├── googled873bf132668a2f1.html
├── css
├── theme.css
├── theme.dark.css
├── theme.light.css
├── colors.module.css
├── styles.css
├── typography.module.css
└── tokens.css
├── sitemap.xml
├── LICENSE
├── CONTRIBUTING.md
└── README.md
/googled873bf132668a2f1.html:
--------------------------------------------------------------------------------
1 | google-site-verification: googled873bf132668a2f1.html
--------------------------------------------------------------------------------
/css/theme.css:
--------------------------------------------------------------------------------
1 | @import url(tokens.css);
2 | @import url(colors.module.css);
3 | @import url(typography.module.css);
4 | @import url(theme.light.css) (prefers-color-scheme: light);
5 | @import url(theme.dark.css) (prefers-color-scheme: dark);
6 |
--------------------------------------------------------------------------------
/sitemap.xml:
--------------------------------------------------------------------------------
1 |
2 |
7 |
8 |
9 |
10 |
11 | https://guang000.github.io/Awesome-Dataset-Distillation/
12 | 2024-03-19T12:19:46+00:00
13 |
14 |
15 |
16 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2022 Guang Li, Bo Zhao, and Tongzhou Wang
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Contribution Guide
2 |
3 | 1. Put the bibtex in `Awesome-Dataset-Distillation/citations/.txt`.
4 | 2. In the `README.md`, add the paper to **one** proper section in the format `TITLE (AUTHOR, CONFERENCE YEAR) OPTIONAL_PROJECT_LINK OPTIONAL_GITHUB BIBTEX`.
5 |
6 | + Title should be a link to the paper. When the paper is hosted on arXiv, please use the abstract link (rather than pdf link).
7 |
8 | + Change the number in "Papers-number-FF6F00".
9 |
10 | + Use the following icons to represent otherlinks:
11 | + :globe_with_meridians: (`:globe_with_meridians:`) Project Page
12 | + :octocat: (`:octocat:`) Code
13 | + :book: (`:book:`) `bibtex`
14 |
15 | For example:
16 |
17 | + [Dataset Distillation](https://arxiv.org/abs/1811.10959) (Tongzhou Wang et al., 2018) [:globe_with_meridians:](https://www.tongzhouwang.info/dataset_distillation/) [:octocat:](https://github.com/SsnL/dataset-distillation) [:book:](./citations/wang2018datasetdistillation.txt)
18 |
19 |
20 | Above entry is generated using following Markdown:
21 |
22 | ```
23 | + [Dataset Distillation](https://arxiv.org/abs/1811.10959) (Tongzhou Wang et al., 2018)
24 | [:globe_with_meridians:](https://www.tongzhouwang.info/dataset_distillation/)
25 | [:octocat:](https://github.com/SsnL/dataset-distillation)
26 | [:book:](./citations/wang2018datasetdistillation.txt)
27 |
28 | ```
29 |
--------------------------------------------------------------------------------
/css/theme.dark.css:
--------------------------------------------------------------------------------
1 | :root {
2 | --md-sys-color-primary: var(--md-sys-color-primary-dark);
3 | --md-sys-color-on-primary: var(--md-sys-color-on-primary-dark);
4 | --md-sys-color-primary-container: var(--md-sys-color-primary-container-dark);
5 | --md-sys-color-on-primary-container: var(--md-sys-color-on-primary-container-dark);
6 | --md-sys-color-secondary: var(--md-sys-color-secondary-dark);
7 | --md-sys-color-on-secondary: var(--md-sys-color-on-secondary-dark);
8 | --md-sys-color-secondary-container: var(--md-sys-color-secondary-container-dark);
9 | --md-sys-color-on-secondary-container: var(--md-sys-color-on-secondary-container-dark);
10 | --md-sys-color-tertiary: var(--md-sys-color-tertiary-dark);
11 | --md-sys-color-on-tertiary: var(--md-sys-color-on-tertiary-dark);
12 | --md-sys-color-tertiary-container: var(--md-sys-color-tertiary-container-dark);
13 | --md-sys-color-on-tertiary-container: var(--md-sys-color-on-tertiary-container-dark);
14 | --md-sys-color-error: var(--md-sys-color-error-dark);
15 | --md-sys-color-error-container: var(--md-sys-color-error-container-dark);
16 | --md-sys-color-on-error: var(--md-sys-color-on-error-dark);
17 | --md-sys-color-on-error-container: var(--md-sys-color-on-error-container-dark);
18 | --md-sys-color-background: var(--md-sys-color-background-dark);
19 | --md-sys-color-on-background: var(--md-sys-color-on-background-dark);
20 | --md-sys-color-surface: var(--md-sys-color-surface-dark);
21 | --md-sys-color-on-surface: var(--md-sys-color-on-surface-dark);
22 | --md-sys-color-surface-variant: var(--md-sys-color-surface-variant-dark);
23 | --md-sys-color-on-surface-variant: var(--md-sys-color-on-surface-variant-dark);
24 | --md-sys-color-outline: var(--md-sys-color-outline-dark);
25 | --md-sys-color-inverse-on-surface: var(--md-sys-color-inverse-on-surface-dark);
26 | --md-sys-color-inverse-surface: var(--md-sys-color-inverse-surface-dark);
27 | --md-sys-color-inverse-primary: var(--md-sys-color-inverse-primary-dark);
28 | --md-sys-color-shadow: var(--md-sys-color-shadow-dark);
29 | --md-sys-color-surface-tint: var(--md-sys-color-surface-tint-dark);
30 | --md-sys-color-outline-variant: var(--md-sys-color-outline-variant-dark);
31 | --md-sys-color-scrim: var(--md-sys-color-scrim-dark);
32 | }
33 |
--------------------------------------------------------------------------------
/css/theme.light.css:
--------------------------------------------------------------------------------
1 | :root {
2 | --md-sys-color-primary: var(--md-sys-color-primary-light);
3 | --md-sys-color-on-primary: var(--md-sys-color-on-primary-light);
4 | --md-sys-color-primary-container: var(--md-sys-color-primary-container-light);
5 | --md-sys-color-on-primary-container: var(--md-sys-color-on-primary-container-light);
6 | --md-sys-color-secondary: var(--md-sys-color-secondary-light);
7 | --md-sys-color-on-secondary: var(--md-sys-color-on-secondary-light);
8 | --md-sys-color-secondary-container: var(--md-sys-color-secondary-container-light);
9 | --md-sys-color-on-secondary-container: var(--md-sys-color-on-secondary-container-light);
10 | --md-sys-color-tertiary: var(--md-sys-color-tertiary-light);
11 | --md-sys-color-on-tertiary: var(--md-sys-color-on-tertiary-light);
12 | --md-sys-color-tertiary-container: var(--md-sys-color-tertiary-container-light);
13 | --md-sys-color-on-tertiary-container: var(--md-sys-color-on-tertiary-container-light);
14 | --md-sys-color-error: var(--md-sys-color-error-light);
15 | --md-sys-color-error-container: var(--md-sys-color-error-container-light);
16 | --md-sys-color-on-error: var(--md-sys-color-on-error-light);
17 | --md-sys-color-on-error-container: var(--md-sys-color-on-error-container-light);
18 | --md-sys-color-background: var(--md-sys-color-background-light);
19 | --md-sys-color-on-background: var(--md-sys-color-on-background-light);
20 | --md-sys-color-surface: var(--md-sys-color-surface-light);
21 | --md-sys-color-on-surface: var(--md-sys-color-on-surface-light);
22 | --md-sys-color-surface-variant: var(--md-sys-color-surface-variant-light);
23 | --md-sys-color-on-surface-variant: var(--md-sys-color-on-surface-variant-light);
24 | --md-sys-color-outline: var(--md-sys-color-outline-light);
25 | --md-sys-color-inverse-on-surface: var(--md-sys-color-inverse-on-surface-light);
26 | --md-sys-color-inverse-surface: var(--md-sys-color-inverse-surface-light);
27 | --md-sys-color-inverse-primary: var(--md-sys-color-inverse-primary-light);
28 | --md-sys-color-shadow: var(--md-sys-color-shadow-light);
29 | --md-sys-color-surface-tint: var(--md-sys-color-surface-tint-light);
30 | --md-sys-color-outline-variant: var(--md-sys-color-outline-variant-light);
31 | --md-sys-color-scrim: var(--md-sys-color-scrim-light);
32 | }
33 |
--------------------------------------------------------------------------------
/css/colors.module.css:
--------------------------------------------------------------------------------
1 | .primary {
2 | background-color: var(--md-sys-color-primary);
3 | }
4 | .primary-text {
5 | color: var(--md-sys-color-primary);
6 | }
7 | .on-primary {
8 | background-color: var(--md-sys-color-on-primary);
9 | }
10 | .on-primary-text {
11 | color: var(--md-sys-color-on-primary);
12 | }
13 | .primary-container {
14 | background-color: var(--md-sys-color-primary-container);
15 | }
16 | .primary-container-text {
17 | color: var(--md-sys-color-primary-container);
18 | }
19 | .on-primary-container {
20 | background-color: var(--md-sys-color-on-primary-container);
21 | }
22 | .on-primary-container-text {
23 | color: var(--md-sys-color-on-primary-container);
24 | }
25 | .secondary {
26 | background-color: var(--md-sys-color-secondary);
27 | }
28 | .secondary-text {
29 | color: var(--md-sys-color-secondary);
30 | }
31 | .on-secondary {
32 | background-color: var(--md-sys-color-on-secondary);
33 | }
34 | .on-secondary-text {
35 | color: var(--md-sys-color-on-secondary);
36 | }
37 | .secondary-container {
38 | background-color: var(--md-sys-color-secondary-container);
39 | }
40 | .secondary-container-text {
41 | color: var(--md-sys-color-secondary-container);
42 | }
43 | .on-secondary-container {
44 | background-color: var(--md-sys-color-on-secondary-container);
45 | }
46 | .on-secondary-container-text {
47 | color: var(--md-sys-color-on-secondary-container);
48 | }
49 | .tertiary {
50 | background-color: var(--md-sys-color-tertiary);
51 | }
52 | .tertiary-text {
53 | color: var(--md-sys-color-tertiary);
54 | }
55 | .on-tertiary {
56 | background-color: var(--md-sys-color-on-tertiary);
57 | }
58 | .on-tertiary-text {
59 | color: var(--md-sys-color-on-tertiary);
60 | }
61 | .tertiary-container {
62 | background-color: var(--md-sys-color-tertiary-container);
63 | }
64 | .tertiary-container-text {
65 | color: var(--md-sys-color-tertiary-container);
66 | }
67 | .on-tertiary-container {
68 | background-color: var(--md-sys-color-on-tertiary-container);
69 | }
70 | .on-tertiary-container-text {
71 | color: var(--md-sys-color-on-tertiary-container);
72 | }
73 | .error {
74 | background-color: var(--md-sys-color-error);
75 | }
76 | .error-text {
77 | color: var(--md-sys-color-error);
78 | }
79 | .error-container {
80 | background-color: var(--md-sys-color-error-container);
81 | }
82 | .error-container-text {
83 | color: var(--md-sys-color-error-container);
84 | }
85 | .on-error {
86 | background-color: var(--md-sys-color-on-error);
87 | }
88 | .on-error-text {
89 | color: var(--md-sys-color-on-error);
90 | }
91 | .on-error-container {
92 | background-color: var(--md-sys-color-on-error-container);
93 | }
94 | .on-error-container-text {
95 | color: var(--md-sys-color-on-error-container);
96 | }
97 | .background {
98 | background-color: var(--md-sys-color-background);
99 | }
100 | .background-text {
101 | color: var(--md-sys-color-background);
102 | }
103 | .on-background {
104 | background-color: var(--md-sys-color-on-background);
105 | }
106 | .on-background-text {
107 | color: var(--md-sys-color-on-background);
108 | }
109 | .surface {
110 | background-color: var(--md-sys-color-surface);
111 | }
112 | .surface-text {
113 | color: var(--md-sys-color-surface);
114 | }
115 | .on-surface {
116 | background-color: var(--md-sys-color-on-surface);
117 | }
118 | .on-surface-text {
119 | color: var(--md-sys-color-on-surface);
120 | }
121 | .surface-variant {
122 | background-color: var(--md-sys-color-surface-variant);
123 | }
124 | .surface-variant-text {
125 | color: var(--md-sys-color-surface-variant);
126 | }
127 | .on-surface-variant {
128 | background-color: var(--md-sys-color-on-surface-variant);
129 | }
130 | .on-surface-variant-text {
131 | color: var(--md-sys-color-on-surface-variant);
132 | }
133 | .outline {
134 | background-color: var(--md-sys-color-outline);
135 | }
136 | .outline-text {
137 | color: var(--md-sys-color-outline);
138 | }
139 | .inverse-on-surface {
140 | background-color: var(--md-sys-color-inverse-on-surface);
141 | }
142 | .inverse-on-surface-text {
143 | color: var(--md-sys-color-inverse-on-surface);
144 | }
145 | .inverse-surface {
146 | background-color: var(--md-sys-color-inverse-surface);
147 | }
148 | .inverse-surface-text {
149 | color: var(--md-sys-color-inverse-surface);
150 | }
151 | .inverse-primary {
152 | background-color: var(--md-sys-color-inverse-primary);
153 | }
154 | .inverse-primary-text {
155 | color: var(--md-sys-color-inverse-primary);
156 | }
157 | .shadow {
158 | background-color: var(--md-sys-color-shadow);
159 | }
160 | .shadow-text {
161 | color: var(--md-sys-color-shadow);
162 | }
163 | .surface-tint {
164 | background-color: var(--md-sys-color-surface-tint);
165 | }
166 | .surface-tint-text {
167 | color: var(--md-sys-color-surface-tint);
168 | }
169 | .outline-variant {
170 | background-color: var(--md-sys-color-outline-variant);
171 | }
172 | .outline-variant-text {
173 | color: var(--md-sys-color-outline-variant);
174 | }
175 | .scrim {
176 | background-color: var(--md-sys-color-scrim);
177 | }
178 | .scrim-text {
179 | color: var(--md-sys-color-scrim);
180 | }
181 |
--------------------------------------------------------------------------------
/css/styles.css:
--------------------------------------------------------------------------------
1 | @import url(theme.css);
2 |
3 | html {
4 | scroll-padding-top: 72px;
5 | }
6 |
7 | a {
8 | text-decoration: none;
9 | }
10 |
11 | a:hover {
12 | text-decoration: underline;
13 | }
14 |
15 | ul {
16 | margin: 0;
17 | padding: 0;
18 | list-style-type: none;
19 | }
20 |
21 | body {
22 | margin-top: 0;
23 | }
24 |
25 | header {
26 | margin: 0;
27 | width: 100%;
28 | position: fixed;
29 | }
30 |
31 | hr {
32 | text-align: center;
33 | margin-top: 0;
34 | margin-bottom: 0;
35 | }
36 |
37 | .top-bar {
38 | display: block;
39 | margin: 0;
40 | padding: 0;
41 | height: 64px;
42 | }
43 |
44 | .top-bar-left {
45 | display: flex;
46 | justify-content: flex-start;
47 | order: -1;
48 | flex: 1 1 auto;
49 | align-items: center;
50 | }
51 |
52 | .navigation-button {
53 | fill: var(--md-sys-color-on-background);
54 | display: grid;
55 | height: 48px;
56 | width: 48px;
57 | border-radius: 50%;
58 | place-items: center;
59 | }
60 |
61 | .navigation-button:hover {
62 | background-color: var(--md-sys-color-outline-variant);
63 | }
64 |
65 | .close-navigation-button {
66 | fill: var(--md-sys-color-on-surface);
67 | display: grid;
68 | height: 48px;
69 | width: 48px;
70 | margin-left: 8px;
71 | border-radius: 50%;
72 | place-items: center;
73 | }
74 |
75 | .close-navigation-button:hover {
76 | background-color: var(--md-sys-color-inverse-on-surface);
77 | }
78 |
79 | .top-bar-title {
80 | padding-left: 16px;
81 | }
82 |
83 | .sidebar {
84 | height: 100%;
85 | width: 0;
86 | position: fixed;
87 | z-index: 1;
88 | top: 0;
89 | left: 0;
90 | padding-top: 0;
91 | overflow-x: hidden;
92 | transition: 0.3s;
93 | }
94 |
95 | .overlay {
96 | position: fixed;
97 | z-index: 1;
98 | background-color: rgba(0, 0, 0, 0.8);
99 | }
100 |
101 | .navigation-list {
102 | display: block;
103 | }
104 |
105 | .navigation-item {
106 | margin: 8px 0;
107 | }
108 |
109 | .list-section {
110 | display: block;
111 | margin: 0 16px 8px 16px;
112 | padding: 24px;
113 | border-radius: 24px;
114 | }
115 |
116 | .top-title {
117 | width: 100%;
118 | margin: 0 auto;
119 | max-width: 1760px;
120 | }
121 |
122 | .count-container {
123 | border-radius: 24px;
124 | padding: 80px 24px 0 24px;
125 | margin: 0;
126 | display: grid;
127 | justify-content: space-between;
128 | grid-column-gap: 20px;
129 | column-gap: 20px;
130 | grid-template-columns: 6fr 1fr 6fr;
131 | user-select: none;
132 | }
133 |
134 | .item-number-container {
135 | border-radius: 24px;
136 | cursor: pointer;
137 | }
138 |
139 | .item-number-container:hover {
140 | color: var(--md-sys-color-on-primary-container);
141 | background-color: var(--md-sys-color-primary-container);
142 | }
143 |
144 | .count-title {
145 | margin: 0;
146 | text-align: center;
147 | }
148 |
149 | .count-number {
150 | margin: 16px 0 0 0;
151 | text-align: center;
152 | }
153 |
154 | .count-divider {
155 | width: 0;
156 | height: 100%;
157 | margin: 0 auto;
158 | }
159 |
160 | .title-brief {
161 | background-image: url(../images/titleBackground.png);
162 | background-position: 95% 5%;
163 | border-radius: 24px;
164 | padding: 56px;
165 | margin: 0;
166 | text-align: center;
167 | }
168 |
169 |
170 |
171 | .title {
172 | margin: 0 0 8px 0;
173 | font-weight: 475;
174 | font-size: 88px;
175 | }
176 |
177 | .brief {
178 | margin: 0;
179 | padding: 0;
180 | border: 0;
181 | }
182 |
183 | .github-homepage {
184 | margin: 24px 0 0 0;
185 | border: 0;
186 | border-radius: 48px;
187 | height: 60px;
188 | width: 160px;
189 | text-align: center;
190 | align-items: center;
191 | justify-content: center;
192 | cursor: pointer;
193 | }
194 |
195 | .github-homepage:hover {
196 | background-color: var(--md-sys-color-inverse-primary);
197 | }
198 |
199 | .overall-container {
200 | width: 100%;
201 | margin: 0 auto;
202 | max-width: 1200px;
203 | }
204 |
205 | .section-title {
206 | margin: 80px 24px 8px 24px;
207 | }
208 |
209 | .section-subtitle {
210 | margin: 24px 24px;
211 | }
212 |
213 | .background-vision-container {
214 | border-radius: 24px;
215 | padding: 24px;
216 | }
217 |
218 | .background-vision {
219 | line-height: 24px;
220 | margin: 0;
221 | }
222 |
223 | .lastupdate-container {
224 | border-radius: 24px;
225 | overflow: auto;
226 | padding: 8px 0 0 0;
227 | height: 360px;
228 | scrollbar-width: none;
229 | }
230 |
231 | .last-essay-container {
232 | border-radius: 24px;
233 | padding: 24px;
234 | margin: 0;
235 | display: grid;
236 | justify-content: space-between;
237 | grid-column-gap: 20px;
238 | column-gap: 20px;
239 | grid-template-columns: 3fr 1fr;
240 | }
241 |
242 | .last-essay-container:hover {
243 | color: var(--md-sys-color-on-primary-container);
244 | background-color: var(--md-sys-color-primary-container);
245 | }
246 |
247 | /*.lastupdate-container::-webkit-scrollbar {
248 | display: none;
249 | }*/
250 |
251 | .edit-date {
252 | padding: 8px 24px;
253 | }
254 |
255 | .essay-container {
256 | border-radius: 24px;
257 | padding: 24px;
258 | margin: 0 0 8px 0;
259 | display: grid;
260 | justify-content: space-between;
261 | grid-column-gap: 20px;
262 | column-gap: 20px;
263 | grid-template-columns: 3fr 1fr;
264 | }
265 |
266 | .essay-container:hover {
267 | color: var(--md-sys-color-on-primary-container);
268 | background-color: var(--md-sys-color-primary-container);
269 | }
270 |
271 | .essay-content {
272 | margin: 0;
273 | padding: 0;
274 | }
275 |
276 | .essay-author {
277 | margin: 0;
278 | padding: 0;
279 | }
280 |
281 | .button-group {
282 | display: grid;
283 | grid-auto-flow: column;
284 | place-items: center;
285 | }
286 |
287 | .essay-button {
288 | display: grid;
289 | fill: var(--md-sys-color-on-surface-variant);
290 | height: 40px;
291 | width: 40px;
292 | border-radius: 50%;
293 | place-items: center;
294 | }
295 |
296 | .essay-button:hover {
297 | fill: var(--md-sys-color-on-primary);
298 | background-color: var(--md-sys-color-primary);
299 | }
300 |
301 | .placeholder {
302 | height: 40px;
303 | width: 40px;
304 | border-radius: 50%;
305 | }
306 |
307 | .media-coverage-content-container {
308 | border-radius: 24px;
309 | padding: 24px;
310 | margin: 0 0 8px 0;
311 | }
312 |
313 | .media-coverage-container {
314 | display: grid;
315 | justify-content: space-between;
316 | column-gap: 8px;
317 | grid-template-columns: 1fr 1fr;
318 | }
319 |
320 | .page-footer-container {
321 | display: flex;
322 | flex-direction: column;
323 | align-items: center;
324 | margin: 120px 8px 0;
325 | }
326 |
327 | .page-footer {
328 | padding: 64px 40px;
329 | }
330 |
331 | .about {
332 | display: grid;
333 | justify-content: space-between;
334 | max-width: 1200px;
335 | grid-column-gap: 20px;
336 | column-gap: 20px;
337 | grid-template-columns: 1fr 1fr;
338 | }
339 |
340 | .page-footer-title {
341 | margin: 0;
342 | }
343 |
344 | .cite {
345 | margin-top: 24px;
346 | margin-right: 64px;
347 | }
348 |
349 | .visitor-map {
350 | margin-top: 24px;
351 | margin-right: 64px;
352 | }
353 |
354 | .page-footer-instruction {
355 | margin: 0;
356 | line-height: 24px;
357 | }
358 |
359 | @media screen and (max-width: 857px) {
360 | .show-on-middle-screens {
361 | display: none;
362 | }
363 | .show-on-large-screens {
364 | display: none;
365 | }
366 | .title {
367 | margin: 0 0 8px 0;
368 | font-weight: 475;
369 | font-size: 45px
370 | }
371 | .page-footer-container{
372 | display: block;
373 | width: auto;
374 | }
375 | .about {
376 | display: block;
377 | width: auto;
378 | }
379 | .media-coverage-container {
380 | display: block;
381 | }
382 | }
383 |
384 | @media screen and (min-width: 858px) and (max-width: 1294px) {
385 | .show-on-large-screens {
386 | display: none;
387 | }
388 | .show-on-small-screens {
389 | display: none;
390 | }
391 | }
392 |
393 | @media screen and (min-width: 1295px) {
394 | .show-on-middle-screens {
395 | display: none;
396 | }
397 | .show-on-small-screens {
398 | display: none;
399 | }
400 | }
401 |
402 | @media (prefers-color-scheme: dark) {
403 | .title-brief {
404 | filter: invert(100%);
405 | }
406 |
407 | .visitor-map {
408 | filter: invert(89%);
409 | }
410 | }
--------------------------------------------------------------------------------
/css/typography.module.css:
--------------------------------------------------------------------------------
1 | .display-large{
2 | font-family: var(--md-sys-typescale-display-large-font-family-name);
3 | font-style: var(--md-sys-typescale-display-large-font-family-style);
4 | font-weight: var(--md-sys-typescale-display-large-font-weight);
5 | font-size: var(--md-sys-typescale-display-large-font-size);
6 | letter-spacing: var(--md-sys-typescale-display-large-tracking);
7 | line-height: var(--md-sys-typescale-display-large-height);
8 | text-transform: var(--md-sys-typescale-display-large-text-transform);
9 | text-decoration: var(--md-sys-typescale-display-large-text-decoration);
10 | }
11 | .display-medium{
12 | font-family: var(--md-sys-typescale-display-medium-font-family-name);
13 | font-style: var(--md-sys-typescale-display-medium-font-family-style);
14 | font-weight: var(--md-sys-typescale-display-medium-font-weight);
15 | font-size: var(--md-sys-typescale-display-medium-font-size);
16 | letter-spacing: var(--md-sys-typescale-display-medium-tracking);
17 | line-height: var(--md-sys-typescale-display-medium-height);
18 | text-transform: var(--md-sys-typescale-display-medium-text-transform);
19 | text-decoration: var(--md-sys-typescale-display-medium-text-decoration);
20 | }
21 | .display-small{
22 | font-family: var(--md-sys-typescale-display-small-font-family-name);
23 | font-style: var(--md-sys-typescale-display-small-font-family-style);
24 | font-weight: var(--md-sys-typescale-display-small-font-weight);
25 | font-size: var(--md-sys-typescale-display-small-font-size);
26 | letter-spacing: var(--md-sys-typescale-display-small-tracking);
27 | line-height: var(--md-sys-typescale-display-small-height);
28 | text-transform: var(--md-sys-typescale-display-small-text-transform);
29 | text-decoration: var(--md-sys-typescale-display-small-text-decoration);
30 | }
31 | .headline-large{
32 | font-family: var(--md-sys-typescale-headline-large-font-family-name);
33 | font-style: var(--md-sys-typescale-headline-large-font-family-style);
34 | font-weight: var(--md-sys-typescale-headline-large-font-weight);
35 | font-size: var(--md-sys-typescale-headline-large-font-size);
36 | letter-spacing: var(--md-sys-typescale-headline-large-tracking);
37 | line-height: var(--md-sys-typescale-headline-large-height);
38 | text-transform: var(--md-sys-typescale-headline-large-text-transform);
39 | text-decoration: var(--md-sys-typescale-headline-large-text-decoration);
40 | }
41 | .headline-medium{
42 | font-family: var(--md-sys-typescale-headline-medium-font-family-name);
43 | font-style: var(--md-sys-typescale-headline-medium-font-family-style);
44 | font-weight: var(--md-sys-typescale-headline-medium-font-weight);
45 | font-size: var(--md-sys-typescale-headline-medium-font-size);
46 | letter-spacing: var(--md-sys-typescale-headline-medium-tracking);
47 | line-height: var(--md-sys-typescale-headline-medium-height);
48 | text-transform: var(--md-sys-typescale-headline-medium-text-transform);
49 | text-decoration: var(--md-sys-typescale-headline-medium-text-decoration);
50 | }
51 | .headline-small{
52 | font-family: var(--md-sys-typescale-headline-small-font-family-name);
53 | font-style: var(--md-sys-typescale-headline-small-font-family-style);
54 | font-weight: var(--md-sys-typescale-headline-small-font-weight);
55 | font-size: var(--md-sys-typescale-headline-small-font-size);
56 | letter-spacing: var(--md-sys-typescale-headline-small-tracking);
57 | line-height: var(--md-sys-typescale-headline-small-height);
58 | text-transform: var(--md-sys-typescale-headline-small-text-transform);
59 | text-decoration: var(--md-sys-typescale-headline-small-text-decoration);
60 | }
61 | .body-large{
62 | font-family: var(--md-sys-typescale-body-large-font-family-name);
63 | font-style: var(--md-sys-typescale-body-large-font-family-style);
64 | font-weight: var(--md-sys-typescale-body-large-font-weight);
65 | font-size: var(--md-sys-typescale-body-large-font-size);
66 | letter-spacing: var(--md-sys-typescale-body-large-tracking);
67 | line-height: var(--md-sys-typescale-body-large-height);
68 | text-transform: var(--md-sys-typescale-body-large-text-transform);
69 | text-decoration: var(--md-sys-typescale-body-large-text-decoration);
70 | }
71 | .body-medium{
72 | font-family: var(--md-sys-typescale-body-medium-font-family-name);
73 | font-style: var(--md-sys-typescale-body-medium-font-family-style);
74 | font-weight: var(--md-sys-typescale-body-medium-font-weight);
75 | font-size: var(--md-sys-typescale-body-medium-font-size);
76 | letter-spacing: var(--md-sys-typescale-body-medium-tracking);
77 | line-height: var(--md-sys-typescale-body-medium-height);
78 | text-transform: var(--md-sys-typescale-body-medium-text-transform);
79 | text-decoration: var(--md-sys-typescale-body-medium-text-decoration);
80 | }
81 | .body-small{
82 | font-family: var(--md-sys-typescale-body-small-font-family-name);
83 | font-style: var(--md-sys-typescale-body-small-font-family-style);
84 | font-weight: var(--md-sys-typescale-body-small-font-weight);
85 | font-size: var(--md-sys-typescale-body-small-font-size);
86 | letter-spacing: var(--md-sys-typescale-body-small-tracking);
87 | line-height: var(--md-sys-typescale-body-small-height);
88 | text-transform: var(--md-sys-typescale-body-small-text-transform);
89 | text-decoration: var(--md-sys-typescale-body-small-text-decoration);
90 | }
91 | .label-large{
92 | font-family: var(--md-sys-typescale-label-large-font-family-name);
93 | font-style: var(--md-sys-typescale-label-large-font-family-style);
94 | font-weight: var(--md-sys-typescale-label-large-font-weight);
95 | font-size: var(--md-sys-typescale-label-large-font-size);
96 | letter-spacing: var(--md-sys-typescale-label-large-tracking);
97 | line-height: var(--md-sys-typescale-label-large-height);
98 | text-transform: var(--md-sys-typescale-label-large-text-transform);
99 | text-decoration: var(--md-sys-typescale-label-large-text-decoration);
100 | }
101 | .label-medium{
102 | font-family: var(--md-sys-typescale-label-medium-font-family-name);
103 | font-style: var(--md-sys-typescale-label-medium-font-family-style);
104 | font-weight: var(--md-sys-typescale-label-medium-font-weight);
105 | font-size: var(--md-sys-typescale-label-medium-font-size);
106 | letter-spacing: var(--md-sys-typescale-label-medium-tracking);
107 | line-height: var(--md-sys-typescale-label-medium-height);
108 | text-transform: var(--md-sys-typescale-label-medium-text-transform);
109 | text-decoration: var(--md-sys-typescale-label-medium-text-decoration);
110 | }
111 | .label-small{
112 | font-family: var(--md-sys-typescale-label-small-font-family-name);
113 | font-style: var(--md-sys-typescale-label-small-font-family-style);
114 | font-weight: var(--md-sys-typescale-label-small-font-weight);
115 | font-size: var(--md-sys-typescale-label-small-font-size);
116 | letter-spacing: var(--md-sys-typescale-label-small-tracking);
117 | line-height: var(--md-sys-typescale-label-small-height);
118 | text-transform: var(--md-sys-typescale-label-small-text-transform);
119 | text-decoration: var(--md-sys-typescale-label-small-text-decoration);
120 | }
121 | .title-large{
122 | font-family: var(--md-sys-typescale-title-large-font-family-name);
123 | font-style: var(--md-sys-typescale-title-large-font-family-style);
124 | font-weight: var(--md-sys-typescale-title-large-font-weight);
125 | font-size: var(--md-sys-typescale-title-large-font-size);
126 | letter-spacing: var(--md-sys-typescale-title-large-tracking);
127 | line-height: var(--md-sys-typescale-title-large-height);
128 | text-transform: var(--md-sys-typescale-title-large-text-transform);
129 | text-decoration: var(--md-sys-typescale-title-large-text-decoration);
130 | }
131 | .title-medium{
132 | font-family: var(--md-sys-typescale-title-medium-font-family-name);
133 | font-style: var(--md-sys-typescale-title-medium-font-family-style);
134 | font-weight: var(--md-sys-typescale-title-medium-font-weight);
135 | font-size: var(--md-sys-typescale-title-medium-font-size);
136 | letter-spacing: var(--md-sys-typescale-title-medium-tracking);
137 | line-height: var(--md-sys-typescale-title-medium-height);
138 | text-transform: var(--md-sys-typescale-title-medium-text-transform);
139 | text-decoration: var(--md-sys-typescale-title-medium-text-decoration);
140 | }
141 | .title-small{
142 | font-family: var(--md-sys-typescale-title-small-font-family-name);
143 | font-style: var(--md-sys-typescale-title-small-font-family-style);
144 | font-weight: var(--md-sys-typescale-title-small-font-weight);
145 | font-size: var(--md-sys-typescale-title-small-font-size);
146 | letter-spacing: var(--md-sys-typescale-title-small-tracking);
147 | line-height: var(--md-sys-typescale-title-small-height);
148 | text-transform: var(--md-sys-typescale-title-small-text-transform);
149 | text-decoration: var(--md-sys-typescale-title-small-text-decoration);
150 | }
151 |
--------------------------------------------------------------------------------
/css/tokens.css:
--------------------------------------------------------------------------------
1 | :root {
2 | --md-source: #97cfea;
3 | /* primary */
4 | --md-ref-palette-primary0: #000000;
5 | --md-ref-palette-primary10: #001f2a;
6 | --md-ref-palette-primary20: #003546;
7 | --md-ref-palette-primary25: #004155;
8 | --md-ref-palette-primary30: #004d64;
9 | --md-ref-palette-primary35: #005a74;
10 | --md-ref-palette-primary40: #006684;
11 | --md-ref-palette-primary50: #0081a5;
12 | --md-ref-palette-primary60: #0b9cc7;
13 | --md-ref-palette-primary70: #41b7e4;
14 | --md-ref-palette-primary80: #68d3ff;
15 | --md-ref-palette-primary90: #bee9ff;
16 | --md-ref-palette-primary95: #e0f4ff;
17 | --md-ref-palette-primary98: #f4faff;
18 | --md-ref-palette-primary99: #fafcff;
19 | --md-ref-palette-primary100: #ffffff;
20 | /* secondary */
21 | --md-ref-palette-secondary0: #000000;
22 | --md-ref-palette-secondary10: #081e27;
23 | --md-ref-palette-secondary20: #1f333c;
24 | --md-ref-palette-secondary25: #2a3e48;
25 | --md-ref-palette-secondary30: #354a53;
26 | --md-ref-palette-secondary35: #41555f;
27 | --md-ref-palette-secondary40: #4d616c;
28 | --md-ref-palette-secondary50: #657a85;
29 | --md-ref-palette-secondary60: #7f949f;
30 | --md-ref-palette-secondary70: #99aeba;
31 | --md-ref-palette-secondary80: #b4cad6;
32 | --md-ref-palette-secondary90: #d0e6f2;
33 | --md-ref-palette-secondary95: #e0f4ff;
34 | --md-ref-palette-secondary98: #f4faff;
35 | --md-ref-palette-secondary99: #fafcff;
36 | --md-ref-palette-secondary100: #ffffff;
37 | /* tertiary */
38 | --md-ref-palette-tertiary0: #000000;
39 | --md-ref-palette-tertiary10: #1a1836;
40 | --md-ref-palette-tertiary20: #2f2d4d;
41 | --md-ref-palette-tertiary25: #3a3858;
42 | --md-ref-palette-tertiary30: #454364;
43 | --md-ref-palette-tertiary35: #514f71;
44 | --md-ref-palette-tertiary40: #5d5b7d;
45 | --md-ref-palette-tertiary50: #767397;
46 | --md-ref-palette-tertiary60: #908db2;
47 | --md-ref-palette-tertiary70: #aba7ce;
48 | --md-ref-palette-tertiary80: #c6c2ea;
49 | --md-ref-palette-tertiary90: #e3dfff;
50 | --md-ref-palette-tertiary95: #f3eeff;
51 | --md-ref-palette-tertiary98: #fcf8ff;
52 | --md-ref-palette-tertiary99: #fffbff;
53 | --md-ref-palette-tertiary100: #ffffff;
54 | /* neutral */
55 | --md-ref-palette-neutral0: #000000;
56 | --md-ref-palette-neutral10: #191c1e;
57 | --md-ref-palette-neutral20: #2e3132;
58 | --md-ref-palette-neutral25: #393c3e;
59 | --md-ref-palette-neutral30: #444749;
60 | --md-ref-palette-neutral35: #505355;
61 | --md-ref-palette-neutral40: #5c5f61;
62 | --md-ref-palette-neutral50: #757779;
63 | --md-ref-palette-neutral60: #8f9193;
64 | --md-ref-palette-neutral70: #a9abad;
65 | --md-ref-palette-neutral80: #c5c7c9;
66 | --md-ref-palette-neutral90: #e1e2e4;
67 | --md-ref-palette-neutral95: #eff1f3;
68 | --md-ref-palette-neutral98: #f8f9fb;
69 | --md-ref-palette-neutral99: #fbfcfe;
70 | --md-ref-palette-neutral100: #ffffff;
71 | /* neutral-variant */
72 | --md-ref-palette-neutral-variant0: #000000;
73 | --md-ref-palette-neutral-variant10: #151d20;
74 | --md-ref-palette-neutral-variant20: #2a3136;
75 | --md-ref-palette-neutral-variant25: #353d41;
76 | --md-ref-palette-neutral-variant30: #40484c;
77 | --md-ref-palette-neutral-variant35: #4c5458;
78 | --md-ref-palette-neutral-variant40: #585f64;
79 | --md-ref-palette-neutral-variant50: #70787d;
80 | --md-ref-palette-neutral-variant60: #8a9297;
81 | --md-ref-palette-neutral-variant70: #a5acb1;
82 | --md-ref-palette-neutral-variant80: #c0c8cd;
83 | --md-ref-palette-neutral-variant90: #dce4e9;
84 | --md-ref-palette-neutral-variant95: #eaf2f7;
85 | --md-ref-palette-neutral-variant98: #f4faff;
86 | --md-ref-palette-neutral-variant99: #fafcff;
87 | --md-ref-palette-neutral-variant100: #ffffff;
88 | /* error */
89 | --md-ref-palette-error0: #000000;
90 | --md-ref-palette-error10: #410002;
91 | --md-ref-palette-error20: #690005;
92 | --md-ref-palette-error25: #7e0007;
93 | --md-ref-palette-error30: #93000a;
94 | --md-ref-palette-error35: #a80710;
95 | --md-ref-palette-error40: #ba1a1a;
96 | --md-ref-palette-error50: #de3730;
97 | --md-ref-palette-error60: #ff5449;
98 | --md-ref-palette-error70: #ff897d;
99 | --md-ref-palette-error80: #ffb4ab;
100 | --md-ref-palette-error90: #ffdad6;
101 | --md-ref-palette-error95: #ffedea;
102 | --md-ref-palette-error98: #fff8f7;
103 | --md-ref-palette-error99: #fffbff;
104 | --md-ref-palette-error100: #ffffff;
105 | /* light */
106 | --md-sys-color-primary-light: #006684;
107 | --md-sys-color-on-primary-light: #ffffff;
108 | --md-sys-color-primary-container-light: #bee9ff;
109 | --md-sys-color-on-primary-container-light: #001f2a;
110 | --md-sys-color-secondary-light: #4d616c;
111 | --md-sys-color-on-secondary-light: #ffffff;
112 | --md-sys-color-secondary-container-light: #d0e6f2;
113 | --md-sys-color-on-secondary-container-light: #081e27;
114 | --md-sys-color-tertiary-light: #5d5b7d;
115 | --md-sys-color-on-tertiary-light: #ffffff;
116 | --md-sys-color-tertiary-container-light: #e3dfff;
117 | --md-sys-color-on-tertiary-container-light: #1a1836;
118 | --md-sys-color-error-light: #ba1a1a;
119 | --md-sys-color-error-container-light: #ffdad6;
120 | --md-sys-color-on-error-light: #ffffff;
121 | --md-sys-color-on-error-container-light: #410002;
122 | --md-sys-color-background-light: #fbfcfe;
123 | --md-sys-color-on-background-light: #191c1e;
124 | --md-sys-color-surface-light: #fbfcfe;
125 | --md-sys-color-on-surface-light: #191c1e;
126 | --md-sys-color-surface-variant-light: #dce4e9;
127 | --md-sys-color-on-surface-variant-light: #40484c;
128 | --md-sys-color-outline-light: #70787d;
129 | --md-sys-color-inverse-on-surface-light: #eff1f3;
130 | --md-sys-color-inverse-surface-light: #2e3132;
131 | --md-sys-color-inverse-primary-light: #68d3ff;
132 | --md-sys-color-shadow-light: #000000;
133 | --md-sys-color-surface-tint-light: #006684;
134 | --md-sys-color-outline-variant-light: #c0c8cd;
135 | --md-sys-color-scrim-light: #000000;
136 | /* dark */
137 | --md-sys-color-primary-dark: #68d3ff;
138 | --md-sys-color-on-primary-dark: #003546;
139 | --md-sys-color-primary-container-dark: #004d64;
140 | --md-sys-color-on-primary-container-dark: #bee9ff;
141 | --md-sys-color-secondary-dark: #b4cad6;
142 | --md-sys-color-on-secondary-dark: #1f333c;
143 | --md-sys-color-secondary-container-dark: #354a53;
144 | --md-sys-color-on-secondary-container-dark: #d0e6f2;
145 | --md-sys-color-tertiary-dark: #c6c2ea;
146 | --md-sys-color-on-tertiary-dark: #2f2d4d;
147 | --md-sys-color-tertiary-container-dark: #454364;
148 | --md-sys-color-on-tertiary-container-dark: #e3dfff;
149 | --md-sys-color-error-dark: #ffb4ab;
150 | --md-sys-color-error-container-dark: #93000a;
151 | --md-sys-color-on-error-dark: #690005;
152 | --md-sys-color-on-error-container-dark: #ffdad6;
153 | --md-sys-color-background-dark: #191c1e;
154 | --md-sys-color-on-background-dark: #e1e2e4;
155 | --md-sys-color-surface-dark: #191c1e;
156 | --md-sys-color-on-surface-dark: #e1e2e4;
157 | --md-sys-color-surface-variant-dark: #40484c;
158 | --md-sys-color-on-surface-variant-dark: #c0c8cd;
159 | --md-sys-color-outline-dark: #8a9297;
160 | --md-sys-color-inverse-on-surface-dark: #191c1e;
161 | --md-sys-color-inverse-surface-dark: #e1e2e4;
162 | --md-sys-color-inverse-primary-dark: #006684;
163 | --md-sys-color-shadow-dark: #000000;
164 | --md-sys-color-surface-tint-dark: #68d3ff;
165 | --md-sys-color-outline-variant-dark: #40484c;
166 | --md-sys-color-scrim-dark: #000000;
167 | /* display - large */
168 | --md-sys-typescale-display-large-font-family-name: Outfit;
169 | --md-sys-typescale-display-large-font-family-style: Regular;
170 | --md-sys-typescale-display-large-font-weight: 475;
171 | --md-sys-typescale-display-large-font-size: 57px;
172 | --md-sys-typescale-display-large-line-height: 64px;
173 | --md-sys-typescale-display-large-letter-spacing: -0.25px;
174 | /* display - medium */
175 | --md-sys-typescale-display-medium-font-family-name: Outfit;
176 | --md-sys-typescale-display-medium-font-family-style: Regular;
177 | --md-sys-typescale-display-medium-font-weight: 475;
178 | --md-sys-typescale-display-medium-font-size: 45px;
179 | --md-sys-typescale-display-medium-line-height: 52px;
180 | --md-sys-typescale-display-medium-letter-spacing: 0px;
181 | /* display - small */
182 | --md-sys-typescale-display-small-font-family-name: Outfit;
183 | --md-sys-typescale-display-small-font-family-style: Regular;
184 | --md-sys-typescale-display-small-font-weight: 475;
185 | --md-sys-typescale-display-small-font-size: 36px;
186 | --md-sys-typescale-display-small-line-height: 44px;
187 | --md-sys-typescale-display-small-letter-spacing: 0px;
188 | /* headline - large */
189 | --md-sys-typescale-headline-large-font-family-name: Outfit;
190 | --md-sys-typescale-headline-large-font-family-style: Regular;
191 | --md-sys-typescale-headline-large-font-weight: 400px;
192 | --md-sys-typescale-headline-large-font-size: 32px;
193 | --md-sys-typescale-headline-large-line-height: 40px;
194 | --md-sys-typescale-headline-large-letter-spacing: 0px;
195 | /* headline - medium */
196 | --md-sys-typescale-headline-medium-font-family-name: Outfit;
197 | --md-sys-typescale-headline-medium-font-family-style: Regular;
198 | --md-sys-typescale-headline-medium-font-weight: 400px;
199 | --md-sys-typescale-headline-medium-font-size: 28px;
200 | --md-sys-typescale-headline-medium-line-height: 36px;
201 | --md-sys-typescale-headline-medium-letter-spacing: 0px;
202 | /* headline - small */
203 | --md-sys-typescale-headline-small-font-family-name: Outfit;
204 | --md-sys-typescale-headline-small-font-family-style: Regular;
205 | --md-sys-typescale-headline-small-font-weight: 400px;
206 | --md-sys-typescale-headline-small-font-size: 24px;
207 | --md-sys-typescale-headline-small-line-height: 32px;
208 | --md-sys-typescale-headline-small-letter-spacing: 0px;
209 | /* body - large */
210 | --md-sys-typescale-body-large-font-family-name: Outfit;
211 | --md-sys-typescale-body-large-font-family-style: Regular;
212 | --md-sys-typescale-body-large-font-weight: 400px;
213 | --md-sys-typescale-body-large-font-size: 16px;
214 | --md-sys-typescale-body-large-line-height: 24px;
215 | --md-sys-typescale-body-large-letter-spacing: 0.50px;
216 | /* body - medium */
217 | --md-sys-typescale-body-medium-font-family-name: Outfit;
218 | --md-sys-typescale-body-medium-font-family-style: Regular;
219 | --md-sys-typescale-body-medium-font-weight: 400px;
220 | --md-sys-typescale-body-medium-font-size: 14px;
221 | --md-sys-typescale-body-medium-line-height: 20px;
222 | --md-sys-typescale-body-medium-letter-spacing: 0.25px;
223 | /* body - small */
224 | --md-sys-typescale-body-small-font-family-name: Outfit;
225 | --md-sys-typescale-body-small-font-family-style: Regular;
226 | --md-sys-typescale-body-small-font-weight: 400px;
227 | --md-sys-typescale-body-small-font-size: 12px;
228 | --md-sys-typescale-body-small-line-height: 16px;
229 | --md-sys-typescale-body-small-letter-spacing: 0.40px;
230 | /* label - large */
231 | --md-sys-typescale-label-large-font-family-name: Outfit;
232 | --md-sys-typescale-label-large-font-family-style: Medium;
233 | --md-sys-typescale-label-large-font-weight: 500px;
234 | --md-sys-typescale-label-large-font-size: 14px;
235 | --md-sys-typescale-label-large-line-height: 20px;
236 | --md-sys-typescale-label-large-letter-spacing: 0.10px;
237 | /* label - medium */
238 | --md-sys-typescale-label-medium-font-family-name: Outfit;
239 | --md-sys-typescale-label-medium-font-family-style: Medium;
240 | --md-sys-typescale-label-medium-font-weight: 500px;
241 | --md-sys-typescale-label-medium-font-size: 12px;
242 | --md-sys-typescale-label-medium-line-height: 16px;
243 | --md-sys-typescale-label-medium-letter-spacing: 0.50px;
244 | /* label - small */
245 | --md-sys-typescale-label-small-font-family-name: Outfit;
246 | --md-sys-typescale-label-small-font-family-style: Medium;
247 | --md-sys-typescale-label-small-font-weight: 500px;
248 | --md-sys-typescale-label-small-font-size: 11px;
249 | --md-sys-typescale-label-small-line-height: 16px;
250 | --md-sys-typescale-label-small-letter-spacing: 0.50px;
251 | /* title - large */
252 | --md-sys-typescale-title-large-font-family-name: Outfit;
253 | --md-sys-typescale-title-large-font-family-style: Regular;
254 | --md-sys-typescale-title-large-font-weight: 400px;
255 | --md-sys-typescale-title-large-font-size: 22px;
256 | --md-sys-typescale-title-large-line-height: 28px;
257 | --md-sys-typescale-title-large-letter-spacing: 0px;
258 | /* title - medium */
259 | --md-sys-typescale-title-medium-font-family-name: Outfit;
260 | --md-sys-typescale-title-medium-font-family-style: Medium;
261 | --md-sys-typescale-title-medium-font-weight: 500px;
262 | --md-sys-typescale-title-medium-font-size: 16px;
263 | --md-sys-typescale-title-medium-line-height: 24px;
264 | --md-sys-typescale-title-medium-letter-spacing: 0.15px;
265 | /* title - small */
266 | --md-sys-typescale-title-small-font-family-name: Outfit;
267 | --md-sys-typescale-title-small-font-family-style: Medium;
268 | --md-sys-typescale-title-small-font-weight: 500px;
269 | --md-sys-typescale-title-small-font-size: 14px;
270 | --md-sys-typescale-title-small-line-height: 20px;
271 | --md-sys-typescale-title-small-letter-spacing: 0.10px;
272 | }
273 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Advances in Partial/Complementary Label Learning
2 |
3 | [](https://github.com/sindresorhus/awesome)
4 |
 
5 |
6 |
7 |
8 |
9 |
10 | **Advances in Partial/Complementary Label Learning** provides the most advanced and detailed information on partial/complementary label learning field.
11 |
12 | **Partial/complementary label learning** is an emerging framework in weakly supervised machine learning with broad application prospects. It handles the case in which each training example corresponds to a candidate label set and only one label concealed in the set is the ground-truth label.
13 |
14 | **This project is curated and maintained by [Dong-Dong Wu](https://wu-dd.github.io/)**. I will do my best to keep the project up to date. If you have any suggestions or are interested in being contributors, feel free to drop me an email.
15 |
16 |
17 |
18 | #### [How to submit a pull request?](./CONTRIBUTING.md)
19 |
20 | + :globe_with_meridians: Project Page
21 | + :octocat: Code
22 | + :book: `bibtex`
23 |
24 | ## Latest Updates
25 |
26 | + [2025/09/22] Update some papers published on conferences. If you find some errors, please feel free to contact me!
27 | + [2024/12/08] Update some code links of papers.
28 | + [2024/09/13] A major overhaul of the original github repository.
29 |
30 | ## Contents
31 |
32 | - [Main](#main)
33 | - [Survey](#survey)
34 | - [benchmark](#benchmark)
35 | - [Generative Modeling](#theory-based)
36 | - [Understanding](#understanding)
37 | - [Better Optimization](#better-optimization)
38 | - [Partial Multi-Label Learning](#partial-multi-label-learning)
39 | - [Noisy Partial Label Learning](#noisy-partial-label-learning)
40 | - [Semi-Supervised Partial Label Learning](#semi-supervised-partial-label-learning)
41 | - [Multi-Instance Partial Label Learning](#multi-instance-learning)
42 | - [Imbalanced Partial Label Problem](#class-imbalance-problem)
43 | - [Out-of-distributrion Partial Label Learning](#partial-label-regression)
44 | - [Federated Partial Label Learning](#fed-pll>)
45 | - [Partial Label Regression](#partial-label-regression)
46 | - [Dimensionality Reduction](#dimensionality-reduction)
47 | - [Multi-Complementary Label Learning](#multi-complementary-label-learning)
48 | - [Multi-View Learning](#multi-view-learning)
49 | - [Adversarial Training](#adversarial-training)
50 | - [Negative Learning](#negative-learning)
51 | - [Incremental Learning](#incremental-learning)
52 | - [Online Learning](#online-learning)
53 | - [Conformal Prediction](#conformal-prediction)
54 | - [Few-Shot Learning](#few-shot-learning)
55 | - [Open-Set Problem](#open-set-problem)
56 | - [Data Augmentation](#data-augmentation)
57 | - [Multi-Dimensional](#multi-dimensional)
58 | - [Domain Adaptation](#domain-adaptation)
59 | - [Applications](#applications)
60 | - [Audio](#audio)
61 | - [Text](#text)
62 | - [Sequence](#sequence-classification)
63 | - [Recognition](#recognition)
64 | - [Object Localization](#object-localization)
65 | - [Map Reconstruction](#map-reconstruction)
66 | - [Semi-Supervised Learning](#semi-supervised-learning)
67 | - [Active Learning](#active-learning)
68 | - [Noisy Label Learning](#noisy-label-learning)
69 | - [Test-Time Adaptation](#TTA)
70 |
71 |
72 |
73 | ## Main
74 |
75 | - [Learning from Complementary Labels](https://arxiv.org/abs/1705.07541) (NeurIPS 2017) [:octocat:](https://github.com/takashiishida/comp)
76 | - [Learning from Partial Labels](https://jmlr.org/papers/v12/cour11a.html) (JMLR 2011)
77 |
78 |
79 |
80 | ### Survey
81 |
82 | - [Partial label learning: Taxonomy, analysis and outlook](https://www.sciencedirect.com/science/article/abs/pii/S0893608023000825) (NN 2023)
83 |
84 |
85 |
86 | ### Benchmark
87 |
88 | - [CLImage: Human-Annotated Datasets for Complementary-Label Learning](https://arxiv.org/abs/2305.08295) (TMLR 2025)
89 | - [Realistic Evaluation of Deep Partial-Label Learning Algorithms](https://arxiv.org/pdf/2502.10184) (ICLR 2025)
90 |
91 |
92 |
93 | ### Modeling
94 |
95 | - [Learning with Biased Complementary Labels](https://arxiv.org/abs/1711.09535) (ECCV 2018) [:octocat:](https://github.com/takashiishida/comp)
96 | - [Complementary-Label Learning for Arbitrary Losses and Models](https://arxiv.org/abs/1810.04327) (ICML 2019) [:octocat:](https://github.com/takashiishida/comp)
97 | - [Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels](https://arxiv.org/abs/2007.02235) (ICML 2020)
98 | - [Provably Consistent Partial-Label Learning](https://arxiv.org/abs/2007.08929) (NeurIPS 2020) [:octocat:](https://lfeng1995.github.io/Code/RCCC.zip)
99 | - [Leveraged Weighted Loss for Partial Label Learning](https://arxiv.org/abs/2106.05731) (ICML 2021) [:octocat:](https://github.com/hongwei-wen/LW-loss-for-partial-label)
100 | - [Unbiased Risk Estimator to Multi-Labeled Complementary Label Learning](https://www.ijcai.org/proceedings/2023/415) (IJCAI 2023) [:octocat:](https://github.com/GaoYi439/GDF)
101 | - [Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical](https://arxiv.org/abs/2311.15502) (ICML 2024) [:octocat:](https://github.com/wwangwitsel/SCARCE)
102 | - [Towards Unbiased Exploration in Partial Label Learning](https://arxiv.org/abs/2307.00465) (JMLR 2024)
103 |
104 |
105 |
106 | ### Understanding
107 |
108 | - [Bridging Ordinary-Label Learning and Complementary-Label Learning](https://proceedings.mlr.press/v129/katsura20a.html) (ACML 2020)
109 | - [On the Power of Deep but Naive Partial Label Learning](https://arxiv.org/abs/2010.11600) (ICASSP 2021) [:octocat:](https://github.com/mikigom/DNPL-PyTorch)
110 | - [Learning from a Complementary-label Source Domain: Theory and Algorithms](https://arxiv.org/abs/2008.01454) (TNNLS 2021)
111 | - [A Unifying Probabilistic Framework for Partially Labeled Data Learning](https://ieeexplore.ieee.org/document/9983986) (TPAMI 2023)
112 | - [Candidate Label Set Pruning: A Data-centric Perspective for Deep Partial-label Learning](https://openreview.net/forum?id=Fk5IzauJ7F) (ICLR 2024)
113 | - [Understanding Self-Distillation and Partial Label Learning in Multi-Class Classification with Label Noise](https://arxiv.org/abs/2402.10482) (2024)
114 | - [What Makes Partial-Label Learning Algorithms Effective?](https://openreview.net/forum?id=JpqEzPTuv6) (NeurIPS 2024)
115 |
116 |
117 |
118 | ### Better Optimization
119 |
120 | - [A Conditional Multinomial Mixture Model for Superset Label Learning](https://papers.nips.cc/paper_files/paper/2012/hash/aaebdb8bb6b0e73f6c3c54a0ab0c6415-Abstract.html) (NeurIPS 2012)
121 | - [GM-PLL: Graph Matching based Partial Label Learning](https://arxiv.org/pdf/1901.03073) (TKDE 2019)
122 | - [Partial Label Learning via Label Enhancement](https://ojs.aaai.org/index.php/AAAI/article/view/4497) (AAAI 2019)
123 | - [Partial Label Learning with Self-Guided Retraining](https://arxiv.org/abs/1902.03045) (AAAI 2019)
124 | - [Partial Label Learning by Semantic Difference Maximization](https://www.ijcai.org/proceedings/2019/318) (IJCAI 2019)
125 | - [Partial Label Learning with Unlabeled Data](https://www.ijcai.org/proceedings/2019/521) (IJCAI 2019)
126 | - [Adaptive Graph Guided Disambiguation for Partial Label Learning](https://dl.acm.org/doi/10.1145/3292500.3330840) (KDD 2019)
127 | - [A Self-Paced Regularization Framework for Partial-Label Learning](https://ieeexplore.ieee.org/document/9094702) (TYCB 2020)
128 | - [Large Margin Partial Label Machine](https://ieeexplore.ieee.org/document/8826247) (TNNLS 2020)
129 | - [Learning with Noisy Partial Labels by Simultaneously Leveraging Global and Local Consistencies](https://dl.acm.org/doi/10.1145/3340531.3411885) (CIKM 2020)
130 | - [Network Cooperation with Progressive Disambiguation for Partial Label Learning](https://arxiv.org/abs/2002.11919) (ECML-PKDD 2020)
131 | - [Deep Discriminative CNN with Temporal Ensembling for Ambiguously-Labeled Image Classification](https://ojs.aaai.org/index.php/AAAI/article/view/6959) (AAAI 2020)
132 | - [Generative-Discriminative Complementary Learning](https://arxiv.org/abs/1904.01612) (AAAI 2020)
133 | - [Partial Label Learning with Batch Label Correction](https://ojs.aaai.org/index.php/AAAI/article/view/6132) (AAAI 2020)
134 | - [Progressive Identification of True Labels for Partial-Label Learning](https://arxiv.org/abs/2002.08053) (ICML 2020)
135 | - [Generalized Large Margin -NN for Partial Label Learning](https://ieeexplore.ieee.org/document/9529072) (TMM2021)
136 | - [Adaptive Graph Guided Disambiguation for Partial Label Learning](https://ieeexplore.ieee.org/document/9573413) (TPAMI 2022)
137 | - [Discriminative Metric Learning for Partial Label Learning](https://ieeexplore.ieee.org/document/9585342) (TNNLS 2021)
138 | - [Top-k Partial Label Machine](https://ieeexplore.ieee.org/document/9447152) (TNNLS 2021)
139 | - [Detecting the Fake Candidate Instances: Ambiguous Label Learning with Generative Adversarial Networks](https://dl.acm.org/doi/abs/10.1145/3459637.3482251) (CIKM 2021)
140 | - [Discriminative Complementary-Label Learning with Weighted Loss](https://proceedings.mlr.press/v139/gao21d.html) (ICML 2021)
141 | - [Instance-Dependent Partial Label Learning](https://arxiv.org/abs/2110.12911) (NeurIPS 2021)
142 | - [A Generative Model for Partial Label Learning](https://ieeexplore.ieee.org/abstract/document/9428103) (ICME 2021)
143 | - [Learning with Proper Partial Labels](https://arxiv.org/abs/2112.12303) (NearoComputing 2022)
144 | - [Biased Complementary-Label Learning Without True Labels](https://ieeexplore.ieee.org/document/9836971) (TNNLS 2022)
145 | - [Exploiting Class Activation Value for Partial-Label Learning](https://openreview.net/forum?id=qqdXHUGec9h) (ICLR 2022) [:octocat:](https://github.com/Ferenas/CAVL)
146 | - [PiCO: Contrastive Label Disambiguation for Partial Label Learning](https://openreview.net/forum?id=EhYjZy6e1gJ) (ICLR 2022)
147 | - [Deep Graph Matching for Partial Label Learning](https://www.ijcai.org/proceedings/2022/459) (IJCAI 2022)
148 | - [Exploring Binary Classification Hidden within Partial Label Learning](https://www.ijcai.org/proceedings/2022/456) (IJCAI 2022)
149 | - [Ambiguity-Induced Contrastive Learning for Instance-Dependent Partial Label Learning](https://www.ijcai.org/proceedings/2022/502) (IJCAI 2022)
150 | - [Partial Label Learning via Label Influence Function](https://proceedings.mlr.press/v162/gong22c.html) (ICML 2022)
151 | - [Revisiting Consistency Regularization for Deep Partial Label Learning](https://proceedings.mlr.press/v162/wu22l.html) (ICML 2022)
152 | - [Partial Label Learning with Semantic Label Representations ](https://dl.acm.org/doi/abs/10.1145/3534678.3539434) (KDD 2022)
153 | - [Progressive Purification for Instance-Dependent Partial Label Learning](https://arxiv.org/abs/2206.00830) (ICML 2023) [:octocat:](https://github.com/palm-ml/POP)
154 | - [GraphDPI: Partial label disambiguation by graph representation learning via mutual information maximization](https://www.sciencedirect.com/science/article/abs/pii/S0031320322006136) (PR 2023)
155 | - [Variational Label Enhancement](https://ieeexplore.ieee.org/document/9875104) (TPAMI 2023)
156 | - [CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep Learning](https://arxiv.org/abs/2202.05613) (TPAMI 2023)
157 | - [Reduction from Complementary-Label Learning to Probability Estimates](https://arxiv.org/abs/2209.09500) (PAKDD 2023)
158 | - [Decompositional Generation Process for Instance-Dependent Partial Label Learning](https://arxiv.org/abs/2204.03845) (ICLR 2023)
159 | - [Mutual Partial Label Learning with Competitive Label Noise](https://openreview.net/forum?id=EUrxG8IBCrC) (ICLR 2023)
160 | - [Can Label-Specific Features Help Partial-Label Learning? ](https://ojs.aaai.org/index.php/AAAI/article/view/25904) (AAAI 2023)
161 | - [Learning with Partial Labels from Semi-supervised Perspective](https://arxiv.org/abs/2211.13655) (AAAI 2023)
162 | - [Consistent Complementary-Label Learning via Order-Preserving Losses](https://proceedings.mlr.press/v206/liu23g.html) (ICAIS 2023)
163 | - [Complementary Classifier Induced Partial Label Learning](https://arxiv.org/abs/2305.09897) (KDD 2023)
164 | - [Towards Effective Visual Representations for Partial-Label Learning](https://arxiv.org/abs/2305.06080) (CVPR 2023)
165 | - [Candidate-aware Selective Disambiguation Based On Normalized Entropy for Instance-dependent Partial-label Learning](https://ieeexplore.ieee.org/document/10376678) (ICCV 2023)
166 | - [Partial Label Learning with Dissimilarity Propagation guided Candidate Label Shrinkage](https://papers.nips.cc/paper_files/paper/2023/hash/6b97236d90d945be7c58268207a14f4f-Abstract-Conference.html) (NeurIPS 2023)
167 | - [Learning From Biased Soft Labels](https://arxiv.org/abs/2302.08155) (NeurIPS 2023)
168 | - [Meta Objective Guided Disambiguation for Partial Label Learning](https://arxiv.org/abs/2208.12459) (2023)
169 | - [Adversary-Aware Partial label learning with Label distillation](https://arxiv.org/abs/2304.00498) (2023)
170 | - [Solving Partial Label Learning Problem with Multi-Agent Reinforcement Learning ](https://openreview.net/forum?id=BNsuf5g-JRd) (2023)
171 | - [Learning from Stochastic Labels](https://arxiv.org/abs/2302.00299) (2023)
172 | - [Deep Duplex Learning for Weak Supervision](https://openreview.net/forum?id=SeZ5ONageGl) (2023)
173 | - [Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations](https://arxiv.org/abs/2305.12715) (2023)
174 | - [Self-distillation and self-supervision for partial label learning](https://www.sciencedirect.com/science/article/pii/S0031320323007136) (PR 2023)
175 | - [Partial Label Learning with a Partner](https://ojs.aaai.org/index.php/AAAI/article/view/29424) (AAAI 2024)
176 | - [Distilling Reliable Knowledge for Instance-Dependent Partial Label Learning](https://ojs.aaai.org/index.php/AAAI/article/view/29519) (AAAI 2024)
177 | - [Disentangled Partial Label Learning](https://ojs.aaai.org/index.php/AAAI/article/view/28976) (AAAI 2024)
178 | - [CroSel: Cross Selection of Confident Pseudo Labels for Partial-Label Learning](https://arxiv.org/abs/2303.10365) (CVPR 2024)
179 | - [A General Framework for Learning from Weak Supervision](https://arxiv.org/abs/2402.01922) (ICML 2024)
180 | - [Does Label Smoothing Help Deep Partial Label Learning?](https://openreview.net/forum?id=drjjxmi2Ha) (ICML 2024)
181 | - [Label Dropout: Improved Deep Learning Echocardiography Segmentation Using Multiple Datasets With Domain Shift and Partial Labelling](https://arxiv.org/abs/2403.07818) (SCIS 2024)
182 | - [Appeal: Allow Mislabeled Samples the Chance to be Rectified in Partial Label Learning ](https://arxiv.org/abs/2312.11034) (2024)
183 | - [Graph Partial Label Learning with Potential Cause Discovering](https://arxiv.org/abs/2403.11449) (2024)
184 | - [Reduction-based Pseudo-label Generation for Instance-dependent Partial Label Learning](https://arxiv.org/pdf/2410.20797) (2024)
185 | - [KMT-PLL: K-Means Cross-Attention Transformer for Partial Label Learning](https://ieeexplore.ieee.org/abstract/document/10384739) (TNNLS 2024)
186 | - [Diffusion Disambiguation Models for Partial Label Learning](https://arxiv.org/pdf/2507.00411) (2025)
187 | - [Tuning the Right Foundation Models is What you Need for Partial Label Learning](https://arxiv.org/pdf/2506.05027) (2025)
188 | - [Partial-Label Learning with Conformal Candidate Cleaning](https://arxiv.org/pdf/2502.07661) (UAI 2025)
189 | - [Exploiting the Potential Supervision Information of Clean Samples in Partial Label Learning](https://arxiv.org/pdf/2505.09354) (2025)
190 | - [Complementary Label Learning with Positive Label Guessing and Negative Label Enhancement](https://openreview.net/forum?id=LPRxGZ7Oax) (ICLR 2025)
191 |
192 |
193 |
194 | ### Partial-Multi Label Learning
195 |
196 | - [Learning a Deep ConvNet for Multi-label Classification with Partial Labels](https://arxiv.org/abs/1902.09720) (CVPR 2019)
197 | - [Multi-View Partial Multi-Label Learning with Graph-Based Disambiguation](https://ojs.aaai.org/index.php/AAAI/article/view/5761) (AAAI 2020)
198 | - [Partial Multi-Label Learning via Multi-Subspace Representation](https://www.ijcai.org/proceedings/2020/362) (IJCAI 2020)
199 | - [Feature-Induced Manifold Disambiguation for Multi-View Partial Multi-label Learning](https://dl.acm.org/doi/10.1145/3394486.3403098) (KDD 2020)
200 | - [Prior Knowledge Regularized Self-Representation Model for Partial Multilabel Learning](https://ieeexplore.ieee.org/document/9533180) (TYCB 2021)
201 | - [Global-Local Label Correlation for Partial Multi-Label Learning](https://ieeexplore.ieee.org/document/9343691) (TMM 2021)
202 | - [Progressive Enhancement of Label Distributions for Partial Multilabel Learning](https://ieeexplore.ieee.org/document/9615493) (TNNLS 2021)
203 | - [Partial Multi-Label Learning With Noisy Label Identification](https://ieeexplore.ieee.org/document/9354590) (TPAMI 2021)
204 | - [Partial Multi-Label Learning via Credible Label Elicitation](https://ieeexplore.ieee.org/document/9057438) (TPAMI 2021)
205 | - [Adversarial Partial Multi-Label Learning](https://arxiv.org/abs/1909.06717) (AAAI 2021)
206 | - [Learning from Complementary Labels via Partial-Output Consistency Regularization](https://www.ijcai.org/proceedings/2021/423) (IJCAI 2021)
207 | - [Partial Multi-Label Learning with Meta Disambiguation](https://dl.acm.org/doi/abs/10.1145/3447548.3467259) (KDD 2021)
208 | - [Understanding Partial Multi-Label Learning via Mutual Information](https://proceedings.neurips.cc/paper/2021/hash/217c0e01c1828e7279051f1b6675745d-Abstract.html) (NeurIPS 2021)
209 | - [Semantic-Aware Representation Blending for Multi-Label Image Recognition with Partial Labels](https://arxiv.org/abs/2203.02172) (AAAI 2022)
210 | - [Structured Semantic Transfer for Multi-Label Recognition with Partial Labels)](https://arxiv.org/abs/2112.10941) (AAAI 2022)
211 | - [Boosting Multi-Label Image Classification with Complementary Parallel Self-Distillation](https://arxiv.org/abs/2205.10986) (IJCAI 2022)
212 | - [Multi-label Classification with Partial Annotations using Class-aware Selective Loss](https://arxiv.org/abs/2110.10955) (CVPR 2022)
213 | - [Deep Double Incomplete Multi-View Multi-Label Learning With Incomplete Labels and Missing Views](https://ieeexplore.ieee.org/document/10086538) (TNNLS 2023)
214 | - [Towards Enabling Binary Decomposition for Partial Multi-Label Learning](https://ieeexplore.ieee.org/document/10168295) (TPAMI 2023)
215 | - [Deep Partial Multi-Label Learning with Graph Disambiguation](https://arxiv.org/abs/2305.05882) (IJCAI 2023)
216 | - [Learning in Imperfect Environment: Multi-Label Classification with Long-Tailed Distribution and Partial Labels](https://arxiv.org/abs/2304.10539) (ICCV 2023)
217 | - [Partial Multi-Label Learning with Probabilistic Graphical Disambiguation](https://papers.nips.cc/paper_files/paper/2023/hash/04e05ba5cbc36044f6499d1edf15247e-Abstract-Conference.html) (NeurIPS 2023)
218 | - [ProPML: Probability Partial Multi-label Learning](https://arxiv.org/abs/2403.07603) (DSAA 2023)
219 | - [A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation](https://arxiv.org/abs/2207.02410) (ML 2024)
220 | - [Partial Multi-View Multi-Label Classification via Semantic Invariance Learning and PrototypeModeling](https://icml.cc/virtual/2024/poster/34972) (ICML 2024)
221 | - [Reliable Representations Learning for Incomplete Multi-View Partial Multi-Label Classification](https://arxiv.org/abs/2303.17117) (2024)
222 | - [PLMCL: Partial-Label Momentum Curriculum Learning for Multi-Label Image Classification](https://arxiv.org/abs/2208.09999) (2024)
223 | - [Combining Supervised Learning and Reinforcement Learning for Multi-Label Classification Tasks with Partial Labels](https://arxiv.org/abs/2406.16293) (2024)
224 | - [Free Performance Gain from Mixing Multiple Partially Labeled Samples in Multi-label Image Classification](https://arxiv.org/abs/2405.15860) (2024)
225 | - [Noise-Resistant Label Reconstruction Feature Selection for Partial Multi-Label Learning](https://arxiv.org/pdf/2506.04669) (IJCAI 2025)
226 | - [WPML3CP: Wasserstein Partial Multi-Label Learning with Dual Label Correlation Perspectives]() (IJCAI2025)
227 | - [Partial Multi-View Multi-Label Classification via Semantic Invariance Learning and Prototype Modeling](https://proceedings.mlr.press/v235/liu24bv.html) (ICML2024)
228 | - [Revisiting Sparsity Constraint Under High-Rank Property in Partial Multi-Label Learning](https://arxiv.org/pdf/2505.20938) (2025)
229 | -
230 |
231 |
232 |
233 | ### Noisy Partial Label Learning
234 |
235 | - [PiCO+: Contrastive Label Disambiguation for Robust Partial Label Learning](https://arxiv.org/abs/2201.08984) (TPAMI 2023)
236 | - [On the Robustness of Average Losses for Partial-Label Learning](https://arxiv.org/abs/2106.06152) (TPAMI 2023)
237 | - [FREDIS: A Fusion Framework of Refinement and Disambiguation for Unreliable Partial Label Learning](https://proceedings.mlr.press/v202/qiao23b.html) (ICML 2023)
238 | - [Unreliable Partial Label Learning with Recursive Separation](https://arxiv.org/abs/2302.09891) (IJCAI 2023)
239 | - [ALIM: Adjusting Label Importance Mechanism for Noisy Partial Label Learning](https://arxiv.org/abs/2301.12077) (NeurIPS 2023)
240 | - [IRNet: Iterative Refinement Network for Noisy Partial Label Learning](https://arxiv.org/abs/2211.04774) (2023)
241 | - [Robust Representation Learning for Unreliable Partial Label Learning](https://arxiv.org/abs/2308.16718) (2023)
242 | - [Pseudo-labelling meets Label Smoothing for Noisy Partial Label Learning](https://arxiv.org/abs/2402.04835) (2024)
243 | - [Pre-trained Vision-Language Models Assisted Noisy Partial Label Learning](https://arxiv.org/pdf/2506.03229) (2025)
244 | - [Noise Separation guided Candidate Label Reconstruction for Noisy Partial Label Learning]() (ICLR 2025)
245 |
246 |
247 |
248 | ### Semi-Supervised Partial Label Learning
249 |
250 | - [Semi-Supervised Partial Label Learning via Confidence-Rated Margin Maximization](https://proceedings.neurips.cc/paper/2020/hash/4dea382d82666332fb564f2e711cbc71-Abstract.html) (NeurIPS 2020)
251 | - [Exploiting Unlabeled Data via Partial Label Assignment for Multi-Class Semi-Supervised Learning](https://ojs.aaai.org/index.php/AAAI/article/view/17310) (AAAI 2021)
252 | - [Distributed Semisupervised Partial Label Learning Over Networks](https://ieeexplore.ieee.org/document/9699063) (AI 2022)
253 | - [Learning with Partial-Label and Unlabeled Data: A Uniform Treatment for Supervision Redundancy and Insufficiency](https://proceedings.mlr.press/v235/liu24ar.html) (ICML 2024)
254 | - [FairMatch: Promoting Partial Label Learning by Unlabeled Samples](https://dl.acm.org/doi/abs/10.1145/3637528.3671685) (KDD 2024)
255 |
256 |
257 |
258 | ### Multi-Instance Partial Label Learning
259 |
260 | - [Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact Supervision](https://arxiv.org/abs/2212.08997) (SCIS 2023)
261 | - [Disambiguated Attention Embedding for Multi-Instance Partial-Label Learning](https://arxiv.org/abs/2305.16912) (NeurIPS 2023)
262 | - [Exploiting Conjugate Label Information for Multi-Instance Partial-Label Learning](https://arxiv.org/abs/2408.14369) (IJCAI 2024)
263 | - [On Characterizing and Mitigating Imbalances in Multi-Instance Partial Label Learning](https://arxiv.org/abs/2407.10000) (2024)
264 | - [Multi-Instance Partial-Label Learning with Margin Adjustment](https://arxiv.org/pdf/2501.12597) (NeurIPS 2024)
265 |
266 |
267 |
268 | ### Imblanced Partial Label Learning
269 |
270 | - [Towards Mitigating the Class-Imbalance Problem for Partial Label Learning](https://dl.acm.org/doi/10.1145/3219819.3220008) (KDD 2018) [:octocat:](https://github.com/seu71wj/CIMAP)
271 | - [A Partial Label Metric Learning Algorithm for Class Imbalanced Data](https://proceedings.mlr.press/v157/liu21f.html) (ACML 2021)
272 | - [SoLar: Sinkhorn Label Refinery for Imbalanced Partial-Label Learning](https://arxiv.org/abs/2209.10365) (NeurIPS 2022)
273 | - [Class-Imbalanced Complementary-Label Learning via Weighted Loss](https://arxiv.org/abs/2209.14189) (NN 2023)
274 | - [Long-Tailed Partial Label Learning via Dynamic Rebalancing](https://arxiv.org/abs/2302.05080) (ICLR 2023)
275 | - [Long-Tailed Partial Label Learning by Head Classifier and Tail Classifier Cooperation](https://ojs.aaai.org/index.php/AAAI/article/view/29182) (AAAI 2024)
276 | - [GBRIP: Granular Ball Representation for Imbalanced Partial Label Learning]()
277 | - [Pseudo Labels Regularization for Imbalanced Partial-Label Learning ](https://arxiv.org/abs/2303.03946) (ICASSP 2024)
278 | -
279 |
280 |
281 |
282 | ### Out-of-distribution Partial Label Learning
283 |
284 | - [Out-of-distribution Partial Label Learning](https://arxiv.org/abs/2403.06681) (2024)
285 |
286 |
287 |
288 | ### Federated Partial Label Learning
289 |
290 | - [Federated Partial Label Learning with Local-Adaptive Augmentation and Regularization](https://ojs.aaai.org/index.php/AAAI/article/view/29562) (AAAI 2024)
291 |
292 |
293 |
294 | ### Partial Label Regression
295 |
296 | - [Partial-Label Regression](https://arxiv.org/abs/2306.08968) (AAAI 2023)
297 | - [Partial-Label Learning with a Reject Option](https://arxiv.org/abs/2402.00592) (TMLR 2024)
298 |
299 |
300 |
301 | ### Dimensionality Reduction
302 |
303 | - [Partial Label Dimensionality Reduction via Confidence-Based Dependence Maximization](https://dl.acm.org/doi/abs/10.1145/3447548.3467313) (KDD 2021)
304 | - [Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction](https://dl.acm.org/doi/abs/10.1145/3494565) (TKDD 2022)
305 | - [Submodular Feature Selection for Partial Label Learning](https://dl.acm.org/doi/abs/10.1145/3534678.3539292) (KDD 2022)
306 | - [Dimensionality Reduction for Partial Label Learning: A Unified and Adaptive Approach](https://www.computer.org/csdl/journal/tk/2024/08/10440495/1UGSdp8q3Wo) (TKDE 2024)
307 |
308 |
309 |
310 | ### Multi-Complementary Label Learning
311 |
312 | - [Learning with Multiple Complementary Labels](https://arxiv.org/abs/1912.12927) (ICML 2020)
313 | - [Multi-Complementary and Unlabeled Learning for Arbitrary Losses and Models](https://arxiv.org/abs/2001.04243) (PR 2022)
314 |
315 |
316 |
317 | ### Multi-View Learning
318 |
319 | - [Deep Partial Multi-View Learning](https://ieeexplore.ieee.org/document/9258396) (TPAMI 2022)
320 |
321 |
322 |
323 | ### Adversarial Training
324 |
325 | - [Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks](https://openreview.net/forum?id=s7SukMH7ie9) (NeurIPS 2022)
326 |
327 |
328 |
329 | ### Negative Learning
330 |
331 | - [NLNL: Negative Learning for Noisy Labels](https://arxiv.org/abs/1908.07387) (ICCV 2019)
332 |
333 |
334 |
335 | ### Incremental Learning
336 |
337 | - [Partial label learning with emerging new labels](https://link.springer.com/article/10.1007/s10994-022-06244-2) (ML 2022)
338 | - [Complementary Labels Learning with Augmented Classes](https://arxiv.org/abs/2211.10701) (2022)
339 | - [An Unbiased Risk Estimator for Partial Label Learning with Augmented Classes](https://arxiv.org/pdf/2409.19600) (2024)
340 |
341 |
342 |
343 | ### Online Learning
344 |
345 | - [Online Partial Label Learning](https://dl.acm.org/doi/abs/10.1007/978-3-030-67661-2_27) (ECML-PKDD 2020)
346 |
347 |
348 |
349 | ### Conformal Prediction
350 |
351 | - [Conformal Prediction with Partially Labeled Data](https://arxiv.org/abs/2306.01191) (SCPPA 2023)
352 |
353 |
354 |
355 | ### Few-Shot Learning
356 |
357 | - [Few-Shot Partial-Label Learning](https://arxiv.org/abs/2106.00984) (IJCAI 2021)
358 |
359 |
360 |
361 | ### Open-set Problem
362 |
363 | - [Partial-label Learning with Mixed Closed-set and Open-set Out-of-candidate Examples](https://arxiv.org/abs/2307.00553) (KDD 2023)
364 |
365 |
366 |
367 | ### Data Augmentation
368 |
369 | - [Partial Label Learning with Discrimination Augmentation](https://dl.acm.org/doi/abs/10.1145/3534678.3539363) (KDD 2022) [:octocat:](https://github.com/wwangwitsel/PLDA)
370 | - [Enhancing Label Sharing Efficiency in Complementary-Label Learning with Label Augmentation](https://arxiv.org/abs/2305.08344) (2023)
371 |
372 |
373 |
374 | ### Multi-Dimensional
375 |
376 | - [Learning From Multi-Dimensional Partial Labels](https://www.ijcai.org/proceedings/2020/407) (IJCAI 2020)
377 |
378 |
379 |
380 | ### Domain Adaptation
381 |
382 | - [Partial Label Unsupervised Domain Adaptation with Class-Prototype Alignment](https://openreview.net/forum?id=jpq0qHggw3t) (ICLR 2023)
383 |
384 |
385 |
386 | ## Applications
387 |
388 |
389 |
390 | ### Audio
391 |
392 | - [Semi-Supervised Audio Classification with Partially Labeled Data ](https://arxiv.org/abs/2111.12761)(2021)
393 |
394 |
395 |
396 | ### Text
397 |
398 | - [Complementary Auxiliary Classifiers for Label-Conditional Text Generation](https://ojs.aaai.org/index.php/AAAI/article/view/6346) (AAAI 2020)
399 |
400 |
401 |
402 | ### Sequence
403 |
404 | - [Star Temporal Classification: Sequence Classification with Partially Labeled Data](https://arxiv.org/abs/2201.12208) (2022)
405 |
406 |
407 |
408 | ### Recognition
409 |
410 | - [`Webly-Supervised` Fine-Grained Recognition with Partial Label Learning](https://www.ijcai.org/proceedings/2022/209) (IJCAI 2022) [:octocat:](https://github.com/msfuxian/WSFGPLL)
411 | - [Partial Label Learning with Focal Loss for Sea Ice Classification Based on Ice Charts](https://arxiv.org/abs/2406.03645) (AEORS 2023)
412 | - [Partial Label Learning for Emotion Recognition from EEG](https://arxiv.org/abs/2302.13170) (2023)
413 | - [A Confidence-based Partial Label Learning Model for Crowd-Annotated Named Entity Recognition](https://arxiv.org/abs/2305.12485) (ACL 2023) [:octocat:](https://github.com/LemXiong/CPLL?tab=readme-ov-file)
414 |
415 |
416 |
417 | ### Object Localization
418 |
419 | - [Adversarial Complementary Learning for Weakly Supervised Object Localization](https://arxiv.org/abs/1804.06962) (CVPR 2018) [:octocat:](https://github.com/halbielee/ACoL_pytorch)
420 | - [Learning to Detect Instance-level Salient Objects Using Complementary Image Labels](https://arxiv.org/abs/2111.10137) (2021)
421 |
422 |
423 |
424 | ### Map Reconstruction
425 |
426 | - [Deep Learning with Partially Labeled Data for Radio Map Reconstruction](https://arxiv.org/abs/2306.05294) (2023)
427 |
428 |
429 |
430 | ### Semi-supervised Learning
431 |
432 | - [Boosting Semi-Supervised Learning with Contrastive Complementary Labeling](https://arxiv.org/abs/2212.06643) (NN 2023)
433 | - [Controller-Guided Partial Label Consistency Regularization with Unlabeled Data](https://arxiv.org/abs/2210.11194) (2024)
434 | - [Semi-supervised Contrastive Learning Using Partial Label Information](https://arxiv.org/abs/2003.07921) (2024)
435 |
436 |
437 |
438 | ### Active Learning
439 |
440 | - [Exploiting counter-examples for active learning with partial labels](https://link.springer.com/article/10.1007/s10994-023-06485-9) (ML 2023) [:octocat:](https://github.com/Ferenas/APLL)
441 | - [Active Learning with Partial Labels](https://openreview.net/forum?id=1VuBdlNBuR) (2023)
442 |
443 |
444 |
445 | ### Noisy Label Learning
446 |
447 | - [Learning from Noisy Labels with Complementary Loss Functions](https://ojs.aaai.org/index.php/AAAI/article/view/17213) (AAAI 2021)
448 | - [Adaptive Integration of Partial Label Learning and Negative Learning for Enhanced Noisy Label Learning](https://arxiv.org/abs/2312.09505) (AAAI 2024)
449 | - [Partial Label Supervision for Agnostic Generative Noisy Label Learning](https://arxiv.org/abs/2308.01184) (2024)
450 |
451 |
452 |
453 | ### Test-Time Adaptation
454 |
455 | - [Rethinking Precision of Pseudo Label: Test-Time Adaptation via Complementary Learning](https://arxiv.org/abs/2301.06013) (2023)
456 |
457 |
458 |
459 |
460 |
461 |
462 | ## Dataset
463 |
464 | ### Tabular Dataset:
465 |
466 | **Notice:** The following partial label learning data sets were collected and pre-processed by Prof. [Min-Ling Zhang](https://palm.seu.edu.cn/zhangml/), with courtesy and proprietary to the authors of referred literatures on them. The pre-processed data sets can be used at your own risk and for academic purpose only. More information can be found in [here](http://palm.seu.edu.cn/zhangml/).
467 |
468 | Dataset for partial label learning:
469 |
470 | | [FG-NET](https://palm.seu.edu.cn/zhangml/files/FG-NET.rar) | [Lost](https://palm.seu.edu.cn/zhangml/files/lost.rar) | [MSRCv2](https://palm.seu.edu.cn/zhangml/files/MSRCv2.rar) | [BirdSong](https://palm.seu.edu.cn/zhangml/files/BirdSong.rar) | [Soccer Player](https://palm.seu.edu.cn/zhangml/files/SoccerPlayer.rar) | [Yahoo! News](https://palm.seu.edu.cn/zhangml/files/Yahoo!News.rar) | [Mirflickr](https://palm.seu.edu.cn/zhangml/files/Mirflickr.zip) |
471 | | ---------------------------------------------------------- | ------------------------------------------------------ | ---------------------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
472 |
473 | Dataset for partial multi-label learning:
474 |
475 | | [Music_emotion](https://palm.seu.edu.cn/zhangml/files/pml_music_emotion.zip) | [Music_style](https://palm.seu.edu.cn/zhangml/files/pml_music_style.zip) | [Mirflickr](https://palm.seu.edu.cn/zhangml/files/pml_mirflickr.zip) | [YeastBP](https://palm.seu.edu.cn/zhangml/files/pml_YeastBP.zip) | [YeastCC](https://palm.seu.edu.cn/zhangml/files/pml_YeastCC.zip) | [YeastMF](https://palm.seu.edu.cn/zhangml/files/pml_YeastMF.zip) |
476 | | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
477 |
478 | Data sets for multi-instance partial-label learning:
479 |
480 | | [MNIST](https://palm.seu.edu.cn/zhangml/files/MNIST_MIPL.zip) | [FMNIST](https://palm.seu.edu.cn/zhangml/files/FMNIST_MIPL.zip) | [Newsgroups](https://palm.seu.edu.cn/zhangml/files/Newsgroups_MIPL.zip) | [Birdsong](https://palm.seu.edu.cn/zhangml/files/Birdsong_MIPL.zip) | [SIVAL](https://palm.seu.edu.cn/zhangml/files/SIVAL_MIPL.zip) | [CRC-Row](https://palm.seu.edu.cn/zhangml/files/CRC-MIPL-Row.zip) | [CRC-SBN](https://palm.seu.edu.cn/zhangml/files/CRC-MIPL-SBN.zip) | [CRC-KMeansSeg](https://palm.seu.edu.cn/zhangml/files/CRC-MIPL-KMeansSeg.zip) | [CRC-SIFT](https://palm.seu.edu.cn/zhangml/files/CRC-MIPL-SIFT.zip) |
481 | | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
482 |
483 |
484 |
485 | ### Image Dataset:
486 |
487 | - Dataset for complementary-label learning: [CLImage dataset](https://github.com/ntucllab/CLImage_Dataset)
488 | - Dataset for partial-label learning: [PLENCH dataset](https://github.com/wwangwitsel/PLENCH)
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 | ## Star History
497 |
498 | [](https://star-history.com/#wu-dd/Advances-in-Partial-and-Complementary-Label-Learning&Date)
499 |
500 | ## Citing Advances in Partial/Complementary Label Learning
501 |
502 | If you find this project useful for your research, please use the following BibTeX entry.
503 |
504 | ```
505 | @misc{Wu2022advances,
506 | author={Dong-Dong Wu},
507 | title={Advances in Partial/Complementary Label Learning },
508 | howpublished={\url{wu-dd/Advances-in-Partial-and-Complementary-Label-Learning}},
509 | year={2022}
510 | }
511 | ```
512 |
513 | ## Acknowledgments
514 |
--------------------------------------------------------------------------------