├── LICENSE
├── README.md
├── convert.py
├── deep_sort
├── __init__.py
├── detection.py
├── iou_matching.py
├── kalman_filter.py
├── linear_assignment.py
├── nn_matching.py
├── preprocessing.py
├── track.py
└── tracker.py
├── detection.txt
├── main.py
├── model_data
├── coco_classes.txt
├── market1501.pb
├── mars-small128.pb
├── mars.pb
├── obj.txt
├── voc_classes.txt
├── yolo3_object.names
├── yolo_anchors.txt
└── yolov3.cfg
├── output
├── result.png
├── st1_vedio_person_output.avi
└── st1_vedio_person_output.gif
├── requirements.txt
├── tools
├── freeze_model.py
└── generate_detections.py
├── vedio
└── test1_vedio.avi
├── yolo.py
└── yolo3
├── model.py
└── utils.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # YOLOv3 + Deep_SORT
2 | YOLOv3 + Deep_SORT 实现多类多目标检测(计数)
3 |
4 |
5 |
6 | ## Requirement
7 | * OpenCV
8 | * keras
9 | * NumPy
10 | * sklean
11 | * Pillow
12 | * tensorflow-gpu 1.10.0
13 | ***
14 |
15 | It uses:
16 |
17 | * __Detection__: [YOLOv3](https://github.com/qqwweee/keras-yolo3) to detect objects on each of the video frames. - 用自己的数据训练YOLOv3模型
18 |
19 | * __Tracking__: [Deep_SORT](https://github.com/nwojke/deep_sort) to track those objects over different frames.
20 |
21 | *This repository contains code for Simple Online and Realtime Tracking with a Deep Association Metric (Deep SORT). We extend the original SORT algorithm to integrate appearance information based on a deep appearance descriptor. See the [arXiv preprint](https://arxiv.org/abs/1703.07402) for more information.*
22 |
23 | ## Quick Start
24 |
25 | __0.Requirements__
26 |
27 | pip install -r requirements.txt
28 |
29 | __1. Download the code to your computer.__
30 |
31 | git clone https://github.com/xiaoxiong74/Object-Detection-and-Tracking.git
32 |
33 | __2. Download [[yolov3.weights]](https://pjreddie.com/media/files/yolov3.weights)__ and place it in `deep_sort_yolov3/model_data/`
34 |
35 | *Here you can download my trained [[yolo-spp.h5]](https://pan.baidu.com/s/1DoiifwXrss1QgSQBp2vv8w&shfl=shareset) - `t13k` weights for detecting person/car/bicycle,etc.*
36 |
37 | __3. Convert the Darknet YOLO model to a Keras model:__
38 | ```
39 | $ python convert.py model_data/yolov3.cfg model_data/yolov3.weights model_data/yolo.h5
40 | ```
41 | __4. Run the YOLO_DEEP_SORT:__
42 |
43 | ```
44 | $ python main.py -c [CLASS NAME] -i [INPUT VIDEO PATH]
45 |
46 | $ python main.py -c person -i ./test_video/testvideo.avi
47 | ```
48 |
49 | __5. Can change [yolo.py] `__Line 129__` to your tracking object__
50 |
51 | ```
52 | if predicted_class != 'person' and predicted_class != 'bicycle':
53 | print(predicted_class)
54 | continue
55 | ```
56 | and change [main.py] `__Line 108__` and `__Line 123__` to your tracking object__
57 | ```
58 | # __Line 108__`分别保存每个类别的track_id
59 | if class_name == ['person']:
60 | counter1.append(int(track.track_id))
61 | if class_name == ['bicycle']:
62 | counter2.append(int(track.track_id))
63 |
64 | # __Line 123__当前画面中的每个类别单独计数
65 | if class_name == ['person']:
66 | i1 = i1 +1
67 | else:
68 | i2 = i2 +1
69 |
70 | ```
71 | and change some desciption in [main.py] `__Line 146__` and `__Line 175__`
72 |
73 |
74 | ## Train on Market1501 & MARS
75 | *People Re-identification model*
76 |
77 | [cosine_metric_learning](https://github.com/nwojke/cosine_metric_learning) for training a metric feature representation to be used with the deep_sort tracker.
78 |
79 | ## Citation
80 |
81 | ### YOLOv3 :
82 |
83 | @article{yolov3,
84 | title={YOLOv3: An Incremental Improvement},
85 | author={Redmon, Joseph and Farhadi, Ali},
86 | journal = {arXiv},
87 | year={2018}
88 | }
89 |
90 | ### Deep_SORT :
91 |
92 | @inproceedings{Wojke2017simple,
93 | title={Simple Online and Realtime Tracking with a Deep Association Metric},
94 | author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich},
95 | booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
96 | year={2017},
97 | pages={3645--3649},
98 | organization={IEEE},
99 | doi={10.1109/ICIP.2017.8296962}
100 | }
101 |
102 | @inproceedings{Wojke2018deep,
103 | title={Deep Cosine Metric Learning for Person Re-identification},
104 | author={Wojke, Nicolai and Bewley, Alex},
105 | booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
106 | year={2018},
107 | pages={748--756},
108 | organization={IEEE},
109 | doi={10.1109/WACV.2018.00087}
110 | }
111 |
112 | ## Reference
113 | #### Github:deep_sort@[Nicolai Wojke nwojke](https://github.com/nwojke/deep_sort)
114 | #### Github:deep_sort_yolov3@[Qidian213 ](https://github.com/Qidian213/deep_sort_yolov3)
115 |
116 |
117 |
118 |
--------------------------------------------------------------------------------
/convert.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python
2 | """
3 | Reads Darknet config and weights and creates Keras model with TF backend.
4 |
5 | """
6 |
7 | import argparse
8 | import configparser
9 | import io
10 | import os
11 | from collections import defaultdict
12 |
13 | import numpy as np
14 | from keras import backend as K
15 | from keras.layers import (Conv2D, Input, ZeroPadding2D, Add,
16 | UpSampling2D, MaxPooling2D, Concatenate)
17 | from keras.layers.advanced_activations import LeakyReLU
18 | from keras.layers.normalization import BatchNormalization
19 | from keras.models import Model
20 | from keras.regularizers import l2
21 | from keras.utils.vis_utils import plot_model as plot
22 |
23 |
24 | parser = argparse.ArgumentParser(description='Darknet To Keras Converter.')
25 | parser.add_argument('config_path', help='Path to Darknet cfg file.')
26 | parser.add_argument('weights_path', help='Path to Darknet weights file.')
27 | parser.add_argument('output_path', help='Path to output Keras model file.')
28 | parser.add_argument(
29 | '-p',
30 | '--plot_model',
31 | help='Plot generated Keras model and save as image.',
32 | action='store_true')
33 | parser.add_argument(
34 | '-w',
35 | '--weights_only',
36 | help='Save as Keras weights file instead of model file.',
37 | action='store_true')
38 |
39 | def unique_config_sections(config_file):
40 | """Convert all config sections to have unique names.
41 |
42 | Adds unique suffixes to config sections for compability with configparser.
43 | """
44 | section_counters = defaultdict(int)
45 | output_stream = io.StringIO()
46 | with open(config_file) as fin:
47 | for line in fin:
48 | if line.startswith('['):
49 | section = line.strip().strip('[]')
50 | _section = section + '_' + str(section_counters[section])
51 | section_counters[section] += 1
52 | line = line.replace(section, _section)
53 | output_stream.write(line)
54 | output_stream.seek(0)
55 | return output_stream
56 |
57 | # %%
58 | def _main(args):
59 | config_path = os.path.expanduser(args.config_path)
60 | weights_path = os.path.expanduser(args.weights_path)
61 | assert config_path.endswith('.cfg'), '{} is not a .cfg file'.format(
62 | config_path)
63 | assert weights_path.endswith(
64 | '.weights'), '{} is not a .weights file'.format(weights_path)
65 |
66 | output_path = os.path.expanduser(args.output_path)
67 | assert output_path.endswith(
68 | '.h5'), 'output path {} is not a .h5 file'.format(output_path)
69 | output_root = os.path.splitext(output_path)[0]
70 |
71 | # Load weights and config.
72 | print('Loading weights.')
73 | weights_file = open(weights_path, 'rb')
74 | major, minor, revision = np.ndarray(
75 | shape=(3, ), dtype='int32', buffer=weights_file.read(12))
76 | if (major*10+minor)>=2 and major<1000 and minor<1000:
77 | seen = np.ndarray(shape=(1,), dtype='int64', buffer=weights_file.read(8))
78 | else:
79 | seen = np.ndarray(shape=(1,), dtype='int32', buffer=weights_file.read(4))
80 | print('Weights Header: ', major, minor, revision, seen)
81 |
82 | print('Parsing Darknet config.')
83 | unique_config_file = unique_config_sections(config_path)
84 | cfg_parser = configparser.ConfigParser()
85 | cfg_parser.read_file(unique_config_file)
86 |
87 | print('Creating Keras model.')
88 | input_layer = Input(shape=(None, None, 3))
89 | prev_layer = input_layer
90 | all_layers = []
91 |
92 | weight_decay = float(cfg_parser['net_0']['decay']
93 | ) if 'net_0' in cfg_parser.sections() else 5e-4
94 | count = 0
95 | out_index = []
96 | for section in cfg_parser.sections():
97 | print('Parsing section {}'.format(section))
98 | if section.startswith('convolutional'):
99 | filters = int(cfg_parser[section]['filters'])
100 | size = int(cfg_parser[section]['size'])
101 | stride = int(cfg_parser[section]['stride'])
102 | pad = int(cfg_parser[section]['pad'])
103 | activation = cfg_parser[section]['activation']
104 | batch_normalize = 'batch_normalize' in cfg_parser[section]
105 |
106 | padding = 'same' if pad == 1 and stride == 1 else 'valid'
107 |
108 | # Setting weights.
109 | # Darknet serializes convolutional weights as:
110 | # [bias/beta, [gamma, mean, variance], conv_weights]
111 | prev_layer_shape = K.int_shape(prev_layer)
112 |
113 | weights_shape = (size, size, prev_layer_shape[-1], filters)
114 | darknet_w_shape = (filters, weights_shape[2], size, size)
115 | weights_size = np.product(weights_shape)
116 |
117 | print('conv2d', 'bn'
118 | if batch_normalize else ' ', activation, weights_shape)
119 |
120 | conv_bias = np.ndarray(
121 | shape=(filters, ),
122 | dtype='float32',
123 | buffer=weights_file.read(filters * 4))
124 | count += filters
125 |
126 | if batch_normalize:
127 | bn_weights = np.ndarray(
128 | shape=(3, filters),
129 | dtype='float32',
130 | buffer=weights_file.read(filters * 12))
131 | count += 3 * filters
132 |
133 | bn_weight_list = [
134 | bn_weights[0], # scale gamma
135 | conv_bias, # shift beta
136 | bn_weights[1], # running mean
137 | bn_weights[2] # running var
138 | ]
139 |
140 | conv_weights = np.ndarray(
141 | shape=darknet_w_shape,
142 | dtype='float32',
143 | buffer=weights_file.read(weights_size * 4))
144 | count += weights_size
145 |
146 | # DarkNet conv_weights are serialized Caffe-style:
147 | # (out_dim, in_dim, height, width)
148 | # We would like to set these to Tensorflow order:
149 | # (height, width, in_dim, out_dim)
150 | conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
151 | conv_weights = [conv_weights] if batch_normalize else [
152 | conv_weights, conv_bias
153 | ]
154 |
155 | # Handle activation.
156 | act_fn = None
157 | if activation == 'leaky':
158 | pass # Add advanced activation later.
159 | elif activation != 'linear':
160 | raise ValueError(
161 | 'Unknown activation function `{}` in section {}'.format(
162 | activation, section))
163 |
164 | # Create Conv2D layer
165 | if stride>1:
166 | # Darknet uses left and top padding instead of 'same' mode
167 | prev_layer = ZeroPadding2D(((1,0),(1,0)))(prev_layer)
168 | conv_layer = (Conv2D(
169 | filters, (size, size),
170 | strides=(stride, stride),
171 | kernel_regularizer=l2(weight_decay),
172 | use_bias=not batch_normalize,
173 | weights=conv_weights,
174 | activation=act_fn,
175 | padding=padding))(prev_layer)
176 |
177 | if batch_normalize:
178 | conv_layer = (BatchNormalization(
179 | weights=bn_weight_list))(conv_layer)
180 | prev_layer = conv_layer
181 |
182 | if activation == 'linear':
183 | all_layers.append(prev_layer)
184 | elif activation == 'leaky':
185 | act_layer = LeakyReLU(alpha=0.1)(prev_layer)
186 | prev_layer = act_layer
187 | all_layers.append(act_layer)
188 |
189 | elif section.startswith('route'):
190 | ids = [int(i) for i in cfg_parser[section]['layers'].split(',')]
191 | layers = [all_layers[i] for i in ids]
192 | if len(layers) > 1:
193 | print('Concatenating route layers:', layers)
194 | concatenate_layer = Concatenate()(layers)
195 | all_layers.append(concatenate_layer)
196 | prev_layer = concatenate_layer
197 | else:
198 | skip_layer = layers[0] # only one layer to route
199 | all_layers.append(skip_layer)
200 | prev_layer = skip_layer
201 |
202 | elif section.startswith('maxpool'):
203 | size = int(cfg_parser[section]['size'])
204 | stride = int(cfg_parser[section]['stride'])
205 | all_layers.append(
206 | MaxPooling2D(
207 | pool_size=(size, size),
208 | strides=(stride, stride),
209 | padding='same')(prev_layer))
210 | prev_layer = all_layers[-1]
211 |
212 | elif section.startswith('shortcut'):
213 | index = int(cfg_parser[section]['from'])
214 | activation = cfg_parser[section]['activation']
215 | assert activation == 'linear', 'Only linear activation supported.'
216 | all_layers.append(Add()([all_layers[index], prev_layer]))
217 | prev_layer = all_layers[-1]
218 |
219 | elif section.startswith('upsample'):
220 | stride = int(cfg_parser[section]['stride'])
221 | assert stride == 2, 'Only stride=2 supported.'
222 | all_layers.append(UpSampling2D(stride)(prev_layer))
223 | prev_layer = all_layers[-1]
224 |
225 | elif section.startswith('yolo'):
226 | out_index.append(len(all_layers)-1)
227 | all_layers.append(None)
228 | prev_layer = all_layers[-1]
229 |
230 | elif section.startswith('net'):
231 | pass
232 |
233 | else:
234 | raise ValueError(
235 | 'Unsupported section header type: {}'.format(section))
236 |
237 | # Create and save model.
238 | if len(out_index)==0: out_index.append(len(all_layers)-1)
239 | model = Model(inputs=input_layer, outputs=[all_layers[i] for i in out_index])
240 | print(model.summary())
241 | if args.weights_only:
242 | model.save_weights('{}'.format(output_path))
243 | print('Saved Keras weights to {}'.format(output_path))
244 | else:
245 | model.save('{}'.format(output_path))
246 | print('Saved Keras model to {}'.format(output_path))
247 |
248 | # Check to see if all weights have been read.
249 | remaining_weights = len(weights_file.read()) / 4
250 | weights_file.close()
251 | print('Read {} of {} from Darknet weights.'.format(count, count +
252 | remaining_weights))
253 | if remaining_weights > 0:
254 | print('Warning: {} unused weights'.format(remaining_weights))
255 |
256 | if args.plot_model:
257 | plot(model, to_file='{}.png'.format(output_root), show_shapes=True)
258 | print('Saved model plot to {}.png'.format(output_root))
259 |
260 |
261 | if __name__ == '__main__':
262 | _main(parser.parse_args())
263 |
--------------------------------------------------------------------------------
/deep_sort/__init__.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 |
--------------------------------------------------------------------------------
/deep_sort/detection.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | import numpy as np
3 |
4 |
5 | class Detection(object):
6 | """
7 | This class represents a bounding box detection in a single image.
8 |
9 | Parameters
10 | ----------
11 | tlwh : array_like
12 | Bounding box in format `(x, y, w, h)`.
13 | confidence : float
14 | Detector confidence score.
15 | feature : array_like
16 | A feature vector that describes the object contained in this image.
17 |
18 | Attributes
19 | ----------
20 | tlwh : ndarray
21 | Bounding box in format `(top left x, top left y, width, height)`.
22 | confidence : ndarray
23 | Detector confidence score.
24 | feature : ndarray | NoneType
25 | A feature vector that describes the object contained in this image.
26 |
27 | """
28 |
29 | def __init__(self, tlwh, confidence, feature):
30 | self.tlwh = np.asarray(tlwh, dtype=np.float)
31 | self.confidence = float(confidence)
32 | self.feature = np.asarray(feature, dtype=np.float32)
33 |
34 | def to_tlbr(self):
35 | """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
36 | `(top left, bottom right)`.
37 | """
38 | ret = self.tlwh.copy()
39 | ret[2:] += ret[:2]
40 | return ret
41 |
42 | def to_xyah(self):
43 | """Convert bounding box to format `(center x, center y, aspect ratio,
44 | height)`, where the aspect ratio is `width / height`.
45 | """
46 | ret = self.tlwh.copy()
47 | ret[:2] += ret[2:] / 2
48 | ret[2] /= ret[3]
49 | return ret
50 |
--------------------------------------------------------------------------------
/deep_sort/iou_matching.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | from __future__ import absolute_import
3 | import numpy as np
4 | from . import linear_assignment
5 |
6 |
7 | def iou(bbox, candidates):
8 | """Computer intersection over union.
9 |
10 | Parameters
11 | ----------
12 | bbox : ndarray
13 | A bounding box in format `(top left x, top left y, width, height)`.
14 | candidates : ndarray
15 | A matrix of candidate bounding boxes (one per row) in the same format
16 | as `bbox`.
17 |
18 | Returns
19 | -------
20 | ndarray
21 | The intersection over union in [0, 1] between the `bbox` and each
22 | candidate. A higher score means a larger fraction of the `bbox` is
23 | occluded by the candidate.
24 |
25 | """
26 | bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:]
27 | candidates_tl = candidates[:, :2]
28 | candidates_br = candidates[:, :2] + candidates[:, 2:]
29 |
30 | tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis],
31 | np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]]
32 | br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis],
33 | np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]]
34 | wh = np.maximum(0., br - tl)
35 |
36 | area_intersection = wh.prod(axis=1)
37 | area_bbox = bbox[2:].prod()
38 | area_candidates = candidates[:, 2:].prod(axis=1)
39 | return area_intersection / (area_bbox + area_candidates - area_intersection)
40 |
41 |
42 | def iou_cost(tracks, detections, track_indices=None,
43 | detection_indices=None):
44 | """An intersection over union distance metric.
45 |
46 | Parameters
47 | ----------
48 | tracks : List[deep_sort.track.Track]
49 | A list of tracks.
50 | detections : List[deep_sort.detection.Detection]
51 | A list of detections.
52 | track_indices : Optional[List[int]]
53 | A list of indices to tracks that should be matched. Defaults to
54 | all `tracks`.
55 | detection_indices : Optional[List[int]]
56 | A list of indices to detections that should be matched. Defaults
57 | to all `detections`.
58 |
59 | Returns
60 | -------
61 | ndarray
62 | Returns a cost matrix of shape
63 | len(track_indices), len(detection_indices) where entry (i, j) is
64 | `1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`.
65 |
66 | """
67 | if track_indices is None:
68 | track_indices = np.arange(len(tracks))
69 | if detection_indices is None:
70 | detection_indices = np.arange(len(detections))
71 |
72 | cost_matrix = np.zeros((len(track_indices), len(detection_indices)))
73 | for row, track_idx in enumerate(track_indices):
74 | if tracks[track_idx].time_since_update > 1:
75 | cost_matrix[row, :] = linear_assignment.INFTY_COST
76 | continue
77 |
78 | bbox = tracks[track_idx].to_tlwh()
79 | candidates = np.asarray([detections[i].tlwh for i in detection_indices])
80 | cost_matrix[row, :] = 1. - iou(bbox, candidates)
81 | return cost_matrix
82 |
--------------------------------------------------------------------------------
/deep_sort/kalman_filter.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | import numpy as np
3 | import scipy.linalg
4 |
5 |
6 | """
7 | Table for the 0.95 quantile of the chi-square distribution with N degrees of
8 | freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
9 | function and used as Mahalanobis gating threshold.
10 | """
11 | chi2inv95 = {
12 | 1: 3.8415,
13 | 2: 5.9915,
14 | 3: 7.8147,
15 | 4: 9.4877,
16 | 5: 11.070,
17 | 6: 12.592,
18 | 7: 14.067,
19 | 8: 15.507,
20 | 9: 16.919}
21 |
22 |
23 | class KalmanFilter(object):
24 | """
25 | A simple Kalman filter for tracking bounding boxes in image space.
26 |
27 | The 8-dimensional state space
28 |
29 | x, y, a, h, vx, vy, va, vh
30 |
31 | contains the bounding box center position (x, y), aspect ratio a, height h,
32 | and their respective velocities.
33 |
34 | Object motion follows a constant velocity model. The bounding box location
35 | (x, y, a, h) is taken as direct observation of the state space (linear
36 | observation model).
37 |
38 | """
39 |
40 | def __init__(self):
41 | ndim, dt = 4, 1.
42 |
43 | # Create Kalman filter model matrices.
44 | self._motion_mat = np.eye(2 * ndim, 2 * ndim)
45 | for i in range(ndim):
46 | self._motion_mat[i, ndim + i] = dt
47 | self._update_mat = np.eye(ndim, 2 * ndim)
48 |
49 | # Motion and observation uncertainty are chosen relative to the current
50 | # state estimate. These weights control the amount of uncertainty in
51 | # the model. This is a bit hacky.
52 | self._std_weight_position = 1. / 20
53 | self._std_weight_velocity = 1. / 160
54 |
55 | def initiate(self, measurement):
56 | """Create track from unassociated measurement.
57 |
58 | Parameters
59 | ----------
60 | measurement : ndarray
61 | Bounding box coordinates (x, y, a, h) with center position (x, y),
62 | aspect ratio a, and height h.
63 |
64 | Returns
65 | -------
66 | (ndarray, ndarray)
67 | Returns the mean vector (8 dimensional) and covariance matrix (8x8
68 | dimensional) of the new track. Unobserved velocities are initialized
69 | to 0 mean.
70 |
71 | """
72 | mean_pos = measurement
73 | mean_vel = np.zeros_like(mean_pos)
74 | mean = np.r_[mean_pos, mean_vel]
75 |
76 | std = [
77 | 2 * self._std_weight_position * measurement[3],
78 | 2 * self._std_weight_position * measurement[3],
79 | 1e-2,
80 | 2 * self._std_weight_position * measurement[3],
81 | 10 * self._std_weight_velocity * measurement[3],
82 | 10 * self._std_weight_velocity * measurement[3],
83 | 1e-5,
84 | 10 * self._std_weight_velocity * measurement[3]]
85 | covariance = np.diag(np.square(std))
86 | return mean, covariance
87 |
88 | def predict(self, mean, covariance):
89 | """Run Kalman filter prediction step.
90 |
91 | Parameters
92 | ----------
93 | mean : ndarray
94 | The 8 dimensional mean vector of the object state at the previous
95 | time step.
96 | covariance : ndarray
97 | The 8x8 dimensional covariance matrix of the object state at the
98 | previous time step.
99 |
100 | Returns
101 | -------
102 | (ndarray, ndarray)
103 | Returns the mean vector and covariance matrix of the predicted
104 | state. Unobserved velocities are initialized to 0 mean.
105 |
106 | """
107 | std_pos = [
108 | self._std_weight_position * mean[3],
109 | self._std_weight_position * mean[3],
110 | 1e-2,
111 | self._std_weight_position * mean[3]]
112 | std_vel = [
113 | self._std_weight_velocity * mean[3],
114 | self._std_weight_velocity * mean[3],
115 | 1e-5,
116 | self._std_weight_velocity * mean[3]]
117 | motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
118 |
119 | mean = np.dot(self._motion_mat, mean)
120 | covariance = np.linalg.multi_dot((
121 | self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
122 |
123 | return mean, covariance
124 |
125 | def project(self, mean, covariance):
126 | """Project state distribution to measurement space.
127 |
128 | Parameters
129 | ----------
130 | mean : ndarray
131 | The state's mean vector (8 dimensional array).
132 | covariance : ndarray
133 | The state's covariance matrix (8x8 dimensional).
134 |
135 | Returns
136 | -------
137 | (ndarray, ndarray)
138 | Returns the projected mean and covariance matrix of the given state
139 | estimate.
140 |
141 | """
142 | std = [
143 | self._std_weight_position * mean[3],
144 | self._std_weight_position * mean[3],
145 | 1e-1,
146 | self._std_weight_position * mean[3]]
147 | innovation_cov = np.diag(np.square(std))
148 |
149 | mean = np.dot(self._update_mat, mean)
150 | covariance = np.linalg.multi_dot((
151 | self._update_mat, covariance, self._update_mat.T))
152 | return mean, covariance + innovation_cov
153 |
154 | def update(self, mean, covariance, measurement):
155 | """Run Kalman filter correction step.
156 |
157 | Parameters
158 | ----------
159 | mean : ndarray
160 | The predicted state's mean vector (8 dimensional).
161 | covariance : ndarray
162 | The state's covariance matrix (8x8 dimensional).
163 | measurement : ndarray
164 | The 4 dimensional measurement vector (x, y, a, h), where (x, y)
165 | is the center position, a the aspect ratio, and h the height of the
166 | bounding box.
167 |
168 | Returns
169 | -------
170 | (ndarray, ndarray)
171 | Returns the measurement-corrected state distribution.
172 |
173 | """
174 | projected_mean, projected_cov = self.project(mean, covariance)
175 |
176 | chol_factor, lower = scipy.linalg.cho_factor(
177 | projected_cov, lower=True, check_finite=False)
178 | kalman_gain = scipy.linalg.cho_solve(
179 | (chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
180 | check_finite=False).T
181 | innovation = measurement - projected_mean
182 |
183 | new_mean = mean + np.dot(innovation, kalman_gain.T)
184 | new_covariance = covariance - np.linalg.multi_dot((
185 | kalman_gain, projected_cov, kalman_gain.T))
186 | return new_mean, new_covariance
187 |
188 | def gating_distance(self, mean, covariance, measurements,
189 | only_position=False):
190 | """Compute gating distance between state distribution and measurements.
191 |
192 | A suitable distance threshold can be obtained from `chi2inv95`. If
193 | `only_position` is False, the chi-square distribution has 4 degrees of
194 | freedom, otherwise 2.
195 |
196 | Parameters
197 | ----------
198 | mean : ndarray
199 | Mean vector over the state distribution (8 dimensional).
200 | covariance : ndarray
201 | Covariance of the state distribution (8x8 dimensional).
202 | measurements : ndarray
203 | An Nx4 dimensional matrix of N measurements, each in
204 | format (x, y, a, h) where (x, y) is the bounding box center
205 | position, a the aspect ratio, and h the height.
206 | only_position : Optional[bool]
207 | If True, distance computation is done with respect to the bounding
208 | box center position only.
209 |
210 | Returns
211 | -------
212 | ndarray
213 | Returns an array of length N, where the i-th element contains the
214 | squared Mahalanobis distance between (mean, covariance) and
215 | `measurements[i]`.
216 |
217 | """
218 | mean, covariance = self.project(mean, covariance)
219 | if only_position:
220 | mean, covariance = mean[:2], covariance[:2, :2]
221 | measurements = measurements[:, :2]
222 |
223 | cholesky_factor = np.linalg.cholesky(covariance)
224 | d = measurements - mean
225 | z = scipy.linalg.solve_triangular(
226 | cholesky_factor, d.T, lower=True, check_finite=False,
227 | overwrite_b=True)
228 | squared_maha = np.sum(z * z, axis=0)
229 | return squared_maha
230 |
--------------------------------------------------------------------------------
/deep_sort/linear_assignment.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | from __future__ import absolute_import
3 | import numpy as np
4 | from sklearn.utils.linear_assignment_ import linear_assignment
5 | from . import kalman_filter
6 |
7 |
8 | INFTY_COST = 1e+5
9 |
10 |
11 | def min_cost_matching(
12 | distance_metric, max_distance, tracks, detections, track_indices=None,
13 | detection_indices=None):
14 | """Solve linear assignment problem.
15 |
16 | Parameters
17 | ----------
18 | distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
19 | The distance metric is given a list of tracks and detections as well as
20 | a list of N track indices and M detection indices. The metric should
21 | return the NxM dimensional cost matrix, where element (i, j) is the
22 | association cost between the i-th track in the given track indices and
23 | the j-th detection in the given detection_indices.
24 | max_distance : float
25 | Gating threshold. Associations with cost larger than this value are
26 | disregarded.
27 | tracks : List[track.Track]
28 | A list of predicted tracks at the current time step.
29 | detections : List[detection.Detection]
30 | A list of detections at the current time step.
31 | track_indices : List[int]
32 | List of track indices that maps rows in `cost_matrix` to tracks in
33 | `tracks` (see description above).
34 | detection_indices : List[int]
35 | List of detection indices that maps columns in `cost_matrix` to
36 | detections in `detections` (see description above).
37 |
38 | Returns
39 | -------
40 | (List[(int, int)], List[int], List[int])
41 | Returns a tuple with the following three entries:
42 | * A list of matched track and detection indices.
43 | * A list of unmatched track indices.
44 | * A list of unmatched detection indices.
45 |
46 | """
47 | if track_indices is None:
48 | track_indices = np.arange(len(tracks))
49 | if detection_indices is None:
50 | detection_indices = np.arange(len(detections))
51 |
52 | if len(detection_indices) == 0 or len(track_indices) == 0:
53 | return [], track_indices, detection_indices # Nothing to match.
54 |
55 | cost_matrix = distance_metric(
56 | tracks, detections, track_indices, detection_indices)
57 | cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5
58 | indices = linear_assignment(cost_matrix)
59 |
60 | matches, unmatched_tracks, unmatched_detections = [], [], []
61 | for col, detection_idx in enumerate(detection_indices):
62 | if col not in indices[:, 1]:
63 | unmatched_detections.append(detection_idx)
64 | for row, track_idx in enumerate(track_indices):
65 | if row not in indices[:, 0]:
66 | unmatched_tracks.append(track_idx)
67 | for row, col in indices:
68 | track_idx = track_indices[row]
69 | detection_idx = detection_indices[col]
70 | if cost_matrix[row, col] > max_distance:
71 | unmatched_tracks.append(track_idx)
72 | unmatched_detections.append(detection_idx)
73 | else:
74 | matches.append((track_idx, detection_idx))
75 | return matches, unmatched_tracks, unmatched_detections
76 |
77 |
78 | def matching_cascade(
79 | distance_metric, max_distance, cascade_depth, tracks, detections,
80 | track_indices=None, detection_indices=None):
81 | """Run matching cascade.
82 |
83 | Parameters
84 | ----------
85 | distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
86 | The distance metric is given a list of tracks and detections as well as
87 | a list of N track indices and M detection indices. The metric should
88 | return the NxM dimensional cost matrix, where element (i, j) is the
89 | association cost between the i-th track in the given track indices and
90 | the j-th detection in the given detection indices.
91 | max_distance : float
92 | Gating threshold. Associations with cost larger than this value are
93 | disregarded.
94 | cascade_depth: int
95 | The cascade depth, should be se to the maximum track age.
96 | tracks : List[track.Track]
97 | A list of predicted tracks at the current time step.
98 | detections : List[detection.Detection]
99 | A list of detections at the current time step.
100 | track_indices : Optional[List[int]]
101 | List of track indices that maps rows in `cost_matrix` to tracks in
102 | `tracks` (see description above). Defaults to all tracks.
103 | detection_indices : Optional[List[int]]
104 | List of detection indices that maps columns in `cost_matrix` to
105 | detections in `detections` (see description above). Defaults to all
106 | detections.
107 |
108 | Returns
109 | -------
110 | (List[(int, int)], List[int], List[int])
111 | Returns a tuple with the following three entries:
112 | * A list of matched track and detection indices.
113 | * A list of unmatched track indices.
114 | * A list of unmatched detection indices.
115 |
116 | """
117 | if track_indices is None:
118 | track_indices = list(range(len(tracks)))
119 | if detection_indices is None:
120 | detection_indices = list(range(len(detections)))
121 |
122 | unmatched_detections = detection_indices
123 | matches = []
124 | for level in range(cascade_depth):
125 | if len(unmatched_detections) == 0: # No detections left
126 | break
127 |
128 | track_indices_l = [
129 | k for k in track_indices
130 | if tracks[k].time_since_update == 1 + level
131 | ]
132 | if len(track_indices_l) == 0: # Nothing to match at this level
133 | continue
134 |
135 | matches_l, _, unmatched_detections = \
136 | min_cost_matching(
137 | distance_metric, max_distance, tracks, detections,
138 | track_indices_l, unmatched_detections)
139 | matches += matches_l
140 | unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches))
141 | return matches, unmatched_tracks, unmatched_detections
142 |
143 |
144 | def gate_cost_matrix(
145 | kf, cost_matrix, tracks, detections, track_indices, detection_indices,
146 | gated_cost=INFTY_COST, only_position=False):
147 | """Invalidate infeasible entries in cost matrix based on the state
148 | distributions obtained by Kalman filtering.
149 |
150 | Parameters
151 | ----------
152 | kf : The Kalman filter.
153 | cost_matrix : ndarray
154 | The NxM dimensional cost matrix, where N is the number of track indices
155 | and M is the number of detection indices, such that entry (i, j) is the
156 | association cost between `tracks[track_indices[i]]` and
157 | `detections[detection_indices[j]]`.
158 | tracks : List[track.Track]
159 | A list of predicted tracks at the current time step.
160 | detections : List[detection.Detection]
161 | A list of detections at the current time step.
162 | track_indices : List[int]
163 | List of track indices that maps rows in `cost_matrix` to tracks in
164 | `tracks` (see description above).
165 | detection_indices : List[int]
166 | List of detection indices that maps columns in `cost_matrix` to
167 | detections in `detections` (see description above).
168 | gated_cost : Optional[float]
169 | Entries in the cost matrix corresponding to infeasible associations are
170 | set this value. Defaults to a very large value.
171 | only_position : Optional[bool]
172 | If True, only the x, y position of the state distribution is considered
173 | during gating. Defaults to False.
174 |
175 | Returns
176 | -------
177 | ndarray
178 | Returns the modified cost matrix.
179 |
180 | """
181 | gating_dim = 2 if only_position else 4
182 | gating_threshold = kalman_filter.chi2inv95[gating_dim]
183 | measurements = np.asarray(
184 | [detections[i].to_xyah() for i in detection_indices])
185 | for row, track_idx in enumerate(track_indices):
186 | track = tracks[track_idx]
187 | gating_distance = kf.gating_distance(
188 | track.mean, track.covariance, measurements, only_position)
189 | cost_matrix[row, gating_distance > gating_threshold] = gated_cost
190 | return cost_matrix
191 |
--------------------------------------------------------------------------------
/deep_sort/nn_matching.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | import numpy as np
3 |
4 |
5 | def _pdist(a, b):
6 | """Compute pair-wise squared distance between points in `a` and `b`.
7 |
8 | Parameters
9 | ----------
10 | a : array_like
11 | An NxM matrix of N samples of dimensionality M.
12 | b : array_like
13 | An LxM matrix of L samples of dimensionality M.
14 |
15 | Returns
16 | -------
17 | ndarray
18 | Returns a matrix of size len(a), len(b) such that eleement (i, j)
19 | contains the squared distance between `a[i]` and `b[j]`.
20 |
21 | """
22 | a, b = np.asarray(a), np.asarray(b)
23 | if len(a) == 0 or len(b) == 0:
24 | return np.zeros((len(a), len(b)))
25 | a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1)
26 | r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :]
27 | r2 = np.clip(r2, 0., float(np.inf))
28 | return r2
29 |
30 |
31 | def _cosine_distance(a, b, data_is_normalized=False):
32 | """Compute pair-wise cosine distance between points in `a` and `b`.
33 |
34 | Parameters
35 | ----------
36 | a : array_like
37 | An NxM matrix of N samples of dimensionality M.
38 | b : array_like
39 | An LxM matrix of L samples of dimensionality M.
40 | data_is_normalized : Optional[bool]
41 | If True, assumes rows in a and b are unit length vectors.
42 | Otherwise, a and b are explicitly normalized to lenght 1.
43 |
44 | Returns
45 | -------
46 | ndarray
47 | Returns a matrix of size len(a), len(b) such that eleement (i, j)
48 | contains the squared distance between `a[i]` and `b[j]`.
49 |
50 | """
51 | if not data_is_normalized:
52 | a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
53 | b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
54 | return 1. - np.dot(a, b.T)
55 |
56 |
57 | def _nn_euclidean_distance(x, y):
58 | """ Helper function for nearest neighbor distance metric (Euclidean).
59 |
60 | Parameters
61 | ----------
62 | x : ndarray
63 | A matrix of N row-vectors (sample points).
64 | y : ndarray
65 | A matrix of M row-vectors (query points).
66 |
67 | Returns
68 | -------
69 | ndarray
70 | A vector of length M that contains for each entry in `y` the
71 | smallest Euclidean distance to a sample in `x`.
72 |
73 | """
74 | distances = _pdist(x, y)
75 | return np.maximum(0.0, distances.min(axis=0))
76 |
77 |
78 | def _nn_cosine_distance(x, y):
79 | """ Helper function for nearest neighbor distance metric (cosine).
80 |
81 | Parameters
82 | ----------
83 | x : ndarray
84 | A matrix of N row-vectors (sample points).
85 | y : ndarray
86 | A matrix of M row-vectors (query points).
87 |
88 | Returns
89 | -------
90 | ndarray
91 | A vector of length M that contains for each entry in `y` the
92 | smallest cosine distance to a sample in `x`.
93 |
94 | """
95 | distances = _cosine_distance(x, y)
96 | return distances.min(axis=0)
97 |
98 |
99 | class NearestNeighborDistanceMetric(object):
100 | """
101 | A nearest neighbor distance metric that, for each target, returns
102 | the closest distance to any sample that has been observed so far.
103 |
104 | Parameters
105 | ----------
106 | metric : str
107 | Either "euclidean" or "cosine".
108 | matching_threshold: float
109 | The matching threshold. Samples with larger distance are considered an
110 | invalid match.
111 | budget : Optional[int]
112 | If not None, fix samples per class to at most this number. Removes
113 | the oldest samples when the budget is reached.
114 |
115 | Attributes
116 | ----------
117 | samples : Dict[int -> List[ndarray]]
118 | A dictionary that maps from target identities to the list of samples
119 | that have been observed so far.
120 |
121 | """
122 |
123 | def __init__(self, metric, matching_threshold, budget=None):
124 |
125 |
126 | if metric == "euclidean":
127 | self._metric = _nn_euclidean_distance
128 | elif metric == "cosine":
129 | self._metric = _nn_cosine_distance
130 | else:
131 | raise ValueError(
132 | "Invalid metric; must be either 'euclidean' or 'cosine'")
133 | self.matching_threshold = matching_threshold
134 | self.budget = budget
135 | self.samples = {}
136 |
137 | def partial_fit(self, features, targets, active_targets):
138 | """Update the distance metric with new data.
139 |
140 | Parameters
141 | ----------
142 | features : ndarray
143 | An NxM matrix of N features of dimensionality M.
144 | targets : ndarray
145 | An integer array of associated target identities.
146 | active_targets : List[int]
147 | A list of targets that are currently present in the scene.
148 |
149 | """
150 | for feature, target in zip(features, targets):
151 | self.samples.setdefault(target, []).append(feature)
152 | if self.budget is not None:
153 | self.samples[target] = self.samples[target][-self.budget:]
154 | self.samples = {k: self.samples[k] for k in active_targets}
155 |
156 | def distance(self, features, targets):
157 | """Compute distance between features and targets.
158 |
159 | Parameters
160 | ----------
161 | features : ndarray
162 | An NxM matrix of N features of dimensionality M.
163 | targets : List[int]
164 | A list of targets to match the given `features` against.
165 |
166 | Returns
167 | -------
168 | ndarray
169 | Returns a cost matrix of shape len(targets), len(features), where
170 | element (i, j) contains the closest squared distance between
171 | `targets[i]` and `features[j]`.
172 |
173 | """
174 | cost_matrix = np.zeros((len(targets), len(features)))
175 | for i, target in enumerate(targets):
176 | cost_matrix[i, :] = self._metric(self.samples[target], features)
177 | return cost_matrix
178 |
--------------------------------------------------------------------------------
/deep_sort/preprocessing.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | import numpy as np
3 | import cv2
4 |
5 |
6 | def non_max_suppression(boxes, max_bbox_overlap, scores=None):
7 | """Suppress overlapping detections.
8 |
9 | Original code from [1]_ has been adapted to include confidence score.
10 |
11 | .. [1] http://www.pyimagesearch.com/2015/02/16/
12 | faster-non-maximum-suppression-python/
13 |
14 | Examples
15 | --------
16 |
17 | >>> boxes = [d.roi for d in detections]
18 | >>> scores = [d.confidence for d in detections]
19 | >>> indices = non_max_suppression(boxes, max_bbox_overlap, scores)
20 | >>> detections = [detections[i] for i in indices]
21 |
22 | Parameters
23 | ----------
24 | boxes : ndarray
25 | Array of ROIs (x, y, width, height).
26 | max_bbox_overlap : float
27 | ROIs that overlap more than this values are suppressed.
28 | scores : Optional[array_like]
29 | Detector confidence score.
30 |
31 | Returns
32 | -------
33 | List[int]
34 | Returns indices of detections that have survived non-maxima suppression.
35 |
36 | """
37 | if len(boxes) == 0:
38 | return []
39 |
40 | boxes = boxes.astype(np.float)
41 | pick = []
42 |
43 | x1 = boxes[:, 0]
44 | y1 = boxes[:, 1]
45 | x2 = boxes[:, 2] + boxes[:, 0]
46 | y2 = boxes[:, 3] + boxes[:, 1]
47 |
48 | area = (x2 - x1 + 1) * (y2 - y1 + 1)
49 | if scores is not None:
50 | idxs = np.argsort(scores)
51 | else:
52 | idxs = np.argsort(y2)
53 |
54 | while len(idxs) > 0:
55 | last = len(idxs) - 1
56 | i = idxs[last]
57 | pick.append(i)
58 |
59 | xx1 = np.maximum(x1[i], x1[idxs[:last]])
60 | yy1 = np.maximum(y1[i], y1[idxs[:last]])
61 | xx2 = np.minimum(x2[i], x2[idxs[:last]])
62 | yy2 = np.minimum(y2[i], y2[idxs[:last]])
63 |
64 | w = np.maximum(0, xx2 - xx1 + 1)
65 | h = np.maximum(0, yy2 - yy1 + 1)
66 |
67 | overlap = (w * h) / area[idxs[:last]]
68 |
69 | idxs = np.delete(
70 | idxs, np.concatenate(
71 | ([last], np.where(overlap > max_bbox_overlap)[0])))
72 |
73 | return pick
74 |
--------------------------------------------------------------------------------
/deep_sort/track.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 |
3 |
4 | class TrackState:
5 | """
6 | Enumeration type for the single target track state. Newly created tracks are
7 | classified as `tentative` until enough evidence has been collected. Then,
8 | the track state is changed to `confirmed`. Tracks that are no longer alive
9 | are classified as `deleted` to mark them for removal from the set of active
10 | tracks.
11 |
12 | """
13 |
14 | Tentative = 1
15 | Confirmed = 2
16 | Deleted = 3
17 |
18 |
19 | class Track:
20 | """
21 | A single target track with state space `(x, y, a, h)` and associated
22 | velocities, where `(x, y)` is the center of the bounding box, `a` is the
23 | aspect ratio and `h` is the height.
24 |
25 | Parameters
26 | ----------
27 | mean : ndarray
28 | Mean vector of the initial state distribution.
29 | covariance : ndarray
30 | Covariance matrix of the initial state distribution.
31 | track_id : int
32 | A unique track identifier.
33 | n_init : int
34 | Number of consecutive detections before the track is confirmed. The
35 | track state is set to `Deleted` if a miss occurs within the first
36 | `n_init` frames.
37 | max_age : int
38 | The maximum number of consecutive misses before the track state is
39 | set to `Deleted`.
40 | feature : Optional[ndarray]
41 | Feature vector of the detection this track originates from. If not None,
42 | this feature is added to the `features` cache.
43 |
44 | Attributes
45 | ----------
46 | mean : ndarray
47 | Mean vector of the initial state distribution.
48 | covariance : ndarray
49 | Covariance matrix of the initial state distribution.
50 | track_id : int
51 | A unique track identifier.
52 | hits : int
53 | Total number of measurement updates.
54 | age : int
55 | Total number of frames since first occurance.
56 | time_since_update : int
57 | Total number of frames since last measurement update.
58 | state : TrackState
59 | The current track state.
60 | features : List[ndarray]
61 | A cache of features. On each measurement update, the associated feature
62 | vector is added to this list.
63 |
64 | """
65 |
66 | def __init__(self, mean, covariance, track_id, n_init, max_age,
67 | feature=None):
68 | self.mean = mean
69 | self.covariance = covariance
70 | self.track_id = track_id
71 | self.hits = 1
72 | self.age = 1
73 | self.time_since_update = 0
74 |
75 | self.state = TrackState.Tentative
76 | self.features = []
77 | if feature is not None:
78 | self.features.append(feature)
79 |
80 | self._n_init = n_init
81 | self._max_age = max_age
82 |
83 | def to_tlwh(self):
84 | """Get current position in bounding box format `(top left x, top left y,
85 | width, height)`.
86 |
87 | Returns
88 | -------
89 | ndarray
90 | The bounding box.
91 |
92 | """
93 | ret = self.mean[:4].copy()
94 | ret[2] *= ret[3]
95 | ret[:2] -= ret[2:] / 2
96 | return ret
97 |
98 | def to_tlbr(self):
99 | """Get current position in bounding box format `(min x, miny, max x,
100 | max y)`.
101 |
102 | Returns
103 | -------
104 | ndarray
105 | The bounding box.
106 |
107 | """
108 | ret = self.to_tlwh()
109 | ret[2:] = ret[:2] + ret[2:]
110 | return ret
111 |
112 | def predict(self, kf):
113 | """Propagate the state distribution to the current time step using a
114 | Kalman filter prediction step.
115 |
116 | Parameters
117 | ----------
118 | kf : kalman_filter.KalmanFilter
119 | The Kalman filter.
120 |
121 | """
122 | self.mean, self.covariance = kf.predict(self.mean, self.covariance)
123 | self.age += 1
124 | self.time_since_update += 1
125 |
126 | def update(self, kf, detection):
127 | """Perform Kalman filter measurement update step and update the feature
128 | cache.
129 |
130 | Parameters
131 | ----------
132 | kf : kalman_filter.KalmanFilter
133 | The Kalman filter.
134 | detection : Detection
135 | The associated detection.
136 |
137 | """
138 | self.mean, self.covariance = kf.update(
139 | self.mean, self.covariance, detection.to_xyah())
140 | self.features.append(detection.feature)
141 |
142 | self.hits += 1
143 | self.time_since_update = 0
144 | if self.state == TrackState.Tentative and self.hits >= self._n_init:
145 | self.state = TrackState.Confirmed
146 |
147 | def mark_missed(self):
148 | """Mark this track as missed (no association at the current time step).
149 | """
150 | if self.state == TrackState.Tentative:
151 | self.state = TrackState.Deleted
152 | elif self.time_since_update > self._max_age:
153 | self.state = TrackState.Deleted
154 |
155 | def is_tentative(self):
156 | """Returns True if this track is tentative (unconfirmed).
157 | """
158 | return self.state == TrackState.Tentative
159 |
160 | def is_confirmed(self):
161 | """Returns True if this track is confirmed."""
162 | return self.state == TrackState.Confirmed
163 |
164 | def is_deleted(self):
165 | """Returns True if this track is dead and should be deleted."""
166 | return self.state == TrackState.Deleted
167 |
--------------------------------------------------------------------------------
/deep_sort/tracker.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | from __future__ import absolute_import
3 | import numpy as np
4 | from . import kalman_filter
5 | from . import linear_assignment
6 | from . import iou_matching
7 | from .track import Track
8 |
9 |
10 | class Tracker:
11 | """
12 | This is the multi-target tracker.
13 |
14 | Parameters
15 | ----------
16 | metric : nn_matching.NearestNeighborDistanceMetric
17 | A distance metric for measurement-to-track association.
18 | max_age : int
19 | Maximum number of missed misses before a track is deleted.
20 | n_init : int
21 | Number of consecutive detections before the track is confirmed. The
22 | track state is set to `Deleted` if a miss occurs within the first
23 | `n_init` frames.
24 |
25 | Attributes
26 | ----------
27 | metric : nn_matching.NearestNeighborDistanceMetric
28 | The distance metric used for measurement to track association.
29 | max_age : int
30 | Maximum number of missed misses before a track is deleted.
31 | n_init : int
32 | Number of frames that a track remains in initialization phase.
33 | kf : kalman_filter.KalmanFilter
34 | A Kalman filter to filter target trajectories in image space.
35 | tracks : List[Track]
36 | The list of active tracks at the current time step.
37 |
38 | """
39 |
40 | def __init__(self, metric, max_iou_distance=0.7, max_age=30, n_init=3):
41 | self.metric = metric
42 | self.max_iou_distance = max_iou_distance
43 | self.max_age = max_age
44 | self.n_init = n_init
45 |
46 | self.kf = kalman_filter.KalmanFilter()
47 | self.tracks = []
48 | self._next_id = 1
49 |
50 | def predict(self):
51 | """Propagate track state distributions one time step forward.
52 |
53 | This function should be called once every time step, before `update`.
54 | """
55 | for track in self.tracks:
56 | track.predict(self.kf)
57 |
58 | def update(self, detections):
59 | """Perform measurement update and track management.
60 |
61 | Parameters
62 | ----------
63 | detections : List[deep_sort.detection.Detection]
64 | A list of detections at the current time step.
65 |
66 | """
67 | # Run matching cascade.
68 | matches, unmatched_tracks, unmatched_detections = \
69 | self._match(detections)
70 |
71 | # Update track set.
72 | for track_idx, detection_idx in matches:
73 | self.tracks[track_idx].update(
74 | self.kf, detections[detection_idx])
75 | for track_idx in unmatched_tracks:
76 | self.tracks[track_idx].mark_missed()
77 | for detection_idx in unmatched_detections:
78 | self._initiate_track(detections[detection_idx])
79 | self.tracks = [t for t in self.tracks if not t.is_deleted()]
80 |
81 | # Update distance metric.
82 | active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
83 | features, targets = [], []
84 | for track in self.tracks:
85 | if not track.is_confirmed():
86 | continue
87 | features += track.features
88 | targets += [track.track_id for _ in track.features]
89 | track.features = []
90 | self.metric.partial_fit(
91 | np.asarray(features), np.asarray(targets), active_targets)
92 |
93 | def _match(self, detections):
94 |
95 | def gated_metric(tracks, dets, track_indices, detection_indices):
96 | features = np.array([dets[i].feature for i in detection_indices])
97 | targets = np.array([tracks[i].track_id for i in track_indices])
98 | cost_matrix = self.metric.distance(features, targets)
99 | cost_matrix = linear_assignment.gate_cost_matrix(
100 | self.kf, cost_matrix, tracks, dets, track_indices,
101 | detection_indices)
102 |
103 | return cost_matrix
104 |
105 | # Split track set into confirmed and unconfirmed tracks.
106 | confirmed_tracks = [
107 | i for i, t in enumerate(self.tracks) if t.is_confirmed()]
108 | unconfirmed_tracks = [
109 | i for i, t in enumerate(self.tracks) if not t.is_confirmed()]
110 |
111 | # Associate confirmed tracks using appearance features.
112 | matches_a, unmatched_tracks_a, unmatched_detections = \
113 | linear_assignment.matching_cascade(
114 | gated_metric, self.metric.matching_threshold, self.max_age,
115 | self.tracks, detections, confirmed_tracks)
116 |
117 | # Associate remaining tracks together with unconfirmed tracks using IOU.
118 | iou_track_candidates = unconfirmed_tracks + [
119 | k for k in unmatched_tracks_a if
120 | self.tracks[k].time_since_update == 1]
121 | unmatched_tracks_a = [
122 | k for k in unmatched_tracks_a if
123 | self.tracks[k].time_since_update != 1]
124 | matches_b, unmatched_tracks_b, unmatched_detections = \
125 | linear_assignment.min_cost_matching(
126 | iou_matching.iou_cost, self.max_iou_distance, self.tracks,
127 | detections, iou_track_candidates, unmatched_detections)
128 |
129 | matches = matches_a + matches_b
130 | unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
131 | return matches, unmatched_tracks, unmatched_detections
132 |
133 | def _initiate_track(self, detection):
134 | mean, covariance = self.kf.initiate(detection.to_xyah())
135 | self.tracks.append(Track(
136 | mean, covariance, self._next_id, self.n_init, self.max_age,
137 | detection.feature))
138 | self._next_id += 1
139 |
--------------------------------------------------------------------------------
/detection.txt:
--------------------------------------------------------------------------------
1 | 0 591 214 177 276 0 59 365 393
2 | 1 591 215 177 276 0 59 365 394
3 | 2 591 214 177 276 0 59 365 391
4 | 3 591 215 178 275 0 59 365 390
5 | 4 590 215 178 275 0 58 365 391
6 | 5 591 218 175 271 0 60 365 389
7 | 6 591 216 176 272 0 61 366 388
8 | 7 592 215 176 273 0 60 367 388
9 | 8 592 215 176 273 0 59 367 388
10 | 9 591 215 177 272 0 60 367 387
11 | 10 592 214 178 274 0 59 367 388
12 | 11 591 215 177 273 0 60 367 387
13 | 12 592 214 176 273 0 60 367 388
14 | 13 592 214 177 275 0 59 366 391
15 | 14 592 214 178 275 0 59 366 391
16 | 15 591 214 178 274 0 58 367 390
17 | 16 591 214 178 274 0 59 366 388
18 | 17 591 214 177 274 0 59 365 390
19 | 18 591 213 176 277 0 58 365 392
20 | 19 590 212 176 278 0 59 364 391
21 | 20 590 214 177 277 0 60 363 388
22 | 21 590 213 176 277 0 60 363 389
23 | 22 590 215 176 276 0 61 364 389
24 | 23 589 215 178 277 0 60 364 393
25 | 24 590 216 178 276 0 63 365 394
26 | 25 588 215 178 278 0 63 366 395
27 | 26 588 213 177 280 0 65 366 393
28 | 27 587 213 177 280 0 66 367 391
29 | 28 585 213 177 281 0 66 367 388
30 | 29 584 214 176 280 0 64 365 390
31 | 30 584 215 176 279 0 64 364 388
32 | 31 584 212 175 281 0 63 364 392
33 | 32 583 211 175 281 0 64 365 391
34 | 33 583 211 175 283 0 62 364 394
35 | 34 583 211 175 281 0 60 363 398
36 | 35 582 210 175 282 0 59 362 398
37 | 36 583 211 174 282 0 59 363 398
38 | 37 583 210 174 283 0 58 362 400
39 | 38 582 209 174 285 0 59 362 399
40 | 39 583 210 174 283 0 59 361 400
41 | 40 582 209 174 285 0 59 362 403
42 | 41 582 209 175 285 0 59 363 403
43 | 42 583 212 174 282 0 59 363 402
44 | 43 583 212 174 282 0 61 363 400
45 | 44 583 211 175 282 0 61 364 396
46 | 45 583 211 175 282 0 62 365 395
47 | 46 583 212 177 281 0 61 365 397
48 | 47 583 212 176 281 0 61 365 397
49 | 48 583 212 176 281 0 62 365 398
50 | 49 583 212 176 281 0 63 365 399
51 | 50 584 213 176 280 0 62 364 402
52 | 51 584 213 175 280 0 61 362 403
53 | 52 584 213 175 279 0 61 362 405
54 | 53 584 214 175 279 0 61 360 405
55 | 54 584 213 176 280 0 60 359 406
56 | 55 584 212 175 280 0 62 357 400
57 | 56 584 211 176 281 0 62 353 399
58 | 57 584 212 175 280 0 62 353 397
59 | 58 584 211 176 281 0 61 344 399
60 | 59 584 211 175 281 0 59 336 405
61 | 60 584 210 176 284 0 59 330 403
62 | 61 584 211 176 282 0 63 318 398
63 | 62 583 211 177 283
64 | 63 582 211 177 283
65 | 64 583 212 177 282
66 | 65 582 211 178 283
67 | 66 582 211 177 283 0 67 267 428
68 | 67 582 210 177 284 0 70 259 427
69 | 68 582 210 178 285
70 | 69 582 210 178 285
71 | 70 582 211 178 284
72 | 71 582 211 178 283
73 | 72 582 211 178 284
74 | 73 582 210 179 285
75 | 74 582 211 180 284
76 | 75 581 210 181 285
77 | 76 582 211 181 284
78 | 77 582 211 181 284
79 | 78 582 210 181 284
80 | 79 583 211 183 283
81 | 80 586 212 182 282
82 | 81 586 211 181 283
83 | 82 587 210 180 282
84 | 83 589 211 181 283
85 | 84 589 211 181 282
86 | 85 590 211 181 282
87 | 86 590 212 181 280
88 | 87 590 210 183 284
89 | 88 590 210 182 284
90 | 89 588 212 184 282
91 | 90 590 210 184 285
92 | 91 591 210 183 284
93 | 92 591 209 183 285
94 | 93 592 206 183 289
95 | 94 591 207 182 288
96 | 95 591 209 182 285
97 | 96 590 210 182 285
98 | 97 590 210 182 285
99 | 98 590 208 183 288
100 | 99 590 207 182 288
101 | 100 590 207 182 288
102 | 101 589 209 182 286
103 | 102 588 208 183 287
104 | 103 588 208 183 285
105 | 104 589 208 182 285
106 | 105 589 197 190 287
107 | 106 590 199 191 284
108 | 107 592 200 191 283
109 | 108 596 197 190 288
110 | 109 599 193 191 294
111 | 110 600 194 190 293
112 | 111 600 192 191 296
113 | 112 599 192 192 296
114 | 113 600 205 192 291
115 | 114 600 192 191 296
116 | 115 600 193 190 293
117 | 116 599 191 192 296
118 | 117 599 191 191 296
119 | 118 600 192 189 295
120 | 119 598 194 187 289
121 | 120 595 194 189 289
122 | 121 594 193 187 289
123 | 122 592 194 188 288
124 | 123 591 195 189 288
125 | 124 591 194 188 288
126 | 125 590 195 187 286
127 | 126 589 195 188 285
128 | 127 589 194 187 286
129 | 128 590 192 187 289
130 | 129 587 194 190 289
131 | 130 586 194 190 291
132 | 131 584 195 192 291
133 | 132 583 195 192 291
134 | 133 582 194 191 291
135 | 134 582 203 186 297
136 | 135 581 205 188 294
137 | 136 581 207 187 291
138 | 137 580 207 187 293
139 | 138 580 208 186 292
140 | 139 580 208 187 293
141 | 140 579 207 188 294
142 | 141 579 206 186 295
143 | 142 579 207 187 296
144 | 143 579 207 186 297
145 | 144 578 208 188 295
146 | 145 579 210 186 295
147 | 146 580 210 185 294
148 | 147 579 211 186 296
149 | 148 580 212 186 296
150 | 149 579 214 188 297
151 | 150 581 216 187 294
152 | 151 581 216 188 293
153 | 152 582 216 188 295
154 | 153 584 218 188 294
155 | 154 585 222 186 290
156 | 155 587 226 186 289
157 | 156 587 226 187 289
158 | 157 589 229 187 285
159 | 158 590 230 187 285
160 | 159 592 231 185 285
161 | 160 593 233 187 283
162 | 161 594 234 187 283
163 | 162 597 238 185 276
164 | 163 597 242 190 291
165 | 164 599 243 188 290
166 | 165 602 235 185 283
167 | 166 602 247 187 284
168 | 167 604 251 186 281
169 | 168 611 250 185 280
170 | 169 611 252 188 279
171 | 170 612 253 188 280
172 | 171 613 255 192 278
173 | 172 615 256 192 276
174 | 173 617 256 190 277
175 | 174 619 258 189 277
176 | 175 623 261 187 275
177 | 176 626 263 185 274
178 | 177 629 262 183 271
179 | 178 632 263 181 271
180 | 179 633 262 181 272
181 | 180 632 262 183 273
182 | 181 632 263 183 272
183 | 182 633 264 181 273
184 | 183 633 261 185 277
185 | 184 633 261 186 280
186 | 185 636 264 184 277
187 | 186 636 267 186 277
188 | 187 636 268 186 277
189 | 188 636 270 186 275
190 | 189 637 272 184 273
191 | 190 638 271 185 276
192 | 191 639 272 185 275
193 | 192 640 272 183 276
194 | 193 640 272 185 277
195 | 194 640 273 188 277
196 | 195 639 272 192 278
197 | 196 646 284 189 258
198 | 197 648 283 188 259
199 | 198 650 288 186 254
200 | 199 650 296 187 254
201 | 200 654 296 185 255
202 | 201 651 315 199 218
203 | 202 652 319 199 212
204 | 203 653 317 201 214
205 | 204 654 317 202 216
206 | 205 656 320 204 212
207 | 206 660 321 201 209
208 | 207 661 326 197 205
209 | 208 662 328 196 203
210 | 209 663 329 197 203
211 | 210 662 327 196 204
212 | 211 660 326 199 204
213 | 212 661 325 199 206
214 | 213 662 326 194 205
215 | 214 662 327 195 205
216 | 215 662 327 195 205
217 | 216 663 330 195 202
218 | 217 663 332 195 200
219 | 218 662 331 195 201
220 | 219 662 329 194 203
221 | 220 661 328 196 205
222 | 221 660 327 197 206
223 | 222 659 327 200 205
224 | 223 657 327 202 206
225 | 224 656 327 203 205
226 | 225 656 326 204 207
227 | 226 656 326 203 206
228 | 227 657 327 199 206
229 | 228 655 325 201 206
230 | 229 655 326 201 206
231 | 230 655 323 206 209
232 | 231 656 323 206 212
233 | 232 660 321 220 218
234 | 233 663 319 235 221
235 | 234 666 312 244 230
236 | 235 667 309 252 233
237 | 236 666 309 264 231
238 | 237 665 310 276 229
239 | 238 660 307 291 233
240 | 239 662 313 291 224
241 | 240 676 314 284 220
242 | 241 679 320 282 215
243 | 242 684 326 273 207
244 | 243 695 328 255 204
245 | 244 706 325 245 205
246 | 245 715 321 236 209
247 | 246 725 319 222 208
248 | 247 734 318 212 208
249 | 248 740 308 209 216
250 | 249 747 301 203 222
251 | 250 755 303 196 209
252 | 251 763 301 188 204
253 | 252 775 293 177 215
254 | 253 783 290 174 214
255 | 254 794 286 168 212
256 | 255 800 280 162 219
257 | 256 816 272 145 203
258 | 257 824 267 136 210
259 | 258 830 266 128 210
260 | 259
261 | 260
262 | 261
263 | 262
264 | 263
265 | 264
266 | 265
267 | 266
268 | 267
269 | 268
270 | 269
271 | 270
272 | 271
273 | 272
274 | 273
275 | 274
276 | 275
277 | 276
278 | 277
279 | 278
280 | 279
281 | 280
282 | 281
283 | 282
284 | 283
285 | 284
286 | 285
287 | 286
288 | 287
289 | 288
290 | 289
291 | 290
292 | 291
293 | 292
294 | 293
295 | 294
296 | 295
297 | 296
298 | 297
299 | 298
300 | 299
301 | 300
302 | 301
303 | 302
304 | 303
305 | 304
306 | 305
307 | 306
308 | 307
309 | 308
310 | 309
311 | 310
312 | 311
313 | 312
314 | 313
315 | 314
316 | 315
317 | 316
318 | 317
319 | 318
320 | 319
321 | 320
322 | 321
323 | 322
324 | 323
325 | 324
326 | 325
327 | 326
328 | 327
329 | 328
330 | 329
331 | 330
332 | 331
333 | 332 830 266 130 199
334 | 333 823 268 138 196
335 | 334 807 267 150 201
336 | 335 802 268 155 201
337 | 336 796 270 162 201
338 | 337 790 271 165 201
339 | 338 783 271 168 202
340 | 339 770 273 183 205
341 | 340 761 276 193 197
342 | 341 748 281 208 188
343 | 342 734 281 222 185
344 | 343 723 284 233 181
345 | 344 718 295 230 185
346 | 345 710 295 237 185
347 | 346 703 296 245 187
348 | 347 692 298 256 183
349 | 348 683 297 270 186
350 | 349 676 299 280 182
351 | 350 650 292 311 195
352 | 351 645 291 320 198
353 | 352 640 291 327 197
354 | 353 637 291 331 197
355 | 354 632 290 332 197
356 | 355 630 291 329 193
357 | 356 622 295 329 186
358 | 357 621 294 326 187
359 | 358 618 296 324 183
360 | 359 614 298 325 180
361 | 360 611 296 327 185
362 | 361 605 296 331 183
363 | 362 598 296 335 184
364 | 363 590 297 343 181
365 | 364 578 296 352 182
366 | 365 572 298 356 178
367 | 366 567 298 363 178
368 | 367 541 298 412 159
369 | 368 555 292 354 169
370 | 369 551 292 360 168
371 | 370 549 293 357 165
372 | 371 543 292 358 164
373 | 372 543 290 346 165
374 | 373 538 287 352 167
375 | 374 535 286 353 168
376 | 375 531 285 351 170
377 | 376 529 284 350 172
378 | 377 528 285 347 170
379 | 378 528 281 347 175
380 | 379 527 279 346 174
381 | 380 526 277 341 174
382 | 381 524 275 345 177
383 | 382 524 273 342 179
384 | 383 522 271 340 181
385 | 384 523 269 336 185
386 | 385 522 270 339 183
387 | 386 520 270 340 184
388 | 387 522 269 335 186
389 | 388 522 268 335 188
390 | 389 524 269 336 189
391 | 390 523 269 338 188
392 | 391 524 266 337 191
393 | 392 526 266 338 190
394 | 393 530 264 335 192
395 | 394 531 265 332 191
396 | 395 530 265 338 192
397 | 396 533 264 328 192
398 | 397 533 263 326 195
399 | 398 534 263 315 195
400 | 399 535 261 313 196
401 | 400 533 260 315 196
402 | 401 534 259 315 197
403 | 402 534 258 315 198
404 | 403 529 259 317 196
405 | 404 528 258 315 195
406 | 405 528 258 314 194
407 | 406 525 257 316 194
408 | 407 524 257 316 193
409 | 408 522 258 318 193
410 | 409 521 258 315 193
411 | 410 520 257 314 193
412 | 411 518 258 316 192
413 | 412 516 258 317 192
414 | 413 515 256 317 194
415 | 414 515 256 317 194
416 | 415 515 255 318 195
417 | 416 516 256 317 193
418 | 417 516 255 318 194
419 | 418 516 257 317 192
420 | 419 517 256 316 194
421 | 420 518 256 316 194
422 | 421 520 257 315 194
423 | 422 520 258 316 193
424 | 423 521 256 316 196
425 | 424 521 256 316 196
426 | 425 521 256 318 195
427 | 426 520 255 320 196
428 | 427 522 256 318 195
429 | 428 523 256 317 196
430 | 429 523 256 319 196
431 | 430 522 256 318 194
432 | 431 522 257 319 193
433 | 432 522 255 320 196
434 | 433 523 256 319 196
435 | 434 525 255 317 197
436 | 435 526 255 316 197
437 | 436 525 255 318 197
438 | 437 525 256 318 197
439 | 438 525 255 321 198
440 | 439 523 256 322 196
441 | 440 526 255 319 197
442 | 441 524 256 321 196
443 | 442 524 256 322 196
444 | 443 525 256 321 196
445 | 444 525 255 321 197
446 | 445 526 255 319 198
447 | 446 525 255 320 198
448 | 447 526 255 321 199
449 | 448 526 256 319 196
450 | 449 525 255 318 197
451 | 450 527 254 316 200
452 | 451 526 254 315 200
453 | 452 525 254 317 201
454 | 453 524 254 319 201
455 | 454 524 254 321 200
456 | 455 523 254 322 200
457 | 456 524 254 323 200
458 | 457 524 255 321 199
459 | 458 525 255 320 199
460 | 459 526 255 320 200
461 | 460 526 254 319 201
462 | 461 528 254 319 202
463 | 462 532 254 316 204
464 | 463 530 254 318 203
465 | 464 528 255 319 201
466 | 465 529 256 317 200
467 | 466 528 256 317 201
468 | 467 528 254 320 202
469 | 468 528 254 322 202
470 | 469 526 255 322 201
471 | 470 525 255 321 201
472 | 471 524 256 321 200
473 | 472 521 258 321 199
474 | 473 519 258 319 200
475 | 474 518 258 322 199
476 | 475 518 258 323 201
477 | 476 520 257 322 200
478 | 477 521 256 321 201
479 | 478 522 253 324 205
480 | 479 523 251 327 206
481 | 480 526 250 326 208
482 | 481 527 250 325 209
483 | 482 529 251 324 210
484 | 483 531 248 323 214
485 | 484 533 249 323 214
486 | 485 533 250 323 214
487 | 486 535 248 326 213
488 | 487 536 245 328 215
489 | 488 536 244 328 216
490 | 489 535 245 328 214
491 | 490 533 245 331 214
492 | 491 534 246 327 213
493 | 492 534 246 327 213
494 | 493 533 244 329 215
495 | 494 533 245 325 214
496 | 495 533 242 328 217
497 | 496 531 244 326 213
498 | 497 533 244 323 213
499 | 498 534 243 326 213
500 | 499 535 243 327 213
501 | 500 537 240 325 217
502 | 501 536 242 325 213
503 | 502 536 242 324 213
504 | 503 537 241 322 214
505 | 504 536 240 322 215
506 | 505 536 239 321 217
507 | 506 536 239 320 215
508 | 507 536 239 320 215
509 | 508 536 237 319 217
510 | 509 537 239 318 215
511 | 510 535 237 319 218
512 | 511 535 239 317 214
513 | 512 536 237 318 215 0 119 172 411
514 | 513 536 238 320 214
515 | 514 535 237 318 216
516 | 515 536 236 317 215
517 | 516 535 236 317 215
518 | 517 535 234 318 218 0 118 238 409
519 | 518 535 234 315 216 0 114 256 412
520 | 519 534 235 318 217 0 111 266 415
521 | 520 535 237 316 216 2 108 271 421
522 | 521 534 238 316 214 2 100 279 437
523 | 522 536 235 316 218
524 | 523 537 236 314 217
525 | 524 535 234 317 217 1 85 315 426
526 | 525 536 232 316 220 0 82 336 429
527 | 526 535 230 316 220 0 84 346 427
528 | 527 536 232 316 218 0 84 353 426
529 | 528 539 232 311 220 0 83 359 429
530 | 529 540 234 313 217 0 86 365 424
531 | 530 540 233 312 217 0 85 372 425
532 | 531 540 232 313 217 0 86 384 423
533 | 532 542 231 314 217 0 83 389 429
534 | 533 542 230 315 219 3 82 401 430
535 | 534 543 229 315 218 6 87 404 418
536 | 535 543 229 316 220
537 | 536 543 229 317 220
538 | 537 544 230 316 218
539 | 538 545 229 316 218 16 84 432 418
540 | 539 547 228 316 218
541 | 540 545 228 319 218
542 | 541 544 227 323 218
543 | 542 546 228 320 218
544 | 543 545 231 320 216
545 | 544 545 227 320 220
546 | 545 546 227 317 220
547 | 546 545 228 317 218
548 | 547 544 229 319 217 22 77 430 431
549 | 548 544 229 318 217 23 78 428 430
550 | 549 543 227 319 221
551 | 550 543 230 317 217 21 79 430 423
552 | 551 541 232 316 215
553 | 552 540 232 318 216
554 | 553 541 231 315 216 17 82 436 421
555 | 554 540 232 313 214 19 82 433 421
556 | 555 539 232 313 215 16 82 439 420
557 | 556 538 231 314 218 14 83 442 418
558 | 557 538 231 313 218 13 83 443 419
559 | 558 538 231 313 217 14 84 440 418
560 | 559 536 232 315 218 13 85 440 414
561 | 560 536 232 314 217 14 85 437 416
562 | 561 533 233 318 217 15 90 432 409
563 | 562 532 233 319 216 12 92 436 409
564 | 563 530 232 320 219 4 85 421 419
565 | 564 532 232 317 218 5 88 412 413
566 | 565 531 232 319 219 5 91 405 410
567 | 566 530 232 317 219 4 92 395 409
568 | 567 530 231 316 220 0 96 386 407
569 | 568 529 231 316 221 0 95 377 410
570 | 569 530 230 315 220 0 95 366 409
571 | 570 529 231 316 220 0 96 360 406
572 | 571 529 230 316 221 0 119 356 393
573 | 572 528 230 314 221 0 119 348 394
574 | 573 527 229 317 221 0 116 331 403
575 | 574 527 230 317 222 3 113 314 409
576 | 575 524 231 321 221 4 113 305 411
577 | 576 525 230 320 222 10 115 285 408
578 | 577 524 231 321 222 3 112 277 414
579 | 578 524 233 320 220 3 112 269 420
580 | 579 524 234 321 217 0 118 263 407
581 | 580 525 235 319 216 0 121 251 404
582 | 581 524 237 321 214 0 120 235 408
583 | 582 524 236 322 215 0 124 228 406
584 | 583 524 234 322 217
585 | 584 524 235 325 217
586 | 585 525 235 323 217
587 | 586 525 234 321 217
588 | 587 525 234 321 218
589 | 588 523 235 322 217
590 | 589 524 236 323 216
591 | 590 525 235 322 216
592 | 591 526 236 322 216
593 | 592 526 233 322 219
594 | 593 526 232 324 221
595 | 594 528 232 324 222
596 | 595 529 233 324 221
597 | 596 527 232 324 221
598 | 597 528 233 323 221
599 | 598 530 232 321 221
600 | 599 530 232 321 222
601 | 600 529 232 322 220
602 | 601 531 232 322 220
603 | 602 532 231 322 222
604 | 603 532 230 325 225
605 | 604 533 232 324 223
606 | 605 535 229 324 228
607 | 606 534 229 325 227
608 | 607 533 231 326 224
609 | 608 534 231 323 225
610 | 609 533 233 323 223
611 | 610 532 231 324 224
612 | 611 530 231 324 224
613 | 612 529 232 323 223
614 | 613 528 232 323 222
615 | 614 527 232 323 223
616 | 615 526 231 325 223
617 | 616 527 230 326 226
618 | 617 528 230 326 222
619 | 618 528 232 324 223
620 | 619 530 231 325 223
621 | 620 531 230 322 224
622 | 621 531 230 324 223
623 | 622 534 229 323 225
624 | 623 533 229 324 225
625 | 624 534 231 323 223
626 | 625 534 229 323 224
627 | 626 535 231 325 224
628 | 627 536 232 322 224
629 | 628 537 232 323 223
630 | 629 538 231 323 222
631 | 630 538 230 327 224
632 | 631 539 231 326 224
633 | 632 538 232 328 222
634 | 633 539 231 325 225
635 | 634 540 231 327 225
636 | 635 540 229 329 227
637 | 636 541 228 328 227
638 | 637 541 226 327 228
639 | 638 542 227 327 226
640 | 639 542 227 327 227
641 | 640 542 227 326 226
642 | 641 542 227 328 226
643 | 642 542 228 328 226
644 | 643 543 227 329 227
645 | 644 544 229 330 225
646 | 645 544 227 332 226
647 | 646 544 228 335 224
648 | 647 545 227 334 225
649 | 648 546 229 335 224
650 | 649 547 229 332 224
651 | 650 548 228 334 225
652 | 651 550 228 334 225
653 | 652 551 227 336 226
654 | 653 552 227 337 225
655 | 654 552 226 340 225
656 | 655 552 225 342 228
657 | 656 554 225 342 227
658 | 657 553 226 343 227
659 | 658 553 225 346 228 0 63 223 441
660 | 659 553 224 348 229 0 64 229 435
661 | 660 554 224 347 228 0 61 234 434
662 | 661 555 226 347 226 0 56 245 437
663 | 662 555 226 348 226 0 53 252 444
664 | 663 554 225 349 226 0 50 264 442
665 | 664 555 226 349 225 0 48 271 445
666 | 665 556 225 347 226 0 45 276 449
667 | 666 554 225 349 226 3 43 277 446
668 | 667 555 225 349 225 5 39 293 440
669 | 668 557 226 345 225 2 41 305 439
670 | 669 558 225 344 225 0 41 328 437
671 | 670 557 224 346 226 0 45 342 434
672 | 671 557 224 345 227 0 48 353 430
673 | 672 555 224 353 225 0 47 361 430
674 | 673 555 222 351 227 0 48 368 431
675 | 674 556 221 350 228 0 51 377 424
676 | 675 555 221 353 229 0 48 381 424
677 | 676 553 217 357 230 0 46 382 423
678 | 677 552 216 357 231 0 46 381 420
679 | 678 552 214 358 234 0 43 378 425
680 | 679 551 214 357 233 0 46 378 421
681 | 680 551 213 354 233 0 45 373 419
682 | 681 551 212 356 235 0 44 377 416
683 | 682 549 212 358 234 0 42 376 420
684 | 683 549 210 358 236 0 39 378 421
685 | 684 549 210 359 236 0 37 377 424
686 | 685 550 212 357 233 0 37 377 424
687 | 686 551 210 357 234 0 34 378 428
688 | 687 551 209 357 235 0 31 377 432
689 | 688 550 209 360 234 0 32 378 430
690 | 689 559 194 371 247 0 32 378 427
691 | 690 558 195 373 246 0 32 381 425
692 | 691 558 195 373 244 0 30 382 430
693 | 692 557 197 374 240 0 30 380 429
694 | 693 558 194 371 244 0 30 380 429
695 | 694 551 201 362 236 0 14 379 421
696 | 695 548 200 362 235 0 13 379 426
697 | 696 545 200 360 232 0 8 372 433
698 | 697 536 187 385 228 0 13 371 421
699 | 698 537 187 377 226 0 15 367 417
700 | 699 531 189 384 223 0 16 363 416
701 | 700 536 196 341 238 0 15 360 419
702 | 701 532 194 334 242 0 16 356 419
703 | 702 520 196 338 238 0 15 351 421
704 | 703 515 196 341 237 0 11 342 430
705 | 704 509 187 373 226 0 10 340 433
706 | 705 509 184 371 231 0 7 339 437
707 | 706 509 183 365 231 0 6 336 437
708 | 707 503 183 370 231 0 5 331 441
709 | 708 492 185 379 230 1 6 318 438
710 | 709 486 187 381 226
711 | 710 483 186 389 226
712 | 711 481 182 402 227
713 | 712 478 181 404 227
714 | 713 483 180 397 226
715 | 714 485 178 391 229
716 | 715 486 176 385 232
717 | 716 486 172 384 235
718 | 717 488 171 379 234 3 0 273 459
719 | 718 489 167 377 236 1 0 274 461
720 | 719 477 164 359 254
721 | 720 474 163 365 257
722 | 721 466 161 380 263
723 | 722 462 159 389 269 0 0 269 524
724 | 723 459 102 469 340 0 0 260 538
725 | 724 459 92 478 362 0 0 247 548
726 | 725 463 86 465 381
727 | 726 473 78 451 399 0 0 240 554
728 | 727 487 85 449 393
729 | 728 505 82 445 400
730 | 729 512 74 439 414
731 | 730 522 76 421 420
732 | 731 537 84 423 407
733 | 732 552 81 402 412
734 | 733 578 85 380 422
735 | 734 634 112 319 420
736 | 735 679 128 277 395
737 | 736 703 125 253 403
738 | 737 732 54 219 463
739 | 738 743 54 210 460
740 | 739 750 46 207 474
741 | 740 759 33 197 495
742 | 741 764 14 195 515
743 | 742 770 11 192 524
744 | 743
745 | 744
746 | 745
747 | 746
748 | 747
749 | 748
750 | 749
751 | 750
752 | 751
753 | 752
754 | 753
755 | 754
756 | 755
757 | 756
758 | 757
759 | 758
760 | 759
761 | 760
762 | 761
763 | 762
764 | 763
765 | 764
766 | 765
767 |
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python
2 | # -*- coding: utf-8 -*-
3 |
4 | from __future__ import division, print_function, absolute_import
5 | import os
6 | import datetime
7 | from timeit import time
8 | import warnings
9 | import cv2
10 | import numpy as np
11 | import argparse
12 | from PIL import Image
13 | from yolo import YOLO
14 | from deep_sort import preprocessing
15 | from deep_sort import nn_matching
16 | from deep_sort.detection import Detection
17 | from deep_sort.tracker import Tracker
18 | from tools import generate_detections as gdet
19 | from deep_sort.detection import Detection as ddet
20 | from collections import deque
21 | from keras import backend
22 |
23 | backend.clear_session()
24 | ap = argparse.ArgumentParser()
25 | ap.add_argument("-i", "--input",help="path to input video", default = "./test_video/det_t1_video_00315_test.avi")
26 | ap.add_argument("-c", "--class",help="name of class", default = "person")
27 | args = vars(ap.parse_args())
28 |
29 | pts = [deque(maxlen=30) for _ in range(9999)]
30 | warnings.filterwarnings('ignore')
31 |
32 | # initialize a list of colors to represent each possible class label
33 | np.random.seed(100)
34 | COLORS = np.random.randint(0, 255, size=(200, 3),
35 | dtype="uint8")
36 |
37 | def main(yolo):
38 |
39 | start = time.time()
40 | #Definition of the parameters
41 | max_cosine_distance = 0.5 #0.9 余弦距离的控制阈值
42 | nn_budget = None
43 | nms_max_overlap = 0.3 #非极大抑制的阈值
44 |
45 | counter1 = []
46 | counter2 = []
47 | #deep_sort
48 | model_filename = 'model_data/market1501.pb'
49 | encoder = gdet.create_box_encoder(model_filename, batch_size=1)
50 |
51 | metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
52 | tracker = Tracker(metric)
53 |
54 | writeVideo_flag = True
55 | #video_path = "../../yolo_dataset/t1_video/test_video/det_t1_video_00025_test.avi"
56 | video_capture = cv2.VideoCapture(args["input"])
57 |
58 | if writeVideo_flag:
59 | # Define the codec and create VideoWriter object
60 | w = int(video_capture.get(3))
61 | h = int(video_capture.get(4))
62 | fourcc = cv2.VideoWriter_fourcc(*'MJPG')
63 | out = cv2.VideoWriter('./output/'+args["input"][-13:-4]+ "_" + args["class"] + '_output.avi', fourcc, 15, (w, h))
64 | list_file = open('detection.txt', 'w')
65 | frame_index = -1
66 |
67 | fps = 0.0
68 |
69 | while True:
70 |
71 | ret, frame = video_capture.read() # frame shape 640*480*3
72 | if ret != True:
73 | break
74 | t1 = time.time()
75 |
76 | # image = Image.fromarray(frame)
77 | image = Image.fromarray(frame[...,::-1]) #bgr to rgb
78 | boxs,class_names = yolo.detect_image(image)
79 | features = encoder(frame,boxs)
80 | # score to 1.0 here).
81 | detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)]
82 | # Run non-maxima suppression.
83 | boxes = np.array([d.tlwh for d in detections])
84 | scores = np.array([d.confidence for d in detections])
85 | indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores)
86 | detections = [detections[i] for i in indices]
87 |
88 | # Call the tracker
89 | tracker.predict()
90 | tracker.update(detections)
91 |
92 | i = int(0)
93 | i1 = int(0)
94 | i2 = int(0)
95 | indexIDs = []
96 | c = []
97 | boxes = []
98 | for det in detections:
99 | bbox = det.to_tlbr()
100 | cv2.rectangle(frame,(int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,255,255), 2)
101 |
102 | for track, class_name in zip(tracker.tracks, class_names):
103 | if not track.is_confirmed() or track.time_since_update > 1:
104 | continue
105 | # boxes.append([track[0], track[1], track[2], track[3]])
106 | indexIDs.append(int(track.track_id))
107 | print("relal class:" + class_name[0])
108 | # 分别保存每个类别的track_id
109 | if class_name == ['person']:
110 | counter1.append(int(track.track_id))
111 | if class_name == ['bicycle']:
112 | counter2.append(int(track.track_id))
113 | color = [int(c) for c in COLORS[indexIDs[i] % len(COLORS)]]
114 | bbox = track.to_tlbr()
115 | cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(color), 3)
116 | cv2.putText(frame,str(track.track_id),(int(bbox[0]), int(bbox[1] -50)),0, 5e-3 * 150, (color),2)
117 | # if len(class_names) > 0:
118 | # class_name = class_names[0]
119 | # cv2.putText(frame, str(class_names[0]),(int(bbox[0]), int(bbox[1] -20)),0, 5e-3 * 150, (color),2)
120 | # 显示类别
121 | cv2.putText(frame, str(class_name), (int(bbox[0]), int(bbox[1] - 20)), 0, 5e-3 * 150, (color), 2)
122 | # 当前画面中的每个类别单独计数
123 | if class_name == ['person']:
124 | i1 = i1 +1
125 | else:
126 | i2 = i2 +1
127 | #bbox_center_point(x,y)
128 | center = (int(((bbox[0])+(bbox[2]))/2),int(((bbox[1])+(bbox[3]))/2))
129 | #track_id[center]
130 | pts[track.track_id].append(center)
131 | thickness = 5
132 | #center point
133 | cv2.circle(frame, (center), 1, color, thickness)
134 |
135 | # draw motion path 移动路径
136 | for j in range(1, len(pts[track.track_id])):
137 | if pts[track.track_id][j - 1] is None or pts[track.track_id][j] is None:
138 | continue
139 | thickness = int(np.sqrt(64 / float(j + 1)) * 2)
140 | cv2.line(frame,(pts[track.track_id][j-1]), (pts[track.track_id][j]),(color),thickness)
141 | #cv2.putText(frame, str(class_names[j]),(int(bbox[0]), int(bbox[1] -20)),0, 5e-3 * 150, (255,255,255),2)
142 |
143 | # 统计每类物品的总数
144 | count1 = len(set(counter1))
145 | count2 = len(set(counter2))
146 | cv2.putText(frame, "Total person Counter: "+str(count1),(int(20), int(120)),0, 5e-3 * 100, (0,255,0),2)
147 | cv2.putText(frame, "Current person Counter: "+str(i1),(int(20), int(100)),0, 5e-3 * 100, (0,255,0),2)
148 | cv2.putText(frame, "Total bicycle Counter: "+str(count2),(int(20), int(80)),0, 5e-3 * 100, (0,255,0),2)
149 | cv2.putText(frame, "Current bicycle Counter: "+str(i2),(int(20), int(60)),0, 5e-3 * 100, (0,255,0),2)
150 | cv2.putText(frame, "FPS: %f"%(fps),(int(20), int(40)),0, 5e-3 * 100, (0,255,0),3)
151 | # cv2.namedWindow("YOLO3_Deep_SORT", 0);
152 | # cv2.resizeWindow('YOLO3_Deep_SORT', 1024, 768);
153 | # cv2.imshow('YOLO3_Deep_SORT', frame)
154 |
155 | if writeVideo_flag:
156 | #save a frame
157 | out.write(frame)
158 | frame_index = frame_index + 1
159 | list_file.write(str(frame_index)+' ')
160 | if len(boxs) != 0:
161 | for i in range(0,len(boxs)):
162 | list_file.write(str(boxs[i][0]) + ' '+str(boxs[i][1]) + ' '+str(boxs[i][2]) + ' '+str(boxs[i][3]) + ' ')
163 | list_file.write('\n')
164 | fps = ( fps + (1./(time.time()-t1)) ) / 2
165 | #print(set(counter))
166 |
167 | # Press Q to stop!
168 | if cv2.waitKey(1) & 0xFF == ord('q'):
169 | break
170 | print(" ")
171 | print("[Finish]")
172 | end = time.time()
173 |
174 | if len(pts[track.track_id]) != None:
175 | print(args["input"][-13:-4] + ": " + str(count1) + " " + 'person Found')
176 | print(args["input"][-13:-4] + ": " + str(count2) + " " + 'bicycle Found')
177 |
178 | else:
179 | print("[No Found]")
180 |
181 | video_capture.release()
182 |
183 | if writeVideo_flag:
184 | out.release()
185 | list_file.close()
186 | cv2.destroyAllWindows()
187 |
188 | if __name__ == '__main__':
189 | main(YOLO())
190 |
--------------------------------------------------------------------------------
/model_data/coco_classes.txt:
--------------------------------------------------------------------------------
1 | person
2 | bicycle
3 | car
4 | motorbike
5 | aeroplane
6 | bus
7 | train
8 | truck
9 | boat
10 | traffic light
11 | fire hydrant
12 | stop sign
13 | parking meter
14 | bench
15 | bird
16 | cat
17 | dog
18 | horse
19 | sheep
20 | cow
21 | elephant
22 | bear
23 | zebra
24 | giraffe
25 | backpack
26 | umbrella
27 | handbag
28 | tie
29 | suitcase
30 | frisbee
31 | skis
32 | snowboard
33 | sports ball
34 | kite
35 | baseball bat
36 | baseball glove
37 | skateboard
38 | surfboard
39 | tennis racket
40 | bottle
41 | wine glass
42 | cup
43 | fork
44 | knife
45 | spoon
46 | bowl
47 | banana
48 | apple
49 | sandwich
50 | orange
51 | broccoli
52 | carrot
53 | hot dog
54 | pizza
55 | donut
56 | cake
57 | chair
58 | sofa
59 | pottedplant
60 | bed
61 | diningtable
62 | toilet
63 | tvmonitor
64 | laptop
65 | mouse
66 | remote
67 | keyboard
68 | cell phone
69 | microwave
70 | oven
71 | toaster
72 | sink
73 | refrigerator
74 | book
75 | clock
76 | vase
77 | scissors
78 | teddy bear
79 | hair drier
80 | toothbrush
81 |
--------------------------------------------------------------------------------
/model_data/market1501.pb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/xiaoxiong74/Object-Detection-and-Tracking/d2a11affb54a1d3f2cb76f74b3eab7c370e42f09/model_data/market1501.pb
--------------------------------------------------------------------------------
/model_data/mars-small128.pb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/xiaoxiong74/Object-Detection-and-Tracking/d2a11affb54a1d3f2cb76f74b3eab7c370e42f09/model_data/mars-small128.pb
--------------------------------------------------------------------------------
/model_data/mars.pb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/xiaoxiong74/Object-Detection-and-Tracking/d2a11affb54a1d3f2cb76f74b3eab7c370e42f09/model_data/mars.pb
--------------------------------------------------------------------------------
/model_data/obj.txt:
--------------------------------------------------------------------------------
1 | person
2 | fire_extinguisher
3 | fireplug
4 | car
5 | bicycle
6 | motorcycle
7 |
--------------------------------------------------------------------------------
/model_data/voc_classes.txt:
--------------------------------------------------------------------------------
1 | aeroplane
2 | bicycle
3 | bird
4 | boat
5 | bottle
6 | bus
7 | car
8 | cat
9 | chair
10 | cow
11 | diningtable
12 | dog
13 | horse
14 | motorbike
15 | person
16 | pottedplant
17 | sheep
18 | sofa
19 | train
20 | tvmonitor
21 |
--------------------------------------------------------------------------------
/model_data/yolo3_object.names:
--------------------------------------------------------------------------------
1 | person
2 | fire_extinguisher
3 | fireplug
4 | car
5 | bicycle
6 | motorcycle
7 |
--------------------------------------------------------------------------------
/model_data/yolo_anchors.txt:
--------------------------------------------------------------------------------
1 | 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
2 |
--------------------------------------------------------------------------------
/model_data/yolov3.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | # batch=1
4 | # subdivisions=1
5 | # Training
6 | batch=64
7 | subdivisions=16
8 | width=608
9 | height=608
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=32
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | # Downsample
34 |
35 | [convolutional]
36 | batch_normalize=1
37 | filters=64
38 | size=3
39 | stride=2
40 | pad=1
41 | activation=leaky
42 |
43 | [convolutional]
44 | batch_normalize=1
45 | filters=32
46 | size=1
47 | stride=1
48 | pad=1
49 | activation=leaky
50 |
51 | [convolutional]
52 | batch_normalize=1
53 | filters=64
54 | size=3
55 | stride=1
56 | pad=1
57 | activation=leaky
58 |
59 | [shortcut]
60 | from=-3
61 | activation=linear
62 |
63 | # Downsample
64 |
65 | [convolutional]
66 | batch_normalize=1
67 | filters=128
68 | size=3
69 | stride=2
70 | pad=1
71 | activation=leaky
72 |
73 | [convolutional]
74 | batch_normalize=1
75 | filters=64
76 | size=1
77 | stride=1
78 | pad=1
79 | activation=leaky
80 |
81 | [convolutional]
82 | batch_normalize=1
83 | filters=128
84 | size=3
85 | stride=1
86 | pad=1
87 | activation=leaky
88 |
89 | [shortcut]
90 | from=-3
91 | activation=linear
92 |
93 | [convolutional]
94 | batch_normalize=1
95 | filters=64
96 | size=1
97 | stride=1
98 | pad=1
99 | activation=leaky
100 |
101 | [convolutional]
102 | batch_normalize=1
103 | filters=128
104 | size=3
105 | stride=1
106 | pad=1
107 | activation=leaky
108 |
109 | [shortcut]
110 | from=-3
111 | activation=linear
112 |
113 | # Downsample
114 |
115 | [convolutional]
116 | batch_normalize=1
117 | filters=256
118 | size=3
119 | stride=2
120 | pad=1
121 | activation=leaky
122 |
123 | [convolutional]
124 | batch_normalize=1
125 | filters=128
126 | size=1
127 | stride=1
128 | pad=1
129 | activation=leaky
130 |
131 | [convolutional]
132 | batch_normalize=1
133 | filters=256
134 | size=3
135 | stride=1
136 | pad=1
137 | activation=leaky
138 |
139 | [shortcut]
140 | from=-3
141 | activation=linear
142 |
143 | [convolutional]
144 | batch_normalize=1
145 | filters=128
146 | size=1
147 | stride=1
148 | pad=1
149 | activation=leaky
150 |
151 | [convolutional]
152 | batch_normalize=1
153 | filters=256
154 | size=3
155 | stride=1
156 | pad=1
157 | activation=leaky
158 |
159 | [shortcut]
160 | from=-3
161 | activation=linear
162 |
163 | [convolutional]
164 | batch_normalize=1
165 | filters=128
166 | size=1
167 | stride=1
168 | pad=1
169 | activation=leaky
170 |
171 | [convolutional]
172 | batch_normalize=1
173 | filters=256
174 | size=3
175 | stride=1
176 | pad=1
177 | activation=leaky
178 |
179 | [shortcut]
180 | from=-3
181 | activation=linear
182 |
183 | [convolutional]
184 | batch_normalize=1
185 | filters=128
186 | size=1
187 | stride=1
188 | pad=1
189 | activation=leaky
190 |
191 | [convolutional]
192 | batch_normalize=1
193 | filters=256
194 | size=3
195 | stride=1
196 | pad=1
197 | activation=leaky
198 |
199 | [shortcut]
200 | from=-3
201 | activation=linear
202 |
203 |
204 | [convolutional]
205 | batch_normalize=1
206 | filters=128
207 | size=1
208 | stride=1
209 | pad=1
210 | activation=leaky
211 |
212 | [convolutional]
213 | batch_normalize=1
214 | filters=256
215 | size=3
216 | stride=1
217 | pad=1
218 | activation=leaky
219 |
220 | [shortcut]
221 | from=-3
222 | activation=linear
223 |
224 | [convolutional]
225 | batch_normalize=1
226 | filters=128
227 | size=1
228 | stride=1
229 | pad=1
230 | activation=leaky
231 |
232 | [convolutional]
233 | batch_normalize=1
234 | filters=256
235 | size=3
236 | stride=1
237 | pad=1
238 | activation=leaky
239 |
240 | [shortcut]
241 | from=-3
242 | activation=linear
243 |
244 | [convolutional]
245 | batch_normalize=1
246 | filters=128
247 | size=1
248 | stride=1
249 | pad=1
250 | activation=leaky
251 |
252 | [convolutional]
253 | batch_normalize=1
254 | filters=256
255 | size=3
256 | stride=1
257 | pad=1
258 | activation=leaky
259 |
260 | [shortcut]
261 | from=-3
262 | activation=linear
263 |
264 | [convolutional]
265 | batch_normalize=1
266 | filters=128
267 | size=1
268 | stride=1
269 | pad=1
270 | activation=leaky
271 |
272 | [convolutional]
273 | batch_normalize=1
274 | filters=256
275 | size=3
276 | stride=1
277 | pad=1
278 | activation=leaky
279 |
280 | [shortcut]
281 | from=-3
282 | activation=linear
283 |
284 | # Downsample
285 |
286 | [convolutional]
287 | batch_normalize=1
288 | filters=512
289 | size=3
290 | stride=2
291 | pad=1
292 | activation=leaky
293 |
294 | [convolutional]
295 | batch_normalize=1
296 | filters=256
297 | size=1
298 | stride=1
299 | pad=1
300 | activation=leaky
301 |
302 | [convolutional]
303 | batch_normalize=1
304 | filters=512
305 | size=3
306 | stride=1
307 | pad=1
308 | activation=leaky
309 |
310 | [shortcut]
311 | from=-3
312 | activation=linear
313 |
314 |
315 | [convolutional]
316 | batch_normalize=1
317 | filters=256
318 | size=1
319 | stride=1
320 | pad=1
321 | activation=leaky
322 |
323 | [convolutional]
324 | batch_normalize=1
325 | filters=512
326 | size=3
327 | stride=1
328 | pad=1
329 | activation=leaky
330 |
331 | [shortcut]
332 | from=-3
333 | activation=linear
334 |
335 |
336 | [convolutional]
337 | batch_normalize=1
338 | filters=256
339 | size=1
340 | stride=1
341 | pad=1
342 | activation=leaky
343 |
344 | [convolutional]
345 | batch_normalize=1
346 | filters=512
347 | size=3
348 | stride=1
349 | pad=1
350 | activation=leaky
351 |
352 | [shortcut]
353 | from=-3
354 | activation=linear
355 |
356 |
357 | [convolutional]
358 | batch_normalize=1
359 | filters=256
360 | size=1
361 | stride=1
362 | pad=1
363 | activation=leaky
364 |
365 | [convolutional]
366 | batch_normalize=1
367 | filters=512
368 | size=3
369 | stride=1
370 | pad=1
371 | activation=leaky
372 |
373 | [shortcut]
374 | from=-3
375 | activation=linear
376 |
377 | [convolutional]
378 | batch_normalize=1
379 | filters=256
380 | size=1
381 | stride=1
382 | pad=1
383 | activation=leaky
384 |
385 | [convolutional]
386 | batch_normalize=1
387 | filters=512
388 | size=3
389 | stride=1
390 | pad=1
391 | activation=leaky
392 |
393 | [shortcut]
394 | from=-3
395 | activation=linear
396 |
397 |
398 | [convolutional]
399 | batch_normalize=1
400 | filters=256
401 | size=1
402 | stride=1
403 | pad=1
404 | activation=leaky
405 |
406 | [convolutional]
407 | batch_normalize=1
408 | filters=512
409 | size=3
410 | stride=1
411 | pad=1
412 | activation=leaky
413 |
414 | [shortcut]
415 | from=-3
416 | activation=linear
417 |
418 |
419 | [convolutional]
420 | batch_normalize=1
421 | filters=256
422 | size=1
423 | stride=1
424 | pad=1
425 | activation=leaky
426 |
427 | [convolutional]
428 | batch_normalize=1
429 | filters=512
430 | size=3
431 | stride=1
432 | pad=1
433 | activation=leaky
434 |
435 | [shortcut]
436 | from=-3
437 | activation=linear
438 |
439 | [convolutional]
440 | batch_normalize=1
441 | filters=256
442 | size=1
443 | stride=1
444 | pad=1
445 | activation=leaky
446 |
447 | [convolutional]
448 | batch_normalize=1
449 | filters=512
450 | size=3
451 | stride=1
452 | pad=1
453 | activation=leaky
454 |
455 | [shortcut]
456 | from=-3
457 | activation=linear
458 |
459 | # Downsample
460 |
461 | [convolutional]
462 | batch_normalize=1
463 | filters=1024
464 | size=3
465 | stride=2
466 | pad=1
467 | activation=leaky
468 |
469 | [convolutional]
470 | batch_normalize=1
471 | filters=512
472 | size=1
473 | stride=1
474 | pad=1
475 | activation=leaky
476 |
477 | [convolutional]
478 | batch_normalize=1
479 | filters=1024
480 | size=3
481 | stride=1
482 | pad=1
483 | activation=leaky
484 |
485 | [shortcut]
486 | from=-3
487 | activation=linear
488 |
489 | [convolutional]
490 | batch_normalize=1
491 | filters=512
492 | size=1
493 | stride=1
494 | pad=1
495 | activation=leaky
496 |
497 | [convolutional]
498 | batch_normalize=1
499 | filters=1024
500 | size=3
501 | stride=1
502 | pad=1
503 | activation=leaky
504 |
505 | [shortcut]
506 | from=-3
507 | activation=linear
508 |
509 | [convolutional]
510 | batch_normalize=1
511 | filters=512
512 | size=1
513 | stride=1
514 | pad=1
515 | activation=leaky
516 |
517 | [convolutional]
518 | batch_normalize=1
519 | filters=1024
520 | size=3
521 | stride=1
522 | pad=1
523 | activation=leaky
524 |
525 | [shortcut]
526 | from=-3
527 | activation=linear
528 |
529 | [convolutional]
530 | batch_normalize=1
531 | filters=512
532 | size=1
533 | stride=1
534 | pad=1
535 | activation=leaky
536 |
537 | [convolutional]
538 | batch_normalize=1
539 | filters=1024
540 | size=3
541 | stride=1
542 | pad=1
543 | activation=leaky
544 |
545 | [shortcut]
546 | from=-3
547 | activation=linear
548 |
549 | ######################
550 |
551 | [convolutional]
552 | batch_normalize=1
553 | filters=512
554 | size=1
555 | stride=1
556 | pad=1
557 | activation=leaky
558 |
559 | [convolutional]
560 | batch_normalize=1
561 | size=3
562 | stride=1
563 | pad=1
564 | filters=1024
565 | activation=leaky
566 |
567 | [convolutional]
568 | batch_normalize=1
569 | filters=512
570 | size=1
571 | stride=1
572 | pad=1
573 | activation=leaky
574 |
575 | [convolutional]
576 | batch_normalize=1
577 | size=3
578 | stride=1
579 | pad=1
580 | filters=1024
581 | activation=leaky
582 |
583 | [convolutional]
584 | batch_normalize=1
585 | filters=512
586 | size=1
587 | stride=1
588 | pad=1
589 | activation=leaky
590 |
591 | [convolutional]
592 | batch_normalize=1
593 | size=3
594 | stride=1
595 | pad=1
596 | filters=1024
597 | activation=leaky
598 |
599 | [convolutional]
600 | size=1
601 | stride=1
602 | pad=1
603 | filters=255
604 | activation=linear
605 |
606 |
607 | [yolo]
608 | mask = 6,7,8
609 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
610 | classes=80
611 | num=9
612 | jitter=.3
613 | ignore_thresh = .7
614 | truth_thresh = 1
615 | random=1
616 |
617 |
618 | [route]
619 | layers = -4
620 |
621 | [convolutional]
622 | batch_normalize=1
623 | filters=256
624 | size=1
625 | stride=1
626 | pad=1
627 | activation=leaky
628 |
629 | [upsample]
630 | stride=2
631 |
632 | [route]
633 | layers = -1, 61
634 |
635 |
636 |
637 | [convolutional]
638 | batch_normalize=1
639 | filters=256
640 | size=1
641 | stride=1
642 | pad=1
643 | activation=leaky
644 |
645 | [convolutional]
646 | batch_normalize=1
647 | size=3
648 | stride=1
649 | pad=1
650 | filters=512
651 | activation=leaky
652 |
653 | [convolutional]
654 | batch_normalize=1
655 | filters=256
656 | size=1
657 | stride=1
658 | pad=1
659 | activation=leaky
660 |
661 | [convolutional]
662 | batch_normalize=1
663 | size=3
664 | stride=1
665 | pad=1
666 | filters=512
667 | activation=leaky
668 |
669 | [convolutional]
670 | batch_normalize=1
671 | filters=256
672 | size=1
673 | stride=1
674 | pad=1
675 | activation=leaky
676 |
677 | [convolutional]
678 | batch_normalize=1
679 | size=3
680 | stride=1
681 | pad=1
682 | filters=512
683 | activation=leaky
684 |
685 | [convolutional]
686 | size=1
687 | stride=1
688 | pad=1
689 | filters=255
690 | activation=linear
691 |
692 |
693 | [yolo]
694 | mask = 3,4,5
695 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
696 | classes=80
697 | num=9
698 | jitter=.3
699 | ignore_thresh = .7
700 | truth_thresh = 1
701 | random=1
702 |
703 |
704 |
705 | [route]
706 | layers = -4
707 |
708 | [convolutional]
709 | batch_normalize=1
710 | filters=128
711 | size=1
712 | stride=1
713 | pad=1
714 | activation=leaky
715 |
716 | [upsample]
717 | stride=2
718 |
719 | [route]
720 | layers = -1, 36
721 |
722 |
723 |
724 | [convolutional]
725 | batch_normalize=1
726 | filters=128
727 | size=1
728 | stride=1
729 | pad=1
730 | activation=leaky
731 |
732 | [convolutional]
733 | batch_normalize=1
734 | size=3
735 | stride=1
736 | pad=1
737 | filters=256
738 | activation=leaky
739 |
740 | [convolutional]
741 | batch_normalize=1
742 | filters=128
743 | size=1
744 | stride=1
745 | pad=1
746 | activation=leaky
747 |
748 | [convolutional]
749 | batch_normalize=1
750 | size=3
751 | stride=1
752 | pad=1
753 | filters=256
754 | activation=leaky
755 |
756 | [convolutional]
757 | batch_normalize=1
758 | filters=128
759 | size=1
760 | stride=1
761 | pad=1
762 | activation=leaky
763 |
764 | [convolutional]
765 | batch_normalize=1
766 | size=3
767 | stride=1
768 | pad=1
769 | filters=256
770 | activation=leaky
771 |
772 | [convolutional]
773 | size=1
774 | stride=1
775 | pad=1
776 | filters=255
777 | activation=linear
778 |
779 |
780 | [yolo]
781 | mask = 0,1,2
782 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
783 | classes=80
784 | num=9
785 | jitter=.3
786 | ignore_thresh = .7
787 | truth_thresh = 1
788 | random=1
789 |
790 |
--------------------------------------------------------------------------------
/output/result.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/xiaoxiong74/Object-Detection-and-Tracking/d2a11affb54a1d3f2cb76f74b3eab7c370e42f09/output/result.png
--------------------------------------------------------------------------------
/output/st1_vedio_person_output.avi:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/xiaoxiong74/Object-Detection-and-Tracking/d2a11affb54a1d3f2cb76f74b3eab7c370e42f09/output/st1_vedio_person_output.avi
--------------------------------------------------------------------------------
/output/st1_vedio_person_output.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/xiaoxiong74/Object-Detection-and-Tracking/d2a11affb54a1d3f2cb76f74b3eab7c370e42f09/output/st1_vedio_person_output.gif
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | Keras==2.2.4
2 | tensorflow-gpu==1.10.0
3 | opencv-python==3.4.4.19
4 | scikit-learn==0.21.2
5 | scipy==1.1.0
6 | Pillow
7 | torch==0.3.1
8 | torchvision==0.2.0
9 |
--------------------------------------------------------------------------------
/tools/freeze_model.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | import argparse
3 | import tensorflow as tf
4 | import tensorflow.contrib.slim as slim
5 |
6 |
7 | def _batch_norm_fn(x, scope=None):
8 | if scope is None:
9 | scope = tf.get_variable_scope().name + "/bn"
10 | return slim.batch_norm(x, scope=scope)
11 |
12 |
13 | def create_link(
14 | incoming, network_builder, scope, nonlinearity=tf.nn.elu,
15 | weights_initializer=tf.truncated_normal_initializer(stddev=1e-3),
16 | regularizer=None, is_first=False, summarize_activations=True):
17 | if is_first:
18 | network = incoming
19 | else:
20 | network = _batch_norm_fn(incoming, scope=scope + "/bn")
21 | network = nonlinearity(network)
22 | if summarize_activations:
23 | tf.summary.histogram(scope+"/activations", network)
24 |
25 | pre_block_network = network
26 | post_block_network = network_builder(pre_block_network, scope)
27 |
28 | incoming_dim = pre_block_network.get_shape().as_list()[-1]
29 | outgoing_dim = post_block_network.get_shape().as_list()[-1]
30 | if incoming_dim != outgoing_dim:
31 | assert outgoing_dim == 2 * incoming_dim, \
32 | "%d != %d" % (outgoing_dim, 2 * incoming)
33 | projection = slim.conv2d(
34 | incoming, outgoing_dim, 1, 2, padding="SAME", activation_fn=None,
35 | scope=scope+"/projection", weights_initializer=weights_initializer,
36 | biases_initializer=None, weights_regularizer=regularizer)
37 | network = projection + post_block_network
38 | else:
39 | network = incoming + post_block_network
40 | return network
41 |
42 |
43 | def create_inner_block(
44 | incoming, scope, nonlinearity=tf.nn.elu,
45 | weights_initializer=tf.truncated_normal_initializer(1e-3),
46 | bias_initializer=tf.zeros_initializer(), regularizer=None,
47 | increase_dim=False, summarize_activations=True):
48 | n = incoming.get_shape().as_list()[-1]
49 | stride = 1
50 | if increase_dim:
51 | n *= 2
52 | stride = 2
53 |
54 | incoming = slim.conv2d(
55 | incoming, n, [3, 3], stride, activation_fn=nonlinearity, padding="SAME",
56 | normalizer_fn=_batch_norm_fn, weights_initializer=weights_initializer,
57 | biases_initializer=bias_initializer, weights_regularizer=regularizer,
58 | scope=scope + "/1")
59 | if summarize_activations:
60 | tf.summary.histogram(incoming.name + "/activations", incoming)
61 |
62 | incoming = slim.dropout(incoming, keep_prob=0.6)
63 |
64 | incoming = slim.conv2d(
65 | incoming, n, [3, 3], 1, activation_fn=None, padding="SAME",
66 | normalizer_fn=None, weights_initializer=weights_initializer,
67 | biases_initializer=bias_initializer, weights_regularizer=regularizer,
68 | scope=scope + "/2")
69 | return incoming
70 |
71 |
72 | def residual_block(incoming, scope, nonlinearity=tf.nn.elu,
73 | weights_initializer=tf.truncated_normal_initializer(1e3),
74 | bias_initializer=tf.zeros_initializer(), regularizer=None,
75 | increase_dim=False, is_first=False,
76 | summarize_activations=True):
77 |
78 | def network_builder(x, s):
79 | return create_inner_block(
80 | x, s, nonlinearity, weights_initializer, bias_initializer,
81 | regularizer, increase_dim, summarize_activations)
82 |
83 | return create_link(
84 | incoming, network_builder, scope, nonlinearity, weights_initializer,
85 | regularizer, is_first, summarize_activations)
86 |
87 |
88 | def _create_network(incoming, reuse=None, weight_decay=1e-8):
89 | nonlinearity = tf.nn.elu
90 | conv_weight_init = tf.truncated_normal_initializer(stddev=1e-3)
91 | conv_bias_init = tf.zeros_initializer()
92 | conv_regularizer = slim.l2_regularizer(weight_decay)
93 | fc_weight_init = tf.truncated_normal_initializer(stddev=1e-3)
94 | fc_bias_init = tf.zeros_initializer()
95 | fc_regularizer = slim.l2_regularizer(weight_decay)
96 |
97 | def batch_norm_fn(x):
98 | return slim.batch_norm(x, scope=tf.get_variable_scope().name + "/bn")
99 |
100 | network = incoming
101 | network = slim.conv2d(
102 | network, 32, [3, 3], stride=1, activation_fn=nonlinearity,
103 | padding="SAME", normalizer_fn=batch_norm_fn, scope="conv1_1",
104 | weights_initializer=conv_weight_init, biases_initializer=conv_bias_init,
105 | weights_regularizer=conv_regularizer)
106 | network = slim.conv2d(
107 | network, 32, [3, 3], stride=1, activation_fn=nonlinearity,
108 | padding="SAME", normalizer_fn=batch_norm_fn, scope="conv1_2",
109 | weights_initializer=conv_weight_init, biases_initializer=conv_bias_init,
110 | weights_regularizer=conv_regularizer)
111 |
112 | # NOTE(nwojke): This is missing a padding="SAME" to match the CNN
113 | # architecture in Table 1 of the paper. Information on how this affects
114 | # performance on MOT 16 training sequences can be found in
115 | # issue 10 https://github.com/nwojke/deep_sort/issues/10
116 | network = slim.max_pool2d(network, [3, 3], [2, 2], scope="pool1")
117 |
118 | network = residual_block(
119 | network, "conv2_1", nonlinearity, conv_weight_init, conv_bias_init,
120 | conv_regularizer, increase_dim=False, is_first=True)
121 | network = residual_block(
122 | network, "conv2_3", nonlinearity, conv_weight_init, conv_bias_init,
123 | conv_regularizer, increase_dim=False)
124 |
125 | network = residual_block(
126 | network, "conv3_1", nonlinearity, conv_weight_init, conv_bias_init,
127 | conv_regularizer, increase_dim=True)
128 | network = residual_block(
129 | network, "conv3_3", nonlinearity, conv_weight_init, conv_bias_init,
130 | conv_regularizer, increase_dim=False)
131 |
132 | network = residual_block(
133 | network, "conv4_1", nonlinearity, conv_weight_init, conv_bias_init,
134 | conv_regularizer, increase_dim=True)
135 | network = residual_block(
136 | network, "conv4_3", nonlinearity, conv_weight_init, conv_bias_init,
137 | conv_regularizer, increase_dim=False)
138 |
139 | feature_dim = network.get_shape().as_list()[-1]
140 | network = slim.flatten(network)
141 |
142 | network = slim.dropout(network, keep_prob=0.6)
143 | network = slim.fully_connected(
144 | network, feature_dim, activation_fn=nonlinearity,
145 | normalizer_fn=batch_norm_fn, weights_regularizer=fc_regularizer,
146 | scope="fc1", weights_initializer=fc_weight_init,
147 | biases_initializer=fc_bias_init)
148 |
149 | features = network
150 |
151 | # Features in rows, normalize axis 1.
152 | features = slim.batch_norm(features, scope="ball", reuse=reuse)
153 | feature_norm = tf.sqrt(
154 | tf.constant(1e-8, tf.float32) +
155 | tf.reduce_sum(tf.square(features), [1], keepdims=True))
156 | features = features / feature_norm
157 | return features, None
158 |
159 |
160 | def _network_factory(weight_decay=1e-8):
161 |
162 | def factory_fn(image, reuse):
163 | with slim.arg_scope([slim.batch_norm, slim.dropout],
164 | is_training=False):
165 | with slim.arg_scope([slim.conv2d, slim.fully_connected,
166 | slim.batch_norm, slim.layer_norm],
167 | reuse=reuse):
168 | features, logits = _create_network(
169 | image, reuse=reuse, weight_decay=weight_decay)
170 | return features, logits
171 |
172 | return factory_fn
173 |
174 |
175 | def _preprocess(image):
176 | image = image[:, :, ::-1] # BGR to RGB
177 | return image
178 |
179 |
180 | def parse_args():
181 | """Parse command line arguments.
182 | """
183 | parser = argparse.ArgumentParser(description="Freeze old model")
184 | parser.add_argument(
185 | "--checkpoint_in",
186 | default="resources/networks/mars-small128.ckpt-68577",
187 | help="Path to checkpoint file")
188 | parser.add_argument(
189 | "--graphdef_out",
190 | default="resources/networks/mars-small128.pb")
191 | return parser.parse_args()
192 |
193 |
194 | def main():
195 | args = parse_args()
196 |
197 | with tf.Session(graph=tf.Graph()) as session:
198 | input_var = tf.placeholder(
199 | tf.uint8, (None, 128, 64, 3), name="images")
200 | image_var = tf.map_fn(
201 | lambda x: _preprocess(x), tf.cast(input_var, tf.float32),
202 | back_prop=False)
203 |
204 | factory_fn = _network_factory()
205 | features, _ = factory_fn(image_var, reuse=None)
206 | features = tf.identity(features, name="features")
207 |
208 | saver = tf.train.Saver(slim.get_variables_to_restore())
209 | saver.restore(session, args.checkpoint_in)
210 |
211 | output_graph_def = tf.graph_util.convert_variables_to_constants(
212 | session, tf.get_default_graph().as_graph_def(),
213 | [features.name.split(":")[0]])
214 | with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle:
215 | file_handle.write(output_graph_def.SerializeToString())
216 |
217 |
218 | if __name__ == "__main__":
219 | main()
220 |
--------------------------------------------------------------------------------
/tools/generate_detections.py:
--------------------------------------------------------------------------------
1 | # vim: expandtab:ts=4:sw=4
2 | import os
3 | import errno
4 | import argparse
5 | import numpy as np
6 | import cv2
7 | import tensorflow as tf
8 |
9 |
10 | def _run_in_batches(f, data_dict, out, batch_size):
11 | data_len = len(out)
12 | num_batches = int(data_len / batch_size)
13 |
14 | s, e = 0, 0
15 | for i in range(num_batches):
16 | s, e = i * batch_size, (i + 1) * batch_size
17 | batch_data_dict = {k: v[s:e] for k, v in data_dict.items()}
18 | out[s:e] = f(batch_data_dict)
19 | if e < len(out):
20 | batch_data_dict = {k: v[e:] for k, v in data_dict.items()}
21 | out[e:] = f(batch_data_dict)
22 |
23 |
24 | def extract_image_patch(image, bbox, patch_shape):
25 | """Extract image patch from bounding box.
26 |
27 | Parameters
28 | ----------
29 | image : ndarray
30 | The full image.
31 | bbox : array_like
32 | The bounding box in format (x, y, width, height).
33 | patch_shape : Optional[array_like]
34 | This parameter can be used to enforce a desired patch shape
35 | (height, width). First, the `bbox` is adapted to the aspect ratio
36 | of the patch shape, then it is clipped at the image boundaries.
37 | If None, the shape is computed from :arg:`bbox`.
38 |
39 | Returns
40 | -------
41 | ndarray | NoneType
42 | An image patch showing the :arg:`bbox`, optionally reshaped to
43 | :arg:`patch_shape`.
44 | Returns None if the bounding box is empty or fully outside of the image
45 | boundaries.
46 |
47 | """
48 | bbox = np.array(bbox)
49 | if patch_shape is not None:
50 | # correct aspect ratio to patch shape
51 | target_aspect = float(patch_shape[1]) / patch_shape[0]
52 | new_width = target_aspect * bbox[3]
53 | bbox[0] -= (new_width - bbox[2]) / 2
54 | bbox[2] = new_width
55 |
56 | # convert to top left, bottom right
57 | bbox[2:] += bbox[:2]
58 | bbox = bbox.astype(np.int)
59 |
60 | # clip at image boundaries
61 | bbox[:2] = np.maximum(0, bbox[:2])
62 | bbox[2:] = np.minimum(np.asarray(image.shape[:2][::-1]) - 1, bbox[2:])
63 | if np.any(bbox[:2] >= bbox[2:]):
64 | return None
65 | sx, sy, ex, ey = bbox
66 | image = image[sy:ey, sx:ex]
67 | image = cv2.resize(image, tuple(patch_shape[::-1]))
68 | return image
69 |
70 |
71 | class ImageEncoder(object):
72 |
73 | def __init__(self, checkpoint_filename, input_name="images",
74 | output_name="features"):
75 | self.session = tf.Session()
76 | with tf.gfile.GFile(checkpoint_filename, "rb") as file_handle:
77 | graph_def = tf.GraphDef()
78 | graph_def.ParseFromString(file_handle.read())
79 | tf.import_graph_def(graph_def, name="net")
80 | self.input_var = tf.get_default_graph().get_tensor_by_name(
81 | "net/%s:0" % input_name)
82 | self.output_var = tf.get_default_graph().get_tensor_by_name(
83 | "net/%s:0" % output_name)
84 |
85 | assert len(self.output_var.get_shape()) == 2
86 | assert len(self.input_var.get_shape()) == 4
87 | self.feature_dim = self.output_var.get_shape().as_list()[-1]
88 | self.image_shape = self.input_var.get_shape().as_list()[1:]
89 |
90 | def __call__(self, data_x, batch_size=32):
91 | out = np.zeros((len(data_x), self.feature_dim), np.float32)
92 | _run_in_batches(
93 | lambda x: self.session.run(self.output_var, feed_dict=x),
94 | {self.input_var: data_x}, out, batch_size)
95 | return out
96 |
97 |
98 | def create_box_encoder(model_filename, input_name="images",
99 | output_name="features", batch_size=32):
100 | image_encoder = ImageEncoder(model_filename, input_name, output_name)
101 | image_shape = image_encoder.image_shape
102 |
103 | def encoder(image, boxes):
104 | image_patches = []
105 | for box in boxes:
106 | patch = extract_image_patch(image, box, image_shape[:2])
107 | if patch is None:
108 | print("WARNING: Failed to extract image patch: %s." % str(box))
109 | patch = np.random.uniform(
110 | 0., 255., image_shape).astype(np.uint8)
111 | image_patches.append(patch)
112 | image_patches = np.asarray(image_patches)
113 | return image_encoder(image_patches, batch_size)
114 |
115 | return encoder
116 |
117 |
118 | def generate_detections(encoder, mot_dir, output_dir, detection_dir=None):
119 | """Generate detections with features.
120 |
121 | Parameters
122 | ----------
123 | encoder : Callable[image, ndarray] -> ndarray
124 | The encoder function takes as input a BGR color image and a matrix of
125 | bounding boxes in format `(x, y, w, h)` and returns a matrix of
126 | corresponding feature vectors.
127 | mot_dir : str
128 | Path to the MOTChallenge directory (can be either train or test).
129 | output_dir
130 | Path to the output directory. Will be created if it does not exist.
131 | detection_dir
132 | Path to custom detections. The directory structure should be the default
133 | MOTChallenge structure: `[sequence]/det/det.txt`. If None, uses the
134 | standard MOTChallenge detections.
135 |
136 | """
137 | if detection_dir is None:
138 | detection_dir = mot_dir
139 | try:
140 | os.makedirs(output_dir)
141 | except OSError as exception:
142 | if exception.errno == errno.EEXIST and os.path.isdir(output_dir):
143 | pass
144 | else:
145 | raise ValueError(
146 | "Failed to created output directory '%s'" % output_dir)
147 |
148 | for sequence in os.listdir(mot_dir):
149 | print("Processing %s" % sequence)
150 | sequence_dir = os.path.join(mot_dir, sequence)
151 |
152 | image_dir = os.path.join(sequence_dir, "img1")
153 | image_filenames = {
154 | int(os.path.splitext(f)[0]): os.path.join(image_dir, f)
155 | for f in os.listdir(image_dir)}
156 |
157 | detection_file = os.path.join(
158 | detection_dir, sequence, "det/det.txt")
159 | detections_in = np.loadtxt(detection_file, delimiter=',')
160 | detections_out = []
161 |
162 | frame_indices = detections_in[:, 0].astype(np.int)
163 | min_frame_idx = frame_indices.astype(np.int).min()
164 | max_frame_idx = frame_indices.astype(np.int).max()
165 | for frame_idx in range(min_frame_idx, max_frame_idx + 1):
166 | print("Frame %05d/%05d" % (frame_idx, max_frame_idx))
167 | mask = frame_indices == frame_idx
168 | rows = detections_in[mask]
169 |
170 | if frame_idx not in image_filenames:
171 | print("WARNING could not find image for frame %d" % frame_idx)
172 | continue
173 | bgr_image = cv2.imread(
174 | image_filenames[frame_idx], cv2.IMREAD_COLOR)
175 | features = encoder(bgr_image, rows[:, 2:6].copy())
176 | detections_out += [np.r_[(row, feature)] for row, feature
177 | in zip(rows, features)]
178 |
179 | output_filename = os.path.join(output_dir, "%s.npy" % sequence)
180 | np.save(
181 | output_filename, np.asarray(detections_out), allow_pickle=False)
182 |
183 |
184 | def parse_args():
185 | """Parse command line arguments.
186 | """
187 | parser = argparse.ArgumentParser(description="Re-ID feature extractor")
188 | parser.add_argument(
189 | "--model",
190 | default="resources/networks/mars-small128.pb",
191 | help="Path to freezed inference graph protobuf.")
192 | parser.add_argument(
193 | "--mot_dir", help="Path to MOTChallenge directory (train or test)",
194 | required=True)
195 | parser.add_argument(
196 | "--detection_dir", help="Path to custom detections. Defaults to "
197 | "standard MOT detections Directory structure should be the default "
198 | "MOTChallenge structure: [sequence]/det/det.txt", default=None)
199 | parser.add_argument(
200 | "--output_dir", help="Output directory. Will be created if it does not"
201 | " exist.", default="detections")
202 | return parser.parse_args()
203 |
204 |
205 | def main():
206 | args = parse_args()
207 | encoder = create_box_encoder(args.model, batch_size=32)
208 | generate_detections(encoder, args.mot_dir, args.output_dir,
209 | args.detection_dir)
210 |
211 |
212 | if __name__ == "__main__":
213 | main()
214 |
--------------------------------------------------------------------------------
/vedio/test1_vedio.avi:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/xiaoxiong74/Object-Detection-and-Tracking/d2a11affb54a1d3f2cb76f74b3eab7c370e42f09/vedio/test1_vedio.avi
--------------------------------------------------------------------------------
/yolo.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python
2 | # -*- coding: utf-8 -*-
3 | """
4 | Run a YOLO_v3 style detection model on test images.
5 | """
6 |
7 | import colorsys
8 | import os
9 | import random
10 | from timeit import time
11 | from timeit import default_timer as timer ### to calculate FPS
12 | import cv2
13 | import numpy as np
14 | from keras import backend as K
15 | from keras.models import load_model
16 | from PIL import Image, ImageFont, ImageDraw
17 |
18 | from yolo3.model import yolo_eval
19 | from yolo3.utils import letterbox_image
20 | import argparse
21 | ap = argparse.ArgumentParser()
22 | ap.add_argument("-i", "--input",help="path to input video", default = "./test_video/det_t1_video_00315_test.avi")
23 | ap.add_argument("-c", "--class",help="name of class", default = "person")
24 | args = vars(ap.parse_args())
25 |
26 | class YOLO(object):
27 | def __init__(self):
28 | self.model_path = './model_data/yolo.h5'
29 | self.anchors_path = 'model_data/yolo_anchors.txt'
30 | self.classes_path = 'model_data/coco_classes.txt'
31 | #具体参数可实验后进行调整
32 | if args["class"] == 'person':
33 | self.score = 0.6 #0.8
34 | self.iou = 0.6
35 | self.model_image_size = (416,416)
36 | if args["class"] == 'car':
37 | self.score = 0.6
38 | self.iou = 0.6
39 | self.model_image_size = (416, 416)
40 | if args["class"] == 'bicycle' or args["class"] == 'motorcycle':
41 | self.score = 0.6
42 | self.iou = 0.6
43 | self.model_image_size = (416, 416)
44 | if args["class"] == 'fire_extinguisher' or args["class"] == 'fireplug':
45 | self.score = 0.4#0.4
46 | self.iou = 0.6
47 | self.model_image_size = (416, 416)
48 | if args["class"] == 'cup' or args["class"] == 'mouse':
49 | self.score = 0.6
50 | self.iou = 0.6
51 |
52 | self.class_names = self._get_class()
53 | self.anchors = self._get_anchors()
54 | self.sess = K.get_session()
55 | #self.model_image_size = (416, 416) # fixed size or (None, None) small targets:(320,320) mid targets:(960,960)
56 | self.is_fixed_size = self.model_image_size != (None, None)
57 | self.boxes, self.scores, self.classes = self.generate()
58 |
59 | def _get_class(self):
60 | classes_path = os.path.expanduser(self.classes_path)
61 | with open(classes_path) as f:
62 | class_names = f.readlines()
63 | class_names = [c.strip() for c in class_names]
64 | #print(class_names)
65 | return class_names
66 |
67 | def _get_anchors(self):
68 | anchors_path = os.path.expanduser(self.anchors_path)
69 | with open(anchors_path) as f:
70 | anchors = f.readline()
71 | anchors = [float(x) for x in anchors.split(',')]
72 | anchors = np.array(anchors).reshape(-1, 2)
73 | return anchors
74 |
75 | def generate(self):
76 | model_path = os.path.expanduser(self.model_path)
77 | assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'
78 |
79 | self.yolo_model = load_model(model_path, compile=False)
80 | print('{} model, anchors, and classes loaded.'.format(model_path))
81 |
82 | # Generate colors for drawing bounding boxes.
83 | hsv_tuples = [(x / len(self.class_names), 1., 1.)
84 | for x in range(len(self.class_names))]
85 | self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
86 | self.colors = list(
87 | map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
88 | self.colors))
89 | random.seed(10101) # Fixed seed for consistent colors across runs.
90 | random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
91 | random.seed(None) # Reset seed to default.
92 |
93 | # Generate output tensor targets for filtered bounding boxes.
94 | self.input_image_shape = K.placeholder(shape=(2, ))
95 | boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
96 | len(self.class_names), self.input_image_shape,
97 | score_threshold=self.score, iou_threshold=self.iou)
98 | return boxes, scores, classes
99 |
100 | def detect_image(self, image):
101 | if self.is_fixed_size:
102 | assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
103 | assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
104 | boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
105 | else:
106 | new_image_size = (image.width - (image.width % 32),
107 | image.height - (image.height % 32))
108 | boxed_image = letterbox_image(image, new_image_size)
109 | image_data = np.array(boxed_image, dtype='float32')
110 |
111 | #print(image_data.shape)
112 | image_data /= 255.
113 | image_data = np.expand_dims(image_data, 0) # Add batch dimension.
114 |
115 | out_boxes, out_scores, out_classes = self.sess.run(
116 | [self.boxes, self.scores, self.classes],
117 | feed_dict={
118 | self.yolo_model.input: image_data,
119 | self.input_image_shape: [image.size[1], image.size[0]],
120 | K.learning_phase(): 0
121 | })
122 | return_boxs = []
123 | return_class_name = []
124 | person_counter = 0
125 | for i, c in reversed(list(enumerate(out_classes))):
126 | predicted_class = self.class_names[c]
127 | #print(self.class_names[c])
128 |
129 | if predicted_class != 'person' and predicted_class != 'bicycle':
130 | print(predicted_class)
131 | continue
132 |
133 | # if predicted_class != args["class"]:#and predicted_class != 'car':
134 | # #print(predicted_class)
135 | # continue
136 |
137 | person_counter += 1
138 | #if predicted_class != 'car':
139 | #continue
140 | #label = predicted_class
141 | box = out_boxes[i]
142 | #score = out_scores[i]
143 | x = int(box[1])
144 | y = int(box[0])
145 | w = int(box[3]-box[1])
146 | h = int(box[2]-box[0])
147 | if x < 0 :
148 | w = w + x
149 | x = 0
150 | if y < 0 :
151 | h = h + y
152 | y = 0
153 | return_boxs.append([x,y,w,h])
154 | #print(return_boxs)
155 | return_class_name.append([predicted_class])
156 | #cv2.putText(image, str(self.class_names[c]),(int(box[0]), int(box[1] -50)),0, 5e-3 * 150, (0,255,0),2)
157 | #print("Found person: ",person_counter)
158 | return return_boxs,return_class_name
159 |
160 | def close_session(self):
161 | self.sess.close()
162 |
--------------------------------------------------------------------------------
/yolo3/model.py:
--------------------------------------------------------------------------------
1 | """YOLO_v3 Model Defined in Keras."""
2 |
3 | from functools import wraps
4 |
5 | import numpy as np
6 | import tensorflow as tf
7 | from keras import backend as K
8 | from keras.layers import Conv2D, Add, ZeroPadding2D, UpSampling2D, Concatenate
9 | from keras.layers.advanced_activations import LeakyReLU
10 | from keras.layers.normalization import BatchNormalization
11 | from keras.models import Model
12 | from keras.regularizers import l2
13 |
14 | from yolo3.utils import compose
15 |
16 |
17 | @wraps(Conv2D)
18 | def DarknetConv2D(*args, **kwargs):
19 | """Wrapper to set Darknet parameters for Convolution2D."""
20 | darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)}
21 | darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2,2) else 'same'
22 | darknet_conv_kwargs.update(kwargs)
23 | return Conv2D(*args, **darknet_conv_kwargs)
24 |
25 | def DarknetConv2D_BN_Leaky(*args, **kwargs):
26 | """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""
27 | no_bias_kwargs = {'use_bias': False}
28 | no_bias_kwargs.update(kwargs)
29 | return compose(
30 | DarknetConv2D(*args, **no_bias_kwargs),
31 | BatchNormalization(),
32 | LeakyReLU(alpha=0.1))
33 |
34 | def resblock_body(x, num_filters, num_blocks):
35 | '''A series of resblocks starting with a downsampling Convolution2D'''
36 | # Darknet uses left and top padding instead of 'same' mode
37 | x = ZeroPadding2D(((1,0),(1,0)))(x)
38 | x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)
39 | for i in range(num_blocks):
40 | y = compose(
41 | DarknetConv2D_BN_Leaky(num_filters//2, (1,1)),
42 | DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x)
43 | x = Add()([x,y])
44 | return x
45 |
46 | def darknet_body(x):
47 | '''Darknent body having 52 Convolution2D layers'''
48 | x = DarknetConv2D_BN_Leaky(32, (3,3))(x)
49 | x = resblock_body(x, 64, 1)
50 | x = resblock_body(x, 128, 2)
51 | x = resblock_body(x, 256, 8)
52 | x = resblock_body(x, 512, 8)
53 | x = resblock_body(x, 1024, 4)
54 | return x
55 |
56 | def make_last_layers(x, num_filters, out_filters):
57 | '''6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer'''
58 | x = compose(
59 | DarknetConv2D_BN_Leaky(num_filters, (1,1)),
60 | DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
61 | DarknetConv2D_BN_Leaky(num_filters, (1,1)),
62 | DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
63 | DarknetConv2D_BN_Leaky(num_filters, (1,1)))(x)
64 | y = compose(
65 | DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
66 | DarknetConv2D(out_filters, (1,1)))(x)
67 | return x, y
68 |
69 |
70 | def yolo_body(inputs, num_anchors, num_classes):
71 | """Create YOLO_V3 model CNN body in Keras."""
72 | darknet = Model(inputs, darknet_body(inputs))
73 | x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))
74 |
75 | x = compose(
76 | DarknetConv2D_BN_Leaky(256, (1,1)),
77 | UpSampling2D(2))(x)
78 | x = Concatenate()([x,darknet.layers[152].output])
79 | x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5))
80 |
81 | x = compose(
82 | DarknetConv2D_BN_Leaky(128, (1,1)),
83 | UpSampling2D(2))(x)
84 | x = Concatenate()([x,darknet.layers[92].output])
85 | x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5))
86 |
87 | return Model(inputs, [y1,y2,y3])
88 |
89 |
90 | def yolo_head(feats, anchors, num_classes, input_shape):
91 | """Convert final layer features to bounding box parameters."""
92 | num_anchors = len(anchors)
93 | # Reshape to batch, height, width, num_anchors, box_params.
94 | anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])
95 |
96 | grid_shape = K.shape(feats)[1:3] # height, width
97 | grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
98 | [1, grid_shape[1], 1, 1])
99 | grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
100 | [grid_shape[0], 1, 1, 1])
101 | grid = K.concatenate([grid_x, grid_y])
102 | grid = K.cast(grid, K.dtype(feats))
103 |
104 | feats = K.reshape(
105 | feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])
106 |
107 | box_xy = K.sigmoid(feats[..., :2])
108 | box_wh = K.exp(feats[..., 2:4])
109 | box_confidence = K.sigmoid(feats[..., 4:5])
110 | box_class_probs = K.sigmoid(feats[..., 5:])
111 |
112 | # Adjust preditions to each spatial grid point and anchor size.
113 | box_xy = (box_xy + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
114 | box_wh = box_wh * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))
115 |
116 | return box_xy, box_wh, box_confidence, box_class_probs
117 |
118 |
119 | def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
120 | '''Get corrected boxes'''
121 | box_yx = box_xy[..., ::-1]
122 | box_hw = box_wh[..., ::-1]
123 | input_shape = K.cast(input_shape, K.dtype(box_yx))
124 | image_shape = K.cast(image_shape, K.dtype(box_yx))
125 | new_shape = K.round(image_shape * K.min(input_shape/image_shape))
126 | offset = (input_shape-new_shape)/2./input_shape
127 | scale = input_shape/new_shape
128 | box_yx = (box_yx - offset) * scale
129 | box_hw *= scale
130 |
131 | box_mins = box_yx - (box_hw / 2.)
132 | box_maxes = box_yx + (box_hw / 2.)
133 | boxes = K.concatenate([
134 | box_mins[..., 0:1], # y_min
135 | box_mins[..., 1:2], # x_min
136 | box_maxes[..., 0:1], # y_max
137 | box_maxes[..., 1:2] # x_max
138 | ])
139 |
140 | # Scale boxes back to original image shape.
141 | boxes *= K.concatenate([image_shape, image_shape])
142 | return boxes
143 |
144 |
145 | def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):
146 | '''Process Conv layer output'''
147 | box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats,
148 | anchors, num_classes, input_shape)
149 | boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
150 | boxes = K.reshape(boxes, [-1, 4])
151 | box_scores = box_confidence * box_class_probs
152 | box_scores = K.reshape(box_scores, [-1, num_classes])
153 | return boxes, box_scores
154 |
155 |
156 | def yolo_eval(yolo_outputs,
157 | anchors,
158 | num_classes,
159 | image_shape,
160 | max_boxes=20,
161 | score_threshold=.6,
162 | iou_threshold=.5):
163 | """Evaluate YOLO model on given input and return filtered boxes."""
164 | anchor_mask = [[6,7,8], [3,4,5], [0,1,2]]
165 | input_shape = K.shape(yolo_outputs[0])[1:3] * 32
166 | boxes = []
167 | box_scores = []
168 | for l in range(3):
169 | _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
170 | anchors[anchor_mask[l]], num_classes, input_shape, image_shape)
171 | boxes.append(_boxes)
172 | box_scores.append(_box_scores)
173 | boxes = K.concatenate(boxes, axis=0)
174 | box_scores = K.concatenate(box_scores, axis=0)
175 |
176 | mask = box_scores >= score_threshold
177 | max_boxes_tensor = K.constant(max_boxes, dtype='int32')
178 | boxes_ = []
179 | scores_ = []
180 | classes_ = []
181 | for c in range(num_classes):
182 | # TODO: use keras backend instead of tf.
183 | class_boxes = tf.boolean_mask(boxes, mask[:, c])
184 | class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
185 | nms_index = tf.image.non_max_suppression(
186 | class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)
187 | class_boxes = K.gather(class_boxes, nms_index)
188 | class_box_scores = K.gather(class_box_scores, nms_index)
189 | classes = K.ones_like(class_box_scores, 'int32') * c
190 | boxes_.append(class_boxes)
191 | scores_.append(class_box_scores)
192 | classes_.append(classes)
193 | boxes_ = K.concatenate(boxes_, axis=0)
194 | scores_ = K.concatenate(scores_, axis=0)
195 | classes_ = K.concatenate(classes_, axis=0)
196 |
197 | return boxes_, scores_, classes_
198 |
199 |
200 | def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
201 | '''Preprocess true boxes to training input format
202 |
203 | Parameters
204 | ----------
205 | true_boxes: array, shape=(m, T, 5)
206 | Absolute x_min, y_min, x_max, y_max, class_code reletive to input_shape.
207 | input_shape: array-like, hw, multiples of 32
208 | anchors: array, shape=(N, 2), wh
209 | num_classes: integer
210 |
211 | Returns
212 | -------
213 | y_true: list of array, shape like yolo_outputs, xywh are reletive value
214 |
215 | '''
216 | anchor_mask = [[6,7,8], [3,4,5], [0,1,2]]
217 |
218 | true_boxes = np.array(true_boxes, dtype='float32')
219 | input_shape = np.array(input_shape, dtype='int32')
220 | boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
221 | boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
222 | true_boxes[..., 0:2] = boxes_xy/input_shape[::-1]
223 | true_boxes[..., 2:4] = boxes_wh/input_shape[::-1]
224 |
225 | m = true_boxes.shape[0]
226 | grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(3)]
227 | y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),
228 | dtype='float32') for l in range(3)]
229 |
230 | # Expand dim to apply broadcasting.
231 | anchors = np.expand_dims(anchors, 0)
232 | anchor_maxes = anchors / 2.
233 | anchor_mins = -anchor_maxes
234 | valid_mask = boxes_wh[..., 0]>0
235 |
236 | for b in range(m):
237 | # Discard zero rows.
238 | wh = boxes_wh[b, valid_mask[b]]
239 | # Expand dim to apply broadcasting.
240 | wh = np.expand_dims(wh, -2)
241 | box_maxes = wh / 2.
242 | box_mins = -box_maxes
243 |
244 | intersect_mins = np.maximum(box_mins, anchor_mins)
245 | intersect_maxes = np.minimum(box_maxes, anchor_maxes)
246 | intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
247 | intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
248 | box_area = wh[..., 0] * wh[..., 1]
249 | anchor_area = anchors[..., 0] * anchors[..., 1]
250 | iou = intersect_area / (box_area + anchor_area - intersect_area)
251 |
252 | # Find best anchor for each true box
253 | best_anchor = np.argmax(iou, axis=-1)
254 |
255 | for t, n in enumerate(best_anchor):
256 | for l in range(3):
257 | if n in anchor_mask[l]:
258 | i = np.floor(true_boxes[b,t,0]*grid_shapes[l][1]).astype('int32')
259 | j = np.floor(true_boxes[b,t,1]*grid_shapes[l][0]).astype('int32')
260 | n = anchor_mask[l].index(n)
261 | c = true_boxes[b,t, 4].astype('int32')
262 | y_true[l][b, j, i, n, 0:4] = true_boxes[b,t, 0:4]
263 | y_true[l][b, j, i, n, 4] = 1
264 | y_true[l][b, j, i, n, 5+c] = 1
265 | break
266 |
267 | return y_true
268 |
269 | def box_iou(b1, b2):
270 | '''Return iou tensor
271 |
272 | Parameters
273 | ----------
274 | b1: tensor, shape=(i1,...,iN, 4), xywh
275 | b2: tensor, shape=(j, 4), xywh
276 |
277 | Returns
278 | -------
279 | iou: tensor, shape=(i1,...,iN, j)
280 |
281 | '''
282 |
283 | # Expand dim to apply broadcasting.
284 | b1 = K.expand_dims(b1, -2)
285 | b1_xy = b1[..., :2]
286 | b1_wh = b1[..., 2:4]
287 | b1_wh_half = b1_wh/2.
288 | b1_mins = b1_xy - b1_wh_half
289 | b1_maxes = b1_xy + b1_wh_half
290 |
291 | # Expand dim to apply broadcasting.
292 | b2 = K.expand_dims(b2, 0)
293 | b2_xy = b2[..., :2]
294 | b2_wh = b2[..., 2:4]
295 | b2_wh_half = b2_wh/2.
296 | b2_mins = b2_xy - b2_wh_half
297 | b2_maxes = b2_xy + b2_wh_half
298 |
299 | intersect_mins = K.maximum(b1_mins, b2_mins)
300 | intersect_maxes = K.minimum(b1_maxes, b2_maxes)
301 | intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
302 | intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
303 | b1_area = b1_wh[..., 0] * b1_wh[..., 1]
304 | b2_area = b2_wh[..., 0] * b2_wh[..., 1]
305 | iou = intersect_area / (b1_area + b2_area - intersect_area)
306 |
307 | return iou
308 |
309 |
310 |
311 | def yolo_loss(args, anchors, num_classes, ignore_thresh=.5):
312 | '''Return yolo_loss tensor
313 |
314 | Parameters
315 | ----------
316 | yolo_outputs: list of tensor, the output of yolo_body
317 | y_true: list of array, the output of preprocess_true_boxes
318 | anchors: array, shape=(T, 2), wh
319 | num_classes: integer
320 | ignore_thresh: float, the iou threshold whether to ignore object confidence loss
321 |
322 | Returns
323 | -------
324 | loss: tensor, shape=(1,)
325 |
326 | '''
327 | yolo_outputs = args[:3]
328 | y_true = args[3:]
329 | anchor_mask = [[6,7,8], [3,4,5], [0,1,2]]
330 | input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
331 | grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(3)]
332 | loss = 0
333 | m = K.shape(yolo_outputs[0])[0]
334 |
335 | for l in range(3):
336 | object_mask = y_true[l][..., 4:5]
337 | true_class_probs = y_true[l][..., 5:]
338 |
339 | pred_xy, pred_wh, pred_confidence, pred_class_probs = yolo_head(yolo_outputs[l],
340 | anchors[anchor_mask[l]], num_classes, input_shape)
341 | pred_box = K.concatenate([pred_xy, pred_wh])
342 |
343 | # Darknet box loss.
344 | xy_delta = (y_true[l][..., :2]-pred_xy)*grid_shapes[l][::-1]
345 | wh_delta = K.log(y_true[l][..., 2:4]) - K.log(pred_wh)
346 | # Avoid log(0)=-inf.
347 | wh_delta = K.switch(object_mask, wh_delta, K.zeros_like(wh_delta))
348 | box_delta = K.concatenate([xy_delta, wh_delta], axis=-1)
349 | box_delta_scale = 2 - y_true[l][...,2:3]*y_true[l][...,3:4]
350 |
351 | # Find ignore mask, iterate over each of batch.
352 | ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
353 | object_mask_bool = K.cast(object_mask, 'bool')
354 | def loop_body(b, ignore_mask):
355 | true_box = tf.boolean_mask(y_true[l][b,...,0:4], object_mask_bool[b,...,0])
356 | iou = box_iou(pred_box[b], true_box)
357 | best_iou = K.max(iou, axis=-1)
358 | ignore_mask = ignore_mask.write(b, K.cast(best_iou