>(address)) {
109 | printf("bios write: $%08x <- $%08x\n", address, data);
110 | return;
111 | }
112 |
113 | if (utility::between<0x1f800000, 0x1f8003ff>(address)) {
114 | switch (width) {
115 | case BYTE: return utility::write_byte(dmem, address, data);
116 | case HALF: return utility::write_half(dmem, address, data);
117 | case WORD: return utility::write_word(dmem, address, data);
118 | }
119 | }
120 |
121 | if (utility::between<0x1f801040, 0x1f80104f>(address)) {
122 | return input::bus_write(width, address, data);
123 | }
124 |
125 | if (utility::between<0x1f801070, 0x1f801077>(address)) {
126 | return cpu::bus_write(width, address, data);
127 | }
128 |
129 | if (utility::between<0x1f801080, 0x1f8010ff>(address)) {
130 | return dma::bus_write(width, address, data);
131 | }
132 |
133 | if (utility::between<0x1f801100, 0x1f80110f>(address) ||
134 | utility::between<0x1f801110, 0x1f80111f>(address) ||
135 | utility::between<0x1f801120, 0x1f80112f>(address)) {
136 | return timer::bus_write(width, address, data);
137 | }
138 |
139 | if (utility::between<0x1f801800, 0x1f801803>(address)) {
140 | return cdrom::bus_write(width, address, data);
141 | }
142 |
143 | if (utility::between<0x1f801810, 0x1f801817>(address)) {
144 | return gpu::bus_write(width, address, data);
145 | }
146 |
147 | if (utility::between<0x1f801c00, 0x1f801fff>(address)) {
148 | return spu::bus_write(width, address, data);
149 | }
150 |
151 | if (utility::between<0x1f000000, 0x1f7fffff>(address) || // expansion region 1 bus_write
152 | utility::between<0x1f802000, 0x1f802fff>(address) || // expansion region 2 bus_write
153 | utility::between<0x1fa00000, 0x1fbfffff>(address)) { // expansion region 3 bus_write
154 | return;
155 | }
156 |
157 | switch (address) {
158 | case 0x1f801000: assert(data == 0x1f000000); return;
159 | case 0x1f801004: assert(data == 0x1f802000); return;
160 | case 0x1f801008: assert(data == 0x0013243f); return;
161 | case 0x1f80100c: assert(data == 0x00003022); return;
162 | case 0x1f801010: assert(data == 0x0013243f); return;
163 | case 0x1f801014: assert(data == 0x200931e1); return;
164 | case 0x1f801018: assert(data == 0x00020843); return;
165 | case 0x1f80101c: assert(data == 0x00070777); return;
166 | case 0x1f801020: assert(data == 0x00031125); return;
167 |
168 | case 0x1f801060: assert(data == 0x00000b88); return;
169 | }
170 |
171 | if (address == 0xfffe0130) {
172 | return;
173 | }
174 |
175 | printf("bus::write(%d, 0x%08x, 0x%08x)\n", width, address, data);
176 | throw std::exception();
177 | }
178 |
--------------------------------------------------------------------------------
/src/bus.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_BUS_HPP
2 | #define PSXACT_BUS_HPP
3 |
4 | #include
5 | #include
6 |
7 | enum bus_width_t {
8 | BYTE,
9 | HALF,
10 | WORD
11 | };
12 |
13 | namespace bus {
14 | void initialize(const std::string &bios_file_name, const std::string &game_file_name);
15 |
16 | void irq(int interrupt);
17 |
18 | uint32_t read(int width, uint32_t address);
19 |
20 | void write(int width, uint32_t address, uint32_t data);
21 | }
22 |
23 | #endif //PSXACT_BUS_HPP
24 |
--------------------------------------------------------------------------------
/src/cdrom/cdrom_core.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include "cdrom_core.hpp"
3 | #include "../bus.hpp"
4 |
5 | cdrom::state_t cdrom::state;
6 |
7 | static uint8_t get_arg() {
8 | auto parameter = cdrom::state.args_fifo.front();
9 | cdrom::state.args_fifo.pop_front();
10 |
11 | return parameter;
12 | }
13 |
14 | static void set_arg(uint8_t data) {
15 | cdrom::state.args_fifo.push_back(data);
16 | }
17 |
18 | static uint8_t get_resp() {
19 | auto response = cdrom::state.resp_fifo.front();
20 | cdrom::state.resp_fifo.pop_front();
21 |
22 | return response;
23 | }
24 |
25 | static void set_resp(uint8_t data) {
26 | cdrom::state.resp_fifo.push_back(data);
27 | }
28 |
29 | static uint8_t get_data() {
30 | auto data = cdrom::state.data_fifo.front();
31 | cdrom::state.data_fifo.pop_front();
32 |
33 | return data;
34 | }
35 |
36 | static void set_data(uint8_t data) {
37 | cdrom::state.data_fifo.push_back(data);
38 | }
39 |
40 | uint32_t cdrom::bus_read(int width, uint32_t address) {
41 | assert(width == BYTE);
42 |
43 | switch (address - 0x1f801800) {
44 | case 0: { // status register
45 | uint32_t result = state.index;
46 |
47 | if (state.args_fifo.size() == 0) { result |= 1 << 3; }
48 | if (state.args_fifo.size() != 16) { result |= 1 << 4; }
49 | if (state.resp_fifo.size() != 0) { result |= 1 << 5; }
50 | if (state.data_fifo.size() != 0) { result |= 1 << 6; }
51 |
52 | return result;
53 | }
54 |
55 | case 1: return get_resp();
56 | case 2: return get_data();
57 | case 3:
58 | switch (state.index & 1) {
59 | default: return state.interrupt_enable; // interrupt enable register
60 | case 1: return state.interrupt_request; // interrupt flag register
61 | }
62 | }
63 |
64 | return 0;
65 | }
66 |
67 | void cdrom::bus_write(int width, uint32_t address, uint32_t data) {
68 | assert(width == BYTE);
69 |
70 | switch (address - 0x1f801800) {
71 | case 0:
72 | state.index = data & 3;
73 | return;
74 |
75 | case 1:
76 | switch (state.index) {
77 | case 0: // command register
78 | state.command = uint8_t(data);
79 | state.has_command = true;
80 | break;
81 |
82 | case 1: break; // sound map data out
83 | case 2: break; // sound map coding info
84 | case 3: break; // audio volume for cd-right to spu-right
85 | }
86 | break;
87 |
88 | case 2:
89 | switch (state.index) {
90 | case 0: // parameter fifo
91 | set_arg(uint8_t(data));
92 | break;
93 |
94 | case 1: // interrupt enable register
95 | state.interrupt_enable = data;
96 | break;
97 |
98 | case 2: break; // audio volume for cd-right to spu-left
99 | case 3: break; // audio volume for cd-right to spu-left
100 | }
101 | break;
102 |
103 | case 3:
104 | switch (state.index) {
105 | case 0: break; // request register
106 |
107 | case 1: // interrupt flag register
108 | state.interrupt_request &= ~data;
109 | break;
110 |
111 | case 2: break; // audio volume for cd-left to spu-right
112 | case 3: break; // apply volume changes
113 | }
114 | break;
115 | }
116 | }
117 |
118 | static void (*second_response)() = nullptr;
119 |
120 | static void command_get_stat() {
121 | set_resp(0x02);
122 |
123 | cdrom::state.interrupt_request = 3;
124 | bus::irq(2);
125 | }
126 |
127 | static void command_test() {
128 | switch (get_arg()) {
129 | case 0x20:
130 | set_resp(0x99);
131 | set_resp(0x02);
132 | set_resp(0x01);
133 | set_resp(0xc3);
134 |
135 | cdrom::state.interrupt_request = 3;
136 | bus::irq(2);
137 | break;
138 | }
139 | }
140 |
141 | static void command_get_id_no_disk() {
142 | set_resp(0x08);
143 | set_resp(0x40);
144 |
145 | set_resp(0x00);
146 | set_resp(0x00);
147 |
148 | set_resp(0x00);
149 | set_resp(0x00);
150 | set_resp(0x00);
151 | set_resp(0x00);
152 |
153 | cdrom::state.interrupt_request = 5;
154 | bus::irq(2);
155 | }
156 |
157 | static void command_get_id() {
158 | set_resp(0x02);
159 |
160 | cdrom::state.interrupt_request = 3;
161 | bus::irq(2);
162 |
163 | second_response = &command_get_id_no_disk;
164 | }
165 |
166 | void cdrom::run() {
167 | if (second_response) {
168 | second_response();
169 | second_response = nullptr;
170 | }
171 |
172 | if (state.has_command) {
173 | state.has_command = false;
174 |
175 | switch (state.command) {
176 | case 0x01:
177 | return command_get_stat();
178 |
179 | case 0x19:
180 | return command_test();
181 |
182 | case 0x1a:
183 | return command_get_id();
184 |
185 | default:
186 | printf("cd-rom command: $%02x\n", state.command);
187 | break;
188 | }
189 | }
190 | }
191 |
--------------------------------------------------------------------------------
/src/cdrom/cdrom_core.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_CDROM_CORE_HPP
2 | #define PSXACT_CDROM_CORE_HPP
3 |
4 | #include
5 | #include
6 |
7 | namespace cdrom {
8 | struct state_t {
9 | uint32_t interrupt_enable;
10 | uint32_t interrupt_request;
11 | uint32_t index;
12 | uint32_t command;
13 | bool has_command;
14 |
15 | std::deque args_fifo;
16 | std::deque resp_fifo;
17 | std::deque data_fifo;
18 | };
19 |
20 | extern state_t state;
21 |
22 | uint32_t bus_read(int width, uint32_t address);
23 |
24 | void bus_write(int width, uint32_t address, uint32_t data);
25 |
26 | void run();
27 | }
28 |
29 | #endif //PSXACT_CDROM_CORE_HPP
30 |
--------------------------------------------------------------------------------
/src/cpu/cpu_code.cpp:
--------------------------------------------------------------------------------
1 | #include "cpu_core.hpp"
2 | #include "../bus.hpp"
3 | #include "../utility.hpp"
4 |
5 | // --========--
6 | // Decoding
7 | // --========--
8 |
9 | static inline uint32_t overflow(uint32_t x, uint32_t y, uint32_t z) {
10 | return (~(x ^ y) & (x ^ z) & 0x80000000);
11 | }
12 |
13 | template
14 | static inline uint32_t get_register(uint32_t index) {
15 | if (!forwarded && cpu::state.is_load_delay_slot && cpu::state.load_index == index) {
16 | return cpu::state.load_value;
17 | } else {
18 | return cpu::state.regs.gp[index];
19 | }
20 | }
21 |
22 | static inline void set_rd(uint32_t value) {
23 | cpu::state.regs.gp[cpu::decoder::rd()] = value;
24 | cpu::state.regs.gp[0] = 0;
25 | }
26 |
27 | template
28 | static inline void set_rt(uint32_t value) {
29 | auto t = cpu::decoder::rt();
30 |
31 | if (load) {
32 | if (cpu::state.is_load_delay_slot && cpu::state.load_index == t) {
33 | cpu::state.regs.gp[t] = cpu::state.load_value;
34 | }
35 |
36 | cpu::state.is_load = true;
37 | cpu::state.load_index = t;
38 | cpu::state.load_value = cpu::state.regs.gp[t];
39 | }
40 |
41 | cpu::state.regs.gp[t] = value;
42 | cpu::state.regs.gp[0] = 0;
43 | }
44 |
45 | template
46 | static inline uint32_t rt() {
47 | return get_register(cpu::decoder::rt());
48 | }
49 |
50 | static inline uint32_t rs() {
51 | return get_register(cpu::decoder::rs());
52 | }
53 |
54 | // --============--
55 | // Instructions
56 | // --============--
57 |
58 | void cpu::op_add() {
59 | auto x = rs();
60 | auto y = rt();
61 | auto z = x + y;
62 |
63 | if (overflow(x, y, z)) {
64 | enter_exception(0xc);
65 | } else {
66 | set_rd(z);
67 | }
68 | }
69 |
70 | void cpu::op_addi() {
71 | auto x = rs();
72 | auto y = decoder::iconst();
73 | auto z = x + y;
74 |
75 | if (overflow(x, y, z)) {
76 | enter_exception(0xc);
77 | } else {
78 | set_rt(z);
79 | }
80 | }
81 |
82 | void cpu::op_addiu() {
83 | set_rt(rs() + decoder::iconst());
84 | }
85 |
86 | void cpu::op_addu() {
87 | set_rd(rs() + rt());
88 | }
89 |
90 | void cpu::op_and() {
91 | set_rd(rs() & rt());
92 | }
93 |
94 | void cpu::op_andi() {
95 | set_rt(rs() & decoder::uconst());
96 | }
97 |
98 | void cpu::op_beq() {
99 | if (rs() == rt()) {
100 | state.regs.next_pc = state.regs.pc + (decoder::iconst() << 2);
101 | state.is_branch = true;
102 | }
103 | }
104 |
105 | void cpu::op_bgtz() {
106 | if (int32_t(rs()) > 0) {
107 | state.regs.next_pc = state.regs.pc + (decoder::iconst() << 2);
108 | state.is_branch = true;
109 | }
110 | }
111 |
112 | void cpu::op_blez() {
113 | if (int32_t(rs()) <= 0) {
114 | state.regs.next_pc = state.regs.pc + (decoder::iconst() << 2);
115 | state.is_branch = true;
116 | }
117 | }
118 |
119 | void cpu::op_bne() {
120 | if (rs() != rt()) {
121 | state.regs.next_pc = state.regs.pc + (decoder::iconst() << 2);
122 | state.is_branch = true;
123 | }
124 | }
125 |
126 | void cpu::op_break() {
127 | enter_exception(0x09);
128 | }
129 |
130 | void cpu::op_bxx() {
131 | // bgez rs,$nnnn
132 | // bgezal rs,$nnnn
133 | // bltz rs,$nnnn
134 | // bltzal rs,$nnnn
135 | bool condition = (state.code & (1 << 16))
136 | ? int32_t(rs()) >= 0
137 | : int32_t(rs()) < 0;
138 |
139 | if ((state.code & 0x1e0000) == 0x100000) {
140 | state.regs.gp[31] = state.regs.next_pc;
141 | }
142 |
143 | if (condition) {
144 | state.regs.next_pc = state.regs.pc + (decoder::iconst() << 2);
145 | state.is_branch = true;
146 | }
147 | }
148 |
149 | void cpu::op_cop0() {
150 | switch ((cpu::state.code >> 21) & 31) {
151 | default: op_und(); return;
152 |
153 | case 0x00: set_rt(state.cop0.regs[decoder::rd()]); return; // mfc0 rt,rd
154 | case 0x04: state.cop0.regs[decoder::rd()] = rt(); return; // mtc0 rt,rd
155 |
156 | case 0x10:
157 | switch (cpu::state.code & 63) {
158 | default: op_und(); return;
159 |
160 | case 0x10: leave_exception(); return; // rfe
161 | }
162 | }
163 | }
164 |
165 | void cpu::op_cop1() {
166 | enter_exception(0xb);
167 | }
168 |
169 | void cpu::op_cop2() {
170 | if (state.code & (1 << 25)) {
171 | printf("cop2 $%08x\n", state.code);
172 | } else {
173 | switch (decoder::rs()) {
174 | case 0: /*printf("mfc2 r%02d, r%02d\n", decoder::rt(), decoder::rd());*/ break;
175 | case 2: /*printf("cfc2 r%02d, r%02d\n", decoder::rt(), decoder::rd());*/ break;
176 | case 4: /*printf("mtc2 r%02d, r%02d\n", decoder::rt(), decoder::rd());*/ break;
177 | case 6: /*printf("ctc2 r%02d, r%02d\n", decoder::rt(), decoder::rd());*/ break;
178 |
179 | default:
180 | printf("unimplemented cop2\n");
181 | throw "unimplemented cop2\n";
182 | }
183 | }
184 | }
185 |
186 | void cpu::op_cop3() {
187 | enter_exception(0xb);
188 | }
189 |
190 | void cpu::op_div() {
191 | auto dividend = int32_t(rs());
192 | auto divisor = int32_t(rt());
193 |
194 | if (dividend == 0x80000000 && divisor == 0xffffffff) {
195 | state.regs.lo = 0x80000000;
196 | state.regs.hi = 0;
197 | } else if (dividend >= 0 && divisor == 0) {
198 | state.regs.lo = uint32_t(0xffffffff);
199 | state.regs.hi = uint32_t(dividend);
200 | } else if (dividend <= 0 && divisor == 0) {
201 | state.regs.lo = uint32_t(0x00000001);
202 | state.regs.hi = uint32_t(dividend);
203 | } else {
204 | state.regs.lo = uint32_t(dividend / divisor);
205 | state.regs.hi = uint32_t(dividend % divisor);
206 | }
207 | }
208 |
209 | void cpu::op_divu() {
210 | auto dividend = rs();
211 | auto divisor = rt();
212 |
213 | if (divisor) {
214 | state.regs.lo = dividend / divisor;
215 | state.regs.hi = dividend % divisor;
216 | } else {
217 | state.regs.lo = 0xffffffff;
218 | state.regs.hi = dividend;
219 | }
220 | }
221 |
222 | void cpu::op_j() {
223 | state.regs.next_pc = (state.regs.pc & 0xf0000000) | ((state.code << 2) & 0x0ffffffc);
224 | state.is_branch = true;
225 | }
226 |
227 | void cpu::op_jal() {
228 | state.regs.gp[31] = state.regs.next_pc;
229 | state.regs.next_pc = (state.regs.pc & 0xf0000000) | ((state.code << 2) & 0x0ffffffc);
230 | state.is_branch = true;
231 | }
232 |
233 | void cpu::op_jalr() {
234 | auto ra = state.regs.next_pc;
235 |
236 | state.regs.next_pc = rs();
237 | set_rd(ra);
238 |
239 | state.is_branch = true;
240 | }
241 |
242 | void cpu::op_jr() {
243 | state.regs.next_pc = rs();
244 | state.is_branch = true;
245 | }
246 |
247 | void cpu::op_lb() {
248 | auto address = rs() + decoder::iconst();
249 | auto data = read_data(BYTE, address);
250 | data = utility::sclip<8>(data);
251 |
252 | set_rt<1>(data);
253 | }
254 |
255 | void cpu::op_lbu() {
256 | auto address = rs() + decoder::iconst();
257 | auto data = read_data(BYTE, address);
258 |
259 | set_rt<1>(data);
260 | }
261 |
262 | void cpu::op_lh() {
263 | auto address = rs() + decoder::iconst();
264 | if (address & 1) {
265 | enter_exception(0x4);
266 | } else {
267 | auto data = read_data(HALF, address);
268 | data = utility::sclip<16>(data);
269 |
270 | set_rt<1>(data);
271 | }
272 | }
273 |
274 | void cpu::op_lhu() {
275 | auto address = rs() + decoder::iconst();
276 | if (address & 1) {
277 | enter_exception(0x4);
278 | } else {
279 | auto data = read_data(HALF, address);
280 |
281 | set_rt<1>(data);
282 | }
283 | }
284 |
285 | void cpu::op_lui() {
286 | set_rt(decoder::uconst() << 16);
287 | }
288 |
289 | void cpu::op_lw() {
290 | auto address = rs() + decoder::iconst();
291 | if (address & 3) {
292 | enter_exception(0x4);
293 | } else {
294 | auto data = read_data(WORD, address);
295 |
296 | set_rt<1>(data);
297 | }
298 | }
299 |
300 | void cpu::op_lwc0() {
301 | throw "unimplemented lwc0\n";
302 | }
303 |
304 | void cpu::op_lwc1() {
305 | throw "unimplemented lwc1\n";
306 | }
307 |
308 | void cpu::op_lwc2() {
309 | throw "unimplemented lwc2\n";
310 | }
311 |
312 | void cpu::op_lwc3() {
313 | throw "unimplemented lwc3\n";
314 | }
315 |
316 | void cpu::op_lwl() {
317 | auto address = rs() + decoder::iconst();
318 | auto data = read_data(WORD, address & ~3);
319 |
320 | switch (address & 3) {
321 | default: data = (data << 24) | (rt<1>() & 0x00ffffff); break;
322 | case 1: data = (data << 16) | (rt<1>() & 0x0000ffff); break;
323 | case 2: data = (data << 8) | (rt<1>() & 0x000000ff); break;
324 | case 3: data = (data << 0) | (rt<1>() & 0x00000000); break;
325 | }
326 |
327 | set_rt<1>(data);
328 | }
329 |
330 | void cpu::op_lwr() {
331 | auto address = rs() + decoder::iconst();
332 | auto data = read_data(WORD, address & ~3);
333 |
334 | switch (address & 3) {
335 | default: data = (data >> 0) | (rt<1>() & 0x00000000); break;
336 | case 1: data = (data >> 8) | (rt<1>() & 0xff000000); break;
337 | case 2: data = (data >> 16) | (rt<1>() & 0xffff0000); break;
338 | case 3: data = (data >> 24) | (rt<1>() & 0xffffff00); break;
339 | }
340 |
341 | set_rt<1>(data);
342 | }
343 |
344 | void cpu::op_mfhi() {
345 | set_rd(state.regs.hi);
346 | }
347 |
348 | void cpu::op_mflo() {
349 | set_rd(state.regs.lo);
350 | }
351 |
352 | void cpu::op_mthi() {
353 | state.regs.hi = rs();
354 | }
355 |
356 | void cpu::op_mtlo() {
357 | state.regs.lo = rs();
358 | }
359 |
360 | void cpu::op_mult() {
361 | auto s = int32_t(rs());
362 | auto t = int32_t(rt());
363 |
364 | int64_t result = int64_t(s) * int64_t(t);
365 | state.regs.lo = uint32_t(result >> 0);
366 | state.regs.hi = uint32_t(result >> 32);
367 | }
368 |
369 | void cpu::op_multu() {
370 | auto s = rs();
371 | auto t = rt();
372 |
373 | uint64_t result = uint64_t(s) * uint64_t(t);
374 | state.regs.lo = uint32_t(result >> 0);
375 | state.regs.hi = uint32_t(result >> 32);
376 | }
377 |
378 | void cpu::op_nor() {
379 | set_rd(~(rs() | rt()));
380 | }
381 |
382 | void cpu::op_or() {
383 | set_rd(rs() | rt());
384 | }
385 |
386 | void cpu::op_ori() {
387 | set_rt(rs() | decoder::uconst());
388 | }
389 |
390 | void cpu::op_sb() {
391 | auto address = rs() + decoder::iconst();
392 | auto data = rt();
393 |
394 | write_data(BYTE, address, data);
395 | }
396 |
397 | void cpu::op_sh() {
398 | auto address = rs() + decoder::iconst();
399 | if (address & 1) {
400 | enter_exception(0x5);
401 | } else {
402 | auto data = rt();
403 |
404 | write_data(HALF, address, data);
405 | }
406 | }
407 |
408 | void cpu::op_sll() {
409 | set_rd(rt() << decoder::sa());
410 | }
411 |
412 | void cpu::op_sllv() {
413 | set_rd(rt() << rs());
414 | }
415 |
416 | void cpu::op_slt() {
417 | set_rd(int32_t(rs()) < int32_t(rt()) ? 1 : 0);
418 | }
419 |
420 | void cpu::op_slti() {
421 | set_rt(int32_t(rs()) < int32_t(decoder::iconst()) ? 1 : 0);
422 | }
423 |
424 | void cpu::op_sltiu() {
425 | set_rt(rs() < decoder::iconst() ? 1 : 0);
426 | }
427 |
428 | void cpu::op_sltu() {
429 | set_rd(rs() < rt() ? 1 : 0);
430 | }
431 |
432 | void cpu::op_sra() {
433 | set_rd(int32_t(rt()) >> decoder::sa());
434 | }
435 |
436 | void cpu::op_srav() {
437 | set_rd(int32_t(rt()) >> rs());
438 | }
439 |
440 | void cpu::op_srl() {
441 | set_rd(rt() >> decoder::sa());
442 | }
443 |
444 | void cpu::op_srlv() {
445 | set_rd(rt() >> rs());
446 | }
447 |
448 | void cpu::op_sub() {
449 | auto x = rs();
450 | auto y = rt();
451 | auto z = x - y;
452 |
453 | if (overflow(x, ~y, z)) {
454 | enter_exception(0xc);
455 | } else {
456 | set_rd(z);
457 | }
458 | }
459 |
460 | void cpu::op_subu() {
461 | set_rd(rs() - rt());
462 | }
463 |
464 | void cpu::op_sw() {
465 | auto address = rs() + decoder::iconst();
466 | if (address & 3) {
467 | enter_exception(0x5);
468 | } else {
469 | auto data = rt();
470 |
471 | write_data(WORD, address, data);
472 | }
473 | }
474 |
475 | void cpu::op_swc0() {
476 | throw "unimplemented swc0\n";
477 | }
478 |
479 | void cpu::op_swc1() {
480 | throw "unimplemented swc1\n";
481 | }
482 |
483 | void cpu::op_swc2() {
484 | throw "unimplemented swc2\n";
485 | }
486 |
487 | void cpu::op_swc3() {
488 | throw "unimplemented swc3\n";
489 | }
490 |
491 | void cpu::op_swl() {
492 | auto address = rs() + decoder::iconst();
493 | auto data = read_data(WORD, address & ~3);
494 |
495 | switch (address & 3) {
496 | default: data = (data & 0xffffff00) | (rt() >> 24); break;
497 | case 1: data = (data & 0xffff0000) | (rt() >> 16); break;
498 | case 2: data = (data & 0xff000000) | (rt() >> 8); break;
499 | case 3: data = (data & 0x00000000) | (rt() >> 0); break;
500 | }
501 |
502 | write_data(WORD, address & ~3, data);
503 | }
504 |
505 | void cpu::op_swr() {
506 | auto address = rs() + decoder::iconst();
507 | auto data = read_data(WORD, address & ~3);
508 |
509 | switch (address & 3) {
510 | default: data = (data & 0x00000000) | (rt() << 0); break;
511 | case 1: data = (data & 0x000000ff) | (rt() << 8); break;
512 | case 2: data = (data & 0x0000ffff) | (rt() << 16); break;
513 | case 3: data = (data & 0x00ffffff) | (rt() << 24); break;
514 | }
515 |
516 | write_data(WORD, address & ~3, data);
517 | }
518 |
519 | void cpu::op_syscall() {
520 | enter_exception(0x08);
521 | }
522 |
523 | void cpu::op_xor() {
524 | set_rd(rs() ^ rt());
525 | }
526 |
527 | void cpu::op_xori() {
528 | set_rt(rs() ^ decoder::uconst());
529 | }
530 |
531 | void cpu::op_und() {
532 | cpu::enter_exception(0xa);
533 | }
534 |
--------------------------------------------------------------------------------
/src/cpu/cpu_core.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include "cpu_core.hpp"
3 | #include "../bus.hpp"
4 |
5 | cpu::state_t cpu::state;
6 |
7 | cpu::opcode cpu::op_table[64] = {
8 | nullptr, op_bxx, op_j, op_jal, op_beq, op_bne, op_blez, op_bgtz,
9 | op_addi, op_addiu, op_slti, op_sltiu, op_andi, op_ori, op_xori, op_lui,
10 | op_cop0, op_cop1, op_cop2, op_cop3, op_und, op_und, op_und, op_und,
11 | op_und, op_und, op_und, op_und, op_und, op_und, op_und, op_und,
12 | op_lb, op_lh, op_lwl, op_lw, op_lbu, op_lhu, op_lwr, op_und,
13 | op_sb, op_sh, op_swl, op_sw, op_und, op_und, op_swr, op_und,
14 | op_lwc0, op_lwc1, op_lwc2, op_lwc3, op_und, op_und, op_und, op_und,
15 | op_swc0, op_swc1, op_swc2, op_swc3, op_und, op_und, op_und, op_und
16 | };
17 |
18 | cpu::opcode cpu::op_table_special[64] = {
19 | op_sll, op_und, op_srl, op_sra, op_sllv, op_und, op_srlv, op_srav,
20 | op_jr, op_jalr, op_und, op_und, op_syscall, op_break, op_und, op_und,
21 | op_mfhi, op_mthi, op_mflo, op_mtlo, op_und, op_und, op_und, op_und,
22 | op_mult, op_multu, op_div, op_divu, op_und, op_und, op_und, op_und,
23 | op_add, op_addu, op_sub, op_subu, op_and, op_or, op_xor, op_nor,
24 | op_und, op_und, op_slt, op_sltu, op_und, op_und, op_und, op_und,
25 | op_und, op_und, op_und, op_und, op_und, op_und, op_und, op_und,
26 | op_und, op_und, op_und, op_und, op_und, op_und, op_und, op_und
27 | };
28 |
29 | void cpu::initialize() {
30 | state.regs.gp[0] = 0;
31 | state.regs.pc = 0xbfc00000;
32 | state.regs.next_pc = state.regs.pc + 4;
33 | }
34 |
35 | void cpu::tick() {
36 | cpu::read_code();
37 |
38 | state.is_branch_delay_slot = state.is_branch;
39 | state.is_branch = false;
40 |
41 | state.is_load_delay_slot = state.is_load;
42 | state.is_load = false;
43 |
44 | if (state.i_stat & state.i_mask) {
45 | state.cop0.regs[13] |= (1 << 10);
46 | } else {
47 | state.cop0.regs[13] &= ~(1 << 10);
48 | }
49 |
50 | auto iec = (state.cop0.regs[12] & 1) != 0;
51 | auto irq = (state.cop0.regs[12] & state.cop0.regs[13] & 0xff00) != 0;
52 |
53 | if (iec && irq) {
54 | enter_exception(0x0);
55 | } else {
56 | auto code = (cpu::state.code >> 26) & 63;
57 | if (code)
58 | op_table[code]();
59 | else
60 | op_table_special[(cpu::state.code >> 0) & 63]();
61 | }
62 | }
63 |
64 | void cpu::enter_exception(uint32_t code) {
65 | uint32_t status = state.cop0.regs[12];
66 | status = (status & ~0x3f) | ((status << 2) & 0x3f);
67 |
68 | uint32_t cause = state.cop0.regs[13];
69 | cause = (cause & ~0x7f) | ((code << 2) & 0x7f);
70 |
71 | uint32_t epc;
72 |
73 | if (state.is_branch_delay_slot) {
74 | epc = state.regs.this_pc - 4;
75 | cause |= 0x80000000;
76 | } else {
77 | epc = state.regs.this_pc;
78 | cause &= ~0x80000000;
79 | }
80 |
81 | state.cop0.regs[12] = status;
82 | state.cop0.regs[13] = cause;
83 | state.cop0.regs[14] = epc;
84 |
85 | state.regs.pc = (status & (1 << 22))
86 | ? 0xbfc00180
87 | : 0x80000080;
88 |
89 | state.regs.next_pc = state.regs.pc + 4;
90 | }
91 |
92 | void cpu::leave_exception() {
93 | uint32_t sr = state.cop0.regs[12];
94 | sr = (sr & ~0xf) | ((sr >> 2) & 0xf);
95 |
96 | state.cop0.regs[12] = sr;
97 | }
98 |
99 | static uint32_t segments[8] = {
100 | 0x7fffffff, // kuseg ($0000_0000 - $7fff_ffff)
101 | 0x7fffffff, //
102 | 0x7fffffff, //
103 | 0x7fffffff, //
104 | 0x1fffffff, // kseg0 ($8000_0000 - $9fff_ffff)
105 | 0x1fffffff, // kseg1 ($a000_0000 - $bfff_ffff)
106 | 0xffffffff, // kseg2 ($c000_0000 - $ffff_ffff)
107 | 0xffffffff //
108 | };
109 |
110 | static inline uint32_t map_address(uint32_t address) {
111 | return address & segments[address >> 29];
112 | }
113 |
114 | void cpu::read_code() {
115 | if (state.regs.pc & 3) {
116 | enter_exception(0x4);
117 | }
118 |
119 | state.regs.this_pc = state.regs.pc;
120 | state.regs.pc = state.regs.next_pc;
121 | state.regs.next_pc += 4;
122 |
123 | // todo: read i-cache
124 |
125 | state.code = bus::read(WORD, map_address(state.regs.this_pc));
126 | }
127 |
128 | uint32_t cpu::read_data(int width, uint32_t address) {
129 | if (state.cop0.regs[12] & (1 << 16)) {
130 | return 0; // isc=1
131 | }
132 |
133 | // todo: read d-cache?
134 |
135 | return bus::read(width, map_address(address));
136 | }
137 |
138 | void cpu::write_data(int width, uint32_t address, uint32_t data) {
139 | if (state.cop0.regs[12] & (1 << 16)) {
140 | return; // isc=1
141 | }
142 |
143 | // todo: write d-cache?
144 |
145 | return bus::write(width, map_address(address), data);
146 | }
147 |
148 | uint32_t cpu::bus_read(int width, uint32_t address) {
149 | printf("cpu::bus_read(%d, 0x%08x)\n", width, address);
150 |
151 | switch (address) {
152 | case 0x1f801070:
153 | return state.i_stat;
154 |
155 | case 0x1f801074:
156 | return state.i_mask;
157 | }
158 | }
159 |
160 | void cpu::bus_write(int width, uint32_t address, uint32_t data) {
161 | printf("cpu::bus_write(%d, 0x%08x, 0x%08x)\n", width, address, data);
162 |
163 | switch (address) {
164 | case 0x1f801070:
165 | state.i_stat = state.i_stat & data;
166 | break;
167 |
168 | case 0x1f801074:
169 | state.i_mask = data & 0x7ff;
170 | break;
171 | }
172 | }
173 |
--------------------------------------------------------------------------------
/src/cpu/cpu_core.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_CPU_CORE_HPP
2 | #define PSXACT_CPU_CORE_HPP
3 |
4 | #include
5 |
6 | namespace cpu {
7 | typedef void (*opcode)();
8 |
9 | extern opcode op_table[64];
10 | extern opcode op_table_special[64];
11 |
12 | struct state_t {
13 | struct {
14 | uint32_t regs[16];
15 | } cop0;
16 |
17 | struct {
18 | uint32_t gp[32];
19 | uint32_t lo;
20 | uint32_t hi;
21 | uint32_t pc;
22 | uint32_t this_pc;
23 | uint32_t next_pc;
24 | } regs;
25 |
26 | uint32_t code;
27 |
28 | bool is_branch;
29 | bool is_branch_delay_slot;
30 |
31 | bool is_load;
32 | bool is_load_delay_slot;
33 | uint32_t load_index;
34 | uint32_t load_value;
35 |
36 | uint32_t i_stat;
37 | uint32_t i_mask;
38 | };
39 |
40 | extern state_t state;
41 |
42 | void initialize();
43 |
44 | void disassemble();
45 |
46 | void tick();
47 |
48 | void enter_exception(uint32_t code);
49 |
50 | void leave_exception();
51 |
52 | void read_code();
53 |
54 | uint32_t read_data(int width, uint32_t address);
55 |
56 | void write_data(int width, uint32_t address, uint32_t data);
57 |
58 | uint32_t bus_read(int width, uint32_t address);
59 |
60 | void bus_write(int width, uint32_t address, uint32_t data);
61 |
62 | // --============--
63 | // Instructions
64 | // --============--
65 |
66 | void op_add();
67 | void op_addi();
68 | void op_addiu();
69 | void op_addu();
70 | void op_and();
71 | void op_andi();
72 | void op_beq();
73 | void op_bgtz();
74 | void op_blez();
75 | void op_bne();
76 | void op_break();
77 | void op_bxx();
78 | void op_cop0();
79 | void op_cop1();
80 | void op_cop2();
81 | void op_cop3();
82 | void op_div();
83 | void op_divu();
84 | void op_j();
85 | void op_jal();
86 | void op_jalr();
87 | void op_jr();
88 | void op_lb();
89 | void op_lbu();
90 | void op_lh();
91 | void op_lhu();
92 | void op_lui();
93 | void op_lw();
94 | void op_lwc0();
95 | void op_lwc1();
96 | void op_lwc2();
97 | void op_lwc3();
98 | void op_lwl();
99 | void op_lwr();
100 | void op_mfhi();
101 | void op_mflo();
102 | void op_mthi();
103 | void op_mtlo();
104 | void op_mult();
105 | void op_multu();
106 | void op_nor();
107 | void op_or();
108 | void op_ori();
109 | void op_sb();
110 | void op_sh();
111 | void op_sll();
112 | void op_sllv();
113 | void op_slt();
114 | void op_slti();
115 | void op_sltiu();
116 | void op_sltu();
117 | void op_sra();
118 | void op_srav();
119 | void op_srl();
120 | void op_srlv();
121 | void op_sub();
122 | void op_subu();
123 | void op_sw();
124 | void op_swc0();
125 | void op_swc1();
126 | void op_swc2();
127 | void op_swc3();
128 | void op_swl();
129 | void op_swr();
130 | void op_syscall();
131 | void op_xor();
132 | void op_xori();
133 |
134 | // undefined instruction
135 | void op_und();
136 |
137 | namespace decoder {
138 | uint32_t iconst();
139 | uint32_t uconst();
140 | uint32_t sa();
141 | uint32_t rd();
142 | uint32_t rt();
143 | uint32_t rs();
144 | }
145 | }
146 |
147 | #endif //PSXACT_CPU_CORE_HPP
148 |
--------------------------------------------------------------------------------
/src/cpu/decoder.cpp:
--------------------------------------------------------------------------------
1 | #include "cpu_core.hpp"
2 | #include "../utility.hpp"
3 |
4 | uint32_t cpu::decoder::iconst() {
5 | return utility::sclip<16>(cpu::state.code);
6 | }
7 |
8 | uint32_t cpu::decoder::uconst() {
9 | return utility::uclip<16>(cpu::state.code);
10 | }
11 |
12 | uint32_t cpu::decoder::sa() {
13 | return (cpu::state.code >> 6) & 31;
14 | }
15 |
16 | uint32_t cpu::decoder::rd() {
17 | return (cpu::state.code >> 11) & 31;
18 | }
19 |
20 | uint32_t cpu::decoder::rt() {
21 | return (cpu::state.code >> 16) & 31;
22 | }
23 |
24 | uint32_t cpu::decoder::rs() {
25 | return (cpu::state.code >> 21) & 31;
26 | }
27 |
--------------------------------------------------------------------------------
/src/cpu/disassembler.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include "cpu_core.hpp"
3 |
4 | void disassemble_special() {
5 | switch (cpu::state.code & 0x3f) {
6 | case 0x00: printf("sll r%02d, r%02d, #%d\n", cpu::decoder::rd(), cpu::decoder::rt(), cpu::decoder::sa()); break;
7 |
8 | case 0x02: printf("srl r%02d, r%02d, #%d\n", cpu::decoder::rd(), cpu::decoder::rt(), cpu::decoder::sa()); break;
9 | case 0x03: printf("sra r%02d, r%02d, #%d\n", cpu::decoder::rd(), cpu::decoder::rt(), cpu::decoder::sa()); break;
10 | case 0x04: printf("sllv r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rt(), cpu::decoder::rs()); break;
11 |
12 | case 0x06: printf("srlv r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rt(), cpu::decoder::rs()); break;
13 | case 0x07: printf("srav r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rt(), cpu::decoder::rs()); break;
14 | case 0x08: printf("jr r%02d\n", cpu::decoder::rs()); break;
15 | case 0x09: printf("jalr r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs()); break;
16 |
17 | case 0x0c: printf("syscall\n"); break;
18 | case 0x0d: printf("break\n"); break;
19 |
20 | case 0x10: printf("mfhi r%02d\n", cpu::decoder::rs()); break;
21 | case 0x11: printf("mthi r%02d\n", cpu::decoder::rs()); break;
22 | case 0x12: printf("mflo r%02d\n", cpu::decoder::rs()); break;
23 | case 0x13: printf("mtlo r%02d\n", cpu::decoder::rs()); break;
24 |
25 | case 0x18: printf("mult r%02d, r%02d\n", cpu::decoder::rs(), cpu::decoder::rt()); break;
26 | case 0x19: printf("multu r%02d, r%02d\n", cpu::decoder::rs(), cpu::decoder::rt()); break;
27 | case 0x1a: printf("div r%02d, r%02d\n", cpu::decoder::rs(), cpu::decoder::rt()); break;
28 | case 0x1b: printf("divu r%02d, r%02d\n", cpu::decoder::rs(), cpu::decoder::rt()); break;
29 |
30 | case 0x20: printf("add r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
31 | case 0x21: printf("addu r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
32 | case 0x22: printf("sub r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
33 | case 0x23: printf("subu r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
34 | case 0x24: printf("and r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
35 | case 0x25: printf("or r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
36 | case 0x26: printf("xor r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
37 | case 0x27: printf("nor r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
38 |
39 | case 0x2a: printf("slt r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
40 | case 0x2b: printf("sltu r%02d, r%02d, r%02d\n", cpu::decoder::rd(), cpu::decoder::rs(), cpu::decoder::rt()); break;
41 |
42 | default:
43 | printf("unknown (0x%08x)\n", cpu::state.code);
44 | break;
45 | }
46 | }
47 |
48 | void disassemble_reg_imm() {
49 | auto pc = cpu::state.regs.this_pc;
50 |
51 | switch (cpu::decoder::rt()) {
52 | case 0x00: printf("bltz r%02d, #0x%08x\n", cpu::decoder::rs(), pc + 4 + (cpu::decoder::iconst() << 2)); break;
53 | case 0x01: printf("bgez r%02d, #0x%08x\n", cpu::decoder::rs(), pc + 4 + (cpu::decoder::iconst() << 2)); break;
54 |
55 | case 0x10: printf("bltzal r%02d, #0x%08x\n", cpu::decoder::rs(), pc + 4 + (cpu::decoder::iconst() << 2)); break;
56 | case 0x11: printf("bgezal r%02d, #0x%08x\n", cpu::decoder::rs(), pc + 4 + (cpu::decoder::iconst() << 2)); break;
57 |
58 | default:
59 | printf("unknown (0x%08x)\n", cpu::state.code);
60 | break;
61 | }
62 | }
63 |
64 | void cpu::disassemble() {
65 | auto pc = state.regs.this_pc;
66 |
67 | printf("0x%08x | ", pc);
68 |
69 | switch ((cpu::state.code >> 26) & 0x3f) {
70 | case 0x00: return disassemble_special();
71 | case 0x01: return disassemble_reg_imm();
72 |
73 | case 0x02: printf("j 0x%08x\n", (pc & ~0x0fffffff) | ((cpu::state.code << 2) & 0x0fffffff)); break;
74 | case 0x03: printf("jal 0x%08x\n", (pc & ~0x0fffffff) | ((cpu::state.code << 2) & 0x0fffffff)); break;
75 |
76 | case 0x04: printf("beq r%02d, r%02d, #0x%08x\n", cpu::decoder::rs(), cpu::decoder::rt(), pc + 4 + (cpu::decoder::iconst() << 2)); break;
77 | case 0x05: printf("bne r%02d, r%02d, #0x%08x\n", cpu::decoder::rs(), cpu::decoder::rt(), pc + 4 + (cpu::decoder::iconst() << 2)); break;
78 | case 0x06: printf("blez r%02d, #0x%08x\n", cpu::decoder::rs(), pc + 4 + (cpu::decoder::iconst() << 2)); break;
79 | case 0x07: printf("bgtz r%02d, #0x%08x\n", cpu::decoder::rs(), pc + 4 + (cpu::decoder::iconst() << 2)); break;
80 |
81 | case 0x08: printf("addi r%02d, r%02d, #0x%08x\n", cpu::decoder::rt(), cpu::decoder::rs(), cpu::decoder::iconst()); break;
82 | case 0x09: printf("addiu r%02d, r%02d, #0x%08x\n", cpu::decoder::rt(), cpu::decoder::rs(), cpu::decoder::iconst()); break;
83 | case 0x0a: printf("slti r%02d, r%02d, #0x%08x\n", cpu::decoder::rt(), cpu::decoder::rs(), cpu::decoder::iconst()); break;
84 | case 0x0b: printf("sltiu r%02d, r%02d, #0x%08x\n", cpu::decoder::rt(), cpu::decoder::rs(), cpu::decoder::iconst()); break;
85 | case 0x0c: printf("andi r%02d, r%02d, #0x%04x\n", cpu::decoder::rt(), cpu::decoder::rs(), cpu::decoder::uconst()); break;
86 | case 0x0d: printf("ori r%02d, r%02d, #0x%04x\n", cpu::decoder::rt(), cpu::decoder::rs(), cpu::decoder::uconst()); break;
87 | case 0x0e: printf("xori r%02d, r%02d, #0x%04x\n", cpu::decoder::rt(), cpu::decoder::rs(), cpu::decoder::uconst()); break;
88 | case 0x0f: printf("lui r%02d, #0x%04x\n", cpu::decoder::rt(), cpu::decoder::uconst()); break;
89 |
90 | case 0x10:
91 | case 0x11:
92 | case 0x12:
93 | case 0x13: {
94 | auto co = (cpu::state.code >> 26) & 3;
95 |
96 | switch (cpu::decoder::rs()) {
97 | case 0x00: printf("mfc%d r%02d, r%02d\n", co, cpu::decoder::rt(), cpu::decoder::rd()); break;
98 | case 0x04: printf("mtc%d r%02d, r%02d\n", co, cpu::decoder::rt(), cpu::decoder::rd()); break;
99 |
100 | case 0x10:
101 | switch ((cpu::state.code >> 0) & 0x3f) {
102 | case 0x10: printf("rfe\n"); break;
103 |
104 | default:
105 | printf("unknown (0x%08x)\n", cpu::state.code);
106 | break;
107 | }
108 | break;
109 |
110 | default:
111 | printf("unknown (0x%08x)\n", cpu::state.code);
112 | break;
113 | }
114 |
115 | break;
116 | }
117 |
118 | case 0x20: printf("lb r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
119 | case 0x21: printf("lh r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
120 | case 0x22: printf("lwl r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
121 | case 0x23: printf("lw r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
122 | case 0x24: printf("lbu r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
123 | case 0x25: printf("lhu r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
124 | case 0x26: printf("lwr r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
125 |
126 | case 0x28: printf("sb r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
127 | case 0x29: printf("sh r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
128 | case 0x2a: printf("swl r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
129 | case 0x2b: printf("sw r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
130 |
131 | case 0x2e: printf("swr r%02d, #%08x(r%02d)\n", cpu::decoder::rt(), cpu::decoder::iconst(), cpu::decoder::rs()); break;
132 |
133 | default:
134 | printf("unknown (0x%08x)\n", cpu::state.code);
135 | break;
136 | }
137 | }
138 |
--------------------------------------------------------------------------------
/src/dma/dma_core.cpp:
--------------------------------------------------------------------------------
1 | #include "dma_core.hpp"
2 | #include "../bus.hpp"
3 | #include "../gpu/gpu_core.hpp"
4 |
5 | static dma::state_t state;
6 |
7 | static void update_irq_active_flag() {
8 | auto forced = ((state.dicr >> 15) & 1) != 0;
9 | auto master = ((state.dicr >> 23) & 1) != 0;
10 | auto signal = ((state.dicr >> 16) & (state.dicr >> 24) & 0x7f) != 0;
11 | auto active = forced || (master && signal);
12 |
13 | if (active) {
14 | if (!(state.dicr & 0x80000000)) {
15 | bus::irq(3);
16 | }
17 |
18 | state.dicr |= 0x80000000;
19 | } else {
20 | state.dicr &= ~0x80000000;
21 | }
22 | }
23 |
24 | static uint32_t get_channel_index(uint32_t address) {
25 | return (address >> 4) & 7;
26 | }
27 |
28 | static uint32_t get_register_index(uint32_t address) {
29 | return (address >> 2) & 3;
30 | }
31 |
32 | uint32_t dma::bus_read(int width, uint32_t address) {
33 | auto channel = get_channel_index(address);
34 | if (channel == 7) {
35 | switch (get_register_index(address)) {
36 | case 0: return state.dpcr;
37 | case 1: return state.dicr;
38 | case 2: return 0x7ffac68b;
39 | case 3: return 0x00fffff7;
40 | }
41 | }
42 | else {
43 | switch (get_register_index(address)) {
44 | case 0: return state.channels[channel].address;
45 | case 1: return state.channels[channel].counter;
46 | case 2: return state.channels[channel].control;
47 | }
48 | }
49 |
50 | return 0;
51 | }
52 |
53 | void dma::bus_write(int width, uint32_t address, uint32_t data) {
54 | auto channel = get_channel_index(address);
55 | if (channel == 7) {
56 | switch (get_register_index(address)) {
57 | case 0: state.dpcr = data; break;
58 |
59 | case 1:
60 | state.dicr &= ( 0xff000000);
61 | state.dicr |= (data & 0x00ff803f);
62 | state.dicr &= ~(data & 0x7f000000);
63 | update_irq_active_flag();
64 | break;
65 |
66 | case 2: break;
67 | case 3: break;
68 | }
69 | }
70 | else {
71 | switch (get_register_index(address)) {
72 | case 0: state.channels[channel].address = data & 0x00ffffff; break;
73 | case 1: state.channels[channel].counter = data & 0xffffffff; break;
74 | case 2: state.channels[channel].control = data & 0x71770703; break;
75 | }
76 | }
77 |
78 | dma::main();
79 | }
80 |
81 | void dma::main() {
82 | if (state.dpcr & 0x08000000) { run_channel(6); }
83 | if (state.dpcr & 0x00800000) { run_channel(5); }
84 | if (state.dpcr & 0x00080000) { run_channel(4); }
85 | if (state.dpcr & 0x00008000) { run_channel(3); }
86 | if (state.dpcr & 0x00000800) { run_channel(2); }
87 | if (state.dpcr & 0x00000080) { run_channel(1); }
88 | if (state.dpcr & 0x00000008) { run_channel(0); }
89 | }
90 |
91 | static void run_channel_2_data_read() {
92 | auto address = state.channels[2].address;
93 | auto bs = (state.channels[2].counter >> 0) & 0xffff;
94 | auto ba = (state.channels[2].counter >> 16) & 0xffff;
95 |
96 | bs = bs ? bs : 0x10000;
97 | ba = ba ? ba : 0x10000;
98 |
99 | for (int a = 0; a < ba; a++) {
100 | for (int s = 0; s < bs; s++) {
101 | bus::write(WORD, address, gpu::data());
102 | address += 4;
103 | }
104 | }
105 |
106 | state.channels[2].control &= ~0x01000000;
107 |
108 | dma::irq_channel(2);
109 | }
110 |
111 | static void run_channel_2_data_write() {
112 | auto address = state.channels[2].address;
113 | auto bs = (state.channels[2].counter >> 0) & 0xffff;
114 | auto ba = (state.channels[2].counter >> 16) & 0xffff;
115 |
116 | bs = bs ? bs : 0x10000;
117 | ba = ba ? ba : 0x10000;
118 |
119 | for (int a = 0; a < ba; a++) {
120 | for (int s = 0; s < bs; s++) {
121 | gpu::gp0(bus::read(WORD, address));
122 | address += 4;
123 | }
124 | }
125 |
126 | state.channels[2].control &= ~0x01000000;
127 |
128 | dma::irq_channel(2);
129 | }
130 |
131 | static void run_channel_2_list() {
132 | auto address = state.channels[2].address;
133 |
134 | while (address != 0xffffff) {
135 | auto value = bus::read(WORD, address);
136 | address += 4;
137 |
138 | auto count = value >> 24;
139 |
140 | for (auto index = 0; index < count; index++) {
141 | gpu::gp0(bus::read(WORD, address));
142 | address += 4;
143 | }
144 |
145 | address = value & 0xffffff;
146 | }
147 |
148 | state.channels[2].control &= ~0x01000000;
149 |
150 | dma::irq_channel(2);
151 | }
152 |
153 | static void run_channel_6() {
154 | auto address = state.channels[6].address;
155 | auto counter = state.channels[6].counter & 0xffff;
156 |
157 | counter = counter ? counter : 0x10000;
158 |
159 | for (int i = 1; i < counter; i++) {
160 | bus::write(WORD, address, address - 4);
161 | address -= 4;
162 | }
163 |
164 | bus::write(WORD, address, 0x00ffffff);
165 |
166 | state.channels[6].control &= ~0x11000000;
167 |
168 | dma::irq_channel(6);
169 | }
170 |
171 | void dma::run_channel(int n) {
172 | if (n == 2) {
173 | if (state.channels[2].control == 0x01000200) { return run_channel_2_data_read(); }
174 | if (state.channels[2].control == 0x01000201) { return run_channel_2_data_write(); }
175 | if (state.channels[2].control == 0x01000401) { return run_channel_2_list(); }
176 | }
177 |
178 | if (n == 6 && state.channels[6].control == 0x11000002) { return run_channel_6(); }
179 | }
180 |
181 | void dma::irq_channel(int n) {
182 | int flag = 1 << (n + 24);
183 | int mask = 1 << (n + 16);
184 |
185 | if (state.dicr & mask) {
186 | state.dicr |= flag;
187 | }
188 |
189 | update_irq_active_flag();
190 | }
191 |
--------------------------------------------------------------------------------
/src/dma/dma_core.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_DMA_CORE_HPP
2 | #define PSXACT_DMA_CORE_HPP
3 |
4 | #include
5 |
6 | namespace dma {
7 | struct state_t {
8 | uint32_t dpcr = 0x07654321;
9 | uint32_t dicr = 0x00000000;
10 |
11 | struct {
12 | uint32_t address;
13 | uint32_t counter;
14 | uint32_t control;
15 | } channels[7];
16 | };
17 |
18 | uint32_t bus_read(int width, uint32_t address);
19 |
20 | void bus_write(int width, uint32_t address, uint32_t data);
21 |
22 | void main();
23 |
24 | void irq_channel(int n);
25 |
26 | void run_channel(int n);
27 | }
28 |
29 | #endif //PSXACT_DMA_CORE_HPP
30 |
--------------------------------------------------------------------------------
/src/gpu/gpu_core.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include "gpu_core.hpp"
3 | #include "../bus.hpp"
4 | #include "../memory/vram.hpp"
5 |
6 | gpu::state_t gpu::state;
7 |
8 | uint32_t gpu::data() {
9 | if (gpu::state.gpu_to_cpu_transfer.run.active) {
10 | auto lower = vram_transfer();
11 | auto upper = vram_transfer();
12 |
13 | return (upper << 16) | lower;
14 | }
15 |
16 | return 0;
17 | }
18 |
19 | uint32_t gpu::stat() {
20 | // 19 Vertical Resolution (0=240, 1=480, when Bit22=1) ;GP1(08h).2
21 | // 26 Ready to receive Cmd Word (0=No, 1=Ready) ;GP0(...) ;via GP0
22 | // 27 Ready to send VRAM to CPU (0=No, 1=Ready) ;GP0(C0h) ;via GPUREAD
23 | // 28 Ready to receive DMA Block (0=No, 1=Ready) ;GP0(...) ;via GP0
24 |
25 | return (gpu::state.status & ~0x00080000) | 0x1c002000;
26 | }
27 |
28 | uint32_t gpu::bus_read(int width, uint32_t address) {
29 | assert(width == WORD);
30 |
31 | switch (address) {
32 | case 0x1f801810: return data();
33 | case 0x1f801814: return stat();
34 | }
35 | }
36 |
37 | void gpu::bus_write(int width, uint32_t address, uint32_t data) {
38 | assert(width == WORD);
39 |
40 | switch (address) {
41 | case 0x1f801810:
42 | return gp0(data);
43 |
44 | case 0x1f801814:
45 | return gp1(data);
46 | }
47 | }
48 |
49 | uint16_t gpu::vram_transfer() {
50 | auto &transfer = gpu::state.gpu_to_cpu_transfer;
51 | if (!transfer.run.active) {
52 | return 0;
53 | }
54 |
55 | auto data = vram::read(transfer.reg.x + transfer.run.x,
56 | transfer.reg.y + transfer.run.y);
57 |
58 | transfer.run.x++;
59 |
60 | if (transfer.run.x == transfer.reg.w) {
61 | transfer.run.x = 0;
62 | transfer.run.y++;
63 |
64 | if (transfer.run.y == transfer.reg.h) {
65 | transfer.run.y = 0;
66 | transfer.run.active = false;
67 | }
68 | }
69 |
70 | return data;
71 | }
72 |
73 | void gpu::vram_transfer(uint16_t data) {
74 | auto &transfer = gpu::state.cpu_to_gpu_transfer;
75 | if (!transfer.run.active) {
76 | return;
77 | }
78 |
79 | vram::write(transfer.reg.x + transfer.run.x,
80 | transfer.reg.y + transfer.run.y, uint16_t(data));
81 |
82 | transfer.run.x++;
83 |
84 | if (transfer.run.x == transfer.reg.w) {
85 | transfer.run.x = 0;
86 | transfer.run.y++;
87 |
88 | if (transfer.run.y == transfer.reg.h) {
89 | transfer.run.y = 0;
90 | transfer.run.active = false;
91 | }
92 | }
93 | }
94 |
--------------------------------------------------------------------------------
/src/gpu/gpu_core.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_GPU_CORE_HPP
2 | #define PSXACT_GPU_CORE_HPP
3 |
4 | #include
5 | #include
6 | #include "../utility.hpp"
7 |
8 | namespace gpu {
9 | struct state_t {
10 | uint32_t status = 0x14802000;
11 | uint32_t texture_window_mask_x;
12 | uint32_t texture_window_mask_y;
13 | uint32_t texture_window_offset_x;
14 | uint32_t texture_window_offset_y;
15 | uint32_t drawing_area_x1;
16 | uint32_t drawing_area_y1;
17 | uint32_t drawing_area_x2;
18 | uint32_t drawing_area_y2;
19 | uint32_t x_offset;
20 | uint32_t y_offset;
21 | uint32_t display_area_x;
22 | uint32_t display_area_y;
23 | uint32_t display_area_x1;
24 | uint32_t display_area_y1;
25 | uint32_t display_area_x2;
26 | uint32_t display_area_y2;
27 | bool textured_rectangle_x_flip;
28 | bool textured_rectangle_y_flip;
29 |
30 | struct {
31 | uint32_t buffer[16];
32 | int wr;
33 | int rd;
34 | } fifo;
35 |
36 | struct {
37 | struct {
38 | int x;
39 | int y;
40 | int w;
41 | int h;
42 | } reg;
43 |
44 | struct {
45 | bool active;
46 | int x;
47 | int y;
48 | } run;
49 | } cpu_to_gpu_transfer;
50 |
51 | struct {
52 | struct {
53 | int x;
54 | int y;
55 | int w;
56 | int h;
57 | } reg;
58 |
59 | struct {
60 | bool active;
61 | int x;
62 | int y;
63 | } run;
64 | } gpu_to_cpu_transfer;
65 | };
66 |
67 | extern state_t state;
68 |
69 | uint32_t bus_read(int width, uint32_t address);
70 |
71 | void bus_write(int width, uint32_t address, uint32_t data);
72 |
73 | uint32_t data();
74 |
75 | uint32_t stat();
76 |
77 | void gp0(uint32_t data);
78 |
79 | void gp1(uint32_t data);
80 |
81 | void vram_transfer(uint16_t data);
82 |
83 | uint16_t vram_transfer();
84 |
85 | struct color_t {
86 | int r;
87 | int g;
88 | int b;
89 | };
90 |
91 | struct point_t {
92 | int x;
93 | int y;
94 | };
95 |
96 | void draw_point(int x, int y, int r, int g, int b);
97 |
98 | namespace gouraud {
99 | struct pixel_t {
100 | point_t point;
101 | color_t color;
102 | };
103 |
104 | template
105 | struct polygon_t {
106 | pixel_t v[size];
107 | };
108 |
109 | void draw_poly3(const gpu::gouraud::polygon_t<3> &p);
110 |
111 | void draw_poly4(const gpu::gouraud::polygon_t<4> &p);
112 | }
113 |
114 | namespace texture {
115 | struct pixel_t {
116 | point_t point;
117 | color_t color;
118 | int u;
119 | int v;
120 | };
121 |
122 | template
123 | struct polygon_t {
124 | pixel_t v[size];
125 | int clut_x;
126 | int clut_y;
127 | int base_u;
128 | int base_v;
129 | int depth;
130 | };
131 |
132 | void draw_poly3(const polygon_t<3> &p);
133 |
134 | void draw_poly4(const polygon_t<4> &p);
135 | }
136 | }
137 |
138 | #endif //PSXACT_GPU_CORE_HPP
139 |
--------------------------------------------------------------------------------
/src/gpu/gpu_draw.cpp:
--------------------------------------------------------------------------------
1 | #include "gpu_core.hpp"
2 | #include "../memory/vram.hpp"
3 |
4 | template
5 | int clip(int value) {
6 | if (value <= min) return min;
7 | if (value >= max) return max;
8 | return value;
9 | };
10 |
11 | static int dither_lut[4][4] = {
12 | { -4, 0, -3, 1 },
13 | { 2, -2, 3, -1 },
14 | { -3, 1, -4, 0 },
15 | { 3, -1, 2, -2 }
16 | };
17 |
18 | void gpu::draw_point(int x, int y, int r, int g, int b) {
19 | if (x < state.drawing_area_x1 || x > state.drawing_area_x2) return;
20 | if (y < state.drawing_area_y1 || y > state.drawing_area_y2) return;
21 |
22 | auto dither = dither_lut[y & 3][x & 3];
23 |
24 | r = clip<0, 255>(r + dither);
25 | g = clip<0, 255>(g + dither);
26 | b = clip<0, 255>(b + dither);
27 |
28 | auto color =
29 | (((r >> 3) & 0x1f) << 0) |
30 | (((g >> 3) & 0x1f) << 5) |
31 | (((b >> 3) & 0x1f) << 10);
32 |
33 | vram::write(x, y, uint16_t(color));
34 | }
35 |
--------------------------------------------------------------------------------
/src/gpu/gpu_draw_gouraud.cpp:
--------------------------------------------------------------------------------
1 | #include "gpu_core.hpp"
2 |
3 | void fill_gouraud(const gpu::gouraud::pixel_t &v0, const int &w0,
4 | const gpu::gouraud::pixel_t &v1, const int &w1,
5 | const gpu::gouraud::pixel_t &v2, const int &w2, int x, int y) {
6 | int area = w0 + w1 + w2;
7 |
8 | int r = ((v0.color.r * w0) + (v1.color.r * w1) + (v2.color.r * w2)) / area;
9 | int g = ((v0.color.g * w0) + (v1.color.g * w1) + (v2.color.g * w2)) / area;
10 | int b = ((v0.color.b * w0) + (v1.color.b * w1) + (v2.color.b * w2)) / area;
11 |
12 | gpu::draw_point(x, y, r, g, b);
13 | }
14 |
15 | static int min3(int a, int b, int c) {
16 | if (a <= b && a <= c) return a;
17 | if (b <= a && b <= c) return b;
18 | return c;
19 | }
20 |
21 | static int max3(int a, int b, int c) {
22 | if (a >= b && a >= c) return a;
23 | if (b >= a && b >= c) return b;
24 | return c;
25 | }
26 |
27 | static int edge(const gpu::point_t& a, const gpu::point_t& b, const gpu::point_t& c) {
28 | return ((b.x - a.x) * (c.y - a.y)) - ((b.y - a.y) * (c.x - a.x));
29 | }
30 |
31 | static bool is_top_left(const gpu::point_t &a, const gpu::point_t &b) {
32 | return (b.y == a.y && b.x > a.x) || b.y < a.y;
33 | }
34 |
35 | static void fill_poly3_gouraud(const gpu::gouraud::pixel_t &v0, const gpu::gouraud::pixel_t &v1, const gpu::gouraud::pixel_t &v2) {
36 | int min_x = min3(v0.point.x, v1.point.x, v2.point.x);
37 | int min_y = min3(v0.point.y, v1.point.y, v2.point.y);
38 | int max_x = max3(v0.point.x, v1.point.x, v2.point.x);
39 | int max_y = max3(v0.point.y, v1.point.y, v2.point.y);
40 |
41 | bool is_top_left_12 = is_top_left(v1.point, v2.point);
42 | bool is_top_left_20 = is_top_left(v2.point, v0.point);
43 | bool is_top_left_01 = is_top_left(v0.point, v1.point);
44 |
45 | int x01 = v0.point.y - v1.point.y, y01 = v1.point.x - v0.point.x;
46 | int x12 = v1.point.y - v2.point.y, y12 = v2.point.x - v1.point.x;
47 | int x20 = v2.point.y - v0.point.y, y20 = v0.point.x - v2.point.x;
48 |
49 | gpu::point_t p = { min_x, min_y };
50 |
51 | int w0_row = edge(v1.point, v2.point, p);
52 | int w1_row = edge(v2.point, v0.point, p);
53 | int w2_row = edge(v0.point, v1.point, p);
54 |
55 | for (p.y = min_y; p.y <= max_y; p.y++) {
56 | int w0 = w0_row;
57 | w0_row += y12;
58 |
59 | int w1 = w1_row;
60 | w1_row += y20;
61 |
62 | int w2 = w2_row;
63 | w2_row += y01;
64 |
65 | for (p.x = min_x; p.x <= max_x; p.x++) {
66 | bool draw =
67 | (w0 > 0 || (w0 == 0 && is_top_left_12)) &&
68 | (w1 > 0 || (w1 == 0 && is_top_left_20)) &&
69 | (w2 > 0 || (w2 == 0 && is_top_left_01));
70 |
71 | if (draw) {
72 | fill_gouraud(v0, w0, v1, w1, v2, w2, p.x, p.y);
73 | }
74 |
75 | w0 += x12;
76 | w1 += x20;
77 | w2 += x01;
78 | }
79 | }
80 | }
81 |
82 | static inline int double_area(const gpu::point_t &v0, const gpu::point_t &v1, const gpu::point_t &v2) {
83 | auto e0 = (v1.x - v0.x) * (v1.y + v0.y);
84 | auto e1 = (v2.x - v1.x) * (v2.y + v1.y);
85 | auto e2 = (v0.x - v2.x) * (v0.y + v2.y);
86 |
87 | return e0 + e1 + e2;
88 | }
89 |
90 | void gpu::gouraud::draw_poly3(const polygon_t<3> &p) {
91 | const auto &p0 = p.v[0];
92 | const auto &p1 = p.v[1];
93 | const auto &p2 = p.v[2];
94 |
95 | if (double_area(p0.point, p1.point, p2.point) < 0) {
96 | fill_poly3_gouraud(p0, p1, p2);
97 | } else {
98 | fill_poly3_gouraud(p0, p2, p1);
99 | }
100 | }
101 |
102 | void gpu::gouraud::draw_poly4(const polygon_t<4> &p) {
103 | auto &v0 = p.v[0];
104 | auto &v1 = p.v[1];
105 | auto &v2 = p.v[2];
106 | auto &v3 = p.v[3];
107 |
108 | draw_poly3({ v0, v1, v2 });
109 | draw_poly3({ v1, v2, v3 });
110 | }
111 |
--------------------------------------------------------------------------------
/src/gpu/gpu_draw_texture.cpp:
--------------------------------------------------------------------------------
1 | #include "gpu_core.hpp"
2 | #include "../memory/vram.hpp"
3 |
4 | void fill_texture_4bpp(const gpu::texture::polygon_t<3> &p,
5 | const int &w0,
6 | const int &w1,
7 | const int &w2, int x, int y) {
8 | int area = w0 + w1 + w2;
9 |
10 | int u = ((p.v[0].u * w0) + (p.v[1].u * w1) + (p.v[2].u * w2)) / area;
11 | int v = ((p.v[0].v * w0) + (p.v[1].v * w1) + (p.v[2].v * w2)) / area;
12 |
13 | auto texel = vram::read(p.base_u + (u / 4), p.base_v + v);
14 | int index = 0;
15 |
16 | switch (u & 3) {
17 | case 0: index = (texel >> 0) & 0xf; break;
18 | case 1: index = (texel >> 4) & 0xf; break;
19 | case 2: index = (texel >> 8) & 0xf; break;
20 | case 3: index = (texel >> 12) & 0xf; break;
21 | }
22 |
23 | auto color = vram::read(p.clut_x + index, p.clut_y);
24 | if (color == 0) {
25 | return;
26 | }
27 |
28 | vram::write(x, y, color);
29 | }
30 |
31 | void fill_texture_15bpp(const gpu::texture::polygon_t<3> &p,
32 | const int &w0,
33 | const int &w1,
34 | const int &w2, int x, int y) {
35 | int area = w0 + w1 + w2;
36 |
37 | int u = ((p.v[0].u * w0) + (p.v[1].u * w1) + (p.v[2].u * w2)) / area;
38 | int v = ((p.v[0].v * w0) + (p.v[1].v * w1) + (p.v[2].v * w2)) / area;
39 |
40 | auto color = vram::read(p.base_u + u, p.base_v + v);
41 | if (color) {
42 | vram::write(x, y, color);
43 | }
44 | }
45 |
46 | static int min3(int a, int b, int c) {
47 | if (a <= b && a <= c) return a;
48 | if (b <= a && b <= c) return b;
49 | return c;
50 | }
51 |
52 | static int max3(int a, int b, int c) {
53 | if (a >= b && a >= c) return a;
54 | if (b >= a && b >= c) return b;
55 | return c;
56 | }
57 |
58 | static int edge(const gpu::point_t& a, const gpu::point_t& b, const gpu::point_t& c) {
59 | return ((b.x - a.x) * (c.y - a.y)) - ((b.y - a.y) * (c.x - a.x));
60 | }
61 |
62 | static bool is_top_left(const gpu::point_t &a, const gpu::point_t &b) {
63 | return (b.y == a.y && b.x > a.x) || b.y < a.y;
64 | }
65 |
66 | static void fill_poly3_texture(const gpu::texture::polygon_t<3> &t) {
67 | int min_x = min3(t.v[0].point.x, t.v[1].point.x, t.v[2].point.x);
68 | int min_y = min3(t.v[0].point.y, t.v[1].point.y, t.v[2].point.y);
69 | int max_x = max3(t.v[0].point.x, t.v[1].point.x, t.v[2].point.x);
70 | int max_y = max3(t.v[0].point.y, t.v[1].point.y, t.v[2].point.y);
71 |
72 | bool is_top_left_12 = is_top_left(t.v[1].point, t.v[2].point);
73 | bool is_top_left_20 = is_top_left(t.v[2].point, t.v[0].point);
74 | bool is_top_left_01 = is_top_left(t.v[0].point, t.v[1].point);
75 |
76 | int x01 = t.v[0].point.y - t.v[1].point.y, y01 = t.v[1].point.x - t.v[0].point.x;
77 | int x12 = t.v[1].point.y - t.v[2].point.y, y12 = t.v[2].point.x - t.v[1].point.x;
78 | int x20 = t.v[2].point.y - t.v[0].point.y, y20 = t.v[0].point.x - t.v[2].point.x;
79 |
80 | gpu::point_t p = { min_x, min_y };
81 |
82 | int w0_row = edge(t.v[1].point, t.v[2].point, p);
83 | int w1_row = edge(t.v[2].point, t.v[0].point, p);
84 | int w2_row = edge(t.v[0].point, t.v[1].point, p);
85 |
86 | for (p.y = min_y; p.y <= max_y; p.y++) {
87 | int w0 = w0_row;
88 | int w1 = w1_row;
89 | int w2 = w2_row;
90 |
91 | for (p.x = min_x; p.x <= max_x; p.x++) {
92 | bool draw =
93 | (w0 > 0 || (w0 == 0 && is_top_left_12)) &&
94 | (w1 > 0 || (w1 == 0 && is_top_left_20)) &&
95 | (w2 > 0 || (w2 == 0 && is_top_left_01));
96 |
97 | if (draw) {
98 | switch (t.depth) {
99 | case 0: fill_texture_4bpp (t, w0, w1, w2, p.x, p.y); break;
100 | case 2: fill_texture_15bpp(t, w0, w1, w2, p.x, p.y); break;
101 | case 3: fill_texture_15bpp(t, w0, w1, w2, p.x, p.y); break;
102 | }
103 | }
104 |
105 | w0 += x12;
106 | w1 += x20;
107 | w2 += x01;
108 | }
109 |
110 | w0_row += y12;
111 | w1_row += y20;
112 | w2_row += y01;
113 | }
114 | }
115 |
116 | static inline int double_area(const gpu::point_t &v0, const gpu::point_t &v1, const gpu::point_t &v2) {
117 | auto e0 = (v1.x - v0.x) * (v1.y + v0.y);
118 | auto e1 = (v2.x - v1.x) * (v2.y + v1.y);
119 | auto e2 = (v0.x - v2.x) * (v0.y + v2.y);
120 |
121 | return e0 + e1 + e2;
122 | }
123 |
124 | void gpu::texture::draw_poly3(const gpu::texture::polygon_t<3> &p) {
125 | auto &v0 = p.v[0];
126 | auto &v1 = p.v[1];
127 | auto &v2 = p.v[2];
128 |
129 | if (double_area(v0.point, v1.point, v2.point) < 0) {
130 | fill_poly3_texture({v0, v1, v2, p.clut_x, p.clut_y, p.base_u, p.base_v, p.depth});
131 | } else {
132 | fill_poly3_texture({v0, v2, v1, p.clut_x, p.clut_y, p.base_u, p.base_v, p.depth});
133 | }
134 | }
135 |
136 | void gpu::texture::draw_poly4(const gpu::texture::polygon_t<4> &p) {
137 | auto &v0 = p.v[0];
138 | auto &v1 = p.v[1];
139 | auto &v2 = p.v[2];
140 | auto &v3 = p.v[3];
141 |
142 | gpu::texture::draw_poly3({v0, v1, v2, p.clut_x, p.clut_y, p.base_u, p.base_v, p.depth});
143 | gpu::texture::draw_poly3({v1, v2, v3, p.clut_x, p.clut_y, p.base_u, p.base_v, p.depth});
144 | }
145 |
--------------------------------------------------------------------------------
/src/gpu/gpu_gp0.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include "gpu_core.hpp"
3 | #include "../memory/vram.hpp"
4 |
5 | static int command_size[256] = {
6 | 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $00
7 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $10
8 | 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 9, 9, 1, 1, // $20
9 | 6, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, // $30
10 |
11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $40
12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $50
13 | 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, // $60
14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $70
15 |
16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $80
17 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $90
18 | 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $a0
19 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $b0
20 |
21 | 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $c0
22 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $d0
23 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $e0
24 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // $f0
25 | };
26 |
27 | static gpu::point_t gp0_to_point(uint32_t point) {
28 | gpu::point_t result;
29 | result.x = utility::sclip<11>(point);
30 | result.y = utility::sclip<11>(point >> 16);
31 |
32 | return result;
33 | }
34 |
35 | static gpu::color_t gp0_to_color(uint32_t color) {
36 | gpu::color_t result;
37 | result.r = (color >> 0) & 0xff;
38 | result.g = (color >> 8) & 0xff;
39 | result.b = (color >> 16) & 0xff;
40 |
41 | return result;
42 | }
43 |
44 | static gpu::gouraud::pixel_t gp0_to_gouraud_pixel(uint32_t point, uint32_t color) {
45 | gpu::gouraud::pixel_t p;
46 | p.point = gp0_to_point(point);
47 | p.color = gp0_to_color(color);
48 |
49 | return p;
50 | }
51 |
52 | static gpu::texture::pixel_t gp0_to_texture_pixel(uint32_t point, uint32_t color, uint32_t coord) {
53 | gpu::texture::pixel_t p;
54 | p.point = gp0_to_point(point);
55 | p.color = gp0_to_color(color);
56 |
57 | p.u = (coord >> 0) & 0xff;
58 | p.v = (coord >> 8) & 0xff;
59 |
60 | return p;
61 | }
62 |
63 | void gpu::gp0(uint32_t data) {
64 | if (state.cpu_to_gpu_transfer.run.active) {
65 | auto lower = uint16_t(data >> 0);
66 | auto upper = uint16_t(data >> 16);
67 |
68 | vram_transfer(lower);
69 | vram_transfer(upper);
70 | return;
71 | }
72 |
73 | state.fifo.buffer[state.fifo.wr] = data;
74 | state.fifo.wr = (state.fifo.wr + 1) & 0xf;
75 |
76 | auto command = state.fifo.buffer[0] >> 24;
77 |
78 | if (state.fifo.wr == command_size[command]) {
79 | state.fifo.wr = 0;
80 |
81 | switch (command) {
82 | case 0x00: break; // nop
83 | case 0x01: break; // clear texture cache
84 |
85 | case 0x02: { // fill rectangle
86 | auto color = gp0_to_color(state.fifo.buffer[0]);
87 | auto point1 = gp0_to_point(state.fifo.buffer[1]);
88 | auto point2 = gp0_to_point(state.fifo.buffer[2]);
89 |
90 | point1.x = (point1.x + 0x0) & ~0xf;
91 | point2.x = (point2.x + 0xf) & ~0xf;
92 |
93 | for (int y = 0; y < point2.y; y++) {
94 | for (int x = 0; x < point2.x; x++) {
95 | gpu::draw_point(point1.x + x,
96 | point1.y + y,
97 | color.r,
98 | color.g,
99 | color.b);
100 | }
101 | }
102 |
103 | break;
104 | }
105 |
106 | case 0x28: { // monochrome quad, opaque
107 | auto color = state.fifo.buffer[0];
108 | auto point1 = state.fifo.buffer[1];
109 | auto point2 = state.fifo.buffer[2];
110 | auto point3 = state.fifo.buffer[3];
111 | auto point4 = state.fifo.buffer[4];
112 |
113 | auto v0 = gp0_to_gouraud_pixel(point1, color);
114 | auto v1 = gp0_to_gouraud_pixel(point2, color);
115 | auto v2 = gp0_to_gouraud_pixel(point3, color);
116 | auto v3 = gp0_to_gouraud_pixel(point4, color);
117 |
118 | gpu::gouraud::draw_poly4({v0, v1, v2, v3});
119 | break;
120 | }
121 |
122 | case 0x2c:
123 | case 0x2d: { // textured quad, opaque
124 | auto color = state.fifo.buffer[0];
125 | auto point1 = state.fifo.buffer[1];
126 | auto coord1 = state.fifo.buffer[2];
127 | auto point2 = state.fifo.buffer[3];
128 | auto coord2 = state.fifo.buffer[4];
129 | auto point3 = state.fifo.buffer[5];
130 | auto coord3 = state.fifo.buffer[6];
131 | auto point4 = state.fifo.buffer[7];
132 | auto coord4 = state.fifo.buffer[8];
133 |
134 | gpu::texture::polygon_t<4> p;
135 |
136 | p.v[0] = gp0_to_texture_pixel(point1, color, coord1);
137 | p.v[1] = gp0_to_texture_pixel(point2, color, coord2);
138 | p.v[2] = gp0_to_texture_pixel(point3, color, coord3);
139 | p.v[3] = gp0_to_texture_pixel(point4, color, coord4);
140 | p.clut_x = ((coord1 >> 16) & 0x03f) * 16;
141 | p.clut_y = ((coord1 >> 22) & 0x1ff) * 1;
142 | p.base_u = ((coord2 >> 16) & 0x00f) * 64;
143 | p.base_v = ((coord2 >> 20) & 0x001) * 256;
144 | p.depth = ((coord2 >> 23) & 0x003);
145 |
146 | gpu::texture::draw_poly4(p);
147 | break;
148 | }
149 |
150 | case 0x30: { // shaded triangle, opaque
151 | auto color1 = state.fifo.buffer[0];
152 | auto point1 = state.fifo.buffer[1];
153 | auto color2 = state.fifo.buffer[2];
154 | auto point2 = state.fifo.buffer[3];
155 | auto color3 = state.fifo.buffer[4];
156 | auto point3 = state.fifo.buffer[5];
157 |
158 | auto v0 = gp0_to_gouraud_pixel(point1, color1);
159 | auto v1 = gp0_to_gouraud_pixel(point2, color2);
160 | auto v2 = gp0_to_gouraud_pixel(point3, color3);
161 |
162 | gpu::gouraud::draw_poly3({v0, v1, v2});
163 | break;
164 | }
165 |
166 | case 0x38: { // shaded quad, opaque
167 | auto color1 = state.fifo.buffer[0];
168 | auto point1 = state.fifo.buffer[1];
169 | auto color2 = state.fifo.buffer[2];
170 | auto point2 = state.fifo.buffer[3];
171 | auto color3 = state.fifo.buffer[4];
172 | auto point3 = state.fifo.buffer[5];
173 | auto color4 = state.fifo.buffer[6];
174 | auto point4 = state.fifo.buffer[7];
175 |
176 | auto v0 = gp0_to_gouraud_pixel(point1, color1);
177 | auto v1 = gp0_to_gouraud_pixel(point2, color2);
178 | auto v2 = gp0_to_gouraud_pixel(point3, color3);
179 | auto v3 = gp0_to_gouraud_pixel(point4, color4);
180 |
181 | gpu::gouraud::draw_poly4({v0, v1, v2, v3});
182 | break;
183 | }
184 |
185 | case 0x65: {
186 | //auto color = gp0_to_color(state.fifo.buffer[0]);
187 | auto point1 = gp0_to_point(state.fifo.buffer[1]);
188 | auto coord = state.fifo.buffer[2];
189 | auto point2 = gp0_to_point(state.fifo.buffer[3]);
190 |
191 | assert((state.status & 0x180) == 0);
192 |
193 | auto base_u = ((state.status >> 0) & 0xf) * 64;
194 | auto base_v = ((state.status >> 4) & 0x1) * 256;
195 |
196 | auto clut_x = ((coord >> 16) & 0x03f) * 16;
197 | auto clut_y = ((coord >> 22) & 0x1ff);
198 |
199 | for (int y = 0; y < point2.y; y++) {
200 | for (int x = 0; x < point2.x; x++) {
201 | auto texel = vram::read(base_u + (x / 4),
202 | base_v + y);
203 |
204 | int index = 0;
205 |
206 | switch (x & 3) {
207 | case 0: index = (texel >> 0) & 0xf; break;
208 | case 1: index = (texel >> 4) & 0xf; break;
209 | case 2: index = (texel >> 8) & 0xf; break;
210 | case 3: index = (texel >> 12) & 0xf; break;
211 | }
212 |
213 | auto color = vram::read(clut_x + index,
214 | clut_y);
215 |
216 | vram::write(point1.x + x,
217 | point1.y + y,
218 | color);
219 | }
220 | }
221 |
222 | break;
223 | }
224 |
225 | case 0x68: {
226 | auto color = gp0_to_color(state.fifo.buffer[0]);
227 | auto point = gp0_to_point(state.fifo.buffer[1]);
228 |
229 | gpu::draw_point(point.x,
230 | point.y,
231 | color.r,
232 | color.g,
233 | color.b);
234 | break;
235 | }
236 |
237 | case 0xa0: {
238 | auto &transfer = state.cpu_to_gpu_transfer;
239 | transfer.reg.x = state.fifo.buffer[1] & 0xffff;
240 | transfer.reg.y = state.fifo.buffer[1] >> 16;
241 | transfer.reg.w = state.fifo.buffer[2] & 0xffff;
242 | transfer.reg.h = state.fifo.buffer[2] >> 16;
243 |
244 | transfer.run.x = 0;
245 | transfer.run.y = 0;
246 | transfer.run.active = true;
247 | break;
248 | }
249 |
250 | case 0xc0: {
251 | auto &transfer = state.gpu_to_cpu_transfer;
252 | transfer.reg.x = state.fifo.buffer[1] & 0xffff;
253 | transfer.reg.y = state.fifo.buffer[1] >> 16;
254 | transfer.reg.w = state.fifo.buffer[2] & 0xffff;
255 | transfer.reg.h = state.fifo.buffer[2] >> 16;
256 |
257 | transfer.run.x = 0;
258 | transfer.run.y = 0;
259 | transfer.run.active = true;
260 | break;
261 | }
262 |
263 | case 0xe1:
264 | state.status &= ~0x87ff;
265 | state.status |= (state.fifo.buffer[0] << 0) & 0x7ff;
266 | state.status |= (state.fifo.buffer[0] << 4) & 0x8000;
267 |
268 | state.textured_rectangle_x_flip = ((state.fifo.buffer[0] >> 12) & 1) != 0;
269 | state.textured_rectangle_y_flip = ((state.fifo.buffer[0] >> 13) & 1) != 0;
270 | break;
271 |
272 | case 0xe2:
273 | state.texture_window_mask_x = utility::uclip<5>(state.fifo.buffer[0] >> 0);
274 | state.texture_window_mask_y = utility::uclip<5>(state.fifo.buffer[0] >> 5);
275 | state.texture_window_offset_x = utility::uclip<5>(state.fifo.buffer[0] >> 10);
276 | state.texture_window_offset_y = utility::uclip<5>(state.fifo.buffer[0] >> 15);
277 | break;
278 |
279 | case 0xe3:
280 | state.drawing_area_x1 = utility::uclip<10>(state.fifo.buffer[0] >> 0);
281 | state.drawing_area_y1 = utility::uclip<10>(state.fifo.buffer[0] >> 10);
282 | break;
283 |
284 | case 0xe4:
285 | state.drawing_area_x2 = utility::uclip<10>(state.fifo.buffer[0] >> 0);
286 | state.drawing_area_y2 = utility::uclip<10>(state.fifo.buffer[0] >> 10);
287 | break;
288 |
289 | case 0xe5:
290 | state.x_offset = utility::sclip<11>(state.fifo.buffer[0] >> 0);
291 | state.y_offset = utility::sclip<11>(state.fifo.buffer[0] >> 11);
292 | break;
293 |
294 | case 0xe6:
295 | state.status &= ~0x1800;
296 | state.status |= (state.fifo.buffer[0] << 11) & 0x1800;
297 | break;
298 |
299 | default:
300 | printf("unhandled gp0 command: 0x%08x\n", state.fifo.buffer[0]);
301 | break;
302 | }
303 | }
304 | }
305 |
--------------------------------------------------------------------------------
/src/gpu/gpu_gp1.cpp:
--------------------------------------------------------------------------------
1 | #include "gpu_core.hpp"
2 |
3 | void gpu::gp1(uint32_t data) {
4 | switch ((data >> 24) & 0x3f) {
5 | case 0x00:
6 | state.status = 0x14802000;
7 | state.textured_rectangle_x_flip = 0;
8 | state.textured_rectangle_y_flip = 0;
9 | break;
10 |
11 | case 0x01:
12 | state.fifo.wr = 0;
13 | state.fifo.rd = 0;
14 | break;
15 |
16 | case 0x02:
17 | state.status &= ~0x01000000;
18 | break;
19 |
20 | case 0x03:
21 | state.status &= ~0x00800000;
22 | state.status |= (data << 23) & 0x00800000;
23 | break;
24 |
25 | case 0x04:
26 | state.status &= ~0x60000000;
27 | state.status |= (data << 29) & 0x60000000;
28 | break;
29 |
30 | case 0x05:
31 | state.display_area_x = utility::uclip<10>(data >> 0);
32 | state.display_area_y = utility::uclip< 9>(data >> 10);
33 | break;
34 |
35 | case 0x06:
36 | state.display_area_x1 = utility::uclip<12>(data >> 0);
37 | state.display_area_x2 = utility::uclip<12>(data >> 12);
38 | break;
39 |
40 | case 0x07:
41 | state.display_area_y1 = utility::uclip<10>(data >> 0);
42 | state.display_area_y2 = utility::uclip<10>(data >> 10);
43 | break;
44 |
45 | case 0x08:
46 | state.status &= ~0x7f4000;
47 | state.status |= (data << 17) & 0x7e0000;
48 | state.status |= (data << 10) & 0x10000;
49 | state.status |= (data << 7) & 0x4000;
50 | break;
51 |
52 | default:
53 | printf("unhandled gp1 command: 0x%08x\n", data);
54 | break;
55 | }
56 | }
57 |
--------------------------------------------------------------------------------
/src/input/input.cpp:
--------------------------------------------------------------------------------
1 | #include "input.hpp"
2 |
3 | static input::state_t state;
4 |
5 | uint32_t input::bus_read(int width, uint32_t address) {
6 | switch (address) {
7 | case 0x1f801040:
8 | state.status &= ~(1 << 1);
9 | return 0xffffffff;
10 |
11 | case 0x1f801044:
12 | return state.status | (1 << 0) | (1 << 2);
13 | }
14 |
15 | return 0;
16 | }
17 |
18 | void input::bus_write(int width, uint32_t address, uint32_t data) {
19 | switch (address) {
20 | case 0x1f801040:
21 | state.status |= (1 << 1);
22 | break;
23 | }
24 | }
25 |
--------------------------------------------------------------------------------
/src/input/input.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_INPUT_HPP
2 | #define PSXACT_INPUT_HPP
3 |
4 | #include
5 |
6 | namespace input {
7 | struct state_t {
8 | uint32_t status;
9 | };
10 |
11 | uint32_t bus_read(int width, uint32_t address);
12 |
13 | void bus_write(int width, uint32_t address, uint32_t data);
14 | }
15 |
16 | #endif //PSXACT_INPUT_HPP
17 |
--------------------------------------------------------------------------------
/src/memory/vram.cpp:
--------------------------------------------------------------------------------
1 | #include "vram.hpp"
2 | #include "../utility.hpp"
3 |
4 | static utility::memory_t<20> buffer;
5 |
6 | uint16_t* vram::get_pointer() {
7 | return &buffer.h[0];
8 | }
9 |
10 | uint16_t vram::read(int x, int y) {
11 | return buffer.h[(y * 1024) + x];
12 | }
13 |
14 | void vram::write(int x, int y, uint16_t data) {
15 | if (x < 0 || x > 0x400) return;
16 | if (y < 0 || y > 0x200) return;
17 |
18 | buffer.h[(y * 1024) + x] = data;
19 | }
20 |
--------------------------------------------------------------------------------
/src/memory/vram.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_VRAM_HPP
2 | #define PSXACT_VRAM_HPP
3 |
4 | #include
5 |
6 | namespace vram {
7 | uint16_t *get_pointer();
8 |
9 | uint16_t read(int x, int y);
10 |
11 | void write(int x, int y, uint16_t data);
12 | }
13 |
14 | #endif //PSXACT_VRAM_HPP
15 |
--------------------------------------------------------------------------------
/src/psxact.cpp:
--------------------------------------------------------------------------------
1 | #include "bus.hpp"
2 | #include "cdrom/cdrom_core.hpp"
3 | #include "cpu/cpu_core.hpp"
4 | #include "gpu/gpu_core.hpp"
5 | #include "renderer.hpp"
6 | #include "timer/timer_core.hpp"
7 |
8 | int main(int argc, char *argv[]) {
9 | if (argc != 3) {
10 | return -1;
11 | }
12 |
13 | std::string bios_file_name(argv[1]);
14 | std::string game_file_name(argv[2]);
15 |
16 | cpu::initialize();
17 | bus::initialize(bios_file_name, game_file_name);
18 |
19 | renderer::initialize();
20 |
21 | while (renderer::render()) {
22 | for (int i = 0; i < 10; i++) {
23 | for (int i = 0; i < 33868800 / 60 / 10; i++) {
24 | cpu::tick();
25 | timer::tick_timer_2();
26 | }
27 |
28 | cdrom::run();
29 | }
30 |
31 | bus::irq(0);
32 | }
33 |
34 | renderer::destroy();
35 |
36 | return 0;
37 | }
38 |
--------------------------------------------------------------------------------
/src/renderer.cpp:
--------------------------------------------------------------------------------
1 | #include "renderer.hpp"
2 | #include "memory/vram.hpp"
3 |
4 | SDL_Window *window;
5 | SDL_Surface *surface;
6 | SDL_Event event;
7 |
8 | void renderer::destroy() {
9 | SDL_DestroyWindow(window);
10 | }
11 |
12 | void renderer::initialize() {
13 | SDL_Init(SDL_INIT_VIDEO);
14 |
15 | window = SDL_CreateWindow("psxact",
16 | SDL_WINDOWPOS_CENTERED,
17 | SDL_WINDOWPOS_CENTERED, 1024, 512, 0);
18 |
19 | surface = SDL_GetWindowSurface(window);
20 | }
21 |
22 | uint32_t color_16_to_24(uint32_t color) {
23 | auto r = ((color << 3) & 0xf8);
24 | auto g = ((color >> 2) & 0xf8);
25 | auto b = ((color >> 7) & 0xf8);
26 |
27 | return (0xff << 24) | (r << 16) | (g << 8) | (b << 0);
28 | }
29 |
30 | bool renderer::render() {
31 | SDL_LockSurface(surface);
32 |
33 | auto pixels = (uint32_t *)surface->pixels;
34 | auto colors = vram::get_pointer();
35 |
36 | for (uint32_t i = 0; i < 1024 * 512; i++) {
37 | *pixels++ = color_16_to_24( colors[i] );
38 | }
39 |
40 | SDL_UnlockSurface(surface);
41 | SDL_UpdateWindowSurface(window);
42 |
43 | return !SDL_PollEvent(&event) || event.type != SDL_QUIT;
44 | }
45 |
--------------------------------------------------------------------------------
/src/renderer.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_RENDERER_HPP
2 | #define PSXACT_RENDERER_HPP
3 |
4 | #include
5 |
6 | namespace renderer {
7 | void destroy();
8 |
9 | void initialize();
10 |
11 | bool render();
12 | }
13 |
14 | #endif //PSXACT_RENDERER_HPP
15 |
--------------------------------------------------------------------------------
/src/spu/spu_core.cpp:
--------------------------------------------------------------------------------
1 | #include "spu_core.hpp"
2 |
3 | uint32_t spu::bus_read(int width, uint32_t address) {
4 | return 0;
5 | }
6 |
7 | void spu::bus_write(int width, uint32_t address, uint32_t data) {
8 | }
9 |
--------------------------------------------------------------------------------
/src/spu/spu_core.hpp:
--------------------------------------------------------------------------------
1 | #ifndef __SPU_CORE_HPP__
2 | #define __SPU_CORE_HPP__
3 |
4 | #include
5 |
6 | namespace spu {
7 | uint32_t bus_read(int width, uint32_t address);
8 |
9 | void bus_write(int width, uint32_t address, uint32_t data);
10 | }
11 |
12 | #endif
13 |
--------------------------------------------------------------------------------
/src/timer/timer_core.cpp:
--------------------------------------------------------------------------------
1 | #include "timer_core.hpp"
2 | #include "../bus.hpp"
3 |
4 | static timer::state_t timers[3];
5 |
6 | uint32_t timer::bus_read(int width, uint32_t address) {
7 | int n = (address >> 4) & 3;
8 |
9 | switch ((address & 0xf) / 4) {
10 | case 0: return timers[n].counter;
11 | case 1: return timers[n].control;
12 | case 2: return timers[n].compare;
13 | }
14 |
15 | return 0;
16 | }
17 |
18 | void timer::bus_write(int width, uint32_t address, uint32_t data) {
19 | int n = (address >> 4) & 3;
20 |
21 | switch ((address & 0xf) / 4) {
22 | case 0:
23 | timers[n].counter = uint16_t(data);
24 | break;
25 |
26 | case 1:
27 | timers[n].control = uint16_t(data | 0x400);
28 | timers[n].counter = 0;
29 | break;
30 |
31 | case 2:
32 | timers[n].compare = uint16_t(data);
33 | break;
34 | }
35 | }
36 |
37 | void timer::tick_timer_2() {
38 | // system clock/8
39 | timers[2].divider++;
40 |
41 | if (timers[2].divider == 8) {
42 | timers[2].divider = 0;
43 | timers[2].counter++;
44 |
45 | if (timers[2].counter == timers[2].compare) {
46 | timers[2].control |= 0x800;
47 |
48 | if (timers[2].control & 0x0008) {
49 | timers[2].counter = 0;
50 | }
51 |
52 | if (timers[2].control & 0x0010) {
53 | timers[2].control &= ~0x0400;
54 | bus::irq(6);
55 | }
56 | }
57 | }
58 | }
59 |
--------------------------------------------------------------------------------
/src/timer/timer_core.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_TIMER_CORE_HPP
2 | #define PSXACT_TIMER_CORE_HPP
3 |
4 | #include
5 |
6 | namespace timer {
7 | struct state_t {
8 | uint16_t counter;
9 | uint16_t control;
10 | uint16_t compare;
11 | int divider;
12 | };
13 |
14 | uint32_t bus_read(int width, uint32_t address);
15 |
16 | void bus_write(int width, uint32_t address, uint32_t data);
17 |
18 | void run_timer_0();
19 |
20 | void run_timer_1();
21 |
22 | void tick_timer_2();
23 | }
24 |
25 | #endif //PSXACT_TIMER_CORE_HPP
26 |
--------------------------------------------------------------------------------
/src/utility.hpp:
--------------------------------------------------------------------------------
1 | #ifndef PSXACT_UTILITY_HPP
2 | #define PSXACT_UTILITY_HPP
3 |
4 | #include
5 | #include
6 |
7 | namespace utility {
8 | template
9 | struct memory_t {
10 | static constexpr int mask = (1 << bits) - 1;
11 | static constexpr int size = (1 << bits);
12 |
13 | union {
14 | uint8_t b[size];
15 | uint16_t h[size / 2];
16 | uint32_t w[size / 4];
17 | };
18 | };
19 |
20 | template
21 | void read_all_bytes(const char *filename, memory_t &memory) {
22 | if (FILE* file = fopen(filename, "rb+")) {
23 | fread(memory.b, 1, memory.size, file);
24 | fclose(file);
25 | }
26 | }
27 |
28 | template
29 | uint32_t read_byte(const memory_t &memory, uint32_t address) {
30 | return memory.b[(address & memory.mask) / 1];
31 | }
32 |
33 | template
34 | uint32_t read_half(const memory_t &memory, uint32_t address) {
35 | return memory.h[(address & memory.mask) / 2];
36 | }
37 |
38 | template
39 | uint32_t read_word(const memory_t &memory, uint32_t address) {
40 | return memory.w[(address & memory.mask) / 4];
41 | }
42 |
43 | template
44 | void write_byte(memory_t &memory, uint32_t address, uint32_t data) {
45 | memory.b[(address & memory.mask) / 1] = uint8_t(data);
46 | }
47 |
48 | template
49 | void write_half(memory_t &memory, uint32_t address, uint32_t data) {
50 | memory.h[(address & memory.mask) / 2] = uint16_t(data);
51 | }
52 |
53 | template
54 | void write_word(memory_t &memory, uint32_t address, uint32_t data) {
55 | memory.w[(address & memory.mask) / 4] = data;
56 | }
57 |
58 | template
59 | inline uint32_t sclip(uint32_t value) {
60 | enum { mask = (1 << bits) - 1 };
61 | enum { sign = 1 << (bits - 1) };
62 |
63 | return ((value & mask) ^ sign) - sign;
64 | }
65 |
66 | template
67 | inline uint32_t uclip(uint32_t value) {
68 | enum { mask = (1 << bits) - 1 };
69 | enum { sign = 0 };
70 |
71 | return ((value & mask) ^ sign) - sign;
72 | }
73 |
74 | template
75 | inline bool between(unsigned value) {
76 | return (value & ~(min ^ max)) == min;
77 | }
78 |
79 | template
80 | constexpr unsigned kib() {
81 | return 1024 * value;
82 | }
83 |
84 | template
85 | constexpr unsigned mib() {
86 | return 1024 * kib();
87 | }
88 | }
89 |
90 | #endif //PSXACT_UTILITY_HPP
91 |
--------------------------------------------------------------------------------