├── notes
├── rudin
│ ├── ch-02.tex
│ ├── commands.tex
│ └── ch-01.tex
├── workbook-1
│ ├── ch-07.tex
│ ├── commands.tex
│ ├── ch-06-rings.tex
│ └── ch-06.tex
├── sheets
│ ├── multivariate.tex
│ ├── trig-identities.tex
│ ├── commands.tex
│ ├── types-of-integrals.tex
│ └── study-guide.tex
├── definitions
│ └── cross-product.tex
└── scripts
│ └── euclid.py
├── code
├── src
│ ├── talk.js
│ ├── factor.js
│ ├── min.js
│ ├── polynomial.js
│ └── improve.js
└── package.json
├── .gitignore
└── README.md
/notes/rudin/ch-02.tex:
--------------------------------------------------------------------------------
1 | \documentclass{article}
2 |
3 | \usepackage{amssymb,amsmath,amsfonts,amsthm}
4 | \include{commands}
5 |
6 | \begin{document}
7 |
8 | what
9 |
10 | \end{document}
11 |
--------------------------------------------------------------------------------
/notes/workbook-1/ch-07.tex:
--------------------------------------------------------------------------------
1 | \documentclass{article}
2 | \usepackage{amssymb,amsmath,amsfonts,amsthm}
3 | \include{commands}
4 | \begin{document}
5 |
6 | \section{Additional Topics}
7 |
8 | \end{document}
9 |
--------------------------------------------------------------------------------
/code/src/talk.js:
--------------------------------------------------------------------------------
1 | var net = require('net');
2 | var socket = new net.Socket();
3 |
4 | socket.connect(2323, 'challenge2.airtime.com', function () {
5 |
6 | });
7 |
8 | socket.on('data', function (data) {
9 | console.log(data);
10 | });
11 |
12 | socket.on('close', function () {
13 |
14 | });
--------------------------------------------------------------------------------
/code/src/factor.js:
--------------------------------------------------------------------------------
1 | function factor (n) {
2 | var primes = {}, k;
3 | n = Math.abs(n);
4 | k=2;
5 |
6 | while (k <= n) {
7 | if (n % k === 0) {
8 | n /= k;
9 | primes[k] = k in primes ? primes[k]+1 : 1;
10 | }
11 | else
12 | k++;
13 | }
14 |
15 | return primes;
16 | }
17 |
18 | module.exports = factor;
--------------------------------------------------------------------------------
/code/package.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "Erdos-Euler-Code",
3 | "version": "0.0.0",
4 | "description": "",
5 | "main": "src/improve.js",
6 | "directories": {
7 | "test": "tests"
8 | },
9 | "scripts": {
10 | "test": "echo \"Error: no test specified\" && exit 1"
11 | },
12 | "author": "",
13 | "license": "UNLICENSE",
14 | "dependencies": {
15 | "underscore": "^1.7.0"
16 | }
17 | }
18 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | node_modules
2 | .DS_Store
3 | *.acn
4 | *.acr
5 | *.alg
6 | *.aux
7 | *.bbl
8 | *.blg
9 | *.dvi
10 | *.fdb_latexmk
11 | *.fls
12 | *.glg
13 | *.glo
14 | *.gls
15 | *.idx
16 | *.ilg
17 | *.ind
18 | *.ist
19 | *.lof
20 | *.log
21 | *.lot
22 | *.maf
23 | *.mtc
24 | *.mtc0
25 | *.nav
26 | *.nlo
27 | *.out
28 | *.pdf
29 | *.pdfsync
30 | *.ps
31 | *.snm
32 | *.synctex.gz
33 | *.toc
34 | *.vrb
35 | *.xdy
36 | *.tdo
37 |
--------------------------------------------------------------------------------
/notes/sheets/multivariate.tex:
--------------------------------------------------------------------------------
1 | \documentclass[11pt,twoside,a4paper]{article}
2 |
3 | \title{Multivariate Calc for the GRE}
4 | \author{Matt Owen}
5 |
6 | \begin{document}
7 |
8 | \maketitle
9 | \tableofcontents
10 | \cleardoublepage
11 |
12 | \section{Intro}
13 | \label{intro}
14 |
15 | 2
16 | % Green's Theorem
17 | %
18 | %
19 |
20 | \section{Green's Theorem}
21 | \label{green-s-theorem}
22 |
23 | Crucial Theorem in Multivariate Calculus. Allows for the connection between rectangular-integrals and path-integrals.
24 |
25 | \subsection{Statement}
26 | ...
27 |
28 | \subsection{Proof}
29 | ...
30 |
31 | \subsection{Uses}
32 | ...
33 |
34 | \end{document}
--------------------------------------------------------------------------------
/notes/sheets/trig-identities.tex:
--------------------------------------------------------------------------------
1 | \documentclass[11pt,twoside,a4paper]{article}
2 |
3 |
4 | \usepackage{mathtools}
5 |
6 | \title{Trig Identities}
7 | \author{Matt Owen}
8 |
9 | \begin{document}
10 |
11 | \maketitle
12 | \tableofcontents
13 | \cleardoublepage
14 |
15 | \section{Differentiation}
16 |
17 | \begin{itemize}
18 | \item $ \frac{d}{dx}(\sin x) = \cos x$
19 | \item $ \frac{d}{dx}(\cos x) = -\sin x$
20 | \item $ \frac{d}{dx}(\tan x) = \frac{1}{\cos^2 x}$
21 | \item $ \frac{d}{dx}(\csc x) = -\csc x \cot x$
22 | \item $ \frac{d}{dx}(\sec x) = \sec x \tan x$
23 | \item $ \frac{d}{dx}(\cot x) = -\csc^2 x$
24 | \end{itemize}
25 |
26 |
27 | \end{document}
--------------------------------------------------------------------------------
/notes/rudin/commands.tex:
--------------------------------------------------------------------------------
1 | % Set builder notation
2 | \newcommand{\set}[2]{
3 | \{\ #1 \mid #2\ \}
4 | }
5 |
6 | % ?=
7 | \newcommand{\qeq}{\stackrel{?}{=}}
8 |
9 | % def=
10 | \newcommand{\defeq}{\stackrel{\text{def}}{=}}
11 |
12 | % Definition block with label
13 | \newcommand{\DEFINITION}[1]{
14 | \label{def-#1}
15 | {\noindent \bf Definition #1}
16 | }
17 |
18 | % Theorem block with label
19 | \newcommand{\THEOREM}[1]{
20 | \label{theorem-#1}
21 | {\noindent \bf #1 Theorem}
22 | }
23 |
24 | % Generator:
25 | \newcommand{\gen}[1]{
26 | \langle #1 \rangle
27 | }
28 |
29 | % Modulo: (mod 3)
30 | \newcommand{\modulo}[1]{
31 | \ (\textrm{mod}\ #1)
32 | }
33 |
--------------------------------------------------------------------------------
/notes/sheets/commands.tex:
--------------------------------------------------------------------------------
1 | % Set builder notation
2 | \newcommand{\set}[2]{
3 | \{\ #1\ \mid\ #2\ \}
4 | }
5 |
6 | % ?=
7 | \newcommand{\qeq}{\stackrel{?}{=}}
8 |
9 | % def=
10 | \newcommand{\defeq}{\stackrel{\text{def}}{=}}
11 |
12 | % Definition block with label
13 | \newcommand{\DEFINITION}[1]{
14 | \label{def-#1}
15 | {\noindent \bf Definition #1}
16 | }
17 |
18 | % Theorem block with label
19 | \newcommand{\THEOREM}[1]{
20 | \label{theorem-#1}
21 | {\noindent \bf #1 Theorem}
22 | }
23 |
24 | % Generator:
25 | \newcommand{\gen}[1]{
26 | \langle #1 \rangle
27 | }
28 |
29 | % Modulo: (mod 3)
30 | \newcommand{\modu}[1]{
31 | \ (\textrm{mod}\ #1)
32 | }
33 |
--------------------------------------------------------------------------------
/notes/workbook-1/commands.tex:
--------------------------------------------------------------------------------
1 | % Set builder notation
2 | \newcommand{\set}[2]{
3 | \{\ #1\ \mid\ #2\ \}
4 | }
5 |
6 | % ?=
7 | \newcommand{\qeq}{\stackrel{?}{=}}
8 |
9 | % def=
10 | \newcommand{\defeq}{\stackrel{\text{def}}{=}}
11 |
12 | % Definition block with label
13 | \newcommand{\DEFINITION}[1]{
14 | \label{def-#1}
15 | {\noindent \bf Definition #1}
16 | }
17 |
18 | % Theorem block with label
19 | \newcommand{\THEOREM}[1]{
20 | \label{theorem-#1}
21 | {\noindent \bf #1 Theorem}
22 | }
23 |
24 | % Generator:
25 | \newcommand{\gen}[1]{
26 | \langle #1 \rangle
27 | }
28 |
29 | % Modulo: (mod 3)
30 | \newcommand{\modu}[1]{
31 | \ (\textrm{mod}\ #1)
32 | }
33 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Mathematics and Review
2 |
3 | *"Reunion of Broken Parts"*
4 |
5 | ## About
6 |
7 | A review of Mathematical material by Matt Hammerstadt. My life is git now.
8 | It's probably crucial to accept that, and move forward using it to an advantage.
9 |
10 | This work is written in LaTeX as a tool used for reflection. It probably has
11 | more archival strength than print, and - tbh - I might actually review it (which
12 | I wouldn't if it was in Five Stars).
13 |
14 | ## Manifest
15 |
16 | * `/rudin` : A study using *Principles of Mathematics by Rudin*
17 | * `/workbook-1` : First GRE Workbook
18 | * `/exams` : Lessons learned from practice exam, and explanation of tricky solutions.
19 |
20 | ## Manifesto
21 |
22 | In addition to actually practicing my Math skills, this is also become on of my
23 | many tools for reflection.
24 |
--------------------------------------------------------------------------------
/notes/definitions/cross-product.tex:
--------------------------------------------------------------------------------
1 | \documentclass{article}
2 | \usepackage{amssymb,amsmath,amsfonts,amsthm}
3 | \newcommand{\mat}[4]{
4 | \left| \begin{array}{cc}
5 | #1 & #2 \\
6 | #3 & #4
7 | \end{array} \right|
8 | }
9 |
10 | \begin{document}
11 |
12 | $ i, j, k \in \mathbb{R}^3 $
13 |
14 |
15 | \begin{align*}
16 | \vec{a} \times \vec{b} & = \vec{c}\\
17 | & =
18 | \left| \begin{array}{ccc}
19 | \vec{i} & \vec{j} & \vec{k} \\
20 | a_0 & a_1 & a_2 \\
21 | b_0 & b_1 & b_2
22 | \end{array} \right| \\
23 | & = \vec{i} \mat{a_1}{a_2}{b_1}{b_2} - \vec{j} \mat{a_0}{a_2}{b_0}{b_2} + \vec{k}\mat{a_0}{a_1}{b_0}{b_1} \\
24 | & =
25 | \left[ \begin{array}{ccc}
26 | a_1 b_2 - a_2 b_1 \\
27 | a_2 b_0 - a_0 b_2 \\
28 | a_0 b_1 - a_1 b_0
29 | \end{array} \right]
30 | \end{align*}
31 |
32 | \end{document}
33 |
--------------------------------------------------------------------------------
/notes/scripts/euclid.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python
2 |
3 | # Greatest Common Divisor
4 | # Computes the Greatest Common Divisor between two integers using Euclid's
5 | # Algorithm. If the innards are wrapped in more efficient methods, then it'd
6 | # likely work quickly for very large integers!
7 | def gcd (a, b):
8 | # Let us compute the gcd of negative numbers
9 | if a < 0: a = -a
10 | if b < 0: b = -b
11 | # Ensure that b is the larger number
12 | if b < a: (a, b) = (b, a)
13 |
14 | # Do the first iteration by hand
15 | r = b % a
16 |
17 | while r != 0:
18 | # Note: b = a * m + r
19 | b = a
20 | a = r
21 | m = b // a
22 | r = b % a
23 |
24 | return a
25 |
26 | # Least Common Multiple
27 | # Computes the least common multiple between two integers. This method is not
28 | # good for very large integers
29 | def lcm (a, b): return (a*b)/gcd(a, b)
30 |
31 | print gcd(72, 22)
32 | print lcm(72, 22)
33 |
34 |
--------------------------------------------------------------------------------
/code/src/min.js:
--------------------------------------------------------------------------------
1 | function MIN (n) {
2 |
3 | if (n < 1)
4 | return undefined;
5 |
6 |
7 | var min_val = n*(n+1);
8 |
9 | for (var i=0; i < 2000; i++) {
10 | var total = 0;
11 | var vals = random_array(n);
12 | for (var k=0; k < n; k++) {
13 | total += vals[k] * (k+1);
14 | }
15 |
16 | if (total >= 0 && total < min_val) {
17 | min_val = total;
18 | }
19 | }
20 |
21 | /**
22 | * [random_array description]
23 | * @param {[type]} num [description]
24 | * @return {[type]} [description]
25 | */
26 | function random_array (num) {
27 | var vals = new Array(num);
28 | for (var i=0; i < vals.length; i++)
29 | vals[i] = Math.random() > 0.5 ? +1 : -1;
30 | return vals;
31 | }
32 |
33 | return min_val;
34 | }
35 |
36 |
37 |
38 | // var sum = 0;
39 |
40 | // for (var i=1; i < 10; i++) {
41 | // sum += MIN(i);
42 | // }
43 |
44 | // console.log(MIN(10));
45 | // console.log(sum);
46 |
47 | module.exports = MIN;
--------------------------------------------------------------------------------
/code/src/polynomial.js:
--------------------------------------------------------------------------------
1 | var _ = require('underscore');
2 | var factor = require('./factor.js');
3 |
4 | function p (x) {
5 | // return Math.pow(x, 3) + x;
6 | return Math.pow(h(x), 1/6.0);
7 | }
8 |
9 | function deriv (f, delta) {
10 | delta = delta || 0.00000001;
11 | return function (x) {
12 | return (f(x+delta) - f(x-delta))/delta/2.0;
13 | };
14 | }
15 |
16 | function solve (F, x0) {
17 |
18 | var error;
19 |
20 | x0 = x0 || 0;
21 |
22 | f = deriv(F);
23 |
24 | do {
25 | x1 = x0 - F(x0)/f(x0);
26 | x0 = x1;
27 | error = F(x1);
28 | } while (error < 0.000000001);
29 |
30 | return x1;
31 | }
32 |
33 | // var guess = solve(p, 10000000.0);
34 |
35 | // console.log(Math.pow(guess, 6));
36 |
37 | function g (y) {
38 | return Math.pow(y, 6);
39 | }
40 |
41 | function h (x) {
42 | return Math.pow(x, 6) + 8 * Math.pow(x, 4) - 6 * Math.pow(x, 2) + 8;;
43 | }
44 |
45 | function works (x, y) {
46 | return g(y) === h(x);
47 | }
48 |
49 |
50 | var BEGIN = -10;
51 | var END = +100;
52 |
53 | for (var n=BEGIN; n <= END; n++) {
54 |
55 | var x = Math.pow(h(n), 1/6.0);
56 |
57 | if (x)
58 | console.log(n, x);
59 | }
60 |
61 |
62 |
63 |
--------------------------------------------------------------------------------
/notes/sheets/types-of-integrals.tex:
--------------------------------------------------------------------------------
1 | \documentclass[11pt,twoside,a4paper]{article}
2 |
3 | \newcommand{\curl}{
4 | \text{curl}\
5 | }
6 |
7 | % \newcommand{\vec}[1]{
8 | % \mathbf{\1}
9 | % }
10 |
11 | \usepackage{mathtools}
12 |
13 | \title{Multivariate Integrals}
14 | \author{Matt Owen}
15 |
16 | \begin{document}
17 |
18 | \maketitle
19 | \tableofcontents
20 | \cleardoublepage
21 |
22 | \section{Definitions}
23 | \label{definitions}
24 |
25 | \subsection{Fundamental Theorem of Calc}
26 | \label{fun-thm-single-calc}
27 |
28 | $\int_a^b F'(x) = F(b) - F(a)$
29 |
30 | \subsection{Fundamental Theorem for Line Integrals}
31 | \label{fun-thm-line-integral}
32 |
33 | Let $C = \{ \vec{r}(t) | a \leq t \leq b \}$
34 | $$ \int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)) $$
35 |
36 | \subsection{Green's Theorem}
37 | \label{greens-theorem}
38 |
39 | $$ \iint_D{\frac{\partial\mathbf{Q}}{\partial x} - \frac{\partial\mathbf{P}}{\partial y} } = \int_C \mathbf{P}dx + \mathbf{Q}dy$$
40 |
41 | \subsection{Stokes' Theorem}
42 |
43 | $$ \iint_S{\curl\mathbf{F}\cdot d\mathbf{S}} = \int_C \mathbf{F} \cdot d\mathbf{r} $$
44 |
45 |
46 | \subsection{Divergence Theorem}
47 |
48 | Note: This is a higher-dimensional Green`s Theorem, relating parametric surfaces to curl.
49 |
50 |
51 |
52 | \end{document}
--------------------------------------------------------------------------------
/code/src/improve.js:
--------------------------------------------------------------------------------
1 | var _ = require('underscore');
2 |
3 | var MIN = require('./min.js')
4 |
5 | function improve (n, vec) {
6 | var sub_array = [0];
7 |
8 | if (typeof vec === 'undefined')
9 | vec = number_array(n);
10 |
11 | var current_total = 0;
12 | var iterations = 0;
13 |
14 |
15 | do {
16 | current_total = vec.reduce(function (a, b) { return a + b; });
17 | current_total2 = n*(n+1)/2.0 - sub_array.reduce(function (a, b) { return a+b; });
18 | // console.log(current_total2, current_total);
19 | iterations++;
20 | } while (iterate(vec));
21 |
22 | // console.log(delta_list);
23 | // console.log('best =', best_delta);
24 |
25 | // console.log('iterations =', iterations);
26 | return current_total;
27 |
28 | /**
29 | * [iterate description]
30 | * @param {[type]} vec [description]
31 | * @return {[type]} [description]
32 | */
33 | function iterate (vec) {
34 | var min_index = -1;
35 | var min_delta = Infinity;
36 | var max_delta = -Infinity;
37 |
38 | // 1 ... n
39 | //
40 |
41 | _.each(vec, function (val, index) {
42 | var next_val = current_total - 2 * val;
43 | var delta = 2*val;
44 |
45 | if (next_val >= 0 && delta > max_delta) {
46 | min_index = index;
47 | max_delta = delta;
48 | }
49 | });
50 |
51 |
52 |
53 | // console.log('max delta >', max_delta);
54 | vec[min_index] *= -1;
55 | sub_array.unshift(max_delta);
56 |
57 | // console.log(sub_array[0]/2, vec[min_index]);
58 |
59 | // console.log('best delta =', min_delta);
60 |
61 | return max_delta > 0;
62 |
63 | }
64 | }
65 |
66 | function D (n) {
67 | return n % 2;
68 | }
69 |
70 | function number_array (n) {
71 | var arr = new Array(n);
72 | for (var i=0; i < arr.length; i++) {
73 | arr[i] = i+1;
74 | }
75 | return arr;
76 | }
77 |
78 | console.log(summa);
79 | // console.log(improve(4));
80 | // console.log(MIN(702));
--------------------------------------------------------------------------------
/notes/workbook-1/ch-06-rings.tex:
--------------------------------------------------------------------------------
1 | \documentclass{article}
2 |
3 | \usepackage{amssymb,amsmath,amsfonts,amsthm}
4 | \include{commands}
5 |
6 | \begin{document}
7 |
8 | \section{Rings}
9 |
10 | % RING HOMOMORPHISMS
11 | % ...
12 | % ...
13 | \subsection{Ring Homomorphisms}
14 |
15 | $\phi$ is a \emph{ring homomorphism}, if:
16 | \begin{itemize}
17 | \item $\phi(a+b)=\phi(a)\oplus\phi(b)$
18 | \item $\phi(a \cdot b)=\phi(a)\otimes\phi(b)$
19 | \end{itemize}
20 |
21 | % FEATURES OF RING HOMOMORPHISMS
22 | % ...
23 | % ...
24 | \subsection{Features of Ring Homomorphisms}
25 |
26 |
27 | \begin{enumerate}
28 | \item
29 | The \textbf{kernel} of a ring homomorphism is the set:\\
30 | $\ker \phi \defeq \set{a\in\mathbf{R}}{\phi(a)=0'}$ \\
31 | Note that $\ker\phi: \mathbf{R} \mapsto \mathbf{R'}$ is a subring of
32 | $\mathbf{R}$
33 | \item
34 | The image of $\mathbf{R}$, $\phi(\mathbf(R)$ is a subring of $\mathbf{R'}$
35 | \item
36 | The image of $0_+\in\mathbf{R}$ is $0_+'\in\mathbf{R'}$.\\
37 | Note that this means: $\phi(-a)=-\phi(a)$
38 |
39 | \end{enumerate}
40 |
41 |
42 | \subsection{Extensions of Rings}
43 |
44 | {\noindent}Rings are sets $\mathbf{R}$ where:
45 | \begin{itemize}
46 | \item $(\mathbf{R}, +)$ is an Abelian group
47 | \item $(\mathbf{R}, \cdot)$ is a semigroup (multiplication is associative)
48 | \item
49 | The \emph{distributive law} holds:
50 | $a \cdot (b + c) = (a + b) \cdot c = a \cdot c + a \cdot b$
51 | \end{itemize}
52 |
53 | {\noindent}Types of rings, and elemts:
54 | \begin{itemize}
55 | \item
56 | A {\bf Ring with Unity} is a a ring where $(R, \cdot)$ is a
57 | monoid (closed, associative, identity)
58 | \item
59 | A {\bf Unit} is a \emph{ring element} that has a multiplicative
60 | inverse.
61 | \item
62 | A {\bf Division Ring} is a ring where every nonzero element has a
63 | \emph{multiplicative inverse}.
64 | \item
65 | An {\bf Integral Domain} is a commutative ring, where:
66 | $a \cdot b = 0 \iff a=0 \lor b=0$
67 | \item
68 | A {\bf Field} is a commutative \emph{division ring}.
69 | \end{itemize}
70 |
71 | \end{document}
72 |
--------------------------------------------------------------------------------
/notes/sheets/study-guide.tex:
--------------------------------------------------------------------------------
1 | \documentclass[10pt,twoside,a4paper]{article}
2 |
3 | \title{What to Study}
4 |
5 | \begin{document}
6 |
7 | \section*{vv/e}
8 |
9 | List of common topics in the GRE; topics that are easy to convert into problems.
10 |
11 | \section*{List}
12 |
13 | \small
14 |
15 | % \tableofcontents
16 | % \cleardoublepage
17 |
18 | \begin{description}
19 | \item[Calculus] ...
20 | \begin{itemize}
21 | \item u-substitution
22 | \item convergence theorems
23 | \item limit tests
24 | \item l'hopital rule
25 | \item power series
26 | \item partial-fraction decomposition
27 | \item fundamental theorem of calculus
28 | \item mean-value theorem, Cauchy's mean-value theorem
29 | \item riemann and lesbesgue integration
30 | \item improper integral
31 | \item integration identities
32 | \item inverse function
33 | \end{itemize}
34 |
35 | \item[Multivariate Calculus] ...
36 | \begin{itemize}
37 | \item surface of revolutions
38 | \item tangent planes
39 | \item chain-rule
40 | \item lagrange multipliers
41 | \item integration: exact equations, path integrals, arc-tangent integrals, green's theorem
42 | \item vector algebra: cross-products, norms,
43 | \end{itemize}
44 |
45 | \item[Differential Equations] ...
46 | \begin{itemize}
47 | \item nonlinear first-order
48 | \item linear n-order
49 | \item substitution techniques
50 | \item exact equation
51 | \item misc. techniques
52 | \end{itemize}
53 |
54 | \item[Linear Algebra] ...
55 | \begin{itemize}
56 | \item computing determinant
57 | \item rank-nullity theorem
58 | \item inversion
59 | \item subspaces
60 | \item eigenvalues
61 | \item change-of-base
62 | \end{itemize}
63 |
64 | \pagebreak
65 |
66 | \item[Trigonometry] ...
67 | \begin{itemize}
68 | \item identities: double-angle, half-angle
69 | \item integration: identities, u-substitution
70 | \item complex-number operations
71 | \end{itemize}
72 |
73 | \item[Complex Analysis] ...
74 | \begin{itemize}
75 | \item lambert series
76 | \item Residual Theorem
77 | \item logarithms, explonents, trig operators
78 | \end{itemize}
79 |
80 | \item[Abstract Algebra] ...
81 | \begin{itemize}
82 | \item definition of group, ring, field
83 | \item size of groups, rings, fields: number theory
84 | \item order of a group
85 | \item cyclic groups and generators
86 | \item diophantine equations
87 | \item homomorphism
88 | \end{itemize}
89 |
90 | \item[Topology] ...
91 | \begin{itemize}
92 | \item continuous functions
93 | \item inverse-functions
94 | \item homomorphism
95 | \item hausdorff, connected
96 | \item theory
97 | \item metric spaces
98 | \end{itemize}
99 | \end{description}
100 |
101 |
102 |
103 | \end{document}
--------------------------------------------------------------------------------
/notes/rudin/ch-01.tex:
--------------------------------------------------------------------------------
1 | % Review + Learning Latex
2 | %
3 | %
4 |
5 | \documentclass{article}
6 |
7 | \usepackage{amssymb,amsmath,amsfonts,amsthm}
8 |
9 | \newcommand{\set}[2]{
10 | \{ #1 \mid #2 \}
11 | }
12 | \newcommand{\qeq}{\stackrel{?}{=}}
13 | \newcommand{\defeq}{\stackrel{\text{def}}{=}}
14 |
15 |
16 | \newcommand{\DEFINITION}[1]{
17 | \label{def-#1}
18 | {\noindent \bf Definition #1}
19 | }
20 |
21 | \newcommand{\THEOREM}[1]{
22 | \label{theorem-#1}
23 | {\noindent \bf #1 Theorem}
24 | }
25 |
26 | \begin{document}
27 |
28 | Chapter 1.
29 |
30 | \section{Introduction}
31 |
32 | \subsection{Rational Numbers}
33 |
34 | $
35 | \forall p \in \mathbb{Q}, \exists m, n \in \mathbb{Z}, \mid p = \frac{m}{n}
36 | $
37 |
38 | \subsection{Irrational Numbers}
39 |
40 | $
41 | \exists p \in \mathbb{R}, s.t. \forall m, n \in \mathbb{Z}, p \neq \frac{m}{n}
42 | $
43 |
44 | \subsubsection{Example}
45 |
46 | Suppose:
47 | \begin{align*}
48 | p \in \mathbb{Q} \\
49 | m,n \in \mathbb{Z}, st. p =j \frac{m}{n} \\
50 | gcd(m, n) = 1 \\
51 | \end{align*}
52 |
53 | \begin{align*}
54 | p^2 & < 2 \\
55 | \frac{m^2}{n^2} & < 2 \\
56 | m^2 & < 2 n^2
57 | \end{align*}
58 |
59 | Then:
60 | \begin{align*}
61 | q & = p - \frac{p^2-2}{p+2} \\
62 | q & = \frac{2p-2}{p+2} \\
63 | q^2 & = \frac{4p^2 - 8p - 4}{(p+2)^2} \\
64 | q^2 - 2 & = \frac{(4p^2 - 8p - 4) - 2 (p+2)^2}{(p+2)^2} \\
65 | q^2 - 2 & = \frac{(4p^2 - 8p + 4) - (2p^2 + 8p + 8)}{(p+2)^2} \\
66 | q^2 - 2 & = \frac{2p^2 - 16p - 4}{(p+2)^2}
67 | \end{align*}
68 |
69 | \section{Ordered Sets}
70 |
71 | {\bf Definition.} Let S be a set. An \emph{order} on S is a relation, denoted by <, with the following two properties:
72 |
73 | \begin{equation}
74 | If x,y \in S, \\
75 | Then x < y, x = y, or y < x
76 | \end{equation}
77 |
78 | \begin{align*}
79 | If: & x, y, z \in S \\
80 | And: & x < y, y < z \\
81 | Then: & x < z
82 | \end{align*}
83 |
84 | {\bf Definition.} An \emph{ordered set} is a set S in which an order is defined.
85 |
86 | {\bf Definition.}
87 | Suppose S is an ordered set, and $ E \subset S $.
88 | If there $ \exists \beta \in S, st. \forall x \in E, x < \beta $, then E is \emph{bounded above} by $\beta$.
89 |
90 | {\bf Definition.}
91 | Suppose $\mathbf{S}$ is an ordered set, $\mathbf{E} \subset \mathbf{S}$, and $\mathbf{E}$ is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:
92 | \begin{gather*}
93 | \forall x \in \mathbf{E}, \quad x < \alpha \\
94 | If \quad \gamma < \alpha, \quad then \quad \gamma is not an upper bound of \mathbf{E}
95 | \end{gather*}
96 |
97 | Then:
98 | $$ \alpha = \sup \mathbf{E} $$
99 |
100 | \subsection{Examples}
101 | (a) ***Ignored \\
102 | (b) If $\alpha = \sup \mathbf{E}$ exists, then $\alpha$ may or may not be in $\mathbf{E}$. \\
103 | (c) Let $\mathbf{E}$ consist of all numbers $\frac{1}{n}$, when n = 1\dots. Then, $\sup\mathbf{E} = 1$ and $\inf\mathbf{E} = 0$.
104 |
105 | {\bf Definition.} An ordered set $\mathbf{S}$ is said to have the \emph{least-upperbound property} if the following is true: \\
106 |
107 | \begin{enumerate}
108 | \item
109 | If $\mathbf{E} \subset \mathbf{S}$, $\mathbf{E}$ is not empty, and $\mathbf{E}$ is bounded above,
110 | then $\sup\mathbf{E} \in \mathbf{S}$
111 | \end{enumerate}
112 |
113 |
114 | {\bf Given.}
115 | $$ \mathbf{S} \text{is an ordered set with a least upper bound} $$
116 | $$ \alpha := x $$
117 | $$ \mathbf{B} \subset \mathbf{S} $$
118 | $$ \mathbf{B} \neq \emptyset $$
119 | $$ \mathbf{L} := \set{y \in \mathbf{S}}{y \leq x \quad \forall x \in \mathbf{B}} $$
120 |
121 | {\bf Prove.}
122 | $$ \alpha = \sup\mathbf{L} $$
123 | $$ \alpha = \inf\mathbf{B} $$
124 |
125 | {\bf Proof.}
126 | $$ \text{Since $\mathbf{L}$ is bounded below, } \mathbf{L} \neq \emptyset $$
127 | $$ \text{Every $\mathbf{B}$ is an upper-bound for $\mathbf{L}$} $$
128 | $$ \text{$\mathbf{L}$ is bounded above, because $\mathbf{B}$ is nonempty} $$
129 | $$ \sup\mathbf{L} \in \mathbf{S} \text{, because $\mathbf{S}$ has a least upperbound $\beta$, which is greater than everything in $\mathbf{S}$ and $\mathbf{L}$} $$
130 | $$ \text{If } \gamma < \alpha, \gamma \text{ is not an upper-bound of } \mathbf{L} \text{, and } \gamma \notin \mathbf{B} $$
131 | $$ \text{Thus } \alpha \leq x, \quad \forall x \in \mathbf{B} $$
132 | $$ \text{Thus } \alpha \in \mathbf{L} $$
133 | $$ \text{But } \alpha \notin \mathbf{B} $$
134 | $$ \text{Then this kinda becomes too confusing for me to follow on computer, because $\gamma$ comes out of nowhere} $$
135 |
136 | \section{Fields}
137 |
138 | {\bf Definition.}
139 | A \emph{field} is a set $\mathbf{F}$ with two operations, called \emph{addition} and \emph{multipleication}, which satisfy the field axioms:
140 | \begin{description}
141 | \item[\emph{closure addition}:]
142 | If $x \in \mathbf{F}$, then their sum $x + y \in \mathbf{BF}$
143 | \item[\emph{commutative addition}:]
144 | $x + y = y + x$
145 | \item[\emph{assosciative addition}:]
146 | $(x + y) + z = x + (y + z)$
147 | \item[\emph{identity addition}:]
148 | $\mathbf{F}$ contains an element $0$ s.t. $0 + x = x, \quad \forall x\in F$
149 | \item[\emph{Inverse addition}:]
150 | $\forall x \in \mathbf{F}, \quad \exists -x \in \mathbf{F}, \text{ s.t. } x + (-x) = 0$
151 | \item[\emph{Closure (multiplication)}:]
152 | If $x \in \mathbf{F}$, then their product $x \cdot y \in \mathbf{BF}$
153 | \item[\emph{Commutative (multiplication)}:]
154 | $x \cdot y = y \cdot x$
155 | \item[\emph{Assosciative (multiplication)}:]
156 | $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
157 | \item[\emph{Identity (multiplication)}:]
158 | $\mathbf{F}$ contains an element $1$ s.t. $1 \cdot x = x, \quad \forall x\in F$
159 | \item[\emph{Inverse (multiplication)}:]
160 | $\forall x \in \mathbf{F\setminus\{0\}}, \quad \exists x^{-1} \in \mathbf{F}, \text{ s.t. } x \cdot (x^{-1}) = 1$
161 | \item[\emph{Distribution}:]
162 | $x \cdot (y + z) = x \cdot y + x \cdot z, \quad \forall x, y, z \in \mathbf{F}$
163 |
164 | \end{description}
165 |
166 |
167 | \subsection{Proposition}
168 |
169 | {\noindent\bf Proposition}
170 |
171 | \begin{enumerate}
172 | \item If $x + y = x + z$, then $y = z$
173 | \item If $x + y = x$, then $y = 0$
174 | \item If $x + y = 0$, then $y = -x$
175 | \item $-(-x) = x$
176 | \end{enumerate}
177 |
178 | {\bf Proof.}
179 |
180 | (a)
181 | \begin{align*}
182 | y & = 0 + y \\
183 | & = (x + (-x)) + y\\
184 | & = -x + (x + y) \\
185 | & = -x + (x + z) \\
186 | & = (-x + x) + z \\
187 | & = 0 + z \\
188 | & = z
189 | \end{align*}
190 | (b)
191 | \begin{align*}
192 | x + y & = x \\
193 | x + y & = x + 0 \\
194 | \text{Thus } y = 0 \text{ by the previous proof}
195 | \end{align*}
196 |
197 | (c)
198 | \begin{align*}
199 | \text{Skipped.}
200 | \end{align*}
201 |
202 | (d)
203 | \begin{align*}
204 | -(-x) & \qeq \dots \\
205 | y & := -x \\
206 | -y & = 0 - y \\
207 | -y & = (x - x) - y \\
208 | & = (x + y) - y \\
209 | & = x + (y - y) \\
210 | & = x + 0 \\
211 | & = x \\
212 | -(-x) & = x
213 | \end{align*}
214 |
215 |
216 | \pagebreak
217 |
218 | {\noindent\bf Definition.}
219 | An \emph{Ordered Field} is a \emph{Field} $\mathbf{F}$, which is also an \emph{ordered set}, such that:
220 | \begin{itemize}
221 | \item $x + y < x + z$, if $x, y, z \in \mathbf{F}$ and $y < z$
222 | \item $x \cdot y > 0$ if $x, y \in \mathbf{F}$, $x > 0$, and $y > 0$
223 | \end{itemize}
224 |
225 |
226 | \subsection{The Real Field}
227 |
228 | {\noindent\bf Theorem.}
229 | There exists an ordered field $\mathbf{R}$ which has the least upperbound property.
230 | $\mathbb{Q} \subset \mathbb{R}$
231 |
232 | {\noindent\bf Theorem.}
233 | \begin{itemize}
234 | \item If $x, y \in \mathbb{R}$ and $x > 0$, then $\exists n \in \mathbb{Z}$ st. $nx > y$
235 | \item If $x, y \in \mathbb{R}$ and $x < y$, then $\exists p \in \mathbb{Q}$ st. $x < p < y$
236 | \end{itemize}
237 |
238 | {\noindent\bf Proof.}
239 | (a)
240 | $$ A := \set{nx}{n \in \mathbb{Z}} $$
241 | $$ \text{Assume to the contrary that } \forall n \in \mathbb{Z}, nx \le y $$
242 | $$ \text{Then } y \text{ is an upperbound of } \mathbf{A} $$
243 | $$ \text{So define } \alpha := \sup A $$
244 | $$ \alpha - x < \alpha \quad\because x > 0 $$
245 | $$ \exists m \in \mathbb{Z} \text{, st. } \alpha - x < mx \quad\because a - x \text{ is not an upperbound of } \mathbf{A} $$
246 | $$ \text{But then } \alpha < (m+1)x \in A \text{, which impossible because $\alpha$ is an upperbound for $\mathbf{A}$}$$
247 | $$ \therefore \text{(a) is true, aka the contrary is absurd} $$
248 |
249 | (b)
250 | \begin{align*}
251 | \text{\bf Given.} \\
252 | & x, y \in \mathbb{R} \land x < y \\
253 | \text{\bf Show.} \\
254 | & \exists p \in \mathbb{Q}: x < p < y \\
255 | \text{\bf Proof.} \\
256 | & y - x > 0 & \because x < y \\
257 | & \exists n \in \mathbb{Z}: n \cdot (y-x) > 1 & \because proof (a) \\
258 | & \text{Let $m_1$ be the integer st. } nx < m_1 \\
259 | & \text{Let $m_2$ be the integer st. } -nx < m_2 \\
260 | & -m_2 < nx < m_1 \\
261 | & \exists m \in \mathbb{Z}: -m_2 \le m \le m_1 & \because \mathbb{Z}\text{is ordered} \\
262 | & m - 1 \le nx < m \\
263 | & nx < m \le nx + 1 < ny & (!!!) \\
264 | & x < \frac{m}{n} < y & \because n > 0 \\
265 | & \text{Let } p = \frac{m}{n} \\
266 | & x < p < y \\
267 | & \qed... ask about me
268 | \end{align*}
269 |
270 |
271 |
272 | \subsection{}
273 |
274 |
275 | % Theorem
276 | %
277 | %
278 | {\bf 1.21 Theorem}
279 |
280 | \begin{align*}
281 | \text{\bf Prove.} \\
282 | & \forall x > 0 \in \mathbb{R}, \forall n > 0 \in \mathbb{Z}, \exists! y > 0 : y^n = x \\
283 | \text{\bf Note.} \\
284 | & \text{There is at most one $y > 0 : y^n = x$, because } \\
285 | & 0 < y_1 < y_2 \implies y^n < y^m \\
286 | \text{\bf Outline.} \\
287 | & \text{1. Okay} \\
288 | & \text{2. Okay} \\
289 | \text{\bf Proof.} \\
290 | & \mathbf{A} := \set{y \in \mathbb{R}}{ y > 0 \land y^n < x } \\
291 | & \text{Let } \alpha = \sup\mathbf{A} & \because \text{$\mathbf{A}$ is bound by $y$, there is a supremum} \\
292 | & \text{Assume to the contrary that $y^n < x$} & \text{Note: }\\
293 | \end{align*}
294 |
295 | Fuck
296 |
297 |
298 |
299 | \pagebreak
300 |
301 | \section{Extended Real Number Line}
302 |
303 | {\noindent \bf Definition 1.23}\label{def-1-23} The extended real reals $\defeq \mathbb{R} \cup { -\infty, +\infty } $
304 |
305 | {\noindent} $ \forall x \in \mathbb{R}, -\infty < x < \infty $
306 |
307 | Note that the extended-reals do not form a field, however the following is "customary":
308 |
309 | \begin{itemize}
310 | \item
311 | \begin{itemize}
312 | \item $ x + \infty = +\infty $
313 | \item $ x - \infty = -\infty $
314 | \item $ \frac{x}{+\infty} = \frac{x}{-\infty} = 0 $
315 | \end{itemize}
316 | \item
317 | \begin{itemize}
318 | \item If $x > 0$, then $x \cdot (+\infty) = +\infty$
319 | \item If $x > 0$, then $x \cdot (-\infty) = -\infty$
320 | \end{itemize}
321 | \item
322 | \begin{itemize}
323 | \item If $x < 0$, then $x \cdot (+\infty) = -\infty$
324 | \item If $x < 0$, then $x \cdot (-\infty) = +\infty$
325 | \end{itemize}
326 | \end{itemize}
327 |
328 | \section{The Complex Field $\mathbb{C}$}
329 |
330 | \DEFINITION{1.24} A \emph{complex} number is an ordered pair $(a, b)$ with $a, b \in \mathbb{R}$
331 |
332 | We define, $ \forall x, y \in \mathbb{C} $:
333 | \begin{itemize}
334 | \item $ x + y = (a + c, b + d) $
335 | \item $ x y = (ac - bd, ad + bc) $
336 | \item $ 0 = (0, 0) $
337 | \item $ I = (1, 0) $
338 | \end{itemize}
339 |
340 | \THEOREM{1.25} $\mathbb{C}$ is a field
341 |
342 | \begin{align*}
343 | {\bf Prove.} \\
344 | & \mathbb{C} \text{is a field} \\
345 | {\bf Given.} \\
346 | & x = (a, b), y = (c, d), z = (e, f)
347 | {\bf Proof.} \\
348 | & \text{(A1)} x + 0 = (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) \\
349 | & \text{(A2)} x + y = (a, b) + (c, d) = (a + c, b + d) = (c + a, d + b) = y + x \\
350 | & \text{(A3)} (x + y) + z = (a + c, b + d) + (e, f) = (a + c + e, b + d + f) = (a, b) + (c + e, d + f) = x + (y+z)
351 | & \text{\emph{Skipping a few...}}
352 | & \text{M2} xy = (ac - bd, ad + bc) = (ca - db, da + cd) = yx
353 | \end{align*}
354 |
355 | \pagebreak
356 |
357 | \DEFINITION{1.30} If $a, b \in \mathbb{R}$ and $z = a + bi$, then the complex number $\overline{z} = a - bi$
358 |
359 | \THEOREM{1.31}
360 | \begin{itemize}
361 | \item $ \overline{z + w} = \overline{z} + \overline{w} $
362 | \item $ \overline{zw} = \overline{z} \cdot \overline{w} $
363 | \item $ z + \overline{z} = 2 \text{Re(z)}, z - \overline{z} = 2 i \text{Im(z)} $
364 | \item $ z \overline{z} \in \mathbb{R}^{+} \text{unless} z = 0 $
365 | \end{itemize}
366 |
367 | \DEFINITION{1.32} $ |z| = (z\overline{z})^{\frac{1}{2}} $
368 |
369 | \THEOREM{1.33} $z, w \in \mathbb{C} $
370 | \begin{itemize}
371 | \item $ |z| \geq 0; |z| = 0 \iff z = 0 $
372 | \item $ |\overline{z}| = |z| $
373 | \item $ |zw| = |z||w| $
374 | \item $ |\text{Re(z)}| \leq |z| $
375 | \item $ |z + w| \leq |z| + |w| $
376 | \end{itemize}
377 |
378 | Note that 1, 2, 3, 4 are \emph{really} easy. So here's 5:
379 |
380 | \begin{align*}
381 | {\bf Prove.} \\
382 | & |z + w| \leq |z| + |w| \\
383 | {\bf Given.} \\
384 | & z, w \in \mathbb{C} \\
385 | {\bf Proof.} \\
386 | & |z+w|^2 & = (z+w)(\overline{z+w}) = z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w} \\
387 | & & = |z|^2 + 2\text{Re($z\overline{w}$)} + |w|^2 & \because |z|^2 = z\overline{z} \land \overline{z\overline{w}} = \overline{z}w \\
388 | & & \leq |z|^2 + 2\text{Re($z$)} + |w|^2 \\
389 | & & = |z|^2 2 |z| |w| + |w|^2 = (|z| + |w|)^2 \\
390 | & & \therefore |z+w| \leq |z| + |w| \because |z| + |w| \in \mathbb{R} > 0
391 | \end{align*}
392 |
393 | \THEOREM{1.35} If $ a_1, ..., a_n and b_1, ..., b_n \in \mathbb{C} $, then: \\
394 | {\indent} $ |\sum_{j=1}^n a_j\overline{b_j}|^2 \leq \sum_{j=1}^n |a_j|^2 \sum_{j=1}^n |b_j|^2$
395 |
396 | \pagebreak
397 |
398 | \begin{align*}
399 | {\bf Proof.} \\
400 | & ... \\
401 | {\bf Given.} \\
402 | & A = \sum{a_j}^2 \\
403 | & B = \sum{b_j}^2 \\
404 | & C = \sum{a_j\overline{b_j}} \\
405 | {\bf Prove.} \\
406 | \sum{|B a_j - C b_j|}^2 & = \sum{(B a_j - C b_j)(B\overline{a_j} - \overline{C b_j})} \\
407 | & = B^2 \sum{|a_j}^2 - B \overline{C} \sum{a_j\overline{b_j}} - B C \sum{\overline{a_j} b_j} + |C|^2 \sum{|b_j}^2 \\
408 | & = B^2 - B |C|^2 \\
409 | & = B (AB - |C|^2)
410 | & B (AB - |C|^2) > 0 & \because B>0 \\
411 | & AB - |C|^2 > 0 & \because B>0 \\
412 | & \therefore AB > |C|^2 \\
413 | & |C|^2 = |\sum{a_j\overline{b_j}}|^2 \leq \sum{|a_j|}^2\sum{|b_j|}^2 - AB \qed \\
414 | \end{align*}
415 |
416 | \pagebreak
417 | \section{Euclidean Spaces}
418 |
419 | \DEFINITION{1.36} $\mathbb{R}^k$ is the set of all ordered tuples, such that:
420 | $ \vec{x} = (x_1, x_2, \dots, x_k) : \forall k > 0, x_k \in \mathbb{R} $
421 |
422 | Vectors form a field! With $+$ and $*$
423 |
424 | In addition to field operations, vector-spaces contain \emph{scalar multiplication}, \emph{inner product}, and a \emph{norm}:
425 |
426 | \begin{itemize}
427 | \item $ \alpha \vec{x} = (\alpha x_1, \dots, \alpha x_k) $
428 | \item $ \vec{x} \cdot \vec{y} = \sum_{i=1}^k{x_i y_i}$
429 | \item $ |\vec{x}| = (\vec{x} \cdot \vec{x})^\frac{1}{2} $
430 | \end{itemize}
431 |
432 | {\bf Proof.} Schwartz Inequality \\
433 |
434 | $|x+y| \leq |x| + |y|, \forall x, y, z \in \mathbb{R}^k$
435 |
436 | \begin{align*}
437 | |x + y|^2 & = (x+y) \cdot (x+y) \\
438 | & = x \cdot x + 2 x \cdot y + y \cdot y \\
439 | & \leq |x|^2 + 2|x||y| + |y|^2 \because x \cdot y \leq |x||y| \\
440 | & = (|x| + |y|)^2
441 | \end{align*}
442 |
443 | \end{document}
444 |
--------------------------------------------------------------------------------
/notes/workbook-1/ch-06.tex:
--------------------------------------------------------------------------------
1 | \documentclass{article}
2 | \usepackage{amssymb,amsmath,amsfonts,amsthm}
3 | \include{commands}
4 |
5 | \newcommand{\congr}[3]{
6 | #1 \equiv #2\ (\textrm{mod}\ #3)
7 | }
8 | \begin{document}
9 |
10 | \section{Number Theory and Abstract Algebra}
11 |
12 | This takes up roughly 15\% of the test, but is partially involved in other
13 | questions. This is a common mix-in, to make a problem harder.
14 |
15 | \section{Divisibility}
16 |
17 | \subsection{Quick Rules for Factoring}
18 |
19 | \begin{itemize}
20 | \item by 2, iff the last digit is divisible by 2
21 | \item by 3, iff the sum of the digits is divisible by 3
22 | \item by 4, iff the last \emph{two} digitis is divisible by 4
23 | \item by 5, iff the last digit is 0 or 5
24 | \item by 8, iff the last \emph{three} digits are divisible by 8
25 | \item by 9, iff the sum of the digits is divisible by 9
26 | \end{itemize}
27 |
28 | \subsection{Division Algorithm}
29 |
30 | If $a, b \in \mathbb{Z}^+$, then $\exists q, r \in \mathbb{Z} : b = qa + r$
31 |
32 |
33 | \subsection{Primes}
34 |
35 | $ \forall \in \mathbb{Z}^+, \exists \text{prime} p : k < p < 2k $
36 |
37 | $ \sum{k=1}^n{\frac{1}{p_k}} $ divierges where $p_k$ is the k-th prime
38 |
39 | \subsection{GCD and LCD}
40 |
41 | Greatest-common-division and least-common-denominator come up in group size and
42 | and various algorithmic problems.
43 |
44 | \pagebreak
45 | \subsubsection{GCD}
46 |
47 | ...
48 |
49 | For any integers $a, b$, we can write:
50 | \begin{align*}
51 | a & = (p_1)^{a_1} (p_2)^{a_2} ... (p_k)^{a_k} \\
52 | b & = (p_1)^{b_1} (p_2)^{b_2} ... (p_k)^{b_k} \\
53 | m_i & \defeq min(a_i, b_i) \\
54 | M_i & \defeq max(a_i, b_i) \\
55 | gcd(a, b) & \defeq (p_1)^{m_1} (p_2)^{m_2} (\dots) (p_k)^{m_k} \\
56 | lcM(a, b) & \defeq (p_1)^{M_1} (p_2)^{M_2} (\dots) (p_k)^{M_k} \\
57 | \end{align*}
58 |
59 | As a result:
60 | $$ gcd(a, b) \cdot lcm(a, b) = a \cdot b $$
61 |
62 | \subsubsection{Euclidean Algorithm}
63 |
64 | Algorithmically determine the greatest common divisor between two numbers. This
65 | divides the larger number by the smaller and continually checks whether it did
66 | it evenly. When $r = 0$ we know $ r | b_k, b_{k-1}, b_{k-2}, ..., b_0 $ and that
67 | it must be the largest such number that does it.
68 |
69 | \begin{verbatim}
70 | def gcd (a, b):
71 | if b < a: (a, b) = (b, a)
72 |
73 | r = b % a
74 |
75 | while r != 0:
76 | # Note: b = a * m + r
77 | b = a
78 | a = r
79 | m = b // a
80 | r = b % a
81 |
82 | return a
83 | \end{verbatim}
84 |
85 | \subsubsection{Diophantine Equation $ax +by = c$}
86 |
87 | The Simple Linear Diophantine Equations $ax + by = c$ has solutions of the form:\\
88 | $ x = x_1 + \frac{b}{d} t $\\
89 | $ y = y_1 - \frac{a}{d} t $
90 |
91 | Finding $x_1$ and $y_1$ is the only real hard part. We know that we can \emph{always} find solutions of the form: \\
92 | $ a x_0 + b y_0 = d $ where $d = gcd(a, b)$
93 |
94 | After solving this equation, we multiply both sides of the equation by $\frac{c}{d}$ to get:
95 | $ a \frac{c}{d} x_0 + b \frac{c}{d} y_0 = d \frac{c}{d} $
96 |
97 | Define: \\
98 | $ x_1 = \frac{c}{d} x_0 $ \\
99 | $ y_1 = \frac{c}{d} y_0 $ \\
100 |
101 | Then plug in these values of $x_1$ and $y_1$ to attain solutions: \\
102 | $ x = \frac{c}{d} x_0 + \frac{b}{d} t $
103 | $ y = \frac{c}{d} y_0 - \frac{a}{d} t $
104 |
105 | As an aside, note the negative in y's value. This seems to relate to the Euclidean algorithm.
106 |
107 |
108 | \pagebreak
109 | \subsection{Congruences}
110 |
111 | Rules for congruences:
112 | \begin{itemize}
113 | \item $\congr{a}{b}{n}$ and $\congr{b}{c}{n}$, then $\congr{a}{c}{n}$
114 |
115 | \item
116 | $\congr{a}{b}{n}$, then $\forall c \in \mathbb{Z}$
117 | \begin{itemize}
118 | \item $\congr{a \pm c}{b \pm c}{n}$
119 | \item $\congr{a c}{b c}{n}$
120 | \end{itemize}
121 |
122 | \item
123 | If $\congr{a_1}{b_1}{n}$ and $\congr{a_2}{b_2}{n}$, then:
124 | \begin{itemize}
125 | \item $\congr{a_1 \pm a_2}{b_1 \pm b_2}{n}$
126 | \item $\congr{a_1 a_2}{b_1 b_2}{n}$
127 | \end{itemize}
128 |
129 | \item
130 | $\forall\ 0 < c \in \mathbb{Z}$, the following are equivalent:
131 | \begin{itemize}
132 | \item $\congr{a}{b}{n}$
133 | \item $\congr{a}{b + n}{cn}$
134 | \item $\congr{a}{b + 2n}{cn}$
135 | \item \dots
136 | \item $\congr{a}{b + (c-1)n}{cn}$
137 | \end{itemize}
138 |
139 | \item
140 | If $\congr{ab}{ac}{n}$, then:
141 | \begin{itemize}
142 | \item $\congr{b}{c}{n}$ if $d\defeq$ gcd($a$, $n$) $= 1$
143 | \item $\congr{b}{c}{\frac{n}{d}}$ if $d\defeq$ gcd($a$, $n$) $> 1$
144 | \end{itemize}
145 |
146 | \item
147 | The linear congruence equation $\congr{ax}{b}{n}$ has a solution iff gcd($a$, $n$) $ = d | b$ and:
148 | \begin{itemize}
149 | \item if $d=1$, then the solution is unique mod $n$
150 | \item if $d>1$, then the solution is unique mod $\frac{n}{d}$
151 | \end{itemize}
152 | \end{itemize}
153 |
154 | \subsection{Congruence Equation $\congr{ax}{b}{n}$}
155 |
156 | Note that Linear Congruence Equations are \emph{equivalent} to
157 | Simple, Linear Diophantine Equations.
158 |
159 | Solving these requires applying rules 1-7 of the previous section. They are pretty arduous.
160 |
161 | \pagebreak
162 | \section{Abstract Algebra}
163 |
164 | For a group $\mathbf{G}$ the following must be true:
165 | \begin{description}
166 | \item[closure]
167 | $\forall g, h \in \mathbf{G}, g \cdot h \in \mathbf{G}$
168 | \item[associate - semigroup]
169 | $\forall a, b, c \in \mathbf{G}, a \cdot (b \cdot c) = (a \cdot b) \cdot c$
170 | \item[identity - monoid]
171 | $\exists e \in \mathbf{G} : \forall g \in \mathbf{G}, g \cdot e = e \cdot g = g$
172 | \item[inverse - group]
173 | $\forall g \in \mathbf{G}, \exists h \in \mathbf{G} : g \cdot h = h \cdot g = e$
174 | \end{description}
175 |
176 | Note that having closure is necessary. Adding associativity makes it a
177 | \emph{semigroup}. Adding an identity makes it a monoid. Adding an inverse,
178 | finally, makes a binary operator a \emph{\bf group}.
179 |
180 | \subsection{Cyclic Groups}
181 |
182 | Cyclic groups are defined by a generator, s.t.: \\
183 | $\mathbf{G} = \gen{a} = \set{a^n}{n \in \mathbb{Z}}$
184 |
185 | Furthermore, $\mathbb{Z}_n$ forms a group under modulo-addition. And the following is true:\\
186 | $m$ is a generator iff $m$ is coprime with $n$, the order of $\mathbb{Z}_n$
187 |
188 | \subsection{Subgroups}
189 |
190 | Let $(\mathbf{G},\cdot)$ be a group. If there exists $\mathbf{H} \subset
191 | \mathbf{G}$ s.t. $(H,\cdot)$ is also a group, then we call
192 | $(\mathbf{H},\cdot)$ a subgroup of $\mathbf{G}$.
193 |
194 | Notably, we define the center of a group to be: \\
195 | $Z(\mathbf{G}) \defeq \set{z \in \mathbf{G}}{zg = gz \ \forall g \in \mathbf{G}}$
196 |
197 | And know that this is \emph{always} a subgroup (not merely a subset).
198 |
199 | \pagebreak
200 | \subsection{Cyclic Subgroups}
201 |
202 | Let $a \in \mathbf{G}$. With $(G,\cdot)$ being a group.\\
203 | $\gen{a} = \set{a^n}{n \in \mathbb{Z}}$
204 |
205 | $|\gen{a}|$ is the order of $$, the lowest possible number, if finite, st\\
206 | $a^n = e$
207 |
208 | \begin{itemize}
209 | \item
210 | If $a \in \mathbf{G}$, then the cyclic subgroup $\gen{a}$ is the
211 | \emph{smallest} subgroup G containing $a$
212 | \item
213 | If $\mathbf{I}$ is an indexing set of $\mathbf{G}$, then $\gen{\{a_i\}}$ is the
214 | subgroup containing all finite products of $a_i \in \mathbf{G}$
215 | \end{itemize}
216 |
217 | \subsection{Generators and Relations}
218 |
219 | \DEFINITION{1} A \emph{\bf presentation} is a \emph{generating set} and a set
220 | of \emph{relations}.
221 |
222 | A \emph{presentation} can define a group. For example, Klein Group is defined by:\\
223 | generating set: $\{a, b\}$; relations: $a^2 = e, b^2 = e, ab = ba$
224 |
225 | The integers $\mathbb{Z} \modu{6}$ can be described:\\
226 | $\mathbb{Z}_6 \defeq $ generating set: $\{a\}$, relations: $a^6=e$
227 |
228 | \pagebreak
229 | \subsection{Some Theorems Concerning Subgroups}
230 |
231 | \begin{itemize}
232 | \item
233 | Let $\mathbf{G}$ be a finite, \emph{Abelian} group. If $\mathbf{H}$ is a
234 | subgroup of $\mathbf{G}$, the $|\mathbf{H}|$ divides $|\mathbf{G}|$
235 | ({\bf Lagrange's Theorem})
236 |
237 | \item
238 | Let $\mathbf{G}$ be a finite, abelian group of order $n$.
239 | Then $\mathbf{G}$ has at least one subgroup of order $d | n$, for every
240 | positive divisor $d$ of $n$.
241 |
242 | \item
243 | \emph{If $\mathbf{G}$ is cyclic, we can do better.}\\
244 | Let $\mathbf{G}$ be a finite, cyclic group of order $n$. Then $\mathbf{G}$
245 | has \emph{exactly one} subgroup - a cyclic group at that - foreach
246 | positive divisor $d$ of $n$. If $\mathbf{G}$ is generated by $\gen{a}$,
247 | then $b = a^m$ has order $d = \frac{n}{\gcd(m, n)}$.
248 | Note that, $\gcd(n, 0) = n$
249 |
250 | \item
251 | Let $\mathbf{G}$ be a finite group of order $n$, and let $p$ be a prime
252 | that divides $n$ (that is, $p | n$). Then, $\mathbf{G}$ has at least one
253 | subgroup of order $p$. ({\bf Cauchy's Theorem})
254 |
255 | \item
256 | Let $\mathbf{G}$ be a finite subgroup of order $n$. Let $n = p^k m$, where
257 | $p$ is prime and $p\not | m$. Then $\mathbf{G}$ has at least one subgroup
258 | of order $p^i \ \forall i \in [0 \dots k]$. ({\bf Sylow's first theorem})
259 | \end{itemize}
260 |
261 |
262 | \subsection{Isomorphism}
263 |
264 | Structural properties of groups:
265 | \begin{itemize}
266 | \item Order
267 | \item Abelian-ness
268 | \item Cyclic
269 | \item \emph{et cetera}
270 | \end{itemize}
271 |
272 | Note that, $\mathbf{G} \subset \mathbf{M}_2(\mathbb{Z}, \times) \cong$ Klein Group, when $\mathbf{G}$ is:\\
273 | $I = \begin{pmatrix}
274 | 1 & 0 \\
275 | 0 & 1
276 | \end{pmatrix}$
277 | $A = \begin{pmatrix}
278 | 1 & 0 \\
279 | 0 & -1
280 | \end{pmatrix}$, -I, -A
281 |
282 |
283 | Thus $\mathbf{M}_2(\mathbb{Z}) \cong \mathbf{V}_4$.
284 |
285 |
286 | \subsection{Classification of Finite Abelian Groups}
287 |
288 | First, let $\mathbf{G}_1$, $\mathbf{G}_2$ be finite Abelian on the set:\\
289 | $\mathbf{G}_1 \times \mathbf{G}_2 = \set{(a, b)}{a \in \mathbf{G}_1, b \in \mathbf{G}_2}$
290 |
291 | Define a binary operations, *, by the equation:\\
292 | $(a_1, a_2) * (b_1, b_2) = (a_1 *_1 b_1,\ a_2 *_2 b_2)$
293 |
294 | Some facts:
295 | \begin{itemize}
296 | \item
297 | The direct sum $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic iff
298 | $\gcd(m, n) = 1$. If this is true, then
299 | $|\mathbb{Z}_m \times \mathbb{Z}_n| = m n$, and is isomorphic to $\mathbb{Z}_{mn}$.
300 |
301 | \item
302 | The above can be generalized:
303 | $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \dotso \times \mathbb{Z}_{m_k}$
304 | is cyclic iff $\gcd(m_i, m_j) = 1$ for every distinct pair. If this is
305 | true, then:
306 | $\mathbb{Z}_{m_1} \times \dots \times \mathbb{Z}_{m_k} \cong \mathbb{Z}_{m_1 \dotsm m_k}$
307 |
308 | \item
309 | Every finite Abelian group $\mathbf{G}$ is isomorphic to \emph{some}
310 | direct sum of the form: \\
311 | $\mathbb{Z}_{(p_1)^{k_1}} \times \mathbb{Z}_{(p_2)^{k_2}} \times \dotsm \times \mathbb{Z}_{(p_n)^{k_n}}$ \\
312 | where $p_i$ are not necessarily distinct, and $k_i$ are not necessarily
313 | distinct. These are the \emph{elementary divisors} of $\mathbf{G}$.
314 |
315 | \item
316 | Alternatively, we can write it another way:\\
317 | $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \dotsm \times \mathbb{Z}_{m_n}$\\
318 | Where $m_1 \geq 2$, $m_1 | m_2$, \dotso, $m_{n-1} | m_n$ \\
319 | Note that, $m_1, \dots, m_n$ are not distinct, but is a \emph{unique} list.
320 | These are the \emph{invariant factors} of the group.
321 | \end{itemize}
322 |
323 | \subsubsection{An Example}
324 |
325 | Show how many distinct (up to isomorphism) Abelian groups of order 600 exist:
326 |
327 | $600 = 2^3 \cdot 3 \cdot 5^2$ \\
328 | \begin{align*}
329 | 600 & = 2 \cdot 2 \cdot 2\cdot 3 \cdot 5 \cdot 5 \\
330 | & = 2 \cdot 2^2 \cdot 3 \cdot 5 \cdot 5 \\
331 | & = 2^3 \cdot 3 \cdot 5 \cdot 5 \\
332 | & = 2 \cdot 2 \cdot 2\cdot 3 \cdot 5^2 \\
333 | & = 2 \cdot 2^2 \cdot 3 \cdot 5^2 \\
334 | & = 2^3 \cdot 3 \cdot 5^2 \\
335 | \end{align*}
336 |
337 | Or rather $3 \cdot 1 \cdot 2 = 6$
338 |
339 | %
340 | %
341 | %
342 | \pagebreak
343 | \subsection{Group Homomorphisms}
344 | \label{sub-group-homomorphisms}
345 |
346 | $\phi$ is a homomorphism if: \\
347 | $\phi(a \cdot b) = \phi(a)\ast\phi(b)$
348 |
349 | \subsubsection{Properties of Homomorphisms}
350 |
351 | \begin{itemize}
352 | \item If $e$ is the identity element of $\mathbf{G}$, then $\phi(e)$ is the identity element of $\mathbf{G}'$
353 | \item If $g \in \mathbf{G}$ has finite order $m$, then $\phi(g)$ has order $m$
354 | \item If $a^{-1}$ is the inverse of $a \in \mathbf{G}$, then $\phi{a^{-1}}$ is the inverse of $\phi{a}\in\mathbf{G}'$
355 | \item If $\mathbf{H}$ is a subgroup of $\mathbf{G}$, then $\phi(\mathbf{H})$ is a subgroupf of $\mathbf{G}'$
356 | \item If $\mathbf{G}$ is finite, then the order of $\phi(\mathbf{G})$ divides the order of $\mathbf{G}$
357 | \item If $\mathbf{G}'$ is finite, then the order of $\phi(\mathbf{G})$ divides the order of $\mathbf{G}'$
358 | \item
359 | If $\mathbf{H}'$ is a subgroup of $\mathbf{G}'$, then $\phi^{-1}(\mathbf{H}')$ is a subgroup of $\mathbf{G}$, where: \\
360 | $\phi^{-1}(\mathbf{H}') = \set{h \in \mathbf{G}'}{\phi(h) \in \mathbf{H}'}$
361 | \end{itemize}
362 |
363 | {\noindent}The kernel of $\phi$ is defined:\\
364 | {\indent}$\ker \phi \defeq \set{g\in\mathbf{G}}{\phi(g) = e'}$
365 | And is a group, naturally.
366 |
367 |
368 | % RINGS
369 | % RINGS
370 | % RINGS
371 | \subsection{Rings}
372 |
373 | {\noindent}{\bf Definition.} A ring is a set with two binary operators on, such that: \\
374 | \begin{itemize}
375 | \item $(\mathbf{R}, +)$ is an \emph{Abelian Group}
376 | \item $(\mathbf{R}, \cdot)$ is a \emph{semigroup} (closed, assosciateive)
377 | \item
378 | Has the distributive law defined on it:
379 | \begin{itemize}
380 | \item $a \cdot (b + c) = a \cdot b + a \cdot c$
381 | \item $(a + b) \cdot c = a \cdot b + a \cdot c$
382 | \end{itemize}
383 | \end{itemize}
384 |
385 | % RING H-MORPHISMS
386 | % RING H-MORPHISMS
387 | % RING H-MORPHISMS
388 | \subsection{Ring Homomorphisms}
389 |
390 | {\noindent}$(\mathbf{R}, +, \times) \cong (\mathbf{R}', \oplus, \otimes)$ iff:\\
391 | \begin{itemize}
392 | \item
393 | $\phi(a + b) = \phi(a) \oplus \phi(b),\ \forall a, b \in \mathbf{R}$
394 | \item
395 | $\phi(a \times b) = \phi(a) \otimes \phi(b),\ \forall a, b \in \mathbf{R}$
396 | \end{itemize}
397 |
398 | \subsubsection{Properties of Rings}
399 |
400 | \begin{itemize}
401 |
402 | \item
403 | The \emph{kernel} of a ring homomorphism is the set
404 | $\ker \phi \defeq \set{a\in\mathbf{R}}{\phi(a)=0'}$, where $0'$ is the
405 | additive identity in $\mathbf{R}$
406 |
407 | \item
408 | The image of $\mathbf{R}$, $\phi(\mathbf{R}) = \set{\phi(r)}{r \in \mathbf{R}}$
409 | is a subring in $\mathbf{R}'$
410 |
411 | \item
412 | $\phi(0) = 0'$ and $\phi(-r) = -\phi(r), \forall r \in \mathbf{R}$
413 |
414 | \end{itemize}
415 |
416 |
417 |
418 | % INTEGRAL DOMAINS
419 | % INTEGRAL DOMAINS
420 | % INTEGRAL DOMAINS
421 | \subsection{Integral Domains}
422 |
423 | % ---
424 | % @@@
425 | % @@@
426 | % @@@
427 | % ---
428 |
429 | % FIELDS
430 | % FIELDS
431 | % FIELDS
432 | \subsection{Fields}
433 |
434 |
435 | \end{document}
436 |
--------------------------------------------------------------------------------