├── run_extract_feats.sh ├── run_fewshot_baseline.sh ├── baseline ├── compute_metric.py ├── fewshot_baseline.py ├── extract_feats.py ├── baseline_func.py ├── metabaseline_func.py └── gen_support_set.py ├── README.md ├── data ├── NeoJaundice │ ├── fewshot-pool.txt │ └── test.txt ├── Retino │ ├── fewshot-pool.txt │ └── test.txt └── Endo │ └── fewshot-pool.txt └── LICENSE /run_extract_feats.sh: -------------------------------------------------------------------------------- 1 | ### sample script of extract features of test set in MedFMC 2 | python ./baseline/extract_feats.py --model simmim-swin-base --dataset ChestDR --data_dir ./data/ChestDR 3 | python ./baseline/extract_feats.py --model swin-base --dataset ChestDR --data_dir ./data/ChestDR 4 | -------------------------------------------------------------------------------- /run_fewshot_baseline.sh: -------------------------------------------------------------------------------- 1 | ### sample script of run fewshot baseline on test set of MedFMC 2 | python ./baseline/fewshot_baseline.py --method Baseline --model swin-base --dataset ChestDR --data_dir ./data/ChestDR --shot 10 --max_iters 10 --job_name test_shot10_base 3 | python ./baseline/fewshot_baseline.py --method MetaBaseline --model swin-base --dataset ChestDR --data_dir ./data/ChestDR --shot 10 --max_iters 10 --job_name test_meta_shot10_base 4 | -------------------------------------------------------------------------------- /baseline/compute_metric.py: -------------------------------------------------------------------------------- 1 | import os 2 | import numpy as np 3 | import torch 4 | from sklearn import metrics 5 | from mmpretrain.evaluation import AveragePrecision 6 | 7 | ### 1. compute auc for each class 8 | def compute_auc(cls_scores, cls_labels): 9 | cls_aucs = [] 10 | for i in range(cls_scores.shape[1]): 11 | scores_per_class = cls_scores[:, i] 12 | labels_per_class = cls_labels[:, i] 13 | auc_per_class = metrics.roc_auc_score(labels_per_class, scores_per_class) 14 | # print ('class {} auc = {:.2f}'.format(i+1, auc_per_class*100)) 15 | 16 | cls_aucs.append(auc_per_class) 17 | 18 | return cls_aucs 19 | 20 | ### 2. compute AP for each class 21 | def compute_ap(cls_scores, cls_labels): 22 | cls_aps = [] 23 | for i in range(cls_scores.shape[1]): 24 | scores_per_class = cls_scores[:, i] 25 | labels_per_class = cls_labels[:, i] 26 | 27 | scores_per_class = scores_per_class.reshape(cls_scores.shape[0], 1) 28 | labels_per_class = labels_per_class.reshape(cls_scores.shape[0], 1) 29 | 30 | # print (scores_per_class.shape, labels_per_class.shape) 31 | 32 | ap = AveragePrecision.calculate(scores_per_class, labels_per_class) 33 | ap_per_class = ap.detach().numpy() 34 | 35 | cls_aps.append(ap_per_class/100) 36 | 37 | return cls_aps 38 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # MedFMC_fewshot_baseline 2 | Implementation of two few-shot method (Baseline and Meta Baseline) for MedFMC 3 | **** 4 | ## Requirements 5 | * The following setup has been tested on Python 3.9, Ubuntu 20.04. 6 | * mmpretrain (recommended 1.0.0rc8): please refer to https://github.com/open-mmlab/mmpretrain for installation details. 7 | * sklearn (recommended 1.2.2): pip install sklearn 8 | **** 9 | ## Usage 10 | * Run the script of '**run_extract_feats.sh**' to extract the features via pretrained models (e.g. swin-base) of all the test images in each dataset (ChestDR, Endo, NeoJaudice, ColonPath, Retino). The extracted features would be stored as '.npy' format file in the sub-folder 'test_feats/' of the dataset path (e.g. ./data/ChestDR/test_feats/swin-base.npy). 11 | * Run the script of '**run_fewshot_baseline.sh**' to test the results of Baseline and Meta Baseline method using 1, 5, 10 shot samples per class under 10 iterations for each dataset. 12 | **** 13 | ## Dataset Split 14 | * In our experiments, image list used for randomly picking support set of each dataset is saved as 'fewshot-pool.txt', meanwhile image list consisted of the remaining testing images as 'test.txt'. These two image list files can also be found in data folder (e.g. ./data/ChestDR/test.txt). 15 | * When you start to test this baseline, please place all the preprocessed images of each dataset into the sub-folder 'images/' beforehand (e.g. ./data/ChestDR/images/). 16 | **** 17 | ## Cite this article 18 | Wang, D., Wang, X., Wang, L. et al. A Real-world Dataset and Benchmark For Foundation Model Adaptation in Medical Image Classification. Sci Data 10, 574 (2023). https://doi.org/10.1038/s41597-023-02460-0 19 | -------------------------------------------------------------------------------- /baseline/fewshot_baseline.py: -------------------------------------------------------------------------------- 1 | import os 2 | import torch 3 | import numpy as np 4 | import argparse 5 | 6 | from mmpretrain import get_model 7 | from extract_feats import extract_model_fea, load_annotations, load_endo_annotations, load_chest_annotations, make_dir 8 | from gen_support_set import gen_support_set_interface, save_fewshot_data 9 | from baseline_func import do_baseline 10 | from metabaseline_func import do_metabaseline 11 | 12 | DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 13 | MedFMC_CLS_NUM = {'ColonPath': 2, 'NeoJaundice': 2, 'Retino': 5, 'Endo': 4, 'ChestDR': 19} 14 | 15 | 16 | def parse_args(): 17 | parser = argparse.ArgumentParser(description='run few shot baseline on MedFMC') 18 | parser.add_argument('--method', default=None) ### Baseline / MetaBaseline 19 | parser.add_argument('--model', default=None) ### swin-base / simmim-swin-base 20 | parser.add_argument('--dataset', default=None) ### Retino / ColonPath / NeoJaundice / Endo / ChestDR 21 | parser.add_argument('--data_dir', default=None) 22 | parser.add_argument('--shot', default=1, type=int) ### 1, 5, 10 23 | parser.add_argument('--max_iters', default=1, type=int) 24 | parser.add_argument('--job_name', default=None) 25 | 26 | args = parser.parse_args() 27 | 28 | return args 29 | 30 | 31 | def run(): 32 | args = parse_args() 33 | print(args) 34 | 35 | ### step 1. load model 36 | model_config = None 37 | fea_dim = 0 38 | if args.model == 'swin-base': 39 | model_config = 'swin-base_16xb64_in1k' 40 | fea_dim = 1024 41 | elif args.model == 'simmim-swin-base': 42 | model_config = 'swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px' 43 | fea_dim = 1024 44 | model = get_model(model_config, pretrained=True, device=DEVICE) 45 | 46 | ### step 2. load img list 47 | train_list_txt = os.path.join(args.data_dir, 'fewshot-pool.txt') 48 | test_list_txt = os.path.join(args.data_dir, 'test.txt') 49 | 50 | train_img_infos = [] 51 | test_img_infos = [] 52 | if args.dataset == 'ChestDR': 53 | train_img_infos = load_chest_annotations(train_list_txt) 54 | test_img_infos = load_chest_annotations(test_list_txt) 55 | elif args.dataset == 'Endo': 56 | train_img_infos = load_endo_annotations(train_list_txt) 57 | test_img_infos = load_endo_annotations(test_list_txt) 58 | else: 59 | train_img_infos = load_annotations(train_list_txt) 60 | test_img_infos = load_annotations(test_list_txt) 61 | 62 | N_way = MedFMC_CLS_NUM[args.dataset] 63 | K_shot = args.shot 64 | 65 | print ('N_way = ', N_way, ', K_shot = ', K_shot) 66 | 67 | 68 | all_support_sets = [] 69 | all_test_results = [] 70 | 71 | for iter in range(args.max_iters): 72 | print ('\n----------------test iter = {}----------------'.format(iter)) 73 | ### step 3. support set randomly sampled from the fewshot-pool set 74 | support_set = gen_support_set_interface(train_img_infos, N_way, K_shot, args.dataset) 75 | all_support_sets.append(support_set) 76 | 77 | ### step 4. run test result and compute metrics 78 | one_test_res = None 79 | if args.method == 'Baseline': 80 | one_test_res = do_baseline(support_set, test_img_infos, args.data_dir, model, args.model, fea_dim, N_way, args.dataset) 81 | else: 82 | one_test_res = do_metabaseline(support_set, test_img_infos, args.data_dir, model, args.model, fea_dim, N_way, args.dataset) 83 | all_test_results.append(one_test_res) 84 | 85 | ### step 5. save support list and test result 86 | job_dir = os.path.join(args.data_dir, 'work_dir/'+args.job_name) 87 | make_dir(job_dir) 88 | save_fewshot_data(job_dir, args.dataset, all_support_sets, all_test_results) 89 | 90 | 91 | if __name__ == '__main__': 92 | print ('let us start fewshot baseline test now ...') 93 | run() 94 | print ('\nfinish ...') 95 | -------------------------------------------------------------------------------- /baseline/extract_feats.py: -------------------------------------------------------------------------------- 1 | import os 2 | import torch 3 | import numpy as np 4 | from mmpretrain import get_model, FeatureExtractor 5 | import argparse 6 | 7 | DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 8 | 9 | def make_dir(dir): 10 | if not os.path.exists(dir): 11 | os.makedirs(dir) 12 | 13 | ### extract norm feat via model for each image 14 | def extract_model_fea(model, img_file): 15 | inferencer = FeatureExtractor(model, device=DEVICE) 16 | feat = inferencer(img_file, stage='pre_logits')[0].cpu() 17 | feat = feat / feat.norm() 18 | out_feat = feat.detach().numpy() 19 | return out_feat 20 | 21 | def load_annotations(ann_file): 22 | data_infos = [] 23 | with open(ann_file) as f: 24 | samples = [x.strip() for x in f.readlines()] 25 | for item in samples: 26 | filename = item[:-2] 27 | imglabel = int(item[-1:]) 28 | info = {} 29 | info['filename'] = filename 30 | info['gt_label'] = imglabel 31 | data_infos.append(info) 32 | 33 | return data_infos 34 | 35 | def load_endo_annotations(ann_file): 36 | data_infos = [] 37 | with open(ann_file) as f: 38 | samples = [x.strip() for x in f.readlines()] 39 | for item in samples: 40 | filename = item[:-8] 41 | imglabel = item[-7:] 42 | gt_label = np.asarray(list(map(int, imglabel.split(' '))), dtype=np.int8) 43 | info = {} 44 | info['filename'] = filename 45 | info['gt_label'] = gt_label 46 | 47 | data_infos.append(info) 48 | 49 | return data_infos 50 | 51 | def load_chest_annotations(ann_file): 52 | data_infos = [] 53 | with open(ann_file) as f: 54 | samples = [x.strip() for x in f.readlines()] 55 | for item in samples: 56 | filename, imglabel = item.split(' ') 57 | gt_label = np.asarray(list(map(int, imglabel.split(','))), dtype=np.int8) 58 | info = {} 59 | info['filename'] = filename 60 | info['gt_label'] = gt_label 61 | data_infos.append(info) 62 | 63 | return data_infos 64 | 65 | def extract_test_feats(img_list, model, data_dir, fea_dim): 66 | img_num = len(img_list) 67 | 68 | test_feats = np.zeros((img_num, fea_dim)) 69 | 70 | count = 0 71 | for item in img_list: 72 | count += 1 73 | print ('\r', 'process: {}/{}'.format(count, img_num), end='', flush=True) 74 | img_name = item['filename'] 75 | img_file = os.path.join(data_dir, 'images/', img_name) 76 | 77 | ###add png or jpg 20231005 78 | img_file = img_file + '.jpg' 79 | if not os.path.exists(img_file): 80 | img_file = img_file.replace('.jpg', '.png') 81 | 82 | img_fea = extract_model_fea(model, img_file) 83 | test_feats[count-1, :] = img_fea 84 | # print (img_fea) 85 | 86 | return test_feats 87 | 88 | def parse_args(): 89 | parser = argparse.ArgumentParser(description='extract feats for test set in MedFMC') 90 | parser.add_argument('--model', default=None, ) ### swin-base / simmim-swin-base 91 | parser.add_argument('--dataset', default=None) ### Retino / ColonPath / NeoJaundice / Endo / ChestDR 92 | parser.add_argument('--data_dir', default=None) 93 | 94 | args = parser.parse_args() 95 | 96 | return args 97 | 98 | def run(): 99 | args = parse_args() 100 | print(args) 101 | 102 | model_config = None 103 | fea_dim = 0 104 | if args.model == 'swin-base': 105 | model_config = 'swin-base_16xb64_in1k' 106 | fea_dim = 1024 107 | elif args.model == 'simmim-swin-base': 108 | model_config = 'swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px' 109 | fea_dim = 1024 110 | 111 | model = get_model(model_config, pretrained=True, device=DEVICE) 112 | 113 | test_list_txt = os.path.join(args.data_dir, 'test.txt') 114 | 115 | test_img_infos = [] 116 | if args.dataset == 'ChestDR': 117 | test_img_infos = load_chest_annotations(test_list_txt) 118 | elif args.dataset == 'Endo': 119 | test_img_infos = load_endo_annotations(test_list_txt) 120 | else: 121 | test_img_infos = load_annotations(test_list_txt) 122 | 123 | test_img_num = len(test_img_infos) 124 | 125 | if model is not None and test_img_num > 0: 126 | test_feats = extract_test_feats(test_img_infos, model, args.data_dir, fea_dim) 127 | ### save test feats 128 | save_dir = os.path.join(args.data_dir, 'test_feats/') 129 | make_dir(save_dir) 130 | np.save(os.path.join(save_dir, args.model + '.npy'), test_feats) 131 | 132 | if __name__ == '__main__': 133 | print ('let us start extract_test_feats now ...') 134 | run() 135 | print ('\nfinish ...') 136 | -------------------------------------------------------------------------------- /baseline/baseline_func.py: -------------------------------------------------------------------------------- 1 | import os 2 | import numpy as np 3 | from extract_feats import extract_model_fea 4 | from sklearn.linear_model import LogisticRegression 5 | from sklearn.multioutput import MultiOutputClassifier 6 | from sklearn import metrics 7 | from compute_metric import compute_auc, compute_ap 8 | 9 | 10 | def train_cls_model_multiclass(support_set, data_dir, model, fea_dim): 11 | sample_num = 0 12 | for cls_set in support_set: 13 | sample_num += len(cls_set) 14 | 15 | X_train = np.zeros((sample_num, fea_dim)) 16 | cls_num = len(support_set) 17 | 18 | print ('sample_num = ', sample_num, ', cls_num = ', cls_num) 19 | 20 | sample_idx = 0 21 | Y_train = [] 22 | for cls_idx in range(cls_num): 23 | imgs_per_cls = support_set[cls_idx] 24 | for item in imgs_per_cls: 25 | img_file = os.path.join(data_dir, 'images/', item) 26 | 27 | ###add png or jpg 20231005 28 | img_file = img_file + '.jpg' 29 | if not os.path.exists(img_file): 30 | img_file = img_file.replace('.jpg', '.png') 31 | 32 | img_fea = extract_model_fea(model, img_file) 33 | X_train[sample_idx, :] = img_fea 34 | sample_idx += 1 35 | Y_train.append(cls_idx) 36 | 37 | print (X_train.shape, len(Y_train)) 38 | 39 | clf = LogisticRegression(random_state=0).fit(X_train, Y_train) 40 | 41 | return clf 42 | 43 | def train_cls_model_multilabel(support_set, data_dir, model, fea_dim): 44 | sample_num = 0 45 | for cls_set in support_set: 46 | sample_num += len(cls_set) 47 | 48 | print ('sample_num = ', sample_num) 49 | 50 | X_train = np.zeros((sample_num, fea_dim)) 51 | cls_num = len(support_set) 52 | sample_idx = 0 53 | Y_train = [] 54 | for cls_idx in range(cls_num): 55 | imgs_per_cls = support_set[cls_idx] 56 | for item in imgs_per_cls: 57 | img_file = os.path.join(data_dir, 'images/', item[0]) 58 | 59 | ###add png or jpg 20231005 60 | img_file = img_file + '.jpg' 61 | if not os.path.exists(img_file): 62 | img_file = img_file.replace('.jpg', '.png') 63 | 64 | img_fea = extract_model_fea(model, img_file) 65 | X_train[sample_idx, :] = img_fea 66 | sample_idx += 1 67 | Y_train.append(item[1]) 68 | 69 | clf = MultiOutputClassifier(LogisticRegression()).fit(X_train, Y_train) 70 | 71 | return clf 72 | 73 | def do_test_multiclass(query_set, data_dir, model_name, clf): 74 | print('run do_test_multiclass ...') 75 | 76 | sample_num = len(query_set) 77 | print ('sample_num = ', sample_num) 78 | 79 | ### load test feats 80 | X_Test = np.load(os.path.join(data_dir, 'test_feats/', model_name + '.npy')) 81 | print (X_Test.shape) 82 | 83 | Y_test = [] 84 | sample_idx = 0 85 | for item in query_set: 86 | img_label = item['gt_label'] 87 | Y_test.append(img_label) 88 | 89 | prob_Test = clf.predict_proba(X_Test) 90 | print (prob_Test.shape, prob_Test[0]) 91 | 92 | pred_labels = [] 93 | for i in range(sample_num): 94 | sample_prob = prob_Test[i] 95 | label = np.argmax(sample_prob) 96 | pred_labels.append(label) 97 | 98 | cls_num = len(prob_Test[0]) 99 | gt_labels = np.zeros((sample_num, cls_num)) 100 | for k in range(len(query_set)): 101 | sample = query_set[k] 102 | label = sample['gt_label'] 103 | one_hot_label = np.array([int(i==label) for i in range(cls_num)]) 104 | gt_labels[k, :] = one_hot_label 105 | 106 | ### calculate accuracy and auc for multi-class task 107 | acc = metrics.accuracy_score(Y_test, pred_labels) 108 | 109 | cls_aucs = compute_auc(prob_Test, gt_labels) 110 | mean_auc = np.mean(cls_aucs) 111 | 112 | # print ('acc = ', acc, ', auc = ', mean_auc) 113 | 114 | return acc, cls_aucs, mean_auc 115 | 116 | def do_test_multilabel(query_set, data_dir, model_name, cls_num, clf): 117 | print('run do_test_multilabel ...') 118 | 119 | sample_num = len(query_set) 120 | print ('sample_num = ', sample_num) 121 | 122 | ### load test feats 123 | X_Test = np.load(os.path.join(data_dir, 'test_feats/', model_name + '.npy')) 124 | print (X_Test.shape) 125 | 126 | gt_labels = np.zeros((sample_num, cls_num)) 127 | sample_idx = 0 128 | for item in query_set: 129 | img_label = item['gt_label'] 130 | gt_labels[sample_idx, :] = img_label 131 | sample_idx += 1 132 | 133 | prob_Test = clf.predict_proba(X_Test) 134 | # print(len(prob_Test)) 135 | 136 | pred_scores = np.zeros((sample_num, cls_num)) 137 | for i in range(cls_num): 138 | scores_per_cls = prob_Test[i] 139 | pred_scores[:, i] = scores_per_cls[:, 1] 140 | 141 | ### calculate auc and mAP for multi-label task 142 | 143 | cls_aucs = compute_auc(pred_scores, gt_labels) 144 | mean_auc = np.mean(cls_aucs) 145 | 146 | cls_aps = compute_ap(pred_scores, gt_labels) 147 | mean_AP = np.mean(cls_aps) 148 | 149 | # print ('mean_auc = ', mean_auc, ', mean_AP = ', mean_AP) 150 | 151 | return cls_aucs, mean_auc, cls_aps, mean_AP 152 | 153 | 154 | def do_baseline(support_set, query_set, data_dir, model, model_name, fea_dim, cls_num, dataset_type): 155 | 156 | test_result = dict() 157 | 158 | if dataset_type in ['Retino', 'ColonPath', 'NeoJaundice']: 159 | clf = train_cls_model_multiclass(support_set, data_dir, model, fea_dim) 160 | acc, cls_aucs, mean_auc = do_test_multiclass(query_set, data_dir, model_name, clf) 161 | test_result['accuracy'] = acc 162 | test_result['mean_auc'] = mean_auc 163 | test_result['class_aucs'] = cls_aucs 164 | else: 165 | clf = train_cls_model_multilabel(support_set, data_dir, model, fea_dim) 166 | cls_aucs, mean_auc, cls_aps, mean_AP = do_test_multilabel(query_set, data_dir, model_name, cls_num, clf) 167 | test_result['mean_auc'] = mean_auc 168 | test_result['class_aucs'] = cls_aucs 169 | test_result['mean_AP'] = mean_AP 170 | test_result['class_aps'] = cls_aps 171 | 172 | return test_result 173 | -------------------------------------------------------------------------------- /data/NeoJaundice/fewshot-pool.txt: -------------------------------------------------------------------------------- 1 | 0012-1 0 2 | 0012-2 0 3 | 0012-3 0 4 | 0016-1 0 5 | 0016-2 0 6 | 0016-3 0 7 | 0022-1 1 8 | 0022-2 1 9 | 0022-3 1 10 | 0032-1 1 11 | 0032-2 1 12 | 0032-3 1 13 | 0033-1 0 14 | 0033-2 0 15 | 0033-3 0 16 | 0046-1 1 17 | 0046-2 1 18 | 0046-3 1 19 | 0058-1 1 20 | 0058-2 1 21 | 0058-3 1 22 | 0078-1 0 23 | 0078-2 0 24 | 0078-3 0 25 | 0079-1 0 26 | 0079-2 0 27 | 0079-3 0 28 | 0095-1 0 29 | 0095-2 0 30 | 0095-3 0 31 | 0087-1 1 32 | 0087-2 1 33 | 0087-3 1 34 | 0086-1 1 35 | 0086-2 1 36 | 0086-3 1 37 | 0109-1 0 38 | 0109-2 0 39 | 0109-3 0 40 | 0100-1 1 41 | 0100-2 1 42 | 0100-3 1 43 | 0140-1 0 44 | 0140-2 0 45 | 0140-3 0 46 | 0139-1 0 47 | 0139-2 0 48 | 0139-3 0 49 | 0150-1 0 50 | 0150-2 0 51 | 0150-3 0 52 | 0156-1 0 53 | 0156-2 0 54 | 0156-3 0 55 | 0214-1 0 56 | 0214-2 0 57 | 0214-3 0 58 | 0185-1 0 59 | 0185-2 0 60 | 0185-3 0 61 | 0273-1 0 62 | 0273-2 0 63 | 0273-3 0 64 | 0252-1 1 65 | 0252-2 1 66 | 0252-3 1 67 | 0261-1 1 68 | 0261-2 1 69 | 0261-3 1 70 | 0262-1 1 71 | 0262-2 1 72 | 0262-3 1 73 | 0263-1 0 74 | 0263-2 0 75 | 0263-3 0 76 | 0275-1 1 77 | 0275-2 1 78 | 0275-3 1 79 | 0279-1 1 80 | 0279-2 1 81 | 0279-3 1 82 | 0281-1 1 83 | 0281-2 1 84 | 0281-3 1 85 | 0286-1 0 86 | 0286-2 0 87 | 0286-3 0 88 | 0293-1 1 89 | 0293-2 1 90 | 0293-3 1 91 | 0312-1 0 92 | 0312-2 0 93 | 0312-3 0 94 | 0339-1 0 95 | 0339-2 0 96 | 0339-3 0 97 | 0342-1 0 98 | 0342-2 0 99 | 0342-3 0 100 | 0345-1 0 101 | 0345-2 0 102 | 0345-3 0 103 | 0358-1 0 104 | 0358-2 0 105 | 0358-3 0 106 | 0374-1 0 107 | 0374-2 0 108 | 0374-3 0 109 | 0383-1 0 110 | 0383-2 0 111 | 0383-3 0 112 | 0426-1 0 113 | 0426-2 0 114 | 0426-3 0 115 | 0409-1 0 116 | 0409-2 0 117 | 0409-3 0 118 | 0427-1 0 119 | 0427-2 0 120 | 0427-3 0 121 | 0446-1 0 122 | 0446-2 0 123 | 0446-3 0 124 | 0459-1 0 125 | 0459-2 0 126 | 0459-3 0 127 | 0472-1 0 128 | 0472-2 0 129 | 0472-3 0 130 | 0471-1 0 131 | 0471-2 0 132 | 0471-3 0 133 | 0477-1 1 134 | 0477-2 1 135 | 0477-3 1 136 | 0504-1 0 137 | 0504-2 0 138 | 0504-3 0 139 | 0517-1 1 140 | 0517-2 1 141 | 0517-3 1 142 | 0529-1 0 143 | 0529-2 0 144 | 0529-3 0 145 | 0542-1 0 146 | 0542-2 0 147 | 0542-3 0 148 | 0548-1 1 149 | 0548-2 1 150 | 0548-3 1 151 | 0586-1 0 152 | 0586-2 0 153 | 0586-3 0 154 | 0551-1 0 155 | 0551-2 0 156 | 0551-3 0 157 | 0553-1 0 158 | 0553-2 0 159 | 0553-3 0 160 | 0566-1 0 161 | 0566-2 0 162 | 0566-3 0 163 | 0559-1 1 164 | 0559-2 1 165 | 0559-3 1 166 | 0604-1 0 167 | 0604-2 0 168 | 0604-3 0 169 | 0570-1 1 170 | 0570-2 1 171 | 0570-3 1 172 | 0575-1 0 173 | 0575-2 0 174 | 0575-3 0 175 | 0582-1 1 176 | 0582-2 1 177 | 0582-3 1 178 | 0584-1 1 179 | 0584-2 1 180 | 0584-3 1 181 | 0641-1 0 182 | 0641-2 0 183 | 0641-3 0 184 | 0673-1 1 185 | 0673-2 1 186 | 0673-3 1 187 | 0713-1 0 188 | 0713-2 0 189 | 0713-3 0 190 | 0736-1 0 191 | 0736-2 0 192 | 0736-3 0 193 | 0704-1 0 194 | 0704-2 0 195 | 0704-3 0 196 | 0733-1 0 197 | 0733-2 0 198 | 0733-3 0 199 | 0718-1 1 200 | 0718-2 1 201 | 0718-3 1 202 | 0763-1 1 203 | 0763-2 1 204 | 0763-3 1 205 | 0825-1 0 206 | 0825-2 0 207 | 0825-3 0 208 | 0770-1 1 209 | 0770-2 1 210 | 0770-3 1 211 | 0794-1 0 212 | 0794-2 0 213 | 0794-3 0 214 | 0801-1 1 215 | 0801-2 1 216 | 0801-3 1 217 | 0802-1 1 218 | 0802-2 1 219 | 0802-3 1 220 | 0833-1 1 221 | 0833-2 1 222 | 0833-3 1 223 | 0837-1 1 224 | 0837-2 1 225 | 0837-3 1 226 | 0842-1 1 227 | 0842-2 1 228 | 0842-3 1 229 | 0848-1 1 230 | 0848-2 1 231 | 0848-3 1 232 | 0856-1 1 233 | 0856-2 1 234 | 0856-3 1 235 | 0876-1 1 236 | 0876-2 1 237 | 0876-3 1 238 | 0901-1 1 239 | 0901-2 1 240 | 0901-3 1 241 | 0933-1 0 242 | 0933-2 0 243 | 0933-3 0 244 | 0936-1 1 245 | 0936-2 1 246 | 0936-3 1 247 | 0951-1 0 248 | 0951-2 0 249 | 0951-3 0 250 | 0948-1 1 251 | 0948-2 1 252 | 0948-3 1 253 | 0954-1 1 254 | 0954-2 1 255 | 0954-3 1 256 | 0960-1 0 257 | 0960-2 0 258 | 0960-3 0 259 | 0968-1 1 260 | 0968-2 1 261 | 0968-3 1 262 | 0979-1 0 263 | 0979-2 0 264 | 0979-3 0 265 | 0996-1 0 266 | 0996-2 0 267 | 0996-3 0 268 | 1003-1 0 269 | 1003-2 0 270 | 1003-3 0 271 | 1009-1 0 272 | 1009-2 0 273 | 1009-3 0 274 | 1012-1 0 275 | 1012-2 0 276 | 1012-3 0 277 | 1025-1 1 278 | 1025-2 1 279 | 1025-3 1 280 | 1034-1 0 281 | 1034-2 0 282 | 1034-3 0 283 | 1043-1 0 284 | 1043-2 0 285 | 1043-3 0 286 | 1039-1 1 287 | 1039-2 1 288 | 1039-3 1 289 | 1044-1 1 290 | 1044-2 1 291 | 1044-3 1 292 | 1046-1 0 293 | 1046-2 0 294 | 1046-3 0 295 | 1053-1 1 296 | 1053-2 1 297 | 1053-3 1 298 | 1055-1 0 299 | 1055-2 0 300 | 1055-3 0 301 | 1059-1 0 302 | 1059-2 0 303 | 1059-3 0 304 | 1088-1 0 305 | 1088-2 0 306 | 1088-3 0 307 | 1068-1 0 308 | 1068-2 0 309 | 1068-3 0 310 | 1070-1 1 311 | 1070-2 1 312 | 1070-3 1 313 | 1074-1 1 314 | 1074-2 1 315 | 1074-3 1 316 | 1102-1 0 317 | 1102-2 0 318 | 1102-3 0 319 | 1112-1 0 320 | 1112-2 0 321 | 1112-3 0 322 | 1117-1 0 323 | 1117-2 0 324 | 1117-3 0 325 | 1116-1 0 326 | 1116-2 0 327 | 1116-3 0 328 | 1125-1 0 329 | 1125-2 0 330 | 1125-3 0 331 | 1159-1 0 332 | 1159-2 0 333 | 1159-3 0 334 | 1166-1 1 335 | 1166-2 1 336 | 1166-3 1 337 | 1169-1 0 338 | 1169-2 0 339 | 1169-3 0 340 | 1174-1 1 341 | 1174-2 1 342 | 1174-3 1 343 | 1181-1 0 344 | 1181-2 0 345 | 1181-3 0 346 | 1179-1 1 347 | 1179-2 1 348 | 1179-3 1 349 | 1182-1 1 350 | 1182-2 1 351 | 1182-3 1 352 | 1188-1 0 353 | 1188-2 0 354 | 1188-3 0 355 | 1194-1 0 356 | 1194-2 0 357 | 1194-3 0 358 | 1202-1 0 359 | 1202-2 0 360 | 1202-3 0 361 | 1212-1 0 362 | 1212-2 0 363 | 1212-3 0 364 | 1214-1 1 365 | 1214-2 1 366 | 1214-3 1 367 | 1255-1 0 368 | 1255-2 0 369 | 1255-3 0 370 | 1243-1 0 371 | 1243-2 0 372 | 1243-3 0 373 | 1257-1 0 374 | 1257-2 0 375 | 1257-3 0 376 | 1228-1 1 377 | 1228-2 1 378 | 1228-3 1 379 | 1234-1 0 380 | 1234-2 0 381 | 1234-3 0 382 | 1237-1 0 383 | 1237-2 0 384 | 1237-3 0 385 | 1247-1 0 386 | 1247-2 0 387 | 1247-3 0 388 | 1254-1 1 389 | 1254-2 1 390 | 1254-3 1 391 | 1260-1 0 392 | 1260-2 0 393 | 1260-3 0 394 | 1266-1 0 395 | 1266-2 0 396 | 1266-3 0 397 | 1270-1 0 398 | 1270-2 0 399 | 1270-3 0 400 | 1274-1 0 401 | 1274-2 0 402 | 1274-3 0 403 | 1281-1 1 404 | 1281-2 1 405 | 1281-3 1 406 | 1283-1 1 407 | 1283-2 1 408 | 1283-3 1 409 | 1288-1 0 410 | 1288-2 0 411 | 1288-3 0 412 | 1284-1 1 413 | 1284-2 1 414 | 1284-3 1 415 | 1290-1 1 416 | 1290-2 1 417 | 1290-3 1 418 | 1297-1 0 419 | 1297-2 0 420 | 1297-3 0 421 | 1296-1 0 422 | 1296-2 0 423 | 1296-3 0 424 | 1301-1 0 425 | 1301-2 0 426 | 1301-3 0 427 | 1313-1 0 428 | 1313-2 0 429 | 1313-3 0 430 | 1320-1 1 431 | 1320-2 1 432 | 1320-3 1 433 | 1329-1 1 434 | 1329-2 1 435 | 1329-3 1 436 | 1330-1 0 437 | 1330-2 0 438 | 1330-3 0 439 | 1348-1 1 440 | 1348-2 1 441 | 1348-3 1 442 | 1350-1 1 443 | 1350-2 1 444 | 1350-3 1 445 | -------------------------------------------------------------------------------- /baseline/metabaseline_func.py: -------------------------------------------------------------------------------- 1 | import os 2 | import numpy as np 3 | from extract_feats import extract_model_fea 4 | from sklearn import metrics 5 | from compute_metric import compute_auc, compute_ap 6 | import torch 7 | import math 8 | 9 | def compute_cls_centers(support_set, data_dir, model, fea_dim, is_multiclass=True): 10 | 11 | print ('run compute_cls_centers ...') 12 | 13 | cls_num = len(support_set) 14 | cls_centers = [] 15 | for cls_idx in range(cls_num): 16 | imgs_per_cls = support_set[cls_idx] 17 | cls_center = torch.zeros(fea_dim) 18 | for item in imgs_per_cls: 19 | image_name = None 20 | if is_multiclass: 21 | image_name = item 22 | else: 23 | image_name = item[0] 24 | img_file = os.path.join(data_dir, 'images/', image_name) 25 | 26 | ###add png or jpg 20231005 27 | img_file = img_file + '.jpg' 28 | if not os.path.exists(img_file): 29 | img_file = img_file.replace('.jpg', '.png') 30 | 31 | img_fea = extract_model_fea(model, img_file) 32 | cls_center = cls_center + img_fea 33 | cls_center = cls_center / len(imgs_per_cls) 34 | cls_center = cls_center / cls_center.norm() 35 | 36 | cls_centers.append(cls_center) 37 | 38 | # print (cls_centers) 39 | 40 | return cls_centers 41 | 42 | def do_meta_test_multiclass(query_set, cls_centers, data_dir, model_name): 43 | 44 | print ('run do_meta_test_multiclass ...') 45 | 46 | ### load test feats 47 | X_Test = np.load(os.path.join(data_dir, 'test_feats/', model_name + '.npy')) 48 | print (X_Test.shape) 49 | 50 | sample_num = len(query_set) 51 | cls_num = len(cls_centers) 52 | 53 | correct_num = 0 54 | cosine_scores_query_set = [] 55 | count = 0 56 | for item in query_set: 57 | img_label = item['gt_label'] 58 | img_fea = X_Test[count, :] 59 | img_fea = img_fea.astype(np.float32) 60 | 61 | max_cosine = 0 62 | pred_cls = -1 63 | cosine_scores_per_img = [] 64 | for cls_idx in range(cls_num): 65 | cls_center = cls_centers[cls_idx] 66 | # print (type(cls_center), cls_center.shape) 67 | img_fea_tensor = torch.from_numpy(img_fea) 68 | # print (type(img_fea_tensor), img_fea_tensor.shape) 69 | norm_inner = torch.inner(img_fea_tensor, cls_center) 70 | cosine_simlarity = norm_inner.item() 71 | # print (cls_idx, cosine_simlarity) 72 | cosine_scores_per_img.append(cosine_simlarity) 73 | if max_cosine < cosine_simlarity: 74 | max_cosine = cosine_simlarity 75 | pred_cls = cls_idx 76 | 77 | if img_label == pred_cls: 78 | correct_num += 1 79 | 80 | cosine_scores_query_set.append(cosine_scores_per_img) 81 | count += 1 82 | 83 | 84 | acc = correct_num / len(query_set) 85 | 86 | # print ('correct_num = ', correct_num, 'pred_accuracy = ', pred_accuracy) 87 | # print (len(cosine_scores_query_set), cosine_scores_query_set[0]) 88 | 89 | ### cpmpute AUC 90 | gt_labels = np.zeros((sample_num, cls_num)) 91 | for k in range(sample_num): 92 | sample = query_set[k] 93 | label = sample['gt_label'] 94 | one_hot_label = np.array([int(i==label) for i in range(cls_num)]) 95 | gt_labels[k, :] = one_hot_label 96 | 97 | cls_scores = np.zeros((sample_num, cls_num)) 98 | for k in range(sample_num): 99 | cos_score = cosine_scores_query_set[k] 100 | norm_scores = [math.exp(v) for v in cos_score] 101 | norm_scores /= np.sum(norm_scores) 102 | 103 | cls_scores[k, :] = np.array(norm_scores) 104 | 105 | cls_aucs = compute_auc(cls_scores, gt_labels) 106 | # print (np.mean(cls_aucs), cls_aucs) 107 | mean_auc = np.mean(cls_aucs) 108 | 109 | return acc, cls_aucs, mean_auc 110 | 111 | def do_meta_test_multilabel(query_set, cls_centers, data_dir, model_name): 112 | 113 | print ('run do_meta_test_multilabel ...') 114 | 115 | ### load test feats 116 | X_Test = np.load(os.path.join(data_dir, 'test_feats/', model_name + '.npy')) 117 | print (X_Test.shape) 118 | 119 | sample_num = len(query_set) 120 | cls_num = len(cls_centers) 121 | 122 | correct_num = 0 123 | cosine_scores_query_set = [] 124 | count = 0 125 | for item in query_set: 126 | img_label = item['gt_label'] 127 | img_fea = X_Test[count, :] 128 | img_fea = img_fea.astype(np.float32) 129 | 130 | max_cosine = 0 131 | cosine_scores_per_img = [] 132 | for cls_idx in range(cls_num): 133 | cls_center = cls_centers[cls_idx] 134 | # print (type(cls_center), cls_center.shape) 135 | img_fea_tensor = torch.from_numpy(img_fea) 136 | # print (type(img_fea_tensor), img_fea_tensor.shape) 137 | norm_inner = torch.inner(img_fea_tensor, cls_center) 138 | cosine_simlarity = norm_inner.item() 139 | # print (cls_idx, cosine_simlarity) 140 | cosine_scores_per_img.append(cosine_simlarity) 141 | 142 | cosine_scores_query_set.append(cosine_scores_per_img) 143 | count += 1 144 | 145 | ### cpmpute AUC 146 | gt_labels = np.zeros((sample_num, cls_num)) 147 | for k in range(sample_num): 148 | sample = query_set[k] 149 | label = sample['gt_label'] 150 | # one_hot_label = np.array([int(i==label) for i in range(cls_num)]) 151 | gt_labels[k, :] = label 152 | 153 | cls_scores = np.zeros((sample_num, cls_num)) 154 | for k in range(sample_num): 155 | cos_score = cosine_scores_query_set[k] 156 | norm_scores = [math.exp(v) for v in cos_score] 157 | norm_scores /= np.sum(norm_scores) 158 | 159 | cls_scores[k, :] = np.array(norm_scores) 160 | 161 | cls_aucs = compute_auc(cls_scores, gt_labels) 162 | mean_auc = np.mean(cls_aucs) 163 | 164 | cls_aps = compute_ap(cls_scores, gt_labels) 165 | mean_AP = np.mean(cls_aps) 166 | 167 | return cls_aucs, mean_auc, cls_aps, mean_AP 168 | 169 | def do_metabaseline(support_set, query_set, data_dir, model, model_name, fea_dim, cls_num, dataset_type): 170 | 171 | test_result = dict() 172 | 173 | if dataset_type in ['Retino', 'ColonPath', 'NeoJaundice']: 174 | cls_centers = compute_cls_centers(support_set, data_dir, model, fea_dim, is_multiclass=True) 175 | acc, cls_aucs, mean_auc = do_meta_test_multiclass(query_set, cls_centers, data_dir, model_name) 176 | # acc, cls_aucs, mean_auc = do_test_multiclass(query_set, data_dir, model_name, clf) 177 | test_result['accuracy'] = acc 178 | test_result['mean_auc'] = mean_auc 179 | test_result['class_aucs'] = cls_aucs 180 | else: 181 | cls_centers = compute_cls_centers(support_set, data_dir, model, fea_dim, is_multiclass=False) 182 | cls_aucs, mean_auc, cls_aps, mean_AP = do_meta_test_multilabel(query_set, cls_centers, data_dir, model_name) 183 | test_result['mean_auc'] = mean_auc 184 | test_result['class_aucs'] = cls_aucs 185 | test_result['mean_AP'] = mean_AP 186 | test_result['class_aps'] = cls_aps 187 | 188 | return test_result 189 | -------------------------------------------------------------------------------- /data/Retino/fewshot-pool.txt: -------------------------------------------------------------------------------- 1 | 20230116125802923001 0 2 | 20230116122311639001 0 3 | 20230116164523067 0 4 | 20230112163537785003 0 5 | 20230112160520324002 0 6 | 20230116130156061001 0 7 | 20230112114307631002 0 8 | 20230116132515667001 0 9 | 20230112160532539001 0 10 | 20230112142258110001 0 11 | 20230116164340153001 0 12 | 20230116125810429002 0 13 | 20230116125308967003 0 14 | 20230116124618993001 0 15 | 20230116122110692002 0 16 | 20230112160158875001 0 17 | 20230112114322988001 0 18 | 20230113155140940002 0 19 | 20230116164303019001 0 20 | 20230112114424185001 0 21 | 20230116162844198002 0 22 | 20230112112627148002 0 23 | 20230112171829207001 1 24 | 20230116165508632001 1 25 | 20230113173541532001 1 26 | 20230112114803533001 1 27 | 20230116122331545001 1 28 | 20230113162700119002 1 29 | 20230116122311639002 1 30 | 20230116165549648001 1 31 | 20230116165355889002 1 32 | 20230112161344991001 1 33 | 20230112154646116002 2 34 | 20230113160501645001 2 35 | 20230113172122815001 2 36 | 20230113163113960001 2 37 | 20230116170712667001 2 38 | 20230116170649281002 2 39 | 20230113171502404002 2 40 | 20230112171851210 2 41 | 20230113173257383002 2 42 | 20230116131721543001 2 43 | 20230113162644644 2 44 | 20230116162405167002 2 45 | 20230112112421483002 2 46 | 20230112154914264002 2 47 | 20230112163759417002 2 48 | 20230116121923460003 2 49 | 20230112104757940001 2 50 | 20230112163223143002 2 51 | 20230112094259603 2 52 | 20230116121923460002 2 53 | 20230113171348515001 2 54 | 20230112142413770001 2 55 | 20230116133114213 2 56 | 20230116165109008001 2 57 | 20230112104747504002 2 58 | 20230116165440224002 2 59 | 20230112110255978 2 60 | 20230113173640306001 2 61 | 20230113173558010002 2 62 | 20230113171337471003 2 63 | 20230116162356622001 2 64 | 20230113163421310001 2 65 | 20230113173447352001 2 66 | 20230116124823431 2 67 | 20230116162115744 2 68 | 20230116163558502001 2 69 | 20230113173604894001 2 70 | 20230116170945014002 2 71 | 20230116163542255001 2 72 | 20230113173358363 2 73 | 20230112095158344002 2 74 | 20230112163949027001 2 75 | 20230116170705471002 2 76 | 20230116131058531 2 77 | 20230116121930137 2 78 | 20230112155007363001 2 79 | 20230113171224222001 2 80 | 20230113172146565002 2 81 | 20230116165627617001 2 82 | 20230116131737883002 2 83 | 20230116121101390001 2 84 | 20230116123952434001 2 85 | 20230112095820036 2 86 | 20230112093900696 2 87 | 20230113173507008001 2 88 | 20230113171255471001 2 89 | 20230113165824058001 2 90 | 20230116123845831001 2 91 | 20230116164221826 2 92 | 20230112110744631002 2 93 | 20230113171216188002 2 94 | 20230116170408192002 2 95 | 20230116165347487001 2 96 | 20230116170355024002 2 97 | 20230113172605420002 2 98 | 20230112163713413001 2 99 | 20230116122143091002 2 100 | 20230112103241568002 2 101 | 20230116131746479 2 102 | 20230116162335886002 2 103 | 20230116125139005002 2 104 | 20230112085804506 2 105 | 20230116124419284001 2 106 | 20230116165018767001 2 107 | 20230113173454372 2 108 | 20230113153642613001 2 109 | 20230116123330875001 2 110 | 20230113163145156 2 111 | 20230116124833587 2 112 | 20230116165420295001 2 113 | 20230116122930982002 2 114 | 20230116131711700 2 115 | 20230112103334156001 2 116 | 20230113170644248002 2 117 | 20230116124459239002 2 118 | 20230116125154402002 2 119 | 20230116130328358 2 120 | 20230113162610418001 2 121 | 20230116170330106002 2 122 | 20230113163446969002 2 123 | 20230112104832534001 2 124 | 20230113173439469001 2 125 | 20230112110812618001 2 126 | 20230113174146338001 2 127 | 20230113163454082001 2 128 | 20230112163929839 2 129 | 20230116163041351001 3 130 | 20230113163410078002 3 131 | 20230116170355024001 3 132 | 20230112151759150 3 133 | 20230116165043567001 3 134 | 20230113163020952002 3 135 | 20230113163003634001 3 136 | 20230113161525215002 3 137 | 20230112102208820001 3 138 | 20230116164742512001 3 139 | 20230113172626262002 3 140 | 20230116130028086001 3 141 | 20230116170545144002 3 142 | 20230112141910085001 3 143 | 20230113171355754 3 144 | 20230113165006941 3 145 | 20230113171626784002 3 146 | 20230113173217463001 3 147 | 20230112160918860002 3 148 | 20230113163028502001 3 149 | 20230113163526633001 3 150 | 20230113163309084001 3 151 | 20230116133424525001 3 152 | 20230112102930171002 3 153 | 20230116163257726001 3 154 | 20230116170122712001 3 155 | 20230116132243795001 3 156 | 20230116163250246003 3 157 | 20230116123206142002 3 158 | 20230116161954815002 3 159 | 20230112141245312001 3 160 | 20230116122351591001 3 161 | 20230116170408192001 3 162 | 20230112164049087001 3 163 | 20230113170507132001 3 164 | 20230113174001179001 3 165 | 20230113162914541001 3 166 | 20230116161047776001 3 167 | 20230113161533749001 3 168 | 20230116165217928002 3 169 | 20230113172904765002 3 170 | 20230116170649281001 3 171 | 20230112102807470001 3 172 | 20230113152429232002 3 173 | 20230112164406594001 3 174 | 20230116163250246002 3 175 | 20230116125457717001 3 176 | 20230116170330106001 3 177 | 20230113170609862001 3 178 | 20230116164617731001 3 179 | 20230112095843748001 3 180 | 20230113173937061002 3 181 | 20230116161555912001 3 182 | 20230113163216652 3 183 | 20230113163212284 3 184 | 20230116123837516 3 185 | 20230112102758701 3 186 | 20230116132210700002 3 187 | 20230116125449028 3 188 | 20230113170626573002 3 189 | 20230113165056440 3 190 | 20230113163534745001 3 191 | 20230113170725963002 3 192 | 20230112093913330 3 193 | 20230116125506226001 3 194 | 20230113173217463002 3 195 | 20230116170625239001 3 196 | 20230116122045376 3 197 | 20230113170734607002 3 198 | 20230113172553365001 3 199 | 20230116125026406 3 200 | 20230116122752844001 3 201 | 20230112102807470002 3 202 | 20230113153612424001 3 203 | 20230113171337471001 3 204 | 20230112151751350 3 205 | 20230112083756966 3 206 | 20230116122351591002 3 207 | 20230112111826520002 3 208 | 20230113153747485001 3 209 | 20230113152330981001 3 210 | 20230116122744010001 3 211 | 20230112141926403001 3 212 | 20230113172729660001 3 213 | 20230116133517300002 3 214 | 20230113172808386001 3 215 | 20230116161123271001 3 216 | 20230112111940890001 3 217 | 20230112140951162 3 218 | 20230116123800326002 3 219 | 20230112164343256 3 220 | 20230116132051648001 3 221 | 20230112102819982002 3 222 | 20230116163832933001 3 223 | 20230113154034514001 3 224 | 20230116123304043001 3 225 | 20230112102912048002 3 226 | 20230116123206142001 3 227 | 20230112104757940002 3 228 | 20230112095129391001 3 229 | 20230113172651456001 3 230 | 20230113154538037001 4 231 | 20230116164405514 4 232 | 20230113155537911001 4 233 | 20230113155243193002 4 234 | 20230113152421463 4 235 | 20230112172358104 4 236 | 20230113172408907001 4 237 | 20230116132141526002 4 238 | 20230112103915260 4 239 | 20230116162749422001 4 240 | 20230113154528852001 4 241 | 20230112110028788002 4 242 | 20230112160935200001 4 243 | 20230112101539176001 4 244 | 20230112154745926002 4 245 | 20230113163945146003 4 246 | 20230113155243193001 4 247 | 20230116160204737002 4 248 | 20230116122428025001 4 249 | 20230113172215119001 4 250 | 20230112141255562001 4 251 | 20230116123039894 4 252 | 20230116125553603002 4 253 | 20230116132202367001 4 254 | 20230113174052206002 4 255 | 20230112110111298 4 256 | 20230112110028788001 4 257 | 20230116132202367002 4 258 | 20230113155210329 4 259 | 20230112161636656001 4 260 | 20230116133414097002 4 261 | 20230112102219400001 4 262 | 20230112114220588 4 263 | 20230113162405729001 4 264 | 20230112114812862002 4 265 | 20230113160443331 4 266 | 20230113155441537002 4 267 | 20230116133226924001 4 268 | 20230112140806752001 4 269 | 20230116130206676 4 270 | 20230113163741142001 4 271 | 20230113154938337 4 272 | 20230112104805959001 4 273 | 20230112142802574001 4 274 | 20230112105921910002 4 275 | 20230112110958603002 4 276 | 20230116170228871001 4 277 | 20230116121706657001 4 278 | 20230112141910085002 4 279 | 20230116161640695 4 280 | 20230112172330448001 4 281 | 20230116164349058 4 282 | 20230116125601044002 4 283 | -------------------------------------------------------------------------------- /baseline/gen_support_set.py: -------------------------------------------------------------------------------- 1 | import os 2 | import random 3 | from extract_feats import make_dir 4 | import numpy as np 5 | 6 | ### Retino 7 | def gen_support_set_retino(img_list, N_way, K_shot): 8 | 9 | support_set = [] 10 | for cls_idx in range(N_way): 11 | imgs_per_cls = [] 12 | for item in img_list: 13 | label = item['gt_label'] 14 | if label == cls_idx: 15 | imgs_per_cls.append(item['filename']) 16 | 17 | # print (cls_idx, len(imgs_per_cls), imgs_per_cls[0]) 18 | 19 | sample_set = None 20 | if len(imgs_per_cls) <= K_shot: 21 | sample_set = imgs_per_cls 22 | else: 23 | random.shuffle(imgs_per_cls) 24 | sample_set = imgs_per_cls[:K_shot] 25 | 26 | support_set.append(sample_set) 27 | 28 | return support_set 29 | 30 | ### NeoJaundice / ColonPath 31 | def gen_support_set_twoclass(img_list, K_shot, dataset_type): 32 | 33 | ### sort study_id 34 | pos_study_ids = [] 35 | neg_study_ids = [] 36 | for item in img_list: 37 | img_name = item['filename'] 38 | study_id = None 39 | if dataset_type == 'NeoJaundice': 40 | study_id = img_name[:4] 41 | elif dataset_type == 'ColonPath': 42 | study_id = img_name[:-9] 43 | label = item['gt_label'] 44 | 45 | # print (img_name, study_id, label) 46 | 47 | if label == 1 and study_id not in pos_study_ids: 48 | pos_study_ids.append(study_id) 49 | if label == 0 and study_id not in neg_study_ids: 50 | neg_study_ids.append(study_id) 51 | 52 | # print (len(pos_study_ids), len(neg_study_ids)) 53 | 54 | random.shuffle(pos_study_ids) 55 | random.shuffle(neg_study_ids) 56 | 57 | pick_pos_study_ids = pos_study_ids[:K_shot] 58 | pick_neg_study_ids = neg_study_ids[:K_shot] 59 | 60 | support_pos_set = [] 61 | support_neg_set = [] 62 | for item in img_list: 63 | img_name = item['filename'] 64 | study_id = None 65 | if dataset_type == 'NeoJaundice': 66 | study_id = img_name[:4] 67 | elif dataset_type == 'ColonPath': 68 | study_id = img_name[:-9] 69 | 70 | label = item['gt_label'] 71 | 72 | if study_id in pick_pos_study_ids and label == 1: 73 | support_pos_set.append(img_name) 74 | if study_id in pick_neg_study_ids and label == 0: 75 | support_neg_set.append(img_name) 76 | 77 | print (len(support_pos_set), support_pos_set[0]) 78 | print (len(support_neg_set), support_neg_set[0]) 79 | 80 | support_set = [] 81 | support_set.append(support_neg_set) 82 | support_set.append(support_pos_set) 83 | 84 | return support_set 85 | 86 | ### Endo 87 | def gen_support_set_endo(img_list, N_way, K_shot): 88 | 89 | support_set = [] 90 | for cls_idx in range(N_way): 91 | study_ids_per_cls = [] 92 | for item in img_list: 93 | img_name = item['filename'] 94 | label = item['gt_label'] 95 | study_id = img_name[:18] 96 | if label[cls_idx] == 1 and study_id not in study_ids_per_cls: 97 | study_ids_per_cls.append(study_id) 98 | 99 | # print (cls_idx, len(study_ids_per_cls)) 100 | 101 | random.shuffle(study_ids_per_cls) 102 | support_study_ids_per_cls = study_ids_per_cls[:K_shot] 103 | 104 | img_list_per_cls = [] 105 | for item in img_list: 106 | img_name = item['filename'] 107 | label = item['gt_label'] 108 | study_id = img_name[:18] 109 | if label[cls_idx] == 1 and study_id in support_study_ids_per_cls: 110 | img_list_per_cls.append([img_name, label]) ### modify for baseline 20230303 111 | 112 | print (cls_idx, len(img_list_per_cls)) 113 | support_set.append(img_list_per_cls) 114 | 115 | return support_set 116 | 117 | ### ChestDR 118 | def gen_support_set_chest(img_list, N_way, K_shot): 119 | 120 | support_set = [] 121 | for cls_idx in range(N_way): 122 | imgs_per_cls = [] 123 | for item in img_list: 124 | label = item['gt_label'] 125 | if label[cls_idx] == 1: 126 | imgs_per_cls.append([item['filename'], label]) 127 | 128 | # print (cls_idx, len(imgs_per_cls), imgs_per_cls[0]) 129 | 130 | sample_set = None 131 | if len(imgs_per_cls) <= K_shot: 132 | sample_set = imgs_per_cls 133 | else: 134 | random.shuffle(imgs_per_cls) 135 | sample_set = imgs_per_cls[:K_shot] 136 | 137 | support_set.append(sample_set) 138 | 139 | return support_set 140 | 141 | def gen_support_set_interface(img_list, N_way, K_shot, dataset_type): 142 | 143 | support_set = [] 144 | 145 | if dataset_type == 'Retino': 146 | support_set = gen_support_set_retino(img_list, N_way, K_shot) 147 | elif dataset_type == 'NeoJaundice' or dataset_type == 'ColonPath': 148 | support_set = gen_support_set_twoclass(img_list, K_shot, dataset_type) 149 | elif dataset_type == 'Endo': 150 | support_set = gen_support_set_endo(img_list, N_way, K_shot) 151 | elif dataset_type == 'ChestDR': 152 | support_set = gen_support_set_chest(img_list, N_way, K_shot) 153 | 154 | return support_set 155 | 156 | def save_support_list(support_set, dataset_type, save_file): 157 | fp = open(save_file, 'w') 158 | cls_num = len(support_set) 159 | for cls_idx in range(cls_num): 160 | imgs_per_cls = support_set[cls_idx] 161 | for item in imgs_per_cls: 162 | image_name = None 163 | if dataset_type in ['Retino', 'ColonPath', 'NeoJaundice']: 164 | image_name = item 165 | else: 166 | image_name = item[0] 167 | 168 | fp.write('image name: {}, class id: {}\n'.format(image_name, cls_idx)) 169 | 170 | fp.close() 171 | 172 | def save_fewshot_data(job_dir, dataset_type, support_sets, test_results): 173 | print ('\nstart save_fewshot_data ...') 174 | 175 | ### 1. save support list 176 | save_list_dir = os.path.join(job_dir, 'support_list/') 177 | make_dir(save_list_dir) 178 | count = 0 179 | for one_set in support_sets: 180 | # print (item) 181 | save_list_file = os.path.join(save_list_dir, 'suppot_list_iter_{}.txt'.format(count)) 182 | save_support_list(one_set, dataset_type, save_list_file) 183 | count += 1 184 | 185 | ### 2. save test result 186 | save_result_file = os.path.join(job_dir, 'test_result.txt') 187 | fp = open(save_result_file, 'w') 188 | 189 | all_acc_set = [] 190 | all_auc_set = [] 191 | all_map_set = [] 192 | 193 | for one_test in test_results: 194 | all_auc_set.append(one_test['mean_auc']) 195 | if dataset_type in ['Retino', 'ColonPath', 'NeoJaundice']: 196 | all_acc_set.append(one_test['accuracy']) 197 | else: 198 | all_map_set.append(one_test['mean_AP']) 199 | 200 | if len(all_acc_set) > 0: 201 | print ('overall accuracy: mean = {:.3f}, std = {:.3f}'.format(np.mean(all_acc_set), np.std(all_acc_set))) 202 | fp.write ('overall accuracy: mean = {:.3f}, std = {:.3f}\n'.format(np.mean(all_acc_set), np.std(all_acc_set))) 203 | if len(all_auc_set) > 0: 204 | print ('overall AUC: mean = {:.3f}, std = {:.3f}'.format(np.mean(all_auc_set), np.std(all_auc_set))) 205 | fp.write ('overall AUC: mean = {:.3f}, std = {:.3f}\n'.format(np.mean(all_auc_set), np.std(all_auc_set))) 206 | if len(all_map_set) > 0: 207 | print ('overall mAP: mean = {:.3f}, std = {:.3f}'.format(np.mean(all_map_set), np.std(all_map_set))) 208 | fp.write ('overall mAP: mean = {:.3f}, std = {:.3f}\n'.format(np.mean(all_map_set), np.std(all_map_set))) 209 | 210 | ### save result of each class 211 | if dataset_type in ['Retino', 'Endo', 'ChestDR']: 212 | cls_auc_set = [] 213 | cls_map_set = [] 214 | 215 | for one_test in test_results: 216 | cls_auc_set.append(one_test['class_aucs']) 217 | if dataset_type != 'Retino': 218 | cls_map_set.append(one_test['class_aps']) 219 | 220 | cls_auc_arr = np.array(cls_auc_set) 221 | # print (cls_auc_arr.shape, cls_auc_arr) 222 | for i in range(cls_auc_arr.shape[1]): 223 | aucs_per_cls = cls_auc_arr[:, i] 224 | # print (aucs_per_cls) 225 | print ('class {} auc: mean = {:.3f}, std = {:.3f}'.format(i, np.mean(aucs_per_cls), np.std(aucs_per_cls))) 226 | fp.write ('class {} auc: mean = {:.3f}, std = {:.3f}\n'.format(i, np.mean(aucs_per_cls), np.std(aucs_per_cls))) 227 | 228 | 229 | if len(cls_map_set) > 0: 230 | cls_map_arr = np.array(cls_map_set) 231 | for i in range(cls_map_arr.shape[1]): 232 | maps_per_cls = cls_map_arr[:, i] 233 | # print (aucs_per_cls) 234 | print ('class {} mAP: mean = {:.3f}, std = {:.3f}'.format(i, np.mean(maps_per_cls), np.std(maps_per_cls))) 235 | fp.write ('class {} mAP: mean = {:.3f}, std = {:.3f}\n'.format(i, np.mean(maps_per_cls), np.std(maps_per_cls))) 236 | 237 | 238 | 239 | 240 | fp.close() 241 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /data/NeoJaundice/test.txt: -------------------------------------------------------------------------------- 1 | 0003-1 0 2 | 0003-2 0 3 | 0003-3 0 4 | 0035-1 0 5 | 0035-2 0 6 | 0035-3 0 7 | 0002-1 0 8 | 0002-2 0 9 | 0002-3 0 10 | 0001-1 0 11 | 0001-2 0 12 | 0001-3 0 13 | 0005-1 1 14 | 0005-2 1 15 | 0005-3 1 16 | 0006-1 1 17 | 0006-2 1 18 | 0006-3 1 19 | 0008-1 1 20 | 0008-2 1 21 | 0008-3 1 22 | 0009-1 1 23 | 0009-2 1 24 | 0009-3 1 25 | 0010-1 1 26 | 0010-2 1 27 | 0010-3 1 28 | 0011-1 0 29 | 0011-2 0 30 | 0011-3 0 31 | 0013-1 0 32 | 0013-2 0 33 | 0013-3 0 34 | 0023-1 1 35 | 0023-2 1 36 | 0023-3 1 37 | 0014-1 1 38 | 0014-2 1 39 | 0014-3 1 40 | 0015-1 1 41 | 0015-2 1 42 | 0015-3 1 43 | 0056-1 0 44 | 0056-2 0 45 | 0056-3 0 46 | 0019-1 0 47 | 0019-2 0 48 | 0019-3 0 49 | 0040-1 0 50 | 0040-2 0 51 | 0040-3 0 52 | 0028-1 0 53 | 0028-2 0 54 | 0028-3 0 55 | 0037-1 1 56 | 0037-2 1 57 | 0037-3 1 58 | 0029-1 1 59 | 0029-2 1 60 | 0029-3 1 61 | 0038-1 0 62 | 0038-2 0 63 | 0038-3 0 64 | 0039-1 1 65 | 0039-2 1 66 | 0039-3 1 67 | 0044-1 0 68 | 0044-2 0 69 | 0044-3 0 70 | 0057-1 1 71 | 0057-2 1 72 | 0057-3 1 73 | 0052-1 0 74 | 0052-2 0 75 | 0052-3 0 76 | 0055-1 1 77 | 0055-2 1 78 | 0055-3 1 79 | 0066-1 0 80 | 0066-2 0 81 | 0066-3 0 82 | 0065-1 0 83 | 0065-2 0 84 | 0065-3 0 85 | 0068-1 1 86 | 0068-2 1 87 | 0068-3 1 88 | 0076-1 0 89 | 0076-2 0 90 | 0076-3 0 91 | 0077-1 1 92 | 0077-2 1 93 | 0077-3 1 94 | 0071-1 1 95 | 0071-2 1 96 | 0071-3 1 97 | 0088-1 0 98 | 0088-2 0 99 | 0088-3 0 100 | 0080-1 0 101 | 0080-2 0 102 | 0080-3 0 103 | 0110-1 0 104 | 0110-2 0 105 | 0110-3 0 106 | 0104-1 0 107 | 0104-2 0 108 | 0104-3 0 109 | 0083-1 1 110 | 0083-2 1 111 | 0083-3 1 112 | 0084-1 0 113 | 0084-2 0 114 | 0084-3 0 115 | 0108-1 0 116 | 0108-2 0 117 | 0108-3 0 118 | 0097-1 1 119 | 0097-2 1 120 | 0097-3 1 121 | 0099-1 1 122 | 0099-2 1 123 | 0099-3 1 124 | 0098-1 1 125 | 0098-2 1 126 | 0098-3 1 127 | 0102-1 1 128 | 0102-2 1 129 | 0102-3 1 130 | 0101-1 1 131 | 0101-2 1 132 | 0101-3 1 133 | 0103-1 0 134 | 0103-2 0 135 | 0103-3 0 136 | 0119-1 0 137 | 0119-2 0 138 | 0119-3 0 139 | 0115-1 1 140 | 0115-2 1 141 | 0115-3 1 142 | 0114-1 1 143 | 0114-2 1 144 | 0114-3 1 145 | 0113-1 1 146 | 0113-2 1 147 | 0113-3 1 148 | 0116-1 1 149 | 0116-2 1 150 | 0116-3 1 151 | 0117-1 0 152 | 0117-2 0 153 | 0117-3 0 154 | 0118-1 1 155 | 0118-2 1 156 | 0118-3 1 157 | 0123-1 1 158 | 0123-2 1 159 | 0123-3 1 160 | 0122-1 1 161 | 0122-2 1 162 | 0122-3 1 163 | 0124-1 0 164 | 0124-2 0 165 | 0124-3 0 166 | 0141-1 0 167 | 0141-2 0 168 | 0141-3 0 169 | 0125-1 1 170 | 0125-2 1 171 | 0125-3 1 172 | 0126-1 1 173 | 0126-2 1 174 | 0126-3 1 175 | 0137-1 0 176 | 0137-2 0 177 | 0137-3 0 178 | 0135-1 0 179 | 0135-2 0 180 | 0135-3 0 181 | 0128-1 0 182 | 0128-2 0 183 | 0128-3 0 184 | 0143-1 0 185 | 0143-2 0 186 | 0143-3 0 187 | 0147-1 1 188 | 0147-2 1 189 | 0147-3 1 190 | 0134-1 1 191 | 0134-2 1 192 | 0134-3 1 193 | 0131-1 0 194 | 0131-2 0 195 | 0131-3 0 196 | 0142-1 1 197 | 0142-2 1 198 | 0142-3 1 199 | 0130-1 0 200 | 0130-2 0 201 | 0130-3 0 202 | 0127-1 1 203 | 0127-2 1 204 | 0127-3 1 205 | 0146-1 0 206 | 0146-2 0 207 | 0146-3 0 208 | 0129-1 1 209 | 0129-2 1 210 | 0129-3 1 211 | 0153-1 0 212 | 0153-2 0 213 | 0153-3 0 214 | 0144-1 1 215 | 0144-2 1 216 | 0144-3 1 217 | 0149-1 1 218 | 0149-2 1 219 | 0149-3 1 220 | 0148-1 0 221 | 0148-2 0 222 | 0148-3 0 223 | 0168-1 1 224 | 0168-2 1 225 | 0168-3 1 226 | 0182-1 0 227 | 0182-2 0 228 | 0182-3 0 229 | 0161-1 1 230 | 0161-2 1 231 | 0161-3 1 232 | 0160-1 1 233 | 0160-2 1 234 | 0160-3 1 235 | 0163-1 0 236 | 0163-2 0 237 | 0163-3 0 238 | 0167-1 0 239 | 0167-2 0 240 | 0167-3 0 241 | 0169-1 1 242 | 0169-2 1 243 | 0169-3 1 244 | 0183-1 0 245 | 0183-2 0 246 | 0183-3 0 247 | 0180-1 0 248 | 0180-2 0 249 | 0180-3 0 250 | 0184-1 1 251 | 0184-2 1 252 | 0184-3 1 253 | 0188-1 0 254 | 0188-2 0 255 | 0188-3 0 256 | 0187-1 0 257 | 0187-2 0 258 | 0187-3 0 259 | 0176-1 1 260 | 0176-2 1 261 | 0176-3 1 262 | 0208-1 0 263 | 0208-2 0 264 | 0208-3 0 265 | 0178-1 0 266 | 0178-2 0 267 | 0178-3 0 268 | 0191-1 1 269 | 0191-2 1 270 | 0191-3 1 271 | 0192-1 1 272 | 0192-2 1 273 | 0192-3 1 274 | 0198-1 0 275 | 0198-2 0 276 | 0198-3 0 277 | 0240-1 0 278 | 0240-2 0 279 | 0240-3 0 280 | 0197-1 1 281 | 0197-2 1 282 | 0197-3 1 283 | 0203-1 1 284 | 0203-2 1 285 | 0203-3 1 286 | 0202-1 1 287 | 0202-2 1 288 | 0202-3 1 289 | 0257-1 0 290 | 0257-2 0 291 | 0257-3 0 292 | 0225-1 0 293 | 0225-2 0 294 | 0225-3 0 295 | 0226-1 1 296 | 0226-2 1 297 | 0226-3 1 298 | 0255-1 0 299 | 0255-2 0 300 | 0255-3 0 301 | 0222-1 0 302 | 0222-2 0 303 | 0222-3 0 304 | 0256-1 0 305 | 0256-2 0 306 | 0256-3 0 307 | 0228-1 0 308 | 0228-2 0 309 | 0228-3 0 310 | 0254-1 0 311 | 0254-2 0 312 | 0254-3 0 313 | 0217-1 0 314 | 0217-2 0 315 | 0217-3 0 316 | 0272-1 0 317 | 0272-2 0 318 | 0272-3 0 319 | 0219-1 1 320 | 0219-2 1 321 | 0219-3 1 322 | 0233-1 1 323 | 0233-2 1 324 | 0233-3 1 325 | 0236-1 1 326 | 0236-2 1 327 | 0236-3 1 328 | 0235-1 1 329 | 0235-2 1 330 | 0235-3 1 331 | 0271-1 1 332 | 0271-2 1 333 | 0271-3 1 334 | 0244-1 1 335 | 0244-2 1 336 | 0244-3 1 337 | 0247-1 1 338 | 0247-2 1 339 | 0247-3 1 340 | 0248-1 1 341 | 0248-2 1 342 | 0248-3 1 343 | 0251-1 1 344 | 0251-2 1 345 | 0251-3 1 346 | 0258-1 0 347 | 0258-2 0 348 | 0258-3 0 349 | 0277-1 0 350 | 0277-2 0 351 | 0277-3 0 352 | 0259-1 0 353 | 0259-2 0 354 | 0259-3 0 355 | 0282-1 0 356 | 0282-2 0 357 | 0282-3 0 358 | 0278-1 1 359 | 0278-2 1 360 | 0278-3 1 361 | 0276-1 0 362 | 0276-2 0 363 | 0276-3 0 364 | 0280-1 0 365 | 0280-2 0 366 | 0280-3 0 367 | 0285-1 0 368 | 0285-2 0 369 | 0285-3 0 370 | 0291-1 0 371 | 0291-2 0 372 | 0291-3 0 373 | 0287-1 1 374 | 0287-2 1 375 | 0287-3 1 376 | 0290-1 1 377 | 0290-2 1 378 | 0290-3 1 379 | 0296-1 0 380 | 0296-2 0 381 | 0296-3 0 382 | 0317-1 0 383 | 0317-2 0 384 | 0317-3 0 385 | 0295-1 0 386 | 0295-2 0 387 | 0295-3 0 388 | 0333-1 0 389 | 0333-2 0 390 | 0333-3 0 391 | 0303-1 0 392 | 0303-2 0 393 | 0303-3 0 394 | 0297-1 0 395 | 0297-2 0 396 | 0297-3 0 397 | 0302-1 0 398 | 0302-2 0 399 | 0302-3 0 400 | 0319-1 0 401 | 0319-2 0 402 | 0319-3 0 403 | 0315-1 0 404 | 0315-2 0 405 | 0315-3 0 406 | 0309-1 0 407 | 0309-2 0 408 | 0309-3 0 409 | 0313-1 0 410 | 0313-2 0 411 | 0313-3 0 412 | 0332-1 0 413 | 0332-2 0 414 | 0332-3 0 415 | 0330-1 0 416 | 0330-2 0 417 | 0330-3 0 418 | 0335-1 0 419 | 0335-2 0 420 | 0335-3 0 421 | 0316-1 0 422 | 0316-2 0 423 | 0316-3 0 424 | 0331-1 0 425 | 0331-2 0 426 | 0331-3 0 427 | 0300-1 1 428 | 0300-2 1 429 | 0300-3 1 430 | 0307-1 0 431 | 0307-2 0 432 | 0307-3 0 433 | 0305-1 0 434 | 0305-2 0 435 | 0305-3 0 436 | 0381-1 0 437 | 0381-2 0 438 | 0381-3 0 439 | 0363-1 0 440 | 0363-2 0 441 | 0363-3 0 442 | 0336-1 1 443 | 0336-2 1 444 | 0336-3 1 445 | 0338-1 0 446 | 0338-2 0 447 | 0338-3 0 448 | 0346-1 0 449 | 0346-2 0 450 | 0346-3 0 451 | 0347-1 0 452 | 0347-2 0 453 | 0347-3 0 454 | 0389-1 1 455 | 0389-2 1 456 | 0389-3 1 457 | 0354-1 0 458 | 0354-2 0 459 | 0354-3 0 460 | 0353-1 1 461 | 0353-2 1 462 | 0353-3 1 463 | 0355-1 1 464 | 0355-2 1 465 | 0355-3 1 466 | 0356-1 0 467 | 0356-2 0 468 | 0356-3 0 469 | 0359-1 0 470 | 0359-2 0 471 | 0359-3 0 472 | 0368-1 0 473 | 0368-2 0 474 | 0368-3 0 475 | 0370-1 0 476 | 0370-2 0 477 | 0370-3 0 478 | 0372-1 0 479 | 0372-2 0 480 | 0372-3 0 481 | 0371-1 1 482 | 0371-2 1 483 | 0371-3 1 484 | 0373-1 0 485 | 0373-2 0 486 | 0373-3 0 487 | 0384-1 0 488 | 0384-2 0 489 | 0384-3 0 490 | 0386-1 0 491 | 0386-2 0 492 | 0386-3 0 493 | 0392-1 1 494 | 0392-2 1 495 | 0392-3 1 496 | 0395-1 0 497 | 0395-2 0 498 | 0395-3 0 499 | 0398-1 0 500 | 0398-2 0 501 | 0398-3 0 502 | 0450-1 0 503 | 0450-2 0 504 | 0450-3 0 505 | 0463-1 1 506 | 0463-2 1 507 | 0463-3 1 508 | 0432-1 0 509 | 0432-2 0 510 | 0432-3 0 511 | 0407-1 1 512 | 0407-2 1 513 | 0407-3 1 514 | 0418-1 0 515 | 0418-2 0 516 | 0418-3 0 517 | 0421-1 0 518 | 0421-2 0 519 | 0421-3 0 520 | 0464-1 0 521 | 0464-2 0 522 | 0464-3 0 523 | 0444-1 0 524 | 0444-2 0 525 | 0444-3 0 526 | 0445-1 0 527 | 0445-2 0 528 | 0445-3 0 529 | 0443-1 0 530 | 0443-2 0 531 | 0443-3 0 532 | 0447-1 0 533 | 0447-2 0 534 | 0447-3 0 535 | 0455-1 0 536 | 0455-2 0 537 | 0455-3 0 538 | 0456-1 1 539 | 0456-2 1 540 | 0456-3 1 541 | 0458-1 0 542 | 0458-2 0 543 | 0458-3 0 544 | 0486-1 0 545 | 0486-2 0 546 | 0486-3 0 547 | 0462-1 1 548 | 0462-2 1 549 | 0462-3 1 550 | 0473-1 0 551 | 0473-2 0 552 | 0473-3 0 553 | 0469-1 0 554 | 0469-2 0 555 | 0469-3 0 556 | 0470-1 0 557 | 0470-2 0 558 | 0470-3 0 559 | 0474-1 1 560 | 0474-2 1 561 | 0474-3 1 562 | 0478-1 0 563 | 0478-2 0 564 | 0478-3 0 565 | 0484-1 1 566 | 0484-2 1 567 | 0484-3 1 568 | 0495-1 1 569 | 0495-2 1 570 | 0495-3 1 571 | 0497-1 0 572 | 0497-2 0 573 | 0497-3 0 574 | 0501-1 0 575 | 0501-2 0 576 | 0501-3 0 577 | 0538-1 0 578 | 0538-2 0 579 | 0538-3 0 580 | 0512-1 0 581 | 0512-2 0 582 | 0512-3 0 583 | 0511-1 0 584 | 0511-2 0 585 | 0511-3 0 586 | 0513-1 0 587 | 0513-2 0 588 | 0513-3 0 589 | 0519-1 0 590 | 0519-2 0 591 | 0519-3 0 592 | 0520-1 0 593 | 0520-2 0 594 | 0520-3 0 595 | 0518-1 0 596 | 0518-2 0 597 | 0518-3 0 598 | 0516-1 1 599 | 0516-2 1 600 | 0516-3 1 601 | 0547-1 0 602 | 0547-2 0 603 | 0547-3 0 604 | 0524-1 0 605 | 0524-2 0 606 | 0524-3 0 607 | 0527-1 1 608 | 0527-2 1 609 | 0527-3 1 610 | 0530-1 0 611 | 0530-2 0 612 | 0530-3 0 613 | 0531-1 1 614 | 0531-2 1 615 | 0531-3 1 616 | 0535-1 1 617 | 0535-2 1 618 | 0535-3 1 619 | 0532-1 0 620 | 0532-2 0 621 | 0532-3 0 622 | 0539-1 1 623 | 0539-2 1 624 | 0539-3 1 625 | 0540-1 1 626 | 0540-2 1 627 | 0540-3 1 628 | 0541-1 1 629 | 0541-2 1 630 | 0541-3 1 631 | 0549-1 0 632 | 0549-2 0 633 | 0549-3 0 634 | 0552-1 1 635 | 0552-2 1 636 | 0552-3 1 637 | 0557-1 0 638 | 0557-2 0 639 | 0557-3 0 640 | 0567-1 0 641 | 0567-2 0 642 | 0567-3 0 643 | 0590-1 0 644 | 0590-2 0 645 | 0590-3 0 646 | 0550-1 0 647 | 0550-2 0 648 | 0550-3 0 649 | 0555-1 0 650 | 0555-2 0 651 | 0555-3 0 652 | 0554-1 0 653 | 0554-2 0 654 | 0554-3 0 655 | 0612-1 0 656 | 0612-2 0 657 | 0612-3 0 658 | 0588-1 0 659 | 0588-2 0 660 | 0588-3 0 661 | 0568-1 0 662 | 0568-2 0 663 | 0568-3 0 664 | 0565-1 0 665 | 0565-2 0 666 | 0565-3 0 667 | 0564-1 0 668 | 0564-2 0 669 | 0564-3 0 670 | 0589-1 0 671 | 0589-2 0 672 | 0589-3 0 673 | 0602-1 0 674 | 0602-2 0 675 | 0602-3 0 676 | 0596-1 0 677 | 0596-2 0 678 | 0596-3 0 679 | 0594-1 0 680 | 0594-2 0 681 | 0594-3 0 682 | 0593-1 0 683 | 0593-2 0 684 | 0593-3 0 685 | 0560-1 0 686 | 0560-2 0 687 | 0560-3 0 688 | 0561-1 0 689 | 0561-2 0 690 | 0561-3 0 691 | 0562-1 1 692 | 0562-2 1 693 | 0562-3 1 694 | 0591-1 0 695 | 0591-2 0 696 | 0591-3 0 697 | 0569-1 1 698 | 0569-2 1 699 | 0569-3 1 700 | 0574-1 1 701 | 0574-2 1 702 | 0574-3 1 703 | 0576-1 0 704 | 0576-2 0 705 | 0576-3 0 706 | 0578-1 0 707 | 0578-2 0 708 | 0578-3 0 709 | 0583-1 1 710 | 0583-2 1 711 | 0583-3 1 712 | 0611-1 0 713 | 0611-2 0 714 | 0611-3 0 715 | 0633-1 0 716 | 0633-2 0 717 | 0633-3 0 718 | 0592-1 0 719 | 0592-2 0 720 | 0592-3 0 721 | 0597-1 1 722 | 0597-2 1 723 | 0597-3 1 724 | 0598-1 1 725 | 0598-2 1 726 | 0598-3 1 727 | 0599-1 1 728 | 0599-2 1 729 | 0599-3 1 730 | 0601-1 0 731 | 0601-2 0 732 | 0601-3 0 733 | 0662-1 1 734 | 0662-2 1 735 | 0662-3 1 736 | 0631-1 0 737 | 0631-2 0 738 | 0631-3 0 739 | 0618-1 0 740 | 0618-2 0 741 | 0618-3 0 742 | 0650-1 0 743 | 0650-2 0 744 | 0650-3 0 745 | 0652-1 0 746 | 0652-2 0 747 | 0652-3 0 748 | 0625-1 0 749 | 0625-2 0 750 | 0625-3 0 751 | 0661-1 0 752 | 0661-2 0 753 | 0661-3 0 754 | 0657-1 0 755 | 0657-2 0 756 | 0657-3 0 757 | 0639-1 1 758 | 0639-2 1 759 | 0639-3 1 760 | 0637-1 1 761 | 0637-2 1 762 | 0637-3 1 763 | 0643-1 1 764 | 0643-2 1 765 | 0643-3 1 766 | 0654-1 0 767 | 0654-2 0 768 | 0654-3 0 769 | 0653-1 0 770 | 0653-2 0 771 | 0653-3 0 772 | 0665-1 0 773 | 0665-2 0 774 | 0665-3 0 775 | 0667-1 1 776 | 0667-2 1 777 | 0667-3 1 778 | 0669-1 1 779 | 0669-2 1 780 | 0669-3 1 781 | 0668-1 1 782 | 0668-2 1 783 | 0668-3 1 784 | 0671-1 0 785 | 0671-2 0 786 | 0671-3 0 787 | 0672-1 1 788 | 0672-2 1 789 | 0672-3 1 790 | 0678-1 0 791 | 0678-2 0 792 | 0678-3 0 793 | 0680-1 0 794 | 0680-2 0 795 | 0680-3 0 796 | 0681-1 0 797 | 0681-2 0 798 | 0681-3 0 799 | 0682-1 1 800 | 0682-2 1 801 | 0682-3 1 802 | 0685-1 1 803 | 0685-2 1 804 | 0685-3 1 805 | 0686-1 1 806 | 0686-2 1 807 | 0686-3 1 808 | 0739-1 0 809 | 0739-2 0 810 | 0739-3 0 811 | 0691-1 1 812 | 0691-2 1 813 | 0691-3 1 814 | 0692-1 1 815 | 0692-2 1 816 | 0692-3 1 817 | 0694-1 1 818 | 0694-2 1 819 | 0694-3 1 820 | 0696-1 0 821 | 0696-2 0 822 | 0696-3 0 823 | 0699-1 0 824 | 0699-2 0 825 | 0699-3 0 826 | 0701-1 0 827 | 0701-2 0 828 | 0701-3 0 829 | 0702-1 1 830 | 0702-2 1 831 | 0702-3 1 832 | 0703-1 1 833 | 0703-2 1 834 | 0703-3 1 835 | 0725-1 0 836 | 0725-2 0 837 | 0725-3 0 838 | 0732-1 0 839 | 0732-2 0 840 | 0732-3 0 841 | 0705-1 0 842 | 0705-2 0 843 | 0705-3 0 844 | 0714-1 1 845 | 0714-2 1 846 | 0714-3 1 847 | 0726-1 0 848 | 0726-2 0 849 | 0726-3 0 850 | 0728-1 1 851 | 0728-2 1 852 | 0728-3 1 853 | 0729-1 0 854 | 0729-2 0 855 | 0729-3 0 856 | 0730-1 0 857 | 0730-2 0 858 | 0730-3 0 859 | 0742-1 0 860 | 0742-2 0 861 | 0742-3 0 862 | 0747-1 0 863 | 0747-2 0 864 | 0747-3 0 865 | 0741-1 1 866 | 0741-2 1 867 | 0741-3 1 868 | 0744-1 0 869 | 0744-2 0 870 | 0744-3 0 871 | 0809-1 0 872 | 0809-2 0 873 | 0809-3 0 874 | 0745-1 0 875 | 0745-2 0 876 | 0745-3 0 877 | 0786-1 0 878 | 0786-2 0 879 | 0786-3 0 880 | 0762-1 0 881 | 0762-2 0 882 | 0762-3 0 883 | 0764-1 0 884 | 0764-2 0 885 | 0764-3 0 886 | 0761-1 1 887 | 0761-2 1 888 | 0761-3 1 889 | 0796-1 0 890 | 0796-2 0 891 | 0796-3 0 892 | 0767-1 1 893 | 0767-2 1 894 | 0767-3 1 895 | 0771-1 0 896 | 0771-2 0 897 | 0771-3 0 898 | 0774-1 0 899 | 0774-2 0 900 | 0774-3 0 901 | 0775-1 0 902 | 0775-2 0 903 | 0775-3 0 904 | 0776-1 0 905 | 0776-2 0 906 | 0776-3 0 907 | 0779-1 1 908 | 0779-2 1 909 | 0779-3 1 910 | 0781-1 1 911 | 0781-2 1 912 | 0781-3 1 913 | 0792-1 1 914 | 0792-2 1 915 | 0792-3 1 916 | 0800-1 0 917 | 0800-2 0 918 | 0800-3 0 919 | 0798-1 0 920 | 0798-2 0 921 | 0798-3 0 922 | 0797-1 0 923 | 0797-2 0 924 | 0797-3 0 925 | 0803-1 0 926 | 0803-2 0 927 | 0803-3 0 928 | 0804-1 1 929 | 0804-2 1 930 | 0804-3 1 931 | 0812-1 0 932 | 0812-2 0 933 | 0812-3 0 934 | 0823-1 1 935 | 0823-2 1 936 | 0823-3 1 937 | 0824-1 1 938 | 0824-2 1 939 | 0824-3 1 940 | 0829-1 1 941 | 0829-2 1 942 | 0829-3 1 943 | 0832-1 0 944 | 0832-2 0 945 | 0832-3 0 946 | 0834-1 1 947 | 0834-2 1 948 | 0834-3 1 949 | 0835-1 1 950 | 0835-2 1 951 | 0835-3 1 952 | 0861-1 0 953 | 0861-2 0 954 | 0861-3 0 955 | 0841-1 1 956 | 0841-2 1 957 | 0841-3 1 958 | 0851-1 0 959 | 0851-2 0 960 | 0851-3 0 961 | 0850-1 0 962 | 0850-2 0 963 | 0850-3 0 964 | 0931-1 0 965 | 0931-2 0 966 | 0931-3 0 967 | 0864-1 1 968 | 0864-2 1 969 | 0864-3 1 970 | 0867-1 0 971 | 0867-2 0 972 | 0867-3 0 973 | 0869-1 1 974 | 0869-2 1 975 | 0869-3 1 976 | 0871-1 1 977 | 0871-2 1 978 | 0871-3 1 979 | 0893-1 1 980 | 0893-2 1 981 | 0893-3 1 982 | 0872-1 1 983 | 0872-2 1 984 | 0872-3 1 985 | 0877-1 1 986 | 0877-2 1 987 | 0877-3 1 988 | 0880-1 1 989 | 0880-2 1 990 | 0880-3 1 991 | 0885-1 1 992 | 0885-2 1 993 | 0885-3 1 994 | 0884-1 1 995 | 0884-2 1 996 | 0884-3 1 997 | 0886-1 1 998 | 0886-2 1 999 | 0886-3 1 1000 | 0902-1 0 1001 | 0902-2 0 1002 | 0902-3 0 1003 | 0900-1 1 1004 | 0900-2 1 1005 | 0900-3 1 1006 | 0903-1 0 1007 | 0903-2 0 1008 | 0903-3 0 1009 | 0908-1 0 1010 | 0908-2 0 1011 | 0908-3 0 1012 | 0929-1 0 1013 | 0929-2 0 1014 | 0929-3 0 1015 | 0934-1 0 1016 | 0934-2 0 1017 | 0934-3 0 1018 | 0946-1 0 1019 | 0946-2 0 1020 | 0946-3 0 1021 | 0943-1 0 1022 | 0943-2 0 1023 | 0943-3 0 1024 | 0915-1 1 1025 | 0915-2 1 1026 | 0915-3 1 1027 | 0914-1 1 1028 | 0914-2 1 1029 | 0914-3 1 1030 | 0963-1 0 1031 | 0963-2 0 1032 | 0963-3 0 1033 | 0940-1 0 1034 | 0940-2 0 1035 | 0940-3 0 1036 | 0920-1 1 1037 | 0920-2 1 1038 | 0920-3 1 1039 | 1007-1 0 1040 | 1007-2 0 1041 | 1007-3 0 1042 | 0974-1 0 1043 | 0974-2 0 1044 | 0974-3 0 1045 | 0937-1 1 1046 | 0937-2 1 1047 | 0937-3 1 1048 | 0938-1 0 1049 | 0938-2 0 1050 | 0938-3 0 1051 | 0939-1 1 1052 | 0939-2 1 1053 | 0939-3 1 1054 | 0949-1 1 1055 | 0949-2 1 1056 | 0949-3 1 1057 | 0950-1 1 1058 | 0950-2 1 1059 | 0950-3 1 1060 | 0952-1 0 1061 | 0952-2 0 1062 | 0952-3 0 1063 | 0955-1 1 1064 | 0955-2 1 1065 | 0955-3 1 1066 | 0965-1 0 1067 | 0965-2 0 1068 | 0965-3 0 1069 | 0964-1 0 1070 | 0964-2 0 1071 | 0964-3 0 1072 | 0966-1 1 1073 | 0966-2 1 1074 | 0966-3 1 1075 | 0972-1 1 1076 | 0972-2 1 1077 | 0972-3 1 1078 | 0970-1 1 1079 | 0970-2 1 1080 | 0970-3 1 1081 | 0971-1 1 1082 | 0971-2 1 1083 | 0971-3 1 1084 | 0973-1 1 1085 | 0973-2 1 1086 | 0973-3 1 1087 | 0975-1 1 1088 | 0975-2 1 1089 | 0975-3 1 1090 | 0980-1 0 1091 | 0980-2 0 1092 | 0980-3 0 1093 | 0978-1 1 1094 | 0978-2 1 1095 | 0978-3 1 1096 | 0981-1 1 1097 | 0981-2 1 1098 | 0981-3 1 1099 | 0982-1 1 1100 | 0982-2 1 1101 | 0982-3 1 1102 | 0983-1 0 1103 | 0983-2 0 1104 | 0983-3 0 1105 | 0984-1 0 1106 | 0984-2 0 1107 | 0984-3 0 1108 | 0985-1 1 1109 | 0985-2 1 1110 | 0985-3 1 1111 | 0986-1 1 1112 | 0986-2 1 1113 | 0986-3 1 1114 | 0987-1 1 1115 | 0987-2 1 1116 | 0987-3 1 1117 | 0988-1 1 1118 | 0988-2 1 1119 | 0988-3 1 1120 | 0990-1 1 1121 | 0990-2 1 1122 | 0990-3 1 1123 | 0989-1 1 1124 | 0989-2 1 1125 | 0989-3 1 1126 | 0992-1 0 1127 | 0992-2 0 1128 | 0992-3 0 1129 | 0993-1 1 1130 | 0993-2 1 1131 | 0993-3 1 1132 | 0994-1 0 1133 | 0994-2 0 1134 | 0994-3 0 1135 | 0995-1 1 1136 | 0995-2 1 1137 | 0995-3 1 1138 | 0997-1 1 1139 | 0997-2 1 1140 | 0997-3 1 1141 | 0998-1 1 1142 | 0998-2 1 1143 | 0998-3 1 1144 | 1006-1 0 1145 | 1006-2 0 1146 | 1006-3 0 1147 | 1004-1 0 1148 | 1004-2 0 1149 | 1004-3 0 1150 | 1008-1 0 1151 | 1008-2 0 1152 | 1008-3 0 1153 | 1010-1 0 1154 | 1010-2 0 1155 | 1010-3 0 1156 | 1014-1 0 1157 | 1014-2 0 1158 | 1014-3 0 1159 | 1011-1 0 1160 | 1011-2 0 1161 | 1011-3 0 1162 | 1021-1 0 1163 | 1021-2 0 1164 | 1021-3 0 1165 | 1013-1 0 1166 | 1013-2 0 1167 | 1013-3 0 1168 | 1041-1 0 1169 | 1041-2 0 1170 | 1041-3 0 1171 | 1026-1 0 1172 | 1026-2 0 1173 | 1026-3 0 1174 | 1027-1 1 1175 | 1027-2 1 1176 | 1027-3 1 1177 | 1037-1 0 1178 | 1037-2 0 1179 | 1037-3 0 1180 | 1016-1 1 1181 | 1016-2 1 1182 | 1016-3 1 1183 | 1020-1 0 1184 | 1020-2 0 1185 | 1020-3 0 1186 | 1018-1 0 1187 | 1018-2 0 1188 | 1018-3 0 1189 | 1022-1 0 1190 | 1022-2 0 1191 | 1022-3 0 1192 | 1023-1 0 1193 | 1023-2 0 1194 | 1023-3 0 1195 | 1024-1 0 1196 | 1024-2 0 1197 | 1024-3 0 1198 | 1029-1 0 1199 | 1029-2 0 1200 | 1029-3 0 1201 | 1030-1 0 1202 | 1030-2 0 1203 | 1030-3 0 1204 | 1031-1 0 1205 | 1031-2 0 1206 | 1031-3 0 1207 | 1032-1 0 1208 | 1032-2 0 1209 | 1032-3 0 1210 | 1033-1 0 1211 | 1033-2 0 1212 | 1033-3 0 1213 | 1050-1 0 1214 | 1050-2 0 1215 | 1050-3 0 1216 | 1063-1 0 1217 | 1063-2 0 1218 | 1063-3 0 1219 | 1066-1 0 1220 | 1066-2 0 1221 | 1066-3 0 1222 | 1038-1 1 1223 | 1038-2 1 1224 | 1038-3 1 1225 | 1040-1 1 1226 | 1040-2 1 1227 | 1040-3 1 1228 | 1065-1 0 1229 | 1065-2 0 1230 | 1065-3 0 1231 | 1067-1 0 1232 | 1067-2 0 1233 | 1067-3 0 1234 | 1047-1 0 1235 | 1047-2 0 1236 | 1047-3 0 1237 | 1048-1 0 1238 | 1048-2 0 1239 | 1048-3 0 1240 | 1051-1 0 1241 | 1051-2 0 1242 | 1051-3 0 1243 | 1058-1 0 1244 | 1058-2 0 1245 | 1058-3 0 1246 | 1056-1 0 1247 | 1056-2 0 1248 | 1056-3 0 1249 | 1057-1 0 1250 | 1057-2 0 1251 | 1057-3 0 1252 | 1091-1 1 1253 | 1091-2 1 1254 | 1091-3 1 1255 | 1164-1 1 1256 | 1164-2 1 1257 | 1164-3 1 1258 | 1062-1 1 1259 | 1062-2 1 1260 | 1062-3 1 1261 | 1077-1 0 1262 | 1077-2 0 1263 | 1077-3 0 1264 | 1079-1 0 1265 | 1079-2 0 1266 | 1079-3 0 1267 | 1080-1 0 1268 | 1080-2 0 1269 | 1080-3 0 1270 | 1081-1 1 1271 | 1081-2 1 1272 | 1081-3 1 1273 | 1082-1 1 1274 | 1082-2 1 1275 | 1082-3 1 1276 | 1085-1 1 1277 | 1085-2 1 1278 | 1085-3 1 1279 | 1089-1 1 1280 | 1089-2 1 1281 | 1089-3 1 1282 | 1097-1 1 1283 | 1097-2 1 1284 | 1097-3 1 1285 | 1096-1 0 1286 | 1096-2 0 1287 | 1096-3 0 1288 | 1099-1 1 1289 | 1099-2 1 1290 | 1099-3 1 1291 | 1101-1 0 1292 | 1101-2 0 1293 | 1101-3 0 1294 | 1100-1 1 1295 | 1100-2 1 1296 | 1100-3 1 1297 | 1098-1 0 1298 | 1098-2 0 1299 | 1098-3 0 1300 | 1103-1 1 1301 | 1103-2 1 1302 | 1103-3 1 1303 | 1104-1 0 1304 | 1104-2 0 1305 | 1104-3 0 1306 | 1111-1 0 1307 | 1111-2 0 1308 | 1111-3 0 1309 | 1106-1 0 1310 | 1106-2 0 1311 | 1106-3 0 1312 | 1107-1 1 1313 | 1107-2 1 1314 | 1107-3 1 1315 | 1114-1 0 1316 | 1114-2 0 1317 | 1114-3 0 1318 | 1148-1 0 1319 | 1148-2 0 1320 | 1148-3 0 1321 | 1115-1 0 1322 | 1115-2 0 1323 | 1115-3 0 1324 | 1113-1 0 1325 | 1113-2 0 1326 | 1113-3 0 1327 | 1120-1 0 1328 | 1120-2 0 1329 | 1120-3 0 1330 | 1124-1 1 1331 | 1124-2 1 1332 | 1124-3 1 1333 | 1127-1 0 1334 | 1127-2 0 1335 | 1127-3 0 1336 | 1126-1 0 1337 | 1126-2 0 1338 | 1126-3 0 1339 | 1128-1 1 1340 | 1128-2 1 1341 | 1128-3 1 1342 | 1139-1 0 1343 | 1139-2 0 1344 | 1139-3 0 1345 | 1138-1 0 1346 | 1138-2 0 1347 | 1138-3 0 1348 | 1137-1 0 1349 | 1137-2 0 1350 | 1137-3 0 1351 | 1136-1 1 1352 | 1136-2 1 1353 | 1136-3 1 1354 | 1141-1 1 1355 | 1141-2 1 1356 | 1141-3 1 1357 | 1140-1 1 1358 | 1140-2 1 1359 | 1140-3 1 1360 | 1145-1 0 1361 | 1145-2 0 1362 | 1145-3 0 1363 | 1146-1 0 1364 | 1146-2 0 1365 | 1146-3 0 1366 | 1150-1 1 1367 | 1150-2 1 1368 | 1150-3 1 1369 | 1151-1 0 1370 | 1151-2 0 1371 | 1151-3 0 1372 | 1149-1 1 1373 | 1149-2 1 1374 | 1149-3 1 1375 | 1152-1 0 1376 | 1152-2 0 1377 | 1152-3 0 1378 | 1156-1 0 1379 | 1156-2 0 1380 | 1156-3 0 1381 | 1158-1 0 1382 | 1158-2 0 1383 | 1158-3 0 1384 | 1155-1 0 1385 | 1155-2 0 1386 | 1155-3 0 1387 | 1154-1 0 1388 | 1154-2 0 1389 | 1154-3 0 1390 | 1162-1 1 1391 | 1162-2 1 1392 | 1162-3 1 1393 | 1160-1 1 1394 | 1160-2 1 1395 | 1160-3 1 1396 | 1170-1 0 1397 | 1170-2 0 1398 | 1170-3 0 1399 | 1168-1 0 1400 | 1168-2 0 1401 | 1168-3 0 1402 | 1167-1 1 1403 | 1167-2 1 1404 | 1167-3 1 1405 | 1198-1 1 1406 | 1198-2 1 1407 | 1198-3 1 1408 | 1171-1 1 1409 | 1171-2 1 1410 | 1171-3 1 1411 | 1175-1 1 1412 | 1175-2 1 1413 | 1175-3 1 1414 | 1178-1 1 1415 | 1178-2 1 1416 | 1178-3 1 1417 | 1180-1 1 1418 | 1180-2 1 1419 | 1180-3 1 1420 | 1185-1 1 1421 | 1185-2 1 1422 | 1185-3 1 1423 | 1184-1 1 1424 | 1184-2 1 1425 | 1184-3 1 1426 | 1186-1 1 1427 | 1186-2 1 1428 | 1186-3 1 1429 | 1191-1 0 1430 | 1191-2 0 1431 | 1191-3 0 1432 | 1190-1 1 1433 | 1190-2 1 1434 | 1190-3 1 1435 | 1192-1 1 1436 | 1192-2 1 1437 | 1192-3 1 1438 | 1193-1 1 1439 | 1193-2 1 1440 | 1193-3 1 1441 | 1195-1 1 1442 | 1195-2 1 1443 | 1195-3 1 1444 | 1196-1 0 1445 | 1196-2 0 1446 | 1196-3 0 1447 | 1205-1 0 1448 | 1205-2 0 1449 | 1205-3 0 1450 | 1206-1 0 1451 | 1206-2 0 1452 | 1206-3 0 1453 | 1203-1 0 1454 | 1203-2 0 1455 | 1203-3 0 1456 | 1204-1 0 1457 | 1204-2 0 1458 | 1204-3 0 1459 | 1208-1 0 1460 | 1208-2 0 1461 | 1208-3 0 1462 | 1207-1 1 1463 | 1207-2 1 1464 | 1207-3 1 1465 | 1209-1 1 1466 | 1209-2 1 1467 | 1209-3 1 1468 | 1210-1 1 1469 | 1210-2 1 1470 | 1210-3 1 1471 | 1215-1 0 1472 | 1215-2 0 1473 | 1215-3 0 1474 | 1213-1 0 1475 | 1213-2 0 1476 | 1213-3 0 1477 | 1211-1 1 1478 | 1211-2 1 1479 | 1211-3 1 1480 | 1223-1 0 1481 | 1223-2 0 1482 | 1223-3 0 1483 | 1222-1 0 1484 | 1222-2 0 1485 | 1222-3 0 1486 | 1218-1 0 1487 | 1218-2 0 1488 | 1218-3 0 1489 | 1219-1 1 1490 | 1219-2 1 1491 | 1219-3 1 1492 | 1224-1 0 1493 | 1224-2 0 1494 | 1224-3 0 1495 | 1221-1 0 1496 | 1221-2 0 1497 | 1221-3 0 1498 | 1220-1 1 1499 | 1220-2 1 1500 | 1220-3 1 1501 | 1225-1 1 1502 | 1225-2 1 1503 | 1225-3 1 1504 | 1239-1 1 1505 | 1239-2 1 1506 | 1239-3 1 1507 | 1242-1 0 1508 | 1242-2 0 1509 | 1242-3 0 1510 | 1240-1 0 1511 | 1240-2 0 1512 | 1240-3 0 1513 | 1230-1 0 1514 | 1230-2 0 1515 | 1230-3 0 1516 | 1227-1 1 1517 | 1227-2 1 1518 | 1227-3 1 1519 | 1226-1 1 1520 | 1226-2 1 1521 | 1226-3 1 1522 | 1229-1 0 1523 | 1229-2 0 1524 | 1229-3 0 1525 | 1235-1 0 1526 | 1235-2 0 1527 | 1235-3 0 1528 | 1232-1 1 1529 | 1232-2 1 1530 | 1232-3 1 1531 | 1233-1 1 1532 | 1233-2 1 1533 | 1233-3 1 1534 | 1236-1 0 1535 | 1236-2 0 1536 | 1236-3 0 1537 | 1238-1 1 1538 | 1238-2 1 1539 | 1238-3 1 1540 | 1241-1 1 1541 | 1241-2 1 1542 | 1241-3 1 1543 | 1248-1 1 1544 | 1248-2 1 1545 | 1248-3 1 1546 | 1244-1 1 1547 | 1244-2 1 1548 | 1244-3 1 1549 | 1245-1 1 1550 | 1245-2 1 1551 | 1245-3 1 1552 | 1246-1 0 1553 | 1246-2 0 1554 | 1246-3 0 1555 | 1250-1 0 1556 | 1250-2 0 1557 | 1250-3 0 1558 | 1251-1 0 1559 | 1251-2 0 1560 | 1251-3 0 1561 | 1252-1 0 1562 | 1252-2 0 1563 | 1252-3 0 1564 | 1249-1 1 1565 | 1249-2 1 1566 | 1249-3 1 1567 | 1253-1 1 1568 | 1253-2 1 1569 | 1253-3 1 1570 | 1258-1 1 1571 | 1258-2 1 1572 | 1258-3 1 1573 | 1259-1 0 1574 | 1259-2 0 1575 | 1259-3 0 1576 | 1261-1 1 1577 | 1261-2 1 1578 | 1261-3 1 1579 | 1262-1 1 1580 | 1262-2 1 1581 | 1262-3 1 1582 | 1263-1 0 1583 | 1263-2 0 1584 | 1263-3 0 1585 | 1264-1 1 1586 | 1264-2 1 1587 | 1264-3 1 1588 | 1267-1 1 1589 | 1267-2 1 1590 | 1267-3 1 1591 | 1265-1 1 1592 | 1265-2 1 1593 | 1265-3 1 1594 | 1268-1 1 1595 | 1268-2 1 1596 | 1268-3 1 1597 | 1272-1 0 1598 | 1272-2 0 1599 | 1272-3 0 1600 | 1269-1 0 1601 | 1269-2 0 1602 | 1269-3 0 1603 | 1273-1 0 1604 | 1273-2 0 1605 | 1273-3 0 1606 | 1271-1 1 1607 | 1271-2 1 1608 | 1271-3 1 1609 | 1277-1 0 1610 | 1277-2 0 1611 | 1277-3 0 1612 | 1278-1 0 1613 | 1278-2 0 1614 | 1278-3 0 1615 | 1275-1 1 1616 | 1275-2 1 1617 | 1275-3 1 1618 | 1276-1 1 1619 | 1276-2 1 1620 | 1276-3 1 1621 | 1279-1 0 1622 | 1279-2 0 1623 | 1279-3 0 1624 | 1280-1 1 1625 | 1280-2 1 1626 | 1280-3 1 1627 | 1285-1 1 1628 | 1285-2 1 1629 | 1285-3 1 1630 | 1286-1 1 1631 | 1286-2 1 1632 | 1286-3 1 1633 | 1282-1 1 1634 | 1282-2 1 1635 | 1282-3 1 1636 | 1287-1 0 1637 | 1287-2 0 1638 | 1287-3 0 1639 | 1289-1 0 1640 | 1289-2 0 1641 | 1289-3 0 1642 | 1291-1 1 1643 | 1291-2 1 1644 | 1291-3 1 1645 | 1293-1 1 1646 | 1293-2 1 1647 | 1293-3 1 1648 | 1292-1 1 1649 | 1292-2 1 1650 | 1292-3 1 1651 | 1294-1 1 1652 | 1294-2 1 1653 | 1294-3 1 1654 | 1295-1 1 1655 | 1295-2 1 1656 | 1295-3 1 1657 | 1298-1 1 1658 | 1298-2 1 1659 | 1298-3 1 1660 | 1299-1 1 1661 | 1299-2 1 1662 | 1299-3 1 1663 | 1300-1 0 1664 | 1300-2 0 1665 | 1300-3 0 1666 | 1304-1 0 1667 | 1304-2 0 1668 | 1304-3 0 1669 | 1306-1 0 1670 | 1306-2 0 1671 | 1306-3 0 1672 | 1303-1 0 1673 | 1303-2 0 1674 | 1303-3 0 1675 | 1302-1 0 1676 | 1302-2 0 1677 | 1302-3 0 1678 | 1305-1 1 1679 | 1305-2 1 1680 | 1305-3 1 1681 | 1307-1 0 1682 | 1307-2 0 1683 | 1307-3 0 1684 | 1309-1 1 1685 | 1309-2 1 1686 | 1309-3 1 1687 | 1308-1 0 1688 | 1308-2 0 1689 | 1308-3 0 1690 | 1310-1 0 1691 | 1310-2 0 1692 | 1310-3 0 1693 | 1314-1 0 1694 | 1314-2 0 1695 | 1314-3 0 1696 | 1311-1 1 1697 | 1311-2 1 1698 | 1311-3 1 1699 | 1315-1 0 1700 | 1315-2 0 1701 | 1315-3 0 1702 | 1332-1 0 1703 | 1332-2 0 1704 | 1332-3 0 1705 | 1316-1 0 1706 | 1316-2 0 1707 | 1316-3 0 1708 | 1317-1 1 1709 | 1317-2 1 1710 | 1317-3 1 1711 | 1318-1 1 1712 | 1318-2 1 1713 | 1318-3 1 1714 | 1321-1 0 1715 | 1321-2 0 1716 | 1321-3 0 1717 | 1319-1 1 1718 | 1319-2 1 1719 | 1319-3 1 1720 | 1322-1 0 1721 | 1322-2 0 1722 | 1322-3 0 1723 | 1323-1 0 1724 | 1323-2 0 1725 | 1323-3 0 1726 | 1324-1 1 1727 | 1324-2 1 1728 | 1324-3 1 1729 | 1326-1 0 1730 | 1326-2 0 1731 | 1326-3 0 1732 | 1325-1 1 1733 | 1325-2 1 1734 | 1325-3 1 1735 | 1328-1 1 1736 | 1328-2 1 1737 | 1328-3 1 1738 | 1327-1 1 1739 | 1327-2 1 1740 | 1327-3 1 1741 | 1333-1 1 1742 | 1333-2 1 1743 | 1333-3 1 1744 | 1334-1 1 1745 | 1334-2 1 1746 | 1334-3 1 1747 | 1336-1 0 1748 | 1336-2 0 1749 | 1336-3 0 1750 | 1335-1 1 1751 | 1335-2 1 1752 | 1335-3 1 1753 | 1337-1 0 1754 | 1337-2 0 1755 | 1337-3 0 1756 | 1338-1 0 1757 | 1338-2 0 1758 | 1338-3 0 1759 | 1341-1 0 1760 | 1341-2 0 1761 | 1341-3 0 1762 | 1342-1 1 1763 | 1342-2 1 1764 | 1342-3 1 1765 | 1339-1 1 1766 | 1339-2 1 1767 | 1339-3 1 1768 | 1340-1 1 1769 | 1340-2 1 1770 | 1340-3 1 1771 | 1343-1 1 1772 | 1343-2 1 1773 | 1343-3 1 1774 | 1344-1 0 1775 | 1344-2 0 1776 | 1344-3 0 1777 | 1345-1 0 1778 | 1345-2 0 1779 | 1345-3 0 1780 | 1346-1 1 1781 | 1346-2 1 1782 | 1346-3 1 1783 | 1347-1 0 1784 | 1347-2 0 1785 | 1347-3 0 1786 | 1349-1 1 1787 | 1349-2 1 1788 | 1349-3 1 1789 | 1351-1 0 1790 | 1351-2 0 1791 | 1351-3 0 1792 | -------------------------------------------------------------------------------- /data/Retino/test.txt: -------------------------------------------------------------------------------- 1 | 20230116132533046002 0 2 | 20230116165916121002 0 3 | 20230116164555665002 0 4 | 20230113161222711002 0 5 | 20230112160207674001 0 6 | 20230116125802923002 0 7 | 20230116124550251002 0 8 | 20230116164213393002 0 9 | 20230116124610164001 0 10 | 20230116163212689001 0 11 | 20230116161724754002 0 12 | 20230116121747692002 0 13 | 20230116125748705001 0 14 | 20230113171320961002 0 15 | 20230112113426461001 0 16 | 20230112104939308001 0 17 | 20230113165857520002 0 18 | 20230112114449020002 0 19 | 20230112160144629001 0 20 | 20230112140428723001 0 21 | 20230112114424185002 0 22 | 20230113161623606002 0 23 | 20230116122837756 0 24 | 20230112103845713001 0 25 | 20230112103853763 0 26 | 20230112112627148001 0 27 | 20230112105013178001 0 28 | 20230116133028863002 0 29 | 20230113173905674001 0 30 | 20230116164303019002 0 31 | 20230116131835176002 0 32 | 20230116125154402001 0 33 | 20230112160520324001 0 34 | 20230116125705675001 0 35 | 20230112112544475 0 36 | 20230116124541765001 0 37 | 20230113155841811 0 38 | 20230112140428723002 0 39 | 20230113154848165 0 40 | 20230112141204356002 0 41 | 20230116121737458001 0 42 | 20230116131835176001 0 43 | 20230116124419284002 0 44 | 20230112114358641001 0 45 | 20230116124541765002 0 46 | 20230112103823658001 0 47 | 20230112160225629 0 48 | 20230116123800326001 0 49 | 20230116125756200001 0 50 | 20230116124426781002 0 51 | 20230113162349465001 0 52 | 20230112103832438002 0 53 | 20230116122110692001 0 54 | 20230112114449020001 0 55 | 20230113154837869 0 56 | 20230116162822424001 0 57 | 20230116163739950001 0 58 | 20230113155007356002 0 59 | 20230112103832438001 0 60 | 20230116125748705002 0 61 | 20230112114412236001 0 62 | 20230112141113718001 0 63 | 20230112161046134001 0 64 | 20230112163905191001 0 65 | 20230112112200338001 0 66 | 20230116124600828001 0 67 | 20230116125810429001 0 68 | 20230112115201043002 0 69 | 20230116123815583002 0 70 | 20230113162631509001 0 71 | 20230113162349465002 0 72 | 20230113173905674002 0 73 | 20230112114358641002 0 74 | 20230116163212689002 0 75 | 20230112163223143001 0 76 | 20230116121737458002 0 77 | 20230112160532539002 0 78 | 20230112163537785001 0 79 | 20230113162631509002 0 80 | 20230112141050209001 0 81 | 20230112113357788001 0 82 | 20230112160158875002 0 83 | 20230112160207674002 0 84 | 20230113173809913002 0 85 | 20230116164459978 0 86 | 20230113155834095 0 87 | 20230113165857520001 0 88 | 20230116125716774001 0 89 | 20230112112200338002 0 90 | 20230116165924239002 0 91 | 20230116165347487002 1 92 | 20230112103955214001 1 93 | 20230116165330207 1 94 | 20230116165500393002 1 95 | 20230116165420295002 1 96 | 20230112091547042 1 97 | 20230116165338942002 1 98 | 20230112152238134001 1 99 | 20230116165430583001 1 100 | 20230116164514722002 1 101 | 20230116165440224001 1 102 | 20230116131939424001 1 103 | 20230116165533111 1 104 | 20230116164514722001 1 105 | 20230112163949027002 1 106 | 20230112091513986 1 107 | 20230116165619712002 1 108 | 20230116165410751001 1 109 | 20230113173534075001 1 110 | 20230112105003336001 1 111 | 20230112141000646002 2 112 | 20230116125147164002 2 113 | 20230116122252063001 2 114 | 20230116165043567002 2 115 | 20230116165126263001 2 116 | 20230116165136015001 2 117 | 20230113153500082001 2 118 | 20230116125147164001 2 119 | 20230113163429391002 2 120 | 20230116170657368 2 121 | 20230116122930982001 2 122 | 20230116165027822002 2 123 | 20230112090916451 2 124 | 20230116124736478 2 125 | 20230113162443869002 2 126 | 20230116162343806001 2 127 | 20230116165157552001 2 128 | 20230113153828872 2 129 | 20230116130028086002 2 130 | 20230112102150366 2 131 | 20230113153117758 2 132 | 20230116131721543002 2 133 | 20230116165430583002 2 134 | 20230113151643772 2 135 | 20230116164555665001 2 136 | 20230112104947178 2 137 | 20230113160419572001 2 138 | 20230113160427949 2 139 | 20230116165217928001 2 140 | 20230113173702583001 2 141 | 20230116170641761001 2 142 | 20230116161025263002 2 143 | 20230116131517438001 2 144 | 20230116160857407001 2 145 | 20230113171242162002 2 146 | 20230112110904330002 2 147 | 20230113171420128001 2 148 | 20230113170609862002 2 149 | 20230116122958344001 2 150 | 20230116122554547001 2 151 | 20230112114237109001 2 152 | 20230112105013178002 2 153 | 20230113171216188001 2 154 | 20230116122948828002 2 155 | 20230113172129795001 2 156 | 20230113173526752002 2 157 | 20230116122940872002 2 158 | 20230116122923168001 2 159 | 20230113171224222002 2 160 | 20230116162317950001 2 161 | 20230113155335827002 2 162 | 20230112110958603001 2 163 | 20230112163912102 2 164 | 20230112105110710001 2 165 | 20230112112430593001 2 166 | 20230116160204737001 2 167 | 20230113171618625002 2 168 | 20230112095209782002 2 169 | 20230116165101056001 2 170 | 20230113163501383 2 171 | 20230112100752840 2 172 | 20230112110419509001 2 173 | 20230113170306939002 2 174 | 20230116124459239001 2 175 | 20230112105003336002 2 176 | 20230112160856849 2 177 | 20230113172651456002 2 178 | 20230112095811211001 2 179 | 20230113170725963001 2 180 | 20230116165207336001 2 181 | 20230116165559223002 2 182 | 20230113170801268001 2 183 | 20230113170313928 2 184 | 20230113163429391001 2 185 | 20230116125215587002 2 186 | 20230116124727602 2 187 | 20230113162405729002 2 188 | 20230112095209782001 2 189 | 20230113170734607001 2 190 | 20230116122209914001 2 191 | 20230113170635372001 2 192 | 20230113163454082002 2 193 | 20230112155522446002 2 194 | 20230113173541532002 2 195 | 20230112164004549001 2 196 | 20230116133226924002 2 197 | 20230116163117526001 2 198 | 20230112093039366 2 199 | 20230113172046509001 2 200 | 20230112114237109002 2 201 | 20230116125139005001 2 202 | 20230113172154793001 2 203 | 20230116130855705 2 204 | 20230113154052595001 2 205 | 20230113163421310002 2 206 | 20230116124718414 2 207 | 20230116122715378 2 208 | 20230113163438888002 2 209 | 20230116170633851001 2 210 | 20230113153252945 2 211 | 20230116165448087002 2 212 | 20230112151532334001 2 213 | 20230112094353913 2 214 | 20230113173257383001 2 215 | 20230112140923737 2 216 | 20230116170722015002 2 217 | 20230116131729562002 2 218 | 20230112163816348 2 219 | 20230112110831430001 2 220 | 20230113171427897002 2 221 | 20230113173517033002 2 222 | 20230116163607918002 2 223 | 20230113153816002 2 224 | 20230112094408047 2 225 | 20230112110802868001 2 226 | 20230113171745393001 2 227 | 20230113160936243001 2 228 | 20230112151445893002 2 229 | 20230113170626573001 2 230 | 20230116165051831001 2 231 | 20230113170708943001 2 232 | 20230116124040226001 2 233 | 20230113172912072001 2 234 | 20230113171242162001 2 235 | 20230113170306939001 2 236 | 20230112110744631001 2 237 | 20230116125207226002 2 238 | 20230116163643072001 2 239 | 20230116122201452002 2 240 | 20230116165559223001 2 241 | 20230116124647838 2 242 | 20230116170344041002 2 243 | 20230116123405383001 2 244 | 20230113173517033001 2 245 | 20230116162335886001 2 246 | 20230112110754974002 2 247 | 20230112112430593002 2 248 | 20230112091327470 2 249 | 20230113152330981002 2 250 | 20230113163113960002 2 251 | 20230116124814851 2 252 | 20230116125705675002 2 253 | 20230116123006316001 2 254 | 20230113173526752001 2 255 | 20230113163438888001 2 256 | 20230116165117520001 2 257 | 20230116163550999002 2 258 | 20230116133149781002 2 259 | 20230116163656071001 2 260 | 20230116125121926002 2 261 | 20230116124040226002 2 262 | 20230116163739950002 2 263 | 20230116131509685001 2 264 | 20230116162903935002 2 265 | 20230116163643072002 2 266 | 20230112110821463001 2 267 | 20230112114724299001 2 268 | 20230112112441513001 2 269 | 20230116121111967001 2 270 | 20230116131112805 2 271 | 20230113153739226001 2 272 | 20230116165607791001 2 273 | 20230116162123968001 2 274 | 20230112094411338 2 275 | 20230112110856780002 2 276 | 20230116122100879 2 277 | 20230113170744186001 2 278 | 20230112151445893001 2 279 | 20230116161016567001 2 280 | 20230116123339300 2 281 | 20230112105836780002 2 282 | 20230116160909127001 2 283 | 20230116124026935002 2 284 | 20230116165410751002 2 285 | 20230116124639804 2 286 | 20230113153659992001 2 287 | 20230113161230963002 2 288 | 20230112110831430002 2 289 | 20230113170701252001 2 290 | 20230116165355889001 2 291 | 20230113173649105001 2 292 | 20230116121907546001 2 293 | 20230116124600828002 2 294 | 20230116163633993001 2 295 | 20230116130903980001 2 296 | 20230112104823992001 2 297 | 20230112085900380 2 298 | 20230113170717851001 2 299 | 20230112095919999002 2 300 | 20230116125506226002 2 301 | 20230112094517888 2 302 | 20230116125223091001 2 303 | 20230113171528066 2 304 | 20230112091338656 2 305 | 20230113172912072002 2 306 | 20230113173439469002 2 307 | 20230112110845267 2 308 | 20230116132515667002 2 309 | 20230116124026935001 2 310 | 20230113162413411001 2 311 | 20230112110821463002 2 312 | 20230116123006316002 2 313 | 20230116161016567002 2 314 | 20230112160144629002 2 315 | 20230116121923460001 2 316 | 20230112163920292 2 317 | 20230116121239498001 2 318 | 20230113174153764001 2 319 | 20230116123031245001 2 320 | 20230116162343806002 2 321 | 20230116125716774002 2 322 | 20230116162356622002 2 323 | 20230113171337471002 2 324 | 20230116165619712001 2 325 | 20230112140643430 2 326 | 20230113163526633002 2 327 | 20230116122901078 2 328 | 20230113170306939003 2 329 | 20230116163550999001 2 330 | 20230112110904330001 2 331 | 20230113155409327001 2 332 | 20230113162700119001 2 333 | 20230116165148496001 2 334 | 20230116124631270 2 335 | 20230113152946482001 2 336 | 20230116130320792 2 337 | 20230116132021898 2 338 | 20230116162325509002 2 339 | 20230113172154793002 2 340 | 20230113173856891 2 341 | 20230112112553483001 2 342 | 20230113173849481 2 343 | 20230116163542255002 2 344 | 20230112095811211002 2 345 | 20230113174134919002 2 346 | 20230116125457717002 2 347 | 20230112114212998 2 348 | 20230116122235442001 2 349 | 20230116162317950002 2 350 | 20230112105110710002 2 351 | 20230116165627617002 2 352 | 20230113174044827001 2 353 | 20230113153000288001 2 354 | 20230112113512496001 2 355 | 20230112112441513002 2 356 | 20230116162405167001 2 357 | 20230113172138811001 2 358 | 20230116162926815001 2 359 | 20230116125131458001 2 360 | 20230113162621369001 2 361 | 20230116165448087001 2 362 | 20230116122227589002 2 363 | 20230116133217221002 2 364 | 20230112112503930001 2 365 | 20230112110642372002 2 366 | 20230113170653062001 2 367 | 20230113172138811002 2 368 | 20230116131046300002 2 369 | 20230113172420981002 2 370 | 20230112114557746001 2 371 | 20230116122143091001 2 372 | 20230113170808662001 2 373 | 20230113171710558002 2 374 | 20230116121038318 2 375 | 20230113174134919001 2 376 | 20230112100745212 2 377 | 20230112114522817001 2 378 | 20230112100806444002 2 379 | 20230116165549648002 2 380 | 20230113170753780001 2 381 | 20230116125207226001 2 382 | 20230113163132890002 2 383 | 20230116165338942001 2 384 | 20230112112352179 2 385 | 20230116125037232002 2 386 | 20230116131702579 2 387 | 20230113171626784001 2 388 | 20230116170625239002 2 389 | 20230112100806444001 2 390 | 20230116122948828001 2 391 | 20230113162552384 2 392 | 20230116131029265002 2 393 | 20230116161008983001 2 394 | 20230113173715640001 2 395 | 20230113172146565001 2 396 | 20230116130334800 2 397 | 20230113151726532 2 398 | 20230112141737828002 2 399 | 20230112091109629 2 400 | 20230113173549863001 2 401 | 20230116124610164002 2 402 | 20230113171522138 2 403 | 20230113154647406001 2 404 | 20230116124618993002 2 405 | 20230116170344041001 2 406 | 20230112141443388001 2 407 | 20230113152946482002 2 408 | 20230113173447352002 2 409 | 20230113171302756 2 410 | 20230116121907546002 2 411 | 20230116165035665001 2 412 | 20230112114540009001 2 413 | 20230113171255471002 2 414 | 20230113163955699 2 415 | 20230113160419572002 2 416 | 20230116121101390002 2 417 | 20230112141147570001 2 418 | 20230112115152994001 2 419 | 20230112103334156002 2 420 | 20230116124550251001 2 421 | 20230116163133398001 2 422 | 20230113163132890001 2 423 | 20230112110856780001 2 424 | 20230113163446969001 2 425 | 20230112100819501 2 426 | 20230113162601682002 2 427 | 20230113171233426 2 428 | 20230116162108214002 2 429 | 20230113172129795002 2 430 | 20230116131046300001 2 431 | 20230113173715640002 2 432 | 20230116170203320 2 433 | 20230113165511578 2 434 | 20230112104954553 2 435 | 20230116123313481001 2 436 | 20230113153326158 2 437 | 20230116163633993002 2 438 | 20230113173702583002 2 439 | 20230113153528869 2 440 | 20230116161724754001 2 441 | 20230116125308967001 2 442 | 20230116122923168002 2 443 | 20230112095158344001 2 444 | 20230113173649105002 2 445 | 20230116133207221002 2 446 | 20230116165009663002 2 447 | 20230112141255562002 2 448 | 20230112114530954 2 449 | 20230116163124774002 2 450 | 20230112103359709002 2 451 | 20230113163817209001 2 452 | 20230116165607791002 2 453 | 20230116163656071002 2 454 | 20230116162325509001 2 455 | 20230112163759417001 2 456 | 20230116122940872001 2 457 | 20230112110812618002 2 458 | 20230116165508632002 2 459 | 20230113153302103 2 460 | 20230112102124860002 2 461 | 20230113172122815002 2 462 | 20230116125215587001 2 463 | 20230116131737883001 2 464 | 20230113173534075002 2 465 | 20230112112944056001 2 466 | 20230116170633851002 2 467 | 20230116125131458002 2 468 | 20230116171032432001 2 469 | 20230113153710007 2 470 | 20230112095919999001 2 471 | 20230116165542224 2 472 | 20230112112951856001 2 473 | 20230116165500393001 2 474 | 20230112155136107001 2 475 | 20230116125046265002 2 476 | 20230116123952434002 2 477 | 20230116163625106002 2 478 | 20230116170735807002 2 479 | 20230113170618602001 2 480 | 20230112104805959002 2 481 | 20230116163048840001 2 482 | 20230116165949712 2 483 | 20230116163616457 2 484 | 20230116121756287001 2 485 | 20230112110403082 2 486 | 20230113162522104002 2 487 | 20230116122235442002 2 488 | 20230112114643189002 2 489 | 20230116124012053 2 490 | 20230116124744731 2 491 | 20230112102306204001 2 492 | 20230116131729562001 2 493 | 20230112163905191002 2 494 | 20230113152414069001 2 495 | 20230113172408907002 3 496 | 20230112095905741001 3 497 | 20230112104832534002 3 498 | 20230113153728602002 3 499 | 20230116121648514002 3 500 | 20230116123107838 3 501 | 20230116163313030001 3 502 | 20230112102851319 3 503 | 20230112102835126001 3 504 | 20230116163041351002 3 505 | 20230112102901568002 3 506 | 20230113155441537001 3 507 | 20230112105049931002 3 508 | 20230112164406594002 3 509 | 20230116170735807001 3 510 | 20230116123215398002 3 511 | 20230116162605911002 3 512 | 20230116123222862001 3 513 | 20230113163410078001 3 514 | 20230116164859161001 3 515 | 20230116163133398002 3 516 | 20230112102539065002 3 517 | 20230116125108120001 3 518 | 20230112171753936001 3 519 | 20230113172239658002 3 520 | 20230112113018380002 3 521 | 20230113165358111001 3 522 | 20230116160219967002 3 523 | 20230113172253155001 3 524 | 20230113174001179002 3 525 | 20230116124658102 3 526 | 20230116163328333002 3 527 | 20230116125238968002 3 528 | 20230112113037531 3 529 | 20230116165101056002 3 530 | 20230113170808662002 3 531 | 20230116121636783002 3 532 | 20230112160838441 3 533 | 20230116163808886002 3 534 | 20230116130229733001 3 535 | 20230112101347687 3 536 | 20230112111543736 3 537 | 20230112154737923001 3 538 | 20230112094039024 3 539 | 20230113165715286 3 540 | 20230112102901568001 3 541 | 20230112102539065001 3 542 | 20230112152459881 3 543 | 20230112152254811 3 544 | 20230116164742512002 3 545 | 20230113163509870002 3 546 | 20230112161654034002 3 547 | 20230116133357926 3 548 | 20230116133414097001 3 549 | 20230116162926815002 3 550 | 20230116161743322002 3 551 | 20230116121636783001 3 552 | 20230113163316844001 3 553 | 20230112141901202 3 554 | 20230113174009197001 3 555 | 20230112171939974002 3 556 | 20230116122135456002 3 557 | 20230113165104958 3 558 | 20230113171609297002 3 559 | 20230112095129391002 3 560 | 20230112142802574002 3 561 | 20230116122736329 3 562 | 20230116131307533001 3 563 | 20230113162811111001 3 564 | 20230116164910295002 3 565 | 20230116165035665002 3 566 | 20230113155204061 3 567 | 20230113161458105002 3 568 | 20230113172420981001 3 569 | 20230116163320166002 3 570 | 20230112142102343 3 571 | 20230112112400126 3 572 | 20230112094350762 3 573 | 20230112102921384001 3 574 | 20230113172626262001 3 575 | 20230113171609297001 3 576 | 20230112152423468 3 577 | 20230113162837210001 3 578 | 20230116132423922001 3 579 | 20230112100003218002 3 580 | 20230116121715322 3 581 | 20230116132218257001 3 582 | 20230112103207450001 3 583 | 20230113162855571002 3 584 | 20230113165454599001 3 585 | 20230113152447519001 3 586 | 20230112104850770001 3 587 | 20230116161555912002 3 588 | 20230116133405710001 3 589 | 20230112160432260001 3 590 | 20230113170744186002 3 591 | 20230112114643189001 3 592 | 20230113172640364002 3 593 | 20230113161506728002 3 594 | 20230112111337689001 3 595 | 20230113161709969001 3 596 | 20230116164930376002 3 597 | 20230113163028502002 3 598 | 20230113165533652002 3 599 | 20230116123158342001 3 600 | 20230113172354057002 3 601 | 20230112102843550 3 602 | 20230112102124860001 3 603 | 20230116163313030002 3 604 | 20230116165018767002 3 605 | 20230112160336188002 3 606 | 20230116162926815003 3 607 | 20230112104823992002 3 608 | 20230116165009663001 3 609 | 20230116163816686001 3 610 | 20230113165437080 3 611 | 20230113163316844002 3 612 | 20230112154745926001 3 613 | 20230113154528852002 3 614 | 20230116122709188 3 615 | 20230116161743322001 3 616 | 20230116163250246001 3 617 | 20230116125121926001 3 618 | 20230113172239658001 3 619 | 20230116165136015002 3 620 | 20230116125108120002 3 621 | 20230116121833843002 3 622 | 20230113173952723001 3 623 | 20230113163517420 3 624 | 20230112154923343 3 625 | 20230116162742277002 3 626 | 20230116163625106001 3 627 | 20230113152524148001 3 628 | 20230113170708943002 3 629 | 20230112115054572001 3 630 | 20230112171928539002 3 631 | 20230112141854120002 3 632 | 20230116162108214001 3 633 | 20230113174052206001 3 634 | 20230112102930171001 3 635 | 20230116132439101001 3 636 | 20230116131029265001 3 637 | 20230113153612424002 3 638 | 20230112102921384002 3 639 | 20230113154034514002 3 640 | 20230113171600951002 3 641 | 20230116163808886001 3 642 | 20230116125037232001 3 643 | 20230116131440625001 3 644 | 20230113171348515002 3 645 | 20230113163012266002 3 646 | 20230116164213393001 3 647 | 20230116124954145002 3 648 | 20230112161628684002 3 649 | 20230116161025263001 3 650 | 20230116162903935001 3 651 | 20230116122624918002 3 652 | 20230116130229733002 3 653 | 20230113155433301002 3 654 | 20230112104841361 3 655 | 20230116133345314 3 656 | 20230112113055844001 3 657 | 20230112110243587 3 658 | 20230112155007363002 3 659 | 20230116163257726002 3 660 | 20230116122613539002 3 661 | 20230112151455284001 3 662 | 20230113173929105001 3 663 | 20230116163032622001 3 664 | 20230116170722015001 3 665 | 20230112111826520001 3 666 | 20230116131229073 3 667 | 20230113161525215001 3 668 | 20230113163534745002 3 669 | 20230113172904765001 3 670 | 20230116124915410 3 671 | 20230116163607918001 3 672 | 20230113174009197002 3 673 | 20230116132057924001 3 674 | 20230112171920770 3 675 | 20230116165027822001 3 676 | 20230113160222830001 3 677 | 20230116123231236001 3 678 | 20230113165745909001 3 679 | 20230116122209914002 3 680 | 20230116165126263002 3 681 | 20230112115008255 3 682 | 20230116132057924002 3 683 | 20230116131238636001 3 684 | 20230116163032622002 3 685 | 20230116122252063002 3 686 | 20230113165049139 3 687 | 20230116170641761002 3 688 | 20230116163328333001 3 689 | 20230113170717851002 3 690 | 20230112103259805001 3 691 | 20230112113512496002 3 692 | 20230116123231236002 3 693 | 20230116165148496003 3 694 | 20230113154125523 3 695 | 20230112155220995002 3 696 | 20230112142206646 3 697 | 20230116170048215001 3 698 | 20230116132533046001 3 699 | 20230113170644248001 3 700 | 20230113173945126002 3 701 | 20230113173507008002 3 702 | 20230112111354216 3 703 | 20230112171836321002 3 704 | 20230112161646219002 3 705 | 20230113151655160 3 706 | 20230116165157552002 3 707 | 20230113172633282001 3 708 | 20230112095843748002 3 709 | 20230116123222862002 3 710 | 20230116165051831002 3 711 | 20230116165117520002 3 712 | 20230113165533652001 3 713 | 20230116170712667002 3 714 | 20230112171736245001 3 715 | 20230112142812508001 3 716 | 20230116163823872002 3 717 | 20230112141934234001 3 718 | 20230116162123968002 3 719 | 20230112160745026002 3 720 | 20230116123058665 3 721 | 20230112110502026002 3 722 | 20230113173945126001 3 723 | 20230112102835126002 3 724 | 20230116163558502002 3 725 | 20230112141000646001 3 726 | 20230112142024482001 3 727 | 20230113155424471002 3 728 | 20230112104850770002 3 729 | 20230112171913369002 3 730 | 20230113152458845002 3 731 | 20230116122428025002 3 732 | 20230116163823872001 3 733 | 20230112142134354002 3 734 | 20230116132141526001 3 735 | 20230116163320166001 3 736 | 20230116122744010002 3 737 | 20230116132243795002 3 738 | 20230116132104788 3 739 | 20230112115031140001 3 740 | 20230113152306926002 3 741 | 20230112141154855 3 742 | 20230116121600837002 3 743 | 20230113165358111002 3 744 | 20230113170635372002 3 745 | 20230112171843497 3 746 | 20230116170028247001 3 747 | 20230113165519222 3 748 | 20230116163816686002 3 749 | 20230116132439101002 3 750 | 20230112111930091002 3 751 | 20230113155451755002 3 752 | 20230113153901913 3 753 | 20230112112319118001 3 754 | 20230113172553365002 3 755 | 20230113173604894002 3 756 | 20230116122135456001 3 757 | 20230113153642613002 3 758 | 20230112155154740002 3 759 | 20230113153555326 3 760 | 20230116124923476002 3 761 | 20230116163048840002 3 762 | 20230112102819982001 3 763 | 20230116121833843001 3 764 | 20230116170545144001 3 765 | 20230113173208976002 3 766 | 20230113161322396 3 767 | 20230116133158251 3 768 | 20230116121622939001 3 769 | 20230112095835043 3 770 | 20230116130002658002 3 771 | 20230113155140940001 3 772 | 20230113170105384 3 773 | 20230113161241805002 3 774 | 20230113155927190001 3 775 | 20230116161830823 3 776 | 20230112102031891 3 777 | 20230113170653062002 3 778 | 20230113163309084002 3 779 | 20230116165148496002 3 780 | 20230113170753780002 3 781 | 20230112171736245002 3 782 | 20230112164058070001 3 783 | 20230112142736429001 3 784 | 20230116133505147001 3 785 | 20230113153747485002 3 786 | 20230112161654034001 3 787 | 20230113165745909002 3 788 | 20230116123215398001 3 789 | 20230113165454599002 3 790 | 20230113152306926001 3 791 | 20230116170945014001 3 792 | 20230116131207374001 3 793 | 20230112160918860001 3 794 | 20230112091315973 3 795 | 20230116160935536002 3 796 | 20230116165207336002 3 797 | 20230116164829352001 3 798 | 20230112110502026001 3 799 | 20230116170228871002 3 800 | 20230113163020952001 3 801 | 20230112141934234002 3 802 | 20230116122412856002 3 803 | 20230112171913369001 3 804 | 20230113153728602001 3 805 | 20230112102912048001 3 806 | 20230113161432833002 3 807 | 20230116121648514001 3 808 | 20230116133517300001 3 809 | 20230116125005580001 3 810 | 20230116122752844002 3 811 | 20230113171635520002 3 812 | 20230116164859161002 3 813 | 20230112114935745 3 814 | 20230116171032432002 3 815 | 20230112140208192002 3 816 | 20230113161709969002 3 817 | 20230112111420364 3 818 | 20230116122420584002 3 819 | 20230112164058070002 3 820 | 20230113173952723002 3 821 | 20230116165109008002 3 822 | 20230112151455284002 3 823 | 20230116133505147002 3 824 | 20230116163305654002 3 825 | 20230116164910295001 3 826 | 20230116122806275002 3 827 | 20230112171928539001 3 828 | 20230112100003218001 3 829 | 20230112161628684001 3 830 | 20230113172605420001 3 831 | 20230113165824058002 3 832 | 20230113170618602002 3 833 | 20230113161458105001 3 834 | 20230116162003847001 3 835 | 20230116132227727 3 836 | 20230113170801268002 3 837 | 20230113172553365003 3 838 | 20230112154914264001 3 839 | 20230113162837210002 3 840 | 20230113173937061001 3 841 | 20230116124947297002 3 842 | 20230113171635520001 3 843 | 20230116162749422002 3 844 | 20230116123148389002 3 845 | 20230113171600951001 3 846 | 20230113172640364001 3 847 | 20230116164829352002 3 848 | 20230112105911724001 3 849 | 20230116125046265001 3 850 | 20230113161506728001 3 851 | 20230113162945975002 3 852 | 20230112114946509 3 853 | 20230116123148389001 3 854 | 20230116163305654001 3 855 | 20230116170041968001 3 856 | 20230116125337767001 3 857 | 20230112095905741002 3 858 | 20230113173630431 3 859 | 20230116123158342002 3 860 | 20230112171939974001 3 861 | 20230113155335827001 3 862 | 20230113173929105002 3 863 | 20230116161658688001 3 864 | 20230112154802727001 3 865 | 20230116122806275001 3 866 | 20230112083811069 3 867 | 20230113163003634002 3 868 | 20230116132210700001 3 869 | 20230116164617731002 3 870 | 20230112090859564 3 871 | 20230112171829207002 3 872 | 20230116122436202002 3 873 | 20230113172253155002 3 874 | 20230112155154740001 3 875 | 20230113162811111002 3 876 | 20230112094557706 3 877 | 20230113163509870001 3 878 | 20230113163012266001 3 879 | 20230116163832933002 3 880 | 20230112160024762001 3 881 | 20230112151532334002 3 882 | 20230116170705471001 3 883 | 20230112115104712 3 884 | 20230112114918600001 3 885 | 20230113155637888 3 886 | 20230113172633282002 3 887 | 20230112110543880 3 888 | 20230113170701252002 3 889 | 20230113152438393002 3 890 | 20230112151743581001 3 891 | 20230112142012220002 3 892 | 20230112111857347001 3 893 | 20230116125955553002 3 894 | 20230116121629548 3 895 | 20230113153739226002 3 896 | 20230116122604398 3 897 | 20230116161954815001 3 898 | 20230116121622939002 3 899 | 20230113165708625 4 900 | 20230112164144487 4 901 | 20230112114803533002 4 902 | 20230112140806752002 4 903 | 20230113152458845001 4 904 | 20230112141854120001 4 905 | 20230116131415393002 4 906 | 20230116130213883 4 907 | 20230112172008631 4 908 | 20230116122436202001 4 909 | 20230113173159398 4 910 | 20230116122420584001 4 911 | 20230112154737923002 4 912 | 20230112164135432002 4 913 | 20230116121600837001 4 914 | 20230116122640063002 4 915 | 20230112105730339 4 916 | 20230116122445174002 4 917 | 20230113173208976001 4 918 | 20230112111744618 4 919 | 20230116170106655 4 920 | 20230116124239729001 4 921 | 20230116160403159002 4 922 | 20230113155045576002 4 923 | 20230113154929633 4 924 | 20230113155100162 4 925 | 20230113155409327002 4 926 | 20230116125238968001 4 927 | 20230116121525591 4 928 | 20230113152912895 4 929 | 20230116133424525002 4 930 | 20230113155228151002 4 931 | 20230116122038855001 4 932 | 20230113172401216 4 933 | 20230113155537911002 4 934 | 20230112111428254 4 935 | 20230116170238527001 4 936 | 20230113154544823 4 937 | 20230113174044827002 4 938 | 20230112112327028 4 939 | 20230112113055844002 4 940 | 20230116121534364001 4 941 | 20230112105705910001 4 942 | 20230112172350319 4 943 | 20230112111644723002 4 944 | 20230112085852752 4 945 | 20230116123304043002 4 946 | 20230112164116400 4 947 | 20230112155554355 4 948 | 20230116131517438002 4 949 | 20230112140845149001 4 950 | 20230116170048215002 4 951 | 20230112161636656002 4 952 | 20230113152458845003 4 953 | 20230112151851791002 4 954 | 20230112160425017002 4 955 | 20230113154538037002 4 956 | 20230112113740241 4 957 | 20230112114249644 4 958 | 20230116122412856001 4 959 | 20230112110419509002 4 960 | 20230112141034561 4 961 | 20230113161650641001 4 962 | 20230112140717906 4 963 | 20230112113047312 4 964 | 20230112160425017001 4 965 | 20230113162413411002 4 966 | 20230112171753936002 4 967 | 20230112164135432001 4 968 | 20230113162945975001 4 969 | 20230112142812508002 4 970 | 20230116123049332 4 971 | 20230113155545509 4 972 | 20230112142728102 4 973 | 20230112141601346001 4 974 | 20230112110036946 4 975 | 20230112085842695 4 976 | 20230113162914541002 4 977 | 20230113161623606001 4 978 | 20230116164357058 4 979 | 20230113155007356001 4 980 | 20230116125833950 4 981 | 20230116162934270 4 982 | 20230112093904915 4 983 | 20230116121358840002 4 984 | 20230112105751633 4 985 | 20230113152532401 4 986 | 20230116125843653 4 987 | 20230116160219967001 4 988 | 20230112155834517002 4 989 | 20230116121519387002 4 990 | 20230113155045576001 4 991 | 20230116125601044001 4 992 | 20230112142012220001 4 993 | 20230116121534364002 4 994 | 20230112101430150 4 995 | 20230112163405011 4 996 | 20230112155628550002 4 997 | 20230112105705910002 4 998 | 20230112160625685 4 999 | 20230113153500082002 4 1000 | 20230116160403159001 4 1001 | 20230112140943440 4 1002 | 20230116170501703 4 1003 | 20230112113018380001 4 1004 | 20230112171557071 4 1005 | 20230112155628550001 4 1006 | 20230112140757751 4 1007 | 20230113153244553 4 1008 | 20230112105759028 4 1009 | 20230112151308705 4 1010 | 20230116125553603001 4 1011 | 20230112110050128002 4 1012 | 20230116131509685002 4 1013 | 20230116133207221001 4 1014 | 20230112160054100 4 1015 | 20230113153059771 4 1016 | 20230116123313481002 4 1017 | 20230112172340616002 4 1018 | 20230116130002658001 4 1019 | 20230116130156061002 4 1020 | 20230112105714833002 4 1021 | 20230116131606834 4 1022 | 20230116133217221001 4 1023 | 20230116124257116001 4 1024 | 20230116123752098 4 1025 | 20230112103259805002 4 1026 | 20230113172750361002 4 1027 | 20230116124248045001 4 1028 | 20230113171710558001 4 1029 | 20230112140823618 4 1030 | 20230112155825235 4 1031 | 20230113155217808002 4 1032 | 20230116164323978 4 1033 | 20230112161443857 4 1034 | 20230113153039834002 4 1035 | 20230113155416206 4 1036 | 20230112172021345002 4 1037 | 20230112161646219001 4 1038 | 20230113172354057001 4 1039 | 20230112141626183002 4 1040 | 20230116125610482 4 1041 | 20230112101539176002 4 1042 | 20230112151203778 4 1043 | 20230112105921910001 4 1044 | 20230116163015015001 4 1045 | 20230116125308967002 4 1046 | 20230112111458718 4 1047 | 20230112142433005 4 1048 | 20230112105714833001 4 1049 | 20230116123845831002 4 1050 | 20230112151040224 4 1051 | 20230112094921833 4 1052 | 20230116125245614 4 1053 | 20230112141344232001 4 1054 | 20230113152904701 4 1055 | 20230112094015852 4 1056 | 20230112142216942001 4 1057 | 20230112141611925001 4 1058 | 20230112140835069001 4 1059 | 20230112104747504001 4 1060 | 20230113152414069002 4 1061 | 20230113160222830002 4 1062 | 20230112161451594 4 1063 | 20230112142216942002 4 1064 | 20230112142602413 4 1065 | 20230116163015015003 4 1066 | 20230112172330448002 4 1067 | 20230112102306204002 4 1068 | 20230112103923249 4 1069 | 20230116170028247002 4 1070 | 20230113152447519002 4 1071 | 20230116133405710002 4 1072 | 20230112171530357002 4 1073 | 20230116133440780 4 1074 | 20230113153039834001 4 1075 | 20230112151851791001 4 1076 | 20230112105723553 4 1077 | 20230116170041968002 4 1078 | 20230112140845149002 4 1079 | 20230116122445174001 4 1080 | 20230112152216990 4 1081 | 20230113163749488002 4 1082 | 20230116163015015002 4 1083 | 20230112164153535 4 1084 | 20230113152505257 4 1085 | 20230112141311944 4 1086 | 20230112140835069002 4 1087 | 20230112142736429002 4 1088 | 20230112164124761 4 1089 | 20230112110050128001 4 1090 | 20230116133351545 4 1091 | 20230113162905649 4 1092 | 20230112172321509 4 1093 | 20230112111652976 4 1094 | 20230112112334972 4 1095 | 20230112172021345001 4 1096 | 20230113155451755001 4 1097 | 20230116133448175001 4 1098 | 20230116124312653002 4 1099 | 20230116130148582 4 1100 | 20230113163945146002 4 1101 | 20230112112319118002 4 1102 | 20230113163945146001 4 1103 | 20230113154052595002 4 1104 | 20230112172340616001 4 1105 | 20230112094808029 4 1106 | 20230112102219400002 4 1107 | 20230113162855571001 4 1108 | 20230112141245312002 4 1109 | 20230116123031245002 4 1110 | 20230112155035434002 4 1111 | -------------------------------------------------------------------------------- /data/Endo/fewshot-pool.txt: -------------------------------------------------------------------------------- 1 | 13333_2021.11_0002_54971718 0 0 0 0 2 | 13333_2021.11_0002_54971654 0 0 1 0 3 | 13333_2021.11_0002_54971794 0 0 0 0 4 | 13333_2021.11_0002_54971699 0 0 0 0 5 | 13333_2021.11_0002_54971818 0 0 0 0 6 | 13333_2021.11_0002_54971678 0 0 0 0 7 | 13333_2021.11_0002_54971772 0 0 0 0 8 | 13333_2021.11_0002_54971690 0 0 0 0 9 | 13333_2021.11_0002_54971811 0 0 0 0 10 | 13333_2021.11_0002_54971730 0 0 0 0 11 | 13333_2021.11_0002_54971866 1 0 0 1 12 | 13333_2021.11_0002_54971746 0 0 0 0 13 | 13333_2021.11_0002_54970660 0 0 1 0 14 | 13333_2021.11_0002_54971799 0 0 0 0 15 | 13333_2021.11_0002_54971664 0 0 1 0 16 | 13333_2021.11_0002_54971830 0 0 0 0 17 | 13333_2021.11_0002_54971837 0 0 1 0 18 | 13333_2021.11_0002_54971846 0 0 0 0 19 | 13333_2021.11_0002_54971806 0 0 0 0 20 | 13333_2021.11_0002_54971739 0 0 0 0 21 | 13333_2021.11_0002_54971845 0 0 0 0 22 | 13333_2021.12_0007_57297497 1 0 0 0 23 | 13333_2021.12_0007_57297486 1 0 0 1 24 | 13333_2021.12_0007_57297515 0 0 1 0 25 | 13333_2021.12_0007_57297492 1 0 0 0 26 | 13333_2021.12_0007_57297415 1 0 0 0 27 | 13333_2021.12_0007_57297468 1 1 1 1 28 | 13333_2021.12_0007_57297457 1 1 0 1 29 | 13333_2021.12_0007_57297453 1 0 0 0 30 | 13333_2021.12_0007_57297464 1 1 1 0 31 | 13333_2021.12_0007_57297413 1 0 0 0 32 | 13333_2021.12_0007_57297477 1 0 0 1 33 | 13333_2021.12_0007_57297426 1 0 0 0 34 | 13333_2021.12_0007_57297466 0 1 1 1 35 | 13333_2021.12_0007_57297475 0 1 1 1 36 | 13333_2021.12_0007_57297483 1 0 0 1 37 | 13333_2021.12_0007_57297412 1 0 0 0 38 | 13333_2021.12_0007_57297444 1 0 0 0 39 | 13333_2021.12_0007_57297439 1 1 0 0 40 | 13333_2021.12_0007_57297521 0 0 0 0 41 | 13333_2021.12_0007_57297501 0 1 0 0 42 | 13333_2021.12_0007_57297526 1 1 1 0 43 | 13333_2021.12_0007_57297495 0 1 0 0 44 | 13333_2021.12_0007_57297519 0 0 0 0 45 | 13333_2021.12_0007_57297435 1 1 0 0 46 | 13333_2021.12_0007_57297417 1 0 0 0 47 | 13333_2021.12_0007_57297428 1 0 0 0 48 | 13333_2021.12_0007_57297448 1 0 0 1 49 | 13333_2021.12_0007_57297459 1 0 0 1 50 | 13333_2021.12_0007_57297470 1 1 0 1 51 | 13333_2021.12_0007_57297508 0 0 0 0 52 | 13333_2021.12_0007_57297510 1 0 0 0 53 | 13333_2021.12_0007_57297488 1 1 0 0 54 | 13333_2021.12_0007_57297506 0 0 0 0 55 | 13333_2021.12_0007_57297433 1 1 1 0 56 | 13333_2021.12_0007_57297503 0 1 0 0 57 | 13333_2021.12_0007_57297512 1 0 0 0 58 | 13333_2021.12_0007_57297461 1 0 0 1 59 | 13333_2021.12_0007_57297450 1 0 0 1 60 | 13333_2021.12_0007_57297424 1 0 0 0 61 | 13333_2021.12_0007_57297490 1 0 0 1 62 | 13333_2021.12_0007_57297481 1 0 0 1 63 | 13333_2021.12_0007_57297446 0 0 0 0 64 | 13333_2021.12_0007_57297517 0 1 0 0 65 | 13333_2021.12_0007_57297430 1 1 1 0 66 | 13333_2021.12_0007_57297479 1 0 0 1 67 | 13333_2021.12_0007_57297419 1 0 0 0 68 | 13333_2021.12_0007_57297524 0 0 1 0 69 | 13333_2021.12_0007_57297422 1 0 0 0 70 | 13333_2021.12_0007_57297441 1 0 0 0 71 | 13333_2021.12_0007_57297499 0 1 0 0 72 | 13333_2021.12_0007_57297455 1 0 0 1 73 | 13333_2021.12_0007_57297472 0 1 0 1 74 | 13333_2021.12_0007_57297437 1 1 0 0 75 | 13333_2021.12_0006_55977222 1 1 0 0 76 | 13333_2021.12_0006_55977210 0 1 0 0 77 | 13333_2021.12_0006_55977223 0 1 0 0 78 | 13333_2021.12_0006_55977215 1 0 0 0 79 | 13333_2021.12_0006_55977207 0 1 0 0 80 | 13333_2021.12_0006_55977220 0 1 0 0 81 | 13333_2021.12_0006_55977214 1 0 0 0 82 | 13333_2021.12_0006_55977213 0 0 0 0 83 | 13333_2021.12_0006_55977218 0 0 0 0 84 | 13333_2021.12_0006_55977219 0 1 0 0 85 | 13333_2021.12_0006_55977217 0 1 0 0 86 | 13333_2021.12_0006_55977206 0 0 0 0 87 | 13333_2021.12_0006_55977212 0 0 0 0 88 | 13333_2021.12_0006_55977221 0 1 0 0 89 | 13333_2021.12_0006_55977211 0 1 0 0 90 | 13333_2021.12_0006_55977205 0 1 0 0 91 | 13333_2021.12_0009_56515000 0 0 0 0 92 | 13333_2021.12_0009_56515883 0 0 0 0 93 | 13333_2021.12_0009_56515495 0 0 0 0 94 | 13333_2021.12_0009_56515726 0 0 0 0 95 | 13333_2021.12_0009_56515365 0 0 1 0 96 | 13333_2021.12_0009_56515670 0 0 0 0 97 | 13333_2021.12_0009_56515491 0 0 0 0 98 | 13333_2021.12_0009_56515792 0 0 0 0 99 | 13333_2021.12_0009_56515578 0 0 0 0 100 | 13333_2021.12_0009_56515469 0 1 1 0 101 | 13333_2021.12_0009_56515503 0 0 0 0 102 | 13333_2021.12_0009_56515757 0 0 0 0 103 | 13333_2021.12_0009_56515566 0 0 0 0 104 | 13333_2021.12_0009_56515492 0 0 0 0 105 | 13333_2021.12_0009_56515597 0 0 0 0 106 | 13333_2021.12_0009_56515890 0 0 0 0 107 | 13333_2021.12_0009_56515806 0 0 0 0 108 | 13333_2021.12_0009_56515551 0 0 0 0 109 | 13333_2021.12_0009_56515510 0 0 0 0 110 | 13333_2021.12_0009_56515337 0 1 1 0 111 | 13333_2021.12_0009_56515743 0 0 0 0 112 | 13333_2021.12_0009_56515691 0 0 0 0 113 | 13333_2021.12_0009_56515617 0 0 0 0 114 | 13333_2021.12_0009_56514185 0 0 1 0 115 | 13333_2021.12_0009_56515493 0 0 0 0 116 | 13333_2021.12_0009_56515857 0 0 0 0 117 | 13333_2021.12_0009_56514471 0 0 1 0 118 | 13333_2021.12_0009_56514302 1 1 0 0 119 | 13333_2021.12_0009_56515464 0 1 0 0 120 | 13333_2021.12_0009_56515367 0 0 0 0 121 | 13333_2021.12_0009_56515490 0 0 0 0 122 | 13333_2021.12_0009_56514460 0 0 1 0 123 | 13333_2021.12_0009_56515864 0 0 0 0 124 | 13333_2021.12_0009_56515501 0 0 0 0 125 | 13333_2021.12_0009_56515488 0 0 0 0 126 | 13333_2021.12_0009_56515489 0 0 0 0 127 | 13333_2021.12_0009_56515487 0 0 0 1 128 | 13333_2021.12_0009_56515558 0 0 0 0 129 | 13333_2021.12_0009_56515711 0 0 0 0 130 | 13333_2021.12_0009_56515834 0 0 0 0 131 | 13333_2021.12_0009_56514465 0 0 1 0 132 | 13333_2021.12_0009_56515500 0 0 0 0 133 | 13333_2021.12_0009_56515496 0 0 0 0 134 | 13333_2021.12_0009_56515481 0 1 1 0 135 | 13333_2021.12_0009_56515509 0 0 0 0 136 | 13333_2021.12_0009_56515504 0 0 1 0 137 | 13333_2021.12_0009_56515506 0 0 0 0 138 | 13333_2021.12_0009_56515629 0 0 0 0 139 | 13333_2021.12_0009_56514383 0 0 1 0 140 | 13333_2021.12_0009_56515900 0 0 0 0 141 | 13333_2021.07_0003_49851461 0 1 0 0 142 | 13333_2021.07_0003_49851360 0 0 0 0 143 | 13333_2021.07_0003_49851405 0 1 0 0 144 | 13333_2021.07_0003_49851378 0 1 0 0 145 | 13333_2021.07_0003_49851438 0 1 0 0 146 | 13333_2021.07_0003_49851388 0 1 0 0 147 | 13333_2021.07_0003_49851407 0 1 0 0 148 | 13333_2021.07_0003_49851468 0 0 0 0 149 | 13333_2021.07_0003_49851479 0 0 0 0 150 | 13333_2021.07_0003_49851409 0 1 0 0 151 | 13333_2021.07_0003_49851387 0 1 0 0 152 | 13333_2021.07_0003_49851365 0 0 0 0 153 | 13333_2021.07_0003_49851491 0 1 0 0 154 | 13333_2021.07_0003_49851389 0 1 0 0 155 | 13333_2021.07_0003_49851451 0 1 0 0 156 | 13333_2021.07_0003_49851368 0 0 0 0 157 | 13333_2021.07_0003_49851434 0 1 0 0 158 | 13333_2021.07_0003_49851443 1 0 0 0 159 | 13333_2021.07_0003_49851351 0 0 0 0 160 | 13333_2021.07_0003_49851377 0 1 0 0 161 | 13333_2021.07_0003_49851347 0 1 0 0 162 | 13333_2021.07_0003_49851383 0 1 0 0 163 | 13333_2021.07_0003_49851400 0 1 0 0 164 | 13333_2021.07_0003_49851412 0 1 0 0 165 | 13333_2021.07_0003_49851356 0 0 0 0 166 | 13333_2021.07_0003_49851447 1 0 0 0 167 | 13333_2021.07_0003_49851367 0 0 0 0 168 | 13333_2021.07_0003_49851481 0 0 0 0 169 | 13333_2021.07_0003_49851417 0 1 0 0 170 | 13333_2021.07_0003_49851415 0 1 0 0 171 | 13333_2021.07_0003_49851453 0 1 0 0 172 | 13333_2021.07_0003_49851445 1 0 0 0 173 | 13333_2021.07_0003_49851422 0 1 0 0 174 | 13333_2021.07_0003_49851370 1 0 0 0 175 | 13333_2021.07_0003_49851429 0 1 0 0 176 | 13333_2021.07_0003_49851371 0 1 0 0 177 | 13333_2021.07_0003_49851458 0 0 0 0 178 | 13333_2021.07_0003_49851373 0 1 0 0 179 | 13333_2021.07_0003_49851355 0 0 0 0 180 | 13333_2021.07_0003_49851311 0 1 0 0 181 | 13333_2021.07_0003_49851361 0 0 0 0 182 | 13333_2021.07_0003_49851386 0 1 0 0 183 | 13333_2021.07_0003_49851459 0 1 0 0 184 | 13333_2021.07_0003_49851366 0 0 0 0 185 | 13333_2021.07_0003_49851441 0 1 0 0 186 | 13333_2021.07_0003_49851384 0 1 0 0 187 | 13333_2021.07_0003_49851431 0 1 0 0 188 | 13333_2021.07_0003_49851398 0 0 0 0 189 | 13333_2021.07_0003_49851380 0 1 0 0 190 | 13333_2021.07_0003_49851490 0 1 0 0 191 | 13333_2021.07_0003_49851474 1 0 0 0 192 | 13333_2021.07_0003_49851486 0 1 0 0 193 | 13333_2021.07_0003_49851372 0 1 0 0 194 | 13333_2021.07_0003_49851432 0 1 0 0 195 | 13333_2021.07_0003_49851358 0 0 0 0 196 | 13333_2021.07_0003_49851454 0 0 0 0 197 | 13333_2021.07_0003_49851396 0 1 0 0 198 | 13333_2021.07_0003_49851382 0 1 0 0 199 | 13333_2021.07_0003_49851470 0 1 0 0 200 | 13333_2021.07_0003_49851369 0 0 0 0 201 | 13333_2021.07_0003_49851393 0 1 0 0 202 | 13333_2021.07_0003_49851428 0 1 0 0 203 | 13333_2021.07_0003_49851473 0 0 0 0 204 | 13333_2021.07_0003_49851436 0 1 0 0 205 | 13333_2021.07_0003_49851426 0 1 0 0 206 | 13333_2021.07_0003_49851395 0 1 0 0 207 | 13333_2021.07_0003_49851420 0 1 0 0 208 | 13333_2021.07_0003_49851284 0 1 0 0 209 | 13333_2021.07_0003_49851477 0 1 0 0 210 | 13333_2021.07_0003_49851352 0 0 0 0 211 | 13333_2021.07_0003_49851364 0 0 0 0 212 | 13333_2021.07_0003_49851401 0 1 0 0 213 | 13333_2021.07_0003_49851492 0 1 0 0 214 | 13333_2021.07_0003_49851440 0 1 0 0 215 | 13333_2021.07_0003_49851362 0 0 0 0 216 | 13333_2021.07_0003_49851424 0 1 0 0 217 | 13333_2021.07_0003_49851463 0 1 0 0 218 | 13333_2021.07_0003_49851379 0 1 0 0 219 | 13333_2021.07_0003_49851449 0 0 0 0 220 | 13333_2021.07_0003_49851489 0 1 0 0 221 | 13333_2021.07_0003_49851465 0 1 0 0 222 | 13333_2021.07_0003_49851283 0 1 0 0 223 | 13333_2021.07_0003_49851411 0 1 0 0 224 | 13333_2021.07_0003_49851390 0 1 0 0 225 | 13333_2021.07_0003_49851419 0 1 0 0 226 | 13333_2021.07_0003_49851452 0 0 0 0 227 | 13333_2021.07_0003_49851317 0 0 0 0 228 | 13333_2021.07_0003_49851456 0 0 0 0 229 | 13333_2021.07_0003_49851282 0 1 0 0 230 | 13333_2021.07_0003_49851403 0 1 0 0 231 | 13333_2021.07_0003_49851485 0 1 0 0 232 | 13333_2021.07_0003_49851423 0 1 0 0 233 | 13333_2021.07_0003_49851483 0 1 0 0 234 | 13333_2021.07_0003_49851375 0 0 0 0 235 | 13333_2021.07_0003_49851376 0 1 0 0 236 | 13333_2021.07_0001_50071255 0 0 0 0 237 | 13333_2021.07_0001_50071448 0 0 0 0 238 | 13333_2021.07_0001_50072288 0 0 0 0 239 | 13333_2021.07_0001_50071737 0 0 0 0 240 | 13333_2021.07_0001_50071369 0 0 0 0 241 | 13333_2021.07_0001_50071693 0 0 0 0 242 | 13333_2021.07_0001_50072071 0 0 0 0 243 | 13333_2021.07_0001_50072027 0 0 0 0 244 | 13333_2021.07_0001_50071375 0 0 0 0 245 | 13333_2021.07_0001_50071409 0 0 0 0 246 | 13333_2021.07_0001_50072119 1 1 1 0 247 | 13333_2021.07_0001_50072045 0 0 0 0 248 | 13333_2021.07_0001_50072106 1 1 0 0 249 | 13333_2021.07_0001_50071683 0 0 0 0 250 | 13333_2021.07_0001_50071383 0 0 0 0 251 | 13333_2021.07_0001_50071775 0 0 0 0 252 | 13333_2021.07_0001_50071535 0 0 0 0 253 | 13333_2021.07_0001_50071546 0 0 0 0 254 | 13333_2021.07_0001_50071433 0 0 0 0 255 | 13333_2021.07_0001_50071486 0 1 0 0 256 | 13333_2021.07_0001_50072198 1 0 1 0 257 | 13333_2021.07_0001_50072470 1 0 1 0 258 | 13333_2021.07_0001_50071918 0 0 0 0 259 | 13333_2021.07_0001_50071362 0 1 0 0 260 | 13333_2021.07_0001_50072170 1 0 1 0 261 | 13333_2021.07_0001_50071720 0 0 0 0 262 | 13333_2021.07_0001_50071987 0 0 0 0 263 | 13333_2021.07_0001_50072151 1 1 1 0 264 | 13333_2021.07_0001_50071336 0 1 0 0 265 | 13333_2021.07_0001_50071402 0 0 0 0 266 | 13333_2021.07_0001_50071794 0 0 0 0 267 | 13333_2021.07_0001_50071623 0 0 0 0 268 | 13333_2021.07_0001_50071471 0 0 0 0 269 | 13333_2021.07_0001_50072291 0 1 0 0 270 | 13333_2021.07_0001_50071636 0 0 0 0 271 | 13333_2021.07_0001_50071217 0 0 0 0 272 | 13333_2021.07_0001_50072097 0 0 0 0 273 | 13333_2021.07_0001_50071931 0 0 0 0 274 | 13333_2021.07_0001_50072032 0 0 0 0 275 | 13333_2021.07_0001_50072114 1 0 0 0 276 | 13333_2021.07_0001_50071493 0 0 0 0 277 | 13333_2021.07_0001_50071866 0 0 0 0 278 | 13333_2021.07_0001_50071856 0 0 0 0 279 | 13333_2021.07_0001_50071901 0 0 0 0 280 | 13333_2021.07_0001_50071516 0 0 0 0 281 | 13333_2021.07_0001_50072802 1 0 1 0 282 | 13333_2021.07_0001_50072200 1 0 1 0 283 | 13333_2021.07_0001_50072313 1 0 1 0 284 | 13333_2021.07_0000_50128488 0 0 0 0 285 | 13333_2021.07_0000_50128428 1 0 0 0 286 | 13333_2021.07_0000_50128479 0 0 0 0 287 | 13333_2021.07_0000_50128485 0 0 0 0 288 | 13333_2021.07_0000_50128421 0 0 0 0 289 | 13333_2021.07_0000_50128435 1 0 0 0 290 | 13333_2021.07_0000_50128443 1 0 0 0 291 | 13333_2021.07_0000_50128426 1 0 0 0 292 | 13333_2021.07_0000_50128510 0 0 0 0 293 | 13333_2021.07_0000_50128513 0 0 0 0 294 | 13333_2021.07_0000_50128439 1 0 0 0 295 | 13333_2021.07_0000_50128541 0 0 0 0 296 | 13333_2021.07_0000_50128442 1 0 0 0 297 | 13333_2021.07_0000_50128502 0 0 0 0 298 | 13333_2021.07_0000_50128494 0 0 0 0 299 | 13333_2021.07_0000_50128477 0 0 0 0 300 | 13333_2021.07_0000_50128484 0 0 0 0 301 | 13333_2021.07_0000_50128419 0 0 0 0 302 | 13333_2021.07_0000_50128472 0 0 0 0 303 | 13333_2021.07_0000_50128474 0 0 0 0 304 | 13333_2021.07_0000_50128501 0 0 0 0 305 | 13333_2021.07_0000_50128504 0 0 0 0 306 | 13333_2021.07_0000_50128498 0 0 0 0 307 | 13333_2021.07_0000_50128491 0 0 0 0 308 | 13333_2021.07_0000_50128490 0 0 0 0 309 | 13333_2021.07_0000_50128420 0 0 0 0 310 | 13333_2021.07_0000_50128486 0 0 0 0 311 | 13333_2021.07_0000_50128499 0 0 0 0 312 | 13333_2021.07_0000_50128495 0 0 0 0 313 | 13333_2021.07_0000_50128470 0 0 0 0 314 | 13333_2021.07_0000_50128464 1 1 1 0 315 | 13333_2021.07_0000_50128467 1 1 1 0 316 | 13333_2021.07_0000_50128524 0 0 0 0 317 | 13333_2021.07_0000_50128478 0 0 0 0 318 | 13333_2021.07_0000_50128423 0 0 0 0 319 | 13333_2021.07_0000_50128475 0 0 0 0 320 | 13333_2021.07_0000_50128538 0 0 0 0 321 | 13333_2021.07_0000_50128487 0 0 0 0 322 | 13333_2021.07_0000_50128489 0 0 0 0 323 | 13333_2021.07_0000_50128496 0 0 0 0 324 | 13333_2021.07_0000_50128430 1 0 0 0 325 | 13333_2021.07_0000_50128493 0 0 0 0 326 | 13333_2021.07_0000_50128476 0 0 0 0 327 | 13333_2021.07_0000_50128446 1 0 0 0 328 | 13333_2021.07_0000_50128535 0 0 0 0 329 | 13333_2021.07_0000_50128516 0 0 0 0 330 | 13333_2021.07_0000_50128542 0 0 0 0 331 | 13333_2021.07_0000_50128471 0 0 0 0 332 | 13333_2021.07_0000_50128434 1 0 0 0 333 | 13333_2021.07_0000_50128483 0 0 0 0 334 | 13333_2021.07_0000_50128500 0 0 0 0 335 | 13333_2021.07_0000_50128505 0 0 0 0 336 | 13333_2021.07_0000_50128481 0 0 0 0 337 | 13333_2021.07_0000_50128482 0 0 0 0 338 | 13333_2021.07_0000_50128497 0 0 0 0 339 | 13333_2021.07_0000_50128531 0 0 0 0 340 | 13333_2021.07_0000_50128527 0 0 0 0 341 | 13333_2021.07_0000_50128451 1 1 1 0 342 | 13333_2021.07_0000_50128452 1 0 1 0 343 | 13333_2021.07_0000_50128427 0 0 0 0 344 | 13333_2021.07_0000_50128473 0 0 0 0 345 | 13333_2021.07_0000_50128503 0 0 0 0 346 | 13333_2021.07_0000_50128455 1 1 1 0 347 | 13333_2021.07_0000_50128422 0 0 0 0 348 | 13333_2021.07_0000_50128425 1 0 0 0 349 | 13333_2021.07_0000_50128506 0 0 0 0 350 | 13333_2021.09_0003_51743321 0 0 0 0 351 | 13333_2021.09_0003_51743351 1 0 0 0 352 | 13333_2021.09_0003_51743350 0 1 0 0 353 | 13333_2021.09_0003_51743353 1 1 0 0 354 | 13333_2021.09_0003_51743343 0 1 0 0 355 | 13333_2021.09_0003_51743348 0 1 0 0 356 | 13333_2021.09_0003_51743205 0 0 0 0 357 | 13333_2021.09_0003_51743234 0 0 0 0 358 | 13333_2021.09_0003_51743331 0 1 1 0 359 | 13333_2021.09_0003_51743347 0 0 0 0 360 | 13333_2021.09_0003_51743354 0 0 0 0 361 | 13333_2021.09_0003_51743202 0 0 0 0 362 | 13333_2021.09_0003_51743349 0 0 0 0 363 | 13333_2021.09_0003_51743315 0 0 0 0 364 | 13333_2021.09_0003_51743305 0 0 0 0 365 | 13333_2021.09_0003_51743352 0 0 1 0 366 | 13333_2021.09_0003_51743225 1 0 0 0 367 | 13333_2021.09_0002_51747303 1 1 0 0 368 | 13333_2021.09_0002_51747301 1 1 1 0 369 | 13333_2021.09_0002_51747297 1 0 1 1 370 | 13333_2021.09_0002_51747300 1 1 0 0 371 | 13333_2021.09_0002_51747299 1 0 1 0 372 | 13333_2021.09_0002_51747298 0 1 1 0 373 | 13333_2021.09_0002_51747302 1 1 0 0 374 | 13333_2021.09_0001_51688951 1 0 0 1 375 | 13333_2021.09_0001_51688686 0 0 1 1 376 | 13333_2021.09_0001_51688679 0 0 1 1 377 | 13333_2021.09_0001_51688680 0 0 0 1 378 | 13333_2021.09_0001_51689177 0 0 1 0 379 | 13333_2021.09_0001_51688677 0 0 1 1 380 | 13333_2021.09_0001_51688953 1 0 0 1 381 | 13333_2021.09_0001_51689179 1 0 0 1 382 | 13333_2021.09_0001_51688957 1 0 0 1 383 | 13333_2021.09_0001_51688573 0 0 0 0 384 | 13333_2021.09_0001_51688927 0 0 0 1 385 | 13333_2021.09_0001_51689688 1 0 0 1 386 | 13333_2021.09_0001_51689168 1 0 0 0 387 | 13333_2021.09_0001_51689166 1 0 0 0 388 | 13333_2021.09_0001_51689649 1 0 0 1 389 | 13333_2021.09_0001_51688919 0 0 0 1 390 | 13333_2021.09_0001_51688961 0 0 0 1 391 | 13333_2021.09_0001_51688676 0 0 1 1 392 | 13333_2021.09_0001_51688920 0 0 0 1 393 | 13333_2021.09_0001_51689916 1 1 0 0 394 | 13333_2021.09_0001_51688913 0 0 0 1 395 | 13333_2021.09_0001_51688916 0 0 0 1 396 | 13333_2021.09_0001_51689673 1 0 0 1 397 | 13333_2021.09_0001_51688684 0 0 1 1 398 | 13333_2021.09_0001_51688586 1 0 1 0 399 | 13333_2021.09_0001_51689173 1 0 0 0 400 | 13333_2021.09_0001_51688929 0 0 0 1 401 | 13333_2021.09_0001_51688673 0 0 0 1 402 | 13333_2021.09_0001_51688917 0 0 0 1 403 | 13333_2021.09_0001_51688577 0 0 0 0 404 | 13333_2021.09_0001_51689919 1 0 1 0 405 | 13333_2021.09_0001_51688685 0 0 0 1 406 | 13333_2021.09_0001_51689646 1 0 0 1 407 | 13333_2021.09_0001_51688926 0 0 0 1 408 | 13333_2021.09_0001_51688921 0 0 0 1 409 | 13333_2021.09_0001_51689172 1 0 0 0 410 | 13333_2021.09_0001_51688678 0 0 1 1 411 | 13333_2021.09_0001_51689176 0 0 0 0 412 | 13333_2021.09_0001_51688933 1 0 0 1 413 | 13333_2021.09_0001_51688934 0 0 0 1 414 | 13333_2021.09_0001_51689914 0 1 1 0 415 | 13333_2021.09_0001_51688576 1 0 0 0 416 | 13333_2021.09_0001_51688930 0 0 0 1 417 | 13333_2021.09_0001_51688928 0 0 0 1 418 | 13333_2021.09_0001_51688580 1 0 0 0 419 | 13333_2021.09_0001_51688931 1 0 0 1 420 | 13333_2021.09_0001_51688936 1 0 0 1 421 | 13333_2021.09_0001_51688954 1 0 0 1 422 | 13333_2021.09_0001_51689171 1 0 0 0 423 | 13333_2021.09_0001_51688952 1 0 0 1 424 | 13333_2021.09_0001_51688937 1 0 0 1 425 | 13333_2021.09_0001_51688670 0 0 0 1 426 | 13333_2021.09_0001_51688922 0 0 0 0 427 | 13333_2021.09_0001_51688932 1 0 0 1 428 | 13333_2021.09_0001_51688674 0 0 0 1 429 | 13333_2021.09_0001_51688918 0 0 0 1 430 | 13333_2021.09_0001_51689170 1 0 0 0 431 | 13333_2021.09_0001_51689915 0 1 0 0 432 | 13333_2021.09_0001_51688575 0 0 0 0 433 | 13333_2021.09_0001_51688881 0 0 0 1 434 | 13333_2021.09_0001_51689178 0 0 1 0 435 | 13333_2021.09_0001_51688935 1 0 0 1 436 | 13333_2021.09_0001_51688956 1 0 0 1 437 | 13333_2021.09_0001_51688958 1 0 0 1 438 | 13333_2021.09_0001_51688687 0 0 1 1 439 | 13333_2021.09_0001_51688682 0 0 0 1 440 | 13333_2021.09_0001_51688949 1 0 0 1 441 | 13333_2021.09_0001_51688583 1 0 1 0 442 | 13333_2021.09_0001_51689175 1 0 0 0 443 | 13333_2021.09_0001_51688950 1 0 0 1 444 | 13333_2021.09_0001_51689169 1 0 0 0 445 | 13333_2021.09_0001_51688959 1 0 0 1 446 | 13333_2021.09_0001_51689658 1 0 0 1 447 | 13333_2021.09_0001_51688574 0 0 0 0 448 | 13333_2021.09_0001_51689181 0 0 0 0 449 | 13333_2021.09_0001_51688672 0 0 0 1 450 | 13333_2021.09_0001_51688572 0 0 0 0 451 | 13333_2021.09_0001_51688688 0 0 1 1 452 | 13333_2021.09_0001_51688681 0 0 1 1 453 | 13333_2021.09_0001_51688948 1 0 0 1 454 | 13333_2021.09_0001_51688675 0 0 1 1 455 | 13333_2021.09_0001_51688923 0 0 0 1 456 | 13333_2021.09_0001_51689167 1 0 1 0 457 | 13333_2021.09_0001_51688924 0 0 0 1 458 | 13333_2021.09_0001_51689912 0 0 0 1 459 | 13333_2021.09_0001_51688925 0 0 0 1 460 | 13333_2021.09_0001_51688955 1 0 0 1 461 | 13333_2021.09_0001_51688669 0 0 0 1 462 | 13333_2021.09_0001_51688683 0 0 1 1 463 | 13333_2021.09_0004_52719141 0 0 0 0 464 | 13333_2021.09_0004_52719045 0 0 0 0 465 | 13333_2021.09_0004_52719060 0 0 0 0 466 | 13333_2021.09_0004_52719674 0 0 1 0 467 | 13333_2021.09_0004_52719508 0 0 1 0 468 | 13333_2021.09_0004_52719617 0 0 1 0 469 | 13333_2021.09_0004_52719126 0 0 0 0 470 | 13333_2021.09_0004_52719046 0 0 0 0 471 | 13333_2021.09_0004_52720383 0 0 0 0 472 | 13333_2021.09_0004_52719472 0 0 0 0 473 | 13333_2021.09_0004_52719142 0 0 0 0 474 | 13333_2021.09_0004_52719197 0 0 0 0 475 | 13333_2021.09_0004_52719084 0 0 0 0 476 | 13333_2021.09_0004_52720485 0 0 0 0 477 | 13333_2021.09_0004_52720500 0 0 1 0 478 | 13333_2021.09_0004_52719144 0 0 0 0 479 | 13333_2021.09_0004_52718387 0 0 0 0 480 | 13333_2021.09_0005_52292070 1 0 0 0 481 | 13333_2021.09_0005_52292503 1 0 0 0 482 | 13333_2021.09_0005_52291830 1 0 0 0 483 | 13333_2021.09_0005_52293108 0 0 0 0 484 | 13333_2021.09_0005_52292530 1 1 1 0 485 | 13333_2021.09_0005_52292442 1 0 1 0 486 | 13333_2021.09_0005_52291888 1 0 0 0 487 | 13333_2021.09_0005_52291631 1 0 0 0 488 | 13333_2021.09_0005_52292405 1 1 0 0 489 | 13333_2021.09_0005_52292441 1 1 0 0 490 | 13333_2021.09_0005_52291745 1 0 0 0 491 | 13333_2021.09_0005_52291934 1 0 0 0 492 | 13333_2021.09_0005_52292837 1 0 0 0 493 | 13333_2021.09_0005_52291469 1 1 1 0 494 | 13333_2021.09_0005_52292351 0 0 0 0 495 | 13333_2021.09_0005_52292521 1 1 1 0 496 | 13333_2021.09_0005_52291994 1 0 0 0 497 | 13333_2021.09_0005_52292695 1 0 1 0 498 | 13333_2021.09_0005_52292083 1 0 1 0 499 | 13333_2021.09_0005_52293095 1 0 1 0 500 | 13333_2021.09_0005_52292889 1 0 0 0 501 | 13333_2021.09_0005_52291670 1 0 0 0 502 | 13333_2021.09_0005_52292291 1 0 0 0 503 | 13333_2021.09_0005_52291501 1 0 0 0 504 | 13333_2021.09_0005_52291735 0 0 0 0 505 | 13333_2021.08_0007_51346048 0 0 1 1 506 | 13333_2021.08_0007_51345236 0 1 1 0 507 | 13333_2021.08_0007_50950824 0 0 1 1 508 | 13333_2021.08_0007_51343719 1 1 0 0 509 | 13333_2021.08_0007_51346424 1 0 1 0 510 | 13333_2021.08_0007_50954012 0 1 0 0 511 | 13333_2021.08_0007_50955025 0 0 1 0 512 | 13333_2021.08_0007_50951398 0 1 1 0 513 | 13333_2021.08_0007_51346049 0 0 1 1 514 | 13333_2021.08_0007_51346425 1 0 0 0 515 | 13333_2021.08_0007_50953156 0 0 1 0 516 | 13333_2021.08_0007_51342969 0 1 1 0 517 | 13333_2021.08_0007_51342960 0 1 1 0 518 | 13333_2021.08_0007_50953340 0 0 1 0 519 | 13333_2021.08_0007_51346052 0 0 1 1 520 | 13333_2021.08_0007_51345154 1 1 0 0 521 | 13333_2021.08_0007_51345995 0 0 0 1 522 | 13333_2021.08_0007_50951400 0 0 1 0 523 | 13333_2021.08_0007_51346099 0 0 1 1 524 | 13333_2021.08_0007_51342586 0 0 1 0 525 | 13333_2021.08_0007_50953537 0 0 1 0 526 | 13333_2021.08_0007_51342513 0 0 0 0 527 | 13333_2021.08_0007_51342947 0 0 1 0 528 | 13333_2021.08_0007_50950777 0 0 1 0 529 | 13333_2021.08_0007_51343296 0 0 0 0 530 | 13333_2021.08_0007_51345941 0 1 0 0 531 | 13333_2021.08_0007_50953410 0 0 0 0 532 | 13333_2021.08_0007_51341839 0 0 1 0 533 | 13333_2021.08_0007_50953074 0 0 0 0 534 | 13333_2021.08_0007_51342942 0 1 0 0 535 | 13333_2021.08_0007_51346427 1 0 0 0 536 | 13333_2021.08_0007_50955107 0 0 0 0 537 | 13333_2021.08_0007_51346335 0 0 0 1 538 | 13333_2021.08_0007_50953118 0 0 1 0 539 | 13333_2021.08_0007_51343297 0 0 1 0 540 | 13333_2021.08_0007_51342937 0 0 0 0 541 | 13333_2021.08_0007_51345996 0 1 0 1 542 | 13333_2021.08_0007_50953515 0 1 1 0 543 | 13333_2021.08_0007_50953024 0 0 0 0 544 | 13333_2021.08_0007_51343714 1 1 0 0 545 | 13333_2021.08_0007_51344971 0 0 1 0 546 | 13333_2021.08_0007_50953050 0 0 0 0 547 | 13333_2021.08_0007_50951395 0 0 0 0 548 | 13333_2021.08_0007_50952962 0 1 0 0 549 | 13333_2021.08_0007_51342929 0 0 1 0 550 | 13333_2021.08_0007_50953344 0 0 1 0 551 | 13333_2021.08_0007_51345153 0 0 1 0 552 | 13333_2021.08_0007_50953031 0 0 0 0 553 | 13333_2021.08_0007_51341842 0 0 1 0 554 | 13333_2021.08_0007_51341880 0 0 1 0 555 | 13333_2021.08_0007_50955028 0 0 1 0 556 | 13333_2021.08_0007_50953469 0 0 1 0 557 | 13333_2021.08_0007_51343198 1 1 0 0 558 | 13333_2021.08_0007_51343717 1 1 0 0 559 | 13333_2021.08_0007_51342950 0 1 1 0 560 | 13333_2021.08_0007_50953037 1 0 0 0 561 | 13333_2021.08_0007_50954576 0 1 1 0 562 | 13333_2021.08_0007_51345994 0 0 0 1 563 | 13333_2021.08_0007_51342211 0 0 1 0 564 | 13333_2021.08_0007_51342932 0 0 0 0 565 | 13333_2021.08_0007_50955118 0 0 0 0 566 | 13333_2021.08_0007_50953371 0 0 0 0 567 | 13333_2021.08_0007_50954371 0 1 1 0 568 | 13333_2021.08_0007_51341619 0 0 1 0 569 | 13333_2021.08_0007_50951396 0 0 1 0 570 | 13333_2021.08_0007_51343705 0 0 1 0 571 | 13333_2021.08_0007_51342955 0 1 0 0 572 | 13333_2021.08_0007_50955104 0 0 1 0 573 | 13333_2021.08_0007_51342924 0 0 1 0 574 | 13333_2021.08_0007_50953092 0 0 0 0 575 | 13333_2021.08_0007_50953011 0 0 0 0 576 | 13333_2021.08_0007_50955084 0 1 0 0 577 | 13333_2021.08_0007_51341580 0 0 1 0 578 | 13333_2021.08_0007_51342964 0 1 1 0 579 | 13333_2021.08_0007_50953059 0 0 0 0 580 | 13333_2021.08_0007_51343709 0 0 1 0 581 | 13333_2021.08_0007_51342973 1 0 0 0 582 | 13333_2021.08_0007_50955126 1 0 0 0 583 | 13333_2021.08_0007_51343722 1 0 0 0 584 | 13333_2021.08_0007_50953564 0 0 0 0 585 | 13333_2021.08_0007_51343711 1 1 0 0 586 | 13333_2021.08_0007_50951391 0 0 0 0 587 | 13333_2021.08_0007_51340501 1 0 0 0 588 | 13333_2021.08_0007_50953046 0 0 0 0 589 | 13333_2021.08_0007_51345997 0 1 0 1 590 | 13333_2021.08_0007_50953067 0 0 0 0 591 | 13333_2021.08_0007_51343398 0 0 1 0 592 | 13333_2021.08_0004_51381902 1 1 0 0 593 | 13333_2021.08_0004_51380823 1 1 0 0 594 | 13333_2021.08_0004_51382125 1 1 0 0 595 | 13333_2021.08_0004_51381618 1 1 0 1 596 | 13333_2021.08_0004_51381104 1 1 0 1 597 | 13333_2021.08_0004_51382077 0 1 0 0 598 | 13333_2021.08_0004_51382149 0 0 0 0 599 | 13333_2021.08_0004_51381711 0 1 0 0 600 | 13333_2021.08_0004_51380738 1 1 0 0 601 | 13333_2021.08_0004_51380737 1 1 0 0 602 | 13333_2021.08_0004_51381317 1 1 0 0 603 | 13333_2021.08_0004_51381059 1 1 1 0 604 | 13333_2021.08_0004_51382139 1 1 0 0 605 | 13333_2021.08_0004_51380821 1 1 0 0 606 | 13333_2021.08_0004_51380739 1 1 0 0 607 | 13333_2021.08_0004_51380736 1 1 0 0 608 | 13333_2021.08_0004_51380820 1 1 0 0 609 | 13333_2021.08_0004_51381802 1 1 0 0 610 | 13333_2021.08_0004_51381662 0 1 0 0 611 | 13333_2021.08_0004_51380741 1 1 0 0 612 | 13333_2021.01_0003_41332353 1 0 0 0 613 | 13333_2021.01_0003_41583318 0 0 1 0 614 | 13333_2021.01_0003_41583111 0 0 0 0 615 | 13333_2021.01_0003_41583307 0 0 1 0 616 | 13333_2021.01_0003_41583338 1 1 1 0 617 | 13333_2021.01_0003_41332455 0 0 1 0 618 | 13333_2021.01_0003_41331736 1 1 1 0 619 | 13333_2021.01_0003_41332262 0 0 0 0 620 | 13333_2021.01_0003_41332083 0 0 1 0 621 | 13333_2021.01_0003_41332456 0 0 0 0 622 | 13333_2021.01_0003_41332452 0 1 0 0 623 | 13333_2021.01_0003_41583237 0 0 1 0 624 | 13333_2021.01_0003_41332193 0 0 0 0 625 | 13333_2021.01_0003_41332454 0 1 0 0 626 | 13333_2021.01_0003_41332150 0 0 1 0 627 | 13333_2021.01_0003_41583112 0 1 0 0 628 | 13333_2021.01_0003_41583369 1 0 1 0 629 | 13333_2021.01_0003_41332453 0 0 1 0 630 | 13333_2021.01_0003_41583339 0 1 1 0 631 | 13333_2021.01_0003_41583135 0 1 0 0 632 | 13333_2021.01_0003_41332457 0 0 1 0 633 | 13333_2021.01_0003_41332458 0 0 1 0 634 | 13333_2021.01_0003_41332459 0 1 0 0 635 | 13333_2021.01_0003_41332418 1 0 0 0 636 | 13333_2021.01_0003_41332451 0 1 1 0 637 | 13333_2021.01_0003_41583134 1 0 1 0 638 | 13333_2021.01_0004_41724070 0 1 0 0 639 | 13333_2021.01_0004_41723550 0 1 0 0 640 | 13333_2021.01_0004_41724569 0 0 0 0 641 | 13333_2021.01_0004_41724078 0 0 0 0 642 | 13333_2021.01_0004_41723783 0 1 0 0 643 | 13333_2021.01_0004_41723893 0 1 0 0 644 | 13333_2021.01_0004_41724566 0 0 0 0 645 | 13333_2021.01_0004_41724571 0 0 0 0 646 | 13333_2021.01_0004_41723918 0 1 0 0 647 | 13333_2021.01_0004_41724573 0 0 0 0 648 | 13333_2021.01_0004_41724422 0 0 1 0 649 | 13333_2021.01_0004_41724572 0 0 0 0 650 | 13333_2021.01_0004_41724587 0 0 0 0 651 | 13333_2021.01_0004_41724033 0 1 0 0 652 | 13333_2021.01_0004_41724570 0 0 0 0 653 | 13333_2021.01_0004_41724593 0 0 0 0 654 | 13333_2021.01_0004_41724215 0 0 0 0 655 | 13333_2021.01_0004_41724598 0 0 0 0 656 | 13333_2021.01_0004_41724567 0 0 0 0 657 | 13333_2021.01_0004_41724568 0 0 0 0 658 | 13333_2021.01_0004_41724574 0 0 0 0 659 | 13333_2021.01_0004_41724582 0 1 0 0 660 | 13333_2021.01_0000_41224567 0 1 1 0 661 | 13333_2021.01_0000_41224617 1 0 1 0 662 | 13333_2021.01_0000_41224395 0 0 1 0 663 | 13333_2021.01_0000_41225642 0 1 0 0 664 | 13333_2021.01_0000_41223967 1 0 0 0 665 | 13333_2021.01_0000_41224354 0 1 0 0 666 | 13333_2021.01_0000_41224069 0 1 0 0 667 | 13333_2021.01_0000_41223924 0 0 0 0 668 | 13333_2021.01_0000_41225618 0 0 0 0 669 | 13333_2021.01_0000_41225574 0 1 1 0 670 | 13333_2021.01_0000_41224708 1 0 1 0 671 | 13333_2021.01_0000_41224861 0 1 1 0 672 | 13333_2021.01_0000_41224367 0 1 0 0 673 | 13333_2021.01_0000_41224097 0 0 1 0 674 | 13333_2021.01_0005_41459046 0 0 0 1 675 | 13333_2021.01_0005_41459196 0 0 0 0 676 | 13333_2021.01_0005_41459076 0 0 0 1 677 | 13333_2021.01_0005_41459039 0 0 0 1 678 | 13333_2021.01_0005_41459041 0 0 0 1 679 | 13333_2021.01_0005_41459203 1 0 0 0 680 | 13333_2021.01_0005_41459000 0 0 0 1 681 | 13333_2021.01_0005_41459038 0 0 0 1 682 | 13333_2021.01_0005_41459043 0 0 0 1 683 | 13333_2021.01_0005_41459066 0 0 0 1 684 | 13333_2021.01_0005_41459042 0 0 1 1 685 | 13333_2021.01_0005_41459032 0 0 0 1 686 | 13333_2021.01_0005_41459035 0 0 0 1 687 | 13333_2021.06_0000_48587359 0 0 0 0 688 | 13333_2021.06_0000_48587447 0 1 0 0 689 | 13333_2021.06_0000_48586898 0 0 0 1 690 | 13333_2021.06_0000_48587193 0 0 0 0 691 | 13333_2021.06_0000_48587122 0 0 0 0 692 | 13333_2021.06_0000_48587064 0 0 0 0 693 | 13333_2021.06_0000_48586815 0 1 0 0 694 | 13333_2021.06_0000_48586793 0 1 0 0 695 | 13333_2021.06_0000_48586851 0 1 0 0 696 | 13333_2021.06_0000_48586764 0 0 0 0 697 | 13333_2021.06_0000_48587256 0 0 0 0 698 | 13333_2021.06_0000_48587044 0 0 1 0 699 | 13333_2021.06_0000_48586752 0 0 1 0 700 | 13333_2021.06_0000_48587098 0 0 0 0 701 | 13333_2021.06_0000_48587060 0 0 0 0 702 | 13333_2021.06_0000_48586737 0 0 1 0 703 | 13333_2021.03_0002_42874388 0 1 1 0 704 | 13333_2021.03_0002_42874498 0 1 0 0 705 | 13333_2021.03_0002_42874428 1 0 1 0 706 | 13333_2021.03_0002_42874833 0 0 0 0 707 | 13333_2021.03_0002_42874780 1 0 0 0 708 | 13333_2021.03_0002_42874741 0 0 0 0 709 | 13333_2021.03_0002_42874618 1 0 0 0 710 | 13333_2021.03_0002_42874734 0 0 0 0 711 | 13333_2021.03_0002_42874774 0 0 0 0 712 | 13333_2021.03_0002_42874735 0 0 0 0 713 | 13333_2021.03_0002_42874812 0 0 0 0 714 | 13333_2021.03_0002_42874645 1 0 0 0 715 | 13333_2021.03_0002_42874496 0 1 0 0 716 | 13333_2021.03_0002_42873911 0 0 0 0 717 | 13333_2021.03_0002_42874601 1 1 0 0 718 | 13333_2021.03_0002_42874731 0 0 0 0 719 | 13333_2021.03_0002_42874630 0 0 0 0 720 | 13333_2021.03_0002_42874364 0 0 0 0 721 | 13333_2021.03_0002_42874779 0 0 0 0 722 | 13333_2021.03_0002_42874062 1 1 0 0 723 | 13333_2021.03_0002_42874632 1 0 1 0 724 | 13333_2021.03_0002_42874790 0 0 0 0 725 | 13333_2021.03_0002_42874063 0 1 0 0 726 | 13333_2021.03_0002_42874087 1 1 0 0 727 | 13333_2021.03_0002_42874284 0 1 0 0 728 | 13333_2021.03_0002_42874016 1 1 1 0 729 | 13333_2021.03_0002_42874073 1 1 0 0 730 | 13333_2021.03_0002_42874785 0 0 0 0 731 | 13333_2021.03_0002_42874770 0 0 0 0 732 | 13333_2021.03_0002_42874571 0 1 0 0 733 | 13333_2021.03_0002_42874112 0 1 0 0 734 | 13333_2021.03_0002_42874082 0 1 0 0 735 | 13333_2021.03_0002_42874772 0 0 0 0 736 | 13333_2021.03_0002_42874429 1 0 1 0 737 | 13333_2021.03_0002_42874816 0 0 0 0 738 | 13333_2021.03_0002_42874022 0 1 0 0 739 | 13333_2021.03_0002_42874829 0 0 0 0 740 | 13333_2021.03_0002_42874591 1 0 0 0 741 | 13333_2021.03_0002_42874797 0 0 0 0 742 | 13333_2021.03_0002_42874729 1 0 0 0 743 | 13333_2021.03_0002_42874298 0 1 0 0 744 | 13333_2021.03_0002_42874342 0 1 0 0 745 | 13333_2021.03_0002_42874297 0 1 0 0 746 | 13333_2021.03_0002_42874675 0 0 0 0 747 | 13333_2021.03_0002_42874572 0 1 0 0 748 | 13333_2021.03_0002_42874778 0 0 0 0 749 | 13333_2021.03_0002_42874558 0 1 0 0 750 | 13333_2021.03_0002_42874544 0 1 0 0 751 | 13333_2021.03_0002_42874804 0 0 0 0 752 | 13333_2021.03_0002_42874839 0 0 0 0 753 | 13333_2021.03_0002_42874326 0 1 1 0 754 | 13333_2021.03_0002_42874503 0 1 0 0 755 | 13333_2021.03_0002_42874461 0 1 0 0 756 | 13333_2021.03_0002_42874344 0 1 1 0 757 | 13333_2021.03_0002_42874028 1 1 0 0 758 | 13333_2021.03_0002_42874809 0 0 0 0 759 | 13333_2021.03_0002_42874634 1 0 0 0 760 | 13333_2021.03_0002_42874398 0 1 1 0 761 | 13333_2021.03_0002_42874775 0 0 0 0 762 | 13333_2021.03_0002_42874776 0 0 0 0 763 | 13333_2021.03_0002_42874064 0 0 0 0 764 | 13333_2021.03_0002_42874173 1 1 0 0 765 | 13333_2021.03_0002_42874773 0 0 0 0 766 | 13333_2021.03_0002_42874820 0 0 0 0 767 | 13333_2021.03_0002_42874611 0 1 0 0 768 | 13333_2021.03_0002_42874287 0 1 0 0 769 | 13333_2021.03_0002_42874502 0 1 0 0 770 | 13333_2021.03_0002_42874793 0 0 0 0 771 | 13333_2021.03_0002_42874504 0 1 0 0 772 | 13333_2021.03_0002_42874585 0 0 0 0 773 | 13333_2021.03_0002_42874327 0 1 1 0 774 | 13333_2021.03_0002_42874777 0 0 0 0 775 | 13333_2021.03_0002_42874631 1 0 0 0 776 | 13333_2021.03_0002_42874665 1 0 0 0 777 | 13333_2021.03_0002_42874771 0 0 0 0 778 | 13333_2021.03_0002_42874650 1 0 0 0 779 | 13333_2021.03_0002_42874274 0 0 0 0 780 | 13333_2021.03_0002_42874568 0 1 0 0 781 | 13333_2021.03_0002_42874501 0 1 0 0 782 | 13333_2021.03_0002_42874813 0 0 0 0 783 | 13333_2021.10_0001_53188295 0 0 0 0 784 | 13333_2021.10_0001_53186746 0 1 0 0 785 | 13333_2021.10_0001_53188327 0 1 0 0 786 | 13333_2021.10_0001_53188386 0 0 0 0 787 | 13333_2021.10_0001_53186606 0 0 0 0 788 | 13333_2021.10_0001_53187692 0 1 0 0 789 | 13333_2021.10_0001_53188331 0 0 0 0 790 | 13333_2021.10_0001_53186293 0 0 0 0 791 | 13333_2021.10_0001_53186455 0 0 0 0 792 | 13333_2021.10_0001_53186426 0 0 0 0 793 | 13333_2021.10_0001_53186390 0 0 0 0 794 | 13333_2021.10_0001_53187701 0 1 0 0 795 | 13333_2021.10_0001_53183253 1 0 0 0 796 | 13333_2021.10_0001_53188325 0 0 0 0 797 | 13333_2021.10_0001_53186761 0 1 0 0 798 | 13333_2021.10_0001_53188318 0 0 0 0 799 | 13333_2021.10_0001_53188360 0 0 0 0 800 | 13333_2021.10_0001_53188288 0 0 0 0 801 | 13333_2021.10_0001_53188329 0 0 0 0 802 | 13333_2021.10_0001_53187988 1 1 0 0 803 | 13333_2021.10_0001_53188317 0 0 0 0 804 | 13333_2021.10_0001_53186919 0 1 0 0 805 | 13333_2021.10_0001_53188293 1 0 0 0 806 | 13333_2021.10_0001_53188389 0 0 0 0 807 | 13333_2021.10_0001_53187749 1 0 0 0 808 | 13333_2021.10_0001_53187075 0 0 0 0 809 | 13333_2021.10_0001_53185795 0 0 0 0 810 | 13333_2021.10_0001_53186941 0 0 0 0 811 | 13333_2021.10_0001_53188056 1 0 0 0 812 | 13333_2021.10_0001_53188130 1 0 0 0 813 | 13333_2021.10_0001_53188376 0 0 0 0 814 | 13333_2021.10_0001_53185604 0 0 0 0 815 | 13333_2021.10_0001_53188306 0 0 0 0 816 | 13333_2021.10_0001_53188285 0 0 0 0 817 | 13333_2021.10_0001_53187661 0 1 0 0 818 | 13333_2021.10_0001_53188328 0 0 0 0 819 | 13333_2021.10_0001_53186401 0 0 0 0 820 | 13333_2021.10_0001_53186582 0 0 0 0 821 | 13333_2021.10_0001_53186760 0 0 0 0 822 | 13333_2021.10_0001_53186362 0 0 0 0 823 | 13333_2021.10_0001_53188320 0 0 0 0 824 | 13333_2021.10_0001_53188323 0 1 0 1 825 | 13333_2021.10_0001_53186927 0 0 0 0 826 | 13333_2021.10_0001_53182949 0 0 0 0 827 | 13333_2021.10_0001_53188322 0 0 0 0 828 | 13333_2021.10_0001_53186962 0 0 0 0 829 | 13333_2021.10_0001_53188290 0 0 0 0 830 | 13333_2021.10_0001_53188363 0 0 0 0 831 | 13333_2021.10_0001_53186638 0 0 0 0 832 | 13333_2021.10_0001_53186385 0 0 0 0 833 | 13333_2021.10_0001_53187232 1 0 0 0 834 | 13333_2021.10_0001_53187719 0 1 0 0 835 | 13333_2021.10_0001_53182992 0 0 0 0 836 | 13333_2021.10_0001_53185554 0 0 0 0 837 | 13333_2021.10_0001_53186763 0 1 0 0 838 | 13333_2021.10_0001_53188399 0 0 0 0 839 | 13333_2021.10_0001_53188366 0 0 0 0 840 | 13333_2021.10_0001_53188094 1 0 0 0 841 | 13333_2021.10_0001_53188324 0 1 0 1 842 | 13333_2021.10_0001_53186600 0 0 0 0 843 | 13333_2021.10_0001_53188300 0 0 0 0 844 | 13333_2021.10_0001_53186657 0 0 0 0 845 | 13333_2021.10_0001_53188321 0 0 0 0 846 | 13333_2021.10_0001_53186930 0 0 0 0 847 | 13333_2021.10_0001_53186750 0 1 0 0 848 | 13333_2021.10_0001_53186337 0 0 0 0 849 | 13333_2021.10_0001_53188332 0 0 0 0 850 | 13333_2021.10_0001_53188330 0 0 0 0 851 | 13333_2021.10_0001_53187993 1 1 0 0 852 | 13333_2021.10_0001_53186563 0 0 0 0 853 | 13333_2021.10_0001_53188347 0 0 0 0 854 | 13333_2021.10_0001_53186538 0 0 0 0 855 | 13333_2021.10_0001_53187924 1 1 0 0 856 | 13333_2021.10_0001_53187796 0 1 0 0 857 | 13333_2021.10_0001_53187290 0 0 0 0 858 | 13333_2021.10_0001_53186573 0 0 0 0 859 | 13333_2021.10_0001_53188058 1 0 0 0 860 | 13333_2021.10_0001_53186367 0 0 0 0 861 | 13333_2021.10_0001_53187784 1 0 0 0 862 | 13333_2021.10_0001_53188336 0 0 0 0 863 | 13333_2021.10_0001_53183009 0 0 0 0 864 | 13333_2021.10_0001_53188341 0 0 0 0 865 | 13333_2021.04_0003_44800957 0 0 0 0 866 | 13333_2021.04_0003_44800992 0 1 0 0 867 | 13333_2021.04_0003_44801021 0 0 0 0 868 | 13333_2021.04_0003_44801019 0 0 0 0 869 | 13333_2021.04_0003_44800983 0 0 0 0 870 | 13333_2021.04_0003_44801046 0 0 0 0 871 | 13333_2021.04_0003_44800995 0 1 0 0 872 | 13333_2021.04_0003_44800997 0 1 0 0 873 | 13333_2021.04_0003_44801026 0 0 0 0 874 | 13333_2021.04_0003_44800690 0 0 1 0 875 | 13333_2021.04_0003_44801023 0 0 0 0 876 | 13333_2021.04_0003_44800679 0 0 0 0 877 | 13333_2021.04_0003_44801039 0 0 0 0 878 | 13333_2021.04_0003_44801015 0 0 0 0 879 | 13333_2021.04_0003_44800999 0 1 0 0 880 | 13333_2021.04_0003_44801016 0 0 0 0 881 | 13333_2021.04_0003_44800988 0 0 0 0 882 | 13333_2021.04_0003_44801025 0 0 0 0 883 | 13333_2021.04_0003_44800989 0 0 0 0 884 | 13333_2021.04_0003_44801047 0 0 0 0 885 | 13333_2021.04_0003_44800695 0 0 0 0 886 | 13333_2021.04_0003_44801043 0 0 0 0 887 | 13333_2021.04_0003_44801044 0 0 0 0 888 | 13333_2021.04_0003_44800991 0 0 0 0 889 | 13333_2021.04_0003_44800938 0 0 0 0 890 | 13333_2021.04_0000_44779643 0 0 0 0 891 | 13333_2021.04_0000_44779626 0 0 0 0 892 | 13333_2021.04_0000_44779641 0 0 0 0 893 | 13333_2021.04_0000_44779491 0 0 0 0 894 | 13333_2021.04_0000_44779610 0 0 0 0 895 | 13333_2021.04_0000_44779617 0 0 0 0 896 | 13333_2021.04_0000_44779489 0 0 0 0 897 | 13333_2021.04_0000_44779611 0 0 0 0 898 | 13333_2021.04_0000_44779393 0 0 0 0 899 | 13333_2021.04_0000_44779605 0 0 0 0 900 | 13333_2021.04_0000_44779487 0 0 0 0 901 | 13333_2021.04_0000_44779333 0 0 0 0 902 | 13333_2021.04_0000_44779615 0 0 0 0 903 | 13333_2021.04_0000_44779619 0 0 0 0 904 | 13333_2021.04_0000_44779608 0 0 0 0 905 | 13333_2021.04_0000_44777746 0 0 0 0 906 | 13333_2021.04_0000_44779602 0 0 1 0 907 | 13333_2021.04_0000_44779391 0 0 0 0 908 | 13333_2021.04_0000_44779435 0 0 0 0 909 | 13333_2021.04_0000_44779642 0 0 0 0 910 | 13333_2021.04_0000_44779437 0 0 0 0 911 | 13333_2021.04_0000_44779623 0 0 0 0 912 | 13333_2021.04_0000_44779395 1 0 0 0 913 | 13333_2021.04_0000_44779481 0 0 0 0 914 | 13333_2021.04_0000_44779422 1 0 0 0 915 | 13333_2021.04_0000_44779650 0 0 0 0 916 | 13333_2021.04_0000_44779320 1 0 0 0 917 | 13333_2021.04_0000_44779483 0 0 0 0 918 | 13333_2021.04_0000_44779644 0 0 0 0 919 | 13333_2021.04_0000_44779614 0 0 0 0 920 | 13333_2021.04_0000_44779482 0 0 0 0 921 | 13333_2021.04_0000_44779390 0 0 0 0 922 | 13333_2021.04_0000_44779389 0 0 0 0 923 | 13333_2021.04_0000_44777725 1 0 0 0 924 | 13333_2021.04_0000_44777751 1 0 0 0 925 | 13333_2021.04_0000_44779319 1 0 0 0 926 | 13333_2021.04_0000_44779616 0 0 0 0 927 | 13333_2021.04_0000_44779369 0 0 0 0 928 | 13333_2021.04_0000_44779353 0 0 0 0 929 | 13333_2021.04_0000_44779488 0 0 0 0 930 | --------------------------------------------------------------------------------