├── workflow.jpg
├── vits
├── resources
│ ├── fig_1a.png
│ ├── fig_1b.png
│ └── training.png
├── text
│ ├── __pycache__
│ │ ├── symbols.cpython-39.pyc
│ │ ├── __init__.cpython-39.pyc
│ │ └── cleaners.cpython-39.pyc
│ ├── symbols.py
│ ├── LICENSE
│ ├── __init__.py
│ └── cleaners.py
├── monotonic_align
│ ├── __pycache__
│ │ └── __init__.cpython-39.pyc
│ ├── build
│ │ ├── temp.linux-x86_64-cpython-39
│ │ │ └── core.o
│ │ └── lib.linux-x86_64-cpython-39
│ │ │ └── monotonic_align
│ │ │ └── core.cpython-39-x86_64-linux-gnu.so
│ ├── monotonic_align
│ │ └── core.cpython-39-x86_64-linux-gnu.so
│ ├── setup.py
│ ├── __init__.py
│ └── core.pyx
├── requirements.txt
├── LICENSE
├── preprocess.py
├── configs
│ ├── ljs_base.json
│ ├── ljs_nosdp.json
│ └── vctk_base.json
├── losses.py
├── README.md
├── mel_processing.py
├── commons.py
├── filelists
│ ├── vctk_audio_sid_text_val_filelist.txt
│ ├── vctk_audio_sid_text_val_filelist.txt.cleaned
│ ├── ljs_audio_text_val_filelist.txt
│ └── ljs_audio_text_val_filelist.txt.cleaned
├── inference.ipynb
├── utils.py
├── transforms.py
├── train.py
├── train_ms.py
├── attentions.py
├── modules.py
└── data_utils.py
├── text_preprocess.py
├── configs
├── libritts_vits.json
└── onespeaker_vits.json
├── filelists
└── onespeaker_test_text.txt
├── toolbox.py
├── save_audio.py
├── README.md
├── evaluate.py
├── train.py
├── protect.py
└── protected_train.py
/workflow.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/workflow.jpg
--------------------------------------------------------------------------------
/vits/resources/fig_1a.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/resources/fig_1a.png
--------------------------------------------------------------------------------
/vits/resources/fig_1b.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/resources/fig_1b.png
--------------------------------------------------------------------------------
/vits/resources/training.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/resources/training.png
--------------------------------------------------------------------------------
/vits/text/__pycache__/symbols.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/text/__pycache__/symbols.cpython-39.pyc
--------------------------------------------------------------------------------
/vits/text/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/text/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/vits/text/__pycache__/cleaners.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/text/__pycache__/cleaners.cpython-39.pyc
--------------------------------------------------------------------------------
/vits/monotonic_align/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/monotonic_align/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/vits/monotonic_align/build/temp.linux-x86_64-cpython-39/core.o:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/monotonic_align/build/temp.linux-x86_64-cpython-39/core.o
--------------------------------------------------------------------------------
/vits/requirements.txt:
--------------------------------------------------------------------------------
1 | Cython==0.29.21
2 | librosa==0.8.0
3 | matplotlib==3.3.1
4 | numpy==1.18.5
5 | phonemizer==2.2.1
6 | scipy==1.5.2
7 | tensorboard
8 | torch
9 | torchvision
10 | Unidecode==1.1.1
11 |
--------------------------------------------------------------------------------
/vits/monotonic_align/monotonic_align/core.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/monotonic_align/monotonic_align/core.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/vits/monotonic_align/setup.py:
--------------------------------------------------------------------------------
1 | from distutils.core import setup
2 | from Cython.Build import cythonize
3 | import numpy
4 |
5 | setup(
6 | name = 'monotonic_align',
7 | ext_modules = cythonize("core.pyx"),
8 | include_dirs=[numpy.get_include()]
9 | )
10 |
--------------------------------------------------------------------------------
/vits/monotonic_align/build/lib.linux-x86_64-cpython-39/monotonic_align/core.cpython-39-x86_64-linux-gnu.so:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/wxzyd123/Pivotal_Objective_Perturbation/HEAD/vits/monotonic_align/build/lib.linux-x86_64-cpython-39/monotonic_align/core.cpython-39-x86_64-linux-gnu.so
--------------------------------------------------------------------------------
/vits/text/symbols.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | '''
4 | Defines the set of symbols used in text input to the model.
5 | '''
6 | _pad = '_'
7 | _punctuation = ';:,.!?¡¿—…"«»“” '
8 | _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
9 | _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
10 |
11 |
12 | # Export all symbols:
13 | symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
14 |
15 | # Special symbol ids
16 | SPACE_ID = symbols.index(" ")
17 |
--------------------------------------------------------------------------------
/vits/monotonic_align/__init__.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | from .monotonic_align.core import maximum_path_c
4 |
5 |
6 | def maximum_path(neg_cent, mask):
7 | """ Cython optimized version.
8 | neg_cent: [b, t_t, t_s]
9 | mask: [b, t_t, t_s]
10 | """
11 | device = neg_cent.device
12 | dtype = neg_cent.dtype
13 | neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14 | path = np.zeros(neg_cent.shape, dtype=np.int32)
15 |
16 | t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17 | t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18 | maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19 | return torch.from_numpy(path).to(device=device, dtype=dtype)
20 |
--------------------------------------------------------------------------------
/vits/text/LICENSE:
--------------------------------------------------------------------------------
1 | Copyright (c) 2017 Keith Ito
2 |
3 | Permission is hereby granted, free of charge, to any person obtaining a copy
4 | of this software and associated documentation files (the "Software"), to deal
5 | in the Software without restriction, including without limitation the rights
6 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 | copies of the Software, and to permit persons to whom the Software is
8 | furnished to do so, subject to the following conditions:
9 |
10 | The above copyright notice and this permission notice shall be included in
11 | all copies or substantial portions of the Software.
12 |
13 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 | THE SOFTWARE.
20 |
--------------------------------------------------------------------------------
/vits/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2021 Jaehyeon Kim
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/vits/preprocess.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import vits.text as text
3 | from vits.utils import load_filepaths_and_text
4 |
5 | if __name__ == '__main__':
6 | parser = argparse.ArgumentParser()
7 | parser.add_argument("--out_extension", default="cleaned")
8 | parser.add_argument("--text_index", default=1, type=int)
9 | parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
10 | parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
11 |
12 | args = parser.parse_args()
13 |
14 |
15 | for filelist in args.filelists:
16 | print("START:", filelist)
17 | filepaths_and_text = load_filepaths_and_text(filelist)
18 | for i in range(len(filepaths_and_text)):
19 | original_text = filepaths_and_text[i][args.text_index]
20 | cleaned_text = text._clean_text(original_text, args.text_cleaners)
21 | filepaths_and_text[i][args.text_index] = cleaned_text
22 |
23 | new_filelist = filelist + "." + args.out_extension
24 | with open(new_filelist, "w", encoding="utf-8") as f:
25 | f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
26 |
--------------------------------------------------------------------------------
/text_preprocess.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | from tqdm import tqdm
3 |
4 | import vits.text as text
5 | from vits.utils import load_filepaths_and_text
6 |
7 | if __name__ == '__main__':
8 | parser = argparse.ArgumentParser()
9 | parser.add_argument("--out_extension", default="cleaned")
10 | parser.add_argument("--text_index", default=1, type=int)
11 | parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
12 | parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
13 |
14 | args = parser.parse_args()
15 |
16 |
17 | for filelist in args.filelists:
18 | print("START:", filelist)
19 | filepaths_and_text = load_filepaths_and_text(filelist)
20 | for i in range(len(filepaths_and_text)):
21 | original_text = filepaths_and_text[i][args.text_index]
22 | cleaned_text = text._clean_text(original_text, args.text_cleaners)
23 | filepaths_and_text[i][args.text_index] = cleaned_text
24 |
25 | new_filelist = filelist + "." + args.out_extension
26 | with open(new_filelist, "w", encoding="utf-8") as f:
27 | f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
28 |
--------------------------------------------------------------------------------
/vits/monotonic_align/core.pyx:
--------------------------------------------------------------------------------
1 | cimport cython
2 | from cython.parallel import prange
3 |
4 |
5 | @cython.boundscheck(False)
6 | @cython.wraparound(False)
7 | cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8 | cdef int x
9 | cdef int y
10 | cdef float v_prev
11 | cdef float v_cur
12 | cdef float tmp
13 | cdef int index = t_x - 1
14 |
15 | for y in range(t_y):
16 | for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17 | if x == y:
18 | v_cur = max_neg_val
19 | else:
20 | v_cur = value[y-1, x]
21 | if x == 0:
22 | if y == 0:
23 | v_prev = 0.
24 | else:
25 | v_prev = max_neg_val
26 | else:
27 | v_prev = value[y-1, x-1]
28 | value[y, x] += max(v_prev, v_cur)
29 |
30 | for y in range(t_y - 1, -1, -1):
31 | path[y, index] = 1
32 | if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33 | index = index - 1
34 |
35 |
36 | @cython.boundscheck(False)
37 | @cython.wraparound(False)
38 | cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39 | cdef int b = paths.shape[0]
40 | cdef int i
41 | for i in prange(b, nogil=True):
42 | maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
43 |
--------------------------------------------------------------------------------
/configs/libritts_vits.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 200,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 15,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/libritts_train_text.txt.cleaned",
21 | "test_files":"filelists/libritts_test_text.txt",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 24000,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 50,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false,
51 | "gin_channels": 256
52 | }
53 | }
54 |
--------------------------------------------------------------------------------
/configs/onespeaker_vits.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 200,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 15,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/onespeaker_train_text.txt.cleaned",
21 | "test_files":"filelists/onespeaker_test_text.txt",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 24000,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 50,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false,
51 | "gin_channels": 256
52 | }
53 | }
54 |
--------------------------------------------------------------------------------
/vits/configs/ljs_base.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 20000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 64,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/ljs_audio_text_train_filelist.txt.cleaned",
21 | "validation_files":"filelists/ljs_audio_text_val_filelist.txt.cleaned",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 22050,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 0,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false
51 | }
52 | }
53 |
--------------------------------------------------------------------------------
/vits/configs/ljs_nosdp.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 20000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 64,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/ljs_audio_text_train_filelist.txt.cleaned",
21 | "validation_files":"filelists/ljs_audio_text_val_filelist.txt.cleaned",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 22050,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 0,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false,
51 | "use_sdp": false
52 | }
53 | }
54 |
--------------------------------------------------------------------------------
/vits/configs/vctk_base.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 10000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 64,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/vctk_audio_sid_text_train_filelist.txt.cleaned",
21 | "validation_files":"filelists/vctk_audio_sid_text_val_filelist.txt.cleaned",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 22050,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 109,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false,
51 | "gin_channels": 256
52 | }
53 | }
54 |
--------------------------------------------------------------------------------
/vits/losses.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.nn import functional as F
3 |
4 | import vits.commons as commons
5 |
6 |
7 | def feature_loss(fmap_r, fmap_g):
8 | loss = 0
9 | for dr, dg in zip(fmap_r, fmap_g):
10 | for rl, gl in zip(dr, dg):
11 | rl = rl.float().detach()
12 | gl = gl.float()
13 | loss += torch.mean(torch.abs(rl - gl))
14 |
15 | return loss * 2
16 |
17 |
18 | def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19 | loss = 0
20 | r_losses = []
21 | g_losses = []
22 | for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23 | dr = dr.float()
24 | dg = dg.float()
25 | r_loss = torch.mean((1-dr)**2)
26 | g_loss = torch.mean(dg**2)
27 | loss += (r_loss + g_loss)
28 | r_losses.append(r_loss.item())
29 | g_losses.append(g_loss.item())
30 |
31 | return loss, r_losses, g_losses
32 |
33 |
34 | def generator_loss(disc_outputs):
35 | loss = 0
36 | gen_losses = []
37 | for dg in disc_outputs:
38 | dg = dg.float()
39 | l = torch.mean((1-dg)**2)
40 | gen_losses.append(l)
41 | loss += l
42 |
43 | return loss, gen_losses
44 |
45 |
46 | def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47 | """
48 | z_p, logs_q: [b, h, t_t]
49 | m_p, logs_p: [b, h, t_t]
50 | """
51 | z_p = z_p.float()
52 | logs_q = logs_q.float()
53 | m_p = m_p.float()
54 | logs_p = logs_p.float()
55 | z_mask = z_mask.float()
56 |
57 | kl = logs_p - logs_q - 0.5
58 | kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59 | kl = torch.sum(kl * z_mask)
60 | l = kl / torch.sum(z_mask)
61 | return l
62 |
--------------------------------------------------------------------------------
/vits/text/__init__.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 | from vits.text import cleaners
3 | from vits.text.symbols import symbols
4 |
5 |
6 | # Mappings from symbol to numeric ID and vice versa:
7 | _symbol_to_id = {s: i for i, s in enumerate(symbols)}
8 | _id_to_symbol = {i: s for i, s in enumerate(symbols)}
9 |
10 |
11 | def text_to_sequence(text, cleaner_names):
12 | '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
13 | Args:
14 | text: string to convert to a sequence
15 | cleaner_names: names of the cleaner functions to run the text through
16 | Returns:
17 | List of integers corresponding to the symbols in the text
18 | '''
19 | sequence = []
20 |
21 | clean_text = _clean_text(text, cleaner_names)
22 | for symbol in clean_text:
23 | symbol_id = _symbol_to_id[symbol]
24 | sequence += [symbol_id]
25 | return sequence
26 |
27 |
28 | def cleaned_text_to_sequence(cleaned_text):
29 | '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
30 | Args:
31 | text: string to convert to a sequence
32 | Returns:
33 | List of integers corresponding to the symbols in the text
34 | '''
35 | sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
36 | return sequence
37 |
38 |
39 | def sequence_to_text(sequence):
40 | '''Converts a sequence of IDs back to a string'''
41 | result = ''
42 | for symbol_id in sequence:
43 | s = _id_to_symbol[symbol_id]
44 | result += s
45 | return result
46 |
47 |
48 | def _clean_text(text, cleaner_names):
49 | for name in cleaner_names:
50 | cleaner = getattr(cleaners, name)
51 | if not cleaner:
52 | raise Exception('Unknown cleaner: %s' % name)
53 | text = cleaner(text)
54 | return text
55 |
--------------------------------------------------------------------------------
/filelists/onespeaker_test_text.txt:
--------------------------------------------------------------------------------
1 | data/5339/5339_14133_000006_000007.wav|0|It was the time of the great half-yearly traffic of the place; another impetus was given to business when the whalers returned in the autumn, and the men were flush of money, and full of delight at once more seeing their homes and their friends.
2 | data/5339/5339_14134_000035_000001.wav|0|Coulson sat still, penitent and ashamed; at length he stole a look at Hester.
3 | data/5339/5339_14134_000013_000001.wav|0|The letters hinted at the utter insolvency of this manufacturer.
4 | data/5339/5339_14133_000017_000000.wav|0|Out of respect to him, Philip asked no more questions although there were many things that he fain would have known.
5 | data/5339/5339_14134_000091_000010.wav|0|He breathed hard for a minute, and then knocked at the door of Sylvia's room.
6 | data/5339/5339_14134_000092_000008.wav|0|Yet once again--'Good-by, Sylvie, and God bless yo'!
7 | data/5339/5339_14133_000018_000006.wav|0|Now he stood there, bright and handsome as ever, with just that much timidity in his face, that anxiety as to his welcome, which gave his accost an added charm, could she but have perceived it.
8 | data/5339/5339_14134_000080_000000.wav|0|She stooped for something she had dropped, and came up red as a rose.
9 | data/5339/5339_14134_000068_000001.wav|0|It's clean gone out of my mind,' said Philip, with true regret.
10 | data/5339/5339_14133_000004_000000.wav|0|When Philip saw Sylvia she was always quiet and gentle; perhaps more silent than she had been a year ago, and she did not attend so briskly to what was passing around her.
11 | data/5339/5339_14134_000047_000000.wav|0|'No, I shan't,' he replied, shortly.
12 | data/5339/5339_14134_000092_000004.wav|0|'Sylvie!
13 | data/5339/5339_14133_000020_000005.wav|0|She stooped to pick up the scattered stockings and ball of worsted, and so did he; and when they rose up, he had fast hold of her hand, and her face was turned away, half ready to cry.
14 | data/5339/5339_14134_000091_000003.wav|0|He sate till it grew dusk, dark; the wood fire, not gathered together by careful hands, died out into gray ashes.
15 | data/5339/5339_14133_000040_000001.wav|0|I'm noan comin' down again to-night.'
16 | data/5339/5339_14134_000091_000000.wav|0|'Sylvie, Sylvie,' cried poor Philip, as his offended cousin rushed past him, and upstairs to her little bedroom, where he heard the sound of the wooden bolt flying into its place.
17 | data/5339/5339_14133_000030_000000.wav|0|'Not he,' said Sylvia, with some contempt in her tone.
18 | data/5339/5339_14133_000018_000010.wav|0|But all she said was--
19 | data/5339/5339_14134_000039_000001.wav|0|Alice was away, looking up Philip's things for his journey.
20 | data/5339/5339_14134_000064_000002.wav|0|She had talked about it to Kinraid and her father in order to cover her regret at her lover's accompanying her father to see some new kind of harpoon about which the latter had spoken.
21 |
--------------------------------------------------------------------------------
/toolbox.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import noisereduce as nr
3 |
4 | from vits.mel_processing import spectrogram_torch
5 | from vits.models import (
6 | SynthesizerTrn,
7 | MultiPeriodDiscriminator,
8 | )
9 | from vits.text.symbols import symbols
10 |
11 |
12 | def nr_traditional(waves, sr=24000):
13 | reduced_waves = torch.tensor(waves).to(waves.device)
14 |
15 | for i, wave in enumerate(waves):
16 | pro_wave = nr.reduce_noise(y=wave.cpu().numpy(), sr=sr)
17 | tensor_wave = torch.tensor(pro_wave).to(waves.device)
18 | reduced_waves[i] = tensor_wave
19 |
20 | return reduced_waves
21 |
22 |
23 | def get_spec(hps, waves, waves_len):
24 | spec_np = []
25 | spec_lengths = torch.LongTensor(len(waves))
26 |
27 | device = waves.device
28 | for index, wave in enumerate(waves):
29 | audio_norm = wave[:, :waves_len[index]]
30 | spec = spectrogram_torch(audio_norm,
31 | hps.filter_length, hps.sampling_rate,
32 | hps.hop_length, hps.win_length,
33 | center=False)
34 | spec = torch.squeeze(spec, 0)
35 | spec_np.append(spec)
36 | spec_lengths[index] = spec.size(1)
37 |
38 | max_spec_len = max(spec_lengths)
39 | spec_padded = torch.FloatTensor(len(waves), spec_np[0].size(0), max_spec_len)
40 | spec_padded.zero_()
41 |
42 | for i, spec in enumerate(waves):
43 | spec_padded[i][:, :spec_lengths[i]] = spec_np[i]
44 |
45 | return spec_padded.to(device), spec_lengths.to(device)
46 |
47 |
48 | def build_models(hps, checkpoint_path=None):
49 | net_g = SynthesizerTrn(
50 | len(symbols),
51 | hps.data.filter_length // 2 + 1,
52 | hps.train.segment_size // hps.data.hop_length,
53 | n_speakers=hps.data.n_speakers,
54 | **hps.model
55 | )
56 | net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
57 |
58 | if checkpoint_path is not None:
59 | checkpoint = torch.load(checkpoint_path, map_location='cpu')
60 | try:
61 | checkpoint_dict = checkpoint['model']
62 | except:
63 | checkpoint_dict = checkpoint
64 | for layer_name, layer_params in net_g.state_dict().items():
65 | if layer_name in checkpoint_dict:
66 | checkpoint_dict_param = checkpoint_dict[layer_name]
67 | if checkpoint_dict_param.shape == layer_params.shape:
68 | net_g.state_dict()[layer_name].copy_(checkpoint_dict_param)
69 | # print(f"[·] Load the {layer_name} successfully!")
70 | else:
71 | print(
72 | f"[>] Layer {layer_name}, the layer size is {layer_params.shape}, the checkpoint size is {checkpoint_dict_param.shape}")
73 | else:
74 | print(f"[!] The layer {layer_name} is not found!")
75 |
76 | return net_g, net_d
--------------------------------------------------------------------------------
/save_audio.py:
--------------------------------------------------------------------------------
1 | import os
2 | import torch
3 | import argparse
4 | from tqdm import tqdm
5 | import soundfile as sf
6 | from torch.utils.data import DataLoader
7 |
8 | import vits.utils as utils
9 | from vits.data_utils import (
10 | TextAudioSpeakerLoader,
11 | TextAudioSpeakerCollate,
12 | )
13 |
14 |
15 | def main():
16 | parser = argparse.ArgumentParser(description="The audio saving script.")
17 |
18 | parser.add_argument("--config_path", type=str, default="configs/onespeaker_vits.json", help="The configuration path for building model.")
19 | parser.add_argument("--noise_path", type=str, default="checkpoints/noises/VITS_POP_OneSpeaker.noise", help="The generated noise path.")
20 | parser.add_argument("--store_path", type=str, default="data/protected_audio", help="The store folder path of protected audio.")
21 |
22 | args = parser.parse_args()
23 | config_path = args.config_path
24 | hps = utils.get_hparams_from_file(config_path=config_path)
25 |
26 | train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
27 | collate_fn = TextAudioSpeakerCollate()
28 | train_loader = DataLoader(train_dataset,
29 | num_workers=4,
30 | shuffle=False,
31 | collate_fn=collate_fn,
32 | batch_size=hps.train.batch_size,
33 | pin_memory=True,
34 | drop_last=False)
35 |
36 | store_path = args.store_path
37 | if os.path.exists(store_path) is False:
38 | os.mkdir(store_path)
39 |
40 | noise_path = args.noise_path
41 | mode = noise_path.split("/")[2].split("_")[1]
42 | assert mode in ["POP", "EM", "RSP", "ESP"], print("The protective mode is wrong!")
43 | noises = torch.load(noise_path, map_location="cpu")
44 |
45 | count = 0
46 | batch_size = hps.train.batch_size
47 | for batch_index, batch in tqdm(enumerate(train_loader), total=len(train_loader)):
48 | noise = noises[batch_index]
49 | text, _, spec, spec_len, o_wav, wav_len, sid = batch
50 | p_wavs = torch.clamp(o_wav + noise, min=-1., max=1.)
51 | for p_index, p_wav in enumerate(p_wavs):
52 | current_p_wav = p_wav[:, :wav_len[p_index]]
53 | current_sid = sid[p_index]
54 | for data_index in range(0, batch_size):
55 | text, _, i_wav, inner_sid = train_dataset[data_index + batch_index * batch_size]
56 | if i_wav.shape == current_p_wav.shape and inner_sid == current_sid:
57 | rate = hps.data.sampling_rate
58 |
59 | output_file_name = os.path.join(store_path, f"{inner_sid.item()}_{count}_{mode}.wav")
60 | audio = current_p_wav.numpy().squeeze()
61 | sf.write(output_file_name, audio, samplerate=rate)
62 |
63 | count += 1
64 | break
65 |
66 | print(f"The process audio num is {count} of {len(train_dataset)}")
67 | assert count == len(train_dataset)
68 |
69 | if __name__ == "__main__":
70 | main()
--------------------------------------------------------------------------------
/vits/text/cleaners.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | '''
4 | Cleaners are transformations that run over the input text at both training and eval time.
5 |
6 | Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7 | hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8 | 1. "english_cleaners" for English text
9 | 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10 | the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11 | 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12 | the symbols in symbols.py to match your data).
13 | '''
14 |
15 | import re
16 | from unidecode import unidecode
17 | from phonemizer import phonemize
18 |
19 |
20 | # Regular expression matching whitespace:
21 | _whitespace_re = re.compile(r'\s+')
22 |
23 | # List of (regular expression, replacement) pairs for abbreviations:
24 | _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
25 | ('mrs', 'misess'),
26 | ('mr', 'mister'),
27 | ('dr', 'doctor'),
28 | ('st', 'saint'),
29 | ('co', 'company'),
30 | ('jr', 'junior'),
31 | ('maj', 'major'),
32 | ('gen', 'general'),
33 | ('drs', 'doctors'),
34 | ('rev', 'reverend'),
35 | ('lt', 'lieutenant'),
36 | ('hon', 'honorable'),
37 | ('sgt', 'sergeant'),
38 | ('capt', 'captain'),
39 | ('esq', 'esquire'),
40 | ('ltd', 'limited'),
41 | ('col', 'colonel'),
42 | ('ft', 'fort'),
43 | ]]
44 |
45 |
46 | def expand_abbreviations(text):
47 | for regex, replacement in _abbreviations:
48 | text = re.sub(regex, replacement, text)
49 | return text
50 |
51 |
52 | def expand_numbers(text):
53 | return normalize_numbers(text)
54 |
55 |
56 | def lowercase(text):
57 | return text.lower()
58 |
59 |
60 | def collapse_whitespace(text):
61 | return re.sub(_whitespace_re, ' ', text)
62 |
63 |
64 | def convert_to_ascii(text):
65 | return unidecode(text)
66 |
67 |
68 | def basic_cleaners(text):
69 | '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
70 | text = lowercase(text)
71 | text = collapse_whitespace(text)
72 | return text
73 |
74 |
75 | def transliteration_cleaners(text):
76 | '''Pipeline for non-English text that transliterates to ASCII.'''
77 | text = convert_to_ascii(text)
78 | text = lowercase(text)
79 | text = collapse_whitespace(text)
80 | return text
81 |
82 |
83 | def english_cleaners(text):
84 | '''Pipeline for English text, including abbreviation expansion.'''
85 | text = convert_to_ascii(text)
86 | text = lowercase(text)
87 | text = expand_abbreviations(text)
88 | phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
89 | phonemes = collapse_whitespace(phonemes)
90 | return phonemes
91 |
92 |
93 | def english_cleaners2(text):
94 | '''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
95 | text = convert_to_ascii(text)
96 | text = lowercase(text)
97 | text = expand_abbreviations(text)
98 | phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
99 | phonemes = collapse_whitespace(phonemes)
100 | return phonemes
101 |
--------------------------------------------------------------------------------
/vits/README.md:
--------------------------------------------------------------------------------
1 | # VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
2 |
3 | ### Jaehyeon Kim, Jungil Kong, and Juhee Son
4 |
5 | In our recent [paper](https://arxiv.org/abs/2106.06103), we propose VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.
6 |
7 | Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.
8 |
9 | Visit our [demo](https://jaywalnut310.github.io/vits-demo/index.html) for audio samples.
10 |
11 | We also provide the [pretrained models](https://drive.google.com/drive/folders/1ksarh-cJf3F5eKJjLVWY0X1j1qsQqiS2?usp=sharing).
12 |
13 | ** Update note: Thanks to [Rishikesh (ऋषिकेश)](https://github.com/jaywalnut310/vits/issues/1), our interactive TTS demo is now available on [Colab Notebook](https://colab.research.google.com/drive/1CO61pZizDj7en71NQG_aqqKdGaA_SaBf?usp=sharing).
14 |
15 |
16 |
17 | | VITS at training |
18 | VITS at inference |
19 |
20 |
21 |  |
22 |  |
23 |
24 |
25 |
26 |
27 | ## Pre-requisites
28 | 0. Python >= 3.6
29 | 0. Clone this repository
30 | 0. Install python requirements. Please refer [requirements.txt](requirements.txt)
31 | 1. You may need to install espeak first: `apt-get install espeak`
32 | 0. Download datasets
33 | 1. Download and extract the LJ Speech dataset, then rename or create a link to the dataset folder: `ln -s /path/to/LJSpeech-1.1/wavs DUMMY1`
34 | 1. For mult-speaker setting, download and extract the VCTK dataset, and downsample wav files to 22050 Hz. Then rename or create a link to the dataset folder: `ln -s /path/to/VCTK-Corpus/downsampled_wavs DUMMY2`
35 | 0. Build Monotonic Alignment Search and run preprocessing if you use your own datasets.
36 | ```sh
37 | # Cython-version Monotonoic Alignment Search
38 | cd monotonic_align
39 | python setup.py build_ext --inplace
40 |
41 | # Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
42 | # python preprocess.py --text_index 1 --filelists filelists/ljs_audio_text_train_filelist.txt filelists/ljs_audio_text_val_filelist.txt filelists/ljs_audio_text_test_filelist.txt
43 | # python preprocess.py --text_index 2 --filelists filelists/vctk_audio_sid_text_train_filelist.txt filelists/vctk_audio_sid_text_val_filelist.txt filelists/vctk_audio_sid_text_test_filelist.txt
44 | ```
45 |
46 |
47 | ## Training Exmaple
48 | ```sh
49 | # LJ Speech
50 | python train.py -c configs/ljs_base.json -m ljs_base
51 |
52 | # VCTK
53 | python train_ms.py -c configs/vctk_base.json -m vctk_base
54 | ```
55 |
56 |
57 | ## Inference Example
58 | See [inference.ipynb](inference.ipynb)
59 |
--------------------------------------------------------------------------------
/vits/mel_processing.py:
--------------------------------------------------------------------------------
1 | import math
2 | import os
3 | import random
4 | import torch
5 | from torch import nn
6 | import torch.nn.functional as F
7 | import torch.utils.data
8 | import numpy as np
9 | import librosa
10 | import librosa.util as librosa_util
11 | from librosa.util import normalize, pad_center, tiny
12 | from scipy.signal import get_window
13 | from scipy.io.wavfile import read
14 | from librosa.filters import mel as librosa_mel_fn
15 |
16 | MAX_WAV_VALUE = 32768.0
17 |
18 |
19 | def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20 | """
21 | PARAMS
22 | ------
23 | C: compression factor
24 | """
25 | return torch.log(torch.clamp(x, min=clip_val) * C)
26 |
27 |
28 | def dynamic_range_decompression_torch(x, C=1):
29 | """
30 | PARAMS
31 | ------
32 | C: compression factor used to compress
33 | """
34 | return torch.exp(x) / C
35 |
36 |
37 | def spectral_normalize_torch(magnitudes):
38 | output = dynamic_range_compression_torch(magnitudes)
39 | return output
40 |
41 |
42 | def spectral_de_normalize_torch(magnitudes):
43 | output = dynamic_range_decompression_torch(magnitudes)
44 | return output
45 |
46 |
47 | mel_basis = {}
48 | hann_window = {}
49 |
50 |
51 | def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52 | if torch.min(y) < -1.:
53 | print('min value is ', torch.min(y))
54 | if torch.max(y) > 1.:
55 | print('max value is ', torch.max(y))
56 |
57 | global hann_window
58 | dtype_device = str(y.dtype) + '_' + str(y.device)
59 | wnsize_dtype_device = str(win_size) + '_' + dtype_device
60 | if wnsize_dtype_device not in hann_window:
61 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62 |
63 | y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64 | y = y.squeeze(1)
65 |
66 | spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67 | center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
68 |
69 | spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70 | return spec
71 |
72 |
73 | def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74 | global mel_basis
75 | dtype_device = str(spec.dtype) + '_' + str(spec.device)
76 | fmax_dtype_device = str(fmax) + '_' + dtype_device
77 | if fmax_dtype_device not in mel_basis:
78 | mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
79 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80 | spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81 | spec = spectral_normalize_torch(spec)
82 | return spec
83 |
84 |
85 | def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86 | if torch.min(y) < -1.:
87 | print('min value is ', torch.min(y))
88 | if torch.max(y) > 1.:
89 | print('max value is ', torch.max(y))
90 |
91 | global mel_basis, hann_window
92 | dtype_device = str(y.dtype) + '_' + str(y.device)
93 | fmax_dtype_device = str(fmax) + '_' + dtype_device
94 | wnsize_dtype_device = str(win_size) + '_' + dtype_device
95 | if fmax_dtype_device not in mel_basis:
96 | mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
97 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98 | if wnsize_dtype_device not in hann_window:
99 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100 |
101 | y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102 | y = y.squeeze(1)
103 |
104 | spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105 | center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106 |
107 | spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108 |
109 | spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110 | spec = spectral_normalize_torch(spec)
111 |
112 | return spec
113 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Pivotal Objective Perturbation
2 |
3 | This is the source code of the "[Mitigating Unauthorized Speech Synthesis for Voice Protection](https://arxiv.org/abs/2410.20742)" paper in the CCS Workshop (LAMPS 2024). We propose a voice protection technique against training procedure via pivotal objective perturbation (POP) which can disrupt the speech synthesis after effective finetuning on advanced models.
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | ## Setup
12 |
13 | We tested our experiments on Ubuntu 20.04.
14 |
15 | The required dependencies can be installed by running the following:
16 |
17 | ```bash
18 | conda create --name pop python=3.9
19 | conda activate pop
20 | pip install -r vits/requirements.txt
21 | sudo apt install ffmpeg
22 |
23 | cd vits/monotonic_align
24 | python setup.py build_ext --inplace
25 | ```
26 |
27 | You can download the pre-trained checkpoint on the LJSpeech dataset from [here](https://drive.google.com/drive/folders/1ksarh-cJf3F5eKJjLVWY0X1j1qsQqiS2) and move it to "checkpoints/pretrained_ljs.pth".
28 |
29 |
30 |
31 | ## 1. Dataset
32 |
33 | In our paper, we conduct our experiments on two multi-speaker datasets ([LibriTTS](https://www.openslr.org/resources/60/train-clean-100.tar.gz) and [CMU ARCTIC](http://festvox.org/cmu_arctic/packed/)) and one speaker dataset (detailed in paper's Section 5.6). We follow [VITS](https://github.com/jaywalnut310/vits) to process the dataset.
34 |
35 | We should build a file list first. Each row of the dataset file list represents audio data, and its format should be represented as follows:
36 |
37 | ```bash
38 | audio_path|speaker_id|text
39 | ```
40 |
41 | And the structure of `audio_path` should be `data/{speaker}`, where `{speaker}` represents the speaker name or ID. After that, you can use the following command to process (g2p) your dataset.
42 |
43 | ```bash
44 | python text_preprocess.py --text_index 2 --filelists
45 | ```
46 |
47 |
48 |
49 | ## 2. Protect
50 |
51 | After successfully building the model and dataset, you can use the following command to protect the dataset:
52 |
53 | ```bash
54 | python protect.py --config_path --protected_mode POP
55 | ```
56 |
57 | Here are some basic arguments that you can set:
58 |
59 | - `--device`: The training device should be GPU or CPU. Default: "cuda".
60 | - `--model_name`: The selected model. Default: "VITS". (You can choose other models such as MB-iSTFT-VITS and GlowTTS).
61 | - `--dataset_name`: The selected dataset pending protection. Default: "OneSpeaker". (You can choose other datasets such as LibriTTS and CMU ARCTIC).
62 | - `--config_path`: The configuration path for building the model. Default: "configs/onespeaker_vits.json".
63 | - `--pretrained_path`: The checkpoint path of the pre-trained model. Default: "checkpoints/pretrained_ljs.pth".
64 | - `--epsilon`: The protective radius of the embedded perturbation by $\ell_p$ norm. Default: 8/255.
65 | - `--iterations`: Running iterations. Default: 200.
66 | - `--mode`: The corresponding four protection modes in this paper. Default: "POP".
67 |
68 | We have provided four protective modes ["POP", "EM", "RSP", "ESP"]. In this context, POP and EM involve perturbing the patches at fixed positions within an audio file, while RSP and ESP involve perturbing the entire audio segment. Therefore, if you wish to use our method for comparison and apply perturbations across the entire audio segment, you can utilize the ESP mode.
69 |
70 | Running this script will generate perturbations for each audio sample, saving them in batches to the directory `checkpoints/noises/`.
71 |
72 |
73 |
74 | ## 3. Training
75 |
76 | 1. Train on clean samples and test the model's speech cloning capability.
77 |
78 | ```bash
79 | python train.py --config_path --dataset_name LibriTTS --is_fixed True
80 | ```
81 |
82 | The argument `is_fixed` represents whether training of the audio patches at the fixed positions. We have discussed it in the paper's Section 5.5.
83 |
84 | 2. Train on protected samples and test the anti-cloning capability.
85 |
86 | ```bash
87 | python protected_train.py --config_path --dataset_name LibriTTS --noise_path
88 | ```
89 |
90 | The batch size of training on the protected dataset must be the same as the perturbation generation's.
91 |
92 |
93 |
94 | ## 4. Evaluation
95 |
96 | After each training session, we assess the model's speech cloning performance using two objective evaluation metrics: Mel Cepstral Distortion (MCD) and Word Error Rate (WER). Our evaluation script is named `evaluate.py`.
97 |
98 | After generating the protective perturbation files, you can use the following command to save the audio with the protection applied.
99 |
100 | ```bash
101 | python save_audio.py --config_path --noise_path --store_path
102 | ```
103 |
104 |
105 |
106 | ## Citation
107 |
108 | If you find our repository helpful, please consider citing our work in your research or project.
109 |
110 | ```
111 | @inproceedings{zhang2024mitigating,
112 | title={Mitigating Unauthorized Speech Synthesis for Voice Protection},
113 | author={Zhang, Zhisheng and Yang, Qianyi and Wang, Derui and Huang, Pengyang and Cao, Yuxin and Ye, Kai and Hao, Jie},
114 | booktitle={the 1st ACM Workshop on Large AI Systems and Models with Privacy and Safety Analysis (LAMPS'24)},
115 | year={2024},
116 | organization={ACM},
117 | address={Salt Lake City, UT, USA},
118 | month={October}
119 | }
120 | ```
121 |
122 |
123 |
124 | ####
125 |
--------------------------------------------------------------------------------
/evaluate.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | from tqdm import tqdm
4 | import torch
5 | import whisper
6 | import jiwer
7 | import soundfile as sf
8 | from pymcd.mcd import Calculate_MCD
9 |
10 | import vits.commons as commons
11 | import vits.utils as utils
12 | from vits.text import text_to_sequence
13 |
14 |
15 | def get_text(text, hps):
16 | text_norm = text_to_sequence(text, hps.data.text_cleaners)
17 | if hps.data.add_blank:
18 | text_norm = commons.intersperse(text_norm, 0)
19 | text_norm = torch.LongTensor(text_norm)
20 | return text_norm
21 |
22 |
23 | def evaluation(net_g, config_path, model_name, dataset_name, mode, device):
24 | config_path = config_path
25 | hps = utils.get_hparams_from_file(config_path=config_path)
26 | _ = net_g.eval()
27 |
28 | test_file = hps.data.test_files
29 | with open(test_file, 'r') as f:
30 | lines = f.readlines()
31 |
32 | if os.path.exists("evaluation") is False:
33 | os.mkdir("evaluation")
34 | if os.path.exists(f"evaluation/{model_name}") is False:
35 | os.mkdir(f"evaluation/{model_name}")
36 | if os.path.exists(f"evaluation/{model_name}/data") is False:
37 | os.mkdir(f"evaluation/{model_name}/data")
38 | if os.path.exists(f"evaluation/{model_name}/data/{dataset_name}") is False:
39 | os.mkdir(f"evaluation/{model_name}/data/{dataset_name}")
40 |
41 | output_path = f'evaluation/{model_name}/data/{dataset_name}/{mode}'
42 | if os.path.exists(output_path) is False:
43 | os.mkdir(output_path)
44 |
45 | # 1. Generate the evaluation dataset
46 | for index, line in tqdm(enumerate(lines), total=len(lines)):
47 | audio_path, sid, text = line.split('|')
48 | output_audio_name = sid + "_" + audio_path.split('/')[1] + "_" + str(index) + '.wav'
49 |
50 | stn_tst = get_text(text, hps)
51 | x_tst = stn_tst.to(device).unsqueeze(0)
52 | x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
53 | sid = torch.tensor([int(sid)]).long().to(device)
54 |
55 | wav_gen = net_g.infer(x_tst, x_tst_lengths, sid,
56 | noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
57 | rate = hps.data.sampling_rate
58 | output_file_name = os.path.join(output_path, output_audio_name)
59 |
60 | sf.write(output_file_name, wav_gen, samplerate=rate)
61 |
62 | # 2. Generate the evaluation lists
63 | syn_path = output_path
64 | gt_audio_path = test_file
65 | assert os.path.exists(syn_path), "Synthesis path is not exists!"
66 |
67 | if os.path.exists(f"evaluation/{model_name}/evallists") is False:
68 | os.mkdir(f"evaluation/{model_name}/evallists")
69 |
70 | eval_list = f'./evaluation/{model_name}/evallists/{model_name}_{mode}_{dataset_name}_text.txt'
71 | with open(gt_audio_path, 'r') as f:
72 | gt_audio = f.readlines()
73 |
74 | syn_audio_list = os.listdir(syn_path)
75 | assert len(syn_audio_list) == len(gt_audio)
76 |
77 | with open(eval_list, 'w') as f:
78 | for index, gt in tqdm(enumerate(gt_audio), total=len(gt_audio)):
79 | gt_path = gt.split('|')[0]
80 | text = gt.replace("\n", "").split('|')[2]
81 | speaker_id = gt_path.split('/')[1]
82 |
83 | for syn_audio_path in syn_audio_list:
84 | syn_audio_name = syn_audio_path[:-4]
85 | inner_sid = syn_audio_name.split('_')[1]
86 | inner_index = syn_audio_name.split('_')[2]
87 |
88 | if inner_index == str(index):
89 | assert inner_sid == speaker_id
90 | gt_write_in = gt_path + '|' + text + "\n"
91 | syn_write_in = os.path.join(syn_path, syn_audio_path) + '|' + text + "\n"
92 | write_in = gt_write_in + syn_write_in
93 | f.write(write_in)
94 | break
95 |
96 | # 3. Evaluate the generated dataset
97 | # 3.1 MCD
98 | with open(eval_list, 'r') as f:
99 | audio_list = f.readlines()
100 |
101 | gt_audio_list = []
102 | syn_audio_list = []
103 | for index, audio_path in enumerate(audio_list):
104 | if index % 2 == 0:
105 | gt_audio_list.append(audio_path)
106 | else:
107 | syn_audio_list.append(audio_path)
108 |
109 | mcd_toolbox = Calculate_MCD(MCD_mode="dtw")
110 | assert len(gt_audio_list) == len(syn_audio_list)
111 |
112 | mcd_value = 0.0
113 | for gt_path, syn_path in tqdm(zip(gt_audio_list, syn_audio_list), total=len(gt_audio_list)):
114 | gt_path, syn_path = gt_path.split('|')[0].replace('\n', ''), syn_path.split('|')[0].replace('\n', '')
115 |
116 | # MCD calculation
117 | mcd = mcd_toolbox.calculate_mcd(gt_path, syn_path)
118 | mcd_value += mcd
119 |
120 | mcd_value = mcd_value / len(gt_audio_list)
121 | print(f"Mode {mode}, MCD: ", {mcd_value})
122 |
123 | # 3.2 WER
124 | model = whisper.load_model("medium.en", device=device).to(device)
125 |
126 | with open(eval_list, 'r') as f:
127 | lines = f.readlines()
128 |
129 | WER_gt, WER_syn = 0.0, 0.0
130 | for index, line in tqdm(enumerate(lines), total=len(lines)):
131 | if index % 2 == 0:
132 | continue
133 | audio_path, gt_text = line.split('|')
134 | result = model.transcribe(audio_path, language="en")
135 | gen_text = result['text']
136 | wer = jiwer.wer(gt_text, gen_text)
137 |
138 | if index % 2 == 0:
139 | WER_gt += wer
140 | else:
141 | WER_syn += wer
142 |
143 | WER_gt /= (len(lines) // 2)
144 | WER_syn /= (len(lines) // 2)
145 | print(f"Mode {mode}: GT WER is {WER_gt:.6f}, Syn WER is {WER_syn:.6f}")
--------------------------------------------------------------------------------
/vits/commons.py:
--------------------------------------------------------------------------------
1 | import math
2 | import numpy as np
3 | import torch
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 |
8 | def init_weights(m, mean=0.0, std=0.01):
9 | classname = m.__class__.__name__
10 | if classname.find("Conv") != -1:
11 | m.weight.data.normal_(mean, std)
12 |
13 |
14 | def get_padding(kernel_size, dilation=1):
15 | return int((kernel_size*dilation - dilation)/2)
16 |
17 |
18 | def convert_pad_shape(pad_shape):
19 | l = pad_shape[::-1]
20 | pad_shape = [item for sublist in l for item in sublist]
21 | return pad_shape
22 |
23 |
24 | def intersperse(lst, item):
25 | result = [item] * (len(lst) * 2 + 1)
26 | result[1::2] = lst
27 | return result
28 |
29 |
30 | def kl_divergence(m_p, logs_p, m_q, logs_q):
31 | """KL(P||Q)"""
32 | kl = (logs_q - logs_p) - 0.5
33 | kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34 | return kl
35 |
36 |
37 | def rand_gumbel(shape):
38 | """Sample from the Gumbel distribution, protect from overflows."""
39 | uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40 | return -torch.log(-torch.log(uniform_samples))
41 |
42 |
43 | def rand_gumbel_like(x):
44 | g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45 | return g
46 |
47 |
48 | def slice_segments(x, ids_str, segment_size=4):
49 | ret = torch.zeros_like(x[:, :, :segment_size])
50 | for i in range(x.size(0)):
51 | idx_str = ids_str[i]
52 | idx_end = idx_str + segment_size
53 | ret[i] = x[i, :, idx_str:idx_end]
54 | return ret
55 |
56 |
57 | def rand_slice_segments(x, x_lengths=None, segment_size=4):
58 | b, d, t = x.size()
59 | if x_lengths is None:
60 | x_lengths = t
61 | ids_str_max = x_lengths - segment_size + 1
62 | ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63 | ret = slice_segments(x, ids_str, segment_size)
64 | return ret, ids_str
65 |
66 | def fix_slice_segments(x, x_lengths=None, segment_size=4):
67 | seed = 1234
68 | torch.manual_seed(seed)
69 | torch.cuda.manual_seed(seed)
70 |
71 | b, d, t = x.size()
72 | if x_lengths is None:
73 | x_lengths = t
74 | ids_str_max = x_lengths - segment_size + 1
75 | # ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
76 | ids_str = (torch.zeros([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
77 | ret = slice_segments(x, ids_str, segment_size)
78 | return ret, ids_str
79 |
80 |
81 | def get_timing_signal_1d(
82 | length, channels, min_timescale=1.0, max_timescale=1.0e4):
83 | position = torch.arange(length, dtype=torch.float)
84 | num_timescales = channels // 2
85 | log_timescale_increment = (
86 | math.log(float(max_timescale) / float(min_timescale)) /
87 | (num_timescales - 1))
88 | inv_timescales = min_timescale * torch.exp(
89 | torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
90 | scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
91 | signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
92 | signal = F.pad(signal, [0, 0, 0, channels % 2])
93 | signal = signal.view(1, channels, length)
94 | return signal
95 |
96 |
97 | def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
98 | b, channels, length = x.size()
99 | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
100 | return x + signal.to(dtype=x.dtype, device=x.device)
101 |
102 |
103 | def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
104 | b, channels, length = x.size()
105 | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
106 | return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
107 |
108 |
109 | def subsequent_mask(length):
110 | mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
111 | return mask
112 |
113 |
114 | @torch.jit.script
115 | def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
116 | n_channels_int = n_channels[0]
117 | in_act = input_a + input_b
118 | t_act = torch.tanh(in_act[:, :n_channels_int, :])
119 | s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
120 | acts = t_act * s_act
121 | return acts
122 |
123 |
124 | def convert_pad_shape(pad_shape):
125 | l = pad_shape[::-1]
126 | pad_shape = [item for sublist in l for item in sublist]
127 | return pad_shape
128 |
129 |
130 | def shift_1d(x):
131 | x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
132 | return x
133 |
134 |
135 | def sequence_mask(length, max_length=None):
136 | if max_length is None:
137 | max_length = length.max()
138 | x = torch.arange(max_length, dtype=length.dtype, device=length.device)
139 | return x.unsqueeze(0) < length.unsqueeze(1)
140 |
141 |
142 | def generate_path(duration, mask):
143 | """
144 | duration: [b, 1, t_x]
145 | mask: [b, 1, t_y, t_x]
146 | """
147 | device = duration.device
148 |
149 | b, _, t_y, t_x = mask.shape
150 | cum_duration = torch.cumsum(duration, -1)
151 |
152 | cum_duration_flat = cum_duration.view(b * t_x)
153 | path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
154 | path = path.view(b, t_x, t_y)
155 | path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
156 | path = path.unsqueeze(1).transpose(2,3) * mask
157 | return path
158 |
159 |
160 | def clip_grad_value_(parameters, clip_value, norm_type=2):
161 | if isinstance(parameters, torch.Tensor):
162 | parameters = [parameters]
163 | parameters = list(filter(lambda p: p.grad is not None, parameters))
164 | norm_type = float(norm_type)
165 | if clip_value is not None:
166 | clip_value = float(clip_value)
167 |
168 | total_norm = 0
169 | for p in parameters:
170 | param_norm = p.grad.data.norm(norm_type)
171 | total_norm += param_norm.item() ** norm_type
172 | if clip_value is not None:
173 | p.grad.data.clamp_(min=-clip_value, max=clip_value)
174 | total_norm = total_norm ** (1. / norm_type)
175 | return total_norm
176 |
--------------------------------------------------------------------------------
/vits/filelists/vctk_audio_sid_text_val_filelist.txt:
--------------------------------------------------------------------------------
1 | DUMMY2/p364/p364_240.wav|88|It had happened to him.
2 | DUMMY2/p280/p280_148.wav|52|It is open season on the Old Firm.
3 | DUMMY2/p231/p231_320.wav|50|However, he is a coach, and he remains a coach at heart.
4 | DUMMY2/p282/p282_129.wav|83|It is not a U-turn.
5 | DUMMY2/p254/p254_015.wav|41|The Greeks used to imagine that it was a sign from the gods to foretell war or heavy rain.
6 | DUMMY2/p228/p228_285.wav|57|The songs are just so good.
7 | DUMMY2/p334/p334_307.wav|38|If they don't, they can expect their funding to be cut.
8 | DUMMY2/p287/p287_081.wav|77|I've never seen anything like it.
9 | DUMMY2/p247/p247_083.wav|14|It is a job creation scheme.)
10 | DUMMY2/p264/p264_051.wav|65|We were leading by two goals.)
11 | DUMMY2/p335/p335_058.wav|49|Let's see that increase over the years.
12 | DUMMY2/p236/p236_225.wav|75|There is no quick fix.
13 | DUMMY2/p374/p374_353.wav|11|And that brings us to the point.
14 | DUMMY2/p272/p272_076.wav|69|Sounds like The Sixth Sense?
15 | DUMMY2/p271/p271_152.wav|27|The petition was formally presented at Downing Street yesterday.
16 | DUMMY2/p228/p228_127.wav|57|They've got to account for it.
17 | DUMMY2/p276/p276_223.wav|106|It's been a humbling year.
18 | DUMMY2/p262/p262_248.wav|45|The project has already secured the support of Sir Sean Connery.
19 | DUMMY2/p314/p314_086.wav|51|The team this year is going places.
20 | DUMMY2/p225/p225_038.wav|101|Diving is no part of football.
21 | DUMMY2/p279/p279_088.wav|25|The shareholders will vote to wind up the company on Friday morning.
22 | DUMMY2/p272/p272_018.wav|69|Aristotle thought that the rainbow was caused by reflection of the sun's rays by the rain.
23 | DUMMY2/p256/p256_098.wav|90|She told The Herald.
24 | DUMMY2/p261/p261_218.wav|100|All will be revealed in due course.
25 | DUMMY2/p265/p265_063.wav|73|IT shouldn't come as a surprise, but it does.
26 | DUMMY2/p314/p314_042.wav|51|It is all about people being assaulted, abused.
27 | DUMMY2/p241/p241_188.wav|86|I wish I could say something.
28 | DUMMY2/p283/p283_111.wav|95|It's good to have a voice.
29 | DUMMY2/p275/p275_006.wav|40|When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow.
30 | DUMMY2/p228/p228_092.wav|57|Today I couldn't run on it.
31 | DUMMY2/p295/p295_343.wav|92|The atmosphere is businesslike.
32 | DUMMY2/p228/p228_187.wav|57|They will run a mile.
33 | DUMMY2/p294/p294_317.wav|104|It didn't put me off.
34 | DUMMY2/p231/p231_445.wav|50|It sounded like a bomb.
35 | DUMMY2/p272/p272_086.wav|69|Today she has been released.
36 | DUMMY2/p255/p255_210.wav|31|It was worth a photograph.
37 | DUMMY2/p229/p229_060.wav|67|And a film maker was born.
38 | DUMMY2/p260/p260_232.wav|81|The Home Office would not release any further details about the group.
39 | DUMMY2/p245/p245_025.wav|59|Johnson was pretty low.
40 | DUMMY2/p333/p333_185.wav|64|This area is perfect for children.
41 | DUMMY2/p244/p244_242.wav|78|He is a man of the people.
42 | DUMMY2/p376/p376_187.wav|71|"It is a terrible loss."
43 | DUMMY2/p239/p239_156.wav|48|It is a good lifestyle.
44 | DUMMY2/p307/p307_037.wav|22|He released a half-dozen solo albums.
45 | DUMMY2/p305/p305_185.wav|54|I am not even thinking about that.
46 | DUMMY2/p272/p272_081.wav|69|It was magic.
47 | DUMMY2/p302/p302_297.wav|30|I'm trying to stay open on that.
48 | DUMMY2/p275/p275_320.wav|40|We are in the end game.
49 | DUMMY2/p239/p239_231.wav|48|Then we will face the Danish champions.
50 | DUMMY2/p268/p268_301.wav|87|It was only later that the condition was diagnosed.
51 | DUMMY2/p336/p336_088.wav|98|They failed to reach agreement yesterday.
52 | DUMMY2/p278/p278_255.wav|10|They made such decisions in London.
53 | DUMMY2/p361/p361_132.wav|79|That got me out.
54 | DUMMY2/p307/p307_146.wav|22|You hope he prevails.
55 | DUMMY2/p244/p244_147.wav|78|They could not ignore the will of parliament, he claimed.
56 | DUMMY2/p294/p294_283.wav|104|This is our unfinished business.
57 | DUMMY2/p283/p283_300.wav|95|I would have the hammer in the crowd.
58 | DUMMY2/p239/p239_079.wav|48|I can understand the frustrations of our fans.
59 | DUMMY2/p264/p264_009.wav|65|There is , according to legend, a boiling pot of gold at one end. )
60 | DUMMY2/p307/p307_348.wav|22|He did not oppose the divorce.
61 | DUMMY2/p304/p304_308.wav|72|We are the gateway to justice.
62 | DUMMY2/p281/p281_056.wav|36|None has ever been found.
63 | DUMMY2/p267/p267_158.wav|0|We were given a warm and friendly reception.
64 | DUMMY2/p300/p300_169.wav|102|Who do these people think they are?
65 | DUMMY2/p276/p276_177.wav|106|They exist in name alone.
66 | DUMMY2/p228/p228_245.wav|57|It is a policy which has the full support of the minister.
67 | DUMMY2/p300/p300_303.wav|102|I'm wondering what you feel about the youngest.
68 | DUMMY2/p362/p362_247.wav|15|This would give Scotland around eight members.
69 | DUMMY2/p326/p326_031.wav|28|United were in control without always being dominant.
70 | DUMMY2/p361/p361_288.wav|79|I did not think it was very proper.
71 | DUMMY2/p286/p286_145.wav|63|Tiger is not the norm.
72 | DUMMY2/p234/p234_071.wav|3|She did that for the rest of her life.
73 | DUMMY2/p263/p263_296.wav|39|The decision was announced at its annual conference in Dunfermline.
74 | DUMMY2/p323/p323_228.wav|34|She became a heroine of my childhood.
75 | DUMMY2/p280/p280_346.wav|52|It was a bit like having children.
76 | DUMMY2/p333/p333_080.wav|64|But the tragedy did not stop there.
77 | DUMMY2/p226/p226_268.wav|43|That decision is for the British Parliament and people.
78 | DUMMY2/p362/p362_314.wav|15|Is that right?
79 | DUMMY2/p240/p240_047.wav|93|It is so sad.
80 | DUMMY2/p250/p250_207.wav|24|You could feel the heat.
81 | DUMMY2/p273/p273_176.wav|56|Neither side would reveal the details of the offer.
82 | DUMMY2/p316/p316_147.wav|85|And frankly, it's been a while.
83 | DUMMY2/p265/p265_047.wav|73|It is unique.
84 | DUMMY2/p336/p336_353.wav|98|Sometimes you get them, sometimes you don't.
85 | DUMMY2/p230/p230_376.wav|35|This hasn't happened in a vacuum.
86 | DUMMY2/p308/p308_209.wav|107|There is great potential on this river.
87 | DUMMY2/p250/p250_442.wav|24|We have not yet received a letter from the Irish.
88 | DUMMY2/p260/p260_037.wav|81|It's a fact.
89 | DUMMY2/p299/p299_345.wav|58|We're very excited and challenged by the project.
90 | DUMMY2/p269/p269_218.wav|94|A Grampian Police spokesman said.
91 | DUMMY2/p306/p306_014.wav|12|To the Hebrews it was a token that there would be no more universal floods.
92 | DUMMY2/p271/p271_292.wav|27|It's a record label, not a form of music.
93 | DUMMY2/p247/p247_225.wav|14|I am considered a teenager.)
94 | DUMMY2/p294/p294_094.wav|104|It should be a condition of employment.
95 | DUMMY2/p269/p269_031.wav|94|Is this accurate?
96 | DUMMY2/p275/p275_116.wav|40|It's not fair.
97 | DUMMY2/p265/p265_006.wav|73|When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow.
98 | DUMMY2/p285/p285_072.wav|2|Mr Irvine said Mr Rafferty was now in good spirits.
99 | DUMMY2/p270/p270_167.wav|8|We did what we had to do.
100 | DUMMY2/p360/p360_397.wav|60|It is a relief.
101 |
--------------------------------------------------------------------------------
/vits/inference.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "%matplotlib inline\n",
10 | "import matplotlib.pyplot as plt\n",
11 | "import IPython.display as ipd\n",
12 | "\n",
13 | "import os\n",
14 | "import json\n",
15 | "import math\n",
16 | "import torch\n",
17 | "from torch import nn\n",
18 | "from torch.nn import functional as F\n",
19 | "from torch.utils.data import DataLoader\n",
20 | "\n",
21 | "import commons\n",
22 | "import utils\n",
23 | "from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
24 | "from models import SynthesizerTrn\n",
25 | "from text.symbols import symbols\n",
26 | "from text import text_to_sequence\n",
27 | "\n",
28 | "from scipy.io.wavfile import write\n",
29 | "\n",
30 | "\n",
31 | "def get_text(text, hps):\n",
32 | " text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
33 | " if hps.data.add_blank:\n",
34 | " text_norm = commons.intersperse(text_norm, 0)\n",
35 | " text_norm = torch.LongTensor(text_norm)\n",
36 | " return text_norm"
37 | ]
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {},
42 | "source": [
43 | "## LJ Speech"
44 | ]
45 | },
46 | {
47 | "cell_type": "code",
48 | "execution_count": null,
49 | "metadata": {},
50 | "outputs": [],
51 | "source": [
52 | "hps = utils.get_hparams_from_file(\"./configs/ljs_base.json\")"
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "execution_count": null,
58 | "metadata": {},
59 | "outputs": [],
60 | "source": [
61 | "net_g = SynthesizerTrn(\n",
62 | " len(symbols),\n",
63 | " hps.data.filter_length // 2 + 1,\n",
64 | " hps.train.segment_size // hps.data.hop_length,\n",
65 | " **hps.model).cuda()\n",
66 | "_ = net_g.eval()\n",
67 | "\n",
68 | "_ = utils.load_checkpoint(\"/path/to/pretrained_ljs.pth\", net_g, None)"
69 | ]
70 | },
71 | {
72 | "cell_type": "code",
73 | "execution_count": null,
74 | "metadata": {},
75 | "outputs": [],
76 | "source": [
77 | "stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
78 | "with torch.no_grad():\n",
79 | " x_tst = stn_tst.cuda().unsqueeze(0)\n",
80 | " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
81 | " audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
82 | "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
83 | ]
84 | },
85 | {
86 | "cell_type": "markdown",
87 | "metadata": {},
88 | "source": [
89 | "## VCTK"
90 | ]
91 | },
92 | {
93 | "cell_type": "code",
94 | "execution_count": null,
95 | "metadata": {},
96 | "outputs": [],
97 | "source": [
98 | "hps = utils.get_hparams_from_file(\"./configs/vctk_base.json\")"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": [
107 | "net_g = SynthesizerTrn(\n",
108 | " len(symbols),\n",
109 | " hps.data.filter_length // 2 + 1,\n",
110 | " hps.train.segment_size // hps.data.hop_length,\n",
111 | " n_speakers=hps.data.n_speakers,\n",
112 | " **hps.model).cuda()\n",
113 | "_ = net_g.eval()\n",
114 | "\n",
115 | "_ = utils.load_checkpoint(\"/path/to/pretrained_vctk.pth\", net_g, None)"
116 | ]
117 | },
118 | {
119 | "cell_type": "code",
120 | "execution_count": null,
121 | "metadata": {},
122 | "outputs": [],
123 | "source": [
124 | "stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
125 | "with torch.no_grad():\n",
126 | " x_tst = stn_tst.cuda().unsqueeze(0)\n",
127 | " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
128 | " sid = torch.LongTensor([4]).cuda()\n",
129 | " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
130 | "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
131 | ]
132 | },
133 | {
134 | "cell_type": "markdown",
135 | "metadata": {},
136 | "source": [
137 | "### Voice Conversion"
138 | ]
139 | },
140 | {
141 | "cell_type": "code",
142 | "execution_count": null,
143 | "metadata": {},
144 | "outputs": [],
145 | "source": [
146 | "dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n",
147 | "collate_fn = TextAudioSpeakerCollate()\n",
148 | "loader = DataLoader(dataset, num_workers=8, shuffle=False,\n",
149 | " batch_size=1, pin_memory=True,\n",
150 | " drop_last=True, collate_fn=collate_fn)\n",
151 | "data_list = list(loader)"
152 | ]
153 | },
154 | {
155 | "cell_type": "code",
156 | "execution_count": null,
157 | "metadata": {},
158 | "outputs": [],
159 | "source": [
160 | "with torch.no_grad():\n",
161 | " x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n",
162 | " sid_tgt1 = torch.LongTensor([1]).cuda()\n",
163 | " sid_tgt2 = torch.LongTensor([2]).cuda()\n",
164 | " sid_tgt3 = torch.LongTensor([4]).cuda()\n",
165 | " audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n",
166 | " audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n",
167 | " audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n",
168 | "print(\"Original SID: %d\" % sid_src.item())\n",
169 | "ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n",
170 | "print(\"Converted SID: %d\" % sid_tgt1.item())\n",
171 | "ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n",
172 | "print(\"Converted SID: %d\" % sid_tgt2.item())\n",
173 | "ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n",
174 | "print(\"Converted SID: %d\" % sid_tgt3.item())\n",
175 | "ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))"
176 | ]
177 | }
178 | ],
179 | "metadata": {
180 | "kernelspec": {
181 | "display_name": "Python 3",
182 | "language": "python",
183 | "name": "python3"
184 | },
185 | "language_info": {
186 | "codemirror_mode": {
187 | "name": "ipython",
188 | "version": 3
189 | },
190 | "file_extension": ".py",
191 | "mimetype": "text/x-python",
192 | "name": "python",
193 | "nbconvert_exporter": "python",
194 | "pygments_lexer": "ipython3",
195 | "version": "3.7.7"
196 | }
197 | },
198 | "nbformat": 4,
199 | "nbformat_minor": 4
200 | }
201 |
--------------------------------------------------------------------------------
/vits/filelists/vctk_audio_sid_text_val_filelist.txt.cleaned:
--------------------------------------------------------------------------------
1 | DUMMY2/p364/p364_240.wav|88|ɪt hɐd hˈæpənd tə hˌɪm.
2 | DUMMY2/p280/p280_148.wav|52|ɪt ɪz ˈoʊpən sˈiːzən ɑːnðɪ ˈoʊld fˈɜːm.
3 | DUMMY2/p231/p231_320.wav|50|haʊˈɛvɚ, hiː ɪz ɐ kˈoʊtʃ, ænd hiː ɹɪmˈeɪnz ɐ kˈoʊtʃ æt hˈɑːɹt.
4 | DUMMY2/p282/p282_129.wav|83|ɪt ɪz nˌɑːɾə jˈuːtˈɜːn.
5 | DUMMY2/p254/p254_015.wav|41|ðə ɡɹˈiːks jˈuːzd tʊ ɪmˈædʒɪn ðˌɐɾɪt wʌzɐ sˈaɪn fɹʌmðə ɡˈɑːdz tə foːɹtˈɛl wˈɔːɹ ɔːɹ hˈɛvi ɹˈeɪn.
6 | DUMMY2/p228/p228_285.wav|57|ðə sˈɔŋz ɑːɹ dʒˈʌst sˌoʊ ɡˈʊd.
7 | DUMMY2/p334/p334_307.wav|38|ɪf ðeɪ dˈoʊnt, ðeɪ kæn ɛkspˈɛkt ðɛɹ fˈʌndɪŋ təbi kˈʌt.
8 | DUMMY2/p287/p287_081.wav|77|aɪv nˈɛvɚ sˈiːn ˈɛnɪθˌɪŋ lˈaɪk ɪt.
9 | DUMMY2/p247/p247_083.wav|14|ɪt ɪz ɐ dʒˈɑːb kɹiːˈeɪʃən skˈiːm.
10 | DUMMY2/p264/p264_051.wav|65|wiː wɜː lˈiːdɪŋ baɪ tˈuː ɡˈoʊlz.
11 | DUMMY2/p335/p335_058.wav|49|lˈɛts sˈiː ðæt ˈɪnkɹiːs ˌoʊvɚ ðə jˈɪɹz.
12 | DUMMY2/p236/p236_225.wav|75|ðɛɹ ɪz nˈoʊ kwˈɪk fˈɪks.
13 | DUMMY2/p374/p374_353.wav|11|ænd ðæt bɹˈɪŋz ˌʌs tə ðə pˈɔɪnt.
14 | DUMMY2/p272/p272_076.wav|69|sˈaʊndz lˈaɪk ðə sˈɪksθ sˈɛns?
15 | DUMMY2/p271/p271_152.wav|27|ðə pətˈɪʃən wʌz fˈɔːɹməli pɹɪzˈɛntᵻd æt dˈaʊnɪŋ stɹˈiːt jˈɛstɚdˌeɪ.
16 | DUMMY2/p228/p228_127.wav|57|ðeɪv ɡɑːt tʊ ɐkˈaʊnt fɔːɹ ɪt.
17 | DUMMY2/p276/p276_223.wav|106|ɪts bˌɪn ɐ hˈʌmblɪŋ jˈɪɹ.
18 | DUMMY2/p262/p262_248.wav|45|ðə pɹˈɑːdʒɛkt hɐz ɔːlɹˌɛdi sɪkjˈʊɹd ðə səpˈoːɹt ʌv sˌɜː ʃˈɔːn kɑːnɚɹi.
19 | DUMMY2/p314/p314_086.wav|51|ðə tˈiːm ðɪs jˈɪɹ ɪz ɡˌoʊɪŋ plˈeɪsᵻz.
20 | DUMMY2/p225/p225_038.wav|101|dˈaɪvɪŋ ɪz nˈoʊ pˈɑːɹt ʌv fˈʊtbɔːl.
21 | DUMMY2/p279/p279_088.wav|25|ðə ʃˈɛɹhoʊldɚz wɪl vˈoʊt tə wˈaɪnd ˈʌp ðə kˈʌmpəni ˌɑːn fɹˈaɪdeɪ mˈɔːɹnɪŋ.
22 | DUMMY2/p272/p272_018.wav|69|ˈæɹɪstˌɑːɾəl θˈɔːt ðætðə ɹˈeɪnboʊ wʌz kˈɔːzd baɪ ɹɪflˈɛkʃən ʌvðə sˈʌnz ɹˈeɪz baɪ ðə ɹˈeɪn.
23 | DUMMY2/p256/p256_098.wav|90|ʃiː tˈoʊld ðə hˈɛɹəld.
24 | DUMMY2/p261/p261_218.wav|100|ˈɔːl wɪl biː ɹɪvˈiːld ɪn dˈuː kˈoːɹs.
25 | DUMMY2/p265/p265_063.wav|73|ɪt ʃˌʊdənt kˈʌm æz ɐ sɚpɹˈaɪz, bˌʌt ɪt dˈʌz.
26 | DUMMY2/p314/p314_042.wav|51|ɪt ɪz ˈɔːl ɐbˌaʊt pˈiːpəl bˌiːɪŋ ɐsˈɑːltᵻd, ɐbjˈuːsd.
27 | DUMMY2/p241/p241_188.wav|86|ˈaɪ wˈɪʃ ˈaɪ kʊd sˈeɪ sˈʌmθɪŋ.
28 | DUMMY2/p283/p283_111.wav|95|ɪts ɡˈʊd tə hæv ɐ vˈɔɪs.
29 | DUMMY2/p275/p275_006.wav|40|wˌɛn ðə sˈʌnlaɪt stɹˈaɪks ɹˈeɪndɹɑːps ɪnðɪ ˈɛɹ, ðeɪ ˈækt æz ɐ pɹˈɪzəm ænd fˈɔːɹm ɐ ɹˈeɪnboʊ.
30 | DUMMY2/p228/p228_092.wav|57|tədˈeɪ ˈaɪ kˌʊdənt ɹˈʌn ˈɑːn ɪt.
31 | DUMMY2/p295/p295_343.wav|92|ðɪ ˈætməsfˌɪɹ ɪz bˈɪznəslˌaɪk.
32 | DUMMY2/p228/p228_187.wav|57|ðeɪ wɪl ɹˈʌn ɐ mˈaɪl.
33 | DUMMY2/p294/p294_317.wav|104|ɪt dˈɪdnt pˌʊt mˌiː ˈɔf.
34 | DUMMY2/p231/p231_445.wav|50|ɪt sˈaʊndᵻd lˈaɪk ɐ bˈɑːm.
35 | DUMMY2/p272/p272_086.wav|69|tədˈeɪ ʃiː hɐzbɪn ɹɪlˈiːsd.
36 | DUMMY2/p255/p255_210.wav|31|ɪt wʌz wˈɜːθ ɐ fˈoʊɾəɡɹˌæf.
37 | DUMMY2/p229/p229_060.wav|67|ænd ɐ fˈɪlm mˈeɪkɚ wʌz bˈɔːɹn.
38 | DUMMY2/p260/p260_232.wav|81|ðə hˈoʊm ˈɑːfɪs wʊd nˌɑːt ɹɪlˈiːs ˌɛni fˈɜːðɚ diːtˈeɪlz ɐbˌaʊt ðə ɡɹˈuːp.
39 | DUMMY2/p245/p245_025.wav|59|dʒˈɑːnsən wʌz pɹˈɪɾi lˈoʊ.
40 | DUMMY2/p333/p333_185.wav|64|ðɪs ˈɛɹiə ɪz pˈɜːfɛkt fɔːɹ tʃˈɪldɹən.
41 | DUMMY2/p244/p244_242.wav|78|hiː ɪz ɐ mˈæn ʌvðə pˈiːpəl.
42 | DUMMY2/p376/p376_187.wav|71|"ɪt ɪz ɐ tˈɛɹəbəl lˈɔs."
43 | DUMMY2/p239/p239_156.wav|48|ɪt ɪz ɐ ɡˈʊd lˈaɪfstaɪl.
44 | DUMMY2/p307/p307_037.wav|22|hiː ɹɪlˈiːsd ɐ hˈæfdˈʌzən sˈoʊloʊ ˈælbəmz.
45 | DUMMY2/p305/p305_185.wav|54|ˈaɪ æm nˌɑːt ˈiːvən θˈɪŋkɪŋ ɐbˌaʊt ðˈæt.
46 | DUMMY2/p272/p272_081.wav|69|ɪt wʌz mˈædʒɪk.
47 | DUMMY2/p302/p302_297.wav|30|aɪm tɹˈaɪɪŋ tə stˈeɪ ˈoʊpən ˌɑːn ðˈæt.
48 | DUMMY2/p275/p275_320.wav|40|wiː ɑːɹ ɪnðɪ ˈɛnd ɡˈeɪm.
49 | DUMMY2/p239/p239_231.wav|48|ðˈɛn wiː wɪl fˈeɪs ðə dˈeɪnɪʃ tʃˈæmpiənz.
50 | DUMMY2/p268/p268_301.wav|87|ɪt wʌz ˈoʊnli lˈeɪɾɚ ðætðə kəndˈɪʃən wʌz dˌaɪəɡnˈoʊzd.
51 | DUMMY2/p336/p336_088.wav|98|ðeɪ fˈeɪld tə ɹˈiːtʃ ɐɡɹˈiːmənt jˈɛstɚdˌeɪ.
52 | DUMMY2/p278/p278_255.wav|10|ðeɪ mˌeɪd sˈʌtʃ dᵻsˈɪʒənz ɪn lˈʌndən.
53 | DUMMY2/p361/p361_132.wav|79|ðæt ɡɑːt mˌiː ˈaʊt.
54 | DUMMY2/p307/p307_146.wav|22|juː hˈoʊp hiː pɹɪvˈeɪlz.
55 | DUMMY2/p244/p244_147.wav|78|ðeɪ kʊd nˌɑːt ɪɡnˈoːɹ ðə wɪl ʌv pˈɑːɹləmənt, hiː klˈeɪmd.
56 | DUMMY2/p294/p294_283.wav|104|ðɪs ɪz ˌaʊɚɹ ʌnfˈɪnɪʃt bˈɪznəs.
57 | DUMMY2/p283/p283_300.wav|95|ˈaɪ wʊdhɐv ðə hˈæmɚɹ ɪnðə kɹˈaʊd.
58 | DUMMY2/p239/p239_079.wav|48|ˈaɪ kæn ˌʌndɚstˈænd ðə fɹʌstɹˈeɪʃənz ʌv ˌaʊɚ fˈænz.
59 | DUMMY2/p264/p264_009.wav|65|ðɛɹˈɪz , ɐkˈoːɹdɪŋ tə lˈɛdʒənd, ɐ bˈɔɪlɪŋ pˈɑːt ʌv ɡˈoʊld æt wˈʌn ˈɛnd.
60 | DUMMY2/p307/p307_348.wav|22|hiː dɪdnˌɑːt əpˈoʊz ðə dɪvˈoːɹs.
61 | DUMMY2/p304/p304_308.wav|72|wiː ɑːɹ ðə ɡˈeɪtweɪ tə dʒˈʌstɪs.
62 | DUMMY2/p281/p281_056.wav|36|nˈʌn hɐz ˈɛvɚ bˌɪn fˈaʊnd.
63 | DUMMY2/p267/p267_158.wav|0|wiː wɜː ɡˈɪvən ɐ wˈɔːɹm ænd fɹˈɛndli ɹɪsˈɛpʃən.
64 | DUMMY2/p300/p300_169.wav|102|hˌuː dˈuː ðiːz pˈiːpəl θˈɪŋk ðeɪ ɑːɹ?
65 | DUMMY2/p276/p276_177.wav|106|ðeɪ ɛɡzˈɪst ɪn nˈeɪm ɐlˈoʊn.
66 | DUMMY2/p228/p228_245.wav|57|ɪt ɪz ɐ pˈɑːlɪsi wˌɪtʃ hɐz ðə fˈʊl səpˈoːɹt ʌvðə mˈɪnɪstɚ.
67 | DUMMY2/p300/p300_303.wav|102|aɪm wˈʌndɚɹɪŋ wˌʌt juː fˈiːl ɐbˌaʊt ðə jˈʌŋɡəst.
68 | DUMMY2/p362/p362_247.wav|15|ðɪs wʊd ɡˈɪv skˈɑːtlənd ɐɹˈaʊnd ˈeɪt mˈɛmbɚz.
69 | DUMMY2/p326/p326_031.wav|28|juːnˈaɪɾᵻd wɜːɹ ɪn kəntɹˈoʊl wɪðˌaʊt ˈɔːlweɪz bˌiːɪŋ dˈɑːmɪnənt.
70 | DUMMY2/p361/p361_288.wav|79|ˈaɪ dɪdnˌɑːt θˈɪŋk ɪt wʌz vˈɛɹi pɹˈɑːpɚ.
71 | DUMMY2/p286/p286_145.wav|63|tˈaɪɡɚɹ ɪz nˌɑːt ðə nˈɔːɹm.
72 | DUMMY2/p234/p234_071.wav|3|ʃiː dˈɪd ðæt fɚðə ɹˈɛst ʌv hɜː lˈaɪf.
73 | DUMMY2/p263/p263_296.wav|39|ðə dᵻsˈɪʒən wʌz ɐnˈaʊnst æt ɪts ˈænjuːəl kˈɑːnfɹəns ɪn dˈʌnfɚmlˌaɪn.
74 | DUMMY2/p323/p323_228.wav|34|ʃiː bɪkˌeɪm ɐ hˈɛɹoʊˌɪn ʌv maɪ tʃˈaɪldhʊd.
75 | DUMMY2/p280/p280_346.wav|52|ɪt wʌzɐ bˈɪt lˈaɪk hˌævɪŋ tʃˈɪldɹən.
76 | DUMMY2/p333/p333_080.wav|64|bˌʌt ðə tɹˈædʒədi dɪdnˌɑːt stˈɑːp ðˈɛɹ.
77 | DUMMY2/p226/p226_268.wav|43|ðæt dᵻsˈɪʒən ɪz fɚðə bɹˈɪɾɪʃ pˈɑːɹləmənt ænd pˈiːpəl.
78 | DUMMY2/p362/p362_314.wav|15|ɪz ðæt ɹˈaɪt?
79 | DUMMY2/p240/p240_047.wav|93|ɪt ɪz sˌoʊ sˈæd.
80 | DUMMY2/p250/p250_207.wav|24|juː kʊd fˈiːl ðə hˈiːt.
81 | DUMMY2/p273/p273_176.wav|56|nˈiːðɚ sˈaɪd wʊd ɹɪvˈiːl ðə diːtˈeɪlz ʌvðɪ ˈɑːfɚ.
82 | DUMMY2/p316/p316_147.wav|85|ænd fɹˈæŋkli, ɪts bˌɪn ɐ wˈaɪl.
83 | DUMMY2/p265/p265_047.wav|73|ɪt ɪz juːnˈiːk.
84 | DUMMY2/p336/p336_353.wav|98|sˈʌmtaɪmz juː ɡˈɛt ðˌɛm, sˈʌmtaɪmz juː dˈoʊnt.
85 | DUMMY2/p230/p230_376.wav|35|ðɪs hˈæzənt hˈæpənd ɪn ɐ vˈækjuːm.
86 | DUMMY2/p308/p308_209.wav|107|ðɛɹ ɪz ɡɹˈeɪt pətˈɛnʃəl ˌɑːn ðɪs ɹˈɪvɚ.
87 | DUMMY2/p250/p250_442.wav|24|wiː hɐvnˌɑːt jˈɛt ɹɪsˈiːvd ɐ lˈɛɾɚ fɹʌmðɪ ˈaɪɹɪʃ.
88 | DUMMY2/p260/p260_037.wav|81|ɪts ɐ fˈækt.
89 | DUMMY2/p299/p299_345.wav|58|wɪɹ vˈɛɹi ɛksˈaɪɾᵻd ænd tʃˈælɪndʒd baɪ ðə pɹˈɑːdʒɛkt.
90 | DUMMY2/p269/p269_218.wav|94|ɐ ɡɹˈæmpiən pəlˈiːs spˈoʊksmən sˈɛd.
91 | DUMMY2/p306/p306_014.wav|12|tə ðə hˈiːbɹuːz ɪt wʌzɐ tˈoʊkən ðæt ðɛɹ wʊd biː nˈoʊmˌoːɹ jˌuːnɪvˈɜːsəl flˈʌdz.
92 | DUMMY2/p271/p271_292.wav|27|ɪts ɐ ɹˈɛkɚd lˈeɪbəl, nˌɑːɾə fˈɔːɹm ʌv mjˈuːzɪk.
93 | DUMMY2/p247/p247_225.wav|14|ˈaɪ æm kənsˈɪdɚd ɐ tˈiːneɪdʒɚ.
94 | DUMMY2/p294/p294_094.wav|104|ɪt ʃˌʊd biː ɐ kəndˈɪʃən ʌv ɛmplˈɔɪmənt.
95 | DUMMY2/p269/p269_031.wav|94|ɪz ðɪs ˈækjʊɹət?
96 | DUMMY2/p275/p275_116.wav|40|ɪts nˌɑːt fˈɛɹ.
97 | DUMMY2/p265/p265_006.wav|73|wˌɛn ðə sˈʌnlaɪt stɹˈaɪks ɹˈeɪndɹɑːps ɪnðɪ ˈɛɹ, ðeɪ ˈækt æz ɐ pɹˈɪzəm ænd fˈɔːɹm ɐ ɹˈeɪnboʊ.
98 | DUMMY2/p285/p285_072.wav|2|mˈɪstɚɹ ˈɜːvaɪn sˈɛd mˈɪstɚ ɹˈæfɚɾi wʌz nˈaʊ ɪn ɡˈʊd spˈɪɹɪts.
99 | DUMMY2/p270/p270_167.wav|8|wiː dˈɪd wˌʌt wiː hædtə dˈuː.
100 | DUMMY2/p360/p360_397.wav|60|ɪt ɪz ɐ ɹɪlˈiːf.
101 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import os
2 | import time
3 | import torch
4 | import argparse
5 |
6 | from tqdm import tqdm
7 | import torch.nn.functional as F
8 | from torch.utils.data import DataLoader
9 | from torch.cuda.amp import autocast, GradScaler
10 |
11 |
12 | import vits.commons as commons
13 | import vits.utils as utils
14 | from vits.mel_processing import (
15 | mel_spectrogram_torch,
16 | spec_to_mel_torch,
17 | spectrogram_torch
18 | )
19 | from vits.data_utils import (
20 | TextAudioSpeakerLoader,
21 | TextAudioSpeakerCollate,
22 | )
23 | from vits.losses import (
24 | generator_loss,
25 | discriminator_loss,
26 | feature_loss,
27 | kl_loss
28 | )
29 | from toolbox import build_models, get_spec
30 | from evaluate import evaluation
31 |
32 |
33 | def main():
34 | parser = argparse.ArgumentParser(description="The detailed setting for training...")
35 |
36 | parser.add_argument("--device", type=str, default="cuda", help="The training device which should be GPU or CPU.")
37 | parser.add_argument("--model_name", type=str, default="VITS", help="The surrogate model.")
38 | parser.add_argument("--dataset_name", type=str, default="OneSpeaker", help="The selected dataset to be protected.")
39 | parser.add_argument("--config_path", type=str, default="configs/onespeaker_vits.json", help="The configuration path for building model.")
40 | parser.add_argument("--pretrained_path", type=str, default="checkpoints/pretrained_ljs.pth", help="The checkpoint path of the pre-trained model.")
41 | parser.add_argument("--is_fixed", type=str, default="True", help="Training at the fixed patch or not.")
42 |
43 | args = parser.parse_args()
44 | device = args.device
45 | model_name = args.model_name
46 | dataset_name = args.dataset_name
47 | is_fixed = True if args.is_fixed == "True" else False
48 | assert torch.cuda.is_available(), "CPU training is not allowed."
49 |
50 | config_path = args.config_path
51 | hps = utils.get_hparams_from_file(config_path=config_path)
52 | torch.manual_seed(hps.train.seed)
53 | torch.cuda.manual_seed(hps.train.seed)
54 |
55 | train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
56 | collate_fn = TextAudioSpeakerCollate()
57 | train_loader = DataLoader(train_dataset,
58 | num_workers=4,
59 | shuffle=False,
60 | collate_fn=collate_fn,
61 | batch_size=hps.train.batch_size,
62 | pin_memory=True,
63 | drop_last=False)
64 |
65 | print(f"The dataset length is {len(train_dataset)}.")
66 |
67 | checkpoint_path = args.pretrained_path
68 | if checkpoint_path == "":
69 | raise "The pre-trained checkpoint is not be None!"
70 |
71 | net_g, net_d = build_models(hps, checkpoint_path=checkpoint_path)
72 | net_g, net_d = net_g.to(device), net_d.to(device)
73 |
74 | optim_g = torch.optim.AdamW(
75 | net_g.parameters(),
76 | hps.train.learning_rate,
77 | betas=hps.train.betas,
78 | eps=hps.train.eps)
79 | optim_d = torch.optim.AdamW(
80 | net_d.parameters(),
81 | hps.train.learning_rate,
82 | betas=hps.train.betas,
83 | eps=hps.train.eps)
84 |
85 | epoch_str = 1
86 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
87 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
88 |
89 | scaler = GradScaler(enabled=hps.train.fp16_run)
90 |
91 | start_time = time.time()
92 | net_g.train(), net_d.train()
93 | for epoch in range(1, hps.train.epochs + 1):
94 | loss_disc_all, loss_gen_all = train(hps, [net_g, net_d], [optim_g, optim_d], train_loader, scaler, is_fixed)
95 |
96 | scheduler_g.step()
97 | scheduler_d.step()
98 |
99 | end_time = time.time()
100 | duration = end_time - start_time
101 | hours, remainder = divmod(duration, 3600)
102 | minutes, seconds = divmod(remainder, 60)
103 | formatted_time = "{:02d}:{:02d}:{:02d}".format(int(hours), int(minutes), int(seconds))
104 | print(f"[{formatted_time}] Epoch {epoch}: D loss {loss_disc_all:.6f}, G loss {loss_gen_all:.6f}")
105 |
106 | if os.path.exists("checkpoints") is False:
107 | os.mkdir("checkpoints")
108 |
109 | save_path = f"./checkpoints/{model_name}_finetuning_{dataset_name}_{epoch}.pth"
110 | torch.save(net_g.state_dict(), save_path)
111 | print(f"Saving the checkpoint to {save_path}.")
112 | evaluation(net_g, config_path, model_name, dataset_name, "finetuning", device)
113 |
114 |
115 | def train(hps, nets, optims, train_loader, scaler, is_fixed):
116 | net_g, net_d = nets
117 | optim_g, optim_d = optims
118 |
119 | device = next(net_g.parameters()).device
120 | loss_disc_all, loss_gen_all = 0, 0
121 | # for batch in tqdm(train_loader):
122 | for batch in train_loader:
123 | text, text_len, spec, spec_len, wav, wav_len, speakers = batch
124 | text, text_len = text.to(device), text_len.to(device)
125 | spec, spec_len = spec.to(device), spec_len.to(device)
126 | wav, wav_len = wav.to(device), wav_len.to(device)
127 | speakers = speakers.to(device)
128 |
129 | wav_hat, l_length, attn, ids_slice, x_mask, z_mask, \
130 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g.forward(text, text_len, spec, spec_len, speakers, is_fixed=is_fixed)
131 |
132 | mel = spec_to_mel_torch(
133 | spec,
134 | hps.data.filter_length,
135 | hps.data.n_mel_channels,
136 | hps.data.sampling_rate,
137 | hps.data.mel_fmin,
138 | hps.data.mel_fmax
139 | )
140 | wav_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
141 | wav_hat_mel = mel_spectrogram_torch(
142 | wav_hat.squeeze(1),
143 | hps.data.filter_length,
144 | hps.data.n_mel_channels,
145 | hps.data.sampling_rate,
146 | hps.data.hop_length,
147 | hps.data.win_length,
148 | hps.data.mel_fmin,
149 | hps.data.mel_fmax
150 | )
151 |
152 | wav = commons.slice_segments(wav, ids_slice * hps.data.hop_length, hps.train.segment_size)
153 |
154 | wav_d_hat_r, wav_d_hat_g, _, _ = net_d(wav, wav_hat.detach())
155 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(wav_d_hat_r, wav_d_hat_g)
156 | loss_disc_all = loss_disc
157 |
158 | optim_d.zero_grad()
159 | scaler.scale(loss_disc_all).backward()
160 | scaler.unscale_(optim_d)
161 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
162 | scaler.step(optim_d)
163 |
164 | wav_d_hat_r, wav_d_hat_g, fmap_r, fmap_g = net_d(wav, wav_hat.detach())
165 | loss_dur = torch.sum(l_length.float())
166 | loss_mel = F.l1_loss(wav_mel, wav_hat_mel) * hps.train.c_mel
167 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
168 |
169 | loss_fm = feature_loss(fmap_r, fmap_g)
170 | loss_gen, losses_gen = generator_loss(wav_d_hat_g)
171 |
172 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
173 |
174 | optim_g.zero_grad()
175 | scaler.scale(loss_gen_all).backward()
176 | scaler.unscale_(optim_g)
177 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
178 | scaler.step(optim_g)
179 | scaler.update()
180 |
181 | return loss_disc_all, loss_gen_all
182 |
183 |
184 | if __name__ == "__main__":
185 | main()
186 |
--------------------------------------------------------------------------------
/protect.py:
--------------------------------------------------------------------------------
1 | import os
2 | import time
3 | import torch
4 | import argparse
5 | from torch.utils.data import DataLoader
6 | from torch.autograd import Variable
7 | import torch.optim as optim
8 | import torch.nn.functional as F
9 | from tqdm import tqdm
10 |
11 | import vits.utils as utils
12 | from vits.mel_processing import (
13 | mel_spectrogram_torch,
14 | spec_to_mel_torch,
15 | spectrogram_torch
16 | )
17 | import vits.commons as commons
18 | from vits.data_utils import (
19 | TextAudioSpeakerLoader,
20 | TextAudioSpeakerCollate,
21 | )
22 | from vits.losses import (
23 | generator_loss,
24 | feature_loss,
25 | kl_loss
26 | )
27 | from toolbox import build_models, get_spec
28 |
29 |
30 | def main():
31 | parser = argparse.ArgumentParser(description="The detailed setting for protecting...")
32 |
33 | parser.add_argument("--device", type=str, default="cuda", help="The training device which should be GPU or CPU.")
34 | parser.add_argument("--model_name", type=str, default="VITS", help="The surrogate model.")
35 | parser.add_argument("--dataset_name", type=str, default="OneSpeaker", help="The selected dataset to be protected.")
36 | parser.add_argument("--config_path", type=str, default="configs/onespeaker_vits.json", help="The configuration path for building model.")
37 | parser.add_argument("--pretrained_path", type=str, default="checkpoints/pretrained_ljs.pth", help="The checkpoint path of the pre-trained model.")
38 | parser.add_argument("--epsilon", type=float, default=8/255, help="The protective radius of the embedded perturbation by l_p norm.")
39 | parser.add_argument("--iterations", type=int, default=200, help="Running iterations.")
40 | parser.add_argument("--mode", type=str, default="POP", choices=["POP", "EM", "RSP", "ESP"],
41 | help="The corresponding four protection modes in this paper.")
42 |
43 |
44 | args = parser.parse_args()
45 | device = args.device
46 | model_name = args.model_name
47 | dataset_name = args.dataset_name
48 | mode = args.mode
49 |
50 | config_path = args.config_path
51 | hps = utils.get_hparams_from_file(config_path=config_path)
52 | torch.manual_seed(hps.train.seed)
53 | torch.cuda.manual_seed(hps.train.seed)
54 |
55 | train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
56 | collate_fn = TextAudioSpeakerCollate()
57 | train_loader = DataLoader(train_dataset,
58 | num_workers=4,
59 | shuffle=False,
60 | collate_fn=collate_fn,
61 | batch_size=hps.train.batch_size,
62 | pin_memory=True,
63 | drop_last=False)
64 |
65 | checkpoint_path = args.pretrained_path
66 | net_g, net_d = build_models(hps, checkpoint_path=checkpoint_path)
67 | net_g, net_d = net_g.to(device), net_d.to(device)
68 |
69 | for param in net_g.parameters():
70 | param.requires_grad = False
71 | for param in net_d.parameters():
72 | param.requires_grad = False
73 |
74 | noises = len(train_loader) * [None]
75 | epsilon = float(args.epsilon)
76 | alpha = epsilon / 10
77 | max_epoch = int(args.iterations)
78 |
79 | start_time = time.time()
80 | for batch_index, batch in enumerate(train_loader):
81 | noises[batch_index], loss = minimize_error(hps, [net_g, net_d], epsilon, alpha,
82 | max_epoch, batch, mode, model_name)
83 |
84 | torch.cuda.empty_cache()
85 | end_time = time.time()
86 | duration = end_time - start_time
87 | hours, remainder = divmod(duration, 3600)
88 | minutes, seconds = divmod(remainder, 60)
89 | formatted_time = "{:02d}:{:02d}:{:02d}".format(int(hours), int(minutes), int(seconds))
90 | print(f'[{formatted_time}] Batch {batch_index}, the loss is {loss:.6f}')
91 |
92 | if os.path.exists("checkpoints/noises") is False:
93 | os.mkdir("checkpoints/noises")
94 |
95 | save_path = f'checkpoints/noises/{model_name}_{mode}_{dataset_name}.noise'
96 | torch.save(noises, save_path)
97 | print(f"Saving the noise file to {save_path}.")
98 |
99 |
100 | def minimize_error(hps, nets, epsilon, alpha, max_epoch, batch_data, mode, model_name):
101 | net_g, net_d = nets
102 | device = next(net_g.parameters()).device
103 | text, text_len, spec, spec_len, wav, wav_len, speakers = batch_data
104 | text, text_len = text.to(device), text_len.to(device)
105 | wav, wav_len = wav.to(device), wav_len.to(device)
106 | speakers = speakers.to(device)
107 | noise = torch.zeros(wav.shape).to(device)
108 |
109 | p_wav = Variable(wav.data + noise, requires_grad=True)
110 | p_wav = Variable(torch.clamp(p_wav, min=-1., max=1.), requires_grad=True)
111 |
112 | lr_noise = 5e-2
113 | opt_noise = optim.SGD([p_wav], lr=lr_noise, weight_decay=0.95)
114 |
115 | net_g.train()
116 | loss = 0.0
117 | for iteration in tqdm(range(max_epoch)):
118 | opt_noise.zero_grad()
119 | p_spec, spec_len = get_spec(hps.data, p_wav, wav_len)
120 |
121 | is_fixed = True if mode != "RSP" else False
122 | is_clip = True if mode != "ESP" else False
123 |
124 | wav_hat, l_length, attn, ids_slice, x_mask, z_mask, \
125 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(text, text_len, p_spec, spec_len, speakers,
126 | is_fixed=is_fixed, is_clip=is_clip)
127 |
128 | if ids_slice is not None:
129 | p_wav_slice = commons.slice_segments(p_wav, ids_slice * hps.data.hop_length, hps.train.segment_size)
130 | else:
131 | p_wav_slice = p_wav
132 |
133 | loss_mel = compute_reconstruction_loss(hps, p_wav_slice, wav_hat)
134 |
135 | if mode == "POP":
136 | loss = loss_mel
137 | elif mode == "RSP":
138 | loss = loss_mel
139 | elif mode == "EM":
140 | wav_d_hat_r, wav_d_hat_g, fmap_r, fmap_g = net_d(p_wav_slice, wav_hat)
141 | loss_dur = torch.sum(l_length.float())
142 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
143 | loss_fm = feature_loss(fmap_r, fmap_g)
144 | loss_gen, losses_gen = generator_loss(wav_d_hat_g)
145 |
146 | loss = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
147 | elif mode == "ESP":
148 | loss = loss_mel
149 | else:
150 | raise "The protective mode is setting wrong!"
151 |
152 | p_wav.retain_grad = True
153 | loss.backward()
154 | opt_noise.step()
155 | grad = p_wav.grad
156 |
157 | noise = alpha * torch.sign(grad) * -1.
158 | p_wav = Variable(p_wav.data + noise, requires_grad=True)
159 | noise = torch.clamp(p_wav.data - wav.data, min=-epsilon, max=epsilon)
160 | p_wav = Variable(wav.data + noise, requires_grad=True)
161 | p_wav = Variable(torch.clamp(p_wav, min=-1., max=1.), requires_grad=True)
162 |
163 | return noise, loss
164 |
165 |
166 | def compute_reconstruction_loss(hps, wav, wav_hat):
167 | wav_mel = mel_spectrogram_torch(
168 | wav.squeeze(1),
169 | hps.data.filter_length,
170 | hps.data.n_mel_channels,
171 | hps.data.sampling_rate,
172 | hps.data.hop_length,
173 | hps.data.win_length,
174 | hps.data.mel_fmin,
175 | hps.data.mel_fmax
176 | )
177 | wav_hat_mel = mel_spectrogram_torch(
178 | wav_hat.squeeze(1),
179 | hps.data.filter_length,
180 | hps.data.n_mel_channels,
181 | hps.data.sampling_rate,
182 | hps.data.hop_length,
183 | hps.data.win_length,
184 | hps.data.mel_fmin,
185 | hps.data.mel_fmax
186 | )
187 | loss_mel_wav = F.l1_loss(wav_mel, wav_hat_mel) * hps.train.c_mel
188 |
189 | return loss_mel_wav
190 |
191 |
192 | if __name__ == "__main__":
193 | main()
--------------------------------------------------------------------------------
/protected_train.py:
--------------------------------------------------------------------------------
1 | import os
2 | import time
3 | import torch
4 | import argparse
5 |
6 | from tqdm import tqdm
7 | import torch.nn.functional as F
8 | from torch.utils.data import DataLoader
9 | from torch.cuda.amp import autocast, GradScaler
10 |
11 |
12 | import vits.commons as commons
13 | import vits.utils as utils
14 | from vits.mel_processing import (
15 | mel_spectrogram_torch,
16 | spec_to_mel_torch,
17 | spectrogram_torch
18 | )
19 | from vits.data_utils import (
20 | TextAudioSpeakerLoader,
21 | TextAudioSpeakerCollate,
22 | )
23 | from vits.losses import (
24 | generator_loss,
25 | discriminator_loss,
26 | feature_loss,
27 | kl_loss
28 | )
29 | from toolbox import build_models, get_spec
30 | from evaluate import evaluation
31 |
32 |
33 | def main():
34 | parser = argparse.ArgumentParser(description="The detailed setting for training...")
35 |
36 | parser.add_argument("--device", type=str, default="cuda", help="The training device which should be GPU or CPU.")
37 | parser.add_argument("--model_name", type=str, default="VITS", help="The surrogate model.")
38 | parser.add_argument("--dataset_name", type=str, default="OneSpeaker", help="The selected dataset to be protected.")
39 | parser.add_argument("--config_path", type=str, default="configs/onespeaker_vits.json", help="The configuration path for building model.")
40 | parser.add_argument("--pretrained_path", type=str, default="checkpoints/pretrained_ljs.pth", help="The checkpoint path of the pre-trained model.")
41 | parser.add_argument("--is_fixed", type=str, default="True", help="Training at the fixed patch or not.")
42 | parser.add_argument("--noise_path", type=str, default="checkpoints/noises/VITS_POP_OneSpeaker.noise", help="The generated noise path.")
43 |
44 | args = parser.parse_args()
45 | device = args.device
46 | model_name = args.model_name
47 | dataset_name = args.dataset_name
48 | is_fixed = True if args.is_fixed == "True" else False
49 | assert torch.cuda.is_available(), "CPU training is not allowed."
50 |
51 | config_path = args.config_path
52 | hps = utils.get_hparams_from_file(config_path=config_path)
53 | torch.manual_seed(hps.train.seed)
54 | torch.cuda.manual_seed(hps.train.seed)
55 |
56 | train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
57 | collate_fn = TextAudioSpeakerCollate()
58 | train_loader = DataLoader(train_dataset,
59 | num_workers=4,
60 | shuffle=False,
61 | collate_fn=collate_fn,
62 | batch_size=hps.train.batch_size,
63 | pin_memory=True,
64 | drop_last=False)
65 |
66 | print(f"The dataset length is {len(train_dataset)}.")
67 |
68 | checkpoint_path = args.pretrained_path
69 | if checkpoint_path == "":
70 | raise "The pre-trained checkpoint is not be None!"
71 |
72 | net_g, net_d = build_models(hps, checkpoint_path=checkpoint_path)
73 | net_g, net_d = net_g.to(device), net_d.to(device)
74 |
75 | optim_g = torch.optim.AdamW(
76 | net_g.parameters(),
77 | hps.train.learning_rate,
78 | betas=hps.train.betas,
79 | eps=hps.train.eps)
80 | optim_d = torch.optim.AdamW(
81 | net_d.parameters(),
82 | hps.train.learning_rate,
83 | betas=hps.train.betas,
84 | eps=hps.train.eps)
85 |
86 | epoch_str = 1
87 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
88 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
89 |
90 | scaler = GradScaler(enabled=hps.train.fp16_run)
91 |
92 | noise_path = args.noise_path
93 | mode = noise_path.split("/")[2].split("_")[1]
94 | assert mode in ["POP", "EM", "RSP", "ESP"], print("The protective mode is wrong!")
95 | noises = torch.load(noise_path, map_location="cpu")
96 |
97 | start_time = time.time()
98 | net_g.train(), net_d.train()
99 | for epoch in range(1, hps.train.epochs + 1):
100 | loss_disc_all, loss_gen_all = protected_train(hps, [net_g, net_d], [optim_g, optim_d],
101 | train_loader, scaler, noises, is_fixed)
102 |
103 | scheduler_g.step()
104 | scheduler_d.step()
105 |
106 | end_time = time.time()
107 | duration = end_time - start_time
108 | hours, remainder = divmod(duration, 3600)
109 | minutes, seconds = divmod(remainder, 60)
110 | formatted_time = "{:02d}:{:02d}:{:02d}".format(int(hours), int(minutes), int(seconds))
111 | print(f"[{formatted_time}] Epoch {epoch}: D loss {loss_disc_all:.6f}, G loss {loss_gen_all:.6f}")
112 |
113 | if os.path.exists("checkpoints") is False:
114 | os.mkdir("checkpoints")
115 |
116 | save_path = f"./checkpoints/{model_name}_{mode}_{dataset_name}_{epoch}.pth"
117 | torch.save(net_g.state_dict(), save_path)
118 | print(f"Saving the checkpoint to {save_path}.")
119 | evaluation(net_g, config_path, model_name, dataset_name, mode, device)
120 |
121 |
122 | def protected_train(hps, nets, optims, train_loader, scaler, noises, is_fixed):
123 | net_g, net_d = nets
124 | optim_g, optim_d = optims
125 |
126 | device = next(net_g.parameters()).device
127 | loss_disc_all, loss_gen_all = 0, 0
128 | for batch_index, batch in enumerate(train_loader):
129 | text, text_len, spec, spec_len, wav, wav_len, speakers = batch
130 | text, text_len = text.to(device), text_len.to(device)
131 | wav, wav_len = wav.to(device), wav_len.to(device)
132 | speakers = speakers.to(device)
133 | noise = noises[batch_index].to(device)
134 |
135 | p_wav = torch.clamp(wav + noise, min=-1., max=1.)
136 | p_spec, spec_len = get_spec(hps.data, p_wav, wav_len)
137 |
138 | wav_hat, l_length, attn, ids_slice, x_mask, z_mask, \
139 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g.forward(text, text_len, p_spec, spec_len, speakers, is_fixed=is_fixed)
140 |
141 | mel = spec_to_mel_torch(
142 | p_spec,
143 | hps.data.filter_length,
144 | hps.data.n_mel_channels,
145 | hps.data.sampling_rate,
146 | hps.data.mel_fmin,
147 | hps.data.mel_fmax
148 | )
149 | wav_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
150 | wav_hat_mel = mel_spectrogram_torch(
151 | wav_hat.squeeze(1),
152 | hps.data.filter_length,
153 | hps.data.n_mel_channels,
154 | hps.data.sampling_rate,
155 | hps.data.hop_length,
156 | hps.data.win_length,
157 | hps.data.mel_fmin,
158 | hps.data.mel_fmax
159 | )
160 |
161 | wav = commons.slice_segments(wav, ids_slice * hps.data.hop_length, hps.train.segment_size)
162 |
163 | wav_d_hat_r, wav_d_hat_g, _, _ = net_d(wav, wav_hat.detach())
164 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(wav_d_hat_r, wav_d_hat_g)
165 | loss_disc_all = loss_disc
166 |
167 | optim_d.zero_grad()
168 | scaler.scale(loss_disc_all).backward()
169 | scaler.unscale_(optim_d)
170 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
171 | scaler.step(optim_d)
172 |
173 | wav_d_hat_r, wav_d_hat_g, fmap_r, fmap_g = net_d(wav, wav_hat.detach())
174 | loss_dur = torch.sum(l_length.float())
175 | loss_mel = F.l1_loss(wav_mel, wav_hat_mel) * hps.train.c_mel
176 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
177 |
178 | loss_fm = feature_loss(fmap_r, fmap_g)
179 | loss_gen, losses_gen = generator_loss(wav_d_hat_g)
180 |
181 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
182 |
183 | optim_g.zero_grad()
184 | scaler.scale(loss_gen_all).backward()
185 | scaler.unscale_(optim_g)
186 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
187 | scaler.step(optim_g)
188 | scaler.update()
189 |
190 | return loss_disc_all, loss_gen_all
191 |
192 |
193 | if __name__ == "__main__":
194 | main()
195 |
--------------------------------------------------------------------------------
/vits/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import glob
3 | import sys
4 | import argparse
5 | import logging
6 | import json
7 | import subprocess
8 | import numpy as np
9 | from scipy.io.wavfile import read
10 | import torch
11 |
12 | MATPLOTLIB_FLAG = False
13 |
14 | logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
15 | logger = logging
16 |
17 |
18 | def load_checkpoint(checkpoint_path, model, optimizer=None):
19 | assert os.path.isfile(checkpoint_path)
20 | checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
21 | iteration = checkpoint_dict['iteration']
22 | learning_rate = checkpoint_dict['learning_rate']
23 | if optimizer is not None:
24 | optimizer.load_state_dict(checkpoint_dict['optimizer'])
25 | saved_state_dict = checkpoint_dict['model']
26 | if hasattr(model, 'module'):
27 | state_dict = model.module.state_dict()
28 | else:
29 | state_dict = model.state_dict()
30 | new_state_dict= {}
31 | for k, v in state_dict.items():
32 | try:
33 | new_state_dict[k] = saved_state_dict[k]
34 | except:
35 | logger.info("%s is not in the checkpoint" % k)
36 | new_state_dict[k] = v
37 | if hasattr(model, 'module'):
38 | model.module.load_state_dict(new_state_dict)
39 | else:
40 | model.load_state_dict(new_state_dict)
41 | logger.info("Loaded checkpoint '{}' (iteration {})" .format(
42 | checkpoint_path, iteration))
43 | return model, optimizer, learning_rate, iteration
44 |
45 |
46 | def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
47 | logger.info("Saving model and optimizer state at iteration {} to {}".format(
48 | iteration, checkpoint_path))
49 | if hasattr(model, 'module'):
50 | state_dict = model.module.state_dict()
51 | else:
52 | state_dict = model.state_dict()
53 | torch.save({'model': state_dict,
54 | 'iteration': iteration,
55 | 'optimizer': optimizer.state_dict(),
56 | 'learning_rate': learning_rate}, checkpoint_path)
57 |
58 |
59 | def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
60 | for k, v in scalars.items():
61 | writer.add_scalar(k, v, global_step)
62 | for k, v in histograms.items():
63 | writer.add_histogram(k, v, global_step)
64 | for k, v in images.items():
65 | writer.add_image(k, v, global_step, dataformats='HWC')
66 | for k, v in audios.items():
67 | writer.add_audio(k, v, global_step, audio_sampling_rate)
68 |
69 |
70 | def latest_checkpoint_path(dir_path, regex="G_*.pth"):
71 | f_list = glob.glob(os.path.join(dir_path, regex))
72 | f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
73 | x = f_list[-1]
74 | print(x)
75 | return x
76 |
77 |
78 | def plot_spectrogram_to_numpy(spectrogram):
79 | global MATPLOTLIB_FLAG
80 | if not MATPLOTLIB_FLAG:
81 | import matplotlib
82 | matplotlib.use("Agg")
83 | MATPLOTLIB_FLAG = True
84 | mpl_logger = logging.getLogger('matplotlib')
85 | mpl_logger.setLevel(logging.WARNING)
86 | import matplotlib.pylab as plt
87 | import numpy as np
88 |
89 | fig, ax = plt.subplots(figsize=(10,2))
90 | im = ax.imshow(spectrogram, aspect="auto", origin="lower",
91 | interpolation='none')
92 | plt.colorbar(im, ax=ax)
93 | plt.xlabel("Frames")
94 | plt.ylabel("Channels")
95 | plt.tight_layout()
96 |
97 | fig.canvas.draw()
98 | data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
99 | data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
100 | plt.close()
101 | return data
102 |
103 |
104 | def plot_alignment_to_numpy(alignment, info=None):
105 | global MATPLOTLIB_FLAG
106 | if not MATPLOTLIB_FLAG:
107 | import matplotlib
108 | matplotlib.use("Agg")
109 | MATPLOTLIB_FLAG = True
110 | mpl_logger = logging.getLogger('matplotlib')
111 | mpl_logger.setLevel(logging.WARNING)
112 | import matplotlib.pylab as plt
113 | import numpy as np
114 |
115 | fig, ax = plt.subplots(figsize=(6, 4))
116 | im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
117 | interpolation='none')
118 | fig.colorbar(im, ax=ax)
119 | xlabel = 'Decoder timestep'
120 | if info is not None:
121 | xlabel += '\n\n' + info
122 | plt.xlabel(xlabel)
123 | plt.ylabel('Encoder timestep')
124 | plt.tight_layout()
125 |
126 | fig.canvas.draw()
127 | data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
128 | data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
129 | plt.close()
130 | return data
131 |
132 |
133 | def load_wav_to_torch(full_path):
134 | sampling_rate, data = read(full_path)
135 | return torch.FloatTensor(data.astype(np.float32)), sampling_rate
136 |
137 |
138 | def load_filepaths_and_text(filename, split="|"):
139 | with open(filename, encoding='utf-8') as f:
140 | filepaths_and_text = [line.strip().split(split) for line in f]
141 | return filepaths_and_text
142 |
143 |
144 | def get_hparams(config_path, init=True):
145 | parser = argparse.ArgumentParser()
146 | parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
147 | help='JSON file for configuration')
148 | parser.add_argument('-m', '--model', type=str, required=True,
149 | help='Model name')
150 |
151 | args = parser.parse_args()
152 | model_dir = os.path.join("./logs", args.model)
153 |
154 | if not os.path.exists(model_dir):
155 | os.makedirs(model_dir)
156 |
157 | config_path = args.config
158 | config_save_path = os.path.join(model_dir, "config.json")
159 | if init:
160 | with open(config_path, "r") as f:
161 | data = f.read()
162 | with open(config_save_path, "w") as f:
163 | f.write(data)
164 | else:
165 | with open(config_save_path, "r") as f:
166 | data = f.read()
167 | config = json.loads(data)
168 |
169 | hparams = HParams(**config)
170 | hparams.model_dir = model_dir
171 | return hparams
172 |
173 |
174 | def get_hparams_from_dir(model_dir):
175 | config_save_path = os.path.join(model_dir, "config.json")
176 | with open(config_save_path, "r") as f:
177 | data = f.read()
178 | config = json.loads(data)
179 |
180 | hparams =HParams(**config)
181 | hparams.model_dir = model_dir
182 | return hparams
183 |
184 |
185 | def get_hparams_from_file(config_path):
186 | with open(config_path, "r") as f:
187 | data = f.read()
188 | config = json.loads(data)
189 |
190 | hparams =HParams(**config)
191 | return hparams
192 |
193 |
194 | def check_git_hash(model_dir):
195 | source_dir = os.path.dirname(os.path.realpath(__file__))
196 | if not os.path.exists(os.path.join(source_dir, ".git")):
197 | logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
198 | source_dir
199 | ))
200 | return
201 |
202 | cur_hash = subprocess.getoutput("git rev-parse HEAD")
203 |
204 | path = os.path.join(model_dir, "githash")
205 | if os.path.exists(path):
206 | saved_hash = open(path).read()
207 | if saved_hash != cur_hash:
208 | logger.warn("git hash values are different. {}(saved) != {}(current)".format(
209 | saved_hash[:8], cur_hash[:8]))
210 | else:
211 | open(path, "w").write(cur_hash)
212 |
213 |
214 | def get_logger(model_dir, filename="train.log"):
215 | global logger
216 | logger = logging.getLogger(os.path.basename(model_dir))
217 | logger.setLevel(logging.DEBUG)
218 |
219 | formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
220 | if not os.path.exists(model_dir):
221 | os.makedirs(model_dir)
222 | h = logging.FileHandler(os.path.join(model_dir, filename))
223 | h.setLevel(logging.DEBUG)
224 | h.setFormatter(formatter)
225 | logger.addHandler(h)
226 | return logger
227 |
228 |
229 | class HParams():
230 | def __init__(self, **kwargs):
231 | for k, v in kwargs.items():
232 | if type(v) == dict:
233 | v = HParams(**v)
234 | self[k] = v
235 |
236 | def keys(self):
237 | return self.__dict__.keys()
238 |
239 | def items(self):
240 | return self.__dict__.items()
241 |
242 | def values(self):
243 | return self.__dict__.values()
244 |
245 | def __len__(self):
246 | return len(self.__dict__)
247 |
248 | def __getitem__(self, key):
249 | return getattr(self, key)
250 |
251 | def __setitem__(self, key, value):
252 | return setattr(self, key, value)
253 |
254 | def __contains__(self, key):
255 | return key in self.__dict__
256 |
257 | def __repr__(self):
258 | return self.__dict__.__repr__()
259 |
--------------------------------------------------------------------------------
/vits/transforms.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.nn import functional as F
3 |
4 | import numpy as np
5 |
6 |
7 | DEFAULT_MIN_BIN_WIDTH = 1e-3
8 | DEFAULT_MIN_BIN_HEIGHT = 1e-3
9 | DEFAULT_MIN_DERIVATIVE = 1e-3
10 |
11 |
12 | def piecewise_rational_quadratic_transform(inputs,
13 | unnormalized_widths,
14 | unnormalized_heights,
15 | unnormalized_derivatives,
16 | inverse=False,
17 | tails=None,
18 | tail_bound=1.,
19 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21 | min_derivative=DEFAULT_MIN_DERIVATIVE):
22 |
23 | if tails is None:
24 | spline_fn = rational_quadratic_spline
25 | spline_kwargs = {}
26 | else:
27 | spline_fn = unconstrained_rational_quadratic_spline
28 | spline_kwargs = {
29 | 'tails': tails,
30 | 'tail_bound': tail_bound
31 | }
32 |
33 | outputs, logabsdet = spline_fn(
34 | inputs=inputs,
35 | unnormalized_widths=unnormalized_widths,
36 | unnormalized_heights=unnormalized_heights,
37 | unnormalized_derivatives=unnormalized_derivatives,
38 | inverse=inverse,
39 | min_bin_width=min_bin_width,
40 | min_bin_height=min_bin_height,
41 | min_derivative=min_derivative,
42 | **spline_kwargs
43 | )
44 | return outputs, logabsdet
45 |
46 |
47 | def searchsorted(bin_locations, inputs, eps=1e-6):
48 | bin_locations[..., -1] += eps
49 | return torch.sum(
50 | inputs[..., None] >= bin_locations,
51 | dim=-1
52 | ) - 1
53 |
54 |
55 | def unconstrained_rational_quadratic_spline(inputs,
56 | unnormalized_widths,
57 | unnormalized_heights,
58 | unnormalized_derivatives,
59 | inverse=False,
60 | tails='linear',
61 | tail_bound=1.,
62 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64 | min_derivative=DEFAULT_MIN_DERIVATIVE):
65 | inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66 | outside_interval_mask = ~inside_interval_mask
67 |
68 | outputs = torch.zeros_like(inputs)
69 | logabsdet = torch.zeros_like(inputs)
70 |
71 | if tails == 'linear':
72 | unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73 | constant = np.log(np.exp(1 - min_derivative) - 1)
74 | unnormalized_derivatives[..., 0] = constant
75 | unnormalized_derivatives[..., -1] = constant
76 |
77 | outputs[outside_interval_mask] = inputs[outside_interval_mask]
78 | logabsdet[outside_interval_mask] = 0
79 | else:
80 | raise RuntimeError('{} tails are not implemented.'.format(tails))
81 |
82 | outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83 | inputs=inputs[inside_interval_mask],
84 | unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85 | unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86 | unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87 | inverse=inverse,
88 | left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89 | min_bin_width=min_bin_width,
90 | min_bin_height=min_bin_height,
91 | min_derivative=min_derivative
92 | )
93 |
94 | return outputs, logabsdet
95 |
96 | def rational_quadratic_spline(inputs,
97 | unnormalized_widths,
98 | unnormalized_heights,
99 | unnormalized_derivatives,
100 | inverse=False,
101 | left=0., right=1., bottom=0., top=1.,
102 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104 | min_derivative=DEFAULT_MIN_DERIVATIVE):
105 | if torch.min(inputs) < left or torch.max(inputs) > right:
106 | raise ValueError('Input to a transform is not within its domain')
107 |
108 | num_bins = unnormalized_widths.shape[-1]
109 |
110 | if min_bin_width * num_bins > 1.0:
111 | raise ValueError('Minimal bin width too large for the number of bins')
112 | if min_bin_height * num_bins > 1.0:
113 | raise ValueError('Minimal bin height too large for the number of bins')
114 |
115 | widths = F.softmax(unnormalized_widths, dim=-1)
116 | widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117 | cumwidths = torch.cumsum(widths, dim=-1)
118 | cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119 | cumwidths = (right - left) * cumwidths + left
120 | cumwidths[..., 0] = left
121 | cumwidths[..., -1] = right
122 | widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123 |
124 | derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125 |
126 | heights = F.softmax(unnormalized_heights, dim=-1)
127 | heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128 | cumheights = torch.cumsum(heights, dim=-1)
129 | cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130 | cumheights = (top - bottom) * cumheights + bottom
131 | cumheights[..., 0] = bottom
132 | cumheights[..., -1] = top
133 | heights = cumheights[..., 1:] - cumheights[..., :-1]
134 |
135 | if inverse:
136 | bin_idx = searchsorted(cumheights, inputs)[..., None]
137 | else:
138 | bin_idx = searchsorted(cumwidths, inputs)[..., None]
139 |
140 | input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141 | input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142 |
143 | input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144 | delta = heights / widths
145 | input_delta = delta.gather(-1, bin_idx)[..., 0]
146 |
147 | input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148 | input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149 |
150 | input_heights = heights.gather(-1, bin_idx)[..., 0]
151 |
152 | if inverse:
153 | a = (((inputs - input_cumheights) * (input_derivatives
154 | + input_derivatives_plus_one
155 | - 2 * input_delta)
156 | + input_heights * (input_delta - input_derivatives)))
157 | b = (input_heights * input_derivatives
158 | - (inputs - input_cumheights) * (input_derivatives
159 | + input_derivatives_plus_one
160 | - 2 * input_delta))
161 | c = - input_delta * (inputs - input_cumheights)
162 |
163 | discriminant = b.pow(2) - 4 * a * c
164 | assert (discriminant >= 0).all()
165 |
166 | root = (2 * c) / (-b - torch.sqrt(discriminant))
167 | outputs = root * input_bin_widths + input_cumwidths
168 |
169 | theta_one_minus_theta = root * (1 - root)
170 | denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171 | * theta_one_minus_theta)
172 | derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173 | + 2 * input_delta * theta_one_minus_theta
174 | + input_derivatives * (1 - root).pow(2))
175 | logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176 |
177 | return outputs, -logabsdet
178 | else:
179 | theta = (inputs - input_cumwidths) / input_bin_widths
180 | theta_one_minus_theta = theta * (1 - theta)
181 |
182 | numerator = input_heights * (input_delta * theta.pow(2)
183 | + input_derivatives * theta_one_minus_theta)
184 | denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185 | * theta_one_minus_theta)
186 | outputs = input_cumheights + numerator / denominator
187 |
188 | derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189 | + 2 * input_delta * theta_one_minus_theta
190 | + input_derivatives * (1 - theta).pow(2))
191 | logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192 |
193 | return outputs, logabsdet
194 |
--------------------------------------------------------------------------------
/vits/train.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 | import itertools
5 | import math
6 | import torch
7 | from torch import nn, optim
8 | from torch.nn import functional as F
9 | from torch.utils.data import DataLoader
10 | from torch.utils.tensorboard import SummaryWriter
11 | import torch.multiprocessing as mp
12 | import torch.distributed as dist
13 | from torch.nn.parallel import DistributedDataParallel as DDP
14 | from torch.cuda.amp import autocast, GradScaler
15 |
16 | import commons
17 | import utils
18 | from data_utils import (
19 | TextAudioLoader,
20 | TextAudioCollate,
21 | DistributedBucketSampler
22 | )
23 | from models import (
24 | SynthesizerTrn,
25 | MultiPeriodDiscriminator,
26 | )
27 | from losses import (
28 | generator_loss,
29 | discriminator_loss,
30 | feature_loss,
31 | kl_loss
32 | )
33 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34 | from text.symbols import symbols
35 |
36 |
37 | torch.backends.cudnn.benchmark = True
38 | global_step = 0
39 |
40 |
41 | def main():
42 | """Assume Single Node Multi GPUs Training Only"""
43 | assert torch.cuda.is_available(), "CPU training is not allowed."
44 |
45 | n_gpus = torch.cuda.device_count()
46 | os.environ['MASTER_ADDR'] = 'localhost'
47 | os.environ['MASTER_PORT'] = '80000'
48 |
49 | hps = utils.get_hparams()
50 | mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51 |
52 |
53 | def run(rank, n_gpus, hps):
54 | global global_step
55 | if rank == 0:
56 | logger = utils.get_logger(hps.model_dir)
57 | logger.info(hps)
58 | utils.check_git_hash(hps.model_dir)
59 | writer = SummaryWriter(log_dir=hps.model_dir)
60 | writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61 |
62 | dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63 | torch.manual_seed(hps.train.seed)
64 | torch.cuda.set_device(rank)
65 |
66 | train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
67 | train_sampler = DistributedBucketSampler(
68 | train_dataset,
69 | hps.train.batch_size,
70 | [32,300,400,500,600,700,800,900,1000],
71 | num_replicas=n_gpus,
72 | rank=rank,
73 | shuffle=True)
74 | collate_fn = TextAudioCollate()
75 | train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76 | collate_fn=collate_fn, batch_sampler=train_sampler)
77 | if rank == 0:
78 | eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
79 | eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80 | batch_size=hps.train.batch_size, pin_memory=True,
81 | drop_last=False, collate_fn=collate_fn)
82 |
83 | net_g = SynthesizerTrn(
84 | len(symbols),
85 | hps.data.filter_length // 2 + 1,
86 | hps.train.segment_size // hps.data.hop_length,
87 | **hps.model).cuda(rank)
88 | net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
89 | optim_g = torch.optim.AdamW(
90 | net_g.parameters(),
91 | hps.train.learning_rate,
92 | betas=hps.train.betas,
93 | eps=hps.train.eps)
94 | optim_d = torch.optim.AdamW(
95 | net_d.parameters(),
96 | hps.train.learning_rate,
97 | betas=hps.train.betas,
98 | eps=hps.train.eps)
99 | net_g = DDP(net_g, device_ids=[rank])
100 | net_d = DDP(net_d, device_ids=[rank])
101 |
102 | try:
103 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
104 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
105 | global_step = (epoch_str - 1) * len(train_loader)
106 | except:
107 | epoch_str = 1
108 | global_step = 0
109 |
110 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
111 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112 |
113 | scaler = GradScaler(enabled=hps.train.fp16_run)
114 |
115 | for epoch in range(epoch_str, hps.train.epochs + 1):
116 | if rank==0:
117 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
118 | else:
119 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
120 | scheduler_g.step()
121 | scheduler_d.step()
122 |
123 |
124 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
125 | net_g, net_d = nets
126 | optim_g, optim_d = optims
127 | scheduler_g, scheduler_d = schedulers
128 | train_loader, eval_loader = loaders
129 | if writers is not None:
130 | writer, writer_eval = writers
131 |
132 | train_loader.batch_sampler.set_epoch(epoch)
133 | global global_step
134 |
135 | net_g.train()
136 | net_d.train()
137 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(train_loader):
138 | x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
139 | spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
140 | y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
141 |
142 | with autocast(enabled=hps.train.fp16_run):
143 | y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
144 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths)
145 |
146 | mel = spec_to_mel_torch(
147 | spec,
148 | hps.data.filter_length,
149 | hps.data.n_mel_channels,
150 | hps.data.sampling_rate,
151 | hps.data.mel_fmin,
152 | hps.data.mel_fmax)
153 | y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
154 | y_hat_mel = mel_spectrogram_torch(
155 | y_hat.squeeze(1),
156 | hps.data.filter_length,
157 | hps.data.n_mel_channels,
158 | hps.data.sampling_rate,
159 | hps.data.hop_length,
160 | hps.data.win_length,
161 | hps.data.mel_fmin,
162 | hps.data.mel_fmax
163 | )
164 |
165 | y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
166 |
167 | # Discriminator
168 | y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
169 | with autocast(enabled=False):
170 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
171 | loss_disc_all = loss_disc
172 | optim_d.zero_grad()
173 | scaler.scale(loss_disc_all).backward()
174 | scaler.unscale_(optim_d)
175 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
176 | scaler.step(optim_d)
177 |
178 | with autocast(enabled=hps.train.fp16_run):
179 | # Generator
180 | y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
181 | with autocast(enabled=False):
182 | loss_dur = torch.sum(l_length.float())
183 | loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
184 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
185 |
186 | loss_fm = feature_loss(fmap_r, fmap_g)
187 | loss_gen, losses_gen = generator_loss(y_d_hat_g)
188 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
189 | optim_g.zero_grad()
190 | scaler.scale(loss_gen_all).backward()
191 | scaler.unscale_(optim_g)
192 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
193 | scaler.step(optim_g)
194 | scaler.update()
195 |
196 | if rank==0:
197 | if global_step % hps.train.log_interval == 0:
198 | lr = optim_g.param_groups[0]['lr']
199 | losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
200 | logger.info('Train Epoch: {} [{:.0f}%]'.format(
201 | epoch,
202 | 100. * batch_idx / len(train_loader)))
203 | logger.info([x.item() for x in losses] + [global_step, lr])
204 |
205 | scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
206 | scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
207 |
208 | scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
209 | scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
210 | scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
211 | image_dict = {
212 | "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
213 | "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
214 | "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
215 | "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
216 | }
217 | utils.summarize(
218 | writer=writer,
219 | global_step=global_step,
220 | images=image_dict,
221 | scalars=scalar_dict)
222 |
223 | if global_step % hps.train.eval_interval == 0:
224 | evaluate(hps, net_g, eval_loader, writer_eval)
225 | utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
226 | utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
227 | global_step += 1
228 |
229 | if rank == 0:
230 | logger.info('====> Epoch: {}'.format(epoch))
231 |
232 |
233 | def evaluate(hps, generator, eval_loader, writer_eval):
234 | generator.eval()
235 | with torch.no_grad():
236 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(eval_loader):
237 | x, x_lengths = x.cuda(0), x_lengths.cuda(0)
238 | spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
239 | y, y_lengths = y.cuda(0), y_lengths.cuda(0)
240 |
241 | # remove else
242 | x = x[:1]
243 | x_lengths = x_lengths[:1]
244 | spec = spec[:1]
245 | spec_lengths = spec_lengths[:1]
246 | y = y[:1]
247 | y_lengths = y_lengths[:1]
248 | break
249 | y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000)
250 | y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
251 |
252 | mel = spec_to_mel_torch(
253 | spec,
254 | hps.data.filter_length,
255 | hps.data.n_mel_channels,
256 | hps.data.sampling_rate,
257 | hps.data.mel_fmin,
258 | hps.data.mel_fmax)
259 | y_hat_mel = mel_spectrogram_torch(
260 | y_hat.squeeze(1).float(),
261 | hps.data.filter_length,
262 | hps.data.n_mel_channels,
263 | hps.data.sampling_rate,
264 | hps.data.hop_length,
265 | hps.data.win_length,
266 | hps.data.mel_fmin,
267 | hps.data.mel_fmax
268 | )
269 | image_dict = {
270 | "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
271 | }
272 | audio_dict = {
273 | "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
274 | }
275 | if global_step == 0:
276 | image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
277 | audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
278 |
279 | utils.summarize(
280 | writer=writer_eval,
281 | global_step=global_step,
282 | images=image_dict,
283 | audios=audio_dict,
284 | audio_sampling_rate=hps.data.sampling_rate
285 | )
286 | generator.train()
287 |
288 |
289 | if __name__ == "__main__":
290 | main()
291 |
--------------------------------------------------------------------------------
/vits/filelists/ljs_audio_text_val_filelist.txt:
--------------------------------------------------------------------------------
1 | DUMMY1/LJ022-0023.wav|The overwhelming majority of people in this country know how to sift the wheat from the chaff in what they hear and what they read.
2 | DUMMY1/LJ043-0030.wav|If somebody did that to me, a lousy trick like that, to take my wife away, and all the furniture, I would be mad as hell, too.
3 | DUMMY1/LJ005-0201.wav|as is shown by the report of the Commissioners to inquire into the state of the municipal corporations in eighteen thirty-five.
4 | DUMMY1/LJ001-0110.wav|Even the Caslon type when enlarged shows great shortcomings in this respect:
5 | DUMMY1/LJ003-0345.wav|All the committee could do in this respect was to throw the responsibility on others.
6 | DUMMY1/LJ007-0154.wav|These pungent and well-grounded strictures applied with still greater force to the unconvicted prisoner, the man who came to the prison innocent, and still uncontaminated,
7 | DUMMY1/LJ018-0098.wav|and recognized as one of the frequenters of the bogus law-stationers. His arrest led to that of others.
8 | DUMMY1/LJ047-0044.wav|Oswald was, however, willing to discuss his contacts with Soviet authorities. He denied having any involvement with Soviet intelligence agencies
9 | DUMMY1/LJ031-0038.wav|The first physician to see the President at Parkland Hospital was Dr. Charles J. Carrico, a resident in general surgery.
10 | DUMMY1/LJ048-0194.wav|during the morning of November twenty-two prior to the motorcade.
11 | DUMMY1/LJ049-0026.wav|On occasion the Secret Service has been permitted to have an agent riding in the passenger compartment with the President.
12 | DUMMY1/LJ004-0152.wav|although at Mr. Buxton's visit a new jail was in process of erection, the first step towards reform since Howard's visitation in seventeen seventy-four.
13 | DUMMY1/LJ008-0278.wav|or theirs might be one of many, and it might be considered necessary to "make an example."
14 | DUMMY1/LJ043-0002.wav|The Warren Commission Report. By The President's Commission on the Assassination of President Kennedy. Chapter seven. Lee Harvey Oswald:
15 | DUMMY1/LJ009-0114.wav|Mr. Wakefield winds up his graphic but somewhat sensational account by describing another religious service, which may appropriately be inserted here.
16 | DUMMY1/LJ028-0506.wav|A modern artist would have difficulty in doing such accurate work.
17 | DUMMY1/LJ050-0168.wav|with the particular purposes of the agency involved. The Commission recognizes that this is a controversial area
18 | DUMMY1/LJ039-0223.wav|Oswald's Marine training in marksmanship, his other rifle experience and his established familiarity with this particular weapon
19 | DUMMY1/LJ029-0032.wav|According to O'Donnell, quote, we had a motorcade wherever we went, end quote.
20 | DUMMY1/LJ031-0070.wav|Dr. Clark, who most closely observed the head wound,
21 | DUMMY1/LJ034-0198.wav|Euins, who was on the southwest corner of Elm and Houston Streets testified that he could not describe the man he saw in the window.
22 | DUMMY1/LJ026-0068.wav|Energy enters the plant, to a small extent,
23 | DUMMY1/LJ039-0075.wav|once you know that you must put the crosshairs on the target and that is all that is necessary.
24 | DUMMY1/LJ004-0096.wav|the fatal consequences whereof might be prevented if the justices of the peace were duly authorized
25 | DUMMY1/LJ005-0014.wav|Speaking on a debate on prison matters, he declared that
26 | DUMMY1/LJ012-0161.wav|he was reported to have fallen away to a shadow.
27 | DUMMY1/LJ018-0239.wav|His disappearance gave color and substance to evil reports already in circulation that the will and conveyance above referred to
28 | DUMMY1/LJ019-0257.wav|Here the tread-wheel was in use, there cellular cranks, or hard-labor machines.
29 | DUMMY1/LJ028-0008.wav|you tap gently with your heel upon the shoulder of the dromedary to urge her on.
30 | DUMMY1/LJ024-0083.wav|This plan of mine is no attack on the Court;
31 | DUMMY1/LJ042-0129.wav|No night clubs or bowling alleys, no places of recreation except the trade union dances. I have had enough.
32 | DUMMY1/LJ036-0103.wav|The police asked him whether he could pick out his passenger from the lineup.
33 | DUMMY1/LJ046-0058.wav|During his Presidency, Franklin D. Roosevelt made almost four hundred journeys and traveled more than three hundred fifty thousand miles.
34 | DUMMY1/LJ014-0076.wav|He was seen afterwards smoking and talking with his hosts in their back parlor, and never seen again alive.
35 | DUMMY1/LJ002-0043.wav|long narrow rooms -- one thirty-six feet, six twenty-three feet, and the eighth eighteen,
36 | DUMMY1/LJ009-0076.wav|We come to the sermon.
37 | DUMMY1/LJ017-0131.wav|even when the high sheriff had told him there was no possibility of a reprieve, and within a few hours of execution.
38 | DUMMY1/LJ046-0184.wav|but there is a system for the immediate notification of the Secret Service by the confining institution when a subject is released or escapes.
39 | DUMMY1/LJ014-0263.wav|When other pleasures palled he took a theatre, and posed as a munificent patron of the dramatic art.
40 | DUMMY1/LJ042-0096.wav|(old exchange rate) in addition to his factory salary of approximately equal amount
41 | DUMMY1/LJ049-0050.wav|Hill had both feet on the car and was climbing aboard to assist President and Mrs. Kennedy.
42 | DUMMY1/LJ019-0186.wav|seeing that since the establishment of the Central Criminal Court, Newgate received prisoners for trial from several counties,
43 | DUMMY1/LJ028-0307.wav|then let twenty days pass, and at the end of that time station near the Chaldasan gates a body of four thousand.
44 | DUMMY1/LJ012-0235.wav|While they were in a state of insensibility the murder was committed.
45 | DUMMY1/LJ034-0053.wav|reached the same conclusion as Latona that the prints found on the cartons were those of Lee Harvey Oswald.
46 | DUMMY1/LJ014-0030.wav|These were damnatory facts which well supported the prosecution.
47 | DUMMY1/LJ015-0203.wav|but were the precautions too minute, the vigilance too close to be eluded or overcome?
48 | DUMMY1/LJ028-0093.wav|but his scribe wrote it in the manner customary for the scribes of those days to write of their royal masters.
49 | DUMMY1/LJ002-0018.wav|The inadequacy of the jail was noticed and reported upon again and again by the grand juries of the city of London,
50 | DUMMY1/LJ028-0275.wav|At last, in the twentieth month,
51 | DUMMY1/LJ012-0042.wav|which he kept concealed in a hiding-place with a trap-door just under his bed.
52 | DUMMY1/LJ011-0096.wav|He married a lady also belonging to the Society of Friends, who brought him a large fortune, which, and his own money, he put into a city firm,
53 | DUMMY1/LJ036-0077.wav|Roger D. Craig, a deputy sheriff of Dallas County,
54 | DUMMY1/LJ016-0318.wav|Other officials, great lawyers, governors of prisons, and chaplains supported this view.
55 | DUMMY1/LJ013-0164.wav|who came from his room ready dressed, a suspicious circumstance, as he was always late in the morning.
56 | DUMMY1/LJ027-0141.wav|is closely reproduced in the life-history of existing deer. Or, in other words,
57 | DUMMY1/LJ028-0335.wav|accordingly they committed to him the command of their whole army, and put the keys of their city into his hands.
58 | DUMMY1/LJ031-0202.wav|Mrs. Kennedy chose the hospital in Bethesda for the autopsy because the President had served in the Navy.
59 | DUMMY1/LJ021-0145.wav|From those willing to join in establishing this hoped-for period of peace,
60 | DUMMY1/LJ016-0288.wav|"Müller, Müller, He's the man," till a diversion was created by the appearance of the gallows, which was received with continuous yells.
61 | DUMMY1/LJ028-0081.wav|Years later, when the archaeologists could readily distinguish the false from the true,
62 | DUMMY1/LJ018-0081.wav|his defense being that he had intended to commit suicide, but that, on the appearance of this officer who had wronged him,
63 | DUMMY1/LJ021-0066.wav|together with a great increase in the payrolls, there has come a substantial rise in the total of industrial profits
64 | DUMMY1/LJ009-0238.wav|After this the sheriffs sent for another rope, but the spectators interfered, and the man was carried back to jail.
65 | DUMMY1/LJ005-0079.wav|and improve the morals of the prisoners, and shall insure the proper measure of punishment to convicted offenders.
66 | DUMMY1/LJ035-0019.wav|drove to the northwest corner of Elm and Houston, and parked approximately ten feet from the traffic signal.
67 | DUMMY1/LJ036-0174.wav|This is the approximate time he entered the roominghouse, according to Earlene Roberts, the housekeeper there.
68 | DUMMY1/LJ046-0146.wav|The criteria in effect prior to November twenty-two, nineteen sixty-three, for determining whether to accept material for the PRS general files
69 | DUMMY1/LJ017-0044.wav|and the deepest anxiety was felt that the crime, if crime there had been, should be brought home to its perpetrator.
70 | DUMMY1/LJ017-0070.wav|but his sporting operations did not prosper, and he became a needy man, always driven to desperate straits for cash.
71 | DUMMY1/LJ014-0020.wav|He was soon afterwards arrested on suspicion, and a search of his lodgings brought to light several garments saturated with blood;
72 | DUMMY1/LJ016-0020.wav|He never reached the cistern, but fell back into the yard, injuring his legs severely.
73 | DUMMY1/LJ045-0230.wav|when he was finally apprehended in the Texas Theatre. Although it is not fully corroborated by others who were present,
74 | DUMMY1/LJ035-0129.wav|and she must have run down the stairs ahead of Oswald and would probably have seen or heard him.
75 | DUMMY1/LJ008-0307.wav|afterwards express a wish to murder the Recorder for having kept them so long in suspense.
76 | DUMMY1/LJ008-0294.wav|nearly indefinitely deferred.
77 | DUMMY1/LJ047-0148.wav|On October twenty-five,
78 | DUMMY1/LJ008-0111.wav|They entered a "stone cold room," and were presently joined by the prisoner.
79 | DUMMY1/LJ034-0042.wav|that he could only testify with certainty that the print was less than three days old.
80 | DUMMY1/LJ037-0234.wav|Mrs. Mary Brock, the wife of a mechanic who worked at the station, was there at the time and she saw a white male,
81 | DUMMY1/LJ040-0002.wav|Chapter seven. Lee Harvey Oswald: Background and Possible Motives, Part one.
82 | DUMMY1/LJ045-0140.wav|The arguments he used to justify his use of the alias suggest that Oswald may have come to think that the whole world was becoming involved
83 | DUMMY1/LJ012-0035.wav|the number and names on watches, were carefully removed or obliterated after the goods passed out of his hands.
84 | DUMMY1/LJ012-0250.wav|On the seventh July, eighteen thirty-seven,
85 | DUMMY1/LJ016-0179.wav|contracted with sheriffs and conveners to work by the job.
86 | DUMMY1/LJ016-0138.wav|at a distance from the prison.
87 | DUMMY1/LJ027-0052.wav|These principles of homology are essential to a correct interpretation of the facts of morphology.
88 | DUMMY1/LJ031-0134.wav|On one occasion Mrs. Johnson, accompanied by two Secret Service agents, left the room to see Mrs. Kennedy and Mrs. Connally.
89 | DUMMY1/LJ019-0273.wav|which Sir Joshua Jebb told the committee he considered the proper elements of penal discipline.
90 | DUMMY1/LJ014-0110.wav|At the first the boxes were impounded, opened, and found to contain many of O'Connor's effects.
91 | DUMMY1/LJ034-0160.wav|on Brennan's subsequent certain identification of Lee Harvey Oswald as the man he saw fire the rifle.
92 | DUMMY1/LJ038-0199.wav|eleven. If I am alive and taken prisoner,
93 | DUMMY1/LJ014-0010.wav|yet he could not overcome the strange fascination it had for him, and remained by the side of the corpse till the stretcher came.
94 | DUMMY1/LJ033-0047.wav|I noticed when I went out that the light was on, end quote,
95 | DUMMY1/LJ040-0027.wav|He was never satisfied with anything.
96 | DUMMY1/LJ048-0228.wav|and others who were present say that no agent was inebriated or acted improperly.
97 | DUMMY1/LJ003-0111.wav|He was in consequence put out of the protection of their internal law, end quote. Their code was a subject of some curiosity.
98 | DUMMY1/LJ008-0258.wav|Let me retrace my steps, and speak more in detail of the treatment of the condemned in those bloodthirsty and brutally indifferent days,
99 | DUMMY1/LJ029-0022.wav|The original plan called for the President to spend only one day in the State, making whirlwind visits to Dallas, Fort Worth, San Antonio, and Houston.
100 | DUMMY1/LJ004-0045.wav|Mr. Sturges Bourne, Sir James Mackintosh, Sir James Scarlett, and William Wilberforce.
101 |
--------------------------------------------------------------------------------
/vits/train_ms.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 | import itertools
5 | import math
6 | import torch
7 | from torch import nn, optim
8 | from torch.nn import functional as F
9 | from torch.utils.data import DataLoader
10 | from torch.utils.tensorboard import SummaryWriter
11 | import torch.multiprocessing as mp
12 | import torch.distributed as dist
13 | from torch.nn.parallel import DistributedDataParallel as DDP
14 | from torch.cuda.amp import autocast, GradScaler
15 |
16 | import commons
17 | import utils
18 | from data_utils import (
19 | TextAudioSpeakerLoader,
20 | TextAudioSpeakerCollate,
21 | DistributedBucketSampler
22 | )
23 | from models import (
24 | SynthesizerTrn,
25 | MultiPeriodDiscriminator,
26 | )
27 | from losses import (
28 | generator_loss,
29 | discriminator_loss,
30 | feature_loss,
31 | kl_loss
32 | )
33 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34 | from text.symbols import symbols
35 |
36 |
37 | torch.backends.cudnn.benchmark = True
38 | global_step = 0
39 |
40 |
41 | def main():
42 | """Assume Single Node Multi GPUs Training Only"""
43 | assert torch.cuda.is_available(), "CPU training is not allowed."
44 |
45 | n_gpus = torch.cuda.device_count()
46 | os.environ['MASTER_ADDR'] = 'localhost'
47 | os.environ['MASTER_PORT'] = '80000'
48 |
49 | hps = utils.get_hparams()
50 | mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51 |
52 |
53 | def run(rank, n_gpus, hps):
54 | global global_step
55 | if rank == 0:
56 | logger = utils.get_logger(hps.model_dir)
57 | logger.info(hps)
58 | utils.check_git_hash(hps.model_dir)
59 | writer = SummaryWriter(log_dir=hps.model_dir)
60 | writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61 |
62 | dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63 | torch.manual_seed(hps.train.seed)
64 | torch.cuda.set_device(rank)
65 |
66 | train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
67 | train_sampler = DistributedBucketSampler(
68 | train_dataset,
69 | hps.train.batch_size,
70 | [32,300,400,500,600,700,800,900,1000],
71 | num_replicas=n_gpus,
72 | rank=rank,
73 | shuffle=True)
74 | collate_fn = TextAudioSpeakerCollate()
75 | train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76 | collate_fn=collate_fn, batch_sampler=train_sampler)
77 | if rank == 0:
78 | eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
79 | eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80 | batch_size=hps.train.batch_size, pin_memory=True,
81 | drop_last=False, collate_fn=collate_fn)
82 |
83 | net_g = SynthesizerTrn(
84 | len(symbols),
85 | hps.data.filter_length // 2 + 1,
86 | hps.train.segment_size // hps.data.hop_length,
87 | n_speakers=hps.data.n_speakers,
88 | **hps.model).cuda(rank)
89 | net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
90 | optim_g = torch.optim.AdamW(
91 | net_g.parameters(),
92 | hps.train.learning_rate,
93 | betas=hps.train.betas,
94 | eps=hps.train.eps)
95 | optim_d = torch.optim.AdamW(
96 | net_d.parameters(),
97 | hps.train.learning_rate,
98 | betas=hps.train.betas,
99 | eps=hps.train.eps)
100 | net_g = DDP(net_g, device_ids=[rank])
101 | net_d = DDP(net_d, device_ids=[rank])
102 |
103 | try:
104 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
105 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
106 | global_step = (epoch_str - 1) * len(train_loader)
107 | except:
108 | epoch_str = 1
109 | global_step = 0
110 |
111 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
113 |
114 | scaler = GradScaler(enabled=hps.train.fp16_run)
115 |
116 | for epoch in range(epoch_str, hps.train.epochs + 1):
117 | if rank==0:
118 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
119 | else:
120 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
121 | scheduler_g.step()
122 | scheduler_d.step()
123 |
124 |
125 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
126 | net_g, net_d = nets
127 | optim_g, optim_d = optims
128 | scheduler_g, scheduler_d = schedulers
129 | train_loader, eval_loader = loaders
130 | if writers is not None:
131 | writer, writer_eval = writers
132 |
133 | train_loader.batch_sampler.set_epoch(epoch)
134 | global global_step
135 |
136 | net_g.train()
137 | net_d.train()
138 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(train_loader):
139 | x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
140 | spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
141 | y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
142 | speakers = speakers.cuda(rank, non_blocking=True)
143 |
144 | with autocast(enabled=hps.train.fp16_run):
145 | y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
146 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
147 |
148 | mel = spec_to_mel_torch(
149 | spec,
150 | hps.data.filter_length,
151 | hps.data.n_mel_channels,
152 | hps.data.sampling_rate,
153 | hps.data.mel_fmin,
154 | hps.data.mel_fmax)
155 | y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
156 | y_hat_mel = mel_spectrogram_torch(
157 | y_hat.squeeze(1),
158 | hps.data.filter_length,
159 | hps.data.n_mel_channels,
160 | hps.data.sampling_rate,
161 | hps.data.hop_length,
162 | hps.data.win_length,
163 | hps.data.mel_fmin,
164 | hps.data.mel_fmax
165 | )
166 |
167 | y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
168 |
169 | # Discriminator
170 | y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
171 | with autocast(enabled=False):
172 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
173 | loss_disc_all = loss_disc
174 | optim_d.zero_grad()
175 | scaler.scale(loss_disc_all).backward()
176 | scaler.unscale_(optim_d)
177 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
178 | scaler.step(optim_d)
179 |
180 | with autocast(enabled=hps.train.fp16_run):
181 | # Generator
182 | y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
183 | with autocast(enabled=False):
184 | loss_dur = torch.sum(l_length.float())
185 | loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
186 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
187 |
188 | loss_fm = feature_loss(fmap_r, fmap_g)
189 | loss_gen, losses_gen = generator_loss(y_d_hat_g)
190 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
191 | optim_g.zero_grad()
192 | scaler.scale(loss_gen_all).backward()
193 | scaler.unscale_(optim_g)
194 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
195 | scaler.step(optim_g)
196 | scaler.update()
197 |
198 | if rank==0:
199 | if global_step % hps.train.log_interval == 0:
200 | lr = optim_g.param_groups[0]['lr']
201 | losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
202 | logger.info('Train Epoch: {} [{:.0f}%]'.format(
203 | epoch,
204 | 100. * batch_idx / len(train_loader)))
205 | logger.info([x.item() for x in losses] + [global_step, lr])
206 |
207 | scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
208 | scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
209 |
210 | scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
211 | scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
212 | scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
213 | image_dict = {
214 | "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
215 | "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
216 | "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
217 | "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
218 | }
219 | utils.summarize(
220 | writer=writer,
221 | global_step=global_step,
222 | images=image_dict,
223 | scalars=scalar_dict)
224 |
225 | if global_step % hps.train.eval_interval == 0:
226 | evaluate(hps, net_g, eval_loader, writer_eval)
227 | utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
228 | utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
229 | global_step += 1
230 |
231 | if rank == 0:
232 | logger.info('====> Epoch: {}'.format(epoch))
233 |
234 |
235 | def evaluate(hps, generator, eval_loader, writer_eval):
236 | generator.eval()
237 | with torch.no_grad():
238 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
239 | x, x_lengths = x.cuda(0), x_lengths.cuda(0)
240 | spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
241 | y, y_lengths = y.cuda(0), y_lengths.cuda(0)
242 | speakers = speakers.cuda(0)
243 |
244 | # remove else
245 | x = x[:1]
246 | x_lengths = x_lengths[:1]
247 | spec = spec[:1]
248 | spec_lengths = spec_lengths[:1]
249 | y = y[:1]
250 | y_lengths = y_lengths[:1]
251 | speakers = speakers[:1]
252 | break
253 | y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000)
254 | y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
255 |
256 | mel = spec_to_mel_torch(
257 | spec,
258 | hps.data.filter_length,
259 | hps.data.n_mel_channels,
260 | hps.data.sampling_rate,
261 | hps.data.mel_fmin,
262 | hps.data.mel_fmax)
263 | y_hat_mel = mel_spectrogram_torch(
264 | y_hat.squeeze(1).float(),
265 | hps.data.filter_length,
266 | hps.data.n_mel_channels,
267 | hps.data.sampling_rate,
268 | hps.data.hop_length,
269 | hps.data.win_length,
270 | hps.data.mel_fmin,
271 | hps.data.mel_fmax
272 | )
273 | image_dict = {
274 | "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
275 | }
276 | audio_dict = {
277 | "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
278 | }
279 | if global_step == 0:
280 | image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
281 | audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
282 |
283 | utils.summarize(
284 | writer=writer_eval,
285 | global_step=global_step,
286 | images=image_dict,
287 | audios=audio_dict,
288 | audio_sampling_rate=hps.data.sampling_rate
289 | )
290 | generator.train()
291 |
292 |
293 | if __name__ == "__main__":
294 | main()
295 |
--------------------------------------------------------------------------------
/vits/filelists/ljs_audio_text_val_filelist.txt.cleaned:
--------------------------------------------------------------------------------
1 | DUMMY1/LJ022-0023.wav|ðɪ ˌoʊvɚwˈɛlmɪŋ mədʒˈɔːɹɪɾi ʌv pˈiːpəl ɪn ðɪs kˈʌntɹi nˈoʊ hˌaʊ tə sˈɪft ðə wˈiːt fɹʌmðə tʃˈæf ɪn wˌʌt ðeɪ hˈɪɹ ænd wˌʌt ðeɪ ɹˈiːd.
2 | DUMMY1/LJ043-0030.wav|ɪf sˈʌmbɑːdi dˈɪd ðˈæt tə mˌiː, ɐ lˈaʊsi tɹˈɪk lˈaɪk ðˈæt, tə tˈeɪk maɪ wˈaɪf ɐwˈeɪ, ænd ˈɔːl ðə fˈɜːnɪtʃɚ, ˈaɪ wʊd biː mˈæd æz hˈɛl, tˈuː.
3 | DUMMY1/LJ005-0201.wav|ˌæzˌɪz ʃˈoʊn baɪ ðə ɹɪpˈoːɹt ʌvðə kəmˈɪʃənɚz tʊ ɪnkwˈaɪɚɹ ˌɪntʊ ðə stˈeɪt ʌvðə mjuːnˈɪsɪpəl kˌɔːɹpɚɹˈeɪʃənz ɪn eɪtˈiːn θˈɜːɾifˈaɪv.
4 | DUMMY1/LJ001-0110.wav|ˈiːvən ðə kˈæslɑːn tˈaɪp wɛn ɛnlˈɑːɹdʒd ʃˈoʊz ɡɹˈeɪt ʃˈɔːɹtkʌmɪŋz ɪn ðɪs ɹɪspˈɛkt:
5 | DUMMY1/LJ003-0345.wav|ˈɔːl ðə kəmˈɪɾi kʊd dˈuː ɪn ðɪs ɹɪspˈɛkt wʌz tə θɹˈoʊ ðə ɹɪspˌɑːnsəbˈɪlɪɾi ˌɑːn ˈʌðɚz.
6 | DUMMY1/LJ007-0154.wav|ðiːz pˈʌndʒənt ænd wˈɛlɡɹˈaʊndᵻd stɹˈɪktʃɚz ɐplˈaɪd wɪð stˈɪl ɡɹˈeɪɾɚ fˈoːɹs tə ðɪ ʌnkənvˈɪktᵻd pɹˈɪzənɚ, ðə mˈæn hˌuː kˈeɪm tə ðə pɹˈɪzən ˈɪnəsənt, ænd stˈɪl ʌnkəntˈæmᵻnˌeɪɾᵻd,
7 | DUMMY1/LJ018-0098.wav|ænd ɹˈɛkəɡnˌaɪzd æz wˈʌn ʌvðə fɹˈiːkwɛntɚz ʌvðə bˈoʊɡəs lˈɔːstˈeɪʃənɚz. hɪz ɐɹˈɛst lˈɛd tə ðæt ʌv ˈʌðɚz.
8 | DUMMY1/LJ047-0044.wav|ˈɑːswəld wʌz, haʊˈɛvɚ, wˈɪlɪŋ tə dɪskˈʌs hɪz kˈɑːntækts wɪð sˈoʊviət ɐθˈɔːɹɪɾiz. hiː dɪnˈaɪd hˌævɪŋ ˌɛni ɪnvˈɑːlvmənt wɪð sˈoʊviət ɪntˈɛlɪdʒəns ˈeɪdʒənsiz
9 | DUMMY1/LJ031-0038.wav|ðə fˈɜːst fɪzˈɪʃən tə sˈiː ðə pɹˈɛzɪdənt æt pˈɑːɹklənd hˈɑːspɪɾəl wʌz dˈɑːktɚ tʃˈɑːɹlz dʒˈeɪ. kˈæɹɪkˌoʊ, ɐ ɹˈɛzɪdənt ɪn dʒˈɛnɚɹəl sˈɜːdʒɚɹi.
10 | DUMMY1/LJ048-0194.wav|dˈʊɹɪŋ ðə mˈɔːɹnɪŋ ʌv noʊvˈɛmbɚ twˈɛntitˈuː pɹˈaɪɚ tə ðə mˈoʊɾɚkˌeɪd.
11 | DUMMY1/LJ049-0026.wav|ˌɑːn əkˈeɪʒən ðə sˈiːkɹət sˈɜːvɪs hɐzbɪn pɚmˈɪɾᵻd tə hæv ɐn ˈeɪdʒənt ɹˈaɪdɪŋ ɪnðə pˈæsɪndʒɚ kəmpˈɑːɹtmənt wɪððə pɹˈɛzɪdənt.
12 | DUMMY1/LJ004-0152.wav|ɑːlðˈoʊ æt mˈɪstɚ bˈʌkstənz vˈɪzɪt ɐ nˈuː dʒˈeɪl wʌz ɪn pɹˈɑːsɛs ʌv ɪɹˈɛkʃən, ðə fˈɜːst stˈɛp tʊwˈɔːɹdz ɹɪfˈɔːɹm sˈɪns hˈaʊɚdz vˌɪzɪtˈeɪʃən ɪn sˌɛvəntˈiːn sˈɛvəntifˈoːɹ.
13 | DUMMY1/LJ008-0278.wav|ɔːɹ ðˈɛɹz mˌaɪt biː wˈʌn ʌv mˈɛni, ænd ɪt mˌaɪt biː kənsˈɪdɚd nˈɛsəsɚɹi tuː "mˌeɪk ɐn ɛɡzˈæmpəl."
14 | DUMMY1/LJ043-0002.wav|ðə wˈɔːɹən kəmˈɪʃən ɹɪpˈoːɹt. baɪ ðə pɹˈɛzɪdənts kəmˈɪʃən ɑːnðɪ ɐsˌæsᵻnˈeɪʃən ʌv pɹˈɛzɪdənt kˈɛnədi. tʃˈæptɚ sˈɛvən. lˈiː hˈɑːɹvi ˈɑːswəld:
15 | DUMMY1/LJ009-0114.wav|mˈɪstɚ wˈeɪkfiːld wˈaɪndz ˈʌp hɪz ɡɹˈæfɪk bˌʌt sˈʌmwʌt sɛnsˈeɪʃənəl ɐkˈaʊnt baɪ dɪskɹˈaɪbɪŋ ɐnˈʌðɚ ɹɪlˈɪdʒəs sˈɜːvɪs, wˌɪtʃ mˈeɪ ɐpɹˈoʊpɹɪətli biː ɪnsˈɜːɾᵻd hˈɪɹ.
16 | DUMMY1/LJ028-0506.wav|ɐ mˈɑːdɚn ˈɑːɹɾɪst wʊdhɐv dˈɪfɪkˌʌlti ɪn dˌuːɪŋ sˈʌtʃ ˈækjʊɹət wˈɜːk.
17 | DUMMY1/LJ050-0168.wav|wɪððə pɚtˈɪkjʊlɚ pˈɜːpəsᵻz ʌvðɪ ˈeɪdʒənsi ɪnvˈɑːlvd. ðə kəmˈɪʃən ɹˈɛkəɡnˌaɪzɪz ðæt ðɪs ɪz ɐ kˌɑːntɹəvˈɜːʃəl ˈɛɹiə
18 | DUMMY1/LJ039-0223.wav|ˈɑːswəldz mɚɹˈiːn tɹˈeɪnɪŋ ɪn mˈɑːɹksmənʃˌɪp, hɪz ˈʌðɚ ɹˈaɪfəl ɛkspˈiəɹɪəns ænd hɪz ɪstˈæblɪʃt fəmˌɪlɪˈæɹɪɾi wɪð ðɪs pɚtˈɪkjʊlɚ wˈɛpən
19 | DUMMY1/LJ029-0032.wav|ɐkˈoːɹdɪŋ tʊ oʊdˈɑːnəl, kwˈoʊt, wiː hɐd ɐ mˈoʊɾɚkˌeɪd wɛɹɹˈɛvɚ wiː wˈɛnt, ˈɛnd kwˈoʊt.
20 | DUMMY1/LJ031-0070.wav|dˈɑːktɚ klˈɑːɹk, hˌuː mˈoʊst klˈoʊsli ɑːbzˈɜːvd ðə hˈɛd wˈuːnd,
21 | DUMMY1/LJ034-0198.wav|jˈuːɪnz, hˌuː wʌz ɑːnðə saʊθwˈɛst kˈɔːɹnɚɹ ʌv ˈɛlm ænd hjˈuːstən stɹˈiːts tˈɛstɪfˌaɪd ðæt hiː kʊd nˌɑːt dɪskɹˈaɪb ðə mˈæn hiː sˈɔː ɪnðə wˈɪndoʊ.
22 | DUMMY1/LJ026-0068.wav|ˈɛnɚdʒi ˈɛntɚz ðə plˈænt, tʊ ɐ smˈɔːl ɛkstˈɛnt,
23 | DUMMY1/LJ039-0075.wav|wˈʌns juː nˈoʊ ðæt juː mˈʌst pˌʊt ðə kɹˈɔshɛɹz ɑːnðə tˈɑːɹɡɪt ænd ðæt ɪz ˈɔːl ðæt ɪz nˈɛsəsɚɹi.
24 | DUMMY1/LJ004-0096.wav|ðə fˈeɪɾəl kˈɑːnsɪkwənsᵻz wˈɛɹɑːf mˌaɪt biː pɹɪvˈɛntᵻd ɪf ðə dʒˈʌstɪsᵻz ʌvðə pˈiːs wɜː djˈuːli ˈɔːθɚɹˌaɪzd
25 | DUMMY1/LJ005-0014.wav|spˈiːkɪŋ ˌɑːn ɐ dɪbˈeɪt ˌɑːn pɹˈɪzən mˈæɾɚz, hiː dᵻklˈɛɹd ðˈæt
26 | DUMMY1/LJ012-0161.wav|hiː wʌz ɹɪpˈoːɹɾᵻd tə hæv fˈɔːlən ɐwˈeɪ tʊ ɐ ʃˈædoʊ.
27 | DUMMY1/LJ018-0239.wav|hɪz dˌɪsɐpˈɪɹəns ɡˈeɪv kˈʌlɚ ænd sˈʌbstəns tʊ ˈiːvəl ɹɪpˈoːɹts ɔːlɹˌɛdi ɪn sˌɜːkjʊlˈeɪʃən ðætðə wɪl ænd kənvˈeɪəns əbˌʌv ɹɪfˈɜːd tuː
28 | DUMMY1/LJ019-0257.wav|hˈɪɹ ðə tɹˈɛdwˈiːl wʌz ɪn jˈuːs, ðɛɹ sˈɛljʊlɚ kɹˈæŋks, ɔːɹ hˈɑːɹdlˈeɪbɚ məʃˈiːnz.
29 | DUMMY1/LJ028-0008.wav|juː tˈæp dʒˈɛntli wɪð jʊɹ hˈiːl əpˌɑːn ðə ʃˈoʊldɚɹ ʌvðə dɹˈoʊmdɚɹi tʊ ˈɜːdʒ hɜːɹ ˈɑːn.
30 | DUMMY1/LJ024-0083.wav|ðɪs plˈæn ʌv mˈaɪn ɪz nˈoʊ ɐtˈæk ɑːnðə kˈoːɹt;
31 | DUMMY1/LJ042-0129.wav|nˈoʊ nˈaɪt klˈʌbz ɔːɹ bˈoʊlɪŋ ˈælɪz, nˈoʊ plˈeɪsᵻz ʌv ɹˌɛkɹiːˈeɪʃən ɛksˈɛpt ðə tɹˈeɪd jˈuːniən dˈænsᵻz. ˈaɪ hæv hɐd ɪnˈʌf.
32 | DUMMY1/LJ036-0103.wav|ðə pəlˈiːs ˈæskt hˌɪm wˈɛðɚ hiː kʊd pˈɪk ˈaʊt hɪz pˈæsɪndʒɚ fɹʌmðə lˈaɪnʌp.
33 | DUMMY1/LJ046-0058.wav|dˈʊɹɪŋ hɪz pɹˈɛzɪdənsi, fɹˈæŋklɪn dˈiː. ɹˈoʊzəvˌɛlt mˌeɪd ˈɔːlmoʊst fˈoːɹ hˈʌndɹəd dʒˈɜːnɪz ænd tɹˈævəld mˈoːɹ ðɐn θɹˈiː hˈʌndɹəd fˈɪfti θˈaʊzənd mˈaɪlz.
34 | DUMMY1/LJ014-0076.wav|hiː wʌz sˈiːn ˈæftɚwɚdz smˈoʊkɪŋ ænd tˈɔːkɪŋ wɪð hɪz hˈoʊsts ɪn ðɛɹ bˈæk pˈɑːɹlɚ, ænd nˈɛvɚ sˈiːn ɐɡˈɛn ɐlˈaɪv.
35 | DUMMY1/LJ002-0043.wav|lˈɑːŋ nˈæɹoʊ ɹˈuːmz wˈʌn θˈɜːɾisˈɪks fˈiːt, sˈɪks twˈɛntiθɹˈiː fˈiːt, ænd ðɪ ˈeɪtθ eɪtˈiːn,
36 | DUMMY1/LJ009-0076.wav|wiː kˈʌm tə ðə sˈɜːmən.
37 | DUMMY1/LJ017-0131.wav|ˈiːvən wɛn ðə hˈaɪ ʃˈɛɹɪf hɐd tˈoʊld hˌɪm ðɛɹwˌʌz nˈoʊ pˌɑːsəbˈɪlɪɾi əvɚ ɹɪpɹˈiːv, ænd wɪðˌɪn ɐ fjˈuː ˈaɪʊɹz ʌv ˌɛksɪkjˈuːʃən.
38 | DUMMY1/LJ046-0184.wav|bˌʌt ðɛɹ ɪz ɐ sˈɪstəm fɚðɪ ɪmˈiːdɪət nˌoʊɾɪfɪkˈeɪʃən ʌvðə sˈiːkɹət sˈɜːvɪs baɪ ðə kənfˈaɪnɪŋ ˌɪnstɪtˈuːʃən wɛn ɐ sˈʌbdʒɛkt ɪz ɹɪlˈiːsd ɔːɹ ɛskˈeɪps.
39 | DUMMY1/LJ014-0263.wav|wˌɛn ˈʌðɚ plˈɛʒɚz pˈɔːld hiː tˈʊk ɐ θˈiəɾɚ, ænd pˈoʊzd æz ɐ mjuːnˈɪfɪsənt pˈeɪtɹən ʌvðə dɹəmˈæɾɪk ˈɑːɹt.
40 | DUMMY1/LJ042-0096.wav| ˈoʊld ɛkstʃˈeɪndʒ ɹˈeɪt ɪn ɐdˈɪʃən tə hɪz fˈæktɚɹi sˈælɚɹi ʌv ɐpɹˈɑːksɪmətli ˈiːkwəl ɐmˈaʊnt
41 | DUMMY1/LJ049-0050.wav|hˈɪl hɐd bˈoʊθ fˈiːt ɑːnðə kˈɑːɹ ænd wʌz klˈaɪmɪŋ ɐbˈoːɹd tʊ ɐsˈɪst pɹˈɛzɪdənt ænd mɪsˈɛs kˈɛnədi.
42 | DUMMY1/LJ019-0186.wav|sˈiːɪŋ ðæt sˈɪns ðɪ ɪstˈæblɪʃmənt ʌvðə sˈɛntɹəl kɹˈɪmɪnəl kˈoːɹt, nˈuːɡeɪt ɹɪsˈiːvd pɹˈɪzənɚz fɔːɹ tɹˈaɪəl fɹʌm sˈɛvɹəl kˈaʊntɪz,
43 | DUMMY1/LJ028-0307.wav|ðˈɛn lˈɛt twˈɛnti dˈeɪz pˈæs, ænd æt ðɪ ˈɛnd ʌv ðæt tˈaɪm stˈeɪʃən nˌɪɹ ðə tʃˈældæsən ɡˈeɪts ɐ bˈɑːdi ʌv fˈoːɹ θˈaʊzənd.
44 | DUMMY1/LJ012-0235.wav|wˌaɪl ðeɪ wɜːɹ ɪn ɐ stˈeɪt ʌv ɪnsˌɛnsəbˈɪlɪɾi ðə mˈɜːdɚ wʌz kəmˈɪɾᵻd.
45 | DUMMY1/LJ034-0053.wav|ɹˈiːtʃt ðə sˈeɪm kənklˈuːʒən æz lætˈoʊnə ðætðə pɹˈɪnts fˈaʊnd ɑːnðə kˈɑːɹtənz wɜː ðoʊz ʌv lˈiː hˈɑːɹvi ˈɑːswəld.
46 | DUMMY1/LJ014-0030.wav|ðiːz wɜː dˈæmnətˌoːɹi fˈækts wˌɪtʃ wˈɛl səpˈoːɹɾᵻd ðə pɹˌɑːsɪkjˈuːʃən.
47 | DUMMY1/LJ015-0203.wav|bˌʌt wɜː ðə pɹɪkˈɔːʃənz tˈuː mˈɪnɪt, ðə vˈɪdʒɪləns tˈuː klˈoʊs təbi ɪlˈuːdᵻd ɔːɹ ˌoʊvɚkˈʌm?
48 | DUMMY1/LJ028-0093.wav|bˌʌt hɪz skɹˈaɪb ɹˈoʊt ɪt ɪnðə mˈænɚ kˈʌstəmˌɛɹi fɚðə skɹˈaɪbz ʌv ðoʊz dˈeɪz tə ɹˈaɪt ʌv ðɛɹ ɹˈɔɪəl mˈæstɚz.
49 | DUMMY1/LJ002-0018.wav|ðɪ ɪnˈædɪkwəsi ʌvðə dʒˈeɪl wʌz nˈoʊɾɪsd ænd ɹɪpˈoːɹɾᵻd əpˌɑːn ɐɡˈɛn ænd ɐɡˈɛn baɪ ðə ɡɹˈænd dʒˈʊɹɪz ʌvðə sˈɪɾi ʌv lˈʌndən,
50 | DUMMY1/LJ028-0275.wav|æt lˈæst, ɪnðə twˈɛntiəθ mˈʌnθ,
51 | DUMMY1/LJ012-0042.wav|wˌɪtʃ hiː kˈɛpt kənsˈiːld ɪn ɐ hˈaɪdɪŋplˈeɪs wɪð ɐ tɹˈæpdˈoːɹ dʒˈʌst ˌʌndɚ hɪz bˈɛd.
52 | DUMMY1/LJ011-0096.wav|hiː mˈæɹɪd ɐ lˈeɪdi ˈɑːlsoʊ bɪlˈɑːŋɪŋ tə ðə səsˈaɪəɾi ʌv fɹˈɛndz, hˌuː bɹˈɔːt hˌɪm ɐ lˈɑːɹdʒ fˈɔːɹtʃən, wˈɪtʃ, ænd hɪz ˈoʊn mˈʌni, hiː pˌʊt ˌɪntʊ ɐ sˈɪɾi fˈɜːm,
53 | DUMMY1/LJ036-0077.wav|ɹˈɑːdʒɚ dˈiː. kɹˈeɪɡ, ɐ dˈɛpjuːɾi ʃˈɛɹɪf ʌv dˈæləs kˈaʊnti,
54 | DUMMY1/LJ016-0318.wav|ˈʌðɚɹ əfˈɪʃəlz, ɡɹˈeɪt lˈɔɪɚz, ɡˈʌvɚnɚz ʌv pɹˈɪzənz, ænd tʃˈæplɪnz səpˈoːɹɾᵻd ðɪs vjˈuː.
55 | DUMMY1/LJ013-0164.wav|hˌuː kˈeɪm fɹʌm hɪz ɹˈuːm ɹˈɛdi dɹˈɛst, ɐ səspˈɪʃəs sˈɜːkəmstˌæns, æz hiː wʌz ˈɔːlweɪz lˈeɪt ɪnðə mˈɔːɹnɪŋ.
56 | DUMMY1/LJ027-0141.wav|ɪz klˈoʊsli ɹɪpɹədˈuːst ɪnðə lˈaɪfhˈɪstɚɹi ʌv ɛɡzˈɪstɪŋ dˈɪɹ. ˈɔːɹ, ɪn ˈʌðɚ wˈɜːdz,
57 | DUMMY1/LJ028-0335.wav|ɐkˈoːɹdɪŋli ðeɪ kəmˈɪɾᵻd tə hˌɪm ðə kəmˈænd ʌv ðɛɹ hˈoʊl ˈɑːɹmi, ænd pˌʊt ðə kˈiːz ʌv ðɛɹ sˈɪɾi ˌɪntʊ hɪz hˈændz.
58 | DUMMY1/LJ031-0202.wav|mɪsˈɛs kˈɛnədi tʃˈoʊz ðə hˈɑːspɪɾəl ɪn bəθˈɛzdə fɚðɪ ˈɔːtɑːpsi bɪkˈʌz ðə pɹˈɛzɪdənt hɐd sˈɜːvd ɪnðə nˈeɪvi.
59 | DUMMY1/LJ021-0145.wav|fɹʌm ðoʊz wˈɪlɪŋ tə dʒˈɔɪn ɪn ɪstˈæblɪʃɪŋ ðɪs hˈoʊptfɔːɹ pˈiəɹɪəd ʌv pˈiːs,
60 | DUMMY1/LJ016-0288.wav|"mˈʌlɚ, mˈʌlɚ, hiːz ðə mˈæn," tˈɪl ɐ daɪvˈɜːʒən wʌz kɹiːˈeɪɾᵻd baɪ ðɪ ɐpˈɪɹəns ʌvðə ɡˈæloʊz, wˌɪtʃ wʌz ɹɪsˈiːvd wɪð kəntˈɪnjuːəs jˈɛlz.
61 | DUMMY1/LJ028-0081.wav|jˈɪɹz lˈeɪɾɚ, wˌɛn ðɪ ˌɑːɹkiːˈɑːlədʒˌɪsts kʊd ɹˈɛdɪli dɪstˈɪŋɡwɪʃ ðə fˈɑːls fɹʌmðə tɹˈuː,
62 | DUMMY1/LJ018-0081.wav|hɪz dɪfˈɛns bˌiːɪŋ ðæt hiː hɐd ɪntˈɛndᵻd tə kəmˈɪt sˈuːɪsˌaɪd, bˌʌt ðˈæt, ɑːnðɪ ɐpˈɪɹəns ʌv ðɪs ˈɑːfɪsɚ hˌuː hɐd ɹˈɔŋd hˌɪm,
63 | DUMMY1/LJ021-0066.wav|təɡˌɛðɚ wɪð ɐ ɡɹˈeɪt ˈɪnkɹiːs ɪnðə pˈeɪɹoʊlz, ðɛɹ hɐz kˈʌm ɐ səbstˈænʃəl ɹˈaɪz ɪnðə tˈoʊɾəl ʌv ɪndˈʌstɹɪəl pɹˈɑːfɪts
64 | DUMMY1/LJ009-0238.wav|ˈæftɚ ðɪs ðə ʃˈɛɹɪfs sˈɛnt fɔːɹ ɐnˈʌðɚ ɹˈoʊp, bˌʌt ðə spɛktˈeɪɾɚz ˌɪntəfˈɪɹd, ænd ðə mˈæn wʌz kˈæɹɪd bˈæk tə dʒˈeɪl.
65 | DUMMY1/LJ005-0079.wav|ænd ɪmpɹˈuːv ðə mˈɔːɹəlz ʌvðə pɹˈɪzənɚz, ænd ʃˌæl ɪnʃˈʊɹ ðə pɹˈɑːpɚ mˈɛʒɚɹ ʌv pˈʌnɪʃmənt tə kənvˈɪktᵻd əfˈɛndɚz.
66 | DUMMY1/LJ035-0019.wav|dɹˈoʊv tə ðə nɔːɹθwˈɛst kˈɔːɹnɚɹ ʌv ˈɛlm ænd hjˈuːstən, ænd pˈɑːɹkt ɐpɹˈɑːksɪmətli tˈɛn fˈiːt fɹʌmðə tɹˈæfɪk sˈɪɡnəl.
67 | DUMMY1/LJ036-0174.wav|ðɪs ɪz ðɪ ɐpɹˈɑːksɪmət tˈaɪm hiː ˈɛntɚd ðə ɹˈuːmɪŋhˌaʊs, ɐkˈoːɹdɪŋ tʊ ˈɜːliːn ɹˈɑːbɚts, ðə hˈaʊskiːpɚ ðˈɛɹ.
68 | DUMMY1/LJ046-0146.wav|ðə kɹaɪtˈiəɹɪə ɪn ɪfˈɛkt pɹˈaɪɚ tə noʊvˈɛmbɚ twˈɛntitˈuː, naɪntˈiːn sˈɪkstiθɹˈiː, fɔːɹ dɪtˈɜːmɪnɪŋ wˈɛðɚ tʊ ɐksˈɛpt mətˈiəɹɪəl fɚðə pˌiːˌɑːɹˈɛs dʒˈɛnɚɹəl fˈaɪlz
69 | DUMMY1/LJ017-0044.wav|ænd ðə dˈiːpəst æŋzˈaɪəɾi wʌz fˈɛlt ðætðə kɹˈaɪm, ɪf kɹˈaɪm ðˈɛɹ hɐdbɪn, ʃˌʊd biː bɹˈɔːt hˈoʊm tʊ ɪts pˈɜːpɪtɹˌeɪɾɚ.
70 | DUMMY1/LJ017-0070.wav|bˌʌt hɪz spˈoːɹɾɪŋ ˌɑːpɚɹˈeɪʃənz dɪdnˌɑːt pɹˈɑːspɚ, ænd hiː bɪkˌeɪm ɐ nˈiːdi mˈæn, ˈɔːlweɪz dɹˈɪvən tə dˈɛspɚɹət stɹˈeɪts fɔːɹ kˈæʃ.
71 | DUMMY1/LJ014-0020.wav|hiː wʌz sˈuːn ˈæftɚwɚdz ɐɹˈɛstᵻd ˌɑːn səspˈɪʃən, ænd ɐ sˈɜːtʃ ʌv hɪz lˈɑːdʒɪŋz bɹˈɔːt tə lˈaɪt sˈɛvɹəl ɡˈɑːɹmənts sˈætʃɚɹˌeɪɾᵻd wɪð blˈʌd;
72 | DUMMY1/LJ016-0020.wav|hiː nˈɛvɚ ɹˈiːtʃt ðə sˈɪstɚn, bˌʌt fˈɛl bˈæk ˌɪntʊ ðə jˈɑːɹd, ˈɪndʒɚɹɪŋ hɪz lˈɛɡz sɪvˈɪɹli.
73 | DUMMY1/LJ045-0230.wav|wˌɛn hiː wʌz fˈaɪnəli ˌæpɹɪhˈɛndᵻd ɪnðə tˈɛksəs θˈiəɾɚ. ɑːlðˈoʊ ɪt ɪz nˌɑːt fˈʊli kɚɹˈɑːbɚɹˌeɪɾᵻd baɪ ˈʌðɚz hˌuː wɜː pɹˈɛzənt,
74 | DUMMY1/LJ035-0129.wav|ænd ʃiː mˈʌstɐv ɹˈʌn dˌaʊn ðə stˈɛɹz ɐhˈɛd ʌv ˈɑːswəld ænd wʊd pɹˈɑːbəbli hæv sˈiːn ɔːɹ hˈɜːd hˌɪm.
75 | DUMMY1/LJ008-0307.wav|ˈæftɚwɚdz ɛkspɹˈɛs ɐ wˈɪʃ tə mˈɜːdɚ ðə ɹɪkˈoːɹdɚ fɔːɹ hˌævɪŋ kˈɛpt ðˌɛm sˌoʊ lˈɑːŋ ɪn səspˈɛns.
76 | DUMMY1/LJ008-0294.wav|nˌɪɹli ɪndˈɛfɪnətli dɪfˈɜːd.
77 | DUMMY1/LJ047-0148.wav|ˌɑːn ɑːktˈoʊbɚ twˈɛntifˈaɪv,
78 | DUMMY1/LJ008-0111.wav|ðeɪ ˈɛntɚd ˈeɪ "stˈoʊn kˈoʊld ɹˈuːm," ænd wɜː pɹˈɛzəntli dʒˈɔɪnd baɪ ðə pɹˈɪzənɚ.
79 | DUMMY1/LJ034-0042.wav|ðæt hiː kʊd ˈoʊnli tˈɛstɪfˌaɪ wɪð sˈɜːtənti ðætðə pɹˈɪnt wʌz lˈɛs ðɐn θɹˈiː dˈeɪz ˈoʊld.
80 | DUMMY1/LJ037-0234.wav|mɪsˈɛs mˈɛɹi bɹˈɑːk, ðə wˈaɪf əvə mɪkˈænɪk hˌuː wˈɜːkt æt ðə stˈeɪʃən, wʌz ðɛɹ æt ðə tˈaɪm ænd ʃiː sˈɔː ɐ wˈaɪt mˈeɪl,
81 | DUMMY1/LJ040-0002.wav|tʃˈæptɚ sˈɛvən. lˈiː hˈɑːɹvi ˈɑːswəld: bˈækɡɹaʊnd ænd pˈɑːsəbəl mˈoʊɾɪvz, pˈɑːɹt wˌʌn.
82 | DUMMY1/LJ045-0140.wav|ðɪ ˈɑːɹɡjuːmənts hiː jˈuːzd tə dʒˈʌstɪfˌaɪ hɪz jˈuːs ʌvðɪ ˈeɪliəs sədʒˈɛst ðæt ˈɑːswəld mˌeɪhɐv kˈʌm tə θˈɪŋk ðætðə hˈoʊl wˈɜːld wʌz bɪkˈʌmɪŋ ɪnvˈɑːlvd
83 | DUMMY1/LJ012-0035.wav|ðə nˈʌmbɚ ænd nˈeɪmz ˌɑːn wˈɑːtʃᵻz, wɜː kˈɛɹfəli ɹɪmˈuːvd ɔːɹ əblˈɪɾɚɹˌeɪɾᵻd ˈæftɚ ðə ɡˈʊdz pˈæst ˌaʊɾəv hɪz hˈændz.
84 | DUMMY1/LJ012-0250.wav|ɑːnðə sˈɛvənθ dʒuːlˈaɪ, eɪtˈiːn θˈɜːɾisˈɛvən,
85 | DUMMY1/LJ016-0179.wav|kəntɹˈæktᵻd wɪð ʃˈɛɹɪfs ænd kənvˈɛnɚz tə wˈɜːk baɪ ðə dʒˈɑːb.
86 | DUMMY1/LJ016-0138.wav|æɾə dˈɪstəns fɹʌmðə pɹˈɪzən.
87 | DUMMY1/LJ027-0052.wav|ðiːz pɹˈɪnsɪpəlz ʌv həmˈɑːlədʒi ɑːɹ ɪsˈɛnʃəl tʊ ɐ kɚɹˈɛkt ɪntˌɜːpɹɪtˈeɪʃən ʌvðə fˈækts ʌv mɔːɹfˈɑːlədʒi.
88 | DUMMY1/LJ031-0134.wav|ˌɑːn wˈʌn əkˈeɪʒən mɪsˈɛs dʒˈɑːnsən, ɐkˈʌmpənɪd baɪ tˈuː sˈiːkɹət sˈɜːvɪs ˈeɪdʒənts, lˈɛft ðə ɹˈuːm tə sˈiː mɪsˈɛs kˈɛnədi ænd mɪsˈɛs kənˈæli.
89 | DUMMY1/LJ019-0273.wav|wˌɪtʃ sˌɜː dʒˈɑːʃjuːə dʒˈɛb tˈoʊld ðə kəmˈɪɾi hiː kənsˈɪdɚd ðə pɹˈɑːpɚɹ ˈɛlɪmənts ʌv pˈiːnəl dˈɪsɪplˌɪn.
90 | DUMMY1/LJ014-0110.wav|æt ðə fˈɜːst ðə bˈɑːksᵻz wɜːɹ ɪmpˈaʊndᵻd, ˈoʊpənd, ænd fˈaʊnd tə kəntˈeɪn mˈɛnɪəv oʊkˈɑːnɚz ɪfˈɛkts.
91 | DUMMY1/LJ034-0160.wav|ˌɑːn bɹˈɛnənz sˈʌbsɪkwənt sˈɜːtən aɪdˈɛntɪfɪkˈeɪʃən ʌv lˈiː hˈɑːɹvi ˈɑːswəld æz ðə mˈæn hiː sˈɔː fˈaɪɚ ðə ɹˈaɪfəl.
92 | DUMMY1/LJ038-0199.wav|ɪlˈɛvən. ɪf ˈaɪ æm ɐlˈaɪv ænd tˈeɪkən pɹˈɪzənɚ,
93 | DUMMY1/LJ014-0010.wav|jˈɛt hiː kʊd nˌɑːt ˌoʊvɚkˈʌm ðə stɹˈeɪndʒ fˌæsᵻnˈeɪʃən ɪt hˈɐd fɔːɹ hˌɪm, ænd ɹɪmˈeɪnd baɪ ðə sˈaɪd ʌvðə kˈɔːɹps tˈɪl ðə stɹˈɛtʃɚ kˈeɪm.
94 | DUMMY1/LJ033-0047.wav|ˈaɪ nˈoʊɾɪsd wɛn ˈaɪ wɛnt ˈaʊt ðætðə lˈaɪt wʌz ˈɑːn, ˈɛnd kwˈoʊt,
95 | DUMMY1/LJ040-0027.wav|hiː wʌz nˈɛvɚ sˈæɾɪsfˌaɪd wɪð ˈɛnɪθˌɪŋ.
96 | DUMMY1/LJ048-0228.wav|ænd ˈʌðɚz hˌuː wɜː pɹˈɛzənt sˈeɪ ðæt nˈoʊ ˈeɪdʒənt wʌz ɪnˈiːbɹɪˌeɪɾᵻd ɔːɹ ˈæktᵻd ɪmpɹˈɑːpɚli.
97 | DUMMY1/LJ003-0111.wav|hiː wʌz ɪn kˈɑːnsɪkwəns pˌʊt ˌaʊɾəv ðə pɹətˈɛkʃən ʌv ðɛɹ ɪntˈɜːnəl lˈɔː, ˈɛnd kwˈoʊt. ðɛɹ kˈoʊd wʌzɐ sˈʌbdʒɛkt ʌv sˌʌm kjˌʊɹɪˈɑːsɪɾi.
98 | DUMMY1/LJ008-0258.wav|lˈɛt mˌiː ɹɪtɹˈeɪs maɪ stˈɛps, ænd spˈiːk mˈoːɹ ɪn diːtˈeɪl ʌvðə tɹˈiːtmənt ʌvðə kəndˈɛmd ɪn ðoʊz blˈʌdθɜːsti ænd bɹˈuːɾəli ɪndˈɪfɹənt dˈeɪz,
99 | DUMMY1/LJ029-0022.wav|ðɪ ɚɹˈɪdʒɪnəl plˈæn kˈɔːld fɚðə pɹˈɛzɪdənt tə spˈɛnd ˈoʊnli wˈʌn dˈeɪ ɪnðə stˈeɪt, mˌeɪkɪŋ wˈɜːlwɪnd vˈɪzɪts tə dˈæləs, fˈɔːɹt wˈɜːθ, sˌæn æntˈoʊnɪˌoʊ, ænd hjˈuːstən.
100 | DUMMY1/LJ004-0045.wav|mˈɪstɚ stˈɜːdʒᵻz bˈoːɹn, sˌɜː dʒˈeɪmz mˈækɪntˌɑːʃ, sˌɜː dʒˈeɪmz skˈɑːɹlɪt, ænd wˈɪljəm wˈɪlbɚfˌoːɹs.
101 |
--------------------------------------------------------------------------------
/vits/attentions.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import numpy as np
4 | import torch
5 | from torch import nn
6 | from torch.nn import functional as F
7 |
8 | import vits.commons as commons
9 | import vits.modules as modules
10 | from vits.modules import LayerNorm
11 |
12 |
13 | class Encoder(nn.Module):
14 | def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15 | super().__init__()
16 | self.hidden_channels = hidden_channels
17 | self.filter_channels = filter_channels
18 | self.n_heads = n_heads
19 | self.n_layers = n_layers
20 | self.kernel_size = kernel_size
21 | self.p_dropout = p_dropout
22 | self.window_size = window_size
23 |
24 | self.drop = nn.Dropout(p_dropout)
25 | self.attn_layers = nn.ModuleList()
26 | self.norm_layers_1 = nn.ModuleList()
27 | self.ffn_layers = nn.ModuleList()
28 | self.norm_layers_2 = nn.ModuleList()
29 | for i in range(self.n_layers):
30 | self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31 | self.norm_layers_1.append(LayerNorm(hidden_channels))
32 | self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33 | self.norm_layers_2.append(LayerNorm(hidden_channels))
34 |
35 | def forward(self, x, x_mask):
36 | attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37 | x = x * x_mask
38 | for i in range(self.n_layers):
39 | y = self.attn_layers[i](x, x, attn_mask)
40 | y = self.drop(y)
41 | x = self.norm_layers_1[i](x + y)
42 |
43 | y = self.ffn_layers[i](x, x_mask)
44 | y = self.drop(y)
45 | x = self.norm_layers_2[i](x + y)
46 | x = x * x_mask
47 | return x
48 |
49 |
50 | class Decoder(nn.Module):
51 | def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52 | super().__init__()
53 | self.hidden_channels = hidden_channels
54 | self.filter_channels = filter_channels
55 | self.n_heads = n_heads
56 | self.n_layers = n_layers
57 | self.kernel_size = kernel_size
58 | self.p_dropout = p_dropout
59 | self.proximal_bias = proximal_bias
60 | self.proximal_init = proximal_init
61 |
62 | self.drop = nn.Dropout(p_dropout)
63 | self.self_attn_layers = nn.ModuleList()
64 | self.norm_layers_0 = nn.ModuleList()
65 | self.encdec_attn_layers = nn.ModuleList()
66 | self.norm_layers_1 = nn.ModuleList()
67 | self.ffn_layers = nn.ModuleList()
68 | self.norm_layers_2 = nn.ModuleList()
69 | for i in range(self.n_layers):
70 | self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71 | self.norm_layers_0.append(LayerNorm(hidden_channels))
72 | self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73 | self.norm_layers_1.append(LayerNorm(hidden_channels))
74 | self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75 | self.norm_layers_2.append(LayerNorm(hidden_channels))
76 |
77 | def forward(self, x, x_mask, h, h_mask):
78 | """
79 | x: decoder input
80 | h: encoder output
81 | """
82 | self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83 | encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84 | x = x * x_mask
85 | for i in range(self.n_layers):
86 | y = self.self_attn_layers[i](x, x, self_attn_mask)
87 | y = self.drop(y)
88 | x = self.norm_layers_0[i](x + y)
89 |
90 | y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91 | y = self.drop(y)
92 | x = self.norm_layers_1[i](x + y)
93 |
94 | y = self.ffn_layers[i](x, x_mask)
95 | y = self.drop(y)
96 | x = self.norm_layers_2[i](x + y)
97 | x = x * x_mask
98 | return x
99 |
100 |
101 | class MultiHeadAttention(nn.Module):
102 | def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103 | super().__init__()
104 | assert channels % n_heads == 0
105 |
106 | self.channels = channels
107 | self.out_channels = out_channels
108 | self.n_heads = n_heads
109 | self.p_dropout = p_dropout
110 | self.window_size = window_size
111 | self.heads_share = heads_share
112 | self.block_length = block_length
113 | self.proximal_bias = proximal_bias
114 | self.proximal_init = proximal_init
115 | self.attn = None
116 |
117 | self.k_channels = channels // n_heads
118 | self.conv_q = nn.Conv1d(channels, channels, 1)
119 | self.conv_k = nn.Conv1d(channels, channels, 1)
120 | self.conv_v = nn.Conv1d(channels, channels, 1)
121 | self.conv_o = nn.Conv1d(channels, out_channels, 1)
122 | self.drop = nn.Dropout(p_dropout)
123 |
124 | if window_size is not None:
125 | n_heads_rel = 1 if heads_share else n_heads
126 | rel_stddev = self.k_channels**-0.5
127 | self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128 | self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129 |
130 | nn.init.xavier_uniform_(self.conv_q.weight)
131 | nn.init.xavier_uniform_(self.conv_k.weight)
132 | nn.init.xavier_uniform_(self.conv_v.weight)
133 | if proximal_init:
134 | with torch.no_grad():
135 | self.conv_k.weight.copy_(self.conv_q.weight)
136 | self.conv_k.bias.copy_(self.conv_q.bias)
137 |
138 | def forward(self, x, c, attn_mask=None):
139 | q = self.conv_q(x)
140 | k = self.conv_k(c)
141 | v = self.conv_v(c)
142 |
143 | x, self.attn = self.attention(q, k, v, mask=attn_mask)
144 |
145 | x = self.conv_o(x)
146 | return x
147 |
148 | def attention(self, query, key, value, mask=None):
149 | # reshape [b, d, t] -> [b, n_h, t, d_k]
150 | b, d, t_s, t_t = (*key.size(), query.size(2))
151 | query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152 | key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153 | value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154 |
155 | scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156 | if self.window_size is not None:
157 | assert t_s == t_t, "Relative attention is only available for self-attention."
158 | key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159 | rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160 | scores_local = self._relative_position_to_absolute_position(rel_logits)
161 | scores = scores + scores_local
162 | if self.proximal_bias:
163 | assert t_s == t_t, "Proximal bias is only available for self-attention."
164 | scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165 | if mask is not None:
166 | scores = scores.masked_fill(mask == 0, -1e4)
167 | if self.block_length is not None:
168 | assert t_s == t_t, "Local attention is only available for self-attention."
169 | block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170 | scores = scores.masked_fill(block_mask == 0, -1e4)
171 | p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172 | p_attn = self.drop(p_attn)
173 | output = torch.matmul(p_attn, value)
174 | if self.window_size is not None:
175 | relative_weights = self._absolute_position_to_relative_position(p_attn)
176 | value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177 | output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178 | output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179 | return output, p_attn
180 |
181 | def _matmul_with_relative_values(self, x, y):
182 | """
183 | x: [b, h, l, m]
184 | y: [h or 1, m, d]
185 | ret: [b, h, l, d]
186 | """
187 | ret = torch.matmul(x, y.unsqueeze(0))
188 | return ret
189 |
190 | def _matmul_with_relative_keys(self, x, y):
191 | """
192 | x: [b, h, l, d]
193 | y: [h or 1, m, d]
194 | ret: [b, h, l, m]
195 | """
196 | ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197 | return ret
198 |
199 | def _get_relative_embeddings(self, relative_embeddings, length):
200 | max_relative_position = 2 * self.window_size + 1
201 | # Pad first before slice to avoid using cond ops.
202 | pad_length = max(length - (self.window_size + 1), 0)
203 | slice_start_position = max((self.window_size + 1) - length, 0)
204 | slice_end_position = slice_start_position + 2 * length - 1
205 | if pad_length > 0:
206 | padded_relative_embeddings = F.pad(
207 | relative_embeddings,
208 | commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209 | else:
210 | padded_relative_embeddings = relative_embeddings
211 | used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212 | return used_relative_embeddings
213 |
214 | def _relative_position_to_absolute_position(self, x):
215 | """
216 | x: [b, h, l, 2*l-1]
217 | ret: [b, h, l, l]
218 | """
219 | batch, heads, length, _ = x.size()
220 | # Concat columns of pad to shift from relative to absolute indexing.
221 | x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222 |
223 | # Concat extra elements so to add up to shape (len+1, 2*len-1).
224 | x_flat = x.view([batch, heads, length * 2 * length])
225 | x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226 |
227 | # Reshape and slice out the padded elements.
228 | x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229 | return x_final
230 |
231 | def _absolute_position_to_relative_position(self, x):
232 | """
233 | x: [b, h, l, l]
234 | ret: [b, h, l, 2*l-1]
235 | """
236 | batch, heads, length, _ = x.size()
237 | # padd along column
238 | x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239 | x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240 | # add 0's in the beginning that will skew the elements after reshape
241 | x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242 | x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243 | return x_final
244 |
245 | def _attention_bias_proximal(self, length):
246 | """Bias for self-attention to encourage attention to close positions.
247 | Args:
248 | length: an integer scalar.
249 | Returns:
250 | a Tensor with shape [1, 1, length, length]
251 | """
252 | r = torch.arange(length, dtype=torch.float32)
253 | diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254 | return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255 |
256 |
257 | class FFN(nn.Module):
258 | def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259 | super().__init__()
260 | self.in_channels = in_channels
261 | self.out_channels = out_channels
262 | self.filter_channels = filter_channels
263 | self.kernel_size = kernel_size
264 | self.p_dropout = p_dropout
265 | self.activation = activation
266 | self.causal = causal
267 |
268 | if causal:
269 | self.padding = self._causal_padding
270 | else:
271 | self.padding = self._same_padding
272 |
273 | self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274 | self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275 | self.drop = nn.Dropout(p_dropout)
276 |
277 | def forward(self, x, x_mask):
278 | x = self.conv_1(self.padding(x * x_mask))
279 | if self.activation == "gelu":
280 | x = x * torch.sigmoid(1.702 * x)
281 | else:
282 | x = torch.relu(x)
283 | x = self.drop(x)
284 | x = self.conv_2(self.padding(x * x_mask))
285 | return x * x_mask
286 |
287 | def _causal_padding(self, x):
288 | if self.kernel_size == 1:
289 | return x
290 | pad_l = self.kernel_size - 1
291 | pad_r = 0
292 | padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293 | x = F.pad(x, commons.convert_pad_shape(padding))
294 | return x
295 |
296 | def _same_padding(self, x):
297 | if self.kernel_size == 1:
298 | return x
299 | pad_l = (self.kernel_size - 1) // 2
300 | pad_r = self.kernel_size // 2
301 | padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302 | x = F.pad(x, commons.convert_pad_shape(padding))
303 | return x
304 |
--------------------------------------------------------------------------------
/vits/modules.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import numpy as np
4 | import scipy
5 | import torch
6 | from torch import nn
7 | from torch.nn import functional as F
8 |
9 | from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10 | from torch.nn.utils import weight_norm, remove_weight_norm
11 |
12 | import vits.commons as commons
13 | from vits.commons import init_weights, get_padding
14 | from vits.transforms import piecewise_rational_quadratic_transform
15 |
16 |
17 | LRELU_SLOPE = 0.1
18 |
19 |
20 | class LayerNorm(nn.Module):
21 | def __init__(self, channels, eps=1e-5):
22 | super().__init__()
23 | self.channels = channels
24 | self.eps = eps
25 |
26 | self.gamma = nn.Parameter(torch.ones(channels))
27 | self.beta = nn.Parameter(torch.zeros(channels))
28 |
29 | def forward(self, x):
30 | x = x.transpose(1, -1)
31 | x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32 | return x.transpose(1, -1)
33 |
34 |
35 | class ConvReluNorm(nn.Module):
36 | def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37 | super().__init__()
38 | self.in_channels = in_channels
39 | self.hidden_channels = hidden_channels
40 | self.out_channels = out_channels
41 | self.kernel_size = kernel_size
42 | self.n_layers = n_layers
43 | self.p_dropout = p_dropout
44 | assert n_layers > 1, "Number of layers should be larger than 0."
45 |
46 | self.conv_layers = nn.ModuleList()
47 | self.norm_layers = nn.ModuleList()
48 | self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49 | self.norm_layers.append(LayerNorm(hidden_channels))
50 | self.relu_drop = nn.Sequential(
51 | nn.ReLU(),
52 | nn.Dropout(p_dropout))
53 | for _ in range(n_layers-1):
54 | self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55 | self.norm_layers.append(LayerNorm(hidden_channels))
56 | self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57 | self.proj.weight.data.zero_()
58 | self.proj.bias.data.zero_()
59 |
60 | def forward(self, x, x_mask):
61 | x_org = x
62 | for i in range(self.n_layers):
63 | x = self.conv_layers[i](x * x_mask)
64 | x = self.norm_layers[i](x)
65 | x = self.relu_drop(x)
66 | x = x_org + self.proj(x)
67 | return x * x_mask
68 |
69 |
70 | class DDSConv(nn.Module):
71 | """
72 | Dialted and Depth-Separable Convolution
73 | """
74 | def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75 | super().__init__()
76 | self.channels = channels
77 | self.kernel_size = kernel_size
78 | self.n_layers = n_layers
79 | self.p_dropout = p_dropout
80 |
81 | self.drop = nn.Dropout(p_dropout)
82 | self.convs_sep = nn.ModuleList()
83 | self.convs_1x1 = nn.ModuleList()
84 | self.norms_1 = nn.ModuleList()
85 | self.norms_2 = nn.ModuleList()
86 | for i in range(n_layers):
87 | dilation = kernel_size ** i
88 | padding = (kernel_size * dilation - dilation) // 2
89 | self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90 | groups=channels, dilation=dilation, padding=padding
91 | ))
92 | self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93 | self.norms_1.append(LayerNorm(channels))
94 | self.norms_2.append(LayerNorm(channels))
95 |
96 | def forward(self, x, x_mask, g=None):
97 | if g is not None:
98 | x = x + g
99 | for i in range(self.n_layers):
100 | y = self.convs_sep[i](x * x_mask)
101 | y = self.norms_1[i](y)
102 | y = F.gelu(y)
103 | y = self.convs_1x1[i](y)
104 | y = self.norms_2[i](y)
105 | y = F.gelu(y)
106 | y = self.drop(y)
107 | x = x + y
108 | return x * x_mask
109 |
110 |
111 | class WN(torch.nn.Module):
112 | def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113 | super(WN, self).__init__()
114 | assert(kernel_size % 2 == 1)
115 | self.hidden_channels =hidden_channels
116 | self.kernel_size = kernel_size,
117 | self.dilation_rate = dilation_rate
118 | self.n_layers = n_layers
119 | self.gin_channels = gin_channels
120 | self.p_dropout = p_dropout
121 |
122 | self.in_layers = torch.nn.ModuleList()
123 | self.res_skip_layers = torch.nn.ModuleList()
124 | self.drop = nn.Dropout(p_dropout)
125 |
126 | if gin_channels != 0:
127 | cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128 | self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129 |
130 | for i in range(n_layers):
131 | dilation = dilation_rate ** i
132 | padding = int((kernel_size * dilation - dilation) / 2)
133 | in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134 | dilation=dilation, padding=padding)
135 | in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136 | self.in_layers.append(in_layer)
137 |
138 | # last one is not necessary
139 | if i < n_layers - 1:
140 | res_skip_channels = 2 * hidden_channels
141 | else:
142 | res_skip_channels = hidden_channels
143 |
144 | res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145 | res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146 | self.res_skip_layers.append(res_skip_layer)
147 |
148 | def forward(self, x, x_mask, g=None, **kwargs):
149 | output = torch.zeros_like(x)
150 | n_channels_tensor = torch.IntTensor([self.hidden_channels])
151 |
152 | if g is not None:
153 | g = self.cond_layer(g)
154 |
155 | for i in range(self.n_layers):
156 | x_in = self.in_layers[i](x)
157 | if g is not None:
158 | cond_offset = i * 2 * self.hidden_channels
159 | g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160 | else:
161 | g_l = torch.zeros_like(x_in)
162 |
163 | acts = commons.fused_add_tanh_sigmoid_multiply(
164 | x_in,
165 | g_l,
166 | n_channels_tensor)
167 | acts = self.drop(acts)
168 |
169 | res_skip_acts = self.res_skip_layers[i](acts)
170 | if i < self.n_layers - 1:
171 | res_acts = res_skip_acts[:,:self.hidden_channels,:]
172 | x = (x + res_acts) * x_mask
173 | output = output + res_skip_acts[:,self.hidden_channels:,:]
174 | else:
175 | output = output + res_skip_acts
176 | return output * x_mask
177 |
178 | def remove_weight_norm(self):
179 | if self.gin_channels != 0:
180 | torch.nn.utils.remove_weight_norm(self.cond_layer)
181 | for l in self.in_layers:
182 | torch.nn.utils.remove_weight_norm(l)
183 | for l in self.res_skip_layers:
184 | torch.nn.utils.remove_weight_norm(l)
185 |
186 |
187 | class ResBlock1(torch.nn.Module):
188 | def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189 | super(ResBlock1, self).__init__()
190 | self.convs1 = nn.ModuleList([
191 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192 | padding=get_padding(kernel_size, dilation[0]))),
193 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194 | padding=get_padding(kernel_size, dilation[1]))),
195 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196 | padding=get_padding(kernel_size, dilation[2])))
197 | ])
198 | self.convs1.apply(init_weights)
199 |
200 | self.convs2 = nn.ModuleList([
201 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202 | padding=get_padding(kernel_size, 1))),
203 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204 | padding=get_padding(kernel_size, 1))),
205 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206 | padding=get_padding(kernel_size, 1)))
207 | ])
208 | self.convs2.apply(init_weights)
209 |
210 | def forward(self, x, x_mask=None):
211 | for c1, c2 in zip(self.convs1, self.convs2):
212 | xt = F.leaky_relu(x, LRELU_SLOPE)
213 | if x_mask is not None:
214 | xt = xt * x_mask
215 | xt = c1(xt)
216 | xt = F.leaky_relu(xt, LRELU_SLOPE)
217 | if x_mask is not None:
218 | xt = xt * x_mask
219 | xt = c2(xt)
220 | x = xt + x
221 | if x_mask is not None:
222 | x = x * x_mask
223 | return x
224 |
225 | def remove_weight_norm(self):
226 | for l in self.convs1:
227 | remove_weight_norm(l)
228 | for l in self.convs2:
229 | remove_weight_norm(l)
230 |
231 |
232 | class ResBlock2(torch.nn.Module):
233 | def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234 | super(ResBlock2, self).__init__()
235 | self.convs = nn.ModuleList([
236 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237 | padding=get_padding(kernel_size, dilation[0]))),
238 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239 | padding=get_padding(kernel_size, dilation[1])))
240 | ])
241 | self.convs.apply(init_weights)
242 |
243 | def forward(self, x, x_mask=None):
244 | for c in self.convs:
245 | xt = F.leaky_relu(x, LRELU_SLOPE)
246 | if x_mask is not None:
247 | xt = xt * x_mask
248 | xt = c(xt)
249 | x = xt + x
250 | if x_mask is not None:
251 | x = x * x_mask
252 | return x
253 |
254 | def remove_weight_norm(self):
255 | for l in self.convs:
256 | remove_weight_norm(l)
257 |
258 |
259 | class Log(nn.Module):
260 | def forward(self, x, x_mask, reverse=False, **kwargs):
261 | if not reverse:
262 | y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263 | logdet = torch.sum(-y, [1, 2])
264 | return y, logdet
265 | else:
266 | x = torch.exp(x) * x_mask
267 | return x
268 |
269 |
270 | class Flip(nn.Module):
271 | def forward(self, x, *args, reverse=False, **kwargs):
272 | x = torch.flip(x, [1])
273 | if not reverse:
274 | logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275 | return x, logdet
276 | else:
277 | return x
278 |
279 |
280 | class ElementwiseAffine(nn.Module):
281 | def __init__(self, channels):
282 | super().__init__()
283 | self.channels = channels
284 | self.m = nn.Parameter(torch.zeros(channels,1))
285 | self.logs = nn.Parameter(torch.zeros(channels,1))
286 |
287 | def forward(self, x, x_mask, reverse=False, **kwargs):
288 | if not reverse:
289 | y = self.m + torch.exp(self.logs) * x
290 | y = y * x_mask
291 | logdet = torch.sum(self.logs * x_mask, [1,2])
292 | return y, logdet
293 | else:
294 | x = (x - self.m) * torch.exp(-self.logs) * x_mask
295 | return x
296 |
297 |
298 | class ResidualCouplingLayer(nn.Module):
299 | def __init__(self,
300 | channels,
301 | hidden_channels,
302 | kernel_size,
303 | dilation_rate,
304 | n_layers,
305 | p_dropout=0,
306 | gin_channels=0,
307 | mean_only=False):
308 | assert channels % 2 == 0, "channels should be divisible by 2"
309 | super().__init__()
310 | self.channels = channels
311 | self.hidden_channels = hidden_channels
312 | self.kernel_size = kernel_size
313 | self.dilation_rate = dilation_rate
314 | self.n_layers = n_layers
315 | self.half_channels = channels // 2
316 | self.mean_only = mean_only
317 |
318 | self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319 | self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320 | self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321 | self.post.weight.data.zero_()
322 | self.post.bias.data.zero_()
323 |
324 | def forward(self, x, x_mask, g=None, reverse=False):
325 | x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326 | h = self.pre(x0) * x_mask
327 | h = self.enc(h, x_mask, g=g)
328 | stats = self.post(h) * x_mask
329 | if not self.mean_only:
330 | m, logs = torch.split(stats, [self.half_channels]*2, 1)
331 | else:
332 | m = stats
333 | logs = torch.zeros_like(m)
334 |
335 | if not reverse:
336 | x1 = m + x1 * torch.exp(logs) * x_mask
337 | x = torch.cat([x0, x1], 1)
338 | logdet = torch.sum(logs, [1,2])
339 | return x, logdet
340 | else:
341 | x1 = (x1 - m) * torch.exp(-logs) * x_mask
342 | x = torch.cat([x0, x1], 1)
343 | return x
344 |
345 |
346 | class ConvFlow(nn.Module):
347 | def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348 | super().__init__()
349 | self.in_channels = in_channels
350 | self.filter_channels = filter_channels
351 | self.kernel_size = kernel_size
352 | self.n_layers = n_layers
353 | self.num_bins = num_bins
354 | self.tail_bound = tail_bound
355 | self.half_channels = in_channels // 2
356 |
357 | self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358 | self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359 | self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360 | self.proj.weight.data.zero_()
361 | self.proj.bias.data.zero_()
362 |
363 | def forward(self, x, x_mask, g=None, reverse=False):
364 | x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365 | h = self.pre(x0)
366 | h = self.convs(h, x_mask, g=g)
367 | h = self.proj(h) * x_mask
368 |
369 | b, c, t = x0.shape
370 | h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371 |
372 | unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373 | unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374 | unnormalized_derivatives = h[..., 2 * self.num_bins:]
375 |
376 | x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377 | unnormalized_widths,
378 | unnormalized_heights,
379 | unnormalized_derivatives,
380 | inverse=reverse,
381 | tails='linear',
382 | tail_bound=self.tail_bound
383 | )
384 |
385 | x = torch.cat([x0, x1], 1) * x_mask
386 | logdet = torch.sum(logabsdet * x_mask, [1,2])
387 | if not reverse:
388 | return x, logdet
389 | else:
390 | return x
391 |
--------------------------------------------------------------------------------
/vits/data_utils.py:
--------------------------------------------------------------------------------
1 | import time
2 | import os
3 | import random
4 | import numpy as np
5 | import torch
6 | import torch.utils.data
7 |
8 | import vits.commons as commons
9 | from vits.mel_processing import spectrogram_torch
10 | from vits.utils import load_wav_to_torch, load_filepaths_and_text
11 | from vits.text import text_to_sequence, cleaned_text_to_sequence
12 |
13 |
14 | class TextAudioLoader(torch.utils.data.Dataset):
15 | """
16 | 1) loads audio, text pairs
17 | 2) normalizes text and converts them to sequences of integers
18 | 3) computes spectrograms from audio files.
19 | """
20 | def __init__(self, audiopaths_and_text, hparams):
21 | self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
22 | self.text_cleaners = hparams.text_cleaners
23 | self.max_wav_value = hparams.max_wav_value
24 | self.sampling_rate = hparams.sampling_rate
25 | self.filter_length = hparams.filter_length
26 | self.hop_length = hparams.hop_length
27 | self.win_length = hparams.win_length
28 | self.sampling_rate = hparams.sampling_rate
29 |
30 | self.cleaned_text = getattr(hparams, "cleaned_text", False)
31 |
32 | self.add_blank = hparams.add_blank
33 | self.min_text_len = getattr(hparams, "min_text_len", 1)
34 | self.max_text_len = getattr(hparams, "max_text_len", 190)
35 |
36 | random.seed(1234)
37 | random.shuffle(self.audiopaths_and_text)
38 | self._filter()
39 |
40 |
41 | def _filter(self):
42 | """
43 | Filter text & store spec lengths
44 | """
45 | # Store spectrogram lengths for Bucketing
46 | # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
47 | # spec_length = wav_length // hop_length
48 |
49 | audiopaths_and_text_new = []
50 | lengths = []
51 | for audiopath, text in self.audiopaths_and_text:
52 | if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
53 | audiopaths_and_text_new.append([audiopath, text])
54 | lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
55 | self.audiopaths_and_text = audiopaths_and_text_new
56 | self.lengths = lengths
57 |
58 | def get_audio_text_pair(self, audiopath_and_text):
59 | # separate filename and text
60 | audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
61 | text = self.get_text(text)
62 | spec, wav = self.get_audio(audiopath)
63 | return (text, spec, wav)
64 |
65 | def get_audio(self, filename):
66 | audio, sampling_rate = load_wav_to_torch(filename)
67 | if sampling_rate != self.sampling_rate:
68 | raise ValueError("{} {} SR doesn't match target {} SR".format(
69 | sampling_rate, self.sampling_rate))
70 | audio_norm = audio / self.max_wav_value
71 | audio_norm = audio_norm.unsqueeze(0)
72 | spec_filename = filename.replace(".wav", ".spec.pt")
73 | # if os.path.exists(spec_filename):
74 | # spec = torch.load(spec_filename)
75 | # else:
76 | spec = spectrogram_torch(audio_norm, self.filter_length,
77 | self.sampling_rate, self.hop_length, self.win_length,
78 | center=False)
79 | spec = torch.squeeze(spec, 0)
80 | # torch.save(spec, spec_filename)
81 | return spec, audio_norm
82 |
83 | def get_text(self, text):
84 | if self.cleaned_text:
85 | text_norm = cleaned_text_to_sequence(text)
86 | else:
87 | text_norm = text_to_sequence(text, self.text_cleaners)
88 | if self.add_blank:
89 | text_norm = commons.intersperse(text_norm, 0)
90 | text_norm = torch.LongTensor(text_norm)
91 | return text_norm
92 |
93 | def __getitem__(self, index):
94 | return self.get_audio_text_pair(self.audiopaths_and_text[index])
95 |
96 | def __len__(self):
97 | return len(self.audiopaths_and_text)
98 |
99 |
100 | class TextAudioCollate():
101 | """ Zero-pads model inputs and targets
102 | """
103 | def __init__(self, return_ids=False):
104 | self.return_ids = return_ids
105 |
106 | def __call__(self, batch):
107 | """Collate's training batch from normalized text and aduio
108 | PARAMS
109 | ------
110 | batch: [text_normalized, spec_normalized, wav_normalized]
111 | """
112 | # Right zero-pad all one-hot text sequences to max input length
113 | _, ids_sorted_decreasing = torch.sort(
114 | torch.LongTensor([x[1].size(1) for x in batch]),
115 | dim=0, descending=True)
116 |
117 | max_text_len = max([len(x[0]) for x in batch])
118 | max_spec_len = max([x[1].size(1) for x in batch])
119 | max_wav_len = max([x[2].size(1) for x in batch])
120 |
121 | text_lengths = torch.LongTensor(len(batch))
122 | spec_lengths = torch.LongTensor(len(batch))
123 | wav_lengths = torch.LongTensor(len(batch))
124 |
125 | text_padded = torch.LongTensor(len(batch), max_text_len)
126 | spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
127 | wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
128 | text_padded.zero_()
129 | spec_padded.zero_()
130 | wav_padded.zero_()
131 | for i in range(len(ids_sorted_decreasing)):
132 | row = batch[ids_sorted_decreasing[i]]
133 |
134 | text = row[0]
135 | text_padded[i, :text.size(0)] = text
136 | text_lengths[i] = text.size(0)
137 |
138 | spec = row[1]
139 | spec_padded[i, :, :spec.size(1)] = spec
140 | spec_lengths[i] = spec.size(1)
141 |
142 | wav = row[2]
143 | wav_padded[i, :, :wav.size(1)] = wav
144 | wav_lengths[i] = wav.size(1)
145 |
146 | if self.return_ids:
147 | return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
148 | return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
149 |
150 |
151 | """Multi speaker version"""
152 | class TextAudioSpeakerLoader(torch.utils.data.Dataset):
153 | """
154 | 1) loads audio, speaker_id, text pairs
155 | 2) normalizes text and converts them to sequences of integers
156 | 3) computes spectrograms from audio files.
157 | """
158 | def __init__(self, audiopaths_sid_text, hparams):
159 | self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
160 | self.text_cleaners = hparams.text_cleaners
161 | self.max_wav_value = hparams.max_wav_value
162 | self.sampling_rate = hparams.sampling_rate
163 | self.filter_length = hparams.filter_length
164 | self.hop_length = hparams.hop_length
165 | self.win_length = hparams.win_length
166 | self.sampling_rate = hparams.sampling_rate
167 |
168 | self.cleaned_text = getattr(hparams, "cleaned_text", False)
169 |
170 | self.add_blank = hparams.add_blank
171 | self.min_text_len = getattr(hparams, "min_text_len", 1)
172 | self.max_text_len = getattr(hparams, "max_text_len", 190)
173 |
174 | random.seed(1234)
175 | random.shuffle(self.audiopaths_sid_text)
176 | self._filter()
177 |
178 | def _filter(self):
179 | """
180 | Filter text & store spec lengths
181 | """
182 | # Store spectrogram lengths for Bucketing
183 | # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
184 | # spec_length = wav_length // hop_length
185 |
186 | audiopaths_sid_text_new = []
187 | lengths = []
188 | for audiopath, sid, text in self.audiopaths_sid_text:
189 | if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
190 | audiopaths_sid_text_new.append([audiopath, sid, text])
191 | lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
192 | self.audiopaths_sid_text = audiopaths_sid_text_new
193 | self.lengths = lengths
194 |
195 | def get_audio_text_speaker_pair(self, audiopath_sid_text):
196 | # separate filename, speaker_id and text
197 | audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
198 | text = self.get_text(text)
199 | spec, wav = self.get_audio(audiopath)
200 | sid = self.get_sid(sid)
201 | return (text, spec, wav, sid)
202 |
203 | def get_audio(self, filename):
204 | audio, sampling_rate = load_wav_to_torch(filename)
205 | if sampling_rate != self.sampling_rate:
206 | raise ValueError("{} {} SR doesn't match target {} SR".format(
207 | sampling_rate, self.sampling_rate))
208 | audio_norm = audio / self.max_wav_value
209 | audio_norm = audio_norm.unsqueeze(0)
210 | spec_filename = filename.replace(".wav", ".spec.pt")
211 | # if os.path.exists(spec_filename):
212 | # spec = torch.load(spec_filename)
213 | # else:
214 | spec = spectrogram_torch(audio_norm, self.filter_length,
215 | self.sampling_rate, self.hop_length, self.win_length,
216 | center=False)
217 | spec = torch.squeeze(spec, 0)
218 | # torch.save(spec, spec_filename)
219 | return spec, audio_norm
220 |
221 | def get_text(self, text):
222 | if self.cleaned_text:
223 | text_norm = cleaned_text_to_sequence(text)
224 | else:
225 | text_norm = text_to_sequence(text, self.text_cleaners)
226 | if self.add_blank:
227 | text_norm = commons.intersperse(text_norm, 0)
228 | text_norm = torch.LongTensor(text_norm)
229 | return text_norm
230 |
231 | def get_sid(self, sid):
232 | sid = torch.LongTensor([int(sid)])
233 | return sid
234 |
235 | def __getitem__(self, index):
236 | return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
237 |
238 | def __len__(self):
239 | return len(self.audiopaths_sid_text)
240 |
241 |
242 | class TextAudioSpeakerCollate():
243 | """ Zero-pads model inputs and targets
244 | """
245 | def __init__(self, return_ids=False):
246 | self.return_ids = return_ids
247 |
248 | def __call__(self, batch):
249 | """Collate's training batch from normalized text, audio and speaker identities
250 | PARAMS
251 | ------
252 | batch: [text_normalized, spec_normalized, wav_normalized, sid]
253 | """
254 | # Right zero-pad all one-hot text sequences to max input length
255 | _, ids_sorted_decreasing = torch.sort(
256 | torch.LongTensor([x[1].size(1) for x in batch]),
257 | dim=0, descending=True)
258 |
259 | max_text_len = max([len(x[0]) for x in batch])
260 | max_spec_len = max([x[1].size(1) for x in batch])
261 | max_wav_len = max([x[2].size(1) for x in batch])
262 |
263 | text_lengths = torch.LongTensor(len(batch))
264 | spec_lengths = torch.LongTensor(len(batch))
265 | wav_lengths = torch.LongTensor(len(batch))
266 | sid = torch.LongTensor(len(batch))
267 |
268 | text_padded = torch.LongTensor(len(batch), max_text_len)
269 | spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
270 | wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
271 | text_padded.zero_()
272 | spec_padded.zero_()
273 | wav_padded.zero_()
274 | for i in range(len(ids_sorted_decreasing)):
275 | row = batch[ids_sorted_decreasing[i]]
276 |
277 | text = row[0]
278 | text_padded[i, :text.size(0)] = text
279 | text_lengths[i] = text.size(0)
280 |
281 | spec = row[1]
282 | spec_padded[i, :, :spec.size(1)] = spec
283 | spec_lengths[i] = spec.size(1)
284 |
285 | wav = row[2]
286 | wav_padded[i, :, :wav.size(1)] = wav
287 | wav_lengths[i] = wav.size(1)
288 |
289 | sid[i] = row[3]
290 |
291 | if self.return_ids:
292 | return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
293 | return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
294 |
295 |
296 | class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
297 | """
298 | Maintain similar input lengths in a batch.
299 | Length groups are specified by boundaries.
300 | Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
301 |
302 | It removes samples which are not included in the boundaries.
303 | Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
304 | """
305 | def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
306 | super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
307 | self.lengths = dataset.lengths
308 | self.batch_size = batch_size
309 | self.boundaries = boundaries
310 |
311 | self.buckets, self.num_samples_per_bucket = self._create_buckets()
312 | self.total_size = sum(self.num_samples_per_bucket)
313 | self.num_samples = self.total_size // self.num_replicas
314 |
315 | def _create_buckets(self):
316 | buckets = [[] for _ in range(len(self.boundaries) - 1)]
317 | for i in range(len(self.lengths)):
318 | length = self.lengths[i]
319 | idx_bucket = self._bisect(length)
320 | if idx_bucket != -1:
321 | buckets[idx_bucket].append(i)
322 |
323 | for i in range(len(buckets) - 1, 0, -1):
324 | if len(buckets[i]) == 0:
325 | buckets.pop(i)
326 | self.boundaries.pop(i+1)
327 |
328 | num_samples_per_bucket = []
329 | for i in range(len(buckets)):
330 | len_bucket = len(buckets[i])
331 | total_batch_size = self.num_replicas * self.batch_size
332 | rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
333 | num_samples_per_bucket.append(len_bucket + rem)
334 | return buckets, num_samples_per_bucket
335 |
336 | def __iter__(self):
337 | # deterministically shuffle based on epoch
338 | g = torch.Generator()
339 | g.manual_seed(self.epoch)
340 |
341 | indices = []
342 | if self.shuffle:
343 | for bucket in self.buckets:
344 | indices.append(torch.randperm(len(bucket), generator=g).tolist())
345 | else:
346 | for bucket in self.buckets:
347 | indices.append(list(range(len(bucket))))
348 |
349 | batches = []
350 | for i in range(len(self.buckets)):
351 | bucket = self.buckets[i]
352 | len_bucket = len(bucket)
353 | ids_bucket = indices[i]
354 | num_samples_bucket = self.num_samples_per_bucket[i]
355 |
356 | # add extra samples to make it evenly divisible
357 | rem = num_samples_bucket - len_bucket
358 | ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
359 |
360 | # subsample
361 | ids_bucket = ids_bucket[self.rank::self.num_replicas]
362 |
363 | # batching
364 | for j in range(len(ids_bucket) // self.batch_size):
365 | batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
366 | batches.append(batch)
367 |
368 | if self.shuffle:
369 | batch_ids = torch.randperm(len(batches), generator=g).tolist()
370 | batches = [batches[i] for i in batch_ids]
371 | self.batches = batches
372 |
373 | assert len(self.batches) * self.batch_size == self.num_samples
374 | return iter(self.batches)
375 |
376 | def _bisect(self, x, lo=0, hi=None):
377 | if hi is None:
378 | hi = len(self.boundaries) - 1
379 |
380 | if hi > lo:
381 | mid = (hi + lo) // 2
382 | if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
383 | return mid
384 | elif x <= self.boundaries[mid]:
385 | return self._bisect(x, lo, mid)
386 | else:
387 | return self._bisect(x, mid + 1, hi)
388 | else:
389 | return -1
390 |
391 | def __len__(self):
392 | return self.num_samples // self.batch_size
393 |
--------------------------------------------------------------------------------