├── images ├── merged.png ├── nyc_sprint.png ├── pr_ex1_md.png ├── pr_ex1_raw.png ├── reg_tests.png ├── checks_passed.png ├── blue_logo_full.jpg ├── scikit-learn-logo-notext.png └── 1280px-Scikit_learn_logo_small.svg.png ├── wimlds-sprint-intro.odp ├── scikit-learn-sprint-instructions.pdf ├── sprint_planning ├── 2_measuring_impact.md ├── 1_checklist.md ├── 3_lessons_learned.md ├── README.md └── email_prep.md ├── contributing ├── flake8.md ├── README.md ├── installs_prep.md ├── workflow.md └── pytest_sklearn_output.md ├── LICENSE ├── participant_feedback.md └── README.md /images/merged.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/merged.png -------------------------------------------------------------------------------- /images/nyc_sprint.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/nyc_sprint.png -------------------------------------------------------------------------------- /images/pr_ex1_md.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/pr_ex1_md.png -------------------------------------------------------------------------------- /images/pr_ex1_raw.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/pr_ex1_raw.png -------------------------------------------------------------------------------- /images/reg_tests.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/reg_tests.png -------------------------------------------------------------------------------- /images/checks_passed.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/checks_passed.png -------------------------------------------------------------------------------- /wimlds-sprint-intro.odp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/wimlds-sprint-intro.odp -------------------------------------------------------------------------------- /images/blue_logo_full.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/blue_logo_full.jpg -------------------------------------------------------------------------------- /images/scikit-learn-logo-notext.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/scikit-learn-logo-notext.png -------------------------------------------------------------------------------- /scikit-learn-sprint-instructions.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/scikit-learn-sprint-instructions.pdf -------------------------------------------------------------------------------- /images/1280px-Scikit_learn_logo_small.svg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/wimlds/nyc-2019-scikit-sprint/HEAD/images/1280px-Scikit_learn_logo_small.svg.png -------------------------------------------------------------------------------- /sprint_planning/2_measuring_impact.md: -------------------------------------------------------------------------------- 1 | # Measuring Impact 2 | 3 | - keep track of how many pull requests are submitted 4 | - how many PR are merged 5 | - if there will be any follow-up after the sprint for the un-merged PRs 6 | 7 | Sprints are good, next step is measuring their impact. 8 | 9 | ## Post Sprint Follow Up 10 | -------------------------------------------------------------------------------- /contributing/flake8.md: -------------------------------------------------------------------------------- 1 | # `flake8` 2 | 3 | #### `flake8` Formatting Tests 4 | Can install using `pip` or `conda`: 5 | 6 | >my example 7 | ```python 8 | conda install flake8 9 | ``` 10 | 11 | ### Running `flake8` 12 | `flake8` 13 | 14 | >my example 15 | ```bash 16 | flake8 /Users/reshamashaikh/scikit-learn/sklearn/metrics/scorer.py 17 | ``` 18 | 19 | When there are formatting issues, here's an example of what it will return: 20 | 21 | >my example 22 | ```bash 23 | (sklearndev) % flake8 scorer.py 24 | scorer.py:186:39: E225 missing whitespace around operator 25 | scorer.py:189:80: E501 line too long (85 > 79 characters) 26 | scorer.py:190:80: E501 line too long (87 > 79 characters) 27 | ``` 28 | 29 | 30 | 31 | -------------------------------------------------------------------------------- /contributing/README.md: -------------------------------------------------------------------------------- 1 | # Contributing Resources 2 | - [Software Requirements](installs_prep.md) (installation: Anaconda and more) 3 | - [Contributing Workflow](workflow.md) 4 | - `pytest`: example of [output](pytest_sklearn_output.md) 5 | - `flake8`: examples of [output](flake8.md) 6 | 7 | 8 | ## Resources 9 | 10 | - [Closing Issues on GitHub Using Keywords](https://help.github.com/articles/closing-issues-using-keywords/) 11 | - [flake8](https://medium.com/python-pandemonium/what-is-flake8-and-why-we-should-use-it-b89bd78073f2) 12 | - [doctest](https://docs.python.org/3.7/library/doctest.html) 13 | - [Numpy docstrings](https://numpydoc.readthedocs.io/en/latest/example.html#example) 14 | - [PEP 8 Style Guide](https://www.python.org/dev/peps/pep-0008/) 15 | 16 | --- 17 | 18 | #### doctest 19 | - reference: https://docs.python.org/3.7/library/doctest.html#doctest.ELLIPSIS 20 | - explanation: https://github.com/scikit-learn/scikit-learn/pull/12799#discussion_r242147232 21 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2018 Women in Machine Learning & Data Science, Reshama Shaikh @reshamas 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /sprint_planning/1_checklist.md: -------------------------------------------------------------------------------- 1 | # Checklist for Sprint 2 | 3 | ## Initial Planning 4 | ### For Core Contributor & Organizer 5 | - [x] discuss event (capacity, dates, details) 6 | - [x] discuss prerequisites needed for participants 7 | - [x] discuss budget 8 | - [x] set a date 9 | - [x] set up event description 10 | 11 | ### For Organizer: Initial Setup 12 | - [x] get venue 13 | - [x] announce event on Meetup (or EventBrite) 14 | - [x] advertise event via Twitter and newsletters 15 | 16 | ## Event Details 17 | ### For Core Contributor 18 | - [x] check budget / get funding (for food) 19 | - [x] set Gitter channel for event 20 | - [x] advertise event via Twitter and newsletters 21 | - [x] get Teaching Assistants 22 | - [x] tag issues 23 | - [ ] bring scikit stickers to event 24 | 25 | ### For Organizer 26 | - [x] get up GitHub event repo 27 | - [x] recruit volunteers for event 28 | - [x] get estimates for food / order food 29 | - [x] get stick-on nametags 30 | - [x] send out prep/reminder email 2-3 days in advance 31 | - [x] roster 32 | - [x] bring marker for nametags 33 | - [x] camera 34 | 35 | ## Day of Sprint 36 | - [ ] track pull requests 37 | 38 | ## Post-event 39 | - [ ] blog about event 40 | - [ ] follow up on pull requests 41 | - [ ] complete any outstanding work from sprint 42 | - [ ] Send "Thank you's" to all who helped 43 | -------------------------------------------------------------------------------- /sprint_planning/3_lessons_learned.md: -------------------------------------------------------------------------------- 1 | # Lessons Learned 2 | 3 | ## 2018 4 | 1. Track the issues and PRs early on that attendees are working on. It makes it easier for all of us. 5 | 2. Perhaps collect people's emails and have them write what they are working on in the shared google doc. (I know that when I receive many notifications from GH repo's, I can miss them.) 6 | 3. Some people worked on PRs that were already open, but we don't have a way of tracking that. 7 | 4. Extend sprint to 6pm. 10am to 3pm is too brief. 8 | 5. Maybe ask participants to choose an issue beforehand and mark it on the spreadsheet. 9 | 6. Possibly partner with advanced users such as developers. Maybe we can progress farther? 10 | 7. Follow up with attendees within a week after sprint to maintain momentum 11 | 8. Communicate to attendees during the sprint if/how we would like them to complete their open PR 12 | 13 | ## 2019 14 | Note: 45 attendees 15 | - do not have set deadline for applications. make it rolling applications 16 | - `conda install` instructions updated adding `conda-forge` 17 | - do not promote sponsors until sponsorship funds have been received 18 | - have people submit feedback survey at the event, prior to book signing 19 | - using meetup glitches: some attendees do not join meetup group so don't receive communications 20 | 21 | 22 | 23 | -------------------------------------------------------------------------------- /contributing/installs_prep.md: -------------------------------------------------------------------------------- 1 | # Software Requirements for Sprint 2 | 3 | Q: what version of Anaconda? 4 | 5 | Installing Software and Setting up Virtual Environment 6 | have Python installed via Anaconda. (Anaconda includes Jupyter Notebook) 7 | 8 | 9 | ## Install Python via Anaconda 10 | Install [Anaconda](https://docs.anaconda.com/anaconda/install/) 11 | - [Mac](https://docs.anaconda.com/anaconda/install/mac-os/) 12 | - [Linux](https://docs.anaconda.com/anaconda/install/linux/) 13 | 14 | ## Jupyter Notebook 15 | Jupyter Notebook is included in the Anaconda installation. Review Jupyter Notebook commands. 16 | 17 | ## Install Git 18 | - [Mac: git](https://www.atlassian.com/git/tutorials/install-git#mac-os-x) 19 | - [Linux git](https://www.atlassian.com/git/tutorials/install-git#linux) 20 | 21 | - Confirm Git is installed by typing `git --version` on your terminal 22 | 23 | ## Sign up for a GitHub Account 24 | - [github.com](https://github.com/) 25 | - Save your user ID and password somewhere you can easily find it 26 | 27 | ## Join Gitter 28 | Join [wimlds gitter](gitter.im/scikit-learn/wimlds) using your GitHub ID. 29 | 30 | ## Choose a Graphical Editor 31 | - Try Visual Studio Code 32 | * [Visual Studio Code](https://visualstudio.microsoft.com/downloads/) 33 | - OR one of these other editors 34 | * [Sublime Text 3](https://www.sublimetext.com/) 35 | * [Atom](https://atom.io/) 36 | * [Notepad++](https://notepad-plus-plus.org/) (for Windows) 37 | 38 | 39 | -------------------------------------------------------------------------------- /sprint_planning/README.md: -------------------------------------------------------------------------------- 1 | # Sprint Communications 2 | 3 | ## Social Media for NYC 2019 Sprint 4 | - 22-Aug-2019: (meetup email) [NYC: reminders](https://www.meetup.com/NYC-WiMLDS/messages/boards/thread/52394272) 5 | - 19-Aug-2019: (tweet) [NYC: sprint reminders](https://twitter.com/reshamas/status/1163517204928708608) 6 | - 13-Aug-2019: (meetup email) [NYC: sprint reminders](https://www.meetup.com/NYC-WiMLDS/messages/boards/thread/52382440) 7 | - 11-Jul-2019: (tweet) [NYC: last day to apply](https://twitter.com/amuellerml/status/1149324323292950528) 8 | - 09-Jul-2019: (meetup email) [apply by July 12](https://www.meetup.com/NYC-WiMLDS/messages/boards/thread/52315718) 9 | - 09-Jul-2019 (mailchimp) [apply by July 12](https://mailchi.mp/4c3ede578241/nyc-wimlds-2019-scikit-sprint-applications-reminder) 10 | - 27-Jun-2019: (tweet) [NYC: sprint applications open](https://twitter.com/reshamas/status/1144301781545041920) 11 | - 27-Jun-2019 (mailchimp) [NYC: sprint applications open](https://mailchi.mp/ef66cbf6aca1/nyc-wimlds-2019-scikit-sprint-applications-open-3460337) 12 | 13 | 14 | ## Social Media for Bay Area 2019 Sprint 15 | - 01-Aug-2019: (twitter) [Bay Area: sprint save the date](https://twitter.com/wimlds/status/1157076035827056641) 16 | - 01-Aug-2019: (twitter) [Valentina B](https://twitter.com/vborghesani/status/1157242497418113024) 17 | 18 | 19 | ## Social Media for other sprints 20 | - 03-Aug-2019: (twitter) [Nairobi: Sprint Impact Report](https://twitter.com/reshamas/status/1157826645002264577) 21 | - 04-Sep-2018: (twitter) **NYC 2018** [NYC: still spots open](https://twitter.com/amuellerml/status/1037001088371752960) 22 | -------------------------------------------------------------------------------- /sprint_planning/email_prep.md: -------------------------------------------------------------------------------- 1 | Hi Everyone, 2 | 3 | We are very excited to host the **3rd Annual WiMLDS/ scikit-learn open source sprint** and have you join us for a day of learning and contributing to a critical Python machine learning library! We also think it will be day of fun and meeting new people. 4 | 5 | ## Agenda 6 | - 9:00 am doors open 7 | - 9:30 am Sprint begins with Andreas Mueller introducing Contributing process 8 | 9 | - Arrive early at 9:00 am for any installation or technical questions. 10 | 11 | ## Pre-event Reminders 12 | 13 | - Please [update your RSVP](https://www.meetup.com/NYC-WiMLDS/events/259491883/) if you are no longer able to attend; we have a number of people who were unable to register due to limited space. 14 | 15 | - The event is on a Saturday in NYC, which can possibly mean ---> subway delays. Check out the MTA Weekender to see if your transit line is impacted: http://web.mta.info/weekender.html 16 | 17 | 18 | ## Prep Work 19 | 20 | If there is a one-stop link to bookmark, it is this one: https://github.com/WiMLDS/nyc-2019-scikit-sprint 21 | 22 | The best way to utilize this Saturday event is to prepare well in advance. 23 | - Read [Code of Conduct](https://github.com/WiMLDS/starter-kit/wiki/Code-of-conduct) 24 | - Prep work (installations) 25 | - Join Gitter, our chatroom for sprint 26 | - Git / GitHub, for submitting pull requests 27 | - Read scikit-learn "Contributing" documentation 28 | - Review issues on GitHub 29 | - Twitter info and hashtags to know 30 | 31 | ## Day of Event 32 | 33 | - Bring your laptop and charger 34 | 35 | - Nametags: we will have stick-on nametags. Make sure to wear one to network with other attendees. Feel free to add your preferred pronoun and institution affiliation. 36 | 37 | - If you would like to blog about the event, email me (reshama@wimlds.org) and I would be happy to share and promote the blog with our community. 38 | 39 | I will also place a copy of this email within the GitHub repo for easy reference. Looking forward to seeing you all. 40 | 41 | Cheers, 42 | Reshama 43 | 44 | 45 | -------------------------------------------------------------------------------- /participant_feedback.md: -------------------------------------------------------------------------------- 1 | # Participant Feedback on NYC 2019 Sprint 2 | 3 | - Ruchita Garde on LinkedIn: https://www.linkedin.com/posts/ruchita-garde_scikitlearn-opensource-machinelearning-activity-6572657690378596352-eKw6 4 | >Contributing to #scikitlearn , an #opensource #machinelearning library used by thousands of people around the world and knowing that something they see has been touched by you is pretty rewarding. Spent an entire day at the #WiMLDS sprint to get my first PR approved, & 2nd PR is on the way. Kudos to all the selfless contributors of all open source who spend years on something that I so easily use! 5 | Thanks to my contributing partner Tian Tang for being so awesome. 6 | Thank you Microsoft and Bloomberg LP for hosting the 24th August 2019 #NYC #Sprint. Kudos to hosts Reshama Shaikh and Nitya Narasimhan. Thanks to our Sklearn experts Andreas Mueller, Thomas J Fan, Nicolas Hug as well as all our #Bloomberg mentors for helping and guiding us patiently throughout the day. 7 | 8 | - Anuja Kelkar on Twitter 9 | - https://twitter.com/AgileAnuja/status/1166885467314434049 10 | - https://twitter.com/AgileAnuja/status/1165455227958349824 11 | 12 | >Yayyy! Also, my PR is now merged into scikit-learn! Thanks to this open source sprint, I have started my open source journey! #opensource #wimlds 13 | 14 | - Sam Bail on Twitter: https://twitter.com/spbail/status/1165338348732538880 15 | >High five @hannahbruce for crushing the #scikitsprint - two PRs, one already merged... 16 | 17 | - Nitya Narasimhan on Twitter: https://twitter.com/nitya/status/1165379068029755392 18 | >First PR!! #ScikitSprint #opensource 🎉 19 | 20 | - Mei Guan on Twitter: https://twitter.com/Rei780/status/1165385960995119104 21 | >Thank you @WiMLDS_NYC @amuellerml @thomasjpfan @hug_nicolas for an amazing Saturday. I learned lots and am appreciative of immensely patient experts who supported us today. 22 | 23 | - Mariel Martinez on Twitter: https://twitter.com/Marielme/status/1165376596066390016 24 | >I feel so happy to participate today at Annual Scikit-learn spring, thanks to 25 | @WiMLDS_NYC @amuellerml, also I happy with my new book. 26 | -------------------------------------------------------------------------------- /contributing/workflow.md: -------------------------------------------------------------------------------- 1 | # Crash Course in Contributing to Scikit-learn: Workflow 2 | 3 | PR = Pull Request 4 | **Important Note:** Please include **(#wimlds)** in your PR commit message so we can track them. 5 | 6 | --- 7 | 8 | ## PART A: Set-up work environment 9 | 10 | #### Set up virtual environment 11 | ```bash 12 | conda create -n sklearndev numpy scipy matplotlib pytest sphinx cython ipykernel 13 | ``` 14 | #### Activate virtual environment: 15 | ```bash 16 | source activate sklearndev 17 | ``` 18 | #### Additional installs 19 | ```bash 20 | conda install -c conda-forge sphinx-gallery 21 | ``` 22 | 23 | --- 24 | 25 | ## PART B: Set-up repository 26 | 27 | ### Fork repo: https://github.com/scikit-learn/scikit-learn 28 | 29 | ### Set up local repo 30 | #### `git clone` your forked repo url. (Use `HTTPS` url over `SSH` if you do not have `ssh` keys set up.) 31 | 32 | ```bash 33 | git clone https://github.com/reshamas/scikit-learn.git 34 | ``` 35 | 36 | #### `cd scikit-learn` into your folder 37 | 38 | ```bash 39 | cd scikit-learn 40 | ``` 41 | 42 | #### Add `upstream` remote 43 | ``` 44 | git remote add upstream https://github.com/scikit-learn/scikit-learn.git 45 | ``` 46 | 47 | #### Check remotes are there using `git remote -v` 48 | 49 | >my example 50 | ```bash 51 | origin https://github.com/reshamas/scikit-learn.git (fetch) 52 | origin https://github.com/reshamas/scikit-learn.git (push) 53 | upstream https://github.com/scikit-learn/scikit-learn.git (fetch) 54 | upstream https://github.com/scikit-learn/scikit-learn.git (push) 55 | ``` 56 | 57 | ### Update local repo 58 | ```bash 59 | git pull upstream master 60 | ``` 61 | 62 | ### To fetch (someone else's) PR: 63 | ```bash 64 | git fetch https://github.com/theirusername/reponame.git theirbranch:ourbranch 65 | ``` 66 | 67 | 68 | #### Build from source 69 | ```bash 70 | pip install -v -e . 71 | ``` 72 | Note: this will overwrite existing installations 73 | Reference: ["Editable" Installs](https://pip.pypa.io/en/stable/reference/pip_install/#examples) 74 | 75 | --- 76 | 77 | ## PART C: Select issue 78 | - Pick an issue to work on: https://github.com/scikit-learn/scikit-learn/issues 79 | - Comment on issue with: *I'm working on this* 80 | 81 | --- 82 | 83 | ## PART D: Fixing issue 84 | - Explore and fix issue. This will take the majority of time (!) 85 | - Make updates to file `` 86 | 87 | 88 | --- 89 | 90 | ## PART E: Committing change 91 | 92 | #### Create feature branch 93 | 94 | ```bash 95 | git checkout -b 96 | ``` 97 | 98 | #### Commit changes to branch 99 | Please include **(#wimlds)** in your PR so we can track them. 100 | 101 | ```bash 102 | git add 103 | git commit -m 'description for fix (#wimlds)' 104 | ``` 105 | 106 | --- 107 | 108 | ## PART F: Run tests 109 | 110 | #### `flake8` formatting test 111 | - `flake8` tests for formatting errors 112 | 113 | ```bash 114 | flake8 115 | ``` 116 | 117 | #### `pytest sklearn` tests 118 | - The [full test suite](http://scikit-learn.org/stable/developers/tips.html) takes fairly long to run 119 | - Run tests 120 | ```bash 121 | pytest sklearn 122 | ``` 123 | 124 | This is an **example** of the output of a *successful* `pytest sklearn`: [pytest_sklearn_output](pytest_sklearn_output.md) 125 | 126 | ### Create test file 127 | 128 | #### Run tests on individual test files 129 | - Create test file under `tests` directory 130 | - Run test file 131 | 132 | ```bash 133 | pytest 134 | ``` 135 | 136 | >example 137 | ```bash 138 | pytest /Users/reshamashaikh/scikit-learn/sklearn/metrics/tests/test_classifier.py 139 | pytest /Users/reshamashaikh/scikit-learn/sklearn/metrics/tests/test_mixture.py 140 | ``` 141 | 142 | This is an **example** of the output of a *successful* `pytest test_classification.py`: 143 | ```bash 144 | (sklearndev) % pytest sklearn/metrics/tests/test_classification.py 145 | ============================================================ test session starts ============================================================ 146 | platform darwin -- Python 3.7.1, pytest-4.0.0, py-1.7.0, pluggy-0.8.0 147 | rootdir: /Users/reshamashaikh/scikit-learn, inifile: setup.cfg 148 | collected 75 items 149 | 150 | sklearn/metrics/tests/test_classification.py ........................................................................... [100%] 151 | 152 | =================================================== 75 passed, 3 warnings in 9.49 seconds =================================================== 153 | (sklearndev) % 154 | ``` 155 | 156 | --- 157 | 158 | ## PART G: Submit Pull Request 159 | ### After all tests have passed, push update file(s) to feature branch 160 | - `test_file` should be committed to feature branch as well 161 | 162 | ```bash 163 | git add 164 | git commit -m 'description for test file' 165 | git push origin 166 | ``` 167 | 168 | ### Submit PR 169 | Do this on GitHub. 170 | 171 | REMINDER: Under `Conversation [description]` include references to which **Issues** and other **PRs** that your PR is related to. 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | --- 185 | 186 | ## Part H: Regression Tests on GitHub 187 | These tests happen automatically after a PR has been submitted: 188 | 189 |

190 |

191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 |

199 |

200 | 201 | This is what it looks like when **all the checks** have passed! 202 | 203 |

204 |

205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | --- 214 | 215 | ## Part I: Next Steps 216 | - Wait for reviews (be patient) 217 | - Address review comments in the same branch 218 | - Pushing to your fork will update the PR 219 | - Reviewers will "approve" the PR or change title to [MRG + 1] 220 | - You need **2 approvals for a merge** 221 | 222 | This is what a **merged** icon looks like: 223 |

224 |

225 | 226 | 227 | 228 | 229 | 230 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 |

2 | 3 | 4 | 5 | 6 |

7 | 8 | --- 9 | 10 |

11 | 12 |

13 | 14 | --- 15 | 16 | # 2019 NYC WiMLDS / Scikit-learn Sprint 17 | 18 | ## Key Links 19 | 20 | ### Photos & Tweets 21 | Twitter Moment: [NYC WiMLDS 2019 Scikit-Learn Sprint](https://twitter.com/i/moments/1168528872553570304) 22 | 23 | ### Background 24 | * [About WiMLDS open source sprints](http://wimlds.org/opensourcesprints-2/) 25 | * NYC WiMLDS [meetup event page](https://www.meetup.com/NYC-WiMLDS/events/259491883/) 26 | * NYC WiMLDS [sprint website](http://wimlds.org/opensourcesprints-2/nyc-scikit-sprint-2019/) 27 | 28 | ### Sprint Application & Prep 29 | * [Application form](https://forms.gle/CTk44nRGQC29X89d6) 30 | * [Application reminders](https://mailchi.mp/4c3ede578241/nyc-wimlds-2019-scikit-sprint-applications-reminder) 31 | * [Preparation List](http://wimlds.org/sprint-prep/) 32 | 33 | ### Sprint Day 34 | * pre-event [email reminders](https://www.meetup.com/NYC-WiMLDS/messages/boards/thread/52394272) 35 | * List of [curated issues to work on](https://github.com/WiMLDS/nyc-2019-scikit-sprint/projects/1) 36 | * Sprint GitHub repo: [WiMLDS/nyc-2019-scikit-sprint/](https://github.com/WiMLDS/nyc-2019-scikit-sprint) 37 | * [wimlds gitter](https://gitter.im/scikit-learn/wimlds) 38 | 39 | ### Post-sprint 40 | * Post-event [feedback survey](https://forms.gle/s3fawUbA79NF4NMz5) 41 | 42 | ## Contact 43 | Feel free to email us with any questions at nyc@wimlds.org 44 | 45 | ## Agenda for 24-Aug-2019 46 | - 9 am - 9:30 am: Arrive early for technical support 47 | - 9:30 am - 12 pm: Sprint 48 | - 12 pm - 1 pm: Lunch will be provided 49 | - 1 pm - 6 pm: Sprint 50 | 51 | ---- 52 | ## Code of Conduct 53 | **WiMLDS is dedicated to providing a harassment-free experience for everyone.** We do not tolerate harassment of participants in any form. All communication should be appropriate for a professional audience including people of many different backgrounds. Sexual language and imagery is not appropriate. 54 | 55 | **Be kind to others.** Do not insult or put down others. Behave professionally. Remember that harassment and sexist, racist, or exclusionary jokes are not appropriate. 56 | 57 | **Thank you for helping make this a welcoming, friendly community for all.** Please read the full [**Code of Conduct**](https://github.com/WiMLDS/starter-kit/wiki/Code-of-conduct) before participating. 58 | 59 | CoC summary is adopted from [NumFOCUS](https://numfocus.org/code-of-conduct) 60 | 61 | --- 62 | ## The Team 63 | 64 | ### WiMLDS Host 65 | * Reshama Shaikh: [@reshamas](https://twitter.com/reshamas) 66 | 67 | ### Sponsors 68 | * **Microsoft Hack Reactor** 69 | * Microsoft Host: [Nitya Narasimhan](https://twitter.com/nitya) 70 | * **Bloomberg** 71 | 72 | ### Scikit-learn Host & Experts (Core Contributors) 73 | * Andy Mueller: [@amuellerml](https://twitter.com/amuellerml) 74 | * Thomas Fan: [@thomasjpfan](https://twitter.com/thomasjpfan) 75 | * Nicolas Hug: [@hug_nicolas](https://twitter.com/hug_nicolas) 76 | 77 | 78 | ### Scikit-learn Mentors from Bloomberg 79 | * [Shreya Venkatesh](https://www.linkedin.com/in/shreya-v-109bbaa3/) 80 | * [Joanna Zhang](https://www.linkedin.com/in/zanaoj/) 81 | * [Saurabh Penkar](https://www.linkedin.com/in/suarabhpenkar/) 82 | * [Jay Bhatt](https://www.linkedin.com/in/jayybhatt/) 83 | * [Hiren Mayani](https://www.linkedin.com/in/hirenmayani/) 84 | 85 | 86 | ### Helpers 87 | * [Noemi Derzsy](https://twitter.com/NoemiDerzsy) 88 | * [Prithvi Gandhi](https://twitter.com/prithnpixels) 89 | * [Kelly Carnody](https://www.linkedin.com/in/kelly-carmody/) 90 | * [Carissa Shafto](https://twitter.com/carissa_shafto) 91 | * [Eszter Schoell](https://www.linkedin.com/in/eszterschoell/) 92 | 93 | --- 94 | 95 | ## Purpose of Sprint 96 | - Widen the pool of open-source contributors 97 | - Contribute to scikit-learn library 98 | - Involve more women and gender minorities in scikit-learn and open source 99 | - Build momentum for continued contribution 100 | 101 | 102 | ## Goals for the Day 103 | - The plan is to work in pairs. 104 | - The goal is that each participant will be able to resolve one trivial fix and one actual fix. 105 | 106 | 107 | --- 108 | 109 | ## Community Announcements 110 | 111 | ### Support Open Source 112 | - There is no charge for the sprint.  We ask you to donate a nominal amount ($5 to $10) [to NumFOCUS](https://numfocus.org/donate) to support open source. 113 | - For "Donation Dedication: indicate "scikit-learn" 114 | - For "Please notify the following person that a donation has been made: nyc@wimlds.org 115 | 116 | ### Women's Space 117 | We welcome all genders. We also ask our attendees to respect that this organization and event is a women's space. One example of creating that space is allowing women to speak and ask questions. 118 | 119 | --- 120 | 121 | ## Preparation 122 | 123 | ### 1. GitHub Account 124 | - Open an account on [GitHub](https://github.com/) 125 | - [Git should be installed](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) 126 | - Some familiarity with Git / GitHub 127 | - Prior to event, review some [Git resources](https://github.com/reshamas/git-intro-workshop/blob/master/extra_resources/resource_git_tutorials.md) 128 | - We will go over pull requests at beginning of event 129 | 130 | ### 2. Join [Gitter](https://gitter.im) 131 | Gitter is an open source instant messaging and chat room system for developers and users of GitHub repositories. You can use your GitHub ID to sign in. 132 | 133 | Join the scikit-learn Gitter community 134 | * [gitter.im/scikit-learn/home](https://gitter.im/scikit-learn/home) 135 | * [gitter.im/scikit-learn/wimlds](https://gitter.im/scikit-learn/wimlds) 136 | 137 | ### 3. Read thru [scikit-learn Contributing documentation](http://scikit-learn.org/stable/developers/contributing.html) 138 | * It is approximately 15 pages 139 | 140 | ### 4. Review [Open Issues](https://github.com/scikit-learn/scikit-learn/issues) 141 | * [scikit-learn repository](https://github.com/scikit-learn/scikit-learn) 142 | * There are over 1000 issues :sweat: 143 | * For the sprint, we will focus on issues with the labels: 144 | - [easy](https://github.com/scikit-learn/scikit-learn/issues?q=is%3Aissue+is%3Aopen+label%3AEasy) 145 | - [good first issue](https://github.com/scikit-learn/scikit-learn/issues?q=is%3Aissue+is%3Aopen+label%3A"good+first+issue") 146 | - [help wanted](https://github.com/scikit-learn/scikit-learn/issues?q=is%3Aissue+is%3Aopen+label%3A"help+wanted") 147 | * Go through the issues (with the above labels) and become familiar with them 148 | 149 | ### 5. Curated List of Issues 150 | - [issues to do list](https://github.com/WiMLDS/nyc-2019-scikit-sprint/projects/1) 151 | 152 | 153 | --- 154 | 155 | ## Day of Sprint 156 | 157 | ### 1. Hardware 158 | Bring your laptop and charger. 159 | 160 | ### 2. Nametags 161 | We will have stick-on nametags. Make sure to wear one to network with other attendees. Feel free to add your preferred pronoun and institution affiliation. 162 | 163 | ### 3. Taking Notes for Blog 164 | If you would like to blog about the event, email me (reshama@wimlds.org) and I would be happy to share and promote the blog with our community. 165 | 166 | --- 167 | 168 | ## Twitter 169 | 170 | Please take photos and tweet about the event. 171 | 172 | ### Groups 173 | 174 | - WiMLDS NYC: [WiMLDS_NYC](https://twitter.com/WiMLDS_NYC) 175 | 176 | - WiMLDS: [@wimlds](https://twitter.com/wimlds) 177 | 178 | - Microsoft: [@Microsoft](https://twitter.com/Microsoft) 179 | 180 | - Bloomberg: [@business](https://twitter.com/business) 181 | 182 | ### Hashtags 183 | 184 | - #ScikitSprint 185 | - #opensource 186 | 187 | ## Background Articles 188 | * [About WiMLDS open source sprints](http://wimlds.org/opensourcesprints-2/) 189 | 190 | * [Nairobi WiMLDS 2019 Sprint Impact Report](https://reshamas.github.io/nairobi-wimlds-2019-scikit-learn-sprint-impact-report/) 191 | * [Scikit-learn Sprint at Nairobi, Kenya by Adrin Jalali, scikit-learn core contributor](https://adrin.info/scikit-learn-sprint-at-nairobi-kenya.html) 192 | * [Highlights from the 2019 Nairobi WiMLDS Scikit-learn Sprint by Mariam Haji](https://medium.com/@mariamhaji01/highlights-from-the-2019-nairobi-wimlds-scikit-sprint-889de3b20215) 193 | 194 | * [NYC WiMLDS: 2017-2018 Sprint Impact Report](https://reshamas.github.io/impact-report-for-wimlds-scikit-learn-sprints/) 195 | * [Highlights from 2018 WiMLDS NYC / Scikit Sprint](https://reshamas.github.io/highlights-from-the-2018-NYC-WiMLDS-scikit-sprint/) 196 | 197 | * [Interview with Andreas Mueller, Core Contributor to Scikit-Learn](http://mlconf.com/interview-andreas-muller-lecturer-columbia-university-core-contributor-scikit-learn-reshama-shaikh/) 198 | 199 | 200 | -------------------------------------------------------------------------------- /contributing/pytest_sklearn_output.md: -------------------------------------------------------------------------------- 1 | ### `pytest sklearn` 2 | 3 | ```bash 4 | 5 | (sklearndev) % pytest sklearn 6 | ============================================================ test session starts ============================================================ 7 | platform darwin -- Python 3.7.1, pytest-4.0.0, py-1.7.0, pluggy-0.8.0 8 | rootdir: /Users/reshamashaikh/scikit-learn, inifile: setup.cfg 9 | collected 10627 items 10 | 11 | sklearn/_config.py . [ 0%] 12 | sklearn/discriminant_analysis.py .. [ 0%] 13 | sklearn/exceptions.py .. [ 0%] 14 | sklearn/impute.py .. [ 0%] 15 | sklearn/kernel_approximation.py .... [ 0%] 16 | sklearn/kernel_ridge.py . [ 0%] 17 | sklearn/naive_bayes.py .... [ 0%] 18 | sklearn/pipeline.py .... [ 0%] 19 | sklearn/random_projection.py ... [ 0%] 20 | sklearn/cluster/affinity_propagation_.py . [ 0%] 21 | sklearn/cluster/bicluster.py .. [ 0%] 22 | sklearn/cluster/birch.py . [ 0%] 23 | sklearn/cluster/dbscan_.py . [ 0%] 24 | sklearn/cluster/hierarchical.py .. [ 0%] 25 | sklearn/cluster/k_means_.py .. [ 0%] 26 | sklearn/cluster/mean_shift_.py . [ 0%] 27 | sklearn/cluster/spectral.py . [ 0%] 28 | sklearn/cluster/tests/test_affinity_propagation.py ....... [ 0%] 29 | sklearn/cluster/tests/test_bicluster.py ........s. [ 0%] 30 | sklearn/cluster/tests/test_birch.py ....... [ 0%] 31 | sklearn/cluster/tests/test_dbscan.py ....................... [ 0%] 32 | sklearn/cluster/tests/test_feature_agglomeration.py . [ 0%] 33 | sklearn/cluster/tests/test_hierarchical.py ..................... [ 0%] 34 | sklearn/cluster/tests/test_k_means.py ...........s................................................................................... [ 1%] 35 | .......................... [ 2%] 36 | sklearn/cluster/tests/test_mean_shift.py .......... [ 2%] 37 | sklearn/cluster/tests/test_optics.py .......................... [ 2%] 38 | sklearn/cluster/tests/test_spectral.py ............. [ 2%] 39 | sklearn/compose/_column_transformer.py .. [ 2%] 40 | sklearn/compose/_target.py . [ 2%] 41 | sklearn/compose/tests/test_column_transformer.py .ss.s........s................sssssssss...........s [ 3%] 42 | sklearn/compose/tests/test_target.py ........... [ 3%] 43 | sklearn/covariance/empirical_covariance_.py . [ 3%] 44 | sklearn/covariance/robust_covariance.py . [ 3%] 45 | sklearn/covariance/shrunk_covariance_.py .. [ 3%] 46 | sklearn/covariance/tests/test_covariance.py ...... [ 3%] 47 | sklearn/covariance/tests/test_elliptic_envelope.py .... [ 3%] 48 | sklearn/covariance/tests/test_graph_lasso.py .... [ 3%] 49 | sklearn/covariance/tests/test_graphical_lasso.py .... [ 3%] 50 | sklearn/covariance/tests/test_robust_covariance.py ....... [ 3%] 51 | sklearn/cross_decomposition/cca_.py . [ 3%] 52 | sklearn/cross_decomposition/pls_.py ... [ 3%] 53 | sklearn/cross_decomposition/tests/test_pls.py ........ [ 3%] 54 | sklearn/datasets/base.py ....... [ 3%] 55 | sklearn/datasets/samples_generator.py . [ 3%] 56 | sklearn/datasets/tests/test_20news.py sss [ 3%] 57 | sklearn/datasets/tests/test_base.py ................... [ 3%] 58 | sklearn/datasets/tests/test_california_housing.py . [ 3%] 59 | sklearn/datasets/tests/test_covtype.py s [ 3%] 60 | sklearn/datasets/tests/test_kddcup99.py ss [ 3%] 61 | sklearn/datasets/tests/test_lfw.py sssss [ 3%] 62 | sklearn/datasets/tests/test_mldata.py .... [ 3%] 63 | sklearn/datasets/tests/test_openml.py ..................................................... [ 4%] 64 | sklearn/datasets/tests/test_rcv1.py s [ 4%] 65 | sklearn/datasets/tests/test_samples_generator.py ............................ [ 4%] 66 | sklearn/datasets/tests/test_svmlight_format.py ...................................................... [ 5%] 67 | sklearn/decomposition/base.py . [ 5%] 68 | sklearn/decomposition/factor_analysis.py . [ 5%] 69 | sklearn/decomposition/fastica_.py . [ 5%] 70 | sklearn/decomposition/incremental_pca.py . [ 5%] 71 | sklearn/decomposition/kernel_pca.py . [ 5%] 72 | sklearn/decomposition/nmf.py .. [ 5%] 73 | sklearn/decomposition/online_lda.py . [ 5%] 74 | sklearn/decomposition/pca.py . [ 5%] 75 | sklearn/decomposition/sparse_pca.py .. [ 5%] 76 | sklearn/decomposition/truncated_svd.py . [ 5%] 77 | sklearn/decomposition/tests/test_dict_learning.py ......................................................... [ 5%] 78 | sklearn/decomposition/tests/test_factor_analysis.py . [ 5%] 79 | sklearn/decomposition/tests/test_fastica.py ........ [ 5%] 80 | sklearn/decomposition/tests/test_incremental_pca.py ................. [ 6%] 81 | sklearn/decomposition/tests/test_kernel_pca.py ............ [ 6%] 82 | sklearn/decomposition/tests/test_nmf.py ........................ [ 6%] 83 | sklearn/decomposition/tests/test_online_lda.py .............sss............... [ 6%] 84 | sklearn/decomposition/tests/test_pca.py ......................................... [ 7%] 85 | sklearn/decomposition/tests/test_sparse_pca.py ....ss........ss.... [ 7%] 86 | sklearn/decomposition/tests/test_truncated_svd.py ............... [ 7%] 87 | sklearn/ensemble/forest.py .. [ 7%] 88 | sklearn/ensemble/partial_dependence.py .. [ 7%] 89 | sklearn/ensemble/voting_classifier.py . [ 7%] 90 | sklearn/ensemble/tests/test_bagging.py ............................... [ 7%] 91 | sklearn/ensemble/tests/test_base.py .... [ 7%] 92 | sklearn/ensemble/tests/test_forest.py ............................................................................................... [ 8%] 93 | ..................................................................... [ 9%] 94 | sklearn/ensemble/tests/test_gradient_boosting.py .................................................................................... [ 10%] 95 | ................................. [ 10%] 96 | sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py ......... [ 10%] 97 | sklearn/ensemble/tests/test_iforest.py .............. [ 10%] 98 | sklearn/ensemble/tests/test_partial_dependence.py ....... [ 10%] 99 | sklearn/ensemble/tests/test_voting_classifier.py ................. [ 10%] 100 | sklearn/ensemble/tests/test_weight_boosting.py ................ [ 11%] 101 | sklearn/feature_extraction/dict_vectorizer.py .. [ 11%] 102 | sklearn/feature_extraction/hashing.py . [ 11%] 103 | sklearn/feature_extraction/image.py . [ 11%] 104 | sklearn/feature_extraction/text.py ... [ 11%] 105 | sklearn/feature_extraction/tests/test_dict_vectorizer.py ............................ [ 11%] 106 | sklearn/feature_extraction/tests/test_feature_hasher.py ........... [ 11%] 107 | sklearn/feature_extraction/tests/test_image.py .................... [ 11%] 108 | sklearn/feature_extraction/tests/test_text.py ............................................................x...... [ 12%] 109 | sklearn/feature_selection/rfe.py .. [ 12%] 110 | sklearn/feature_selection/univariate_selection.py ...... [ 12%] 111 | sklearn/feature_selection/variance_threshold.py . [ 12%] 112 | sklearn/feature_selection/tests/test_base.py ..... [ 12%] 113 | sklearn/feature_selection/tests/test_chi2.py ..... [ 12%] 114 | sklearn/feature_selection/tests/test_feature_select.py ................................. [ 12%] 115 | sklearn/feature_selection/tests/test_from_model.py ..................... [ 13%] 116 | sklearn/feature_selection/tests/test_mutual_info.py ........ [ 13%] 117 | sklearn/feature_selection/tests/test_rfe.py ............ [ 13%] 118 | sklearn/feature_selection/tests/test_variance_threshold.py .. [ 13%] 119 | sklearn/gaussian_process/gpc.py . [ 13%] 120 | sklearn/gaussian_process/gpr.py . [ 13%] 121 | sklearn/gaussian_process/tests/test_gpc.py .............................. [ 13%] 122 | sklearn/gaussian_process/tests/test_gpr.py ................................................................................ [ 14%] 123 | sklearn/gaussian_process/tests/test_kernels.py ...................................................................................... [ 15%] 124 | ..................................................................................................................................... [ 16%] 125 | ................................. [ 16%] 126 | sklearn/linear_model/base.py . [ 16%] 127 | sklearn/linear_model/bayes.py .. [ 16%] 128 | sklearn/linear_model/coordinate_descent.py ......... [ 16%] 129 | sklearn/linear_model/huber.py . [ 16%] 130 | sklearn/linear_model/least_angle.py ..... [ 16%] 131 | sklearn/linear_model/logistic.py .. [ 16%] 132 | sklearn/linear_model/omp.py .. [ 16%] 133 | sklearn/linear_model/passive_aggressive.py .. [ 16%] 134 | sklearn/linear_model/perceptron.py . [ 16%] 135 | sklearn/linear_model/ransac.py . [ 16%] 136 | sklearn/linear_model/ridge.py .... [ 16%] 137 | sklearn/linear_model/sag.py . [ 16%] 138 | sklearn/linear_model/stochastic_gradient.py .. [ 16%] 139 | sklearn/linear_model/theil_sen.py . [ 16%] 140 | sklearn/linear_model/tests/test_base.py .................. [ 17%] 141 | sklearn/linear_model/tests/test_bayes.py s........ [ 17%] 142 | sklearn/linear_model/tests/test_coordinate_descent.py ......................................... [ 17%] 143 | sklearn/linear_model/tests/test_huber.py ......... [ 17%] 144 | sklearn/linear_model/tests/test_least_angle.py .............................. [ 18%] 145 | sklearn/linear_model/tests/test_logistic.py ......................................................................................... [ 18%] 146 | .....................................................................xx...... [ 19%] 147 | sklearn/linear_model/tests/test_omp.py .................. [ 19%] 148 | sklearn/linear_model/tests/test_passive_aggressive.py ................ [ 19%] 149 | sklearn/linear_model/tests/test_perceptron.py ... [ 19%] 150 | sklearn/linear_model/tests/test_ransac.py ....................... [ 20%] 151 | sklearn/linear_model/tests/test_ridge.py ............................................ [ 20%] 152 | sklearn/linear_model/tests/test_sag.py ................ [ 20%] 153 | sklearn/linear_model/tests/test_sgd.py .............................................................................................. [ 21%] 154 | ...................................................................................................................... [ 22%] 155 | sklearn/linear_model/tests/test_sparse_coordinate_descent.py ........... [ 22%] 156 | sklearn/linear_model/tests/test_theil_sen.py ................. [ 22%] 157 | sklearn/manifold/isomap.py . [ 22%] 158 | sklearn/manifold/locally_linear.py . [ 22%] 159 | sklearn/manifold/mds.py . [ 22%] 160 | sklearn/manifold/spectral_embedding_.py . [ 22%] 161 | sklearn/manifold/t_sne.py . [ 22%] 162 | sklearn/manifold/tests/test_isomap.py ...... [ 23%] 163 | sklearn/manifold/tests/test_locally_linear.py ....... [ 23%] 164 | sklearn/manifold/tests/test_mds.py ... [ 23%] 165 | sklearn/manifold/tests/test_spectral_embedding.py ....s....... [ 23%] 166 | sklearn/manifold/tests/test_t_sne.py ................................................ [ 23%] 167 | sklearn/metrics/classification.py ................. [ 23%] 168 | sklearn/metrics/pairwise.py .... [ 23%] 169 | sklearn/metrics/ranking.py ...... [ 23%] 170 | sklearn/metrics/regression.py ....... [ 24%] 171 | sklearn/metrics/scorer.py . [ 24%] 172 | sklearn/metrics/cluster/supervised.py ....... [ 24%] 173 | sklearn/metrics/cluster/tests/test_bicluster.py ... [ 24%] 174 | sklearn/metrics/cluster/tests/test_common.py ........................................ [ 24%] 175 | sklearn/metrics/cluster/tests/test_supervised.py ................... [ 24%] 176 | sklearn/metrics/cluster/tests/test_unsupervised.py ......... [ 24%] 177 | sklearn/metrics/tests/test_classification.py ........................................................................... [ 25%] 178 | sklearn/metrics/tests/test_common.py ................................................................................................ [ 26%] 179 | ..................................................................................................................................... [ 27%] 180 | ..................................................................................................................................... [ 28%] 181 | .......................................................................................... [ 29%] 182 | sklearn/metrics/tests/test_pairwise.py .................................................................................. [ 30%] 183 | sklearn/metrics/tests/test_ranking.py .................................................. [ 30%] 184 | sklearn/metrics/tests/test_regression.py ....... [ 31%] 185 | sklearn/metrics/tests/test_score_objects.py ................................................ [ 31%] 186 | sklearn/mixture/tests/test_bayesian_mixture.py .................. [ 31%] 187 | sklearn/mixture/tests/test_gaussian_mixture.py .................................... [ 32%] 188 | sklearn/mixture/tests/test_mixture.py .. [ 32%] 189 | sklearn/model_selection/_search.py ... [ 32%] 190 | sklearn/model_selection/_split.py ............... [ 32%] 191 | sklearn/model_selection/_validation.py s... [ 32%] 192 | sklearn/model_selection/tests/test_search.py ..................................................... [ 32%] 193 | sklearn/model_selection/tests/test_split.py ............................................... [ 33%] 194 | sklearn/model_selection/tests/test_validation.py .................................................... [ 33%] 195 | sklearn/neighbors/base.py .... [ 33%] 196 | sklearn/neighbors/classification.py .. [ 33%] 197 | sklearn/neighbors/graph.py .. [ 33%] 198 | sklearn/neighbors/nearest_centroid.py . [ 33%] 199 | sklearn/neighbors/regression.py .. [ 33%] 200 | sklearn/neighbors/unsupervised.py . [ 33%] 201 | sklearn/neighbors/tests/test_ball_tree.py ........................................................................................... [ 34%] 202 | ..................................................................................................................................... [ 35%] 203 | ........................ [ 36%] 204 | sklearn/neighbors/tests/test_dist_metrics.py .......................................................... [ 36%] 205 | sklearn/neighbors/tests/test_kd_tree.py ............................................................................. [ 37%] 206 | sklearn/neighbors/tests/test_kde.py ....................................... [ 37%] 207 | sklearn/neighbors/tests/test_lof.py ............ [ 37%] 208 | sklearn/neighbors/tests/test_nearest_centroid.py ......... [ 37%] 209 | sklearn/neighbors/tests/test_neighbors.py .......................................................................... [ 38%] 210 | sklearn/neighbors/tests/test_quad_tree.py ........... [ 38%] 211 | sklearn/neural_network/rbm.py . [ 38%] 212 | sklearn/neural_network/tests/test_mlp.py ......................... [ 38%] 213 | sklearn/neural_network/tests/test_rbm.py ............ [ 39%] 214 | sklearn/neural_network/tests/test_stochastic_optimizers.py ...... [ 39%] 215 | sklearn/preprocessing/_discretization.py . [ 39%] 216 | sklearn/preprocessing/_encoders.py .. [ 39%] 217 | sklearn/preprocessing/data.py ............. [ 39%] 218 | sklearn/preprocessing/label.py .... [ 39%] 219 | sklearn/preprocessing/tests/test_base.py ................... [ 39%] 220 | sklearn/preprocessing/tests/test_common.py ......... [ 39%] 221 | sklearn/preprocessing/tests/test_data.py ...................................................................s.s.s.s...........s.s.... [ 40%] 222 | .................................................................................................... [ 41%] 223 | sklearn/preprocessing/tests/test_discretization.py .................................. [ 41%] 224 | sklearn/preprocessing/tests/test_encoders.py ..................sss..............s................s. [ 42%] 225 | sklearn/preprocessing/tests/test_function_transformer.py ..........s [ 42%] 226 | sklearn/preprocessing/tests/test_imputation.py ........ [ 42%] 227 | sklearn/preprocessing/tests/test_label.py ................................. [ 42%] 228 | sklearn/semi_supervised/label_propagation.py ... [ 42%] 229 | sklearn/semi_supervised/tests/test_label_propagation.py ......... [ 42%] 230 | sklearn/svm/classes.py ...... [ 42%] 231 | sklearn/svm/tests/test_bounds.py ................... [ 43%] 232 | sklearn/svm/tests/test_sparse.py ............................... [ 43%] 233 | sklearn/svm/tests/test_svm.py ............................................... [ 43%] 234 | sklearn/tests/test_base.py ....................... [ 44%] 235 | sklearn/tests/test_calibration.py ......... [ 44%] 236 | sklearn/tests/test_check_build.py . [ 44%] 237 | sklearn/tests/test_common.py ........................................................................................................ [ 45%] 238 | ...................................................................................................s................................. [ 46%] 239 | ...s........................................................................................................................s........ [ 47%] 240 | ............................s...........................................................s..................................s......... [ 48%] 241 | .............................................s.....................................................................................s. [ 50%] 242 | ......................s....................................s...................................s.............................s....... [ 51%] 243 | .............................s....................................................................................................... [ 52%] 244 | ......................................................................................s....................................s......... [ 53%] 245 | .........................s.....................................s..................................................................... [ 55%] 246 | .............................................................................................................s....................... [ 56%] 247 | ..................................................................................................................................... [ 57%] 248 | ...........s....................................s.................................................................................... [ 58%] 249 | ..................................................s.................................................................................. [ 60%] 250 | ...........s........................................................................................s................................ [ 61%] 251 | ........................................................................................................s............................ [ 62%] 252 | .........................s........................................................................................................... [ 63%] 253 | ..................................................................................................................................... [ 65%] 254 | ..................................................................................................................................... [ 66%] 255 | ...........................................................................s..................................s...................... [ 67%] 256 | ................s.........................................................................................s.......................... [ 68%] 257 | ............s........................................................................................................................ [ 70%] 258 | ..................................................................................................................................... [ 71%] 259 | .........................s....................................................s...................................................... [ 72%] 260 | ..............................................................................................................................s...... [ 73%] 261 | ..................................................................................................................................... [ 75%] 262 | ..............s.....................s...............s................................................................................ [ 76%] 263 | .......................................s............................................................................................. [ 77%] 264 | .................................................s.....................................s............................................. [ 78%] 265 | ..................................................................................s.................................................. [ 80%] 266 | ...................................................................................s................................................. [ 81%] 267 | .......................................................................................s.....................................s....... [ 82%] 268 | ...........................s..................................s..................................s................................... [ 83%] 269 | ..s..................................................................s......................................s........................ [ 85%] 270 | ...........s.........................s...........s................................................................................... [ 86%] 271 | ..................................................................................................................................... [ 87%] 272 | ......................................................................s.............................................................. [ 88%] 273 | ..........................................................................................................................s.......... [ 90%] 274 | ..................................................................................................................................... [ 91%] 275 | ............................................................................. [ 92%] 276 | sklearn/tests/test_config.py ... [ 92%] 277 | sklearn/tests/test_discriminant_analysis.py ............... [ 92%] 278 | sklearn/tests/test_docstring_parameters.py s. [ 92%] 279 | sklearn/tests/test_dummy.py ................................................ [ 92%] 280 | sklearn/tests/test_impute.py ...............................ss..........ss........................................................... [ 93%] 281 | ........ [ 93%] 282 | sklearn/tests/test_init.py . [ 93%] 283 | sklearn/tests/test_isotonic.py .............................. [ 94%] 284 | sklearn/tests/test_kernel_approximation.py ......... [ 94%] 285 | sklearn/tests/test_kernel_ridge.py ........ [ 94%] 286 | sklearn/tests/test_metaestimators.py . [ 94%] 287 | sklearn/tests/test_multiclass.py ....................................... [ 94%] 288 | sklearn/tests/test_multioutput.py ....................... [ 94%] 289 | sklearn/tests/test_naive_bayes.py ........................................... [ 95%] 290 | sklearn/tests/test_pipeline.py ....................................... [ 95%] 291 | sklearn/tests/test_random_projection.py ................ [ 95%] 292 | sklearn/tests/test_site_joblib.py .. [ 95%] 293 | sklearn/tree/export.py .. [ 95%] 294 | sklearn/tree/tree.py .. [ 95%] 295 | sklearn/tree/tests/test_export.py ..... [ 95%] 296 | sklearn/tree/tests/test_reingold_tilford.py .. [ 95%] 297 | sklearn/tree/tests/test_tree.py ..................................................................................................... [ 96%] 298 | ........................................................................ [ 97%] 299 | sklearn/utils/__init__.py ....... [ 97%] 300 | sklearn/utils/deprecation.py . [ 97%] 301 | sklearn/utils/extmath.py .. [ 97%] 302 | sklearn/utils/graph.py . [ 97%] 303 | sklearn/utils/multiclass.py ... [ 97%] 304 | sklearn/utils/testing.py . [ 97%] 305 | sklearn/utils/validation.py .. [ 97%] 306 | sklearn/utils/tests/test_bench.py . [ 97%] 307 | sklearn/utils/tests/test_class_weight.py ........... [ 97%] 308 | sklearn/utils/tests/test_deprecation.py ... [ 97%] 309 | sklearn/utils/tests/test_estimator_checks.py ....... [ 97%] 310 | sklearn/utils/tests/test_extmath.py .......................... [ 98%] 311 | sklearn/utils/tests/test_fast_dict.py .. [ 98%] 312 | sklearn/utils/tests/test_fixes.py ............. [ 98%] 313 | sklearn/utils/tests/test_linear_assignment.py . [ 98%] 314 | sklearn/utils/tests/test_metaestimators.py .. [ 98%] 315 | sklearn/utils/tests/test_multiclass.py .....s.. [ 98%] 316 | sklearn/utils/tests/test_murmurhash.py ...... [ 98%] 317 | sklearn/utils/tests/test_optimize.py . [ 98%] 318 | sklearn/utils/tests/test_random.py .... [ 98%] 319 | sklearn/utils/tests/test_seq_dataset.py .. [ 98%] 320 | sklearn/utils/tests/test_shortest_path.py .... [ 98%] 321 | sklearn/utils/tests/test_show_versions.py ... [ 98%] 322 | sklearn/utils/tests/test_sparsefuncs.py ......................................... [ 98%] 323 | sklearn/utils/tests/test_testing.py ...........s.. [ 99%] 324 | sklearn/utils/tests/test_utils.py ......s........................ [ 99%] 325 | sklearn/utils/tests/test_validation.py ...............................................s.ss............. [100%] 326 | ========================================================== short test summary info ========================================================== 327 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: This test is failing on the buildbot, but cannot reproduce. Temporarily disabling it until it can be reproduced and fixed. 328 | SKIP [1] sklearn/cluster/tests/test_k_means.py:238: Possible multi-process bug with some BLAS 329 | SKIP [1] /Users/reshamashaikh/scikit-learn/sklearn/compose/tests/test_column_transformer.py:133: could not import 'pandas' 330 | SKIP [2] /Users/reshamashaikh/scikit-learn/sklearn/compose/tests/test_column_transformer.py:264: could not import 'pandas' 331 | SKIP [1] /Users/reshamashaikh/scikit-learn/sklearn/compose/tests/test_column_transformer.py:471: could not import 'pandas' 332 | SKIP [9] /Users/reshamashaikh/scikit-learn/sklearn/compose/tests/test_column_transformer.py:806: could not import 'pandas' 333 | SKIP [1] /Users/reshamashaikh/scikit-learn/sklearn/compose/tests/test_column_transformer.py:996: could not import 'pandas' 334 | SKIP [3] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: Download 20 newsgroups to run this test 335 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: Covertype dataset can not be loaded. 336 | SKIP [2] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: kddcup99 dataset can not be loaded. 337 | SKIP [5] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: PIL not installed. 338 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: Download RCV1 dataset to run this test. 339 | SKIP [2] sklearn/decomposition/tests/test_online_lda.py:207: Possible multi-process bug with some BLAS 340 | SKIP [1] sklearn/decomposition/tests/test_online_lda.py:224: Possible multi-process bug with some BLAS 341 | SKIP [2] sklearn/decomposition/tests/test_sparse_pca.py:79: Possible multi-process bug with some BLAS 342 | SKIP [2] sklearn/decomposition/tests/test_sparse_pca.py:159: skipping mini_batch_fit_transform. 343 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: test_bayesian_on_diabetes is broken 344 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: pyamg not available. 345 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/doctest.py:347: all tests skipped by +SKIP option 346 | SKIP [4] /Users/reshamashaikh/scikit-learn/sklearn/preprocessing/tests/test_data.py:869: 'with_mean=True' cannot be used with sparse matrix. 347 | SKIP [2] /Users/reshamashaikh/scikit-learn/sklearn/preprocessing/tests/test_data.py:1076: RobustScaler cannot center sparse matrix 348 | SKIP [3] /Users/reshamashaikh/scikit-learn/sklearn/preprocessing/tests/test_encoders.py:311: could not import 'pandas' 349 | SKIP [1] /Users/reshamashaikh/scikit-learn/sklearn/preprocessing/tests/test_encoders.py:492: could not import 'pandas' 350 | SKIP [1] /Users/reshamashaikh/scikit-learn/sklearn/preprocessing/tests/test_encoders.py:660: could not import 'pandas' 351 | SKIP [1] /Users/reshamashaikh/scikit-learn/sklearn/preprocessing/tests/test_function_transformer.py:203: could not import 'pandas' 352 | SKIP [46] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: pandas is not installed: not testing for input of type pandas.Series to class weight. 353 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: score_samples of BernoulliRBM is not invariant when applied to a subset. 354 | SKIP [3] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: Skipping check_estimators_data_not_an_array for cross decomposition module as estimators are not deterministic. 355 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: transform of MiniBatchSparsePCA is not invariant when applied to a subset. 356 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: Not testing NuSVC class weight as it is ignored. 357 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: decision_function of SVC is not invariant when applied to a subset. 358 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: transform of SparsePCA is not invariant when applied to a subset. 359 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: numpydoc is required to test the docstrings, as well as python version >= 3.5 360 | SKIP [2] /Users/reshamashaikh/scikit-learn/sklearn/tests/test_impute.py:300: could not import 'pandas' 361 | SKIP [2] /Users/reshamashaikh/scikit-learn/sklearn/tests/test_impute.py:413: could not import 'pandas' 362 | SKIP [3] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: Pandas not found 363 | SKIP [1] /Users/reshamashaikh/anaconda3/envs/sklearndev/lib/python3.7/site-packages/_pytest/nose.py:27: numpydoc is required to test the docstrings 364 | SKIP [1] /Users/reshamashaikh/scikit-learn/sklearn/utils/tests/test_validation.py:700: could not import 'pandas' 365 | SKIP [1] /Users/reshamashaikh/scikit-learn/sklearn/utils/tests/test_validation.py:709: could not import 'pandas' 366 | 367 | ================================== 10509 passed, 115 skipped, 3 xfailed, 14228 warnings in 387.01 seconds =================================== 368 | This problem is unconstrained. 369 | RUNNING THE L-BFGS-B CODE 370 | 371 | * * * 372 | 373 | Machine precision = 2.220D-16 374 | N = 3 M = 10 375 | 376 | At X0 0 variables are exactly at the bounds 377 | 378 | At iterate 0 f= 1.38629D+02 |proj g|= 6.27865D+01 379 | 380 | * * * 381 | 382 | Tit = total number of iterations 383 | Tnf = total number of function evaluations 384 | Tnint = total number of segments explored during Cauchy searches 385 | Skip = number of BFGS updates skipped 386 | Nact = number of active bounds at final generalized Cauchy point 387 | Projg = norm of the final projected gradient 388 | F = final function value 389 | 390 | * * * 391 | 392 | N Tit Tnf Tnint Skip Nact Projg F 393 | 3 1 2 1 0 0 2.422D+01 9.713D+01 394 | F = 97.133816163368238 395 | 396 | STOP: TOTAL NO. of ITERATIONS REACHED LIMIT 397 | 398 | Cauchy time 0.000E+00 seconds. 399 | Subspace minimization time 0.000E+00 seconds. 400 | Line search time 0.000E+00 seconds. 401 | 402 | Total User time 0.000E+00 seconds. 403 | 404 | (sklearndev) % 405 | ``` 406 | --------------------------------------------------------------------------------