├── README.md ├── dataType.h ├── elf.h └── soparse.c /README.md: -------------------------------------------------------------------------------- 1 | # 使用c语言解析so文件 2 | > * elf.h --> asop提供的elf头文件 3 | > * dataType.h -->数据格式头文件 4 | > * soparse.c --> 解析代码 5 | -------------------------------------------------------------------------------- /dataType.h: -------------------------------------------------------------------------------- 1 | /* 2 | * @Author: windy_ll 3 | * @Date: 2020-10-02 22:22:50 4 | * @LastEditors: windy_ll 5 | * @LastEditTime: 2020-10-09 19:13:48 6 | * @Description: file content 7 | */ 8 | #include 9 | #include 10 | 11 | typedef uint32_t Elf32_Addr; 12 | typedef uint32_t Elf32_Off; 13 | typedef uint16_t Elf32_Half; 14 | typedef uint32_t Elf32_Word; 15 | typedef int32_t Elf32_Sword; 16 | 17 | typedef uint64_t Elf64_Addr; 18 | typedef uint64_t Elf64_Off; 19 | typedef uint16_t Elf64_Half; 20 | typedef uint32_t Elf64_Word; 21 | typedef int32_t Elf64_Sword; 22 | typedef uint64_t Elf64_Xword; 23 | typedef int64_t Elf64_Sxword; 24 | 25 | typedef struct{ 26 | unsigned char e_ident[16]; 27 | Elf32_Half e_type; 28 | Elf32_Half e_machine; 29 | Elf32_Word e_version; 30 | Elf32_Addr e_entry; 31 | Elf32_Off e_phoff; 32 | Elf32_Off e_shoff; 33 | Elf32_Word e_flags; 34 | Elf32_Half e_ehsize; 35 | Elf32_Half e_phentsize; 36 | Elf32_Half e_phnum; 37 | Elf32_Half e_shentsize; 38 | Elf32_Half e_shnum; 39 | Elf32_Half e_shstrndx; 40 | }Elf32_Ehdr; 41 | 42 | enum { 43 | ET_NONE = 0, 44 | ET_REL = 1, 45 | ET_EXEC = 2, 46 | ET_DYN = 3, 47 | ET_CORE = 4, 48 | ET_LOPROC = 0xff00, 49 | ET_HIPROC = 0xffff 50 | }; 51 | 52 | typedef struct{ 53 | Elf32_Word p_type; 54 | Elf32_Off p_offset; 55 | Elf32_Addr p_vaddr; 56 | Elf32_Addr p_paddr; 57 | Elf32_Word p_filesz; 58 | Elf32_Word p_memsz; 59 | Elf32_Word p_flags; 60 | Elf32_Word p_align; 61 | }Elf32_Phdr; 62 | 63 | typedef struct{ 64 | Elf32_Word sh_name; 65 | Elf32_Word sh_type; 66 | Elf32_Word sh_flags; 67 | Elf32_Addr sh_addr; 68 | Elf32_Off sh_offset; 69 | Elf32_Word sh_size; 70 | Elf32_Word sh_link; 71 | Elf32_Word sh_info; 72 | Elf32_Word sh_addralign; 73 | Elf32_Word sh_entsize; 74 | }Elf32_Shdr; 75 | 76 | typedef struct 77 | { 78 | Elf32_Sword d_tag; 79 | union 80 | { 81 | Elf32_Word d_val; 82 | Elf32_Addr d_ptr; 83 | } d_un; 84 | }Elf32_Dyn; 85 | 86 | typedef struct{ 87 | Elf32_Word st_name; 88 | Elf32_Addr st_value; 89 | Elf32_Word st_size; 90 | unsigned char st_info; 91 | unsigned char st_other; 92 | Elf32_Half st_shndx; 93 | }Elf32_Sym; 94 | -------------------------------------------------------------------------------- /elf.h: -------------------------------------------------------------------------------- 1 | //===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===// 2 | // 3 | // The LLVM Compiler Infrastructure 4 | // 5 | // This file is distributed under the University of Illinois Open Source 6 | // License. See LICENSE.TXT for details. 7 | // 8 | //===----------------------------------------------------------------------===// 9 | // 10 | // This header contains common, non-processor-specific data structures and 11 | // constants for the ELF file format. 12 | // 13 | // The details of the ELF32 bits in this file are largely based on the Tool 14 | // Interface Standard (TIS) Executable and Linking Format (ELF) Specification 15 | // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format 16 | // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. 17 | // 18 | //===----------------------------------------------------------------------===// 19 | 20 | // BEGIN android-changed 21 | #ifndef ART_RUNTIME_ELF_H_ 22 | #define ART_RUNTIME_ELF_H_ 23 | // END android-changed 24 | 25 | // BEGIN android-changed 26 | #include 27 | #include 28 | // END android-changed 29 | 30 | typedef uint32_t Elf32_Addr; // Program address 31 | typedef uint32_t Elf32_Off; // File offset 32 | typedef uint16_t Elf32_Half; 33 | typedef uint32_t Elf32_Word; 34 | typedef int32_t Elf32_Sword; 35 | 36 | typedef uint64_t Elf64_Addr; 37 | typedef uint64_t Elf64_Off; 38 | typedef uint16_t Elf64_Half; 39 | typedef uint32_t Elf64_Word; 40 | typedef int32_t Elf64_Sword; 41 | typedef uint64_t Elf64_Xword; 42 | typedef int64_t Elf64_Sxword; 43 | 44 | // Object file magic string. 45 | static constexpr char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' }; 46 | 47 | enum { 48 | EI_MAG0 = 0, // File identification index. 49 | EI_MAG1 = 1, // File identification index. 50 | EI_MAG2 = 2, // File identification index. 51 | EI_MAG3 = 3, // File identification index. 52 | EI_CLASS = 4, // File class. 53 | EI_DATA = 5, // Data encoding. 54 | EI_VERSION = 6, // File version. 55 | EI_OSABI = 7, // OS/ABI identification. 56 | EI_ABIVERSION = 8, // ABI version. 57 | EI_PAD = 9, // Start of padding bytes. 58 | EI_NIDENT = 16 // Number of bytes in e_ident. 59 | }; 60 | 61 | // BEGIN android-added for compat 62 | constexpr char ELFMAG0 = ElfMagic[EI_MAG0]; 63 | constexpr char ELFMAG1 = ElfMagic[EI_MAG1]; 64 | constexpr char ELFMAG2 = ElfMagic[EI_MAG2]; 65 | constexpr char ELFMAG3 = ElfMagic[EI_MAG3]; 66 | constexpr char ELFMAG[] = "\177ELF"; 67 | constexpr int SELFMAG = 4; 68 | constexpr int NT_PRSTATUS = 1; 69 | // END android-added for compat 70 | 71 | struct Elf32_Ehdr { 72 | unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes 73 | Elf32_Half e_type; // Type of file (see ET_* below) 74 | Elf32_Half e_machine; // Required architecture for this file (see EM_*) 75 | Elf32_Word e_version; // Must be equal to 1 76 | Elf32_Addr e_entry; // Address to jump to in order to start program 77 | Elf32_Off e_phoff; // Program header table's file offset, in bytes 78 | Elf32_Off e_shoff; // Section header table's file offset, in bytes 79 | Elf32_Word e_flags; // Processor-specific flags 80 | Elf32_Half e_ehsize; // Size of ELF header, in bytes 81 | Elf32_Half e_phentsize; // Size of an entry in the program header table 82 | Elf32_Half e_phnum; // Number of entries in the program header table 83 | Elf32_Half e_shentsize; // Size of an entry in the section header table 84 | Elf32_Half e_shnum; // Number of entries in the section header table 85 | Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table 86 | bool checkMagic() const { 87 | return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; 88 | } 89 | unsigned char getFileClass() const { return e_ident[EI_CLASS]; } 90 | unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } 91 | }; 92 | 93 | // 64-bit ELF header. Fields are the same as for ELF32, but with different 94 | // types (see above). 95 | struct Elf64_Ehdr { 96 | unsigned char e_ident[EI_NIDENT]; 97 | Elf64_Half e_type; 98 | Elf64_Half e_machine; 99 | Elf64_Word e_version; 100 | Elf64_Addr e_entry; 101 | Elf64_Off e_phoff; 102 | Elf64_Off e_shoff; 103 | Elf64_Word e_flags; 104 | Elf64_Half e_ehsize; 105 | Elf64_Half e_phentsize; 106 | Elf64_Half e_phnum; 107 | Elf64_Half e_shentsize; 108 | Elf64_Half e_shnum; 109 | Elf64_Half e_shstrndx; 110 | bool checkMagic() const { 111 | return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; 112 | } 113 | unsigned char getFileClass() const { return e_ident[EI_CLASS]; } 114 | unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } 115 | }; 116 | 117 | // File types 118 | enum { 119 | ET_NONE = 0, // No file type 120 | ET_REL = 1, // Relocatable file 121 | ET_EXEC = 2, // Executable file 122 | ET_DYN = 3, // Shared object file 123 | ET_CORE = 4, // Core file 124 | ET_LOPROC = 0xff00, // Beginning of processor-specific codes 125 | ET_HIPROC = 0xffff // Processor-specific 126 | }; 127 | 128 | // Versioning 129 | enum { 130 | EV_NONE = 0, 131 | EV_CURRENT = 1 132 | }; 133 | 134 | // Machine architectures 135 | enum { 136 | EM_NONE = 0, // No machine 137 | EM_M32 = 1, // AT&T WE 32100 138 | EM_SPARC = 2, // SPARC 139 | EM_386 = 3, // Intel 386 140 | EM_68K = 4, // Motorola 68000 141 | EM_88K = 5, // Motorola 88000 142 | EM_486 = 6, // Intel 486 (deprecated) 143 | EM_860 = 7, // Intel 80860 144 | EM_MIPS = 8, // MIPS R3000 145 | EM_S370 = 9, // IBM System/370 146 | EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian 147 | EM_PARISC = 15, // Hewlett-Packard PA-RISC 148 | EM_VPP500 = 17, // Fujitsu VPP500 149 | EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC 150 | EM_960 = 19, // Intel 80960 151 | EM_PPC = 20, // PowerPC 152 | EM_PPC64 = 21, // PowerPC64 153 | EM_S390 = 22, // IBM System/390 154 | EM_SPU = 23, // IBM SPU/SPC 155 | EM_V800 = 36, // NEC V800 156 | EM_FR20 = 37, // Fujitsu FR20 157 | EM_RH32 = 38, // TRW RH-32 158 | EM_RCE = 39, // Motorola RCE 159 | EM_ARM = 40, // ARM 160 | EM_ALPHA = 41, // DEC Alpha 161 | EM_SH = 42, // Hitachi SH 162 | EM_SPARCV9 = 43, // SPARC V9 163 | EM_TRICORE = 44, // Siemens TriCore 164 | EM_ARC = 45, // Argonaut RISC Core 165 | EM_H8_300 = 46, // Hitachi H8/300 166 | EM_H8_300H = 47, // Hitachi H8/300H 167 | EM_H8S = 48, // Hitachi H8S 168 | EM_H8_500 = 49, // Hitachi H8/500 169 | EM_IA_64 = 50, // Intel IA-64 processor architecture 170 | EM_MIPS_X = 51, // Stanford MIPS-X 171 | EM_COLDFIRE = 52, // Motorola ColdFire 172 | EM_68HC12 = 53, // Motorola M68HC12 173 | EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator 174 | EM_PCP = 55, // Siemens PCP 175 | EM_NCPU = 56, // Sony nCPU embedded RISC processor 176 | EM_NDR1 = 57, // Denso NDR1 microprocessor 177 | EM_STARCORE = 58, // Motorola Star*Core processor 178 | EM_ME16 = 59, // Toyota ME16 processor 179 | EM_ST100 = 60, // STMicroelectronics ST100 processor 180 | EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family 181 | EM_X86_64 = 62, // AMD x86-64 architecture 182 | EM_PDSP = 63, // Sony DSP Processor 183 | EM_PDP10 = 64, // Digital Equipment Corp. PDP-10 184 | EM_PDP11 = 65, // Digital Equipment Corp. PDP-11 185 | EM_FX66 = 66, // Siemens FX66 microcontroller 186 | EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller 187 | EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller 188 | EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller 189 | EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller 190 | EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller 191 | EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller 192 | EM_SVX = 73, // Silicon Graphics SVx 193 | EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller 194 | EM_VAX = 75, // Digital VAX 195 | EM_CRIS = 76, // Axis Communications 32-bit embedded processor 196 | EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor 197 | EM_FIREPATH = 78, // Element 14 64-bit DSP Processor 198 | EM_ZSP = 79, // LSI Logic 16-bit DSP Processor 199 | EM_MMIX = 80, // Donald Knuth's educational 64-bit processor 200 | EM_HUANY = 81, // Harvard University machine-independent object files 201 | EM_PRISM = 82, // SiTera Prism 202 | EM_AVR = 83, // Atmel AVR 8-bit microcontroller 203 | EM_FR30 = 84, // Fujitsu FR30 204 | EM_D10V = 85, // Mitsubishi D10V 205 | EM_D30V = 86, // Mitsubishi D30V 206 | EM_V850 = 87, // NEC v850 207 | EM_M32R = 88, // Mitsubishi M32R 208 | EM_MN10300 = 89, // Matsushita MN10300 209 | EM_MN10200 = 90, // Matsushita MN10200 210 | EM_PJ = 91, // picoJava 211 | EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor 212 | EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old 213 | // spelling/synonym: EM_ARC_A5) 214 | EM_XTENSA = 94, // Tensilica Xtensa Architecture 215 | EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor 216 | EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor 217 | EM_NS32K = 97, // National Semiconductor 32000 series 218 | EM_TPC = 98, // Tenor Network TPC processor 219 | EM_SNP1K = 99, // Trebia SNP 1000 processor 220 | EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200 221 | EM_IP2K = 101, // Ubicom IP2xxx microcontroller family 222 | EM_MAX = 102, // MAX Processor 223 | EM_CR = 103, // National Semiconductor CompactRISC microprocessor 224 | EM_F2MC16 = 104, // Fujitsu F2MC16 225 | EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430 226 | EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor 227 | EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors 228 | EM_SEP = 108, // Sharp embedded microprocessor 229 | EM_ARCA = 109, // Arca RISC Microprocessor 230 | EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC 231 | // of Peking University 232 | EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU 233 | EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor 234 | EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor 235 | EM_CRX = 114, // National Semiconductor CompactRISC CRX 236 | EM_XGATE = 115, // Motorola XGATE embedded processor 237 | EM_C166 = 116, // Infineon C16x/XC16x processor 238 | EM_M16C = 117, // Renesas M16C series microprocessors 239 | EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal 240 | // Controller 241 | EM_CE = 119, // Freescale Communication Engine RISC core 242 | EM_M32C = 120, // Renesas M32C series microprocessors 243 | EM_TSK3000 = 131, // Altium TSK3000 core 244 | EM_RS08 = 132, // Freescale RS08 embedded processor 245 | EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP 246 | // processors 247 | EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor 248 | EM_SCORE7 = 135, // Sunplus S+core7 RISC processor 249 | EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor 250 | EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor 251 | EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture 252 | EM_SE_C17 = 139, // Seiko Epson C17 family 253 | EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family 254 | EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family 255 | EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family 256 | EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor 257 | EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor 258 | EM_R32C = 162, // Renesas R32C series microprocessors 259 | EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family 260 | EM_HEXAGON = 164, // Qualcomm Hexagon processor 261 | EM_8051 = 165, // Intel 8051 and variants 262 | EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable 263 | // and extensible RISC processors 264 | EM_NDS32 = 167, // Andes Technology compact code size embedded RISC 265 | // processor family 266 | EM_ECOG1 = 168, // Cyan Technology eCOG1X family 267 | EM_ECOG1X = 168, // Cyan Technology eCOG1X family 268 | EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers 269 | EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor 270 | EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor 271 | EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture 272 | EM_RX = 173, // Renesas RX family 273 | EM_METAG = 174, // Imagination Technologies META processor 274 | // architecture 275 | EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture 276 | EM_ECOG16 = 176, // Cyan Technology eCOG16 family 277 | EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit 278 | // microprocessor 279 | EM_ETPU = 178, // Freescale Extended Time Processing Unit 280 | EM_SLE9X = 179, // Infineon Technologies SLE9X core 281 | EM_L10M = 180, // Intel L10M 282 | EM_K10M = 181, // Intel K10M 283 | EM_AARCH64 = 183, // ARM AArch64 284 | EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family 285 | EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller 286 | EM_TILE64 = 187, // Tilera TILE64 multicore architecture family 287 | EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family 288 | EM_CUDA = 190, // NVIDIA CUDA architecture 289 | EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family 290 | EM_CLOUDSHIELD = 192, // CloudShield architecture family 291 | EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family 292 | EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family 293 | EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2 294 | EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core 295 | EM_RL78 = 197, // Renesas RL78 family 296 | EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor 297 | EM_78KOR = 199, // Renesas 78KOR family 298 | EM_56800EX = 200 // Freescale 56800EX Digital Signal Controller (DSC) 299 | }; 300 | 301 | // Object file classes. 302 | enum { 303 | ELFCLASSNONE = 0, 304 | ELFCLASS32 = 1, // 32-bit object file 305 | ELFCLASS64 = 2 // 64-bit object file 306 | }; 307 | 308 | // Object file byte orderings. 309 | enum { 310 | ELFDATANONE = 0, // Invalid data encoding. 311 | ELFDATA2LSB = 1, // Little-endian object file 312 | ELFDATA2MSB = 2 // Big-endian object file 313 | }; 314 | 315 | // OS ABI identification. 316 | enum { 317 | ELFOSABI_NONE = 0, // UNIX System V ABI 318 | ELFOSABI_HPUX = 1, // HP-UX operating system 319 | ELFOSABI_NETBSD = 2, // NetBSD 320 | ELFOSABI_GNU = 3, // GNU/Linux 321 | ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU. 322 | ELFOSABI_HURD = 4, // GNU/Hurd 323 | ELFOSABI_SOLARIS = 6, // Solaris 324 | ELFOSABI_AIX = 7, // AIX 325 | ELFOSABI_IRIX = 8, // IRIX 326 | ELFOSABI_FREEBSD = 9, // FreeBSD 327 | ELFOSABI_TRU64 = 10, // TRU64 UNIX 328 | ELFOSABI_MODESTO = 11, // Novell Modesto 329 | ELFOSABI_OPENBSD = 12, // OpenBSD 330 | ELFOSABI_OPENVMS = 13, // OpenVMS 331 | ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel 332 | ELFOSABI_AROS = 15, // AROS 333 | ELFOSABI_FENIXOS = 16, // FenixOS 334 | ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 335 | ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000 336 | ELFOSABI_ARM = 97, // ARM 337 | ELFOSABI_STANDALONE = 255 // Standalone (embedded) application 338 | }; 339 | 340 | // X86_64 relocations. 341 | enum { 342 | R_X86_64_NONE = 0, 343 | R_X86_64_64 = 1, 344 | R_X86_64_PC32 = 2, 345 | R_X86_64_GOT32 = 3, 346 | R_X86_64_PLT32 = 4, 347 | R_X86_64_COPY = 5, 348 | R_X86_64_GLOB_DAT = 6, 349 | R_X86_64_JUMP_SLOT = 7, 350 | R_X86_64_RELATIVE = 8, 351 | R_X86_64_GOTPCREL = 9, 352 | R_X86_64_32 = 10, 353 | R_X86_64_32S = 11, 354 | R_X86_64_16 = 12, 355 | R_X86_64_PC16 = 13, 356 | R_X86_64_8 = 14, 357 | R_X86_64_PC8 = 15, 358 | R_X86_64_DTPMOD64 = 16, 359 | R_X86_64_DTPOFF64 = 17, 360 | R_X86_64_TPOFF64 = 18, 361 | R_X86_64_TLSGD = 19, 362 | R_X86_64_TLSLD = 20, 363 | R_X86_64_DTPOFF32 = 21, 364 | R_X86_64_GOTTPOFF = 22, 365 | R_X86_64_TPOFF32 = 23, 366 | R_X86_64_PC64 = 24, 367 | R_X86_64_GOTOFF64 = 25, 368 | R_X86_64_GOTPC32 = 26, 369 | R_X86_64_GOT64 = 27, 370 | R_X86_64_GOTPCREL64 = 28, 371 | R_X86_64_GOTPC64 = 29, 372 | R_X86_64_GOTPLT64 = 30, 373 | R_X86_64_PLTOFF64 = 31, 374 | R_X86_64_SIZE32 = 32, 375 | R_X86_64_SIZE64 = 33, 376 | R_X86_64_GOTPC32_TLSDESC = 34, 377 | R_X86_64_TLSDESC_CALL = 35, 378 | R_X86_64_TLSDESC = 36, 379 | R_X86_64_IRELATIVE = 37 380 | }; 381 | 382 | // i386 relocations. 383 | // TODO: this is just a subset 384 | enum { 385 | R_386_NONE = 0, 386 | R_386_32 = 1, 387 | R_386_PC32 = 2, 388 | R_386_GOT32 = 3, 389 | R_386_PLT32 = 4, 390 | R_386_COPY = 5, 391 | R_386_GLOB_DAT = 6, 392 | R_386_JUMP_SLOT = 7, 393 | R_386_RELATIVE = 8, 394 | R_386_GOTOFF = 9, 395 | R_386_GOTPC = 10, 396 | R_386_32PLT = 11, 397 | R_386_TLS_TPOFF = 14, 398 | R_386_TLS_IE = 15, 399 | R_386_TLS_GOTIE = 16, 400 | R_386_TLS_LE = 17, 401 | R_386_TLS_GD = 18, 402 | R_386_TLS_LDM = 19, 403 | R_386_16 = 20, 404 | R_386_PC16 = 21, 405 | R_386_8 = 22, 406 | R_386_PC8 = 23, 407 | R_386_TLS_GD_32 = 24, 408 | R_386_TLS_GD_PUSH = 25, 409 | R_386_TLS_GD_CALL = 26, 410 | R_386_TLS_GD_POP = 27, 411 | R_386_TLS_LDM_32 = 28, 412 | R_386_TLS_LDM_PUSH = 29, 413 | R_386_TLS_LDM_CALL = 30, 414 | R_386_TLS_LDM_POP = 31, 415 | R_386_TLS_LDO_32 = 32, 416 | R_386_TLS_IE_32 = 33, 417 | R_386_TLS_LE_32 = 34, 418 | R_386_TLS_DTPMOD32 = 35, 419 | R_386_TLS_DTPOFF32 = 36, 420 | R_386_TLS_TPOFF32 = 37, 421 | R_386_TLS_GOTDESC = 39, 422 | R_386_TLS_DESC_CALL = 40, 423 | R_386_TLS_DESC = 41, 424 | R_386_IRELATIVE = 42, 425 | R_386_NUM = 43 426 | }; 427 | 428 | // ELF Relocation types for PPC32 429 | enum { 430 | R_PPC_NONE = 0, /* No relocation. */ 431 | R_PPC_ADDR32 = 1, 432 | R_PPC_ADDR24 = 2, 433 | R_PPC_ADDR16 = 3, 434 | R_PPC_ADDR16_LO = 4, 435 | R_PPC_ADDR16_HI = 5, 436 | R_PPC_ADDR16_HA = 6, 437 | R_PPC_ADDR14 = 7, 438 | R_PPC_ADDR14_BRTAKEN = 8, 439 | R_PPC_ADDR14_BRNTAKEN = 9, 440 | R_PPC_REL24 = 10, 441 | R_PPC_REL14 = 11, 442 | R_PPC_REL14_BRTAKEN = 12, 443 | R_PPC_REL14_BRNTAKEN = 13, 444 | R_PPC_GOT16 = 14, 445 | R_PPC_GOT16_LO = 15, 446 | R_PPC_GOT16_HI = 16, 447 | R_PPC_GOT16_HA = 17, 448 | R_PPC_REL32 = 26, 449 | R_PPC_TLS = 67, 450 | R_PPC_DTPMOD32 = 68, 451 | R_PPC_TPREL16 = 69, 452 | R_PPC_TPREL16_LO = 70, 453 | R_PPC_TPREL16_HI = 71, 454 | R_PPC_TPREL16_HA = 72, 455 | R_PPC_TPREL32 = 73, 456 | R_PPC_DTPREL16 = 74, 457 | R_PPC_DTPREL16_LO = 75, 458 | R_PPC_DTPREL16_HI = 76, 459 | R_PPC_DTPREL16_HA = 77, 460 | R_PPC_DTPREL32 = 78, 461 | R_PPC_GOT_TLSGD16 = 79, 462 | R_PPC_GOT_TLSGD16_LO = 80, 463 | R_PPC_GOT_TLSGD16_HI = 81, 464 | R_PPC_GOT_TLSGD16_HA = 82, 465 | R_PPC_GOT_TLSLD16 = 83, 466 | R_PPC_GOT_TLSLD16_LO = 84, 467 | R_PPC_GOT_TLSLD16_HI = 85, 468 | R_PPC_GOT_TLSLD16_HA = 86, 469 | R_PPC_GOT_TPREL16 = 87, 470 | R_PPC_GOT_TPREL16_LO = 88, 471 | R_PPC_GOT_TPREL16_HI = 89, 472 | R_PPC_GOT_TPREL16_HA = 90, 473 | R_PPC_GOT_DTPREL16 = 91, 474 | R_PPC_GOT_DTPREL16_LO = 92, 475 | R_PPC_GOT_DTPREL16_HI = 93, 476 | R_PPC_GOT_DTPREL16_HA = 94, 477 | R_PPC_TLSGD = 95, 478 | R_PPC_TLSLD = 96, 479 | R_PPC_REL16 = 249, 480 | R_PPC_REL16_LO = 250, 481 | R_PPC_REL16_HI = 251, 482 | R_PPC_REL16_HA = 252 483 | }; 484 | 485 | // ELF Relocation types for PPC64 486 | enum { 487 | R_PPC64_NONE = 0, 488 | R_PPC64_ADDR32 = 1, 489 | R_PPC64_ADDR24 = 2, 490 | R_PPC64_ADDR16 = 3, 491 | R_PPC64_ADDR16_LO = 4, 492 | R_PPC64_ADDR16_HI = 5, 493 | R_PPC64_ADDR16_HA = 6, 494 | R_PPC64_ADDR14 = 7, 495 | R_PPC64_ADDR14_BRTAKEN = 8, 496 | R_PPC64_ADDR14_BRNTAKEN = 9, 497 | R_PPC64_REL24 = 10, 498 | R_PPC64_REL14 = 11, 499 | R_PPC64_REL14_BRTAKEN = 12, 500 | R_PPC64_REL14_BRNTAKEN = 13, 501 | R_PPC64_GOT16 = 14, 502 | R_PPC64_GOT16_LO = 15, 503 | R_PPC64_GOT16_HI = 16, 504 | R_PPC64_GOT16_HA = 17, 505 | R_PPC64_REL32 = 26, 506 | R_PPC64_ADDR64 = 38, 507 | R_PPC64_ADDR16_HIGHER = 39, 508 | R_PPC64_ADDR16_HIGHERA = 40, 509 | R_PPC64_ADDR16_HIGHEST = 41, 510 | R_PPC64_ADDR16_HIGHESTA = 42, 511 | R_PPC64_REL64 = 44, 512 | R_PPC64_TOC16 = 47, 513 | R_PPC64_TOC16_LO = 48, 514 | R_PPC64_TOC16_HI = 49, 515 | R_PPC64_TOC16_HA = 50, 516 | R_PPC64_TOC = 51, 517 | R_PPC64_ADDR16_DS = 56, 518 | R_PPC64_ADDR16_LO_DS = 57, 519 | R_PPC64_GOT16_DS = 58, 520 | R_PPC64_GOT16_LO_DS = 59, 521 | R_PPC64_TOC16_DS = 63, 522 | R_PPC64_TOC16_LO_DS = 64, 523 | R_PPC64_TLS = 67, 524 | R_PPC64_DTPMOD64 = 68, 525 | R_PPC64_TPREL16 = 69, 526 | R_PPC64_TPREL16_LO = 70, 527 | R_PPC64_TPREL16_HI = 71, 528 | R_PPC64_TPREL16_HA = 72, 529 | R_PPC64_TPREL64 = 73, 530 | R_PPC64_DTPREL16 = 74, 531 | R_PPC64_DTPREL16_LO = 75, 532 | R_PPC64_DTPREL16_HI = 76, 533 | R_PPC64_DTPREL16_HA = 77, 534 | R_PPC64_DTPREL64 = 78, 535 | R_PPC64_GOT_TLSGD16 = 79, 536 | R_PPC64_GOT_TLSGD16_LO = 80, 537 | R_PPC64_GOT_TLSGD16_HI = 81, 538 | R_PPC64_GOT_TLSGD16_HA = 82, 539 | R_PPC64_GOT_TLSLD16 = 83, 540 | R_PPC64_GOT_TLSLD16_LO = 84, 541 | R_PPC64_GOT_TLSLD16_HI = 85, 542 | R_PPC64_GOT_TLSLD16_HA = 86, 543 | R_PPC64_GOT_TPREL16_DS = 87, 544 | R_PPC64_GOT_TPREL16_LO_DS = 88, 545 | R_PPC64_GOT_TPREL16_HI = 89, 546 | R_PPC64_GOT_TPREL16_HA = 90, 547 | R_PPC64_GOT_DTPREL16_DS = 91, 548 | R_PPC64_GOT_DTPREL16_LO_DS = 92, 549 | R_PPC64_GOT_DTPREL16_HI = 93, 550 | R_PPC64_GOT_DTPREL16_HA = 94, 551 | R_PPC64_TPREL16_DS = 95, 552 | R_PPC64_TPREL16_LO_DS = 96, 553 | R_PPC64_TPREL16_HIGHER = 97, 554 | R_PPC64_TPREL16_HIGHERA = 98, 555 | R_PPC64_TPREL16_HIGHEST = 99, 556 | R_PPC64_TPREL16_HIGHESTA = 100, 557 | R_PPC64_DTPREL16_DS = 101, 558 | R_PPC64_DTPREL16_LO_DS = 102, 559 | R_PPC64_DTPREL16_HIGHER = 103, 560 | R_PPC64_DTPREL16_HIGHERA = 104, 561 | R_PPC64_DTPREL16_HIGHEST = 105, 562 | R_PPC64_DTPREL16_HIGHESTA = 106, 563 | R_PPC64_TLSGD = 107, 564 | R_PPC64_TLSLD = 108, 565 | R_PPC64_REL16 = 249, 566 | R_PPC64_REL16_LO = 250, 567 | R_PPC64_REL16_HI = 251, 568 | R_PPC64_REL16_HA = 252 569 | }; 570 | 571 | // ELF Relocation types for AArch64 572 | 573 | enum { 574 | R_AARCH64_NONE = 0x100, 575 | 576 | R_AARCH64_ABS64 = 0x101, 577 | R_AARCH64_ABS32 = 0x102, 578 | R_AARCH64_ABS16 = 0x103, 579 | R_AARCH64_PREL64 = 0x104, 580 | R_AARCH64_PREL32 = 0x105, 581 | R_AARCH64_PREL16 = 0x106, 582 | 583 | R_AARCH64_MOVW_UABS_G0 = 0x107, 584 | R_AARCH64_MOVW_UABS_G0_NC = 0x108, 585 | R_AARCH64_MOVW_UABS_G1 = 0x109, 586 | R_AARCH64_MOVW_UABS_G1_NC = 0x10a, 587 | R_AARCH64_MOVW_UABS_G2 = 0x10b, 588 | R_AARCH64_MOVW_UABS_G2_NC = 0x10c, 589 | R_AARCH64_MOVW_UABS_G3 = 0x10d, 590 | R_AARCH64_MOVW_SABS_G0 = 0x10e, 591 | R_AARCH64_MOVW_SABS_G1 = 0x10f, 592 | R_AARCH64_MOVW_SABS_G2 = 0x110, 593 | 594 | R_AARCH64_LD_PREL_LO19 = 0x111, 595 | R_AARCH64_ADR_PREL_LO21 = 0x112, 596 | R_AARCH64_ADR_PREL_PG_HI21 = 0x113, 597 | R_AARCH64_ADD_ABS_LO12_NC = 0x115, 598 | R_AARCH64_LDST8_ABS_LO12_NC = 0x116, 599 | 600 | R_AARCH64_TSTBR14 = 0x117, 601 | R_AARCH64_CONDBR19 = 0x118, 602 | R_AARCH64_JUMP26 = 0x11a, 603 | R_AARCH64_CALL26 = 0x11b, 604 | 605 | R_AARCH64_LDST16_ABS_LO12_NC = 0x11c, 606 | R_AARCH64_LDST32_ABS_LO12_NC = 0x11d, 607 | R_AARCH64_LDST64_ABS_LO12_NC = 0x11e, 608 | 609 | R_AARCH64_LDST128_ABS_LO12_NC = 0x12b, 610 | 611 | R_AARCH64_ADR_GOT_PAGE = 0x137, 612 | R_AARCH64_LD64_GOT_LO12_NC = 0x138, 613 | 614 | R_AARCH64_TLSLD_MOVW_DTPREL_G2 = 0x20b, 615 | R_AARCH64_TLSLD_MOVW_DTPREL_G1 = 0x20c, 616 | R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC = 0x20d, 617 | R_AARCH64_TLSLD_MOVW_DTPREL_G0 = 0x20e, 618 | R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC = 0x20f, 619 | R_AARCH64_TLSLD_ADD_DTPREL_HI12 = 0x210, 620 | R_AARCH64_TLSLD_ADD_DTPREL_LO12 = 0x211, 621 | R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC = 0x212, 622 | R_AARCH64_TLSLD_LDST8_DTPREL_LO12 = 0x213, 623 | R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC = 0x214, 624 | R_AARCH64_TLSLD_LDST16_DTPREL_LO12 = 0x215, 625 | R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC = 0x216, 626 | R_AARCH64_TLSLD_LDST32_DTPREL_LO12 = 0x217, 627 | R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC = 0x218, 628 | R_AARCH64_TLSLD_LDST64_DTPREL_LO12 = 0x219, 629 | R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC = 0x21a, 630 | 631 | R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 = 0x21b, 632 | R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC = 0x21c, 633 | R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 = 0x21d, 634 | R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC = 0x21e, 635 | R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 = 0x21f, 636 | 637 | R_AARCH64_TLSLE_MOVW_TPREL_G2 = 0x220, 638 | R_AARCH64_TLSLE_MOVW_TPREL_G1 = 0x221, 639 | R_AARCH64_TLSLE_MOVW_TPREL_G1_NC = 0x222, 640 | R_AARCH64_TLSLE_MOVW_TPREL_G0 = 0x223, 641 | R_AARCH64_TLSLE_MOVW_TPREL_G0_NC = 0x224, 642 | R_AARCH64_TLSLE_ADD_TPREL_HI12 = 0x225, 643 | R_AARCH64_TLSLE_ADD_TPREL_LO12 = 0x226, 644 | R_AARCH64_TLSLE_ADD_TPREL_LO12_NC = 0x227, 645 | R_AARCH64_TLSLE_LDST8_TPREL_LO12 = 0x228, 646 | R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC = 0x229, 647 | R_AARCH64_TLSLE_LDST16_TPREL_LO12 = 0x22a, 648 | R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC = 0x22b, 649 | R_AARCH64_TLSLE_LDST32_TPREL_LO12 = 0x22c, 650 | R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC = 0x22d, 651 | R_AARCH64_TLSLE_LDST64_TPREL_LO12 = 0x22e, 652 | R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC = 0x22f, 653 | 654 | R_AARCH64_TLSDESC_ADR_PAGE = 0x232, 655 | R_AARCH64_TLSDESC_LD64_LO12_NC = 0x233, 656 | R_AARCH64_TLSDESC_ADD_LO12_NC = 0x234, 657 | 658 | R_AARCH64_TLSDESC_CALL = 0x239 659 | }; 660 | 661 | // ARM Specific e_flags 662 | enum : unsigned { 663 | EF_ARM_SOFT_FLOAT = 0x00000200U, 664 | EF_ARM_VFP_FLOAT = 0x00000400U, 665 | EF_ARM_EABI_UNKNOWN = 0x00000000U, 666 | EF_ARM_EABI_VER1 = 0x01000000U, 667 | EF_ARM_EABI_VER2 = 0x02000000U, 668 | EF_ARM_EABI_VER3 = 0x03000000U, 669 | EF_ARM_EABI_VER4 = 0x04000000U, 670 | EF_ARM_EABI_VER5 = 0x05000000U, 671 | EF_ARM_EABIMASK = 0xFF000000U 672 | }; 673 | 674 | // ELF Relocation types for ARM 675 | // Meets 2.08 ABI Specs. 676 | 677 | enum { 678 | R_ARM_NONE = 0x00, 679 | R_ARM_PC24 = 0x01, 680 | R_ARM_ABS32 = 0x02, 681 | R_ARM_REL32 = 0x03, 682 | R_ARM_LDR_PC_G0 = 0x04, 683 | R_ARM_ABS16 = 0x05, 684 | R_ARM_ABS12 = 0x06, 685 | R_ARM_THM_ABS5 = 0x07, 686 | R_ARM_ABS8 = 0x08, 687 | R_ARM_SBREL32 = 0x09, 688 | R_ARM_THM_CALL = 0x0a, 689 | R_ARM_THM_PC8 = 0x0b, 690 | R_ARM_BREL_ADJ = 0x0c, 691 | R_ARM_TLS_DESC = 0x0d, 692 | R_ARM_THM_SWI8 = 0x0e, 693 | R_ARM_XPC25 = 0x0f, 694 | R_ARM_THM_XPC22 = 0x10, 695 | R_ARM_TLS_DTPMOD32 = 0x11, 696 | R_ARM_TLS_DTPOFF32 = 0x12, 697 | R_ARM_TLS_TPOFF32 = 0x13, 698 | R_ARM_COPY = 0x14, 699 | R_ARM_GLOB_DAT = 0x15, 700 | R_ARM_JUMP_SLOT = 0x16, 701 | R_ARM_RELATIVE = 0x17, 702 | R_ARM_GOTOFF32 = 0x18, 703 | R_ARM_BASE_PREL = 0x19, 704 | R_ARM_GOT_BREL = 0x1a, 705 | R_ARM_PLT32 = 0x1b, 706 | R_ARM_CALL = 0x1c, 707 | R_ARM_JUMP24 = 0x1d, 708 | R_ARM_THM_JUMP24 = 0x1e, 709 | R_ARM_BASE_ABS = 0x1f, 710 | R_ARM_ALU_PCREL_7_0 = 0x20, 711 | R_ARM_ALU_PCREL_15_8 = 0x21, 712 | R_ARM_ALU_PCREL_23_15 = 0x22, 713 | R_ARM_LDR_SBREL_11_0_NC = 0x23, 714 | R_ARM_ALU_SBREL_19_12_NC = 0x24, 715 | R_ARM_ALU_SBREL_27_20_CK = 0x25, 716 | R_ARM_TARGET1 = 0x26, 717 | R_ARM_SBREL31 = 0x27, 718 | R_ARM_V4BX = 0x28, 719 | R_ARM_TARGET2 = 0x29, 720 | R_ARM_PREL31 = 0x2a, 721 | R_ARM_MOVW_ABS_NC = 0x2b, 722 | R_ARM_MOVT_ABS = 0x2c, 723 | R_ARM_MOVW_PREL_NC = 0x2d, 724 | R_ARM_MOVT_PREL = 0x2e, 725 | R_ARM_THM_MOVW_ABS_NC = 0x2f, 726 | R_ARM_THM_MOVT_ABS = 0x30, 727 | R_ARM_THM_MOVW_PREL_NC = 0x31, 728 | R_ARM_THM_MOVT_PREL = 0x32, 729 | R_ARM_THM_JUMP19 = 0x33, 730 | R_ARM_THM_JUMP6 = 0x34, 731 | R_ARM_THM_ALU_PREL_11_0 = 0x35, 732 | R_ARM_THM_PC12 = 0x36, 733 | R_ARM_ABS32_NOI = 0x37, 734 | R_ARM_REL32_NOI = 0x38, 735 | R_ARM_ALU_PC_G0_NC = 0x39, 736 | R_ARM_ALU_PC_G0 = 0x3a, 737 | R_ARM_ALU_PC_G1_NC = 0x3b, 738 | R_ARM_ALU_PC_G1 = 0x3c, 739 | R_ARM_ALU_PC_G2 = 0x3d, 740 | R_ARM_LDR_PC_G1 = 0x3e, 741 | R_ARM_LDR_PC_G2 = 0x3f, 742 | R_ARM_LDRS_PC_G0 = 0x40, 743 | R_ARM_LDRS_PC_G1 = 0x41, 744 | R_ARM_LDRS_PC_G2 = 0x42, 745 | R_ARM_LDC_PC_G0 = 0x43, 746 | R_ARM_LDC_PC_G1 = 0x44, 747 | R_ARM_LDC_PC_G2 = 0x45, 748 | R_ARM_ALU_SB_G0_NC = 0x46, 749 | R_ARM_ALU_SB_G0 = 0x47, 750 | R_ARM_ALU_SB_G1_NC = 0x48, 751 | R_ARM_ALU_SB_G1 = 0x49, 752 | R_ARM_ALU_SB_G2 = 0x4a, 753 | R_ARM_LDR_SB_G0 = 0x4b, 754 | R_ARM_LDR_SB_G1 = 0x4c, 755 | R_ARM_LDR_SB_G2 = 0x4d, 756 | R_ARM_LDRS_SB_G0 = 0x4e, 757 | R_ARM_LDRS_SB_G1 = 0x4f, 758 | R_ARM_LDRS_SB_G2 = 0x50, 759 | R_ARM_LDC_SB_G0 = 0x51, 760 | R_ARM_LDC_SB_G1 = 0x52, 761 | R_ARM_LDC_SB_G2 = 0x53, 762 | R_ARM_MOVW_BREL_NC = 0x54, 763 | R_ARM_MOVT_BREL = 0x55, 764 | R_ARM_MOVW_BREL = 0x56, 765 | R_ARM_THM_MOVW_BREL_NC = 0x57, 766 | R_ARM_THM_MOVT_BREL = 0x58, 767 | R_ARM_THM_MOVW_BREL = 0x59, 768 | R_ARM_TLS_GOTDESC = 0x5a, 769 | R_ARM_TLS_CALL = 0x5b, 770 | R_ARM_TLS_DESCSEQ = 0x5c, 771 | R_ARM_THM_TLS_CALL = 0x5d, 772 | R_ARM_PLT32_ABS = 0x5e, 773 | R_ARM_GOT_ABS = 0x5f, 774 | R_ARM_GOT_PREL = 0x60, 775 | R_ARM_GOT_BREL12 = 0x61, 776 | R_ARM_GOTOFF12 = 0x62, 777 | R_ARM_GOTRELAX = 0x63, 778 | R_ARM_GNU_VTENTRY = 0x64, 779 | R_ARM_GNU_VTINHERIT = 0x65, 780 | R_ARM_THM_JUMP11 = 0x66, 781 | R_ARM_THM_JUMP8 = 0x67, 782 | R_ARM_TLS_GD32 = 0x68, 783 | R_ARM_TLS_LDM32 = 0x69, 784 | R_ARM_TLS_LDO32 = 0x6a, 785 | R_ARM_TLS_IE32 = 0x6b, 786 | R_ARM_TLS_LE32 = 0x6c, 787 | R_ARM_TLS_LDO12 = 0x6d, 788 | R_ARM_TLS_LE12 = 0x6e, 789 | R_ARM_TLS_IE12GP = 0x6f, 790 | R_ARM_PRIVATE_0 = 0x70, 791 | R_ARM_PRIVATE_1 = 0x71, 792 | R_ARM_PRIVATE_2 = 0x72, 793 | R_ARM_PRIVATE_3 = 0x73, 794 | R_ARM_PRIVATE_4 = 0x74, 795 | R_ARM_PRIVATE_5 = 0x75, 796 | R_ARM_PRIVATE_6 = 0x76, 797 | R_ARM_PRIVATE_7 = 0x77, 798 | R_ARM_PRIVATE_8 = 0x78, 799 | R_ARM_PRIVATE_9 = 0x79, 800 | R_ARM_PRIVATE_10 = 0x7a, 801 | R_ARM_PRIVATE_11 = 0x7b, 802 | R_ARM_PRIVATE_12 = 0x7c, 803 | R_ARM_PRIVATE_13 = 0x7d, 804 | R_ARM_PRIVATE_14 = 0x7e, 805 | R_ARM_PRIVATE_15 = 0x7f, 806 | R_ARM_ME_TOO = 0x80, 807 | R_ARM_THM_TLS_DESCSEQ16 = 0x81, 808 | R_ARM_THM_TLS_DESCSEQ32 = 0x82 809 | }; 810 | 811 | // Mips Specific e_flags 812 | enum : unsigned { 813 | EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions 814 | EF_MIPS_PIC = 0x00000002, // Position independent code 815 | EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code 816 | EF_MIPS_ABI2 = 0x00000020, 817 | EF_MIPS_32BITMODE = 0x00000100, 818 | EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding 819 | EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI 820 | 821 | //ARCH_ASE 822 | EF_MIPS_MICROMIPS = 0x02000000, // microMIPS 823 | EF_MIPS_ARCH_ASE_M16 = 824 | 0x04000000, // Has Mips-16 ISA extensions 825 | //ARCH 826 | EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set 827 | EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set 828 | EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set 829 | EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set 830 | EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set 831 | EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h 832 | EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h 833 | EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2 834 | EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2 835 | EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6 836 | EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6 837 | EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant 838 | }; 839 | 840 | // ELF Relocation types for Mips 841 | enum { 842 | R_MIPS_NONE = 0, 843 | R_MIPS_16 = 1, 844 | R_MIPS_32 = 2, 845 | R_MIPS_REL32 = 3, 846 | R_MIPS_26 = 4, 847 | R_MIPS_HI16 = 5, 848 | R_MIPS_LO16 = 6, 849 | R_MIPS_GPREL16 = 7, 850 | R_MIPS_LITERAL = 8, 851 | R_MIPS_GOT16 = 9, 852 | R_MIPS_PC16 = 10, 853 | R_MIPS_CALL16 = 11, 854 | R_MIPS_GPREL32 = 12, 855 | R_MIPS_UNUSED1 = 13, 856 | R_MIPS_UNUSED2 = 14, 857 | R_MIPS_SHIFT5 = 16, 858 | R_MIPS_SHIFT6 = 17, 859 | R_MIPS_64 = 18, 860 | R_MIPS_GOT_DISP = 19, 861 | R_MIPS_GOT_PAGE = 20, 862 | R_MIPS_GOT_OFST = 21, 863 | R_MIPS_GOT_HI16 = 22, 864 | R_MIPS_GOT_LO16 = 23, 865 | R_MIPS_SUB = 24, 866 | R_MIPS_INSERT_A = 25, 867 | R_MIPS_INSERT_B = 26, 868 | R_MIPS_DELETE = 27, 869 | R_MIPS_HIGHER = 28, 870 | R_MIPS_HIGHEST = 29, 871 | R_MIPS_CALL_HI16 = 30, 872 | R_MIPS_CALL_LO16 = 31, 873 | R_MIPS_SCN_DISP = 32, 874 | R_MIPS_REL16 = 33, 875 | R_MIPS_ADD_IMMEDIATE = 34, 876 | R_MIPS_PJUMP = 35, 877 | R_MIPS_RELGOT = 36, 878 | R_MIPS_JALR = 37, 879 | R_MIPS_TLS_DTPMOD32 = 38, 880 | R_MIPS_TLS_DTPREL32 = 39, 881 | R_MIPS_TLS_DTPMOD64 = 40, 882 | R_MIPS_TLS_DTPREL64 = 41, 883 | R_MIPS_TLS_GD = 42, 884 | R_MIPS_TLS_LDM = 43, 885 | R_MIPS_TLS_DTPREL_HI16 = 44, 886 | R_MIPS_TLS_DTPREL_LO16 = 45, 887 | R_MIPS_TLS_GOTTPREL = 46, 888 | R_MIPS_TLS_TPREL32 = 47, 889 | R_MIPS_TLS_TPREL64 = 48, 890 | R_MIPS_TLS_TPREL_HI16 = 49, 891 | R_MIPS_TLS_TPREL_LO16 = 50, 892 | R_MIPS_GLOB_DAT = 51, 893 | R_MIPS_PC21_S2 = 60, 894 | R_MIPS_PC26_S2 = 61, 895 | R_MIPS_PC18_S3 = 62, 896 | R_MIPS_PC19_S2 = 63, 897 | R_MIPS_PCHI16 = 64, 898 | R_MIPS_PCLO16 = 65, 899 | R_MIPS16_GOT16 = 102, 900 | R_MIPS16_HI16 = 104, 901 | R_MIPS16_LO16 = 105, 902 | R_MIPS_COPY = 126, 903 | R_MIPS_JUMP_SLOT = 127, 904 | R_MICROMIPS_26_S1 = 133, 905 | R_MICROMIPS_HI16 = 134, 906 | R_MICROMIPS_LO16 = 135, 907 | R_MICROMIPS_GOT16 = 138, 908 | R_MICROMIPS_PC16_S1 = 141, 909 | R_MICROMIPS_CALL16 = 142, 910 | R_MICROMIPS_GOT_DISP = 145, 911 | R_MICROMIPS_GOT_PAGE = 146, 912 | R_MICROMIPS_GOT_OFST = 147, 913 | R_MICROMIPS_TLS_GD = 162, 914 | R_MICROMIPS_TLS_LDM = 163, 915 | R_MICROMIPS_TLS_DTPREL_HI16 = 164, 916 | R_MICROMIPS_TLS_DTPREL_LO16 = 165, 917 | R_MICROMIPS_TLS_TPREL_HI16 = 169, 918 | R_MICROMIPS_TLS_TPREL_LO16 = 170, 919 | R_MIPS_NUM = 218, 920 | R_MIPS_PC32 = 248 921 | }; 922 | 923 | // Special values for the st_other field in the symbol table entry for MIPS. 924 | enum { 925 | STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional 926 | STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record 927 | STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC 928 | STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips 929 | STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16 930 | }; 931 | 932 | // Hexagon Specific e_flags 933 | // Release 5 ABI 934 | enum { 935 | // Object processor version flags, bits[3:0] 936 | EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2 937 | EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3 938 | EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4 939 | EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5 940 | 941 | // Highest ISA version flags 942 | EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[3:0] 943 | // of e_flags 944 | EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA 945 | EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA 946 | EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA 947 | EF_HEXAGON_ISA_V5 = 0x00000040 // Hexagon V5 ISA 948 | }; 949 | 950 | // Hexagon specific Section indexes for common small data 951 | // Release 5 ABI 952 | enum { 953 | SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes 954 | SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access 955 | SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access 956 | SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access 957 | SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access 958 | }; 959 | 960 | // ELF Relocation types for Hexagon 961 | // Release 5 ABI 962 | enum { 963 | R_HEX_NONE = 0, 964 | R_HEX_B22_PCREL = 1, 965 | R_HEX_B15_PCREL = 2, 966 | R_HEX_B7_PCREL = 3, 967 | R_HEX_LO16 = 4, 968 | R_HEX_HI16 = 5, 969 | R_HEX_32 = 6, 970 | R_HEX_16 = 7, 971 | R_HEX_8 = 8, 972 | R_HEX_GPREL16_0 = 9, 973 | R_HEX_GPREL16_1 = 10, 974 | R_HEX_GPREL16_2 = 11, 975 | R_HEX_GPREL16_3 = 12, 976 | R_HEX_HL16 = 13, 977 | R_HEX_B13_PCREL = 14, 978 | R_HEX_B9_PCREL = 15, 979 | R_HEX_B32_PCREL_X = 16, 980 | R_HEX_32_6_X = 17, 981 | R_HEX_B22_PCREL_X = 18, 982 | R_HEX_B15_PCREL_X = 19, 983 | R_HEX_B13_PCREL_X = 20, 984 | R_HEX_B9_PCREL_X = 21, 985 | R_HEX_B7_PCREL_X = 22, 986 | R_HEX_16_X = 23, 987 | R_HEX_12_X = 24, 988 | R_HEX_11_X = 25, 989 | R_HEX_10_X = 26, 990 | R_HEX_9_X = 27, 991 | R_HEX_8_X = 28, 992 | R_HEX_7_X = 29, 993 | R_HEX_6_X = 30, 994 | R_HEX_32_PCREL = 31, 995 | R_HEX_COPY = 32, 996 | R_HEX_GLOB_DAT = 33, 997 | R_HEX_JMP_SLOT = 34, 998 | R_HEX_RELATIVE = 35, 999 | R_HEX_PLT_B22_PCREL = 36, 1000 | R_HEX_GOTREL_LO16 = 37, 1001 | R_HEX_GOTREL_HI16 = 38, 1002 | R_HEX_GOTREL_32 = 39, 1003 | R_HEX_GOT_LO16 = 40, 1004 | R_HEX_GOT_HI16 = 41, 1005 | R_HEX_GOT_32 = 42, 1006 | R_HEX_GOT_16 = 43, 1007 | R_HEX_DTPMOD_32 = 44, 1008 | R_HEX_DTPREL_LO16 = 45, 1009 | R_HEX_DTPREL_HI16 = 46, 1010 | R_HEX_DTPREL_32 = 47, 1011 | R_HEX_DTPREL_16 = 48, 1012 | R_HEX_GD_PLT_B22_PCREL = 49, 1013 | R_HEX_GD_GOT_LO16 = 50, 1014 | R_HEX_GD_GOT_HI16 = 51, 1015 | R_HEX_GD_GOT_32 = 52, 1016 | R_HEX_GD_GOT_16 = 53, 1017 | R_HEX_IE_LO16 = 54, 1018 | R_HEX_IE_HI16 = 55, 1019 | R_HEX_IE_32 = 56, 1020 | R_HEX_IE_GOT_LO16 = 57, 1021 | R_HEX_IE_GOT_HI16 = 58, 1022 | R_HEX_IE_GOT_32 = 59, 1023 | R_HEX_IE_GOT_16 = 60, 1024 | R_HEX_TPREL_LO16 = 61, 1025 | R_HEX_TPREL_HI16 = 62, 1026 | R_HEX_TPREL_32 = 63, 1027 | R_HEX_TPREL_16 = 64, 1028 | R_HEX_6_PCREL_X = 65, 1029 | R_HEX_GOTREL_32_6_X = 66, 1030 | R_HEX_GOTREL_16_X = 67, 1031 | R_HEX_GOTREL_11_X = 68, 1032 | R_HEX_GOT_32_6_X = 69, 1033 | R_HEX_GOT_16_X = 70, 1034 | R_HEX_GOT_11_X = 71, 1035 | R_HEX_DTPREL_32_6_X = 72, 1036 | R_HEX_DTPREL_16_X = 73, 1037 | R_HEX_DTPREL_11_X = 74, 1038 | R_HEX_GD_GOT_32_6_X = 75, 1039 | R_HEX_GD_GOT_16_X = 76, 1040 | R_HEX_GD_GOT_11_X = 77, 1041 | R_HEX_IE_32_6_X = 78, 1042 | R_HEX_IE_16_X = 79, 1043 | R_HEX_IE_GOT_32_6_X = 80, 1044 | R_HEX_IE_GOT_16_X = 81, 1045 | R_HEX_IE_GOT_11_X = 82, 1046 | R_HEX_TPREL_32_6_X = 83, 1047 | R_HEX_TPREL_16_X = 84, 1048 | R_HEX_TPREL_11_X = 85 1049 | }; 1050 | 1051 | // ELF Relocation types for S390/zSeries 1052 | enum { 1053 | R_390_NONE = 0, 1054 | R_390_8 = 1, 1055 | R_390_12 = 2, 1056 | R_390_16 = 3, 1057 | R_390_32 = 4, 1058 | R_390_PC32 = 5, 1059 | R_390_GOT12 = 6, 1060 | R_390_GOT32 = 7, 1061 | R_390_PLT32 = 8, 1062 | R_390_COPY = 9, 1063 | R_390_GLOB_DAT = 10, 1064 | R_390_JMP_SLOT = 11, 1065 | R_390_RELATIVE = 12, 1066 | R_390_GOTOFF = 13, 1067 | R_390_GOTPC = 14, 1068 | R_390_GOT16 = 15, 1069 | R_390_PC16 = 16, 1070 | R_390_PC16DBL = 17, 1071 | R_390_PLT16DBL = 18, 1072 | R_390_PC32DBL = 19, 1073 | R_390_PLT32DBL = 20, 1074 | R_390_GOTPCDBL = 21, 1075 | R_390_64 = 22, 1076 | R_390_PC64 = 23, 1077 | R_390_GOT64 = 24, 1078 | R_390_PLT64 = 25, 1079 | R_390_GOTENT = 26, 1080 | R_390_GOTOFF16 = 27, 1081 | R_390_GOTOFF64 = 28, 1082 | R_390_GOTPLT12 = 29, 1083 | R_390_GOTPLT16 = 30, 1084 | R_390_GOTPLT32 = 31, 1085 | R_390_GOTPLT64 = 32, 1086 | R_390_GOTPLTENT = 33, 1087 | R_390_PLTOFF16 = 34, 1088 | R_390_PLTOFF32 = 35, 1089 | R_390_PLTOFF64 = 36, 1090 | R_390_TLS_LOAD = 37, 1091 | R_390_TLS_GDCALL = 38, 1092 | R_390_TLS_LDCALL = 39, 1093 | R_390_TLS_GD32 = 40, 1094 | R_390_TLS_GD64 = 41, 1095 | R_390_TLS_GOTIE12 = 42, 1096 | R_390_TLS_GOTIE32 = 43, 1097 | R_390_TLS_GOTIE64 = 44, 1098 | R_390_TLS_LDM32 = 45, 1099 | R_390_TLS_LDM64 = 46, 1100 | R_390_TLS_IE32 = 47, 1101 | R_390_TLS_IE64 = 48, 1102 | R_390_TLS_IEENT = 49, 1103 | R_390_TLS_LE32 = 50, 1104 | R_390_TLS_LE64 = 51, 1105 | R_390_TLS_LDO32 = 52, 1106 | R_390_TLS_LDO64 = 53, 1107 | R_390_TLS_DTPMOD = 54, 1108 | R_390_TLS_DTPOFF = 55, 1109 | R_390_TLS_TPOFF = 56, 1110 | R_390_20 = 57, 1111 | R_390_GOT20 = 58, 1112 | R_390_GOTPLT20 = 59, 1113 | R_390_TLS_GOTIE20 = 60, 1114 | R_390_IRELATIVE = 61 1115 | }; 1116 | 1117 | // ELF Relocation type for Sparc. 1118 | enum { 1119 | R_SPARC_NONE = 0, 1120 | R_SPARC_8 = 1, 1121 | R_SPARC_16 = 2, 1122 | R_SPARC_32 = 3, 1123 | R_SPARC_DISP8 = 4, 1124 | R_SPARC_DISP16 = 5, 1125 | R_SPARC_DISP32 = 6, 1126 | R_SPARC_WDISP30 = 7, 1127 | R_SPARC_WDISP22 = 8, 1128 | R_SPARC_HI22 = 9, 1129 | R_SPARC_22 = 10, 1130 | R_SPARC_13 = 11, 1131 | R_SPARC_LO10 = 12, 1132 | R_SPARC_GOT10 = 13, 1133 | R_SPARC_GOT13 = 14, 1134 | R_SPARC_GOT22 = 15, 1135 | R_SPARC_PC10 = 16, 1136 | R_SPARC_PC22 = 17, 1137 | R_SPARC_WPLT30 = 18, 1138 | R_SPARC_COPY = 19, 1139 | R_SPARC_GLOB_DAT = 20, 1140 | R_SPARC_JMP_SLOT = 21, 1141 | R_SPARC_RELATIVE = 22, 1142 | R_SPARC_UA32 = 23, 1143 | R_SPARC_PLT32 = 24, 1144 | R_SPARC_HIPLT22 = 25, 1145 | R_SPARC_LOPLT10 = 26, 1146 | R_SPARC_PCPLT32 = 27, 1147 | R_SPARC_PCPLT22 = 28, 1148 | R_SPARC_PCPLT10 = 29, 1149 | R_SPARC_10 = 30, 1150 | R_SPARC_11 = 31, 1151 | R_SPARC_64 = 32, 1152 | R_SPARC_OLO10 = 33, 1153 | R_SPARC_HH22 = 34, 1154 | R_SPARC_HM10 = 35, 1155 | R_SPARC_LM22 = 36, 1156 | R_SPARC_PC_HH22 = 37, 1157 | R_SPARC_PC_HM10 = 38, 1158 | R_SPARC_PC_LM22 = 39, 1159 | R_SPARC_WDISP16 = 40, 1160 | R_SPARC_WDISP19 = 41, 1161 | R_SPARC_7 = 43, 1162 | R_SPARC_5 = 44, 1163 | R_SPARC_6 = 45, 1164 | R_SPARC_DISP64 = 46, 1165 | R_SPARC_PLT64 = 47, 1166 | R_SPARC_HIX22 = 48, 1167 | R_SPARC_LOX10 = 49, 1168 | R_SPARC_H44 = 50, 1169 | R_SPARC_M44 = 51, 1170 | R_SPARC_L44 = 52, 1171 | R_SPARC_REGISTER = 53, 1172 | R_SPARC_UA64 = 54, 1173 | R_SPARC_UA16 = 55, 1174 | R_SPARC_TLS_GD_HI22 = 56, 1175 | R_SPARC_TLS_GD_LO10 = 57, 1176 | R_SPARC_TLS_GD_ADD = 58, 1177 | R_SPARC_TLS_GD_CALL = 59, 1178 | R_SPARC_TLS_LDM_HI22 = 60, 1179 | R_SPARC_TLS_LDM_LO10 = 61, 1180 | R_SPARC_TLS_LDM_ADD = 62, 1181 | R_SPARC_TLS_LDM_CALL = 63, 1182 | R_SPARC_TLS_LDO_HIX22 = 64, 1183 | R_SPARC_TLS_LDO_LOX10 = 65, 1184 | R_SPARC_TLS_LDO_ADD = 66, 1185 | R_SPARC_TLS_IE_HI22 = 67, 1186 | R_SPARC_TLS_IE_LO10 = 68, 1187 | R_SPARC_TLS_IE_LD = 69, 1188 | R_SPARC_TLS_IE_LDX = 70, 1189 | R_SPARC_TLS_IE_ADD = 71, 1190 | R_SPARC_TLS_LE_HIX22 = 72, 1191 | R_SPARC_TLS_LE_LOX10 = 73, 1192 | R_SPARC_TLS_DTPMOD32 = 74, 1193 | R_SPARC_TLS_DTPMOD64 = 75, 1194 | R_SPARC_TLS_DTPOFF32 = 76, 1195 | R_SPARC_TLS_DTPOFF64 = 77, 1196 | R_SPARC_TLS_TPOFF32 = 78, 1197 | R_SPARC_TLS_TPOFF64 = 79, 1198 | R_SPARC_GOTDATA_HIX22 = 80, 1199 | R_SPARC_GOTDATA_LOX22 = 81, 1200 | R_SPARC_GOTDATA_OP_HIX22 = 82, 1201 | R_SPARC_GOTDATA_OP_LOX22 = 83, 1202 | R_SPARC_GOTDATA_OP = 84 1203 | }; 1204 | 1205 | // Section header. 1206 | struct Elf32_Shdr { 1207 | Elf32_Word sh_name; // Section name (index into string table) 1208 | Elf32_Word sh_type; // Section type (SHT_*) 1209 | Elf32_Word sh_flags; // Section flags (SHF_*) 1210 | Elf32_Addr sh_addr; // Address where section is to be loaded 1211 | Elf32_Off sh_offset; // File offset of section data, in bytes 1212 | Elf32_Word sh_size; // Size of section, in bytes 1213 | Elf32_Word sh_link; // Section type-specific header table index link 1214 | Elf32_Word sh_info; // Section type-specific extra information 1215 | Elf32_Word sh_addralign; // Section address alignment 1216 | Elf32_Word sh_entsize; // Size of records contained within the section 1217 | }; 1218 | 1219 | // Section header for ELF64 - same fields as ELF32, different types. 1220 | struct Elf64_Shdr { 1221 | Elf64_Word sh_name; 1222 | Elf64_Word sh_type; 1223 | Elf64_Xword sh_flags; 1224 | Elf64_Addr sh_addr; 1225 | Elf64_Off sh_offset; 1226 | Elf64_Xword sh_size; 1227 | Elf64_Word sh_link; 1228 | Elf64_Word sh_info; 1229 | Elf64_Xword sh_addralign; 1230 | Elf64_Xword sh_entsize; 1231 | }; 1232 | 1233 | // Special section indices. 1234 | enum { 1235 | SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless 1236 | SHN_LORESERVE = 0xff00, // Lowest reserved index 1237 | SHN_LOPROC = 0xff00, // Lowest processor-specific index 1238 | SHN_HIPROC = 0xff1f, // Highest processor-specific index 1239 | SHN_LOOS = 0xff20, // Lowest operating system-specific index 1240 | SHN_HIOS = 0xff3f, // Highest operating system-specific index 1241 | SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation 1242 | SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables 1243 | SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE 1244 | SHN_HIRESERVE = 0xffff // Highest reserved index 1245 | }; 1246 | 1247 | // Section types. 1248 | enum : unsigned { 1249 | SHT_NULL = 0, // No associated section (inactive entry). 1250 | SHT_PROGBITS = 1, // Program-defined contents. 1251 | SHT_SYMTAB = 2, // Symbol table. 1252 | SHT_STRTAB = 3, // String table. 1253 | SHT_RELA = 4, // Relocation entries; explicit addends. 1254 | SHT_HASH = 5, // Symbol hash table. 1255 | SHT_DYNAMIC = 6, // Information for dynamic linking. 1256 | SHT_NOTE = 7, // Information about the file. 1257 | SHT_NOBITS = 8, // Data occupies no space in the file. 1258 | SHT_REL = 9, // Relocation entries; no explicit addends. 1259 | SHT_SHLIB = 10, // Reserved. 1260 | SHT_DYNSYM = 11, // Symbol table. 1261 | SHT_INIT_ARRAY = 14, // Pointers to initialization functions. 1262 | SHT_FINI_ARRAY = 15, // Pointers to termination functions. 1263 | SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. 1264 | SHT_GROUP = 17, // Section group. 1265 | SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries. 1266 | SHT_LOOS = 0x60000000, // Lowest operating system-specific type. 1267 | SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes. 1268 | SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table. 1269 | SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions. 1270 | SHT_GNU_verneed = 0x6ffffffe, // GNU version references. 1271 | SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table. 1272 | SHT_HIOS = 0x6fffffff, // Highest operating system-specific type. 1273 | SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type. 1274 | // Fixme: All this is duplicated in MCSectionELF. Why?? 1275 | // Exception Index table 1276 | SHT_ARM_EXIDX = 0x70000001U, 1277 | // BPABI DLL dynamic linking pre-emption map 1278 | SHT_ARM_PREEMPTMAP = 0x70000002U, 1279 | // Object file compatibility attributes 1280 | SHT_ARM_ATTRIBUTES = 0x70000003U, 1281 | SHT_ARM_DEBUGOVERLAY = 0x70000004U, 1282 | SHT_ARM_OVERLAYSECTION = 0x70000005U, 1283 | SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in 1284 | // this section based on their sizes 1285 | SHT_X86_64_UNWIND = 0x70000001, // Unwind information 1286 | 1287 | SHT_MIPS_REGINFO = 0x70000006, // Register usage information 1288 | SHT_MIPS_OPTIONS = 0x7000000d, // General options 1289 | SHT_MIPS_ABIFLAGS = 0x7000002a, // Abiflags options 1290 | 1291 | SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type. 1292 | SHT_LOUSER = 0x80000000, // Lowest type reserved for applications. 1293 | SHT_HIUSER = 0xffffffff // Highest type reserved for applications. 1294 | }; 1295 | 1296 | // Section flags. 1297 | enum : unsigned { 1298 | // Section data should be writable during execution. 1299 | SHF_WRITE = 0x1, 1300 | 1301 | // Section occupies memory during program execution. 1302 | SHF_ALLOC = 0x2, 1303 | 1304 | // Section contains executable machine instructions. 1305 | SHF_EXECINSTR = 0x4, 1306 | 1307 | // The data in this section may be merged. 1308 | SHF_MERGE = 0x10, 1309 | 1310 | // The data in this section is null-terminated strings. 1311 | SHF_STRINGS = 0x20, 1312 | 1313 | // A field in this section holds a section header table index. 1314 | SHF_INFO_LINK = 0x40U, 1315 | 1316 | // Adds special ordering requirements for link editors. 1317 | SHF_LINK_ORDER = 0x80U, 1318 | 1319 | // This section requires special OS-specific processing to avoid incorrect 1320 | // behavior. 1321 | SHF_OS_NONCONFORMING = 0x100U, 1322 | 1323 | // This section is a member of a section group. 1324 | SHF_GROUP = 0x200U, 1325 | 1326 | // This section holds Thread-Local Storage. 1327 | SHF_TLS = 0x400U, 1328 | 1329 | // This section is excluded from the final executable or shared library. 1330 | SHF_EXCLUDE = 0x80000000U, 1331 | 1332 | // Start of target-specific flags. 1333 | 1334 | /// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped 1335 | /// together by the linker to form the constant pool and the cp register is 1336 | /// set to the start of the constant pool by the boot code. 1337 | XCORE_SHF_CP_SECTION = 0x800U, 1338 | 1339 | /// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped 1340 | /// together by the linker to form the data section and the dp register is 1341 | /// set to the start of the section by the boot code. 1342 | XCORE_SHF_DP_SECTION = 0x1000U, 1343 | 1344 | SHF_MASKOS = 0x0ff00000, 1345 | 1346 | // Bits indicating processor-specific flags. 1347 | SHF_MASKPROC = 0xf0000000, 1348 | 1349 | // If an object file section does not have this flag set, then it may not hold 1350 | // more than 2GB and can be freely referred to in objects using smaller code 1351 | // models. Otherwise, only objects using larger code models can refer to them. 1352 | // For example, a medium code model object can refer to data in a section that 1353 | // sets this flag besides being able to refer to data in a section that does 1354 | // not set it; likewise, a small code model object can refer only to code in a 1355 | // section that does not set this flag. 1356 | SHF_X86_64_LARGE = 0x10000000, 1357 | 1358 | // All sections with the GPREL flag are grouped into a global data area 1359 | // for faster accesses 1360 | SHF_HEX_GPREL = 0x10000000, 1361 | 1362 | // Section contains text/data which may be replicated in other sections. 1363 | // Linker must retain only one copy. 1364 | SHF_MIPS_NODUPES = 0x01000000, 1365 | 1366 | // Linker must generate implicit hidden weak names. 1367 | SHF_MIPS_NAMES = 0x02000000, 1368 | 1369 | // Section data local to process. 1370 | SHF_MIPS_LOCAL = 0x04000000, 1371 | 1372 | // Do not strip this section. 1373 | SHF_MIPS_NOSTRIP = 0x08000000, 1374 | 1375 | // Section must be part of global data area. 1376 | SHF_MIPS_GPREL = 0x10000000, 1377 | 1378 | // This section should be merged. 1379 | SHF_MIPS_MERGE = 0x20000000, 1380 | 1381 | // Address size to be inferred from section entry size. 1382 | SHF_MIPS_ADDR = 0x40000000, 1383 | 1384 | // Section data is string data by default. 1385 | SHF_MIPS_STRING = 0x80000000 1386 | }; 1387 | 1388 | // Section Group Flags 1389 | enum : unsigned { 1390 | GRP_COMDAT = 0x1, 1391 | GRP_MASKOS = 0x0ff00000, 1392 | GRP_MASKPROC = 0xf0000000 1393 | }; 1394 | 1395 | // Symbol table entries for ELF32. 1396 | struct Elf32_Sym { 1397 | Elf32_Word st_name; // Symbol name (index into string table) 1398 | Elf32_Addr st_value; // Value or address associated with the symbol 1399 | Elf32_Word st_size; // Size of the symbol 1400 | unsigned char st_info; // Symbol's type and binding attributes 1401 | unsigned char st_other; // Must be zero; reserved 1402 | Elf32_Half st_shndx; // Which section (header table index) it's defined in 1403 | 1404 | // These accessors and mutators correspond to the ELF32_ST_BIND, 1405 | // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: 1406 | unsigned char getBinding() const { return st_info >> 4; } 1407 | unsigned char getType() const { return st_info & 0x0f; } 1408 | void setBinding(unsigned char b) { setBindingAndType(b, getType()); } 1409 | void setType(unsigned char t) { setBindingAndType(getBinding(), t); } 1410 | void setBindingAndType(unsigned char b, unsigned char t) { 1411 | st_info = (b << 4) + (t & 0x0f); 1412 | } 1413 | }; 1414 | 1415 | // BEGIN android-added for compat 1416 | static inline unsigned char ELF32_ST_BIND(unsigned char st_info) { return st_info >> 4; } 1417 | static inline unsigned char ELF32_ST_TYPE(unsigned char st_info) { return st_info & 0x0f; } 1418 | static inline unsigned char ELF64_ST_BIND(unsigned char st_info) { return st_info >> 4; } 1419 | static inline unsigned char ELF64_ST_TYPE(unsigned char st_info) { return st_info & 0x0f; } 1420 | // END android-added for compat 1421 | 1422 | // Symbol table entries for ELF64. 1423 | struct Elf64_Sym { 1424 | Elf64_Word st_name; // Symbol name (index into string table) 1425 | unsigned char st_info; // Symbol's type and binding attributes 1426 | unsigned char st_other; // Must be zero; reserved 1427 | Elf64_Half st_shndx; // Which section (header tbl index) it's defined in 1428 | Elf64_Addr st_value; // Value or address associated with the symbol 1429 | Elf64_Xword st_size; // Size of the symbol 1430 | 1431 | // These accessors and mutators are identical to those defined for ELF32 1432 | // symbol table entries. 1433 | unsigned char getBinding() const { return st_info >> 4; } 1434 | unsigned char getType() const { return st_info & 0x0f; } 1435 | void setBinding(unsigned char b) { setBindingAndType(b, getType()); } 1436 | void setType(unsigned char t) { setBindingAndType(getBinding(), t); } 1437 | void setBindingAndType(unsigned char b, unsigned char t) { 1438 | st_info = (b << 4) + (t & 0x0f); 1439 | } 1440 | }; 1441 | 1442 | // The size (in bytes) of symbol table entries. 1443 | enum { 1444 | SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size 1445 | SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size. 1446 | }; 1447 | 1448 | // Symbol bindings. 1449 | enum { 1450 | STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def 1451 | STB_GLOBAL = 1, // Global symbol, visible to all object files being combined 1452 | STB_WEAK = 2, // Weak symbol, like global but lower-precedence 1453 | STB_LOOS = 10, // Lowest operating system-specific binding type 1454 | STB_HIOS = 12, // Highest operating system-specific binding type 1455 | STB_LOPROC = 13, // Lowest processor-specific binding type 1456 | STB_HIPROC = 15 // Highest processor-specific binding type 1457 | }; 1458 | 1459 | // Symbol types. 1460 | enum { 1461 | STT_NOTYPE = 0, // Symbol's type is not specified 1462 | STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.) 1463 | STT_FUNC = 2, // Symbol is executable code (function, etc.) 1464 | STT_SECTION = 3, // Symbol refers to a section 1465 | STT_FILE = 4, // Local, absolute symbol that refers to a file 1466 | STT_COMMON = 5, // An uninitialized common block 1467 | STT_TLS = 6, // Thread local data object 1468 | STT_LOOS = 7, // Lowest operating system-specific symbol type 1469 | STT_HIOS = 8, // Highest operating system-specific symbol type 1470 | STT_GNU_IFUNC = 10, // GNU indirect function 1471 | STT_LOPROC = 13, // Lowest processor-specific symbol type 1472 | STT_HIPROC = 15 // Highest processor-specific symbol type 1473 | }; 1474 | 1475 | enum { 1476 | STV_DEFAULT = 0, // Visibility is specified by binding type 1477 | STV_INTERNAL = 1, // Defined by processor supplements 1478 | STV_HIDDEN = 2, // Not visible to other components 1479 | STV_PROTECTED = 3 // Visible in other components but not preemptable 1480 | }; 1481 | 1482 | // Symbol number. 1483 | enum { 1484 | STN_UNDEF = 0 1485 | }; 1486 | 1487 | // Relocation entry, without explicit addend. 1488 | struct Elf32_Rel { 1489 | Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) 1490 | Elf32_Word r_info; // Symbol table index and type of relocation to apply 1491 | 1492 | // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 1493 | // and ELF32_R_INFO macros defined in the ELF specification: 1494 | Elf32_Word getSymbol() const { return (r_info >> 8); } 1495 | unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } 1496 | void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } 1497 | void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } 1498 | void setSymbolAndType(Elf32_Word s, unsigned char t) { 1499 | r_info = (s << 8) + t; 1500 | } 1501 | }; 1502 | 1503 | // Relocation entry with explicit addend. 1504 | struct Elf32_Rela { 1505 | Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) 1506 | Elf32_Word r_info; // Symbol table index and type of relocation to apply 1507 | Elf32_Sword r_addend; // Compute value for relocatable field by adding this 1508 | 1509 | // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 1510 | // and ELF32_R_INFO macros defined in the ELF specification: 1511 | Elf32_Word getSymbol() const { return (r_info >> 8); } 1512 | unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } 1513 | void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } 1514 | void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } 1515 | void setSymbolAndType(Elf32_Word s, unsigned char t) { 1516 | r_info = (s << 8) + t; 1517 | } 1518 | }; 1519 | 1520 | // Relocation entry, without explicit addend. 1521 | struct Elf64_Rel { 1522 | Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). 1523 | Elf64_Xword r_info; // Symbol table index and type of relocation to apply. 1524 | 1525 | // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 1526 | // and ELF64_R_INFO macros defined in the ELF specification: 1527 | Elf64_Word getSymbol() const { return (r_info >> 32); } 1528 | Elf64_Word getType() const { 1529 | return (Elf64_Word) (r_info & 0xffffffffL); 1530 | } 1531 | void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } 1532 | void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } 1533 | void setSymbolAndType(Elf64_Word s, Elf64_Word t) { 1534 | r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL); 1535 | } 1536 | }; 1537 | 1538 | // Relocation entry with explicit addend. 1539 | struct Elf64_Rela { 1540 | Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). 1541 | Elf64_Xword r_info; // Symbol table index and type of relocation to apply. 1542 | Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. 1543 | 1544 | // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 1545 | // and ELF64_R_INFO macros defined in the ELF specification: 1546 | Elf64_Word getSymbol() const { return (r_info >> 32); } 1547 | Elf64_Word getType() const { 1548 | return (Elf64_Word) (r_info & 0xffffffffL); 1549 | } 1550 | void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } 1551 | void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } 1552 | void setSymbolAndType(Elf64_Word s, Elf64_Word t) { 1553 | r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL); 1554 | } 1555 | }; 1556 | 1557 | // Program header for ELF32. 1558 | struct Elf32_Phdr { 1559 | Elf32_Word p_type; // Type of segment 1560 | Elf32_Off p_offset; // File offset where segment is located, in bytes 1561 | Elf32_Addr p_vaddr; // Virtual address of beginning of segment 1562 | Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific) 1563 | Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) 1564 | Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) 1565 | Elf32_Word p_flags; // Segment flags 1566 | Elf32_Word p_align; // Segment alignment constraint 1567 | }; 1568 | 1569 | // Program header for ELF64. 1570 | struct Elf64_Phdr { 1571 | Elf64_Word p_type; // Type of segment 1572 | Elf64_Word p_flags; // Segment flags 1573 | Elf64_Off p_offset; // File offset where segment is located, in bytes 1574 | Elf64_Addr p_vaddr; // Virtual address of beginning of segment 1575 | Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific) 1576 | Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) 1577 | Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) 1578 | Elf64_Xword p_align; // Segment alignment constraint 1579 | }; 1580 | 1581 | // Segment types. 1582 | enum { 1583 | PT_NULL = 0, // Unused segment. 1584 | PT_LOAD = 1, // Loadable segment. 1585 | PT_DYNAMIC = 2, // Dynamic linking information. 1586 | PT_INTERP = 3, // Interpreter pathname. 1587 | PT_NOTE = 4, // Auxiliary information. 1588 | PT_SHLIB = 5, // Reserved. 1589 | PT_PHDR = 6, // The program header table itself. 1590 | PT_TLS = 7, // The thread-local storage template. 1591 | PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type. 1592 | PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type. 1593 | PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type. 1594 | PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type. 1595 | 1596 | // x86-64 program header types. 1597 | // These all contain stack unwind tables. 1598 | PT_GNU_EH_FRAME = 0x6474e550, 1599 | PT_SUNW_EH_FRAME = 0x6474e550, 1600 | PT_SUNW_UNWIND = 0x6464e550, 1601 | 1602 | PT_GNU_STACK = 0x6474e551, // Indicates stack executability. 1603 | PT_GNU_RELRO = 0x6474e552, // Read-only after relocation. 1604 | 1605 | // ARM program header types. 1606 | PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info 1607 | // These all contain stack unwind tables. 1608 | PT_ARM_EXIDX = 0x70000001, 1609 | PT_ARM_UNWIND = 0x70000001, 1610 | 1611 | // MIPS program header types. 1612 | PT_MIPS_REGINFO = 0x70000000, // Register usage information. 1613 | PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table. 1614 | PT_MIPS_OPTIONS = 0x70000002, // Options segment. 1615 | PT_MIPS_ABIFLAGS = 0x70000003 // Abiflags segment. 1616 | }; 1617 | 1618 | // Segment flag bits. 1619 | enum : unsigned { 1620 | PF_X = 1, // Execute 1621 | PF_W = 2, // Write 1622 | PF_R = 4, // Read 1623 | PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics. 1624 | PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics. 1625 | }; 1626 | 1627 | // Dynamic table entry for ELF32. 1628 | struct Elf32_Dyn 1629 | { 1630 | Elf32_Sword d_tag; // Type of dynamic table entry. 1631 | union 1632 | { 1633 | Elf32_Word d_val; // Integer value of entry. 1634 | Elf32_Addr d_ptr; // Pointer value of entry. 1635 | } d_un; 1636 | }; 1637 | 1638 | // Dynamic table entry for ELF64. 1639 | struct Elf64_Dyn 1640 | { 1641 | Elf64_Sxword d_tag; // Type of dynamic table entry. 1642 | union 1643 | { 1644 | Elf64_Xword d_val; // Integer value of entry. 1645 | Elf64_Addr d_ptr; // Pointer value of entry. 1646 | } d_un; 1647 | }; 1648 | 1649 | // Dynamic table entry tags. 1650 | enum { 1651 | DT_NULL = 0, // Marks end of dynamic array. 1652 | DT_NEEDED = 1, // String table offset of needed library. 1653 | DT_PLTRELSZ = 2, // Size of relocation entries in PLT. 1654 | DT_PLTGOT = 3, // Address associated with linkage table. 1655 | DT_HASH = 4, // Address of symbolic hash table. 1656 | DT_STRTAB = 5, // Address of dynamic string table. 1657 | DT_SYMTAB = 6, // Address of dynamic symbol table. 1658 | DT_RELA = 7, // Address of relocation table (Rela entries). 1659 | DT_RELASZ = 8, // Size of Rela relocation table. 1660 | DT_RELAENT = 9, // Size of a Rela relocation entry. 1661 | DT_STRSZ = 10, // Total size of the string table. 1662 | DT_SYMENT = 11, // Size of a symbol table entry. 1663 | DT_INIT = 12, // Address of initialization function. 1664 | DT_FINI = 13, // Address of termination function. 1665 | DT_SONAME = 14, // String table offset of a shared objects name. 1666 | DT_RPATH = 15, // String table offset of library search path. 1667 | DT_SYMBOLIC = 16, // Changes symbol resolution algorithm. 1668 | DT_REL = 17, // Address of relocation table (Rel entries). 1669 | DT_RELSZ = 18, // Size of Rel relocation table. 1670 | DT_RELENT = 19, // Size of a Rel relocation entry. 1671 | DT_PLTREL = 20, // Type of relocation entry used for linking. 1672 | DT_DEBUG = 21, // Reserved for debugger. 1673 | DT_TEXTREL = 22, // Relocations exist for non-writable segments. 1674 | DT_JMPREL = 23, // Address of relocations associated with PLT. 1675 | DT_BIND_NOW = 24, // Process all relocations before execution. 1676 | DT_INIT_ARRAY = 25, // Pointer to array of initialization functions. 1677 | DT_FINI_ARRAY = 26, // Pointer to array of termination functions. 1678 | DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY. 1679 | DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY. 1680 | DT_RUNPATH = 29, // String table offset of lib search path. 1681 | DT_FLAGS = 30, // Flags. 1682 | DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules 1683 | // for the interpretation of the d_un union. 1684 | 1685 | DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions. 1686 | DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array. 1687 | 1688 | DT_LOOS = 0x60000000, // Start of environment specific tags. 1689 | DT_HIOS = 0x6FFFFFFF, // End of environment specific tags. 1690 | DT_LOPROC = 0x70000000, // Start of processor specific tags. 1691 | DT_HIPROC = 0x7FFFFFFF, // End of processor specific tags. 1692 | 1693 | DT_GNU_HASH = 0x6FFFFEF5, // Reference to the GNU hash table. 1694 | DT_RELACOUNT = 0x6FFFFFF9, // ELF32_Rela count. 1695 | DT_RELCOUNT = 0x6FFFFFFA, // ELF32_Rel count. 1696 | 1697 | DT_FLAGS_1 = 0X6FFFFFFB, // Flags_1. 1698 | DT_VERSYM = 0x6FFFFFF0, // The address of .gnu.version section. 1699 | DT_VERDEF = 0X6FFFFFFC, // The address of the version definition table. 1700 | DT_VERDEFNUM = 0X6FFFFFFD, // The number of entries in DT_VERDEF. 1701 | DT_VERNEED = 0X6FFFFFFE, // The address of the version Dependency table. 1702 | DT_VERNEEDNUM = 0X6FFFFFFF, // The number of entries in DT_VERNEED. 1703 | 1704 | // Mips specific dynamic table entry tags. 1705 | DT_MIPS_RLD_VERSION = 0x70000001, // 32 bit version number for runtime 1706 | // linker interface. 1707 | DT_MIPS_TIME_STAMP = 0x70000002, // Time stamp. 1708 | DT_MIPS_ICHECKSUM = 0x70000003, // Checksum of external strings 1709 | // and common sizes. 1710 | DT_MIPS_IVERSION = 0x70000004, // Index of version string 1711 | // in string table. 1712 | DT_MIPS_FLAGS = 0x70000005, // 32 bits of flags. 1713 | DT_MIPS_BASE_ADDRESS = 0x70000006, // Base address of the segment. 1714 | DT_MIPS_MSYM = 0x70000007, // Address of .msym section. 1715 | DT_MIPS_CONFLICT = 0x70000008, // Address of .conflict section. 1716 | DT_MIPS_LIBLIST = 0x70000009, // Address of .liblist section. 1717 | DT_MIPS_LOCAL_GOTNO = 0x7000000a, // Number of local global offset 1718 | // table entries. 1719 | DT_MIPS_CONFLICTNO = 0x7000000b, // Number of entries 1720 | // in the .conflict section. 1721 | DT_MIPS_LIBLISTNO = 0x70000010, // Number of entries 1722 | // in the .liblist section. 1723 | DT_MIPS_SYMTABNO = 0x70000011, // Number of entries 1724 | // in the .dynsym section. 1725 | DT_MIPS_UNREFEXTNO = 0x70000012, // Index of first external dynamic symbol 1726 | // not referenced locally. 1727 | DT_MIPS_GOTSYM = 0x70000013, // Index of first dynamic symbol 1728 | // in global offset table. 1729 | DT_MIPS_HIPAGENO = 0x70000014, // Number of page table entries 1730 | // in global offset table. 1731 | DT_MIPS_RLD_MAP = 0x70000016, // Address of run time loader map, 1732 | // used for debugging. 1733 | DT_MIPS_DELTA_CLASS = 0x70000017, // Delta C++ class definition. 1734 | DT_MIPS_DELTA_CLASS_NO = 0x70000018, // Number of entries 1735 | // in DT_MIPS_DELTA_CLASS. 1736 | DT_MIPS_DELTA_INSTANCE = 0x70000019, // Delta C++ class instances. 1737 | DT_MIPS_DELTA_INSTANCE_NO = 0x7000001A, // Number of entries 1738 | // in DT_MIPS_DELTA_INSTANCE. 1739 | DT_MIPS_DELTA_RELOC = 0x7000001B, // Delta relocations. 1740 | DT_MIPS_DELTA_RELOC_NO = 0x7000001C, // Number of entries 1741 | // in DT_MIPS_DELTA_RELOC. 1742 | DT_MIPS_DELTA_SYM = 0x7000001D, // Delta symbols that Delta 1743 | // relocations refer to. 1744 | DT_MIPS_DELTA_SYM_NO = 0x7000001E, // Number of entries 1745 | // in DT_MIPS_DELTA_SYM. 1746 | DT_MIPS_DELTA_CLASSSYM = 0x70000020, // Delta symbols that hold 1747 | // class declarations. 1748 | DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021, // Number of entries 1749 | // in DT_MIPS_DELTA_CLASSSYM. 1750 | DT_MIPS_CXX_FLAGS = 0x70000022, // Flags indicating information 1751 | // about C++ flavor. 1752 | DT_MIPS_PIXIE_INIT = 0x70000023, // Pixie information. 1753 | DT_MIPS_SYMBOL_LIB = 0x70000024, // Address of .MIPS.symlib 1754 | DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025, // The GOT index of the first PTE 1755 | // for a segment 1756 | DT_MIPS_LOCAL_GOTIDX = 0x70000026, // The GOT index of the first PTE 1757 | // for a local symbol 1758 | DT_MIPS_HIDDEN_GOTIDX = 0x70000027, // The GOT index of the first PTE 1759 | // for a hidden symbol 1760 | DT_MIPS_PROTECTED_GOTIDX = 0x70000028, // The GOT index of the first PTE 1761 | // for a protected symbol 1762 | DT_MIPS_OPTIONS = 0x70000029, // Address of `.MIPS.options'. 1763 | DT_MIPS_INTERFACE = 0x7000002A, // Address of `.interface'. 1764 | DT_MIPS_DYNSTR_ALIGN = 0x7000002B, // Unknown. 1765 | DT_MIPS_INTERFACE_SIZE = 0x7000002C, // Size of the .interface section. 1766 | DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002D, // Size of rld_text_resolve 1767 | // function stored in the GOT. 1768 | DT_MIPS_PERF_SUFFIX = 0x7000002E, // Default suffix of DSO to be added 1769 | // by rld on dlopen() calls. 1770 | DT_MIPS_COMPACT_SIZE = 0x7000002F, // Size of compact relocation 1771 | // section (O32). 1772 | DT_MIPS_GP_VALUE = 0x70000030, // GP value for auxiliary GOTs. 1773 | DT_MIPS_AUX_DYNAMIC = 0x70000031, // Address of auxiliary .dynamic. 1774 | DT_MIPS_PLTGOT = 0x70000032, // Address of the base of the PLTGOT. 1775 | DT_MIPS_RWPLT = 0x70000034 // Points to the base 1776 | // of a writable PLT. 1777 | }; 1778 | 1779 | // DT_FLAGS values. 1780 | enum { 1781 | DF_ORIGIN = 0x01, // The object may reference $ORIGIN. 1782 | DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe. 1783 | DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment. 1784 | DF_BIND_NOW = 0x08, // Process all relocations on load. 1785 | DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically. 1786 | }; 1787 | 1788 | // State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry. 1789 | enum { 1790 | DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object. 1791 | DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object. 1792 | DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object. 1793 | DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object. 1794 | DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime. 1795 | DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object. 1796 | DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object. 1797 | DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled. 1798 | DF_1_DIRECT = 0x00000100, // Direct binding enabled. 1799 | DF_1_TRANS = 0x00000200, 1800 | DF_1_INTERPOSE = 0x00000400, // Object is used to interpose. 1801 | DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path. 1802 | DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed. 1803 | DF_1_CONFALT = 0x00002000, // Configuration alternative created. 1804 | DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search. 1805 | DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time. 1806 | DF_1_DISPRELPND = 0x00010000 // Disp reloc applied at run-time. 1807 | }; 1808 | 1809 | // DT_MIPS_FLAGS values. 1810 | enum { 1811 | RHF_NONE = 0x00000000, // No flags. 1812 | RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers. 1813 | RHF_NOTPOT = 0x00000002, // Hash size is not a power of two. 1814 | RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH. 1815 | RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated. 1816 | RHF_SGI_ONLY = 0x00000010, // SGI specific features. 1817 | RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish 1818 | // executing before any non-init 1819 | // code in DSO is called. 1820 | RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code. 1821 | RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start 1822 | // executing before any non-init 1823 | // code in DSO is called. 1824 | RHF_PIXIE = 0x00000100, // Generated by pixie. 1825 | RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default. 1826 | RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted 1827 | RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted 1828 | RHF_CORD = 0x00001000, // Generated by cord. 1829 | RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved 1830 | // undef symbols. 1831 | RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order. 1832 | }; 1833 | 1834 | // ElfXX_VerDef structure version (GNU versioning) 1835 | enum { 1836 | VER_DEF_NONE = 0, 1837 | VER_DEF_CURRENT = 1 1838 | }; 1839 | 1840 | // VerDef Flags (ElfXX_VerDef::vd_flags) 1841 | enum { 1842 | VER_FLG_BASE = 0x1, 1843 | VER_FLG_WEAK = 0x2, 1844 | VER_FLG_INFO = 0x4 1845 | }; 1846 | 1847 | // Special constants for the version table. (SHT_GNU_versym/.gnu.version) 1848 | enum { 1849 | VER_NDX_LOCAL = 0, // Unversioned local symbol 1850 | VER_NDX_GLOBAL = 1, // Unversioned global symbol 1851 | VERSYM_VERSION = 0x7fff, // Version Index mask 1852 | VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version) 1853 | }; 1854 | 1855 | // ElfXX_VerNeed structure version (GNU versioning) 1856 | enum { 1857 | VER_NEED_NONE = 0, 1858 | VER_NEED_CURRENT = 1 1859 | }; 1860 | 1861 | struct ElfTypes32 { 1862 | typedef Elf32_Addr Addr; 1863 | typedef Elf32_Off Off; 1864 | typedef Elf32_Half Half; 1865 | typedef Elf32_Word Word; 1866 | typedef Elf32_Sword Sword; 1867 | typedef Elf32_Ehdr Ehdr; 1868 | typedef Elf32_Shdr Shdr; 1869 | typedef Elf32_Sym Sym; 1870 | typedef Elf32_Rel Rel; 1871 | typedef Elf32_Rela Rela; 1872 | typedef Elf32_Phdr Phdr; 1873 | typedef Elf32_Dyn Dyn; 1874 | }; 1875 | 1876 | struct ElfTypes64 { 1877 | typedef Elf64_Addr Addr; 1878 | typedef Elf64_Off Off; 1879 | typedef Elf64_Half Half; 1880 | typedef Elf64_Word Word; 1881 | typedef Elf64_Sword Sword; 1882 | typedef Elf64_Xword Xword; 1883 | typedef Elf64_Sxword Sxword; 1884 | typedef Elf64_Ehdr Ehdr; 1885 | typedef Elf64_Shdr Shdr; 1886 | typedef Elf64_Sym Sym; 1887 | typedef Elf64_Rel Rel; 1888 | typedef Elf64_Rela Rela; 1889 | typedef Elf64_Phdr Phdr; 1890 | typedef Elf64_Dyn Dyn; 1891 | }; 1892 | 1893 | // BEGIN android-changed 1894 | #endif // ART_RUNTIME_ELF_H_ 1895 | // END android-changed 1896 | -------------------------------------------------------------------------------- /soparse.c: -------------------------------------------------------------------------------- 1 | #include 2 | #include "dataType.h" 3 | 4 | struct DataOffest{ 5 | Elf32_Off programheadoffset; 6 | Elf32_Half programsize; 7 | Elf32_Off sectionheadoffest; 8 | Elf32_Half sectionsize; 9 | Elf32_Off dynameicoff; 10 | Elf32_Word dynameicsize; 11 | Elf32_Off stroffset; 12 | Elf32_Word strsize; 13 | Elf32_Off str1offset; 14 | Elf32_Word str1size; 15 | Elf32_Off str2offset; 16 | Elf32_Word str2size; 17 | Elf32_Half shstrtabindex; 18 | Elf32_Off symtaboff; 19 | Elf32_Word symtabsize; 20 | }; 21 | 22 | struct ShstrtabTable 23 | { 24 | int index; 25 | char str[50]; 26 | }; 27 | 28 | struct DataOffest parseSoHeader(FILE *fp,struct DataOffest off) 29 | { 30 | Elf32_Ehdr header; 31 | int i = 0; 32 | 33 | fseek(fp,0,SEEK_SET); 34 | fread(&header,1,sizeof(header),fp); 35 | printf("ELF Header:\n"); 36 | printf(" Header Magic: "); 37 | for (i = 0; i < 16; i++) 38 | { 39 | printf("%02x ",header.e_ident[i]); 40 | } 41 | printf("\n"); 42 | printf(" So File Type: 0x%02x",header.e_type); 43 | switch (header.e_type) 44 | { 45 | case 0x00: 46 | printf("(No file type)\n"); 47 | break; 48 | case 0x01: 49 | printf("(Relocatable file)\n"); 50 | break; 51 | case 0x02: 52 | printf("(Executable file)\n"); 53 | break; 54 | case 0x03: 55 | printf("(Shared object file)\n"); 56 | break; 57 | case 0x04: 58 | printf("(Core file)\n"); 59 | break; 60 | case 0xff00: 61 | printf("(Beginning of processor-specific codes)\n"); 62 | break; 63 | case 0xffff: 64 | printf("(Processor-specific)\n"); 65 | break; 66 | default: 67 | printf("\n"); 68 | break; 69 | } 70 | printf(" Required Architecture: 0x%04x",header.e_machine); 71 | if (header.e_machine == 0x28) 72 | { 73 | printf("(ARM)\n"); 74 | } 75 | else 76 | { 77 | printf("\n"); 78 | } 79 | printf(" Version: 0x%02x\n",header.e_version); 80 | printf(" Start Program Address: 0x%08x\n",header.e_entry); 81 | printf(" Program Header Offest: 0x%08x\n",header.e_phoff); 82 | off.programheadoffset = header.e_phoff; 83 | printf(" Section Header Offest: 0x%08x\n",header.e_shoff); 84 | off.sectionheadoffest = header.e_shoff; 85 | printf(" Processor-specific Flags: 0x%08x\n",header.e_flags); 86 | printf(" ELF Header Size: 0x%04x\n",header.e_ehsize); 87 | printf(" Size of an entry in the program header table: 0x%04x\n",header.e_phentsize); 88 | printf(" Program Header Size: 0x%04x\n",header.e_phnum); 89 | off.programsize = header.e_phnum; 90 | printf(" Size of an entry in the section header table: 0x%04x\n",header.e_shentsize); 91 | printf(" Section Header Size: 0x%04x\n",header.e_shnum); 92 | off.sectionsize = header.e_shnum; 93 | printf(" String Section Index: 0x%04x\n",header.e_shstrndx); 94 | off.shstrtabindex = header.e_shstrndx; 95 | return off; 96 | } 97 | 98 | struct ShstrtabTable* getShstrtabTable(FILE *fp,struct DataOffest off,struct ShstrtabTable str[100]) 99 | { 100 | Elf32_Half init; 101 | Elf32_Half addr; 102 | Elf32_Shdr sectionHeader; 103 | Elf32_Off stroff; 104 | Elf32_Half stringoff; 105 | Elf32_Word count; 106 | int i,k=0,n,m,v; 107 | char ch; 108 | 109 | m = 0; 110 | v = off.shstrtabindex; 111 | init = off.sectionheadoffest; 112 | for (i = 0; i < off.sectionsize; i++) 113 | { 114 | addr = init + (i * 0x28); 115 | if (i == v) 116 | { 117 | fseek(fp,addr,SEEK_SET); 118 | fread(§ionHeader,1,40,fp); 119 | stroff = sectionHeader.sh_offset; 120 | count = sectionHeader.sh_size; 121 | str[0].index = 0; 122 | for (n = 0; n < count; n++) 123 | { 124 | stringoff = stroff + (n * 1); 125 | 126 | fseek(fp,stringoff,SEEK_SET); 127 | fread(&ch,1,1,fp); 128 | 129 | if (n == 0 && ch == 0) 130 | { 131 | continue; 132 | } 133 | else if (ch != 0) 134 | { 135 | str[k].str[m] = ch; 136 | m++; 137 | } 138 | else if (ch == 0 && n !=0) 139 | { 140 | k = k + 1; 141 | m = 0; 142 | str[k].index = k; 143 | } 144 | } 145 | 146 | } 147 | 148 | } 149 | return str; 150 | } 151 | 152 | struct DataOffest parseSoPargramHeader(FILE *fp,struct DataOffest off) 153 | { 154 | Elf32_Half init; 155 | Elf32_Half addr; 156 | int i; 157 | Elf32_Phdr programHeader; 158 | 159 | init = off.programheadoffset; 160 | for (i = 0; i < off.programsize; i++) 161 | { 162 | addr = init + (i * 0x20); 163 | fseek(fp,addr,SEEK_SET); 164 | fread(&programHeader,1,32,fp); 165 | switch (programHeader.p_type) 166 | { 167 | case 2: 168 | off.dynameicoff = programHeader.p_offset; 169 | off.dynameicsize = programHeader.p_filesz; 170 | break; 171 | default: 172 | break; 173 | } 174 | printf("\n\nSegment Header %d:\n",(i + 1)); 175 | printf(" Type of segment: 0x%08x\n",programHeader.p_type); 176 | printf(" Segment Offset: 0x%08x\n",programHeader.p_offset); 177 | printf(" Virtual address of beginning of segment: 0x%08x\n",programHeader.p_vaddr); 178 | printf(" Physical address of beginning of segment: 0x%08x\n",programHeader.p_paddr); 179 | printf(" Num. of bytes in file image of segment: 0x%08x\n",programHeader.p_filesz); 180 | printf(" Num. of bytes in mem image of segment (may be zero): 0x%08x\n",programHeader.p_memsz); 181 | printf(" Segment flags: 0x%08x\n",programHeader.p_flags); 182 | printf(" Segment alignment constraint: 0x%08x\n",programHeader.p_align); 183 | } 184 | return off; 185 | } 186 | 187 | struct DataOffest parseSoSectionHeader(FILE *fp,struct DataOffest off,struct ShstrtabTable StrList[100]) 188 | { 189 | Elf32_Half init; 190 | Elf32_Half addr; 191 | Elf32_Shdr sectionHeader; 192 | int i,id,n; 193 | char ch; 194 | int k = 0; 195 | 196 | init = off.sectionheadoffest; 197 | for (i = 0; i < off.sectionsize; i++) 198 | { 199 | addr = init + (i * 0x28); 200 | fseek(fp,addr,SEEK_SET); 201 | fread(§ionHeader,1,40,fp); 202 | switch (sectionHeader.sh_type) 203 | { 204 | case 3: 205 | if(k == 0) 206 | { 207 | off.stroffset = sectionHeader.sh_offset; 208 | off.strsize = sectionHeader.sh_size; 209 | k++; 210 | } 211 | else if (k == 1) 212 | { 213 | off.str1offset = sectionHeader.sh_offset; 214 | off.str1size = sectionHeader.sh_size; 215 | k++; 216 | } 217 | else 218 | { 219 | off.str2offset = sectionHeader.sh_offset; 220 | off.str2size = sectionHeader.sh_size; 221 | k++; 222 | } 223 | break; 224 | default: 225 | break; 226 | } 227 | id = sectionHeader.sh_name; 228 | printf("\n\nSection Header %d\n",(i + 1)); 229 | printf(" Section Name Index: 0x%x\n",id); 230 | /*for (n = 0; n < 50; n++) 231 | { 232 | ch = StrList[id].str[n]; 233 | if (ch == 0) 234 | { 235 | printf("\n"); 236 | break; 237 | } 238 | else 239 | { 240 | printf("%c",ch); 241 | } 242 | }*/ 243 | printf(" Section Type: 0x%08x\n",sectionHeader.sh_type); 244 | printf(" Section Flag: 0x%08x\n",sectionHeader.sh_flags); 245 | printf(" Address where section is to be loaded: 0x%08x\n",sectionHeader.sh_addr); 246 | printf(" Offset: 0x%x\n",sectionHeader.sh_offset); 247 | printf(" Size of section, in bytes: 0x%08x\n",sectionHeader.sh_size); 248 | printf(" Section type-specific header table index link: 0x%08x\n",sectionHeader.sh_link); 249 | printf(" Section type-specific extra information: 0x%08x\n",sectionHeader.sh_info); 250 | printf(" Section address alignment: 0x%08x\n",sectionHeader.sh_addralign); 251 | printf(" Size of records contained within the section: 0x%08x\n",sectionHeader.sh_entsize); 252 | } 253 | return off; 254 | } 255 | 256 | void parseStrSection(FILE *fp,struct DataOffest off,int flag) 257 | { 258 | int total = 0; 259 | int i; 260 | int ch; 261 | int mark; 262 | Elf32_Off init; 263 | Elf32_Off addr; 264 | Elf32_Word count; 265 | 266 | mark = 1; 267 | 268 | 269 | if (flag == 1) 270 | { 271 | count = off.strsize; 272 | init = off.stroffset; 273 | } 274 | else if (flag == 2) 275 | { 276 | count = off.str1size; 277 | init = off.str1offset; 278 | } 279 | else 280 | { 281 | count = off.str2size; 282 | init = off.str2offset; 283 | } 284 | 285 | 286 | printf("String Address==>0x%x\n",init); 287 | printf("String List %d:\n\t[1]==>",flag); 288 | 289 | for (i = 0; i < count; i++) 290 | { 291 | 292 | addr = init + (i * 1); 293 | 294 | fseek(fp,addr,SEEK_SET); 295 | fread(&ch,1,1,fp); 296 | 297 | if (i == 0 && ch == 0) 298 | { 299 | continue; 300 | } 301 | else if (ch != 0) 302 | { 303 | printf("%c",ch); 304 | } 305 | else if (ch == 0 && i !=0) 306 | { 307 | printf("\n\t[%d]==>",(++mark)); 308 | } 309 | } 310 | printf("\n"); 311 | 312 | } 313 | 314 | void parseSoDynamicSection(FILE *fp,struct DataOffest off) 315 | { 316 | int dynamicnum; 317 | Elf32_Off init; 318 | Elf32_Off addr; 319 | Elf32_Dyn dynamicData; 320 | int i; 321 | 322 | init = off.dynameicoff; 323 | dynamicnum = (off.dynameicsize / 8); 324 | 325 | printf("Dynamic:\n"); 326 | printf("\t\tTag\t\t\tType\t\t\tName/Value\n"); 327 | 328 | for (i = 0; i < dynamicnum; i++) 329 | { 330 | addr = init + (i * 8); 331 | fseek(fp,addr,SEEK_SET); 332 | fread(&dynamicData,1,8,fp); 333 | printf("\t\t0x%08x\t\tNOPRINTF\t\t0x%x\n",dynamicData.d_tag,dynamicData.d_un); 334 | } 335 | 336 | } 337 | 338 | void parseSymtabSection(FILE *fp,struct DataOffest off) 339 | { 340 | Elf32_Off init; 341 | Elf32_Off addr; 342 | Elf32_Word count; 343 | Elf32_Sym symtabSection; 344 | int k,i; 345 | 346 | init = off.symtaboff; 347 | count = off.symtabsize; 348 | 349 | printf("SymTable:\n"); 350 | 351 | for (i = 0; i < count; i++) 352 | { 353 | addr = init + (i * 16); 354 | fseek(fp,addr,SEEK_SET); 355 | fread(&symtabSection,1,16,fp); 356 | printf("Symbol Name Index: 0x%x\n",symtabSection.st_name); 357 | printf("Value or address associated with the symbol: 0x%08x\n",symtabSection.st_value); 358 | printf("Size of the symbol: 0x%x\n",symtabSection.st_size); 359 | printf("Symbol's type and binding attributes: %c\n",symtabSection.st_info); 360 | printf("Must be zero; reserved: 0x%x\n",symtabSection.st_other); 361 | printf("Which section (header table index) it's defined in: 0x%x\n",symtabSection.st_shndx); 362 | } 363 | 364 | } 365 | 366 | 367 | int main() 368 | { 369 | FILE *fp; 370 | char buffer[4]; 371 | int i = 0; 372 | Elf64_Addr buff[1]; 373 | struct DataOffest test = {0}; 374 | struct DataOffest off = {0}; 375 | struct ShstrtabTable StrList[100]; 376 | struct ShstrtabTable *p; 377 | 378 | for (i = 0; i < 100; i++) 379 | { 380 | StrList[i].index = -1; 381 | } 382 | p = StrList; 383 | fp = fopen("E:\\blog\\soParse\\libfridaso.so","rb"); 384 | off = parseSoHeader(fp,off); 385 | p = getShstrtabTable(fp,off,StrList); 386 | 387 | printf("\n\nshstrtab Table:\n"); 388 | for (i = 0; i < 100; i++) 389 | { 390 | if (p->index == -1) 391 | { 392 | break; 393 | } 394 | else 395 | { 396 | printf(" [%d]==>%s\n",p->index,p->str); 397 | } 398 | p++; 399 | } 400 | 401 | off = parseSoPargramHeader(fp,off); 402 | off = parseSoSectionHeader(fp,off,StrList); 403 | parseSoDynamicSection(fp,off); 404 | parseStrSection(fp,off,1); 405 | parseStrSection(fp,off,2); 406 | parseStrSection(fp,off,3); 407 | /*parseSymtabSection(fp,off);*/ 408 | fclose(fp); 409 | return 0; 410 | } 411 | --------------------------------------------------------------------------------