├── README.md └── figure ├── Again-VC-table.png ├── Again-VC.png ├── EST.png ├── FIF.png ├── FastVC.png ├── SVC_PPG.png ├── SVC_PPG2.png ├── fragmentVC1.png └── v2s.png /README.md: -------------------------------------------------------------------------------- 1 | # ICASSP2021_paper_list-VC 2 | Papers accepted to ICASSP 2021 in term of voice conversion (VC) 3 | 4 | - [ICASSP2021_paper_list-VC](#icassp2021_paper_list-vc) 5 | - [VC](#vc) 6 | - [Zero-shot and low-resource VC](#zero-shot-and-low-resource-vc) 7 | - [cross-lingual VC](#cross-lingual-vc) 8 | - [Toolkit](#toolkit) 9 | - [Dataset](#dataset) 10 | - [Reading Note](#reading-note) 11 | - [1. Fragmentvc: any-to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with attention.](#1-fragmentvc-any-to-any-voice-conversion-by-end-to-end-extracting-and-fusing-fine-grained-voice-fragments-with-attention) 12 | - [2. Maskcyclegan-vc: learning non-parallel voice conversion with filling in frames.](#2-maskcyclegan-vc-learning-non-parallel-voice-conversion-with-filling-in-frames) 13 | - [3. PPG-based singing voice conversion with adversarial representation learning.](#3-ppg-based-singing-voice-conversion-with-adversarial-representation-learning) 14 | - [4. Again-vc: a one-shot voice conversion using activation guidance and adaptive instance normalization.](#4-again-vc-a-one-shot-voice-conversion-using-activation-guidance-and-adaptive-instance-normalization) 15 | - [5. Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset.](#5--seen-and-unseen-emotional-style-transfer-for-voice-conversion-with-a-new-emotional-speech-dataset) 16 | - [6. Towards natural and controllable cross-lingual voice conversion based on neural tts model and phonetic posteriorgram](#6-towards-natural-and-controllable-cross-lingual-voice-conversion-based-on-neural-tts-model-and-phonetic-posteriorgram) 17 | - [7. End-to-end lyrics recognition with voice to singing style transfer.](#7-end-to-end-lyrics-recognition-with-voice-to-singing-style-transfer) 18 | 19 | ## VC 20 | 21 | 1. [Maskcyclegan-vc: learning non-parallel voice conversion with filling in frames.](#2-maskcyclegan-vc-learning-non-parallel-voice-conversion-with-filling-in-frames-non-parallel-vc) ([paper](https://arxiv.org/pdf/2102.12841.pdf),[page](http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/maskcyclegan-vc/index.html)) 22 | 2. Non-autoregressive sequence-to-sequence voice conversion. 23 | 3. Non-parallel many-to-many voice conversion by knowledge transfer from a text-to-speech model. 24 | 4. Non-parallel many-to-many voice conversion using local linguistic tokens. 25 | 5. [PPG-based singing voice conversion with adversarial representation learning.](#3-ppg-based-singing-voice-conversion-with-adversarial-representation-learning)([paper](https://arxiv.org/pdf/2010.14804.pdf),[demo](https://lzh1.github.io/singVC/)) 26 | 27 | ## Zero-shot and low-resource VC 28 | 29 | 1. [Again-vc: a one-shot voice conversion using activation guidance and adaptive instance normalization.](#4-again-vc-a-one-shot-voice-conversion-using-activation-guidance-and-adaptive-instance-normalization) ([paper](https://arxiv.org/pdf/2011.00316.pdf),[code](https://github.com/KimythAnly/AGAIN-VC)) 30 | 2. [Any-to-One Sequence-to-Sequence Voice Conversion using Self-Supervised Discrete Speech Representations.](#5-any-to-one-sequence-to-sequence-voice-conversion-using-self-supervised-discrete-speech-representations) ([paper](https://arxiv.org/pdf/2010.12231.pdf),[Espnet parameter](https://gist.github.com/unilight/a48f99cf6a47c0b4e5b96fe1d6e59397)) 31 | 3. [Fragmentvc: any-to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with attention.](#1-fragmentvc-any-to-any-voice-conversion-by-end-to-end-extracting-and-fusing-fine-grained-voice-fragments-with-attention-non-parallel-vc) ([paper](https://arxiv.org/pdf/2010.14150.pdf),[code](https://github.com/yistLin/FragmentVC)) 32 | 4. [End-to-end lyrics recognition with voice to singing style transfer.](#7-end-to-end-lyrics-recognition-with-voice-to-singing-style-transfer) ([paper](https://arxiv.org/pdf/2102.08575.pdf),[demo](https://github.com/iiscleap/V2S_Samples)) 33 | 5. One-shot voice conversion based on speaker aware module 34 | 6. [Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset.](#5--seen-and-unseen-emotional-style-transfer-for-voice-conversion-with-a-new-emotional-speech-dataset) ([paper](https://arxiv.org/pdf/2010.14794.pdf),[code](https://kunzhou9646.github.io/controllable-evc/)) 35 | 7. [Towards low-resource stargan voice conversion using weight adaptive instance normalization.](#6-towards-natural-and-controllable-cross-lingual-voice-conversion-based-on-neural-tts-model-and-phonetic-posteriorgram) ([paper](https://arxiv.org/pdf/2010.11646.pdf),[code](https://github.com/MingjieChen/LowResourceVC)) 36 | 8. Zero-shot voice conversion with adjusted speaker embeddings and simple acoustic features. 37 | 9. Extending parrotron: an end-to-end, speech conversion and speech recognition model for atypical speech. 38 | 10. Zero-shot voice conversion with adjusted speaker embeddings and simple acoustic features. 39 | 40 | 41 | ## cross-lingual VC 42 | 1. Multi-task wavernn with an integrated architecture for cross-lingual voice conversion 43 | 2. [Towards natural and controllable cross-lingual voice conversion based on neural tts model and phonetic posteriorgram](#6-towards-natural-and-controllable-cross-lingual-voice-conversion-based-on-neural-tts-model-and-phonetic-posteriorgram) ([paper](https://arxiv.org/pdf/2102.01991.pdf)) 44 | 45 | ## Toolkit 46 | 47 | 1. crank: an open-source software for nonparallel voice conversion based on vector-quantized variational autoencoder ([paper](https://arxiv.org/pdf/2103.02858.pdf),[code](https://github.com/k2kobayashi/crank)) 48 | 49 | 50 | ## Dataset 51 | 52 | * [EVC: multi-speaker and multi-lingual emotional speech. (parallel voice conversion dataset)](https://github.com/HLTSingapore/Emotional-Speech-Data 53 | ) 包含中英文各10个说话人,共计350条平行语料。每句话的平局时长为2.9s. 情感类别包括:1) happy, 2) sad, 3) neutral, 4) angry, and 5) surprise. 54 | 55 | ## Reading Note 56 | 57 | ### 1. Fragmentvc: any-to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with attention. 58 | 59 | * 概要:通过Wav2Vec获取source speaker说话人无关的语音内容特征,利用cross-attention的形式从target speaker的语音特征中获取说话人信息,并在decode阶段重构具有source speaker内容和target speaker音色的梅尔普。**通过两阶段训练的方式,可以在不利用disentangle等策略和平行语料的条件下,仅通过L1损失实现模型的训练。** 60 | * code: https://github.com/yistLin/FragmentVC 61 | 62 | 63 | 64 | * 利用在Librispeech上预训练的wav2vec提取source speaker的语义内容特征。 65 | * Target encoder由一维卷积和激活函数ReLU构成。 66 | * Extractor: Transformer with self-attention and cross-attention。三个Extractor和对应的三个Conn1d构成了stack式的连接。 67 | * Smoother: Transformer with only self-attention. Smoother和Extractor中的feed-forward layer由一层一维卷积代替。 68 | * 由于Wav2Vec不可避免的保留了一些源说话人的信息,作者在Extractor 1中去掉了残差连接,认为这样可以尽可能剔除源说话人的信息。 69 | * **训练策略:** 第一阶段:利用同一个人的同一句话同时作为target和source的输入,以训练模型从Wav2Vec特征重构mel谱特征的能力。第二阶段:target和source的输入依旧来自于同一个人,不同的是,target的输入是10个语音片段的拼接,而source的输入只是一句话。需要注意的是,在开始阶段,source的输入来自于输入target的十句话中的一句,随着训练的进行,逐渐增大来自这十句以外的概率,并最终使得source的输入是来自target十句的概率为0. 70 | 71 | ### 2. Maskcyclegan-vc: learning non-parallel voice conversion with filling in frames. 72 | 73 | 74 | * 概要:在CycleGAN-VC2基础上,借鉴Bert及image inpainting的训练方法,对source speech添加mask, 并训练conversion网络对mask的区域进行fill. 75 | 76 | 77 | 78 | * 文中尝试了几种不同的mask概率,包括:1)固定概率 2)在某一个概率范围内的随机选择. 实验发现,mask在概率[0,50]随机选择时效果最好。 79 | * 文中尝试了几种不同的mask方式,包括:1)连续帧的mask 2)不连续帧的mask 3)对某一个频带范围进行mask 4)离散点的mask. 实验发现连续帧的mask形式,也即示意图中的$m$表现最好。 80 | 81 | ### 3. PPG-based singing voice conversion with adversarial representation learning. 82 | 83 | * 概要: 借助PPG特征获取source singer的文本内容信息。但是由于在SVC中源说话人的韵律、节奏等也是很重要的信息,所以文中有引入了Singer Confusion Module来补充源说话人除了音色以外的信息。 84 | 85 | 86 | 87 | * Singer Confusion Module的训练采用了对抗训练的方式,学习一个singer-indpendent的mel谱特征。为了进一步确保所学特征包含了除音色(singer identity)以外的其他信息,增加了一个Mel-Regressive Representation learning Module。该模块通过将学习到的mel特征和speaker embedding融合并重构原始song. 88 | 89 | 90 | ### 4. Again-vc: a one-shot voice conversion using activation guidance and adaptive instance normalization. 91 | * 概要:Again-VC在AdaIN-VC的基础上去掉了单独的Speaker Encoder, 转而利用Content Encoder中的instance normalization操作获取均值和方差信息来传递speaker信息。这一speark信息在decode过程中,通过与content embedding进行Adaptive instance normalization (AdaIN) 操作进行speaker信息的传递。 92 | 93 | * code: https://github.com/KimythAnly/AGAIN-VC 94 | 95 | 96 | * 关于instance normalization (IN): 对于一个mel谱$Z$, IN操作如下为: 97 | $\operatorname{IN}(Z)=\frac{Z-\mu(Z)}{\sigma(Z)}$,其中平均值$\mu$和方差$\sigma$是基于channel wise的。在AdaIN-VC中,作者认为这种时间不变性的参数$\mu$和$\sigma$是可以代表speaker信息的。 98 | 99 | * Adaptive instance nomalization (AdapIN) 可以看作是IN的逆操作,不过这里采用的$\mu$和$\sigma$是目标说话的参数。比如,如果我们希望保留$H$的内容,但将风格迁移到$Z$的风格上,AdapIN的操作可表示为:$\operatorname{AdaIN}(\boldsymbol{H}, \mu(\boldsymbol{Z}), \sigma(\boldsymbol{Z}))=\sigma(\boldsymbol{Z}) \operatorname{IN}(\boldsymbol{H})+\mu(\boldsymbol{Z})$ 100 | 101 | 102 | * 文中有意思的一点是关于激活函数的选择。作者认为,通过在encoder的输出层添加激活函数(如图中左下角的Activations)可以更好的去除content embedding中的源说话人信息。文中对比了几种不同的激活函数,发现sigmoid的效果最好。如下表所示,分别利用content embedding ($C$)和由$\mu$及$\sigma$组成的speaker info $S$训练一个speaker的分类器,理想状态下基于$C$的精度越低越好,而基于$S$的精度应该越高越好: 103 | 104 | 105 | 106 | ### 5. Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset. 107 | 108 | * 概要:利用autoenoder的形式对语音的情感信息进行解耦,并借助额外的情感特征提取器获取目标情感信息,从而重构出具有目标情感的语音。这里采用了VAW-GAN的形式。 109 | * Released Data: https://github.com/HLTSingapore/Emotional-Speech-Data 110 | * Code: https://kunzhou9646.github.io/controllable-evc/ 111 | 112 | 113 | 114 | * 与VC不同的是,emtional style transfer只transform情感信息,而保留目标说话人的内容和音色(speaker identiy)信息. 115 | * 训练采用了平行语料。 116 | 117 | ### 6. Towards natural and controllable cross-lingual voice conversion based on neural tts model and phonetic posteriorgram 118 | 119 | * 概要:利用PPGs特征作为桥梁,将cross-lingual voice coversion问题实质上是转换成了source speech - ASR - TTS问题。 120 | 121 | 122 | 123 | * Controllable: 由于该模型是的输入和输出是等长的,所以通过对输入的PPGs进行上采样或着下采样可以起到调节语速的作用。从这个角度上将,作者将之称为Controllable. 124 | * 文中TTS的AM采用了Fastspeech, 所以作者也将文中提出的模型称为FastSpeech-VC. Vocoder 采用了LPCNet. 125 | 126 | ### 7. End-to-end lyrics recognition with voice to singing style transfer. 127 | 128 | * 概要: 为了解决端到端歌词转译数据不足的问题,文中提出了一种将自然语音转为歌唱嗓音的一种数据增强的方法(V2S, voice to singing)。具体方法是借助了语音和成系统WORLD, 以歌声的基频f0和自然语音的谱包络和aperiodic参数为输入,生成歌声数据。 129 | 130 | 131 | 132 | * 相比于随机选择歌声和自然语音,作者发现选择基频相近的两组数据可以合成更好的歌声结果。 -------------------------------------------------------------------------------- /figure/Again-VC-table.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/Again-VC-table.png -------------------------------------------------------------------------------- /figure/Again-VC.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/Again-VC.png -------------------------------------------------------------------------------- /figure/EST.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/EST.png -------------------------------------------------------------------------------- /figure/FIF.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/FIF.png -------------------------------------------------------------------------------- /figure/FastVC.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/FastVC.png -------------------------------------------------------------------------------- /figure/SVC_PPG.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/SVC_PPG.png -------------------------------------------------------------------------------- /figure/SVC_PPG2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/SVC_PPG2.png -------------------------------------------------------------------------------- /figure/fragmentVC1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/fragmentVC1.png -------------------------------------------------------------------------------- /figure/v2s.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinshengwang/ICASSP2021_paper_list-VC/5f274dd83600c57a3ca1605925c9fa178fd4e3eb/figure/v2s.png --------------------------------------------------------------------------------