├── LICENSE ├── README.md ├── example ├── BTMF │ ├── btmf_net.pdf │ ├── slide1.png │ ├── slide2.png │ ├── slides.pdf │ └── slides.tex ├── MF-TF-SFR │ ├── graphics │ │ ├── MF_convergence_over_gd_and_als_within_1000iter.pdf │ │ ├── MF_convergence_over_gd_and_als_within_1000iter_Seattle.pdf │ │ ├── MF_convergence_over_gd_and_als_within_100iter.pdf │ │ ├── MF_convergence_over_gd_and_als_within_200iter_Seattle.pdf │ │ ├── Polytechnique_signature-RGB-gauche_FR.png │ │ ├── Portland_traffic_speed.png │ │ ├── fluid_flow_heatmap_2_times_4.png │ │ ├── gaint_panda_gray.png │ │ ├── gaint_panda_gray_missing_rate_90.png │ │ ├── gaint_panda_gray_recovery_90_mf_rank_50_lmbda_0.png │ │ ├── gaint_panda_gray_recovery_90_mf_rank_50_lmbda_10.png │ │ ├── ivado_logo.jpg │ │ ├── lijun_sun.jpg │ │ ├── matrix_element.pdf │ │ ├── matrix_factorization_illustration.pdf │ │ ├── nicolas_saunier.png │ │ ├── portland_sensor_stations.png │ │ ├── smoothing_matrix_factorization_illustration.pdf │ │ ├── speed_field_80_missing_data.png │ │ ├── speed_field_HTF_rec_tau_10.png │ │ ├── speed_field_HTF_rec_tau_15.png │ │ ├── speed_field_MF_als_rec.png │ │ ├── speed_field_MF_gd_rec.png │ │ ├── speed_field_MF_sgd_rec.png │ │ ├── speed_field_SMF_rec_lambda_10.png │ │ ├── speed_field_SMF_rec_lambda_100.png │ │ ├── speed_field_fully_data.png │ │ ├── tensor_element.pdf │ │ ├── third_order_Hankel_tensor.pdf │ │ ├── third_orderr_CP_factorization_simple_notation.pdf │ │ └── xinyu_chen.png │ └── slides.tex ├── missing-data-patterns │ ├── slide.pdf │ ├── slide.png │ └── slide.tex ├── parent-functions │ ├── slide.pdf │ ├── slide.png │ └── slide.tex ├── ridesharing-innovation │ ├── images │ │ ├── README.md │ │ ├── didi_logo.png │ │ ├── lyft_logo.png │ │ ├── ridesharing_allocation.jpg │ │ ├── ridesharing_illustration.jpg │ │ ├── ridesharing_interface.png │ │ └── uber_brand.png │ ├── slide.pdf │ ├── slide.png │ └── slide.tex ├── social-learning │ ├── images │ │ ├── Bandura.jpg │ │ ├── Chomsky.png │ │ ├── README.md │ │ ├── Skinner.jpg │ │ ├── bobo_doll.png │ │ └── bobo_doll_experiment.jpg │ ├── slide.pdf │ ├── slide.tex │ ├── slide1.png │ └── slide2.png └── tensor-factorization │ ├── slide1.png │ ├── slide2.png │ ├── slides.pdf │ └── slides.tex └── reading-notes ├── NYC_transportation ├── graphics │ ├── Empire_State_Building.jpg │ ├── Midtown_Manhattan.jpg │ ├── bronx_bus_map.png │ ├── brooklyn_bus_map.png │ ├── citibike.png │ ├── citibike2.png │ ├── citibike_monthly_trips.png │ ├── citibike_popular_road.png │ ├── cv_technology.png │ ├── find_a_bike.png │ ├── lady_liberty.jpg │ ├── manhattan_bus_map.png │ ├── mobility1.png │ ├── mobility2.png │ ├── modal_share.png │ ├── nyc_bus.png │ ├── nyc_ghg.png │ ├── nyc_ghg_transport.png │ ├── nyc_map.png │ ├── nyc_mobility_stat1.png │ ├── nyc_mobility_stat2.png │ ├── shared_mobility.png │ └── subway_map.png ├── main.pdf └── main.tex ├── deblurring-images-slides ├── graphics │ ├── book-cover.png │ ├── exact-vs-blurred-images.png │ └── sharp-vs-blurred-images.png └── main.tex └── social-learning-slides ├── .DS_Store ├── graphics ├── Bandura.jpg ├── Chomsky.png ├── Skinner.jpg ├── bobo_doll.png ├── bobo_doll_experiment.jpg ├── congested_taxi.jpeg ├── use_chopsticks.png └── wechat.png ├── main.pdf └── main.tex /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2020 Xinyu Chen 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # awesome-beamer 2 | Creating presentation slides by using Beamer in LaTeX. [[What is Beamer in LaTeX?](https://en.wikipedia.org/wiki/Beamer_(LaTeX))] 3 | 4 | ### Beamer Examples 5 | 6 | [**Example 1**] Social learning (background & example) 7 | 8 |

9 | 10 | 11 |

12 | 13 | If you want to reproduce these slides on [overleaf.com](https://www.overleaf.com), please follow these steps: 14 | 15 | - Upload the file `slide.tex` (check out `slide.tex` at [here](https://github.com/xinychen/awesome-beamer/blob/main/example/social-learning/slide.tex)). 16 | - Upload the image folder `../social-learning/images/` (check out the folder at [here](https://github.com/xinychen/awesome-beamer/tree/main/example/social-learning/images), please upload all images). 17 | - Recompile `slide.tex` on your Overleaf project. 18 | 19 | [**Example 2**] Ridesharing (innovation history) 20 | 21 |

22 | 23 |

24 | 25 | If you want to reproduce this slide on [overleaf.com](https://www.overleaf.com), please follow these steps: 26 | 27 | - Upload the file `slide.tex` (check out `slide.tex` at [here](https://github.com/xinychen/awesome-beamer/blob/main/example/ridesharing-innovation/slide.tex)). 28 | - Upload the image folder `../ridesharing-innovation/images/` (check out the folder at [here](https://github.com/xinychen/awesome-beamer/tree/main/example/ridesharing-innovation/images), please upload all images). 29 | - Recompile `slide.tex` on your Overleaf project. 30 | 31 | [**Example 3**] Math parent function (a list) 32 | 33 | > This slide is created by referring to [this tutorial](https://www.youtube.com/watch?v=0fsWGg81RwU&list=PL1D4EAB31D3EBC449&index=12). 34 | 35 |

36 | 37 |

38 | 39 | If you want to reproduce this slide on [overleaf.com](https://www.overleaf.com), please follow these steps: 40 | 41 | - Upload the file `slide.tex` (check out `slide.tex` at [here](https://github.com/xinychen/awesome-beamer/blob/main/example/parent-functions/slide.tex)). 42 | - Recompile `slide.tex` on your Overleaf project. 43 | 44 | [**Example 4**] Missing data patterns 45 | 46 |

47 | 48 |

49 | 50 | If you want to reproduce this slide on [overleaf.com](https://www.overleaf.com), please follow these steps: 51 | 52 | - Upload the file `slide.tex` (check out `slide.tex` at [here](https://github.com/xinychen/awesome-beamer/blob/main/example/missing-data-patterns/slide.tex)). 53 | - Recompile `slide.tex` on your Overleaf project. 54 | 55 | [**Example 5**] Bayesian temporal matrix factorization (BTMF) 56 | 57 |

58 | 59 | 60 |

61 | 62 | If you want to reproduce these slides on [overleaf.com](https://www.overleaf.com), please follow these steps: 63 | 64 | - Upload the image `btmf_net.pdf` and the file `slides.tex` (check out them at the folder [../example/BTMF](https://github.com/xinychen/awesome-beamer/tree/main/example/BTMF)). 65 | - Recompile `slides.tex` on your Overleaf project. 66 | 67 | > The whole slides are avaiable on [Zenodo](https://doi.org/10.5281/zenodo.4693404). 68 | 69 | [**Example 6**] Tensor factorization with Bayesian treatment 70 | 71 |

72 | 73 | 74 |

75 | 76 | If you want to reproduce these slides on [overleaf.com](https://www.overleaf.com), please follow these steps: 77 | 78 | - Upload the file `slides.tex` (check out it at [here](https://github.com/xinychen/awesome-beamer/blob/main/example/tensor-factorization/slides.tex)). 79 | - Recompile `slides.tex` on your Overleaf project. 80 | 81 | > The whole slides are avaiable on [Zenodo](https://doi.org/10.5281/zenodo.4693404). 82 | 83 | ### Helpful Questions & Answers 84 | 85 | 1. [How do I align an image to centre?](https://tex.stackexchange.com/questions/53862) [350k+ views] 86 | 2. [Blocks in Beamer](https://tex.stackexchange.com/q/174257/227605) [240+k views] 87 | 3. [How to scale a tikzpicture including texts?](https://tex.stackexchange.com/questions/26846) [200k+ views] 88 | 4. [LaTeX beamer presentation-package 16:9 aspect ratio?](https://tex.stackexchange.com/questions/14336) [140k+ views] 89 | 5. [How to insert a background image in a beamer frame?](https://tex.stackexchange.com/questions/7916) [130k+ views] 90 | 6. [Positioning content at the top of a beamer slide (by default)](https://tex.stackexchange.com/questions/9889) [100k+ views] 91 | 7. [logo in the first page only](https://tex.stackexchange.com/questions/61051) [90k+ views] 92 | 8. [Add space between paragraphs in Beamer](https://tex.stackexchange.com/questions/11622) [90k+ views] 93 | 9. [Animation on beamer](https://tex.stackexchange.com/questions/177057/animation-on-beamer) [85+ views] 94 | 10. [Design a custom Beamer theme from scratch](https://tex.stackexchange.com/questions/146529) [80k+ views] 95 | 11. [Where to find custom beamer themes](https://tex.stackexchange.com/questions/5828) [60k+ views] 96 | 12. [How to overlap images in a beamer slide?](https://tex.stackexchange.com/questions/34921) [60k+ views] 97 | 13. [How to include existing PDF slides into my Beamer presentation?](https://tex.stackexchange.com/questions/57441) [40k+ views] 98 | 14. [Using pause without increasing page number](https://tex.stackexchange.com/questions/191218) [10k+ views] 99 | 15. [Add Overlays in beamer \tableofcontents items](https://tex.stackexchange.com/q/67218/227605) [10k+ views] 100 | 101 | ### Helpful Material 102 | 103 | - [The TikZ and PGF Packages Manual](https://www.bu.edu/math/files/2013/08/tikzpgfmanual.pdf), created by Till Tantau. 104 | 105 | - [LaTeX Tutorials](https://www.michellekrummel.com/tutorials), created by Michelle Krummel. 106 | 107 | - [Drawing with the tikz-3dplot Package](https://latex.net/tikz-3dplot/), created by Jeff Hein. 108 | 109 | - [Three Dimensional Plot Types](https://tikz.dev/pgfplots/reference-3dplots). 110 | -------------------------------------------------------------------------------- /example/BTMF/btmf_net.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/BTMF/btmf_net.pdf -------------------------------------------------------------------------------- /example/BTMF/slide1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/BTMF/slide1.png -------------------------------------------------------------------------------- /example/BTMF/slide2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/BTMF/slide2.png -------------------------------------------------------------------------------- /example/BTMF/slides.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/BTMF/slides.pdf -------------------------------------------------------------------------------- /example/BTMF/slides.tex: -------------------------------------------------------------------------------- 1 | \documentclass{beamer} 2 | 3 | \usepackage[utf8]{inputenc} 4 | \usefonttheme{professionalfonts} 5 | \usepackage{tikz} 6 | \newcommand{\topline}{ 7 | \tikz[remember picture, overlay] { 8 | \draw[gray, thick] ([xshift = 1cm, yshift = -1.2cm]current page.north west) 9 | -- ([xshift = -1cm, yshift = -1.2cm, xshift = \paperwidth]current page.north west);}} 10 | 11 | \setbeamertemplate{frametitle}[default][center] 12 | \setbeamertemplate{navigation symbols}{} 13 | \setbeamerfont{footline}{series = \bfseries} 14 | \setbeamertemplate{footline}[page number] 15 | 16 | \begin{document} 17 | 18 | \begin{frame} 19 | \frametitle{\color{black}\textbf{Bayesian Temporal Matrix Factorization}} 20 | \topline 21 | 22 | \footnotesize 23 | Model description\footnote{\scriptsize $\mathcal{N}(\cdot)$: Gaussian/Normal distribution; $\mathcal{W}(\cdot)$: Wishart distribution; $\mathcal{MN}(\cdot)$: Matrix normal distribution; $\mathcal{IW}(\cdot)$: Inverse Wishart distribution; $\text{Gamma}(\cdot)$: Gamma distribution.}: 24 | \scriptsize 25 | \begin{itemize} 26 | \item[\color{black}\textbullet] Assumption over observations: 27 | \begin{equation} 28 | y_{it}\sim\mathcal{N}\left(\boldsymbol{w}_i^\top\boldsymbol{x}_t,\tau_i^{-1}\right),\quad \left(i,t\right)\in\Omega 29 | \end{equation} 30 | \item[\color{black}\textbullet] Prior setting of factor matrices and precision: 31 | \begin{align} 32 | &\boldsymbol{w}_i\sim\mathcal{N}\left(\boldsymbol{\mu}_{w},\Lambda_w^{-1}\right),\\ 33 | &\boldsymbol{x}_{t}\sim\begin{cases} 34 | \mathcal{N}\left(\boldsymbol{0},I_R\right),&\text{if $t\in\left\{1,2,\ldots,h_d\right\}$}, \\ 35 | \mathcal{N}\left(A^\top \boldsymbol{v}_{t},\Sigma\right),&\text{otherwise}, 36 | \end{cases} \\ 37 | &\tau_i\sim\text{Gamma}\left(\alpha,\beta\right). 38 | \end{align} 39 | \item[\color{black}\textbullet] Prior setting of hyperparameters: 40 | \begin{align} 41 | &\boldsymbol{\mu}_w | \Lambda_w \sim\mathcal{N}\left(\boldsymbol{\mu}_0,(\beta_0\Lambda_w)^{-1}\right),\,\Lambda_w\sim\mathcal{W}\left(W_0,\nu_0\right), \\ 42 | &A\sim\mathcal{MN}_{(Rd)\times R}\left(M_0,\Psi_0,\Sigma\right),\,\Sigma \sim\mathcal{IW}\left(S_0,\nu_0\right), 43 | \end{align} 44 | \end{itemize} 45 | 46 | \end{frame} 47 | 48 | \begin{frame} 49 | \frametitle{\color{black}\textbf{Bayesian Temporal Matrix Factorization}} 50 | \topline 51 | 52 | \footnotesize 53 | Bayesian network: 54 | \begin{center} 55 | \includegraphics[scale=0.6]{graphics/btmf_net.pdf} 56 | \end{center} 57 | \scriptsize 58 | \begin{itemize} 59 | \item[\color{black}\textbullet] Graphical model of BTMF (time lag set: $\{1,2,\ldots,d\}$). The shaded node $(y_{i,t})$ are the observed data in $\Omega$. 60 | \end{itemize} 61 | \end{frame} 62 | 63 | \end{document} -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/MF_convergence_over_gd_and_als_within_1000iter.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/MF_convergence_over_gd_and_als_within_1000iter.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/MF_convergence_over_gd_and_als_within_1000iter_Seattle.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/MF_convergence_over_gd_and_als_within_1000iter_Seattle.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/MF_convergence_over_gd_and_als_within_100iter.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/MF_convergence_over_gd_and_als_within_100iter.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/MF_convergence_over_gd_and_als_within_200iter_Seattle.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/MF_convergence_over_gd_and_als_within_200iter_Seattle.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/Polytechnique_signature-RGB-gauche_FR.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/Polytechnique_signature-RGB-gauche_FR.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/Portland_traffic_speed.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/Portland_traffic_speed.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/fluid_flow_heatmap_2_times_4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/fluid_flow_heatmap_2_times_4.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/gaint_panda_gray.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/gaint_panda_gray.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/gaint_panda_gray_missing_rate_90.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/gaint_panda_gray_missing_rate_90.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/gaint_panda_gray_recovery_90_mf_rank_50_lmbda_0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/gaint_panda_gray_recovery_90_mf_rank_50_lmbda_0.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/gaint_panda_gray_recovery_90_mf_rank_50_lmbda_10.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/gaint_panda_gray_recovery_90_mf_rank_50_lmbda_10.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/ivado_logo.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/ivado_logo.jpg -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/lijun_sun.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/lijun_sun.jpg -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/matrix_element.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/matrix_element.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/matrix_factorization_illustration.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/matrix_factorization_illustration.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/nicolas_saunier.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/nicolas_saunier.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/portland_sensor_stations.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/portland_sensor_stations.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/smoothing_matrix_factorization_illustration.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/smoothing_matrix_factorization_illustration.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_80_missing_data.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_80_missing_data.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_HTF_rec_tau_10.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_HTF_rec_tau_10.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_HTF_rec_tau_15.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_HTF_rec_tau_15.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_MF_als_rec.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_MF_als_rec.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_MF_gd_rec.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_MF_gd_rec.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_MF_sgd_rec.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_MF_sgd_rec.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_SMF_rec_lambda_10.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_SMF_rec_lambda_10.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_SMF_rec_lambda_100.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_SMF_rec_lambda_100.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/speed_field_fully_data.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/speed_field_fully_data.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/tensor_element.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/tensor_element.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/third_order_Hankel_tensor.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/third_order_Hankel_tensor.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/third_orderr_CP_factorization_simple_notation.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/third_orderr_CP_factorization_simple_notation.pdf -------------------------------------------------------------------------------- /example/MF-TF-SFR/graphics/xinyu_chen.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/MF-TF-SFR/graphics/xinyu_chen.png -------------------------------------------------------------------------------- /example/MF-TF-SFR/slides.tex: -------------------------------------------------------------------------------- 1 | \documentclass{beamer} 2 | \usefonttheme{professionalfonts} 3 | 4 | \usepackage[utf8]{inputenc} 5 | \usepackage{graphicx, xcolor, color} 6 | \usepackage{amsmath, amsthm, amssymb, amsfonts} 7 | \usepackage{bbm} 8 | \usepackage{wasysym} 9 | \usepackage{pifont} 10 | \usepackage{emoji} 11 | \usepackage[absolute, overlay]{textpos} 12 | 13 | \usepackage{tikz} 14 | \usepackage{caption} 15 | \captionsetup[figure]{labelformat = empty} 16 | \usepackage{tabularx, booktabs} 17 | \usepackage{multicol} 18 | 19 | \usepackage{multirow} 20 | \DeclareMathOperator*{\argmax}{arg\,max} 21 | \DeclareMathOperator*{\argmin}{arg\,min} 22 | 23 | \usepackage{color} 24 | \usepackage{minted} 25 | \usepackage{caption} 26 | \captionsetup{font = scriptsize, labelfont = scriptsize} 27 | \setbeamerfont{frametitle}{size=\normalsize} 28 | \setbeamertemplate{section in toc}[ball unnumbered] 29 | % \setbeamertemplate{subsection in toc}[ball unnumbered] 30 | 31 | \setbeamertemplate{itemize items}[circle] 32 | \setbeamercolor{itemize item}{fg=black} 33 | 34 | \definecolor{light_red}{RGB}{209,105,81} 35 | \definecolor{fair_red}{RGB}{237,27,47} 36 | \definecolor{light_green}{RGB}{58,181,75} 37 | \definecolor{thick_blue}{RGB}{5,43,108} 38 | \definecolor{fair_blue}{RGB}{0,112,192} 39 | \definecolor{light_blue}{RGB}{0,153,228} 40 | \definecolor{light_brown}{RGB}{132, 60, 11} 41 | \usepackage{hyperref} 42 | \hypersetup{ 43 | colorlinks=true, 44 | linkcolor=blue, 45 | urlcolor=gray 46 | } 47 | \setbeamercolor{block title}{fg = black, bg = light_blue!40} 48 | \setbeamercolor{block body}{fg = black, bg = white} 49 | \setbeamertemplate{blocks}[rounded][shadow] 50 | \setbeamercolor{block title example}{fg = black, bg = orange!40} 51 | \setbeamercolor{block body example}{fg = black, bg = white} 52 | 53 | \setbeamercolor{block title alerted}{fg = black, bg = light_red!40} 54 | \setbeamercolor{section number projected}{bg=gray} 55 | \setbeamercolor{section number projected}{bg=gray} 56 | \setbeamercolor{subsection number projected}{bg=gray} 57 | \hypersetup{colorlinks=false} 58 | 59 | \setbeamertemplate{frametitle}[default][center] 60 | \setbeamertemplate{navigation symbols}{} 61 | \setbeamerfont{footline}{series=\bfseries} 62 | \setbeamertemplate{footline}[frame number]{} 63 | 64 | \usefonttheme{professionalfonts} 65 | \usepackage{tikz} 66 | \newcommand{\topline}{ 67 | \tikz[remember picture, overlay] { 68 | \draw[gray, thick] ([xshift = 1cm, yshift = -1cm]current page.north west) 69 | -- ([xshift = -1cm, yshift = -1cm, xshift = \paperwidth]current page.north west);}} 70 | 71 | \setbeamertemplate{frametitle}[default][center] 72 | \setbeamertemplate{navigation symbols}{} 73 | \setbeamerfont{footline}{series = \bfseries} 74 | \setbeamertemplate{footline}[page number] 75 | 76 | \begin{document} 77 | 78 | \begin{frame}[plain] 79 | 80 | \begin{tikzpicture}[remember picture, overlay] 81 | \node[xshift=2.7cm,yshift=-1.1cm] at (current page.north west) {\includegraphics[height = 2.25cm]{graphics/Polytechnique_signature-RGB-gauche_FR.png}}; 82 | \end{tikzpicture} 83 | 84 | \begin{tikzpicture}[remember picture, overlay] 85 | \node[xshift=10.5cm,yshift=-1.1cm] at (current page.north west) {\includegraphics[height = 1.25cm]{graphics/ivado_logo.jpg}}; 86 | \end{tikzpicture} 87 | 88 | {\color{white}title} 89 | 90 | \vspace{3em} 91 | 92 | \begin{center} 93 | {\color{black!80}\large\textbf{Low-Rank Matrix and Tensor Factorization} 94 | 95 | \vspace{0.2em} 96 | 97 | \textbf{for Speed Field Reconstruction}} 98 | 99 | \small 100 | 101 | \vspace{1.2em} 102 | 103 | \textbf{Xinyu Chen} 104 | 105 | \vspace{0.4em} 106 | 107 | {March 9, 2023} 108 | 109 | \vspace{0.5em} 110 | 111 | \begin{columns} 112 | \begin{column}{0.3\textwidth} 113 | \begin{figure} 114 | \centering 115 | \includegraphics[height = 2.0cm]{graphics/xinyu_chen.png} 116 | \caption*{\centering\scriptsize \textbf{Ph.D. candidate} \\Xinyu Chen\\ Polytechnique Montr\'eal} 117 | \end{figure} 118 | \end{column} 119 | \hspace{-3em} 120 | \begin{column}{0.3\textwidth} 121 | \begin{figure} 122 | \centering 123 | \includegraphics[height = 2cm]{graphics/nicolas_saunier.png} 124 | \caption*{\centering\scriptsize 125 | \textbf{Supervisor} \\ 126 | Prof. Nicolas Saunier\\ Polytechnique Montr\'eal} 127 | \end{figure} 128 | \end{column} 129 | \hspace{-3em} 130 | \begin{column}{0.3\textwidth} 131 | \begin{figure} 132 | \centering 133 | \includegraphics[height = 2cm]{graphics/lijun_sun.jpg} 134 | \caption*{\centering\scriptsize 135 | \textbf{Co-supervisor} \\ Prof. Lijun Sun\\ McGill University} 136 | \end{figure} 137 | \end{column} 138 | 139 | \end{columns} 140 | 141 | \end{center} 142 | 143 | \end{frame} 144 | 145 | \begin{frame}[plain] 146 | \footnotesize 147 | 148 | \begin{itemize} 149 | \item[\color{black}\ding{202}] \textbf{Slides}: {\color{light_blue}\url{https://xinychen.github.io/slides/MF_TF_SFR.pdf}} 150 | \item[\color{black}\ding{203}] \textbf{Jupyter Notebook}: {\color{light_blue}\url{https://github.com/xinychen/transdim/blob/master/toy-examples/MF_TF_SFR.ipynb}} 151 | \end{itemize} 152 | 153 | \end{frame} 154 | 155 | \begin{frame}[plain] 156 | \frametitle{\color{black}\textbf{Outline}} 157 | \topline 158 | \footnotesize 159 | 160 | \tableofcontents 161 | 162 | \end{frame} 163 | 164 | \section{\color{black}\textbf{Motivation}} 165 | 166 | \begin{frame}{\color{black}\textbf{Motivation}} 167 | \topline 168 | \footnotesize 169 | 170 | \begin{itemize} 171 | \item Portland highway traffic speed data\footnote{\scriptsize\color{light_blue}\url{https://portal.its.pdx.edu/home}} 172 | \end{itemize} 173 | 174 | \begin{center} 175 | \begin{tikzpicture} 176 | \pgfdeclareimage[height = 4cm]{img}{graphics/portland_sensor_stations.png} 177 | \node (img) at (0, 0) {\pgfuseimage{img}}; 178 | \node at (0, -2.3) {\color{gray}\scriptsize Highway network \& sensor locations}; 179 | 180 | \pgfdeclareimage[height = 3.5cm]{img}{graphics/portland_speed_field_I5_NB.png} 181 | \node (img) at (5.5, 0) {\pgfuseimage{img}}; 182 | \node at (5.5, -2) {\color{gray}\scriptsize Traffic speed field}; 183 | \end{tikzpicture} 184 | \end{center} 185 | 186 | \begin{itemize} 187 | \item Speed field $\boldsymbol{Y}\in\mathbb{R}^{N\times T}$ ($N$ locations \& $T$ time steps) 188 | \item Speed field shows strong spatial/temporal dependencies 189 | \end{itemize} 190 | 191 | \end{frame} 192 | 193 | \begin{frame}{\color{black}\textbf{Motivation}} 194 | \topline 195 | \footnotesize 196 | 197 | \begin{center} 198 | \begin{tikzpicture} 199 | \pgfdeclareimage[height = 2.8cm]{img}{graphics/speed_field_80_missing_data.png} 200 | \node (img) at (0, 0) {\pgfuseimage{img}}; 201 | \node at (0,-2) {\Large\color{gray}$\Downarrow$}; 202 | \node at (-1.5,-1.8) {\scriptsize $200$-by-$500$ matrix}; 203 | \node at (-1.5,-2.2) {\scriptsize (NGSIM)}; 204 | \node at (2,-1.8) {\scriptsize Reconstruct speed field from}; 205 | \node at (2,-2.2) {\scriptsize 20\% sparse trajectories?}; 206 | \pgfdeclareimage[height = 2.8cm]{img}{graphics/speed_field_fully_data.png} 207 | \node (img) at (0, -4) {\pgfuseimage{img}}; 208 | \end{tikzpicture} 209 | \end{center} 210 | 211 | \begin{itemize} 212 | \item How to learn from sparse spatiotemporal data? 213 | \item How to characterize spatial/temporal local dependencies? 214 | \end{itemize} 215 | 216 | \end{frame} 217 | 218 | \section{\color{black}\textbf{Matrix Factorization}} 219 | 220 | \subsection{\color{black}Optimization Problem} 221 | 222 | \begin{frame}{\color{black}\textbf{Matrix Factorization}} 223 | \topline 224 | \footnotesize 225 | 226 | \begin{itemize} 227 | \item Spatiotemporal data can be reconstructed by low-dimensional latent factors! 228 | \end{itemize} 229 | 230 | \begin{center} 231 | \begin{tikzpicture} 232 | \pgfdeclareimage[width=0.9\textwidth]{img}{graphics/matrix_factorization_illustration.pdf} 233 | \node (img) at (0, 0) {\pgfuseimage{img}}; 234 | 235 | \node [rotate=90] at (-4.9, 0.3) {\color{gray}\scriptsize Spatial locations}; 236 | \node at (-3.2, 1.5) {\color{gray}\scriptsize Time steps}; 237 | \node at (0, 1.5) {\color{gray}\scriptsize Spatial factors}; 238 | \node at (3.2, 1.2) {\color{gray}\scriptsize Temporal factors}; 239 | 240 | \end{tikzpicture} 241 | \end{center} 242 | 243 | \vspace{-1.5em} 244 | 245 | \begin{itemize} 246 | \item MF optimization problem 247 | \begin{equation*} 248 | \min_{\boldsymbol{W},\boldsymbol{X}}~\frac{1}{2}\left\|\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})\right\|_{F}^{2}+\frac{\rho}{2}\left(\|\boldsymbol{W}\|_{F}^{2}+\|\boldsymbol{X}\|_{F}^2\right) 249 | \end{equation*} 250 | with factor matrices $\boldsymbol{W}$ and $\boldsymbol{X}$. {\color{gray}\scriptsize($\|\cdot\|_{F}^2$ is the squared Frobenius norm.)} 251 | \begin{itemize}\scriptsize 252 | \item[\color{black}\circ] Objective function $f(\boldsymbol{W},\boldsymbol{X})$ or $f$; 253 | \item[\color{black}\circ] Rank $R\in\mathbb{N}^{+}$ ($R<\min\{N,T\}$); 254 | \item[\color{black}\circ] Orthogonal projection $\mathcal{P}_{\Omega}(\cdot)$.%:\mathbb{R}^{N\times T}\to\mathbb{R}^{N\times T}$ 255 | \end{itemize} 256 | \end{itemize} 257 | 258 | \end{frame} 259 | 260 | \begin{frame}{\color{black}\textbf{Matrix Factorization}} 261 | \topline 262 | \footnotesize 263 | 264 | \begin{center} 265 | \begin{tikzpicture} 266 | \pgfdeclareimage[width=0.9\textwidth]{img}{graphics/matrix_factorization_illustration.pdf} 267 | \node (img) at (0, 0) {\pgfuseimage{img}}; 268 | 269 | \node [rotate=90] at (-4.9, 0.3) {\color{gray}\scriptsize Spatial locations}; 270 | \node at (-3.2, 1.5) {\color{gray}\scriptsize Time steps}; 271 | \node at (0, 1.5) {\color{gray}\scriptsize Spatial factors}; 272 | \node at (3.2, 1.2) {\color{gray}\scriptsize Temporal factors}; 273 | 274 | \end{tikzpicture} 275 | \end{center} 276 | 277 | \vspace{-1em} 278 | 279 | \begin{itemize} 280 | \item MF optimization problem 281 | \end{itemize} 282 | \begin{equation*} 283 | \min_{\boldsymbol{W},\boldsymbol{X}}~\frac{1}{2}\left\|\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})\right\|_{F}^{2}+\frac{\rho}{2}\left(\|\boldsymbol{W}\|_{F}^{2}+\|\boldsymbol{X}\|_{F}^2\right) 284 | \end{equation*} 285 | 286 | \begin{itemize} 287 | \item Orthogonal projection $\color{cyan!70!black}\mathcal{P}_{\Omega}:\mathbb{R}^{N\times T}\to\mathbb{R}^{N\times T}$? 288 | \begin{itemize}\scriptsize 289 | \item[\color{black}\circ] Simple example: $\color{cyan!70!black}\boldsymbol{Y}=\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix}$ with $\color{cyan!70!black}\Omega=\{(1,1),(2,2)\}$, we have 290 | \begin{equation*} 291 | {\color{cyan!70!black}\mathcal{P}_{\Omega}(\boldsymbol{Y})=\begin{bmatrix} 292 | 1 & 0 \\ 0 & 4 \\ 293 | \end{bmatrix}} 294 | \quad\quad 295 | \mathcal{P}_{\Omega}^{\perp}(\boldsymbol{Y})=\begin{bmatrix} 296 | 0 & 2 \\ 3 & 0 \\ 297 | \end{bmatrix}\quad\text{(On the complement)} 298 | \end{equation*} 299 | \end{itemize} 300 | \item Role of regularization (with $\rho$): avoid overfitting. 301 | \end{itemize} 302 | 303 | \end{frame} 304 | 305 | \subsection{\color{black}GD vs. SGD vs. ALS} 306 | 307 | \begin{frame}{\color{black}\textbf{Matrix Factorization}} 308 | \topline 309 | \footnotesize 310 | 311 | \begin{itemize} 312 | \item MF optimization problem 313 | \end{itemize} 314 | 315 | \vspace{-1em} 316 | 317 | \begin{equation*} 318 | \min_{\boldsymbol{W},\boldsymbol{X}}~\frac{1}{2}\left\|\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})\right\|_{F}^{2}+\frac{\rho}{2}\left(\|\boldsymbol{W}\|_{F}^{2}+\|\boldsymbol{X}\|_{F}^2\right) 319 | \end{equation*} 320 | 321 | \begin{itemize} 322 | \item Partial derivatives 323 | \end{itemize} 324 | \begin{equation*} 325 | \left\{ 326 | \begin{aligned} 327 | \frac{\partial f}{\partial\boldsymbol{W}} 328 | &=-\boldsymbol{X}\mathcal{P}_{\Omega}^\top(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})+\rho\boldsymbol{W} \\ 329 | \frac{\partial f}{\partial\boldsymbol{X}} 330 | &=-\boldsymbol{W}\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})+\rho\boldsymbol{X} \\ 331 | \end{aligned}\right. 332 | \end{equation*} 333 | 334 | \begin{itemize} 335 | \item Gradient descent (\textbf{GD}) vs. Steepest gradient descent (\textbf{SGD}) 336 | \end{itemize} 337 | \begin{equation*} 338 | \left\{ 339 | \begin{aligned} 340 | \boldsymbol{W}:&=\boldsymbol{W}-\alpha\frac{\partial f}{\partial\boldsymbol{W}} \\ 341 | \boldsymbol{X}:&=\boldsymbol{X}-\alpha\frac{\partial f}{\partial\boldsymbol{X}} \\ 342 | \end{aligned}\right. 343 | \quad\text{vs.}\quad 344 | \left\{ 345 | \begin{aligned} 346 | \alpha:=&{\displaystyle\argmin_{\alpha}}~f(\boldsymbol{W}-\alpha \frac{\partial f}{\partial\boldsymbol{W}},\boldsymbol{X}) \\ 347 | \boldsymbol{W}:=&\boldsymbol{W}-\alpha \frac{\partial f}{\partial\boldsymbol{W}} \\ 348 | \beta:=&{\displaystyle\argmin_{\beta}}~f(\boldsymbol{W},\boldsymbol{X}-\beta \frac{\partial f}{\partial\boldsymbol{X}}) \\ 349 | \boldsymbol{X}:=&\boldsymbol{X}-\beta \frac{\partial f}{\partial\boldsymbol{X}} \\ 350 | \end{aligned}\right. 351 | \end{equation*} 352 | 353 | \begin{itemize}\scriptsize 354 | \item \textbf{Fixed} step size $\alpha$ (\textbf{GD}) vs. \textbf{optimal} step sizes $\{\alpha,\beta\}$ (\textbf{SGD}) 355 | \end{itemize} 356 | 357 | \end{frame} 358 | 359 | \begin{frame}{\color{black}\textbf{Matrix Factorization}} 360 | \topline 361 | \footnotesize 362 | 363 | \begin{itemize} 364 | \item MF optimization problem 365 | \end{itemize} 366 | 367 | \vspace{-1em} 368 | 369 | \begin{equation*} 370 | \min_{\boldsymbol{W},\boldsymbol{X}}~\frac{1}{2}\left\|\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})\right\|_{F}^{2}+\frac{\rho}{2}\left(\|\boldsymbol{W}\|_{F}^{2}+\|\boldsymbol{X}\|_{F}^2\right) 371 | \end{equation*} 372 | 373 | \begin{itemize} 374 | \item Partial derivatives 375 | \end{itemize} 376 | \begin{equation*} 377 | \left\{ 378 | \begin{aligned} 379 | \frac{\partial f}{\partial\boldsymbol{W}} 380 | &=-\boldsymbol{X}\mathcal{P}_{\Omega}^\top(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})+\rho\boldsymbol{W} \\ 381 | \frac{\partial f}{\partial\boldsymbol{X}} 382 | &=-\boldsymbol{W}\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})+\rho\boldsymbol{X} \\ 383 | \end{aligned}\right. 384 | \end{equation*} 385 | 386 | \begin{itemize} 387 | \item Alternating least squares (\textbf{ALS}) 388 | \end{itemize} 389 | \begin{equation*} 390 | \left\{ 391 | \begin{aligned} 392 | \frac{\partial f}{\partial\boldsymbol{W}}&=\boldsymbol{0} \\ 393 | \frac{\partial f}{\partial\boldsymbol{X}}&=\boldsymbol{0} \\ 394 | \end{aligned}\right. 395 | \Longrightarrow 396 | \left\{ 397 | \begin{aligned} 398 | \boldsymbol{w}_i&:=\Bigl(\sum_{t:(i,t)\in\Omega}\boldsymbol{x}_t\boldsymbol{x}_t^\top+\rho\boldsymbol{I}_{R}\Bigr)^{-1}\sum_{t:(i,t)\in\Omega}\boldsymbol{x}_ty_{i,t} \\ 399 | \boldsymbol{x}_t&:=\Bigl(\sum_{i:(i,t)\in\Omega}\boldsymbol{w}_i\boldsymbol{w}_i^\top+\rho\boldsymbol{I}_{R}\Bigr)^{-1}\sum_{i:(i,t)\in\Omega}\boldsymbol{w}_iy_{i,t} \\ 400 | \end{aligned}\right. 401 | \end{equation*} 402 | 403 | \begin{itemize} 404 | \item Latent factors 405 | \begin{itemize}\scriptsize 406 | \item[\color{black}\circ] $\boldsymbol{w}_{i}\in\mathbb{R}^{R},\,i=1,2,\ldots,N$ are the columns of $\boldsymbol{W}$; 407 | \item[\color{black}\circ] $\boldsymbol{x}_{t}\in\mathbb{R}^{R},\,t=1,2,\ldots,T$ are the columns of $\boldsymbol{X}$. 408 | \end{itemize} 409 | \end{itemize} 410 | 411 | \end{frame} 412 | 413 | \begin{frame}{\color{black}\textbf{Matrix Factorization}} 414 | \topline 415 | \footnotesize 416 | 417 | \textbf{Speed field reconstruction} 418 | \begin{itemize} 419 | \item Objective function $f$ vs. iteration 420 | \begin{itemize}\scriptsize 421 | \item[\color{black}\circ] Set rank $R=10$, weight parameter $\rho=10$; 422 | \item[\color{black}\circ] Set GD step size $\alpha=10^{-4}$. 423 | \end{itemize} 424 | \end{itemize} 425 | 426 | \begin{center} 427 | \begin{tikzpicture} 428 | \pgfdeclareimage[height = 3.5cm]{img}{graphics/MF_convergence_over_gd_and_als_within_1000iter.pdf} 429 | \node (img) at (0, 0) {\pgfuseimage{img}}; 430 | \pgfdeclareimage[height = 3.5cm]{img}{graphics/MF_convergence_over_gd_and_als_within_100iter.pdf} 431 | \node (img) at (5, 0) {\pgfuseimage{img}}; 432 | \end{tikzpicture} 433 | \end{center} 434 | 435 | \end{frame} 436 | 437 | \begin{frame}[plain] 438 | \footnotesize 439 | 440 | \begin{center} 441 | \begin{tikzpicture} 442 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_80_missing_data.png} 443 | \node (img) at (0, 0) {\pgfuseimage{img}}; 444 | \node at (0,-1.3) {\scriptsize Sparse speed field}; 445 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_MF_gd_rec.png} 446 | \node (img) at (5.8, 0) {\pgfuseimage{img}}; 447 | \node at (5.8,-1.3) {\scriptsize MF with GD}; 448 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_MF_sgd_rec.png} 449 | \node (img) at (0, 0-3) {\pgfuseimage{img}}; 450 | \node at (0,-1.3-3) {\scriptsize MF with SGD}; 451 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_MF_als_rec.png} 452 | \node (img) at (5.8, 0-3) {\pgfuseimage{img}}; 453 | \node at (5.8,-1.3-3) {\scriptsize MF with ALS}; 454 | \end{tikzpicture} 455 | \end{center} 456 | 457 | \begin{itemize} 458 | \item Reconstruction errors 459 | \end{itemize} 460 | 461 | \scriptsize 462 | \begin{equation*} 463 | \text{MAPE}=\begin{cases} 464 | 50.66\%\quad\text{(GD)} \\ 45.13\% \quad\text{(SGD)} \\ 45.84\% \quad\text{(ALS)} 465 | \end{cases}\quad\quad 466 | \text{RMSE}=\begin{cases} 467 | 2.33\quad\text{(GD)} \\ 2.79\quad\text{(SGD)} \\ 2.80\quad\text{(ALS)} 468 | \end{cases}\text{(mph)} 469 | \end{equation*} 470 | 471 | \end{frame} 472 | 473 | \begin{frame}{\color{black}\textbf{Matrix Factorization}} 474 | \topline 475 | \footnotesize 476 | 477 | \textbf{Seattle freeway traffic speed dataset} {\scriptsize\color{gray}(randomly mask 60\% entries)} 478 | \begin{itemize} 479 | \item Dataset: 323 loop detectors \& 8,064 time steps (288 per day) 480 | \item Objective function $f$ vs. iteration 481 | \begin{itemize}\scriptsize 482 | \item[\color{black}\circ] Set rank $R=10$, weight parameter $\rho=10^2$; 483 | \item[\color{black}\circ] Set GD step size $\alpha=2\times10^{-5}$. 484 | \end{itemize} 485 | \end{itemize} 486 | 487 | \begin{center} 488 | \begin{tikzpicture} 489 | \pgfdeclareimage[height = 3.5cm]{img}{graphics/MF_convergence_over_gd_and_als_within_1000iter_Seattle.pdf} 490 | \node (img) at (0, 0) {\pgfuseimage{img}}; 491 | \pgfdeclareimage[height = 3.5cm]{img}{graphics/MF_convergence_over_gd_and_als_within_200iter_Seattle.pdf} 492 | \node (img) at (5, 0) {\pgfuseimage{img}}; 493 | \end{tikzpicture} 494 | \end{center} 495 | 496 | \vspace{-1em} 497 | 498 | \begin{itemize} 499 | \item[\color{black}\circ] Reconstruction errors 500 | \end{itemize} 501 | 502 | \scriptsize 503 | \begin{equation*} 504 | \text{MAPE}=\begin{cases} 505 | 9.14\%\quad\text{(GD)} \\ 9.12\% \quad\text{(SGD)} \\ 9.13\% \quad\text{(ALS)} 506 | \end{cases}\quad\quad 507 | \text{RMSE}=\begin{cases} 508 | 5.24\quad\text{(GD)} \\ 5.24\quad\text{(SGD)} \\ 5.24\quad\text{(ALS)} 509 | \end{cases}\text{(mph)} 510 | \end{equation*} 511 | 512 | \end{frame} 513 | 514 | \section{\color{black}\textbf{Smoothing Matrix Factorization}} 515 | 516 | \subsection{\color{black}Spatial/Temporal Smoothing} 517 | 518 | \begin{frame}{\color{black}\textbf{Smoothing Matrix Factorization}} 519 | \topline 520 | \footnotesize 521 | 522 | \begin{itemize} 523 | \item Spatial/temporal local dependencies are also important! 524 | \end{itemize} 525 | 526 | \begin{center} 527 | \begin{tikzpicture} 528 | \pgfdeclareimage[width=0.9\textwidth]{img}{graphics/smoothing_matrix_factorization_illustration.pdf} 529 | \node (img) at (0, 0) {\pgfuseimage{img}}; 530 | 531 | \node [rotate=90] at (-4.9, 0.3) {\color{gray}\scriptsize Spatial locations}; 532 | \node at (-3.2, 1.5) {\color{gray}\scriptsize Time steps}; 533 | \node at (0, 1.5) {\color{gray}\scriptsize Spatial factors}; 534 | \node at (3.2, 1.5) {\color{gray}\scriptsize Temporal factors}; 535 | 536 | \end{tikzpicture} 537 | \end{center} 538 | 539 | \vspace{-1em} 540 | 541 | \begin{itemize} 542 | \item Formulate spatial/temporal dependencies 543 | \end{itemize} 544 | 545 | \begin{equation*} 546 | \begin{aligned} 547 | \boldsymbol{W}\boldsymbol{\Psi}_1^\top= 548 | &\begin{bmatrix} 549 | \mid & & \mid \\ \color{orange!70!black}\boldsymbol{w}_2-\boldsymbol{w}_1 & \cdots & \color{orange!70!black}\boldsymbol{w}_N-\boldsymbol{w}_{N-1} \\ \mid & & \mid \\ 550 | \end{bmatrix} \\ 551 | \boldsymbol{X}\boldsymbol{\Psi}_2^\top= 552 | &\begin{bmatrix} 553 | \mid & & \mid \\ \color{red!80!black}\boldsymbol{x}_2-\boldsymbol{x}_1 & \cdots & \color{red!80!black}\boldsymbol{x}_T-\boldsymbol{x}_{T-1} \\ \mid & & \mid \\ 554 | \end{bmatrix} 555 | \end{aligned} 556 | \end{equation*} 557 | 558 | \end{frame} 559 | 560 | \subsection{\color{black}Alternating Minimization} 561 | 562 | \begin{frame}{\color{black}\textbf{Smoothing Matrix Factorization}} 563 | \topline 564 | \footnotesize 565 | 566 | \begin{itemize} 567 | \item Formulate spatial/temporal dependencies 568 | \end{itemize} 569 | 570 | \vspace{-1em} 571 | 572 | \begin{equation*} 573 | \boldsymbol{\Psi}=\begin{bmatrix} 574 | -1 & 1 & 0 & \cdots & 0 & 0 \\ 575 | 0 & -1 & 1 & \cdots & 0 & 0 \\ 576 | 0 & 0 & -1 & \cdots & 0 & 0 \\ 577 | \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 578 | 0 & 0 & 0 & \cdots & -1 & 1 \\ 579 | \end{bmatrix} 580 | \Longrightarrow 581 | \left\{ 582 | \begin{aligned} 583 | &\|\boldsymbol{W}\boldsymbol{\Psi}_1^\top\|_{F}^{2}\quad\text{with $\boldsymbol{\Psi}_1\in\mathbb{R}^{(N-1)\times N}$} \\ 584 | &\|\boldsymbol{X}\boldsymbol{\Psi}_2^\top\|_{F}^{2}\quad\text{with $\boldsymbol{\Psi}_2\in\mathbb{R}^{(T-1)\times T}$} 585 | \end{aligned}\right. 586 | \end{equation*} 587 | 588 | \begin{itemize} 589 | \item SMF optimization problem 590 | \end{itemize} 591 | \begin{equation*} 592 | \begin{aligned} 593 | \min_{\boldsymbol{W},\boldsymbol{X}}~&\frac{1}{2}\left\|\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})\right\|_{F}^{2}+\frac{\rho}{2}(\|\boldsymbol{W}\|_{F}^{2}+\|\boldsymbol{X}\|_{F}^{2}) \\ 594 | &+\frac{\lambda}{2} (\|\boldsymbol{W}\boldsymbol{\Psi}_{1}^\top\|_{F}^{2}+\|\boldsymbol{X}\boldsymbol{\Psi}_{2}^\top\|_{F}^{2}) 595 | \end{aligned} 596 | \end{equation*} 597 | 598 | \begin{itemize} 599 | \item \textbf{Alternating minimization} 600 | \end{itemize} 601 | 602 | \begin{equation*} 603 | \begin{aligned} 604 | \boldsymbol{W}:=\{\boldsymbol{W}\mid\frac{\partial f}{\partial\boldsymbol{W}}=\boldsymbol{0}\}\quad\quad 605 | \boldsymbol{X}:=\{\boldsymbol{X}\mid\frac{\partial f}{\partial\boldsymbol{X}}=\boldsymbol{0}\} 606 | \end{aligned} 607 | \end{equation*} 608 | 609 | \begin{itemize} 610 | \item Solve each matrix equation by the \textbf{conjugate gradient} method. 611 | \end{itemize} 612 | 613 | \end{frame} 614 | 615 | \begin{frame}{\color{black}\textbf{Smoothing Matrix Factorization}} 616 | \topline 617 | \footnotesize 618 | 619 | \begin{itemize} 620 | \item Speed field reconstruction 621 | \begin{itemize}\scriptsize 622 | \item[\color{black}\circ] Set rank $R=10$, weight parameter $\rho=10$. 623 | \item[\color{black}\circ] Recall that the reconstruction errors of MF: 624 | \begin{equation*} 625 | \text{MAPE}=\begin{cases} 626 | 50.66\%\quad\text{(GD)} \\ 45.13\% \quad\text{(SGD)} \\ 45.84\% \quad\text{(ALS)} 627 | \end{cases}\quad\quad 628 | \text{RMSE}=\begin{cases} 629 | 2.33\quad\text{(GD)} \\ 2.79\quad\text{(SGD)} \\ 2.80\quad\text{(ALS)} 630 | \end{cases}\text{(mph)} 631 | \end{equation*} 632 | \end{itemize} 633 | \end{itemize} 634 | 635 | \begin{center} 636 | \begin{tikzpicture} 637 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_SMF_rec_lambda_10.png} 638 | \node (img) at (0, 0) {\pgfuseimage{img}}; 639 | \node at (0,1.3) {\scriptsize SMF ($\lambda=10$)}; 640 | \node at (0,-1.3) {\scriptsize MAPE = \textbf{44.06\%}, RMSE = 2.16mph}; 641 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_SMF_rec_lambda_100.png} 642 | \node (img) at (5.8, 0) {\pgfuseimage{img}}; 643 | \node at (5.8,1.3) {\scriptsize SMF ($\lambda=10^2$)}; 644 | \node at (5.8,-1.3) {\scriptsize MAPE = 48.00\%, RMSE = \textbf{1.60mph}}; 645 | \end{tikzpicture} 646 | \end{center} 647 | 648 | \end{frame} 649 | 650 | 651 | \section{\color{black}\textbf{Tensor Factorization}} 652 | 653 | \subsection{\color{black}Basic Idea} 654 | 655 | \begin{frame}{\color{black}\textbf{Tensor Factorization}} 656 | \topline 657 | \footnotesize 658 | 659 | \begin{itemize} 660 | \item What is tensor? $\boldsymbol{X}\in\mathbb{R}^{m\times n}$ vs. $\boldsymbol{\mathcal{X}}\in\mathbb{R}^{m\times n\times t}$ 661 | \end{itemize} 662 | 663 | \begin{center} 664 | \begin{tikzpicture} 665 | \pgfdeclareimage[width=2cm]{img}{graphics/matrix_element.pdf} 666 | \node (img) at (0, -0.2) {\pgfuseimage{img}}; 667 | \pgfdeclareimage[width=2.5cm]{img}{graphics/tensor_element.pdf} 668 | \node (img) at (3.5, 0) {\pgfuseimage{img}}; 669 | \end{tikzpicture} 670 | \end{center} 671 | 672 | \vspace{-1em} 673 | 674 | \begin{itemize} 675 | \item Tensors are everywhere! 676 | \end{itemize} 677 | 678 | \begin{center} 679 | \begin{tikzpicture} 680 | \pgfdeclareimage[height=2cm]{img}{graphics/gaint_panda_rgb.jpg} 681 | \node (img) at (0, -0.2) {\pgfuseimage{img}}; 682 | \node at (0, -1.5) {\color{gray}\scriptsize Color image with}; 683 | \node at (0, -1.9) {\color{gray}\scriptsize RGB channels}; 684 | 685 | \pgfdeclareimage[height=2.5cm]{img}{graphics/fluid_flow_heatmap_2_times_4.png} 686 | \node (img) at (5.2, -0.2) {\pgfuseimage{img}}; 687 | \node at (5.2, -1.7) {\color{gray}\scriptsize Dynamical system (fluid flow)}; 688 | \end{tikzpicture} 689 | \end{center} 690 | 691 | \end{frame} 692 | 693 | \begin{frame}[plain] 694 | 695 | \begin{center} 696 | \resizebox{10.5cm}{!}{ 697 | \begin{tikzpicture} 698 | 699 | \pgfdeclareimage[height = 3.6cm]{hitchcock}{graphics/Hitchcock.jpg} 700 | \draw (0, 2.3) node {\color{light_red}\textbf{\large{Higher-Order SVD}}}; 701 | \node (hitchcock) at (0, -0.4) {\pgfuseimage{hitchcock}}; 702 | \draw (0, -2.7) node {\large\textbf{Frank Lauren Hitchcock}}; 703 | 704 | \node [circle, line width = 1mm, draw = light_blue, fill = white, minimum size = 0.4cm] (node1) at (0, 3.2) {}; 705 | \draw (0, 4) node {\Large\textbf{1927}}; 706 | 707 | \node [circle, line width = 1mm, draw = light_blue, fill = white, minimum size = 0.4cm] (node2) at (5, 3.2) {}; 708 | \draw (5, 4) node {\Large\textbf{1960s}}; 709 | \draw (5, 2.3) node {\color{light_red}\textbf{\large{Tucker Decomposition}}}; 710 | \draw (5, 1.1) node {\large\textbf{Ledyard R. Tucker}}; 711 | 712 | \path [line width = 1mm, draw = light_blue, -] (node1) edge (node2); 713 | 714 | \node [circle, line width = 1mm, draw = light_blue, fill = white, minimum size = 0.4cm] (node3) at (10, 3.2) {}; 715 | \draw (10, 4) node {\Large\textbf{1970}}; 716 | \draw (10, 2.3) node {\color{light_red}\textbf{\large{CP Decomposition}}}; 717 | \draw (10, 1.1) node {\large\textbf{J. Douglas Carroll}}; 718 | \draw (10, 0.5) node {\large\textbf{Jih-Jie Chang}}; 719 | \draw (10, -0.1) node {\large\textbf{Richard A. Harshman}}; 720 | 721 | \draw [line width = 1mm, draw = light_blue] (5.2, 3.2) -- (7.5, 3.2) -- (7.6, 3.5) -- (7.8, 2.9) -- (7.9, 3.2) -- (9.8, 3.2); 722 | 723 | \pgfdeclareimage[height = 3.6cm]{Kolda}{graphics/Kolda.jpg} 724 | \node (Kolda) at (15, -0.4) {\pgfuseimage{Kolda}}; 725 | \node [circle, line width = 1mm, draw = light_blue, fill = white, minimum size = 0.4cm] (node4) at (15, 3.2) {}; 726 | \draw (15, 4) node {\Large\textbf{2009}}; 727 | \draw (15, 2.5) node {\color{light_red}\textbf{\large{Tensor Decompositions}}}; 728 | \draw (15, 2.0) node {\color{light_red}\textbf{\large{and Applications}}}; 729 | \draw (15, -2.7) node {\large\textbf{Tamara G. Kolda}}; 730 | 731 | \draw [line width = 1mm, draw = light_blue] (5.2 + 5, 3.2) -- (7.5 + 5, 3.2) -- (7.6 + 5, 3.5) -- (7.8 + 5, 2.9) -- (7.9 + 5, 3.2) -- (9.8 + 5, 3.2); 732 | 733 | \pgfdeclareimage[height = 3.6cm]{Oseledets}{graphics/Oseledets.jpg} 734 | \node (Oseledets) at (20, -0.4) {\pgfuseimage{Oseledets}}; 735 | \node [circle, line width = 1mm, draw = light_green, fill = white, minimum size = 0.4cm] (node5) at (20, 3.2) {}; 736 | \draw (20, 4) node {\Large\textbf{2011}}; 737 | \draw (20, 2.5) node {\color{light_red}\textbf{\large{Tensor-Train}}}; 738 | \draw (20, 2) node {\color{light_red}\textbf{\large{Decomposition}}}; 739 | \draw (20, -2.7) node {\large\textbf{Ivan Oseledets}}; 740 | 741 | \draw [line width = 1mm, draw = light_blue] (5.2 + 10, 3.2) -- (7.5 + 10, 3.2) -- (7.6 + 10, 3.5) -- (7.8 + 10, 2.9) -- (7.9 + 10, 3.2) -- (9.8 + 10, 3.2); 742 | 743 | \draw [line width = 1mm, draw = light_green] (5.2 + 15, 3.2) -- (6.5 + 15, 3.2) -- (6.6 + 15, 3.5) -- (6.8 + 15, 2.9) -- (6.9 + 15, 3.2) -- (7.8 + 15, 3.2); 744 | 745 | \end{tikzpicture} 746 | } 747 | \end{center} 748 | 749 | \end{frame} 750 | 751 | \subsection{\color{black}CP Tensor Factorization} 752 | 753 | \begin{frame}{\color{black}\textbf{CP Tensor Factorization}} 754 | \topline 755 | \footnotesize 756 | 757 | \begin{itemize} 758 | \item Factorize $\boldsymbol{\mathcal{Y}}$ into the combination of three rank-$R$ factor matrices (i.e., low-dimensional latent factors). 759 | \end{itemize} 760 | 761 | \begin{center} 762 | \includegraphics[width=0.6\textwidth]{graphics/third_orderr_CP_factorization_simple_notation.pdf} 763 | \end{center} 764 | 765 | \begin{itemize} 766 | \item Understanding CP factorization\footnote{\scriptsize CANDECOMP/PARAFAC (CP) decomposition.}$^,$\footnote{\scriptsize The symbol $\otimes$ denotes the outer product.}: 767 | \begin{equation*} 768 | \left\{ 769 | \begin{aligned} 770 | &y_{i,j,t}\approx\sum_{r=1}^{R}u_{i,r}v_{j,r}x_{t,r} 771 | \quad\quad\text{(sum of latent factors)} \\ 772 | &\boldsymbol{\mathcal{Y}}\approx\sum_{r=1}^{R}\boldsymbol{u}_{r}\otimes\boldsymbol{v}_{r}\otimes\boldsymbol{x}_{r} 773 | \quad\quad\text{(sum of rank-one tensors)} 774 | \end{aligned}\right. 775 | \end{equation*} 776 | \end{itemize} 777 | 778 | \end{frame} 779 | 780 | \subsection{\color{black}Hankel Tensor and Its Factorization} 781 | 782 | \begin{frame}{\color{black}\textbf{Hankel Tensor and Its Factorization}} 783 | \topline 784 | \footnotesize 785 | 786 | \begin{itemize} 787 | \item Hankel matrix 788 | \begin{itemize}\scriptsize 789 | \item[\color{black}\circ] Given $\boldsymbol{y}=(1,2,3,4,5)^\top$ and window length $\tau=2$, we have 790 | \begin{equation*} 791 | \mathcal{H}_{\tau}(\boldsymbol{y})=\begin{bmatrix} 792 | 1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 4 & 5 \\ 793 | \end{bmatrix}\in\mathbb{R}^{4\times 2} 794 | \end{equation*} 795 | 796 | \item[\color{black}\circ] On time series $\boldsymbol{y}=(y_1,y_2,\ldots,y_5)^\top$ with $\tau=2$: 797 | \begin{equation*} 798 | \begin{aligned} 799 | &\mathcal{H}_{\tau}(\boldsymbol{y})=\begin{bmatrix} 800 | y_1 & y_2 \\ y_2 & y_3 \\ y_3 & y_4 \\ y_4 & y_5 \\ 801 | \end{bmatrix}\approx\begin{bmatrix} 802 | {\color{cyan!70!black}v_1} \\ 803 | {\color{cyan!70!black}v_2} \\ {\color{cyan!70!black}v_3} \\ {\color{cyan!70!black}v_4} \\ 804 | \end{bmatrix}\otimes\begin{bmatrix} 805 | {\color{orange!70!black}x_1} \\ 806 | {\color{orange!70!black}x_2} \\ 807 | \end{bmatrix} \\ 808 | \Longrightarrow\quad\hat{\boldsymbol{y}}=\begin{bmatrix} 809 | \hat{y}_1 \\ 810 | \hat{y}_2 \\ 811 | \hat{y}_3 \\ 812 | \hat{y}_4 \\ 813 | \hat{y}_5 \\ 814 | \end{bmatrix}=&\mathcal{H}_{\tau}^{-1}\left(\begin{bmatrix} 815 | v_1x_1 & v_1x_2 \\ 816 | v_2x_1 & v_2x_2 \\ 817 | v_3x_1 & v_3x_2 \\ 818 | v_4x_1 & v_4x_2 \\ 819 | \end{bmatrix}\right)=\begin{bmatrix} 820 | {\color{cyan!70!black}v_1}{\color{orange!70!black}x_1} \\ ({\color{cyan!70!black}v_1}{\color{orange!70!black}x_2}+{\color{cyan!70!black}v_2}{\color{orange!70!black}x_1})/2 \\ ({\color{cyan!70!black}v_2}{\color{orange!70!black}x_2}+{\color{cyan!70!black}v_3}{\color{orange!70!black}x_1})/2 \\ ({\color{cyan!70!black}v_3}{\color{orange!70!black}x_2}+{\color{cyan!70!black}v_4}{\color{orange!70!black}x_1})/2 \\ {\color{cyan!70!black}v_4}{\color{orange!70!black}x_2} \\ 821 | \end{bmatrix} 822 | \end{aligned} 823 | \end{equation*} 824 | \item[\color{black}\circ] Automatic temporal modeling. 825 | \end{itemize} 826 | \end{itemize} 827 | 828 | \end{frame} 829 | 830 | \begin{frame}{\color{black}\textbf{Hankel Tensor and Its Factorization}} 831 | \topline 832 | \footnotesize 833 | 834 | \begin{itemize} 835 | \item (Hankelization) Hankel tensor $\mathcal{H}_{\tau}(\boldsymbol{Y})$ 836 | \begin{itemize}\scriptsize 837 | \item[\color{black}\circ] Tensor size: $N\times (T-\tau+1)\times \tau$; 838 | \item[\color{black}\circ] Slices: $\boldsymbol{Y}_{k}=\begin{bmatrix} 839 | \mid & \mid & & \mid \\ 840 | \color{orange!70!black}\boldsymbol{y}_{k} & \color{orange!70!black}\boldsymbol{y}_{k+1} & \cdots & \color{orange!70!black}\boldsymbol{y}_{T-\tau+k} \\ 841 | \mid & \mid & & \mid \\ 842 | \end{bmatrix},\, k=1,2,\ldots,\tau$; 843 | \item[\color{black}\circ] Slice size: $\color{orange!70!black}N\times(T-\tau+1)$. 844 | \end{itemize} 845 | \end{itemize} 846 | 847 | \begin{center} 848 | \includegraphics[scale=0.8]{graphics/third_order_Hankel_tensor.pdf} 849 | \end{center} 850 | 851 | \end{frame} 852 | 853 | \begin{frame}{\color{black}\textbf{Hankel Tensor and Its Factorization}} 854 | \topline 855 | \footnotesize 856 | 857 | \begin{itemize} 858 | \item HTF optimization problem 859 | \end{itemize} 860 | \begin{equation*} 861 | \begin{aligned} 862 | \min_{\boldsymbol{U},\boldsymbol{V},\boldsymbol{X}}~&\frac{1}{2}\Bigl\|\mathcal{P}_{\tilde{\Omega}}\Bigl(\mathcal{H}_{\tau}(\boldsymbol{Y})-\sum_{r=1}^{R}\boldsymbol{u}_{r}\otimes\boldsymbol{v}_{r}\otimes\boldsymbol{x}_{r}\Bigr)\Bigr\|_{F}^{2} \\ 863 | \end{aligned} 864 | \end{equation*} 865 | 866 | \begin{itemize} 867 | \item HTF's advantage/disadvantage over MF: 868 | \begin{itemize}\scriptsize 869 | \item[\color{black}\ding{51}] Automatic temporal modeling\quad\quad\ding{55}\, High memory consumption 870 | \end{itemize} 871 | \end{itemize} 872 | 873 | \begin{itemize} 874 | \item Speed field reconstruction 875 | \begin{itemize}\scriptsize 876 | \item[\color{black}\circ] Set rank $R=10$; 877 | \item[\color{black}\circ] Recall that SMF: MAPE = 48.00\% \& RMSE = 1.60mph. 878 | \end{itemize} 879 | \end{itemize} 880 | 881 | \begin{center} 882 | \begin{tikzpicture} 883 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_HTF_rec_tau_10.png} 884 | \node (img) at (0, 0) {\pgfuseimage{img}}; 885 | \node at (0,1.3) {\scriptsize HTF ($\tau=10$)}; 886 | \node at (0,-1.3) {\scriptsize MAPE = \textbf{41.40\%}, RMSE = \textbf{1.42mph}}; 887 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_HTF_rec_tau_15.png} 888 | \node (img) at (5.8, 0) {\pgfuseimage{img}}; 889 | \node at (5.8,1.3) {\scriptsize HTF ($\tau=15$)}; 890 | \node at (5.8,-1.3) {\scriptsize MAPE = 43.97\%, RMSE = \textbf{1.42mph}}; 891 | \end{tikzpicture} 892 | \end{center} 893 | 894 | \end{frame} 895 | 896 | \section{\color{black}\textbf{Discussion}} 897 | 898 | \subsection{\color{black}Which Model Is Better?} 899 | 900 | \begin{frame}{\color{black}\textbf{Which Model Is Better?}} 901 | \topline 902 | \footnotesize 903 | 904 | \begin{center} 905 | \begin{tikzpicture} 906 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_80_missing_data.png} 907 | \node (img) at (0, 0) {\pgfuseimage{img}}; 908 | \node at (0,-1.3) {\scriptsize Sparse speed field}; 909 | 910 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_MF_als_rec.png} 911 | \node (img) at (5.8, 1) {\pgfuseimage{img}}; 912 | \node at (5.8,2.1) {\scriptsize MF (ALS)}; 913 | 914 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_fully_data.png} 915 | \node (img) at (0, 0-3) {\pgfuseimage{img}}; 916 | \node at (0,-1.3-3) {\scriptsize Ground truth speed field}; 917 | 918 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_SMF_rec_lambda_100.png} 919 | \node (img) at (5.8, 1.5-3) {\pgfuseimage{img}}; 920 | \node at (5.8,2.6-3) {\scriptsize SMF}; 921 | 922 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_HTF_rec_tau_10.png} 923 | \node (img) at (5.8, -1-3) {\pgfuseimage{img}}; 924 | \node at (5.8,0.1-3) {\scriptsize HTF}; 925 | \end{tikzpicture} 926 | \end{center} 927 | 928 | 929 | \end{frame} 930 | 931 | 932 | \begin{frame}{\color{black}\textbf{Which Model Is Better?}} 933 | \topline 934 | \footnotesize 935 | 936 | \begin{center} 937 | \begin{tikzpicture} 938 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_80_missing_data.png} 939 | \node (img) at (0, 0) {\pgfuseimage{img}}; 940 | \node at (0,-1.3) {\scriptsize Sparse speed field}; 941 | 942 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_MF_als_rec.png} 943 | \node (img) at (5.8, 1) {\pgfuseimage{img}}; 944 | \node at (5.8,2.1) {\scriptsize MF (ALS)}; 945 | \draw [ultra thick, red] (3.8,1.3) rectangle (4.5,1.95); 946 | \draw [ultra thick, blue] (7,0.4) rectangle (7.7,1.95); 947 | 948 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_fully_data.png} 949 | \node (img) at (0, 0-3) {\pgfuseimage{img}}; 950 | \node at (0,-1.3-3) {\scriptsize Ground truth speed field}; 951 | \draw [ultra thick, red] (3.8-5.8,1.3-4) rectangle (4.5-5.8,1.95-4); 952 | \draw [ultra thick, blue] (7-5.8,0.4-4) rectangle (7.7-5.8,1.95-4); 953 | 954 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_SMF_rec_lambda_100.png} 955 | \node (img) at (5.8, 1.5-3) {\pgfuseimage{img}}; 956 | \node at (5.8,2.6-3) {\scriptsize SMF}; 957 | \draw [ultra thick, red] (3.8,1.8-3) rectangle (4.5,2.45-3); 958 | \draw [ultra thick, blue] (7,0.9-3) rectangle (7.7,2.45-3); 959 | 960 | \pgfdeclareimage[height = 2.2cm]{img}{graphics/speed_field_HTF_rec_tau_10.png} 961 | \node (img) at (5.8, -1-3) {\pgfuseimage{img}}; 962 | \node at (5.8,0.1-3) {\scriptsize HTF}; 963 | \draw [ultra thick, red] (3.8,-0.7-3) rectangle (4.5,-0.05-3); 964 | \draw [ultra thick, blue] (7,-1.6-3) rectangle (7.7,-0.05-3); 965 | \end{tikzpicture} 966 | \end{center} 967 | 968 | 969 | \end{frame} 970 | 971 | \begin{frame}{\color{black}\textbf{Which Model Is Better?}} 972 | \topline 973 | \footnotesize 974 | 975 | \begin{itemize} 976 | \item Seattle freeway traffic speed data 977 | \begin{itemize}\scriptsize 978 | \item[\color{black}\circ] Randomly mask 60\% entries; 979 | \item[\color{black}\circ] SMF: set $R=10$, $\rho=10^2$, $\lambda=2\times 10^2$; 980 | \item[\color{black}\circ] HTF: set $\tau=6$, $R=10$; 981 | \item[\color{black}\circ] Reconstruction errors 982 | \begin{equation*} 983 | \text{MAPE}=\begin{cases} 984 | 9.13\% &\text{(MF)} \\ 985 | 9.01\% &\text{(SMF)} \\ 986 | \boldsymbol{8.67\%} &\text{(HTF)} \\ 987 | \end{cases}\quad\quad 988 | \text{RMSE}=\begin{cases} 989 | 5.24 &\text{(MF)} \\ 990 | 5.14 &\text{(SMF)} \\ 991 | \boldsymbol{5.02} &\text{(HTF)} \\ 992 | \end{cases}\text{(mph)} 993 | \end{equation*} 994 | \end{itemize} 995 | 996 | \end{itemize} 997 | 998 | \end{frame} 999 | 1000 | \begin{frame}{\color{black}\textbf{Which Model Is Better?}} 1001 | \topline 1002 | \footnotesize 1003 | 1004 | \begin{itemize} 1005 | \item Gray image inpainting 1006 | \begin{itemize}\scriptsize 1007 | \item[\color{black}\circ] Randomly mask 90\% pixels; 1008 | \item[\color{black}\circ] MF: set $R=50$, $\rho=10^{-1}$; 1009 | \item[\color{black}\circ] SMF: set $R=50$, $\rho=10^{-1}$, $\lambda=10$. 1010 | \end{itemize} 1011 | \end{itemize} 1012 | 1013 | \vspace{-1em} 1014 | 1015 | \begin{center} 1016 | \begin{tikzpicture} 1017 | \pgfdeclareimage[height=2.2cm]{img}{graphics/gaint_panda_gray_missing_rate_90.png} 1018 | \node (img) at (0, 0) {\pgfuseimage{img}}; 1019 | \node at (0, -1.4) {\scriptsize Incomplete image}; 1020 | 1021 | \pgfdeclareimage[height=2.2cm]{img}{graphics/gaint_panda_gray_recovery_90_mf_rank_50_lmbda_0.png} 1022 | \node (img) at (2.8, 0) {\pgfuseimage{img}}; 1023 | \node at (2.8, -1.4) {\scriptsize MF}; 1024 | 1025 | \pgfdeclareimage[height=2.2cm]{img}{graphics/gaint_panda_gray_recovery_90_mf_rank_50_lmbda_10.png} 1026 | \node (img) at (5.6, 0) {\pgfuseimage{img}}; 1027 | \node at (5.6, -1.4) {\scriptsize SMF}; 1028 | 1029 | \pgfdeclareimage[height=2.2cm]{img}{graphics/gaint_panda_gray.png} 1030 | \node (img) at (8.4, 0) {\pgfuseimage{img}}; 1031 | \node at (8.4, -1.4) {\scriptsize Ground truth}; 1032 | 1033 | \end{tikzpicture} 1034 | \end{center} 1035 | 1036 | \end{frame} 1037 | 1038 | \section{\color{black}\textbf{Conclusion}} 1039 | 1040 | \begin{frame}{\color{black}\textbf{Conclusion}} 1041 | \topline 1042 | \footnotesize 1043 | 1044 | \begin{itemize} 1045 | \item How to reconstruct sparse speed field? 1046 | \begin{itemize}\scriptsize 1047 | \item[\color{black}\ding{51}] Matrix factorization ({\color{red!80!black}\textbf{MF}}) \quad\ding{51} Tensor factorization ({\color{red!80!black}\textbf{TF}}) 1048 | \end{itemize} 1049 | \item The importance of spatiotemporal modeling in low-rank methods? 1050 | \begin{itemize}\scriptsize 1051 | \item[\color{black}\circ] Spatial/temporal {\color{red!80!black}\textbf{smoothing}} regularization: 1052 | \end{itemize} 1053 | \end{itemize} 1054 | \scriptsize 1055 | \begin{equation*} 1056 | \begin{aligned} 1057 | \min_{\boldsymbol{W},\boldsymbol{X}}~&\frac{1}{2}\left\|\mathcal{P}_{\Omega}(\boldsymbol{Y}-\boldsymbol{W}^\top\boldsymbol{X})\right\|_{F}^{2}+\frac{\rho}{2}(\|\boldsymbol{W}\|_{F}^{2}+\|\boldsymbol{X}\|_{F}^{2}) \\ 1058 | &+\color{red!80!black}\frac{\lambda}{2} (\|\boldsymbol{W}\boldsymbol{\Psi}_{1}^\top\|_{F}^{2}+\|\boldsymbol{X}\boldsymbol{\Psi}_{2}^\top\|_{F}^{2}) 1059 | \end{aligned} 1060 | \end{equation*} 1061 | \begin{itemize} 1062 | \begin{itemize}\scriptsize 1063 | \item[\color{black}\circ] Automatic temporal modeling via {\color{red!80!black}\textbf{Hankelization}}: 1064 | \end{itemize} 1065 | \end{itemize} 1066 | \begin{equation*} 1067 | \begin{aligned} 1068 | \min_{\boldsymbol{U},\boldsymbol{V},\boldsymbol{X}}~&\frac{1}{2}\Bigl\|\mathcal{P}_{\tilde{\Omega}}\Bigl({\color{red!80!black}\mathcal{H}_{\tau}(\boldsymbol{Y})}-\sum_{r=1}^{R}\boldsymbol{u}_{r}\otimes\boldsymbol{v}_{r}\otimes\boldsymbol{x}_{r}\Bigr)\Bigr\|_{F}^{2} \\ 1069 | \end{aligned} 1070 | \end{equation*} 1071 | 1072 | \end{frame} 1073 | 1074 | 1075 | \begin{frame}[plain] 1076 | \begin{tikzpicture}[remember picture, overlay] 1077 | \node[xshift=2.7cm,yshift=-1.1cm] at (current page.north west) {\includegraphics[height = 2.25cm]{graphics/Polytechnique_signature-RGB-gauche_FR.png}}; 1078 | \end{tikzpicture} 1079 | 1080 | \begin{tikzpicture}[remember picture, overlay] 1081 | \node[xshift=10.5cm,yshift=-1.1cm] at (current page.north west) {\includegraphics[height = 1.25cm]{graphics/ivado_logo.jpg}}; 1082 | \end{tikzpicture} 1083 | 1084 | \vspace{2em} 1085 | 1086 | \begin{center} 1087 | \LARGE Thanks for your attention! 1088 | 1089 | \vspace{1em} 1090 | 1091 | \large Any Questions? 1092 | \end{center} 1093 | 1094 | \scriptsize 1095 | 1096 | \vspace{1em} 1097 | 1098 | \textbf{About me}: 1099 | \begin{itemize} 1100 | \item[\emoji{classical-building}] Homepage:~{\color{light_blue}\url{https://xinychen.github.io}} 1101 | \item[\emoji{technologist}] GitHub:~{\color{light_blue}\url{https://github.com/xinychen}} {\scriptsize(\textbf{3k+ stars})} 1102 | \item[\emoji{writing-hand}] Blog:~{\color{light_blue}\url{https://medium.com/@xinyu.chen}} {\scriptsize(\textbf{60k+ views})} 1103 | \item[\emoji{love-letter}] How to reach me:~{\color{light_blue}\url{chenxy346@gmail.com}} 1104 | \end{itemize} 1105 | 1106 | \end{frame} 1107 | 1108 | \end{document} 1109 | -------------------------------------------------------------------------------- /example/missing-data-patterns/slide.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/missing-data-patterns/slide.pdf -------------------------------------------------------------------------------- /example/missing-data-patterns/slide.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/missing-data-patterns/slide.png -------------------------------------------------------------------------------- /example/missing-data-patterns/slide.tex: -------------------------------------------------------------------------------- 1 | \documentclass{beamer} 2 | 3 | \usepackage[utf8]{inputenc} 4 | \usefonttheme{professionalfonts} 5 | \usepackage{tikz} 6 | \newcommand{\topline}{ 7 | \tikz[remember picture, overlay] { 8 | \draw[gray, thick] ([xshift = 1cm, yshift = -1.2cm]current page.north west) 9 | -- ([xshift = -1cm, yshift = -1.2cm, xshift = \paperwidth]current page.north west);}} 10 | 11 | \setbeamertemplate{frametitle}[default][center] 12 | \setbeamertemplate{navigation symbols}{} 13 | \setbeamerfont{footline}{series = \bfseries} 14 | \setbeamertemplate{footline}[page number] 15 | 16 | \usepackage{pgfplots} 17 | \begin{filecontents}{speed_no1.data} 18 | 1 42.61 19 | 2 45.43 20 | 3 45.99 21 | 4 45.37 22 | 5 42.24 23 | 6 36.90 24 | 7 32.65 25 | 8 34.37 26 | 9 37.09 27 | 10 33.09 28 | 11 25.20 29 | 12 16.55 30 | 13 24.89 31 | 14 33.48 32 | 15 38.96 33 | 16 43.39 34 | 17 45.01 35 | 18 45.28 36 | 19 44.65 37 | 20 42.97 38 | 21 41.04 39 | 22 38.08 40 | 23 39.45 41 | 24 40.41 42 | 25 39.41 43 | 26 37.30 44 | 27 35.57 45 | 28 36.46 46 | 29 39.85 47 | 30 42.33 48 | 31 41.85 49 | 32 44.51 50 | 33 45.05 51 | 34 44.45 52 | 35 41.47 53 | 36 36.30 54 | 37 32.72 55 | 38 34.45 56 | 39 36.68 57 | 40 33.00 58 | 41 25.99 59 | 42 18.61 60 | 43 25.82 61 | 44 33.59 62 | 45 39.40 63 | 46 42.70 64 | 47 45.33 65 | 48 46.20 66 | 49 45.23 67 | 50 42.03 68 | 51 37.69 69 | 52 33.43 70 | 53 35.75 71 | 54 37.17 72 | 55 32.57 73 | 56 24.98 74 | 57 18.33 75 | 58 26.58 76 | 59 33.05 77 | 60 40.26 78 | 61 41.29 79 | 62 44.32 80 | 63 45.39 81 | 64 45.11 82 | 65 42.16 83 | 66 36.90 84 | 67 32.92 85 | 68 33.84 86 | 69 36.24 87 | 70 33.15 88 | 71 25.93 89 | 72 19.16 90 | 73 24.25 91 | 74 30.92 92 | 75 38.17 93 | 76 41.60 94 | 77 44.24 95 | 78 45.49 96 | 79 45.28 97 | 80 43.17 98 | 81 39.65 99 | 82 34.20 100 | 83 34.34 101 | 84 36.82 102 | 85 32.93 103 | 86 28.15 104 | 87 25.24 105 | 88 28.93 106 | 89 33.23 107 | 90 39.34 108 | 91 41.93 109 | 92 44.50 110 | 93 45.79 111 | 94 45.61 112 | 95 43.76 113 | 96 40.76 114 | 97 35.56 115 | 98 35.55 116 | 99 37.76 117 | 100 33.38 118 | 101 28.69 119 | 102 27.10 120 | 103 30.10 121 | 104 33.98 122 | 105 39.77 123 | \end{filecontents} 124 | 125 | \begin{filecontents}{speed_no1_nm1.data} 126 | 1 42.61 127 | 2 45.43 128 | 3 45.99 129 | 4 45.37 130 | 5 42.24 131 | 6 36.90 132 | 7 32.65 133 | 8 34.37 134 | 9 37.09 135 | 10 33.09 136 | 11 25.20 137 | 12 16.55 138 | 13 24.89 139 | 14 33.48 140 | 15 38.96 141 | \end{filecontents} 142 | 143 | \begin{filecontents}{speed_no1_nm2.data} 144 | 30 42.33 145 | 31 41.85 146 | 32 44.51 147 | 33 45.05 148 | 34 44.45 149 | 35 41.47 150 | 36 36.30 151 | 37 32.72 152 | 38 34.45 153 | 39 36.68 154 | 40 33.00 155 | 41 25.99 156 | 42 18.61 157 | 43 25.82 158 | 44 33.59 159 | 45 39.40 160 | \end{filecontents} 161 | 162 | \begin{filecontents}{speed_no1_nm3.data} 163 | 75 38.17 164 | 76 41.60 165 | 77 44.24 166 | 78 45.49 167 | 79 45.28 168 | 80 43.17 169 | 81 39.65 170 | 82 34.20 171 | 83 34.34 172 | 84 36.82 173 | 85 32.93 174 | 86 28.15 175 | 87 25.24 176 | 88 28.93 177 | 89 33.23 178 | 90 39.34 179 | \end{filecontents} 180 | 181 | \begin{filecontents}{speed_no2.data} 182 | 1 36 183 | 2 37 184 | 3 37 185 | 4 37 186 | 5 34 187 | 6 30 188 | 7 26 189 | 8 28 190 | 9 31 191 | 10 28 192 | 11 32 193 | 12 34 194 | 13 32 195 | 14 29 196 | 15 30 197 | 16 33 198 | 17 36 199 | 18 36 200 | 19 34 201 | 20 31 202 | 21 29 203 | 22 26 204 | 23 27 205 | 24 28 206 | 25 27 207 | 26 25 208 | 27 23 209 | 28 24 210 | 29 27 211 | 30 30 212 | 31 29 213 | 32 32 214 | 33 33 215 | 34 32 216 | 35 29 217 | 36 24 218 | 37 20 219 | 38 22 220 | 39 24 221 | 40 21 222 | 41 13 223 | 42 8 224 | 43 13 225 | 44 21 226 | 45 27 227 | 46 30 228 | 47 33 229 | 48 34 230 | 49 33 231 | 50 30 232 | 51 25 233 | 52 21 234 | 53 23 235 | 54 25 236 | 55 20 237 | 56 12 238 | 57 8 239 | 58 14 240 | 59 21 241 | 60 28 242 | 61 29 243 | 62 32 244 | 63 33 245 | 64 33 246 | 65 30 247 | 66 24 248 | 67 20 249 | 68 21 250 | 69 24 251 | 70 21 252 | 71 13 253 | 72 8 254 | 73 12 255 | 74 18 256 | 75 26 257 | 76 29 258 | 77 32 259 | 78 33 260 | 79 33 261 | 80 31 262 | 81 27 263 | 82 21 264 | 83 22 265 | 84 24 266 | 85 20 267 | 86 16 268 | 87 13 269 | 88 16 270 | 89 21 271 | 90 23 272 | 91 26 273 | 92 28 274 | 93 32 275 | 94 33 276 | 95 33 277 | 96 31 278 | 97 27 279 | 98 24 280 | 99 21 281 | 100 13 282 | 101 8 283 | 102 12 284 | 103 18 285 | 104 26 286 | 105 29 287 | \end{filecontents} 288 | 289 | \begin{filecontents}{speed_no2_nm1.data} 290 | 60 28 291 | 61 29 292 | 62 32 293 | 63 33 294 | 64 33 295 | 65 30 296 | 66 24 297 | 67 20 298 | 68 21 299 | 69 24 300 | 70 21 301 | 71 13 302 | 72 8 303 | 73 12 304 | 74 18 305 | 75 26 306 | 76 29 307 | 77 32 308 | 78 33 309 | 79 33 310 | 80 31 311 | 81 27 312 | 82 21 313 | 83 22 314 | 84 24 315 | 85 20 316 | 86 16 317 | 87 13 318 | 88 16 319 | 89 21 320 | 90 23 321 | \end{filecontents} 322 | 323 | \begin{document} 324 | 325 | \begin{frame} 326 | \frametitle{\color{black}\textbf{Imputation Experiments}} 327 | \topline 328 | 329 | \footnotesize 330 | Missing data generation: 331 | \scriptsize 332 | \begin{itemize} 333 | \item[\color{black}\textbullet] Random missing (RM) 334 | 335 | {\tiny\color{gray}(Data are missing at random.)} 336 | 337 | \vspace{0.5em} 338 | 339 | \resizebox{7cm}{!}{ 340 | \begin{tikzpicture}[domain = 0:110] 341 | \begin{axis}[ 342 | height = 3cm, 343 | width = 7cm, 344 | axis x line = center, 345 | axis y line = center, 346 | xtick={15, 30, 45, 60, 75, 90, 105}, 347 | ytick={0}, 348 | xticklabels={\tiny$T$, \tiny$2T$, \tiny$3T$, \tiny$4T$, \tiny$5T$, \tiny$6T$, \tiny$7T$}, 349 | yticklabels = {}, 350 | xlabel style = {below left}, 351 | ylabel style = {below right}, 352 | xmin = 1, 353 | xmax = 115, 354 | ymin = 0, 355 | ymax = 60] 356 | \addplot[no marks, smooth, draw = cyan!60!blue, thick] file {speed_no1.data}; 357 | \addplot+[only marks, 358 | mark = *, 359 | mark options = {scale = 0.9, fill = white}, 360 | draw = gray!60, thick] plot coordinates{ 361 | (6, 36.90) (13, 24.89) (25, 39.41) (29, 39.85) (55, 32.57) (76, 41.60) (83, 34.34) (89, 33.23) (95, 43.76)}; 362 | \addplot[no marks, smooth, draw = orange!60!black, thick] file {speed_no2.data}; 363 | \addplot+[only marks, 364 | mark = *, 365 | mark options = {scale = 0.9, fill = white}, 366 | draw = gray!60, thick] plot coordinates{ 367 | (14, 29) (19, 34) (39, 24) (45, 27) (70, 21) (83, 22)}; 368 | \end{axis} 369 | \end{tikzpicture}} 370 | 371 | \vspace{0.5em} 372 | 373 | \item[\color{black}\textbullet] Non-random missing (NM) 374 | 375 | {\tiny\color{gray}(Data are missing continuously during few time periods.)} 376 | 377 | \vspace{0.5em} 378 | 379 | \resizebox{7cm}{!}{ 380 | \begin{tikzpicture}[domain = 0:110] 381 | \begin{axis}[ 382 | height = 3cm, 383 | width = 7cm, 384 | axis x line = center, 385 | axis y line = center, 386 | xtick = {15, 30, 45, 60, 75, 90, 105}, 387 | ytick = {0}, 388 | xticklabels = {\tiny$T$, \tiny$2T$, \tiny$3T$, \tiny$4T$, \tiny$5T$, \tiny$6T$, \tiny$7T$}, 389 | yticklabels = {}, 390 | xlabel style = {below left}, 391 | ylabel style = {below right}, 392 | xmin = 1, 393 | xmax = 115, 394 | ymin = 0, 395 | ymax = 60] 396 | \addplot[no marks, smooth, draw = cyan!60!blue, thick] file {speed_no1.data}; 397 | \addplot[no marks, smooth, draw = gray!30, thick] file {speed_no1_nm1.data}; 398 | \addplot[no marks, smooth, draw = gray!30, thick] file {speed_no1_nm2.data}; 399 | \addplot[no marks, smooth, draw = gray!30, thick] file {speed_no1_nm3.data}; 400 | \addplot[no marks, smooth, draw = orange!60!black, thick] file {speed_no2.data}; 401 | \addplot[no marks, smooth, draw = gray!30, thick] file {speed_no2_nm1.data}; 402 | \end{axis} 403 | \end{tikzpicture}} 404 | 405 | \end{itemize} 406 | 407 | \end{frame} 408 | 409 | \end{document} -------------------------------------------------------------------------------- /example/parent-functions/slide.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/parent-functions/slide.pdf -------------------------------------------------------------------------------- /example/parent-functions/slide.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/parent-functions/slide.png -------------------------------------------------------------------------------- /example/parent-functions/slide.tex: -------------------------------------------------------------------------------- 1 | \documentclass{beamer} 2 | \usepackage{multicol} 3 | \usetheme{Dresden} 4 | \usecolortheme{beaver} 5 | \usefonttheme{professionalfonts} 6 | 7 | \begin{document} 8 | \begin{frame}{Parent function} 9 | 10 | Please check out the following parent function list. 11 | \begin{enumerate} 12 | \begin{multicols}{3} 13 | \item $y=x$ 14 | \item $y=|x|$ 15 | \item $y=x^{2}$ 16 | \item $y=x^{3}$ 17 | \item $y=x^{b}$ 18 | \item $y=\sqrt{x}$ 19 | \item $y=\sqrt[3]{x}$ 20 | \item $y=\frac{1}{x}$ 21 | \item $y=2^{x}$ 22 | \item $y=e^{x}$ 23 | \item $y=\ln x$ 24 | \item $y=\frac{1}{1+e^{-x}}$ 25 | \item $y=\sin x$ 26 | \item $y=\cos x$ 27 | \item $y=\tan x$ 28 | \end{multicols} 29 | \end{enumerate} 30 | 31 | \end{frame} 32 | \end{document} -------------------------------------------------------------------------------- /example/ridesharing-innovation/images/README.md: -------------------------------------------------------------------------------- 1 | Note that these images are from the following sources: 2 | 3 | - `ridesharing_interface.png`: [https://www.ecolane.com/blog/ride-hailing-vs.-ride-sharing-the-key-difference-and-why-it-matters](https://www.ecolane.com/blog/ride-hailing-vs.-ride-sharing-the-key-difference-and-why-it-matters) 4 | - `ridesharing_illustration.jpg` & `ridesharing_allocation.jpg`: [https://edu.gcfglobal.org/en/sharingeconomy/what-is-ridesharing/1/](https://edu.gcfglobal.org/en/sharingeconomy/what-is-ridesharing/1/) 5 | - Other images are from Google image. 6 | 7 | In addition, we refer to wiki for summarizing content: [https://en.wikipedia.org/wiki/Ridesharing_company](https://en.wikipedia.org/wiki/Ridesharing_company) -------------------------------------------------------------------------------- /example/ridesharing-innovation/images/didi_logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/ridesharing-innovation/images/didi_logo.png -------------------------------------------------------------------------------- /example/ridesharing-innovation/images/lyft_logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/ridesharing-innovation/images/lyft_logo.png -------------------------------------------------------------------------------- /example/ridesharing-innovation/images/ridesharing_allocation.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/ridesharing-innovation/images/ridesharing_allocation.jpg -------------------------------------------------------------------------------- /example/ridesharing-innovation/images/ridesharing_illustration.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/ridesharing-innovation/images/ridesharing_illustration.jpg -------------------------------------------------------------------------------- /example/ridesharing-innovation/images/ridesharing_interface.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/ridesharing-innovation/images/ridesharing_interface.png -------------------------------------------------------------------------------- /example/ridesharing-innovation/images/uber_brand.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/ridesharing-innovation/images/uber_brand.png -------------------------------------------------------------------------------- /example/ridesharing-innovation/slide.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/ridesharing-innovation/slide.pdf -------------------------------------------------------------------------------- /example/ridesharing-innovation/slide.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/ridesharing-innovation/slide.png -------------------------------------------------------------------------------- /example/ridesharing-innovation/slide.tex: -------------------------------------------------------------------------------- 1 | \documentclass[aspectratio=169]{beamer} 2 | 3 | \usepackage[utf8]{inputenc} 4 | 5 | \usepackage{graphicx} 6 | \usepackage{xcolor} 7 | \definecolor{light_red}{RGB}{209,105,81} 8 | \definecolor{light_blue}{RGB}{0,153,228} 9 | 10 | \setbeamertemplate{frametitle}[default][center] 11 | \setbeamertemplate{navigation symbols}{} 12 | 13 | \usepackage{tikz} 14 | \newcommand{\topline}{% 15 | \tikz[remember picture, overlay] {% 16 | \draw[gray, thick] ([xshift = 1cm, yshift = -1.2cm]current page.north west) -- ([xshift = -1cm, yshift = -1.2cm, xshift = \paperwidth]current page.north west);}} 17 | 18 | \begin{document} 19 | 20 | \begin{frame} 21 | \frametitle{\color{black}\textbf{Ridesharing Innovation}} 22 | \topline 23 | 24 | \vspace{-0.5em} 25 | 26 | \begin{tikzpicture} 27 | 28 | \pgfdeclareimage[width = 1.8cm]{img}{images/uber_brand.png} 29 | \node (img) at (-3.5, 1.1) {\pgfuseimage{img}}; 30 | 31 | \pgfdeclareimage[width = 2.5cm]{img}{images/lyft_logo.png} 32 | \node (img) at (-3.5, -0.2) {\pgfuseimage{img}}; 33 | 34 | \pgfdeclareimage[width = 2cm]{img}{images/didi_logo.png} 35 | \node (img) at (-3.5, -1.5) {\pgfuseimage{img}}; 36 | 37 | \draw[thick, gray, opacity = 0.9] (-2, -1.8) -- (-2, 1.2); 38 | 39 | \pgfdeclareimage[height = 2.5cm]{img1}{images/ridesharing_interface.png} 40 | \node (img1) at (0, 0) {\pgfuseimage{img1}}; 41 | 42 | \draw (1.9, 0) node[rotate = 0] {{\color{light_blue}\LARGE$\Rightarrow$}}; 43 | 44 | \draw (0, -1.8) node {\scriptsize\fbox{\color{light_blue}\textbf{Request the vehicle}}}; 45 | 46 | \pgfdeclareimage[height = 3.5cm]{img2}{images/ridesharing_allocation.jpg} 47 | \node (img2) at (3.5, 0) {\pgfuseimage{img2}}; 48 | 49 | \draw (3.5, -2.2) node {\scriptsize\fbox{\color{light_blue}\textbf{Allocation}}}; 50 | 51 | \draw (5.2, 0) node[rotate = 0] {{\color{light_blue}\LARGE$\Rightarrow$}}; 52 | 53 | \pgfdeclareimage[height = 2.0cm]{img3}{images/ridesharing_illustration.jpg} 54 | \node (img3) at (7.6, 0) {\pgfuseimage{img3}}; 55 | 56 | \draw (7.6, -1.5) node {\scriptsize\fbox{\color{light_blue}\textbf{Accept the request}}}; 57 | 58 | \end{tikzpicture} 59 | 60 | \vspace{-1.2em} 61 | \noindent\rule[0ex]{\linewidth}{0.2pt} 62 | 63 | \vspace{0.5em} 64 | \begin{columns} 65 | \begin{column}{0.35\textwidth} 66 | \footnotesize 67 | \textbf{\color{light_red}Ridematching} programs: 68 | \vspace{-0.3em} 69 | \begin{itemize} 70 | \item[\color{gray}\textbullet] Began migrating to the Internet in {\color{light_blue}the late 1990s}.\vspace{-0.2em} 71 | \item[\color{gray}\textbullet] Achieved daily response by Federal Transit Administration (US) in {\color{light_blue}2006}. 72 | \end{itemize} 73 | \end{column} 74 | 75 | \begin{column}{0.37\textwidth} 76 | \footnotesize 77 | \textbf{\color{light_red}Ridesharing} ideas: 78 | \vspace{-0.3em} 79 | \begin{itemize} 80 | \item[\color{gray}\textbullet] {\color{light_blue}2002}: Hailing a ride via mobile app.\vspace{-0.2em} 81 | \item[\color{gray}\textbullet] {\color{light_blue}2007}: Intercity carpooling. 82 | \item[\color{gray}\textbullet] [Benefits] Reducing congestion, environmental footprint... 83 | \end{itemize} 84 | \end{column} 85 | 86 | \begin{column}{0.35\textwidth} 87 | \footnotesize 88 | \textbf{\color{light_red}Ridesharing} companies: 89 | \vspace{-0.3em} 90 | \begin{itemize} 91 | \item[\color{gray}\textbullet] {\color{light_blue}2009}: Uber was founded.\vspace{-0.2em} 92 | \item[\color{gray}\textbullet] {\color{light_blue}2011}: Sidecar was launched.\vspace{-0.2em} 93 | \item[\color{gray}\textbullet] {\color{light_blue}2012}: Lyft was launched.\vspace{-0.2em} 94 | \item[\color{gray}\textbullet] {\color{light_blue}2013}: California - 1st state regulate such companies. 95 | \end{itemize} 96 | \end{column} 97 | \end{columns} 98 | 99 | \end{frame} 100 | 101 | \end{document} -------------------------------------------------------------------------------- /example/social-learning/images/Bandura.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/social-learning/images/Bandura.jpg -------------------------------------------------------------------------------- /example/social-learning/images/Chomsky.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/social-learning/images/Chomsky.png -------------------------------------------------------------------------------- /example/social-learning/images/README.md: -------------------------------------------------------------------------------- 1 | Note that these images are from the following sources: 2 | 3 | - `Bandura.jpg`: [https://en.wikipedia.org/wiki/Albert_Bandura](https://en.wikipedia.org/wiki/Albert_Bandura) 4 | - `Chomsky.png`: [https://en.wikipedia.org/wiki/Noam_Chomsky](https://en.wikipedia.org/wiki/Noam_Chomsky) 5 | - `Skinner.jpg`: [https://en.wikipedia.org/wiki/B._F._Skinner](https://en.wikipedia.org/wiki/B._F._Skinner) 6 | - `bobo_doll.png` & `bobo_doll_experiment.jpg`: [https://en.wikipedia.org/wiki/Bobo_doll_experiment](https://en.wikipedia.org/wiki/Bobo_doll_experiment) 7 | -------------------------------------------------------------------------------- /example/social-learning/images/Skinner.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/social-learning/images/Skinner.jpg -------------------------------------------------------------------------------- /example/social-learning/images/bobo_doll.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/social-learning/images/bobo_doll.png -------------------------------------------------------------------------------- /example/social-learning/images/bobo_doll_experiment.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/social-learning/images/bobo_doll_experiment.jpg -------------------------------------------------------------------------------- /example/social-learning/slide.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/social-learning/slide.pdf -------------------------------------------------------------------------------- /example/social-learning/slide.tex: -------------------------------------------------------------------------------- 1 | \documentclass{beamer} 2 | 3 | \usepackage[utf8]{inputenc} 4 | 5 | \usepackage{graphicx} 6 | \usepackage{xcolor} 7 | \definecolor{light_red}{RGB}{209,105,81} 8 | \definecolor{light_green}{RGB}{58,181,75} 9 | \definecolor{light_blue}{RGB}{0,153,228} 10 | 11 | \setbeamertemplate{frametitle}[default][center] 12 | \setbeamertemplate{navigation symbols}{} 13 | \setbeamerfont{footline}{series=\bfseries} 14 | \setbeamertemplate{footline}[page number] 15 | 16 | \usepackage{tikz} 17 | \newcommand{\topline}{% 18 | \tikz[remember picture, overlay] {% 19 | \draw[gray, thick] ([xshift = 1cm, yshift = -1.2cm]current page.north west) -- ([xshift = -1cm, yshift = -1.2cm, xshift = \paperwidth]current page.north west);}} 20 | 21 | \begin{document} 22 | 23 | \begin{frame} 24 | \frametitle{\color{light_red}\textbf{Background}} 25 | \topline 26 | 27 | \resizebox{11cm}{!}{ 28 | \begin{tikzpicture} 29 | 30 | %%% B. F. Skinner %%% 31 | \pgfdeclareimage[height = 4cm]{skinner}{images/Skinner.jpg} 32 | \draw (0, 2.5) node {\color{light_red}\textbf{\large{Verbal Behavior}}}; 33 | \node (skinner) at (0, 0) {\pgfuseimage{skinner}}; 34 | \draw (0, -2.5) node {\large\textbf{B. F. Skinner}}; 35 | 36 | \node [circle, line width = 1mm, draw = light_blue, fill = white, minimum size = 0.4cm] (node1) at (0, 3.2) {}; 37 | \draw (0, 4) node {\Large\textbf{1940s}}; 38 | 39 | %%% Social Learning book 1 %%% 40 | \node [circle, line width = 1mm, draw = light_blue, fill = white, minimum size = 0.4cm] (node2) at (5, 3.2) {}; 41 | \draw (5, 4) node {\Large\textbf{1941}}; 42 | \draw (5, 2.7) node {\color{light_red}\textbf{\large{Social Learning}}}; 43 | \draw (5, 2.3) node {\color{light_red}\textbf{\large{Theory}}}; 44 | \draw (5, 1.3) node {\large\textbf{Neil Miller}}; 45 | \draw (5, 0.8) node {\large\textbf{John Dollard}}; 46 | 47 | %%% Path between Skinner and Social Learning book 1 %%% 48 | \path [line width = 1mm, draw = light_blue, -] (node1) edge (node2); 49 | 50 | %%% Social Learning book 2 %%% 51 | \node [circle, line width = 1mm, draw = light_blue, fill = white, minimum size = 0.4cm] (node3) at (10, 3.2) {}; 52 | \draw (10, 4) node {\Large\textbf{1954}}; 53 | \draw (10, 2.7) node {\color{light_red}\textbf{\large{Social Learning}}}; 54 | \draw (10, 2.3) node {\color{light_red}\textbf{\large{and Clinical Psychology}}}; 55 | \draw (10, 1.3) node {\large\textbf{Julian B. Rotter}}; 56 | 57 | %%% Path between book 1 and book 2 %%% 58 | \draw [line width = 1mm, draw = light_blue] (5.2, 3.2) -- (7.5, 3.2) -- (7.6, 3.5) -- (7.8, 2.9) -- (7.9, 3.2) -- (9.8, 3.2); 59 | 60 | %%% Noam Chomsky %%% 61 | \pgfdeclareimage[height = 4cm]{chomsky}{images/Chomsky.png} 62 | \node (chomsky) at (15, 0) {\pgfuseimage{chomsky}}; 63 | \node [circle, line width = 1mm, draw = light_blue, fill = white, minimum size = 0.4cm] (node4) at (15, 3.2) {}; 64 | \draw (15, 4) node {\Large\textbf{1959}}; 65 | \draw (15, 2.7) node {\color{light_red}\textbf{\large{Criticism of}}}; 66 | \draw (15, 2.3) node {\color{light_red}\textbf{\large{Verbal Behavior}}}; 67 | \draw (15, -2.5) node {\large\textbf{Noam Chomsky}}; 68 | 69 | %%% Path between book 2 and Chomsky %%% 70 | \draw [line width = 1mm, draw = light_blue] (5.2 + 5, 3.2) -- (7.5 + 5, 3.2) -- (7.6 + 5, 3.5) -- (7.8 + 5, 2.9) -- (7.9 + 5, 3.2) -- (9.8 + 5, 3.2); 71 | 72 | %%% Albert Bandura %%% 73 | \pgfdeclareimage[height = 4cm]{bandura}{images/Bandura.jpg} 74 | \node (bandura) at (20, 0) {\pgfuseimage{bandura}}; 75 | \node [circle, line width = 1mm, draw = light_green, fill = white, minimum size = 0.4cm] (node5) at (20, 3.2) {}; 76 | \draw (20, 4) node {\Large\textbf{1963}}; 77 | \draw (20, 2.7) node {\color{light_red}\textbf{\large{Social Learning}}}; 78 | \draw (20, 2.3) node {\color{light_red}\textbf{\large{Theory}}}; 79 | \draw (20, -2.5) node {\large\textbf{Albert Bandura}}; 80 | 81 | %%% Path between Chomsky and Bandura %%% 82 | \draw [line width = 1mm, draw = light_blue] (5.2 + 10, 3.2) -- (7.5 + 10, 3.2) -- (7.6 + 10, 3.5) -- (7.8 + 10, 2.9) -- (7.9 + 10, 3.2) -- (9.8 + 10, 3.2); 83 | 84 | %%% Path between Chomsky and Bandura %%% 85 | \draw [line width = 1mm, draw = light_green] (5.2 + 15, 3.2) -- (6.5 + 15, 3.2) -- (6.6 + 15, 3.5) -- (6.8 + 15, 2.9) -- (6.9 + 15, 3.2) -- (7.8 + 15, 3.2); 86 | 87 | \end{tikzpicture} 88 | } 89 | 90 | \noindent\rule[0ex]{\linewidth}{0.2pt} 91 | 92 | \vspace{0.8em} 93 | 94 | \small 95 | 96 | Contribution of Bandura's Theory: 97 | 98 | \vspace{0.5em} 99 | 100 | \centering 101 | 102 | \begin{tikzpicture} 103 | \draw (0, 0) node {\footnotesize\textbf{Social Learning = \fbox{Observational learning} + \fbox{Behavior learning}}}; 104 | \draw (0, 1) node {\scriptsize{\textbf{\color{gray}Elements: \color{light_red}attention, retention, reproduction, motivation}}}; 105 | \draw [very thick, draw = light_blue, ->] (0, 0.25) -- (0.5, 0.8); 106 | 107 | \draw (3, -1) node {\scriptsize{\textbf{\color{gray}Responses to \color{light_red}environmental stimuli}}}; 108 | \draw [very thick, draw = light_blue, ->] (3, -0.25) -- (3.5, -0.8); 109 | 110 | \end{tikzpicture} 111 | 112 | \end{frame} 113 | 114 | 115 | \begin{frame} 116 | \frametitle{\color{light_red}\textbf{Bobo Doll Experiments}} 117 | \topline 118 | 119 | \begin{columns} 120 | \begin{column}{0.3\textwidth} 121 | \centering 122 | \includegraphics[scale = 0.2]{images/bobo_doll.png} 123 | 124 | \end{column} 125 | \begin{column}{0.7\textwidth} 126 | \centering 127 | \includegraphics[scale = 0.45]{images/bobo_doll_experiment.jpg} 128 | \end{column} 129 | \end{columns} 130 | 131 | \noindent\rule[0ex]{\linewidth}{0.2pt} 132 | 133 | \vspace{0.8em} 134 | 135 | \small 136 | 137 | Contribution of Bandura's Theory: 138 | 139 | \vspace{0.5em} 140 | 141 | \centering 142 | 143 | \begin{tikzpicture} 144 | \draw (0, 0) node {\footnotesize\textbf{Social Learning = \fbox{Observational learning} + \fbox{\color{gray}Behavior learning}}}; 145 | \draw (0, 1) node {\scriptsize{\textbf{\color{gray}Elements: \color{light_red}attention, retention, reproduction, motivation}}}; 146 | \draw [very thick, draw = light_blue, ->] (0, 0.25) -- (0.5, 0.8); 147 | 148 | \draw (3, -1) node {\scriptsize{\textbf{\color{gray}Responses to environmental stimuli}}}; 149 | \draw [very thick, draw = gray, ->] (3, -0.25) -- (3.5, -0.8); 150 | 151 | \end{tikzpicture} 152 | 153 | \end{frame} 154 | 155 | \end{document} -------------------------------------------------------------------------------- /example/social-learning/slide1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/social-learning/slide1.png -------------------------------------------------------------------------------- /example/social-learning/slide2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/social-learning/slide2.png -------------------------------------------------------------------------------- /example/tensor-factorization/slide1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/tensor-factorization/slide1.png -------------------------------------------------------------------------------- /example/tensor-factorization/slide2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/tensor-factorization/slide2.png -------------------------------------------------------------------------------- /example/tensor-factorization/slides.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/example/tensor-factorization/slides.pdf -------------------------------------------------------------------------------- /example/tensor-factorization/slides.tex: -------------------------------------------------------------------------------- 1 | \documentclass{beamer} 2 | 3 | \usepackage[utf8]{inputenc} 4 | \usefonttheme{professionalfonts} 5 | \usepackage{tikz} 6 | \usetikzlibrary{bayesnet} 7 | \newcommand{\topline}{ 8 | \tikz[remember picture, overlay] { 9 | \draw[gray, thick] ([xshift = 1cm, yshift = -1.2cm]current page.north west) 10 | -- ([xshift = -1cm, yshift = -1.2cm, xshift = \paperwidth]current page.north west);}} 11 | 12 | \setbeamertemplate{frametitle}[default][center] 13 | \setbeamertemplate{navigation symbols}{} 14 | \setbeamerfont{footline}{series = \bfseries} 15 | \setbeamertemplate{footline}[page number] 16 | 17 | \begin{document} 18 | 19 | \begin{frame} 20 | \frametitle{\color{black}\textbf{Tensor Factorization}} 21 | \topline 22 | \footnotesize 23 | {Bayesian treatment}\footnote{\scriptsize$\mathcal{N}(\cdot)$: Gaussian/Normal distribution; $\text{Gamma}(\cdot)$: Gamma distribution.}: 24 | \vspace{-2em} 25 | \begin{columns} 26 | \begin{column}{0.6\textwidth} 27 | \vspace{-15em} 28 | 29 | \uncover<1->{\scriptsize{Suppose that \emph{the observation follows Gaussian distribution}: 30 | \begin{equation*} 31 | y_{ijt}\sim\mathcal{N}\left(\sum_{r=1}^{R}u_{ir}v_{jr}x_{tr},\tau^{-1}\right),(i,j,t)\in\Omega. 32 | \end{equation*} 33 | } 34 | \uncover<2->{In the Bayesian setting, we place \emph{conjugate priors} on model parameters, i.e., 35 | \begin{equation*} 36 | \begin{aligned} 37 | \boldsymbol{u}_{i}&\sim\mathcal{N}\left(\boldsymbol{\mu}_{u},\Lambda_{u}^{-1}\right),i=1,2,\ldots,M, \\ 38 | \boldsymbol{v}_{j}&\sim\mathcal{N}\left(\boldsymbol{\mu}_{v},\Lambda_{v}^{-1}\right),j=1,2,\ldots,N, \\ 39 | \boldsymbol{x}_{t}&\sim\mathcal{N}\left(\boldsymbol{\mu}_{x},\Lambda_{x}^{-1}\right),t=1,2,\ldots,T, \\ 40 | \tau&\sim\text{Gamma}(\alpha,\beta). \\ 41 | \end{aligned} 42 | \end{equation*} 43 | } 44 | } 45 | \end{column} 46 | \begin{column}[t]{0.35\textwidth} 47 | \begin{tikzpicture} 48 | \uncover<1->{\node[circle,draw=black,fill=gray!20,inner sep=0pt,minimum size=0.8cm] (obs) at (2,-1) {\small{$y_{ijt}$}}; 49 | \node[circle,draw=black,fill=green!10] (ui) at (0.8,0) {\small{$\boldsymbol{u}_{i}$}}; 50 | \node[circle,draw=black,fill=green!10] (vj) at (2,1) {\small{$\boldsymbol{v}_{j}$}}; 51 | \node[circle,draw=black,fill=green!10] (xt) at (3.2,0) {\small{$\boldsymbol{x}_{t}$}}; 52 | \node[circle,draw=black,fill=green!10] (tau) at (4.2,-1) {\small{$\tau$}}; 53 | \path[draw=black,->] (ui) edge (obs); 54 | \path[draw=black,->] (vj) edge (obs); 55 | \path[draw=black,->] (xt) edge (obs); 56 | \path[draw=black,->] (tau) edge (obs); 57 | \node [text width=0.8cm] (m) at (1,-1.2) {\small{$M$}}; 58 | \plate[] {plate1} {(obs)(ui)(m)} { }; 59 | \node [text width=0.9cm] (n) at (2,-2.3) {\small{$N$}}; 60 | \plate[] {plate2} {(obs)(vj)(n)} { }; 61 | \node [text width=0.2cm] (f) at (3.2,-1.3) {\small{$T$}}; 62 | \plate[] {plate3} {(obs)(xt)(f)} { }; 63 | } 64 | \uncover<2->{\node[circle,draw=black,fill=red!10,inner sep=0pt,minimum size=0.7cm] (muv) at (1.3,2.2) {\small{$\boldsymbol{\mu}_{v}$}}; 65 | \node[circle,draw=black,fill=red!10,inner sep=0pt,minimum size=0.7cm] (lambdav) at (2.7,2.2) {\small{$\Lambda_{v}$}}; 66 | \node[text width=0.6cm] (gamma) at (4.2,0) {\small{$\alpha,\beta$}}; 67 | \node[text width=0.4cm] (mu0) at (1.3,3.2) {\small{$\boldsymbol{\mu}_{0}$}}; 68 | \node[text width=0.9cm] (wnu0) at (2.7,3.2) {\small{$W_{0},\nu_{0}$}}; 69 | \node[text width=0.6cm] (cdots1) at (0.8,0.8) {\LARGE\color{red!50}{$\cdots$}}; 70 | \node[text width=0.6cm] (cdots2) at (3.2,0.8) {\LARGE\color{red!50}{$\cdots$}}; 71 | \path[draw=black,->] (muv) edge (vj); 72 | \path[draw=black,->] (lambdav) edge (vj); 73 | \path[draw=black,->] (lambdav) edge (muv); 74 | \path[draw=black,->] (mu0) edge (muv); 75 | \path[draw=black,->] (wnu0) edge (lambdav); 76 | \path[draw=black,->] (gamma) edge (tau); 77 | } 78 | \end{tikzpicture} 79 | 80 | \end{column} 81 | \end{columns} 82 | 83 | \end{frame} 84 | 85 | \end{document} -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/Empire_State_Building.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/Empire_State_Building.jpg -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/Midtown_Manhattan.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/Midtown_Manhattan.jpg -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/bronx_bus_map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/bronx_bus_map.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/brooklyn_bus_map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/brooklyn_bus_map.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/citibike.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/citibike.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/citibike2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/citibike2.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/citibike_monthly_trips.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/citibike_monthly_trips.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/citibike_popular_road.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/citibike_popular_road.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/cv_technology.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/cv_technology.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/find_a_bike.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/find_a_bike.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/lady_liberty.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/lady_liberty.jpg -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/manhattan_bus_map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/manhattan_bus_map.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/mobility1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/mobility1.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/mobility2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/mobility2.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/modal_share.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/modal_share.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/nyc_bus.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/nyc_bus.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/nyc_ghg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/nyc_ghg.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/nyc_ghg_transport.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/nyc_ghg_transport.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/nyc_map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/nyc_map.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/nyc_mobility_stat1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/nyc_mobility_stat1.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/nyc_mobility_stat2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/nyc_mobility_stat2.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/shared_mobility.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/shared_mobility.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/graphics/subway_map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/graphics/subway_map.png -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/main.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/NYC_transportation/main.pdf -------------------------------------------------------------------------------- /reading-notes/NYC_transportation/main.tex: -------------------------------------------------------------------------------- 1 | \documentclass{beamer} 2 | 3 | \usepackage[utf8]{inputenc} 4 | \usepackage{amsmath,amsthm} 5 | \usepackage{amssymb} 6 | \usepackage{bbm} 7 | \usepackage{amsfonts} 8 | \usepackage{wasysym} 9 | 10 | \usepackage{xcolor} 11 | \definecolor{lightred}{RGB}{209,105,81} 12 | \definecolor{lightgreen}{RGB}{58,181,75} 13 | \definecolor{thickblue}{RGB}{5,43,108} 14 | \definecolor{lightblue}{RGB}{0,153,228} 15 | 16 | \usepackage{graphicx} 17 | \graphicspath{ {./graphics/} } 18 | 19 | \usepackage{enumitem} 20 | \usepackage{pifont} 21 | 22 | 23 | \setbeamertemplate{frametitle}[default][center] 24 | \setbeamertemplate{navigation symbols}{} 25 | \setbeamerfont{footline}{series=\bfseries} 26 | \setbeamertemplate{footline}[page number] 27 | 28 | \usepackage{tikz} 29 | \newcommand{\topline}{% 30 | \tikz[remember picture,overlay] {% 31 | \draw[gray, thick] ([xshift=1cm,yshift=-1.2cm]current page.north west) 32 | -- ([xshift=-1cm,yshift=-1.2cm,xshift=\paperwidth]current page.north west);}} 33 | 34 | 35 | %Information to be included in the title page: 36 | \title{\color{lightred}\textbf{Transportation of New York}} 37 | \author{Xinyu Chen} 38 | 39 | \vspace{-10em} 40 | % \institute{Overleaf} 41 | \date{ } 42 | 43 | 44 | 45 | \begin{document} 46 | 47 | \begin{frame} 48 | 49 | \begin{center} 50 | {\color{lightred}\Large\textbf{Transportation of New York}} 51 | 52 | \vspace{2em} 53 | 54 | \textbf{\color{thickblue}Xinyu Chen} 55 | \end{center} 56 | 57 | % \titlepage 58 | \vspace{2em} 59 | 60 | \centering 61 | 62 | \includegraphics[scale=0.2]{graphics/citibike_travel.png} 63 | \includegraphics[scale=0.165]{graphics/nyc_bus.png} 64 | 65 | \end{frame} 66 | 67 | 68 | \begin{frame} 69 | \frametitle{\color{lightred}\textbf{Outline}} 70 | \topline 71 | {\color{black} 72 | \begin{itemize}[label=\ding{212}] 73 | \item Introduction 74 | \item Modal share 75 | \item Transportation systems 76 | \begin{itemize}[label=\ding{48}] 77 | \item {\small{Transit system}} 78 | \item {\small{Shared mobility}} 79 | % \item Private car 80 | % \item Pedestrian infrastructure 81 | \end{itemize} 82 | \item GHG emissions 83 | \item Traffic safety 84 | % \item Comparing New York to Montreal 85 | \item Travel behavior trend 86 | \item Uniqueness of transport 87 | \item Reference 88 | % \item A research article 89 | \end{itemize} 90 | } 91 | \end{frame} 92 | 93 | 94 | \begin{frame} 95 | 96 | \frametitle{\color{lightred}\textbf{Introduction}} 97 | \topline 98 | 99 | \begin{columns} 100 | \begin{column}{0.45\textwidth} 101 | \includegraphics[scale=0.3]{graphics/lady_liberty.jpg} 102 | 103 | \vspace{0.5em} 104 | 105 | \includegraphics[scale=0.48]{graphics/Midtown_Manhattan.jpg} 106 | 107 | \end{column} 108 | \begin{column}{0.55\textwidth} 109 | 110 | \textbf{\color{thickblue}New York City} 111 | 112 | \footnotesize 113 | 114 | - The \textbf{\color{lightred}most populous city} in the US 115 | 116 | - The \textbf{\color{lightred}most densely populated major city} in the US 117 | 118 | \centering 119 | \includegraphics[scale=0.28]{graphics/Empire_State_Building.jpg} 120 | 121 | \end{column} 122 | \end{columns} 123 | 124 | \end{frame} 125 | 126 | 127 | \begin{frame} 128 | \frametitle{\color{lightred}\textbf{Introduction}} 129 | \topline 130 | 131 | \textbf{\color{thickblue}New York City} 132 | 133 | {\footnotesize 134 | 135 | - \textbf{\color{black}784 $\text{km}^{2}$} \hspace{1em} - Population: \textbf{8.34 million} (2019) 136 | } 137 | 138 | \vspace{1em} 139 | {\centering\includegraphics[scale=0.2]{graphics/nyc_map.png} 140 | } 141 | 142 | \vspace{1em} 143 | 144 | \textbf{\color{thickblue}Montreal} 145 | 146 | {\footnotesize 147 | 148 | - \textbf{\color{black}432 $\text{km}^{2}$} \hspace{1em} - Population: \textbf{4.20} (2019) 149 | } 150 | 151 | 152 | \end{frame} 153 | 154 | 155 | \begin{frame} 156 | \frametitle{\color{lightred}\textbf{Introduction}} 157 | \topline 158 | 159 | \begin{columns} 160 | % \hspace{-2em} 161 | \begin{column}{0.8\textwidth} 162 | \includegraphics[scale=0.27]{graphics/nyc_mobility_stat1.png}\hspace{-0.4em} 163 | \includegraphics[scale=0.27]{graphics/nyc_mobility_stat2.png} 164 | \end{column} 165 | 166 | \hspace{-5em} 167 | \vspace{-15em} 168 | \begin{column}{0.4\textwidth} 169 | 170 | % \textbf{\color{thickblue}New York City} 171 | 172 | \textbf{\color{lightgreen}Growth in 1980-2010:} 173 | \begin{itemize}[label=\ding{212}]\footnotesize 174 | \item Population: \textbf{16\%} 175 | \item Employment: \textbf{12\%} 176 | \item Tourism: \textbf{187\%} 177 | \item Subway rideship: \textbf{59\%} 178 | \end{itemize} 179 | \end{column} 180 | \end{columns} 181 | 182 | \end{frame} 183 | 184 | 185 | \begin{frame} 186 | \frametitle{\textbf{\color{lightred}Modal share of NYC residents}} 187 | \topline 188 | 189 | \begin{columns} 190 | \begin{column}{0.5\textwidth} 191 | 192 | \includegraphics[scale=0.25]{graphics/modal_share.png} 193 | 194 | \end{column} 195 | \begin{column}{0.5\textwidth} 196 | \textbf{\color{thickblue}Findings} 197 | 198 | \vspace{1em} 199 | \footnotesize 200 | 201 | \begin{itemize}[label=\ding{48}] 202 | \item Subway/Railroad/Ferry is the largest mode among workers commuting outside of their borough of residence, except on Staten Island. 203 | \item In Queens and Staten Island, the plurality of workers use cars for commuting. 204 | \end{itemize} 205 | \end{column} 206 | \end{columns} 207 | 208 | \end{frame} 209 | 210 | 211 | 212 | \begin{frame} 213 | 214 | \frametitle{\color{lightred}\textbf{Transit system}} 215 | \topline 216 | 217 | \begin{columns} 218 | \begin{column}{0.4\textwidth} 219 | \textbf{\color{thickblue}Subway in NYC} 220 | 221 | {\footnotesize 222 | 223 | \begin{itemize}[label=\ding{212}] 224 | \item {\color{lightblue}6,600 subway cars} 225 | \item {\color{lightblue}472 subway stations} 226 | \item Daily rideship: $\approx$ {\color{lightblue}5.5 million} 227 | \item Annual rideship: 228 | \begin{itemize}[label=\ding{48}] 229 | \item {\color{lightblue}1.76 billion} (2015) 230 | \item {\color{lightblue}1.70 billion} (2019) 231 | \end{itemize} 232 | \end{itemize} 233 | } 234 | 235 | \textbf{\color{thickblue}Subway in Montreal} 236 | 237 | {\footnotesize 238 | 239 | \begin{itemize}[label=\ding{212}] 240 | \item {\color{lightblue}68 subway stations} 241 | \item Daily rideship: $\approx$ {\color{lightblue}1.4 million} (Q4 2018) 242 | \item Annual rideship: {\color{lightblue}0.35 billion} (2016) 243 | \end{itemize} 244 | } 245 | 246 | \end{column} 247 | 248 | \hspace{-3em} 249 | 250 | \begin{column}{0.6\textwidth} 251 | \includegraphics[scale=0.3]{graphics/subway_map.png} 252 | \end{column} 253 | 254 | \end{columns} 255 | 256 | \end{frame} 257 | 258 | 259 | \begin{frame} 260 | 261 | \frametitle{\color{lightred}\textbf{Transit system}} 262 | \topline 263 | \begin{columns} 264 | \begin{column}{0.45\textwidth} 265 | \textbf{\color{thickblue}Bus in NYC} 266 | {\footnotesize 267 | \begin{itemize}[label=\ding{48}] 268 | \item {\color{lightblue}5,927 vehicles} in the bus fleet 269 | \item All 100\% accessible to riders with disabilities 270 | \item {\color{lightblue}234 local bus routes} 271 | \item {\color{lightblue}20 Select Bus Service routes} 272 | \item {\color{lightblue}73 express routes} 273 | \item Annual rideship: 274 | \begin{itemize}[label=\ding{48}] 275 | \item {\color{lightblue}651 million} (2015) 276 | \item {\color{lightblue}557 million} (2019) 277 | \end{itemize} 278 | 279 | \end{itemize} 280 | } 281 | 282 | \textbf{\color{thickblue}Bus in Montreal} 283 | {\footnotesize 284 | \begin{itemize}[label=\ding{48}] 285 | \item {\color{lightblue}1,449 vehicles} in the bus fleet 286 | \item {\color{lightblue}220 bus lines} 287 | \item Annual rideship: 288 | \begin{itemize}[label=\ding{48}] 289 | \item {\color{lightblue}234 million} (2015) 290 | \item {\color{lightblue}223 million} (2017) 291 | \end{itemize} 292 | 293 | \end{itemize} 294 | } 295 | 296 | % \includegraphics[scale=0.5]{x} 297 | \end{column} 298 | 299 | \hspace{-4em} 300 | 301 | \begin{column}{0.55\textwidth} 302 | \begin{columns} 303 | \begin{column}{0.27\textwidth} 304 | \includegraphics[scale=0.25]{graphics/manhattan_bus_map.png} 305 | \end{column} 306 | 307 | \hspace{-3em} 308 | 309 | \begin{column}{0.27\textwidth} 310 | \includegraphics[scale=0.18]{graphics/bronx_bus_map.png} 311 | \includegraphics[scale=0.18]{graphics/brooklyn_bus_map.png} 312 | \end{column} 313 | \end{columns} 314 | \end{column} 315 | 316 | \end{columns} 317 | 318 | \end{frame} 319 | 320 | 321 | 322 | 323 | \begin{frame} 324 | 325 | \frametitle{\color{lightred}\textbf{Shared mobility}} 326 | \topline 327 | 328 | \centering 329 | \includegraphics[scale=0.34]{graphics/shared_mobility.png} 330 | 331 | 332 | \end{frame} 333 | 334 | 335 | \begin{frame} 336 | 337 | \frametitle{\color{lightred}\textbf{Shared mobility}} 338 | \topline 339 | 340 | \textbf{\color{thickblue}Ride-hailing} 341 | 342 | \vspace{1em} 343 | 344 | \includegraphics[scale=0.2]{graphics/taxi_pickup1.png} 345 | \includegraphics[scale=0.2]{graphics/taxi_pickup2.png} 346 | 347 | \vspace{1em} 348 | 349 | \footnotesize 350 | 351 | Over the past 4 years, 352 | 353 | - {\color{lightblue}ride-hailing apps have grown from 0 to 15 million trips per month} 354 | 355 | - {\color{lightblue}taxi usage has only declined by around 5 million trips per month} 356 | 357 | \end{frame} 358 | 359 | 360 | 361 | \begin{frame} 362 | \frametitle{\color{lightred}\textbf{Shared mobility}} 363 | \topline 364 | 365 | \textbf{\color{thickblue}Citi Bike} 366 | 367 | \vspace{1em} 368 | 369 | \begin{columns} 370 | \begin{column}{0.65\textwidth} 371 | \includegraphics[scale=0.14]{graphics/find_a_bike.png} 372 | 373 | \vspace{1em} 374 | 375 | \includegraphics[scale=0.22]{graphics/citibike.png}\hspace{1em} 376 | \includegraphics[scale=0.41]{graphics/citibike2.png} 377 | \end{column} 378 | 379 | \hspace{-5em} 380 | 381 | \begin{column}{0.45\textwidth} 382 | {\footnotesize 383 | \begin{itemize}[label=\ding{212}] 384 | \item The {\color{lightblue}nation's largest bike share} program. 385 | \item {\color{lightblue}15,000 bikes} 386 | \item {\color{lightblue}1,000+ stations} 387 | \end{itemize} 388 | } 389 | 390 | \vspace{1em} 391 | 392 | \textbf{\color{thickblue}Bikes in Montreal} 393 | {\footnotesize 394 | \begin{itemize}[label=\ding{212}] 395 | \item {\color{lightblue}540+ stations} 396 | \end{itemize} 397 | } 398 | \end{column} 399 | \end{columns} 400 | 401 | 402 | \end{frame} 403 | 404 | 405 | \begin{frame} 406 | \frametitle{\color{lightred}\textbf{Shared mobility}} 407 | \topline 408 | 409 | \textbf{\color{thickblue}Citi Bike} 410 | 411 | \vspace{1em} 412 | 413 | \begin{columns} 414 | \begin{column}{0.5\textwidth} 415 | \includegraphics[scale=0.25]{graphics/citibike_popular_road.png} 416 | 417 | \end{column} 418 | 419 | \hspace{-5em} 420 | 421 | \begin{column}{0.5\textwidth} 422 | 423 | \includegraphics[scale=0.25]{graphics/citibike_monthly_trips.png} 424 | 425 | \vspace{1em} 426 | 427 | \footnotesize 428 | \begin{itemize}[label=\ding{212}] 429 | \item {\color{lightblue}dramatically fewer rides during the cold winter months} 430 | \item {\color{lightblue}1,000,000+ rides in some months} 431 | % \item {\color{lightblue}The August 2015 increase in rides corresponds to the system’s first major expansion} 432 | \end{itemize} 433 | \end{column} 434 | \end{columns} 435 | 436 | \end{frame} 437 | 438 | 439 | \begin{frame} 440 | \frametitle{\color{lightred}\textbf{GHG emissions}} 441 | \topline 442 | 443 | \begin{columns} 444 | \begin{column}{0.7\textwidth} 445 | \centering 446 | \includegraphics[scale=0.24]{graphics/nyc_ghg.png} 447 | 448 | \hspace{1em} 449 | 450 | \includegraphics[scale=0.24]{graphics/nyc_ghg_transport.png} 451 | 452 | \end{column} 453 | \begin{column}{0.3\textwidth} 454 | \textbf{\color{thickblue}Findings} 455 | 456 | \footnotesize 457 | \vspace{1em} 458 | 459 | - {\color{lightblue}GHG emissions have reduced 15\%} 460 | 461 | - {\color{lightblue}On-road transport is the most remarkable factor for GHG emission in transportation} 462 | 463 | \end{column} 464 | \end{columns} 465 | 466 | 467 | \end{frame} 468 | 469 | 470 | \begin{frame} 471 | \frametitle{\color{lightred}\textbf{Traffic safety}} 472 | \topline 473 | 474 | \textbf{\color{lightred}Crash summary (severity)} 475 | 476 | \vspace{1em} 477 | 478 | {\centering{ 479 | \footnotesize 480 | \begin{tabular}{l|rr|rr} \hline 481 | & \multicolumn{2}{c|}{New York State} & \multicolumn{2}{c}{New York City} \\ 482 | & 2015 & 2019 & 2015 & 2019 \\ \hline 483 | Total & 251,142 & 418,687 & 41,632 & 121,091 \\ 484 | Fatal & 1,045 & 881 & 232 & 205 \\ 485 | Serious & 9,097 & 10,043 & 2,213 & 3,147 \\ 486 | Moderate & 15,229 & 16,219 & 4,108 & 5,899 \\ 487 | Minor & 75,084 & 85,527 & 24,184 & 35,982 \\ 488 | Unk severity & 3,576 & 2,854 & 2,326 & 1,655 \\ 489 | Property damage & 147,111 & 303,163 & 8,569 & 74,203 \\ 490 | \hline 491 | \end{tabular} 492 | }} 493 | 494 | 495 | % {\centering{ 496 | % \footnotesize 497 | % \begin{tabular}{l|ccccc} \hline 498 | % & Total & Fatal & Serious & Moderate & Minor & Unk \\ \hline 499 | % New York State (2015) & 294,556 & 1,045 & 113,396 & 180,115 \\ 500 | % New York State (2019) & 447,021 & 881 & 121,068 & 325,072 \\ 501 | % New York City (2015) & \\ 502 | % \hline 503 | % \end{tabular} 504 | % }} 505 | 506 | 507 | \end{frame} 508 | 509 | 510 | 511 | 512 | \begin{frame} 513 | 514 | \frametitle{\color{lightred}\textbf{Travel behavior trend}} 515 | \topline 516 | 517 | % \textbf{\color{lightgreen}Drivers of travel} 518 | 519 | \begin{columns} 520 | % \hspace{-2em} 521 | \begin{column}{0.5\textwidth} 522 | \includegraphics[scale=0.27]{graphics/mobility1.png}\hspace{-0.1em} 523 | \includegraphics[scale=0.27]{graphics/mobility2.png} 524 | \end{column} 525 | 526 | % \hspace{-5em} 527 | \vspace{-15em} 528 | \begin{column}{0.5\textwidth} 529 | 530 | % \textbf{\color{thickblue}New York City} 531 | 532 | \textbf{\color{lightgreen}Trend} 533 | \begin{itemize}[label=\ding{212}]\footnotesize 534 | \item \textbf{\color{lightred}Subway ridership} {\color{lightblue}has grown an average of 2\% since 2010}. 535 | \item \textbf{\color{lightred}Bus rideship} {\color{lightblue}dropped 46 million passengers between 2010 and 2015}. 536 | \item \textbf{\color{lightred}Cycling} {\color{lightblue}increased by 80\% between 2010 and 2015 as bike infrastructure continued to expand on city streets}. 537 | \item \textbf{\color{lightred}Ferry ridership} {\color{lightblue}has fluctuated in recent years}. 538 | \end{itemize} 539 | \end{column} 540 | \end{columns} 541 | 542 | 543 | 544 | 545 | 546 | \end{frame} 547 | 548 | 549 | \begin{frame} 550 | 551 | \frametitle{\color{lightred}\textbf{Uniqueness of transport}} 552 | \topline 553 | 554 | \includegraphics[scale=0.27]{graphics/cv_technology.png} 555 | 556 | \vspace{1em} 557 | 558 | \footnotesize{New tool to help city {{\color{lightblue}eliminate traffic related deaths}} and {{\color{lightblue}reduce crash related injuries and damage to both the vehicles and infrastructure}}.} 559 | 560 | 561 | \end{frame} 562 | 563 | 564 | 565 | 566 | \begin{frame} 567 | \frametitle{\color{lightred}\textbf{Reference}} 568 | \topline 569 | 570 | Data and images are taken from: 571 | 572 | \footnotesize 573 | 574 | \begin{itemize}[label=\ding{48}] 575 | \item \url{https://www1.nyc.gov/assets/planning/download/pdf/plans/transportation/peripheral_travel_02e.pdf} 576 | \item \url{https://new.mta.info/agency/new-york-city-transit/subway-bus-ridership-2019} 577 | \item NYMTC: \url{https://www.nymtc.org/ABOUT-US/annual-reports} 578 | \item Citi Bike website: \url{https://www.citibikenyc.com/} 579 | \item Todd W. Schneider (2016). A tale of twenty-two million Citi Bike rides: Analyzing the NYC bike share system. [Blog post] 580 | \item NYC Connected Vehicle Project: \url{https://www.cvp.nyc/} 581 | \item ITSMR website: \url{https://www.itsmr.org/sas-guest-portal/} 582 | \item NYC Taxi \& Limousine Commission (TLC) website: \url{https://www1.nyc.gov/site/tlc/index.page} 583 | \item Todd W. Schneider (2015). Analyzing 1.1 billion NYC taxi and Uber trips with a vengeance. [Blog post] 584 | \item GHG emissions: \url{https://nyc-ghg-inventory.cusp.nyu.edu/} 585 | \item \url{http://tram.mcgill.ca/Teaching/srp/documents/NickC.pdf} 586 | \end{itemize} 587 | 588 | \end{frame} 589 | 590 | 591 | \begin{frame} 592 | % \frametitle{\color{black}\textbf{Summary}} 593 | % \topline 594 | 595 | 596 | \vspace{2em} 597 | 598 | \centering\Large {\textbf{\color{lightred}Thanks for your attention!}} 599 | \end{frame} 600 | 601 | 602 | 603 | \end{document} -------------------------------------------------------------------------------- /reading-notes/deblurring-images-slides/graphics/book-cover.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/deblurring-images-slides/graphics/book-cover.png -------------------------------------------------------------------------------- /reading-notes/deblurring-images-slides/graphics/exact-vs-blurred-images.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/deblurring-images-slides/graphics/exact-vs-blurred-images.png -------------------------------------------------------------------------------- /reading-notes/deblurring-images-slides/graphics/sharp-vs-blurred-images.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xinychen/awesome-beamer/53677bb456e666422d286c3d77a1bf461ca83fe5/reading-notes/deblurring-images-slides/graphics/sharp-vs-blurred-images.png -------------------------------------------------------------------------------- /reading-notes/deblurring-images-slides/main.tex: -------------------------------------------------------------------------------- 1 | \documentclass{beamer} 2 | \usepackage[utf8]{inputenc} 3 | \usefonttheme{professionalfonts} 4 | \usepackage{xcolor} 5 | \usepackage{graphicx} 6 | \usepackage{amsmath, amsthm, amssymb, amsfonts} 7 | \usepackage{bbm} 8 | 9 | \usepackage{tikz} 10 | \usepackage{pgfplots} 11 | 12 | \newcommand{\topline}{% 13 | \tikz[remember picture,overlay] {% 14 | \draw[gray, thick] ([xshift=1cm,yshift=-1.2cm]current page.north west) 15 | -- ([xshift=-1cm,yshift=-1.2cm,xshift=\paperwidth]current page.north west);}} 16 | 17 | \usepackage{caption} 18 | \usepackage{tabularx, booktabs} 19 | \usepackage{multirow} 20 | \usepackage{multicol} 21 | 22 | \definecolor{light_red}{RGB}{209,105,81} 23 | \definecolor{fair_red}{RGB}{237,27,47} 24 | \definecolor{light_green}{RGB}{58,181,75} 25 | \definecolor{thick_blue}{RGB}{5,43,108} 26 | \definecolor{fair_blue}{RGB}{0,112,192} 27 | \definecolor{light_blue}{RGB}{0,153,228} 28 | \definecolor{light_brown}{RGB}{132, 60, 11} 29 | 30 | \setbeamertemplate{frametitle}[default][center] 31 | \setbeamertemplate{navigation symbols}{} 32 | \setbeamerfont{footline}{series=\bfseries} 33 | \setbeamertemplate{footline}[page number] 34 | 35 | \setbeamertemplate{itemize items}[circle] 36 | \setbeamercolor{itemize item}{fg=black} 37 | 38 | \setbeamercolor{block title}{fg = black, bg = light_blue!40} 39 | \setbeamercolor{block body}{fg = black, bg = white} 40 | \setbeamertemplate{blocks}[rounded][shadow] 41 | \setbeamercolor{block title example}{fg = black, bg = orange!40} 42 | \setbeamercolor{block body example}{fg = black, bg = white} 43 | 44 | \setbeamercolor{block title alerted}{fg = black, bg = light_red!40} 45 | \setbeamercolor{section number projected}{bg=gray} 46 | \setbeamercolor{section number projected}{bg=gray} 47 | \setbeamercolor{subsection number projected}{bg=gray} 48 | 49 | \setbeamertemplate{footline}[frame number]{} 50 | 51 | 52 | \begin{document} 53 | 54 | \begin{frame}[plain] 55 | 56 | \begin{columns} 57 | \begin{column}{0.5\textwidth} 58 | 59 | \begin{center} 60 | {\color{black!80}\Large\textbf{Deblurring Images} 61 | 62 | \vspace{0.2em} 63 | 64 | \large\textbf{Matrices, Spectra, and Filtering}} 65 | 66 | \small 67 | 68 | \vspace{2em} 69 | 70 | \textbf{Xinyu Chen} ({\color{fair_blue}\url{https://xinychen.github.io}}) 71 | 72 | \vspace{0.8em} 73 | 74 | {October 11, 2022} 75 | 76 | \end{center} 77 | 78 | \end{column} 79 | 80 | \begin{column}{0.5\textwidth} 81 | 82 | \begin{center} 83 | \includegraphics[scale=0.12]{graphics/book-cover.png} 84 | \end{center} 85 | 86 | \end{column} 87 | \end{columns} 88 | 89 | \end{frame} 90 | 91 | \begin{frame}[plain] 92 | 93 | \large 94 | \begin{itemize} 95 | \item[\color{black}$\circ$] \textbf{Chapter 1: The Image Deblurring Problem} 96 | \color{gray} 97 | \item[\color{gray}$\circ$] \textbf{Chapter 4: Structured Matrix Computations} 98 | \end{itemize} 99 | 100 | \end{frame} 101 | 102 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 103 | \topline 104 | 105 | About the image deblurring\footnote{The images and Matlab functions discussed in the book are available at {\color{fair_blue}\url{https://archive.siam.org/books/fa03/}}.}: 106 | \begin{itemize}\small 107 | \item \textbf{[Significance]} Image deblurring is fundamental in making pictures sharp and useful. 108 | \item \textbf{[General idea]} Recovering the original and sharp image by using a mathematical model of blurring process. 109 | \item \textbf{[Fact]} No hope to recover the original image exactly! 110 | \item \textbf{[Technical goal]} Develop efficient and reliable algorithms for recovering as much information as possible from the given data. 111 | \item \textbf{[Representation]} A digital image is a two- or three-dimensional array of numbers representing intensities on a grayscale or color scale. 112 | \end{itemize} 113 | 114 | \end{frame} 115 | 116 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 117 | \topline 118 | 119 | A blurred picture and simple linear model. 120 | \small 121 | \begin{itemize} 122 | \item \textbf{Sharp image} vs. \textbf{blurred image} 123 | \begin{center} 124 | \includegraphics[width=0.75\textwidth]{graphics/sharp-vs-blurred-images.png} 125 | \end{center} 126 | \item Notation: $\boldsymbol{X}\in\mathbb{R}^{m\times n}$ (desired \textbf{sharp} image) vs. $\boldsymbol{B}\in\mathbb{R}^{m\times n}$ (recorded \textbf{blurred} image) 127 | \item A simple linear model: 128 | \begin{itemize}\footnotesize 129 | \item[\color{black}$\circ$] Suppose the blurring of the columns in the image is independent of the blurring of the rows. 130 | \item[\color{black}$\circ$] \textbf{Bilinear relationship}: $\boxed{\boldsymbol{A}_{c}\boldsymbol{X}\boldsymbol{A}_{r}^\top=\boldsymbol{B}}$ 131 | \end{itemize} 132 | \end{itemize} 133 | 134 | \end{frame} 135 | 136 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 137 | \topline 138 | 139 | A first attempt at deblurring. 140 | \small 141 | \begin{itemize} 142 | \item Recall that the simple linear model: 143 | \begin{equation} 144 | \boldsymbol{A}_{c}\boldsymbol{X}\boldsymbol{A}_{r}^\top=\boldsymbol{B}\quad\Longrightarrow\quad\boldsymbol{X}_{\text{naive}}=\boldsymbol{A}_{c}^{-1}\boldsymbol{B}(\boldsymbol{A}_{r}^{\top})^{-1} 145 | \end{equation} 146 | ignores several types of errors. 147 | \item Let 148 | \begin{equation} 149 | \boldsymbol{B}_{\text{exact}}=\boldsymbol{A}_{c}\boldsymbol{X}\boldsymbol{A}_{r}^\top 150 | \end{equation} 151 | be the ideal (noise-free) blurred image, ignoring all kinds of errors. 152 | \item Consider small random errors (noise) in the recorded blurred image: 153 | \begin{equation} 154 | \boldsymbol{B}=\boldsymbol{B}_{\text{exact}}+\boldsymbol{E}=\boldsymbol{A}_{c}\boldsymbol{X}\boldsymbol{A}_{r}^\top+\boldsymbol{E} 155 | \end{equation} 156 | where $\boldsymbol{E}\in\mathbb{R}^{m\times n}$ is the \textbf{noise image}. 157 | \end{itemize} 158 | 159 | \end{frame} 160 | 161 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 162 | \topline 163 | 164 | A first attempt at deblurring. 165 | \small 166 | 167 | \begin{exampleblock}{\footnotesize\textbf{The naive reconstruction}} 168 | Recall that 169 | \begin{equation} 170 | \begin{cases} 171 | \boldsymbol{X}_{\text{naive}}=\boldsymbol{A}_{c}^{-1}\boldsymbol{B}(\boldsymbol{A}_{r}^\top)^{-1} \\ 172 | \boldsymbol{B}=\boldsymbol{B}_{\text{exact}}+\boldsymbol{E}=\boldsymbol{A}_{c}\boldsymbol{X}\boldsymbol{A}_{r}^\top+\boldsymbol{E} 173 | \end{cases} 174 | \end{equation} 175 | we therefore have the naive reconstruction: 176 | \begin{equation} 177 | \begin{aligned} 178 | \boldsymbol{X}_{\text{naive}}=&\boldsymbol{A}_{c}^{-1}\boldsymbol{B}(\boldsymbol{A}_{r}^{\top})^{-1} \\ 179 | =&\boldsymbol{A}_{c}^{-1}\boldsymbol{B}_{\text{exact}}(\boldsymbol{A}_{r}^{\top})^{-1}+\boldsymbol{A}_{c}^{-1}\boldsymbol{E}(\boldsymbol{A}_{r}^{\top})^{-1} \\ 180 | =&\boldsymbol{X}+\boldsymbol{A}_{c}^{-1}\boldsymbol{E}(\boldsymbol{A}_{r}^{\top})^{-1} 181 | \end{aligned} 182 | \end{equation} 183 | 184 | \end{exampleblock} 185 | 186 | \begin{itemize} 187 | \item The blurred image consists of two components: the first component is the \textbf{exact image}, and the second component is the \textbf{inverted noise}. 188 | \end{itemize} 189 | 190 | \end{frame} 191 | 192 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 193 | \topline 194 | 195 | A first attempt at deblurring. 196 | \small 197 | \begin{itemize} 198 | \item A simple test: \textbf{Exact image} $\boldsymbol{X}\in\mathbb{R}^{m\times n}$ vs. \textbf{blurred image} $\boldsymbol{B}\in\mathbb{R}^{m\times n}$ 199 | \begin{center} 200 | \includegraphics[width=0.75\textwidth]{graphics/exact-vs-blurred-images.png} 201 | \end{center} 202 | \end{itemize} 203 | 204 | \end{frame} 205 | 206 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 207 | \topline 208 | \small 209 | \begin{alertblock}{\footnotesize\textbf{Lemma}} 210 | For the simple model $\boldsymbol{B}=\boldsymbol{A}_{c}\boldsymbol{X}\boldsymbol{A}_{r}^\top+\boldsymbol{E}$, the relative error in the naive reconstruction $\boldsymbol{X}_{\text{naive}}=\boldsymbol{A}_{c}^{-1}\boldsymbol{B}(\boldsymbol{A}_{r}^\top)^{-1}$ satisfies 211 | \begin{equation} 212 | \frac{\|\boldsymbol{X}_{\text{naive}}-\boldsymbol{X}\|_{F}}{\|\boldsymbol{X}\|_{F}}\leq \text{cond}(\boldsymbol{A}_{c})\cdot\text{cond}(\boldsymbol{A}_{r})\cdot\frac{\|\boldsymbol{E}\|_{F}}{\|\boldsymbol{B}\|_{F}} 213 | \end{equation} 214 | where $\|\cdot\|_{F}$ denotes the Frobenius norm\footnote{For any $\boldsymbol{X}\in\mathbb{R}^{m\times n}$, we have $\|\boldsymbol{X}\|_{F}=\sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n}x_{ij}^2}$.}, and $\text{cond}(\cdot)$ denotes the conditional number\footnote{For any $\boldsymbol{A}\in\mathbb{R}^{N\times N}$ whose singular values are strictly positive, namely, $\sigma_1\geq\cdots\geq\sigma_N>0$, we have $\text{cond}(\boldsymbol{A})=\sigma_1/\sigma_N$.}. 215 | \end{alertblock} 216 | 217 | \end{frame} 218 | 219 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 220 | \topline 221 | 222 | Deblurring using a general linear model. 223 | \begin{itemize}\small 224 | \item In most situations, the blur is indeed \textbf{linear}, or at least well approximated by a linear model. 225 | \item A general linear model via \textbf{vectorization}. 226 | \begin{itemize}\footnotesize 227 | \item[\color{black}$\circ$] Given sharp image $\boldsymbol{X}\in\mathbb{R}^{m\times n}$ and blurred image $\boldsymbol{B}\in\mathbb{R}^{m\times n}$, since the blurring is assumed to be a linear operation, there must exist a large \textbf{blurring matrix} $\boldsymbol{A}\in\mathbb{R}^{N\times N}$ ($N=mn$) such that 228 | \begin{equation} 229 | \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b} 230 | \end{equation} 231 | with 232 | \begin{equation} 233 | \boldsymbol{x}=\text{vec}(\boldsymbol{X})=\begin{bmatrix} \boldsymbol{x}_{1} \\ \vdots \\ \boldsymbol{x}_{n} \end{bmatrix}\in\mathbb{R}^{N},\quad\boldsymbol{b}=\text{vec}(\boldsymbol{B})=\begin{bmatrix} 234 | \boldsymbol{b}_{1} \\ \vdots \\ \boldsymbol{b}_{n} \end{bmatrix}\in\mathbb{R}^{N} 235 | \end{equation} 236 | \item[\color{black}$\circ$] The naive approach to image deblurring is simply to solve this linear algebraic system. 237 | \end{itemize} 238 | \end{itemize} 239 | 240 | \end{frame} 241 | 242 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 243 | \topline 244 | 245 | Deblurring using a general linear model. 246 | \small 247 | \begin{exampleblock}{\footnotesize\textbf{The naive reconstruction (matrix-form)}} 248 | Recall that 249 | \begin{equation} 250 | \begin{cases} 251 | \boldsymbol{X}_{\text{naive}}=\boldsymbol{A}_{c}^{-1}\boldsymbol{B}(\boldsymbol{A}_{r}^\top)^{-1} \\ 252 | \boldsymbol{B}=\boldsymbol{B}_{\text{exact}}+\boldsymbol{E}=\boldsymbol{A}_{c}\boldsymbol{X}\boldsymbol{A}_{r}^\top+\boldsymbol{E} 253 | \end{cases} 254 | \end{equation} 255 | we therefore have the naive reconstruction: 256 | \begin{equation} 257 | \begin{aligned} 258 | \boldsymbol{X}_{\text{naive}}=&\boldsymbol{A}_{c}^{-1}\boldsymbol{B}(\boldsymbol{A}_{r}^{\top})^{-1} \\ 259 | =&\boldsymbol{A}_{c}^{-1}\boldsymbol{B}_{\text{exact}}(\boldsymbol{A}_{r}^{\top})^{-1}+\boldsymbol{A}_{c}^{-1}\boldsymbol{E}(\boldsymbol{A}_{r}^{\top})^{-1} \\ 260 | =&\boldsymbol{X}+\boldsymbol{A}_{c}^{-1}\boldsymbol{E}(\boldsymbol{A}_{r}^{\top})^{-1} 261 | \end{aligned} 262 | \end{equation} 263 | 264 | \end{exampleblock} 265 | 266 | \begin{exampleblock}{\footnotesize\textbf{The naive reconstruction (vector-form)}} 267 | Vectorize blurred image $\boldsymbol{B}$ and noise image $\boldsymbol{E}$ as $\boldsymbol{b}_{\text{exact}}=\text{vec}(\boldsymbol{B}_{\text{exact}})=\boldsymbol{A}\boldsymbol{x}$ and $\boldsymbol{e}=\text{vec}(\boldsymbol{E})$, respectively, then we have 268 | \begin{equation} 269 | \boldsymbol{x}_{\text{naive}}=\boldsymbol{A}^{-1}\boldsymbol{b}=\boldsymbol{A}^{-1}\boldsymbol{b}_{\text{exact}}+\boldsymbol{A}^{-1}\boldsymbol{e}=\boldsymbol{x}+\boldsymbol{A}^{-1}\boldsymbol{e} 270 | \end{equation} 271 | \end{exampleblock} 272 | 273 | \end{frame} 274 | 275 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 276 | \topline 277 | 278 | Deblurring using a general linear model. 279 | 280 | \small 281 | \begin{itemize} 282 | \item Relationship between matrix- and vector-form reconstruction: 283 | \begin{equation} 284 | \begin{aligned} 285 | \boldsymbol{X}_{\text{naive}}&=\boldsymbol{A}_{c}^{-1}\boldsymbol{B}(\boldsymbol{A}_{r}^{\top})^{-1} \\ 286 | \Longrightarrow~\boldsymbol{x}_{\text{naive}}&=(\boldsymbol{A}_{r}^{-1}\otimes\boldsymbol{A}_{c}^{-1})\boldsymbol{b} \\ 287 | &=(\boldsymbol{A}_{r}\otimes\boldsymbol{A}_{c})^{-1}\boldsymbol{b} 288 | \end{aligned} 289 | \end{equation} 290 | it therefore demonstrates that $\boldsymbol{A}\triangleq\boldsymbol{A}_{r}\otimes\boldsymbol{A}_{c}$. 291 | \item Property of Kronecker product $\otimes$: 292 | \begin{alertblock}{\footnotesize\textbf{Proposition}} 293 | Let $\boldsymbol{A}\in\mathbb{R}^{m\times m}$, $\boldsymbol{X}\in\mathbb{R}^{m\times n}$, and $\boldsymbol{B}\in\mathbb{R}^{n\times n}$ be three matrices commensurate from multiplication in that order, then it holds that 294 | \begin{equation} 295 | \text{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B})=(\boldsymbol{B}^\top\otimes\boldsymbol{A})\text{vec}(\boldsymbol{X}) 296 | \end{equation} 297 | \end{alertblock} 298 | 299 | \end{itemize} 300 | 301 | \end{frame} 302 | 303 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 304 | \topline 305 | 306 | Deblurring using a general linear model. 307 | 308 | \small 309 | \begin{alertblock}{\footnotesize\textbf{Singular value decomposition (SVD)}} 310 | For any $\boldsymbol{A}\in\mathbb{R}^{N\times N}$ whose singular values are strictly positive, we have 311 | \begin{equation} 312 | \boldsymbol{A}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^\top=\sum_{i=1}^{N}\sigma_{i}\boldsymbol{u}_{i}\boldsymbol{v}_{i}^\top\quad\Longrightarrow\quad\boldsymbol{A}^{-1}=\sum_{i=1}^{N}\frac{1}{\sigma_{i}}\boldsymbol{u}_{i}\boldsymbol{v}_{i}^\top 313 | \end{equation} 314 | \end{alertblock} 315 | 316 | \begin{exampleblock}{\footnotesize\textbf{The naive reconstruction with SVD}} 317 | The naive reconstruction can be written as follows, 318 | \begin{equation} 319 | \boldsymbol{x}_{\text{naive}}=\boldsymbol{A}^{-1}\boldsymbol{b}=\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^\top\boldsymbol{b}=\sum_{i=1}^{N}\frac{\boldsymbol{u}_{i}^\top\boldsymbol{b}}{\sigma_i}\boldsymbol{v}_{i} 320 | \end{equation} 321 | in which the inverted noise is 322 | \begin{equation} 323 | \boldsymbol{A}^{-1}\boldsymbol{e}=\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^\top\boldsymbol{e}=\sum_{i=1}^{N}\frac{\boldsymbol{u}_{i}^\top\boldsymbol{e}}{\sigma_i}\boldsymbol{v}_{i} 324 | \end{equation} 325 | \end{exampleblock} 326 | 327 | \end{frame} 328 | 329 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 330 | \topline 331 | 332 | Deblurring using a general linear model. 333 | 334 | \small 335 | 336 | \begin{itemize} 337 | \item Recall that the inverted noise is 338 | \begin{equation*} 339 | \boldsymbol{A}^{-1}\boldsymbol{e}=\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^\top\boldsymbol{e}=\sum_{i=1}^{N}\frac{\boldsymbol{u}_{i}^\top\boldsymbol{e}}{\sigma_i}\boldsymbol{v}_{i} 340 | \end{equation*} 341 | \item Properties for image deblurring problems: 342 | \begin{itemize}\footnotesize 343 | \item[\color{black}$\circ$] The error components $|\boldsymbol{u}_{i}^\top\boldsymbol{e}|$ are small and typically of roughly the same order of magnitude for all $i$. 344 | \item[\color{black}$\circ$] The singular values decay to a value very close to zero. As a consequence, the condition number $\text{cond}(\boldsymbol{A})=\sigma_1/\sigma_N$ is very large, indicating that \textbf{the solution is very sensitive to perturbation and rounding errors}. 345 | \item[\color{black}$\circ$] \textbf{The singular vectors corresponding to the smaller singular values typically represent high-frequency information}. That is, as $i$ increases, the vectors $\boldsymbol{u}_{i}$ and $\boldsymbol{v}_{i}$ tend to have more sign changes. 346 | \end{itemize} 347 | \end{itemize} 348 | 349 | \end{frame} 350 | 351 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 352 | \topline 353 | 354 | Deblurring using a general linear model. 355 | 356 | \small 357 | 358 | \begin{itemize} 359 | \item Recall that the inverted noise is 360 | \begin{equation*} 361 | \boldsymbol{A}^{-1}\boldsymbol{e}=\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^\top\boldsymbol{e}=\sum_{i=1}^{N}\frac{\boldsymbol{u}_{i}^\top\boldsymbol{e}}{\sigma_i}\boldsymbol{v}_{i} 362 | \end{equation*} 363 | \end{itemize} 364 | 365 | \begin{exampleblock}{\footnotesize\textbf{Remark}} 366 | For $\boldsymbol{A}^{-1}\boldsymbol{e}$, the quantities $\boldsymbol{u}_{i}^\top\boldsymbol{e}/\sigma_i$ are the expansion coefficients for the basis vectors $\boldsymbol{v}_{i}$. When these quantities are small in magnitude, the solution has very little contribution from $\boldsymbol{v}_{i}$, but when we divide by a small singular values such as $\sigma_N$, we greatly magnify the corresponding error component $\boldsymbol{u}_{N}^\top\boldsymbol{e}$ which in turn contributes a large multiple of the high-frequency information contained in $\boldsymbol{v}_{N}$ to the reconstruction solution. 367 | \end{exampleblock} 368 | 369 | \begin{itemize} 370 | \item Thus, we can remove the high-frequency components that are dominated by error. 371 | \end{itemize} 372 | \end{frame} 373 | 374 | \begin{frame}{\color{black}\textbf{The Image Deblurring Problem}} 375 | \topline 376 | 377 | Deblurring using a general linear model. 378 | \small 379 | \begin{itemize} 380 | \item The naive reconstruction with SVD: 381 | \begin{equation} 382 | \boldsymbol{x}_{\text{naive}}=\sum_{i=1}^{N}\frac{\boldsymbol{u}_{i}^\top\boldsymbol{b}}{\sigma_i}\boldsymbol{v}_{i} 383 | \end{equation} 384 | \item The truncated expansion with $k] (0, 0.25) -- (0.5, 0.8); 179 | 180 | \draw (3, -1) node {\scriptsize{\textbf{\color{gray}Responses to \color{light_red}environmental stimuli}}}; 181 | \draw [very thick, draw = light_blue, ->] (3, -0.25) -- (3.5, -0.8); 182 | 183 | \end{tikzpicture} 184 | 185 | \end{frame} 186 | 187 | 188 | \begin{frame} 189 | \frametitle{\color{light_red}\textbf{Bobo Doll Experiments}} 190 | \topline 191 | 192 | \begin{columns} 193 | \begin{column}{0.3\textwidth} 194 | \centering 195 | \includegraphics[scale = 0.2]{graphics/bobo_doll.png} 196 | 197 | \end{column} 198 | \begin{column}{0.7\textwidth} 199 | \centering 200 | \includegraphics[scale = 0.45]{graphics/bobo_doll_experiment.jpg} 201 | \end{column} 202 | \end{columns} 203 | 204 | \noindent\rule[0ex]{\linewidth}{0.2pt} 205 | 206 | \vspace{0.8em} 207 | 208 | \small 209 | 210 | \pause 211 | 212 | {\color{black}Contribution of Bandura's Theory:} 213 | 214 | \vspace{0.5em} 215 | 216 | \centering 217 | 218 | \begin{tikzpicture} 219 | \draw (0, 0) node {\footnotesize\textbf{Social Learning = \fbox{Observational learning} + \fbox{\color{gray}Behavior learning}}}; 220 | \draw (0, 1) node {\scriptsize{\textbf{\color{gray}Elements: \color{light_red}attention, retention, reproduction, motivation}}}; 221 | \draw [very thick, draw = light_blue, ->] (0, 0.25) -- (0.5, 0.8); 222 | 223 | \draw (3, -1) node {\scriptsize{\textbf{\color{gray}Responses to environmental stimuli}}}; 224 | \draw [very thick, draw = gray, ->] (3, -0.25) -- (3.5, -0.8); 225 | 226 | \end{tikzpicture} 227 | 228 | \end{frame} 229 | 230 | 231 | \begin{frame} 232 | \frametitle{\color{light_red}\textbf{People Can Learn Through Observation}} 233 | \topline 234 | 235 | % \centering 236 | \begin{center} 237 | \includegraphics[width = 0.85\textwidth]{graphics/use_chopsticks.png} 238 | \end{center} 239 | 240 | \vspace{0.5em} 241 | 242 | \pause 243 | 244 | \footnotesize 245 | \textbf{\color{gray}Elements of social learning:} 246 | \scriptsize 247 | \begin{itemize} 248 | \item[\ding{212}] \textbf{\color{light_red}Attention:} {\color{light_blue}\scriptsize{Dedicate attention to learning.}} 249 | \item[\ding{212}] \textbf{\color{light_red}Retention:} {\color{light_blue}\scriptsize{Ability to store information.}} 250 | \item[\ding{212}] \textbf{\color{light_red}Reproduction:} {\color{light_blue}\scriptsize{Perform the behavior you observed.}} 251 | \item[\ding{212}] \textbf{\color{light_red}Motivation:} {\color{light_blue}\scriptsize{Be motivated to imitate the behavior that has been modeled.}} 252 | \end{itemize} 253 | 254 | \end{frame} 255 | 256 | 257 | \begin{frame} 258 | 259 | \frametitle{\color{light_red}\textbf{- Sustainable Transport Innovations}} 260 | \topline 261 | 262 | {\footnotesize\color{thick_blue}\textbf{- Sustainable transport projects} (Netherlands)\footnote{\scriptsize{\color{black!75}J.C.J.M. van den Bergh et al., Social learning by doing in sustainable transport innovations: Ex-post analysis of common factors behind successes and failures. Research Policy, 2007, 36: 247-259.}}:} 263 | 264 | \vspace{0.5em} 265 | 266 | \resizebox{10.5cm}{!}{ 267 | \begin{tikzpicture} 268 | \draw (0, 0.75) node {\small\textbf{\color{thick_blue}-}}; 269 | \draw (0, 0) node {\scriptsize\textbf{\color{light_blue}Public transport travel info.}}; 270 | \draw (0, -0.5) node {\scriptsize\textbf{\color{light_blue}Traintaxi}}; 271 | \draw (0, -1.0) node {\scriptsize\textbf{\color{light_blue}Catalytic converter}}; 272 | \draw [very thick, draw = gray, dashed] (2.5, 0.5) -- (2.5, -1.0); 273 | 274 | \draw (5, 0.75) node {\small\textbf{\color{thick_blue}-}}; 275 | \draw (5, 0) node {\scriptsize\textbf{\color{light_red}Autodate}}; 276 | \draw (5, -0.5) node {\scriptsize\textbf{\color{light_red}Leiden park \& ride}}; 277 | \draw (5, -1.0) node {\scriptsize\textbf{\color{light_red}Public transport pass for students}}; 278 | \draw [very thick, draw = gray, dashed] (7.5, 0.5) -- (7.5, -1.0); 279 | 280 | \draw (10, 0.75) node {\small\textbf{\color{thick_blue}-}}; 281 | \draw (10, -0.25) node {\scriptsize\textbf{\color{gray}Electronic road pricing}}; 282 | \draw (10, -0.75) node {\scriptsize\textbf{\color{gray}Alternating carpool lane}}; 283 | 284 | \end{tikzpicture} 285 | } 286 | 287 | \vspace{-0.2em} 288 | 289 | \noindent\rule[0ex]{\linewidth}{0.2pt} 290 | 291 | \vspace{0.5em} 292 | 293 | {\footnotesize\color{thick_blue}\textbf{- How to do?}} 294 | 295 | \begin{itemize}\footnotesize 296 | \item[\ding{212}] {\color{fair_blue}Identify sustainable transport innovation projects} 297 | \item[\ding{212}] {\color{fair_blue}Define factors} {\scriptsize\color{gray}(e.g., technological, administrative, political, economic)} 298 | \item[\ding{212}] {\color{fair_blue}Collect data from interviewees} 299 | \item[\ding{212}] {\color{fair_blue}Apply social learning mechanism} 300 | \end{itemize} 301 | 302 | \end{frame} 303 | 304 | 305 | \begin{frame} 306 | 307 | \frametitle{\color{light_red}\textbf{- Sustainable Transport Innovations}} 308 | \topline 309 | 310 | {\footnotesize\color{thick_blue}\textbf{- Sustainable transport projects} (Netherlands)\footnote{\scriptsize{\color{black!75}J.C.J.M. van den Bergh et al., Social learning by doing in sustainable transport innovations: Ex-post analysis of common factors behind successes and failures. Research Policy, 2007, 36: 247-259.}}:} 311 | 312 | \vspace{0.5em} 313 | 314 | \resizebox{11cm}{!}{ 315 | \begin{tikzpicture} 316 | \draw (0, 0.75) node {\small\textbf{\color{thick_blue}Success}}; 317 | \draw (0, 0) node {\scriptsize\textbf{\color{light_blue}Public transport travel info.}}; 318 | \draw (0, -0.5) node {\scriptsize\textbf{\color{light_blue}Traintaxi}}; 319 | \draw (0, -1.0) node {\scriptsize\textbf{\color{light_blue}Catalytic converter}}; 320 | \draw [very thick, draw = gray, dashed] (2.5, 0.5) -- (2.5, -1.0); 321 | 322 | \draw (5, 0.75) node {\small\textbf{\color{thick_blue}Ambiguous}}; 323 | \draw (5, 0) node {\scriptsize\textbf{\color{light_red}Autodate}}; 324 | \draw (5, -0.5) node {\scriptsize\textbf{\color{light_red}Leiden park \& ride}}; 325 | \draw (5, -1.0) node {\scriptsize\textbf{\color{light_red}Public transport pass for students}}; 326 | \draw [very thick, draw = gray, dashed] (7.5, 0.5) -- (7.5, -1.0); 327 | 328 | \draw (10, 0.75) node {\small\textbf{\color{thick_blue}Failure}}; 329 | \draw (10, -0.25) node {\scriptsize\textbf{\color{gray}Electronic road pricing}}; 330 | \draw (10, -0.75) node {\scriptsize\textbf{\color{gray}Alternating carpool lane}}; 331 | 332 | \end{tikzpicture} 333 | } 334 | 335 | \vspace{-0.2em} 336 | 337 | \noindent\rule[0ex]{\linewidth}{0.2pt} 338 | 339 | \vspace{0.5em} 340 | 341 | {\footnotesize\color{thick_blue}\textbf{- Findings by using social learning:}} 342 | 343 | \begin{itemize}\footnotesize 344 | \item[\ding{212}] {\color{fair_blue}Predominant factors:{\color{gray}\scriptsize Political, process-related, socio-cultural, and psychological factors}} 345 | \item[\ding{212}]{\color{fair_blue}Less important factors:{\color{gray}\scriptsize Technical and economic factors}} 346 | \item[\ding{212}] {\color{fair_blue}Communication is an important element of social learning to foster innovations.} 347 | \end{itemize} 348 | 349 | \end{frame} 350 | 351 | 352 | % \begin{frame} 353 | 354 | % \frametitle{\color{light_red}\textbf{Modeling Travellers' Change of Behaviour}} 355 | % \topline 356 | 357 | % Incorporating social interaction and social learning in modeling ... 358 | 359 | % Social interaction is a medium for social learning to happen. 360 | 361 | % - 1st level: an interdependent situation where travellers are in a similar transport system with other travellers. 362 | 363 | % - 2nd level: happen through observation by a traveller of other travellers' choices without involving processes of communications. 364 | 365 | % Social learning: Individuals learn from others' experiences or observed behaviours. 366 | 367 | % Uncertainty: 368 | 369 | % - Effects of natural events (e.g., rain, snow) 370 | 371 | % - Effects of human-made events (e.g., accidents, roadworks) 372 | 373 | % - Travellers' choices 374 | 375 | % Uncertainties contribute to the complex and dynamic process of travel behavioural change 376 | 377 | % \end{frame} 378 | 379 | 380 | % \begin{frame} 381 | % \frametitle{\color{light_red}\textbf{Modeling Travellers' Change of Behavior}} 382 | % \topline 383 | 384 | % \textbf{\color{light_green}Laboratory experiment:} 385 | 386 | % \begin{itemize}\footnotesize 387 | % \item[\ding{212}] Computer interface based on Z-tree 388 | % \item[\ding{212}] Simulates a repeated decision-making environments. 389 | % \item[\ding{212}] Whether or not contribute to an employer-based demand management initiative to reduce employees' car-use. 390 | % \item[\ding{212}] Two schemes of social information about other participants' behaviour. 391 | % \end{itemize} 392 | 393 | % \textbf{\color{light_green}Simulation experiment:} 394 | 395 | % \begin{itemize}\footnotesize 396 | % \item[\ding{212}] A larger system with more individuals 397 | % \item[\ding{212}] Individual layer + interaction layer 398 | % \end{itemize} 399 | 400 | 401 | % \end{frame} 402 | 403 | 404 | \begin{frame} 405 | \frametitle{\textbf{\color{light_red}A Potential Research Idea}} 406 | \topline 407 | 408 | \begin{columns} 409 | \begin{column}{0.3\textwidth} 410 | \centering 411 | \includegraphics[scale = 0.2]{graphics/wechat.png} 412 | \end{column} 413 | \begin{column}{0.6\textwidth} 414 | \centering 415 | \includegraphics[scale = 0.28]{graphics/congested_taxi.jpeg} 416 | \end{column} 417 | \end{columns} 418 | 419 | \vspace{0.5em} 420 | 421 | \noindent\rule[0ex]{\linewidth}{0.2pt} 422 | 423 | \vspace{0.2em} 424 | 425 | \begin{block}{\color{black}\footnotesize[Idea] {\color{light_red}\textbf{Social learning and social network of taxi drivers}}\footnote{\scriptsize{\color{black!75}Y. Sunitiyoso, et al., On the potential for recognising of social interaction and social learning in modelling travellers’ change of behaviour under uncertainty. Transportmetrica, 2011, 7(1): 5-30.}}} 426 | \vspace{0.5em} 427 | \color{light_blue} 428 | \beamergotobutton{Idea from} \footnotesize In China, it is very common that taxi drivers have some certain Wechat teams for \textbf{communication}. They share and discuss \textbf{travel demands} and \textbf{traffic conditions} with other taxi drivers on Wechat. 429 | \end{block} 430 | 431 | \vspace{0.3em} 432 | 433 | \footnotesize[Question] {\color{light_red}Can social learning and social network help \textbf{improve the income of taxi drivers}?} 434 | 435 | \end{frame} 436 | 437 | 438 | \begin{frame} 439 | \frametitle{\color{lightred}\textbf{Reference}} 440 | \topline 441 | 442 | \footnotesize 443 | \begin{enumerate} 444 | \item Social learning on wikipedia. [\href{https://en.wikipedia.org/wiki/Social_learning_theory}{\color{blue!80!black}website}] 445 | \item Bobo doll experiment on wikipedia. [\href{https://en.wikipedia.org/wiki/Bobo_doll_experiment}{\color{blue!80!black}website}] 446 | \item How social learning theory works. [\href{https://www.verywellmind.com/social-learning-theory-2795074}{\color{blue!80!black}post}] 447 | \item How observational learning affects behavior. [\href{https://www.verywellmind.com/what-is-observational-learning-2795402}{\color{blue!80!black}post}] 448 | \item J.C.J.M. van den Bergh et al., Social learning by doing in sustainable transport innovations: Ex-post analysis of common factors behind successes and failures. Research Policy, 2007, 36: 247-259. 449 | \item Y. Sunitiyoso, et al., On the potential for recognising of social interaction and social learning in modelling travellers’ change of behaviour under uncertainty. Transportmetrica, 2011, 7(1): 5-30. 450 | \end{enumerate} 451 | 452 | \end{frame} 453 | 454 | 455 | \begin{frame} 456 | 457 | \vspace{2em} 458 | 459 | \centering\Large {\textbf{\color{lightred}Thanks for your attention!}} 460 | 461 | % \vspace{0.5em} 462 | 463 | % \footnotesize 464 | % {\color{gray}LaTeX codes for creating these slides are publicly available at:} 465 | 466 | \end{frame} 467 | 468 | 469 | 470 | \end{document} --------------------------------------------------------------------------------