├── CHANGELOG.md ├── LICENSE ├── README.md ├── __pycache__ ├── pyspecaprs.cpython-310.pyc └── pyspecconst.cpython-310.pyc ├── gqrx2pss.py ├── pyspecaprs.py ├── pyspecconst.py ├── pyspecsdr.py ├── requirements.txt ├── rtlcoms.json └── sdr_bookmarks.json /CHANGELOG.md: -------------------------------------------------------------------------------- 1 | ## PySpecSDR Changelog 2 | 3 | ### Version 1.0.1 (2024/11/22) 4 | 5 | #### Features Added: 6 | + Added PPM (Parts Per Million) frequency correction functionality 7 | - New 'P'/'p' keys to increase/decrease PPM correction 8 | - New 'O' key to set exact PPM correction value 9 | - PPM value displayed in header 10 | - PPM settings saved/loaded with other configurations 11 | 12 | + Added more band presets for various radio services 13 | - Amateur radio bands (160m through 23cm) 14 | - Shortwave radio 15 | - Citizens Band (CB) 16 | - PMR446 17 | - Marine VHF 18 | - GSM bands 19 | - DECT 20 | - LTE bands 21 | - WiFi 2.4/5 GHz 22 | - Digital radio services 23 | 24 | + Added scrolling capability in Help screen 25 | - Up/Down arrow keys for line-by-line scrolling 26 | - PgUp/PgDn for page scrolling 27 | - Visual scrollbar indicator 28 | 29 | + Added pagination to scan results and bookmarks 30 | - Next/Previous page navigation 31 | - Page number indicators 32 | - Improved readability for long lists 33 | 34 | + Added ability to delete bookmarks 35 | - 'd' key in bookmarks menu to delete entries 36 | - Confirmation prompt for deletion 37 | 38 | + Added feature to recall last scan results 39 | - 'C' key shows results from most recent frequency scan 40 | - Maintains scan history between sessions 41 | 42 | #### Improvements: 43 | * ! All characters now use lower ASCII for better compatibility 44 | * ! All visual modes now have consistent frequency labels 45 | * ! Improved signal detection algorithm 46 | * ! Fixed/standardized look across all display modes 47 | 48 | #### Bug Fixes: 49 | * ! Fixed inconsistent character display in some terminals 50 | * ! Fixed frequency label alignment issues 51 | * ! Fixed bookmark sorting and display 52 | * ! Improved error handling for PPM settings 53 | * ! Fixed memory leak in waterfall display 54 | 55 | ### Version 1.0.2 (2024/11/24) 56 | 57 | #### Features Added: 58 | + The x axis has a center marker, with adjustable width, proportional to Bandwidth 59 | 60 | #### Improvements: 61 | * Adjusted calculation for better spectrogram/waterfall visualization 62 | 63 | #### Bug Fixes: 64 | * Fixed Initialization process for LimeSDR 65 | * Revert spectrogram drawing to first release 66 | 67 | ### Version 1.0.3 (2024/11/30) 68 | 69 | #### Features Added: 70 | * The program now displays the Band name if the center frequency is inside a known one 71 | * The '/' key opens the RTLSDR Commands menu (read below) 72 | * Added an utility to convert CSV/GQRX bookmark files to JSON/PySpecSDR format 73 | 74 | #### Bug Fixes: 75 | * Fixed AGC string in header 76 | * Fixed bugs in user inputs 77 | 78 | #### Features Removed: 79 | * RTLSDR version removed. SoapySDR is more capable and supports more devices. 80 | 81 | ### Version 1.0.4 (2024/12/07) 82 | 83 | #### Features Added: 84 | * Named PIPE to /tmp/sdrpipe of audio, to use with any program that decodes signals, like multimon-ng. 85 | 86 | #### Bug Fixes: 87 | * Improved sound quality to NFM and WFM modes, thanks to ChrisDev8 (https://github.com/xqtr/PySpecSDR/issues/3) 88 | 89 | ### Version 1.0.5 (2024/12/15) 90 | 91 | #### Fixes: 92 | * Change string for Narrow FM, to NFM, from FM, to avoid confusion (https://github.com/xqtr/PySpecSDR/issues/3) 93 | * IQ correction added to all demodulation modes (https://github.com/xqtr/PySpecSDR/issues/3) 94 | * Added filter between 300 and 3000 hz to remove low frequency harmonics and high pitched, out of band noise (between 300 and 3000 hz to remove low frequency harmonics and high pitched, out of band noise) 95 | * Converted all audio to Stereo, even in Mono sound the program outputs stereo/two channel sound. 96 | 97 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # PySpecSDR 2 | ``` 3 | ____ _____ _____ ____ ____ 4 | / __ \__ __/ ___/____ ___ _____/ ___// __ \/ __ \ 5 | / /_/ / / / /\__ \/ __ \/ _ \/ ___/\__ \/ / / / /_/ / 6 | / ____/ /_/ /___/ / /_/ / __/ /__ ___/ / /_/ / _, _/ 7 | /_/ \__, //____/ .___/\___/\___//____/_____/_/ |_| 8 | /____/ /_/ 9 | version 1.0.4 10 | ``` 11 | 12 | ## PySpecSDR - Python SDR Spectrum Analyzer and Signal Processor 13 | 14 | A feature-rich Software Defined Radio (SDR) spectrum analyzer with real-time 15 | visualization, demodulation, and signal analysis capabilities. 16 | 17 | Features: 18 | - Real-time spectrum analysis and waterfall display 19 | - Multiple visualization modes (spectrum, waterfall, persistence, surface, gradient) 20 | - FM, AM, SSB demodulation with audio output 21 | - Frequency scanning and signal classification 22 | - Bookmark management for frequencies of interest 23 | - Automatic Gain Control (AGC) 24 | - Recording capabilities for both RF and audio 25 | - Band presets for common frequency ranges 26 | - Configurable display and processing parameters 27 | 28 | Requirements: 29 | - RTL-SDR compatible device 30 | - Python 3.7 or higher 31 | - Dependencies listed in requirements.txt 32 | 33 | License: GPL-3.0-or-later 34 | 35 | ## Installing Dependencies 36 | 37 | You can install the required dependencies using the requirements.txt file. 38 | 39 | * Install via pip: 40 | 41 | `pip install -r requirements.txt` 42 | 43 | ## Changelog 44 | 45 | Moved to CHANGELOG.md, as it was getting big... :) 46 | 47 | ## RTLSDR Commands Menu 48 | Pressing the '/' key, will show a menu with various RTLSDR commands. These are examples of what you can do with the RTLSDR suite of programs like rtl_433, rtl_power etc. Selecting one, from the menu, will store it in memory, passing the current frequency as a paramater to that command. When you exit the program, this command will be printed on the terminal. 49 | 50 | It's a simple way, to have ready to use RTLSDR commands and use the current frequency. Select one and exit, at the current frequency, to immediately, do something else (like decoding messages). 51 | 52 | The command is not executed, it's just printed on the terminal. Copy/Paste it to use it. 53 | 54 | ## Named PIPE Function 55 | 56 | As from version 1.0.4, PySpecSDR, has the ability to export audio to a named PIPE file, at location /tmp/sdrpipe. This means that you can attach any decoding program to the pipe and decode the signal as you like. 57 | 58 | To start the process press the 'I' (capital I) key. The program will freeze and wait until another program attaches to the PIPE file (/tmp/sdrpipe). When it does, the program will work as before. To finish/end the process, just kill all the processes/programs that are attached to the PIPE file and it will close automatically. 59 | 60 | The data exported to this file, is audio, with sample rate at 44100Hz, 16bit, mono. Below are some examples of commands that you can use: 61 | 62 | ``` 63 | sox -t raw -r 44100 -b 16 -e signed-integer /tmp/sdrpipe -t raw - | multimon-ng -t raw -a POCSAG1200 - 64 | 65 | ffmpeg -f s16le -ar 44100 -ac 1 -i /tmp/sdrpipe output.wav 66 | ``` 67 | 68 | Multimon-ng, even if it has the ability to attach to a PIPE file, it seems it doesn't work. So using SOX is a trick to make it work. More examples on how to use multimon-ng with SOX, on the [multimon-ng](https://github.com/EliasOenal/multimon-ng) git repo. 69 | 70 | 71 | ## Showcase 72 | ![spectrum-vis](https://cp737.net/files/pyspecsdr/1spectrum.png) 73 | 74 | ![band-presets](https://cp737.net/files/pyspecsdr/bands.png) 75 | 76 | Select Band to adjust frequncy and bandwidth 77 | 78 | ![demodulation-modes](https://cp737.net/files/pyspecsdr/demodulation.png) 79 | 80 | Select demodulation mode 81 | 82 | ![gradient-vis](https://cp737.net/files/pyspecsdr/gradient.png) 83 | 84 | Gradient Visualization mode 85 | 86 | ![persistent-vis](https://cp737.net/files/pyspecsdr/persistent.png) 87 | 88 | Persistent Visualization mode 89 | 90 | ![scanner1](https://cp737.net/files/pyspecsdr/scanner1.png) 91 | 92 | Select signal strength to scan for... 93 | 94 | ![scanner2](https://cp737.net/files/pyspecsdr/scanner2.png) 95 | 96 | Select band... 97 | 98 | ![scanner3](https://cp737.net/files/pyspecsdr/scanner3.png) 99 | 100 | Scanning... 101 | 102 | ![scanner4](https://cp737.net/files/pyspecsdr/scanner4.png) 103 | 104 | Results. Select to listen. 105 | 106 | ![surface](https://cp737.net/files/pyspecsdr/1surface.png) 107 | ![vector](https://cp737.net/files/pyspecsdr/1vector.png) 108 | 109 | ASCII Waterfall 110 | 111 | ![waterfall](https://cp737.net/files/pyspecsdr/1waterfall.png) 112 | 113 | RTLSDR Commands 114 | ![commands](https://cp737.net/files/pyspecsdr/rtlcmd.png) 115 | 116 | Running flawlessly in a Hackberry Pi Q20... 117 | ![hackberry-vis](https://cp737.net/files/pyspecsdr/hbwfall.jpg) 118 | 119 | 120 | ## Troubleshooting 121 | ``` 122 | 1. If you get "ImportError: No module named 'rtlsdr'": 123 | - Check that pyrtlsdr is installed: pip3 install pyrtlsdr 124 | 2. If you get "usb.core.NoBackendError": 125 | - Install libusb: pip3 install libusb1 126 | 3. If you get "RTLSDRError: No device found": 127 | - Check device connection 128 | - Check udev rules (Linux) 129 | - Check driver installation (Windows) 130 | 4. If you get "OSError: PortAudio library not found": 131 | - Install PortAudio: 132 | Ubuntu/Debian: sudo apt-get install libportaudio2 133 | Fedora: sudo dnf install portaudio-devel 134 | Arch: sudo pacman -S portaudio 135 | macOS: brew install portaudio 136 | ``` 137 | Copyright (c) 2024 [XQTR] 138 | -------------------------------------------------------------------------------- /__pycache__/pyspecaprs.cpython-310.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xqtr/PySpecSDR/6850de67654d35bfb1ab75ab73f7d34c9c08c8bb/__pycache__/pyspecaprs.cpython-310.pyc -------------------------------------------------------------------------------- /__pycache__/pyspecconst.cpython-310.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xqtr/PySpecSDR/6850de67654d35bfb1ab75ab73f7d34c9c08c8bb/__pycache__/pyspecconst.cpython-310.pyc -------------------------------------------------------------------------------- /gqrx2pss.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/python3 2 | 3 | ''' 4 | ____ ____ ____ ____ ____ 5 | | _ \ _ _/ ___| _ __ ___ ___/ ___|| _ \| _ \ 6 | | |_) | | | \___ \| '_ \ / _ \/ __\___ \| | | | |_) | 7 | | __/| |_| |___) | |_) | __/ (__ ___) | |_| | _ < 8 | |_| \__, |____/| .__/ \___|\___|____/|____/|_| \_\ 9 | |___/ |_| 10 | 11 | PySpecSDR - Python SDR Spectrum Analyzer and Signal Processor 12 | =========================================================== 13 | 14 | This is part of the PySpecSDR program. 15 | 16 | It converts a GQRX CSV/Bookmark file to JSON/PySpecSDR format. Make 17 | sure to save the file as sdr_bookmarks.json to load it to PySpecSDR, 18 | as it is. You can also open the file to an editor and add entries from 19 | it. 20 | 21 | 22 | License: GPL-3.0-or-later 23 | 24 | Copyright (c) 2024 [XQTR] 25 | 26 | Permission is hereby granted, free of charge, to any person obtaining a copy 27 | of this software and associated documentation files (the "Software"), to deal 28 | in the Software without restriction, including without limitation the rights 29 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 30 | copies of the Software, and to permit persons to whom the Software is 31 | furnished to do so, subject to the following conditions: 32 | 33 | The above copyright notice and this permission notice shall be included in all 34 | copies or substantial portions of the Software. 35 | 36 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 37 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 38 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 39 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 40 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 41 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 42 | SOFTWARE. 43 | 44 | Author: XQTR 45 | Email: xqtr@gmx.com // xqtr.xqtr@gmail.com 46 | GitHub: https://github.com/xqtr/PySpecSDR 47 | Version: 1.0.0 48 | Last Updated: 2024/11/30 49 | 50 | ''' 51 | import csv 52 | import json 53 | import argparse 54 | 55 | def gqrx_to_json(csv): 56 | results = {} 57 | with open(csv) as file: 58 | for line in file: 59 | line = line.strip() 60 | if line.startswith('#'): 61 | pass 62 | elif line.startswith('Untagged'): 63 | pass 64 | elif not line: 65 | pass 66 | else: 67 | #print(line.rstrip()) 68 | flds = line.split(';') 69 | freq = float(flds[0]) 70 | name = flds[1].strip() 71 | mode = flds[2].strip() 72 | band = float(flds[3].strip()) 73 | 74 | if mode.startswith('Narrow'): 75 | mode = "FM" 76 | elif mode.startswith('AM'): 77 | mode = "AM" 78 | elif mode.startswith('WFM'): 79 | mode = "WFM" 80 | elif mode.startswith('CW'): 81 | mode = "CW" 82 | results[name]=[freq,mode,band] 83 | return results 84 | 85 | if __name__ == "__main__": 86 | parser = argparse.ArgumentParser(description='Load GQRX bookmarks from a file and convert to JSON/PySpecSDR format.') 87 | parser.add_argument('readfile', type=str, help='Path to the GQRX bookmarks file') 88 | parser.add_argument('savefile', type=str, help='Filename to JSON file') 89 | args = parser.parse_args() 90 | with open(args.savefile, 'w') as f: 91 | json.dump(gqrx_to_json(args.readfile), f, indent=2) 92 | -------------------------------------------------------------------------------- /pyspecaprs.py: -------------------------------------------------------------------------------- 1 | def decode_ax25_frame(bit_stream): 2 | """ 3 | Decode AX.25 frame from bit stream 4 | Returns decoded packet or None if invalid 5 | """ 6 | try: 7 | # Find flag pattern (01111110) 8 | flag = [0, 1, 1, 1, 1, 1, 1, 0] 9 | 10 | # Find start and end flags 11 | start = -1 12 | for i in range(len(bit_stream) - 7): 13 | if bit_stream[i:i+8] == flag: 14 | start = i + 8 15 | break 16 | 17 | if start == -1: 18 | return None 19 | 20 | # Extract data between flags 21 | frame_bits = [] 22 | ones_count = 0 23 | i = start 24 | 25 | while i < len(bit_stream) - 7: 26 | bit = bit_stream[i] 27 | frame_bits.append(bit) 28 | 29 | if bit == 1: 30 | ones_count += 1 31 | else: 32 | ones_count = 0 33 | 34 | # Skip stuffed bits 35 | if ones_count == 5 and i + 1 < len(bit_stream) and bit_stream[i+1] == 0: 36 | i += 2 37 | ones_count = 0 38 | continue 39 | 40 | i += 1 41 | 42 | # Check for end flag 43 | if frame_bits[-8:] == flag: 44 | frame_bits = frame_bits[:-8] 45 | break 46 | 47 | # Convert bits to bytes 48 | frame_bytes = [] 49 | for i in range(0, len(frame_bits), 8): 50 | if i + 8 <= len(frame_bits): 51 | byte = 0 52 | for j in range(8): 53 | byte |= frame_bits[i+j] << j 54 | frame_bytes.append(byte) 55 | 56 | return decode_aprs_payload(frame_bytes) 57 | 58 | except Exception: 59 | return None 60 | 61 | def decode_aprs_payload(frame_bytes): 62 | """ 63 | Decode APRS packet payload 64 | """ 65 | try: 66 | if len(frame_bytes) < 14: # Minimum length for valid packet 67 | return None 68 | 69 | # Extract addresses 70 | dest = ''.join([chr((b >> 1) & 0x7F) for b in frame_bytes[0:6]]).strip() 71 | source = ''.join([chr((b >> 1) & 0x7F) for b in frame_bytes[7:13]]).strip() 72 | 73 | # Control and PID fields 74 | ctrl = frame_bytes[13] 75 | pid = frame_bytes[14] if len(frame_bytes) > 14 else None 76 | 77 | # Information field 78 | info = '' 79 | if len(frame_bytes) > 15: 80 | info = ''.join([chr(b) for b in frame_bytes[15:]]) 81 | 82 | return f"{source}>{dest}:{info}" 83 | 84 | except Exception: 85 | return None 86 | 87 | -------------------------------------------------------------------------------- /pyspecconst.py: -------------------------------------------------------------------------------- 1 | 2 | SIGNAL_TYPES = { 3 | 'FM_BROADCAST': { 4 | 'bandwidth': (150e3, 200e3), 5 | 'pattern': 'wideband_fm', 6 | 'description': 'FM Radio Broadcast' 7 | }, 8 | 'NARROW_FM': { 9 | 'bandwidth': (10e3, 16e3), 10 | 'pattern': 'narrowband_fm', 11 | 'description': 'Narrow FM (Amateur/Business)' 12 | }, 13 | 'AM_BROADCAST': { 14 | 'bandwidth': (8e3, 10e3), 15 | 'pattern': 'am', 16 | 'description': 'AM Radio Broadcast' 17 | }, 18 | 'SSB': { 19 | 'bandwidth': (2.4e3, 3e3), 20 | 'pattern': 'ssb', 21 | 'description': 'Single Sideband' 22 | }, 23 | 'DIGITAL': { 24 | 'bandwidth': (6e3, 50e3), 25 | 'pattern': 'digital', 26 | 'description': 'Digital Signal' 27 | } 28 | } 29 | 30 | BAND_PRESETS = { 31 | # Amateur Radio Bands 32 | 'HAM160': (1.8e6, 2.0e6, "160m Amateur Band"), 33 | 'HAM80': (3.5e6, 4.0e6, "80m Amateur Band"), 34 | 'HAM60': (5.3515e6, 5.3665e6, "60m Amateur Band"), 35 | 'HAM40': (7.0e6, 7.3e6, "40m Amateur Band"), 36 | 'HAM30': (10.1e6, 10.15e6, "30m Amateur Band"), 37 | 'HAM20': (14.0e6, 14.35e6, "20m Amateur Band"), 38 | 'HAM17': (18.068e6, 18.168e6, "17m Amateur Band"), 39 | 'HAM15': (21.0e6, 21.45e6, "15m Amateur Band"), 40 | 'HAM12': (24.89e6, 24.99e6, "12m Amateur Band"), 41 | 'HAM10': (28.0e6, 29.7e6, "10m Amateur Band"), 42 | 'HAM6': (50.0e6, 54.0e6, "6m Amateur Band"), 43 | 'HAM2': (144.0e6, 148.0e6, "2m Amateur Band"), 44 | 'HAM70CM': (420.0e6, 450.0e6, "70cm Amateur Band"), 45 | 46 | # CB Radio 47 | 'CB': (26.965e6, 27.405e6, "Citizens Band Radio"), 48 | 49 | # Marine Bands 50 | 'MARINE': (156.0e6, 162.025e6, "Marine VHF"), 51 | 'MARINE_MF': (1.605e6, 4.0e6, "Marine MF Band"), 52 | 53 | # Aviation 54 | 'AIR_VOICE': (118.0e6, 137.0e6, "Aircraft Voice Comms"), 55 | 'AIR_NAV': (108.0e6, 117.975e6, "Aircraft Navigation"), 56 | 57 | # Emergency Services 58 | 'NOAA': (162.4e6, 162.55e6, "NOAA Weather Radio"), 59 | 'PUBLIC': (152.0e6, 162.0e6, "Public Safety VHF"), 60 | 'PUBLIC_UHF': (450.0e6, 470.0e6, "Public Safety UHF"), 61 | 62 | # Broadcast 63 | 'AM': (535e3, 1.705e6, "AM Broadcast"), 64 | 'FM': (87.5e6, 108.0e6, "FM Broadcast"), 65 | 'SW1': (2.3e6, 2.495e6, "Shortwave Band 1"), 66 | 'SW2': (3.2e6, 3.4e6, "Shortwave Band 2"), 67 | 'SW3': (4.75e6, 4.995e6, "Shortwave Band 3"), 68 | 'SW4': (5.9e6, 6.2e6, "Shortwave Band 4"), 69 | 'SW5': (7.3e6, 7.35e6, "Shortwave Band 5"), 70 | 'SW6': (9.4e6, 9.9e6, "Shortwave Band 6"), 71 | 'SW7': (11.6e6, 12.1e6, "Shortwave Band 7"), 72 | 'SW8': (13.57e6, 13.87e6, "Shortwave Band 8"), 73 | 'SW9': (15.1e6, 15.8e6, "Shortwave Band 9"), 74 | 'SW10': (17.48e6, 17.9e6, "Shortwave Band 10"), 75 | 'SW11': (21.45e6, 21.85e6, "Shortwave Band 11"), 76 | 'SW12': (25.67e6, 26.1e6, "Shortwave Band 12"), 77 | 78 | # Digital Modes Common Frequencies 79 | 'FT8_40': (7.074e6, 7.076e6, "40m FT8"), 80 | 'FT8_20': (14.074e6, 14.076e6, "20m FT8"), 81 | 'PSK31_40': (7.070e6, 7.071e6, "40m PSK31"), 82 | 'PSK31_20': (14.070e6, 14.071e6, "20m PSK31"), 83 | 'RTTY_40': (7.080e6, 7.125e6, "40m RTTY"), 84 | 'RTTY_20': (14.080e6, 14.099e6, "20m RTTY"), 85 | 86 | # CW (Morse) Common Frequencies 87 | 'CW_80': (3.5e6, 3.6e6, "80m CW"), 88 | 'CW_40': (7.0e6, 7.125e6, "40m CW"), 89 | 'CW_30': (10.1e6, 10.13e6, "30m CW"), 90 | 'CW_20': (14.0e6, 14.15e6, "20m CW"), 91 | 92 | # Satellite 93 | 'SAT_VHF': (145.8e6, 146.0e6, "Amateur Satellite VHF"), 94 | 'SAT_UHF': (435.0e6, 438.0e6, "Amateur Satellite UHF"), 95 | 'NOAA_SAT': (137.0e6, 138.0e6, "NOAA Weather Satellites"), 96 | 97 | # Time Signals 98 | 'WWV': (2.5e6, 20.0e6, "WWV Time Signals"), 99 | 'WWVH': (2.5e6, 15.0e6, "WWVH Time Signals"), 100 | } 101 | 102 | BAND_BANDWIDTHS = { 103 | 'AM': 10e3, 104 | 'NFM': 200e3, 105 | 'WFM': 100e6, 106 | 'HAM160': 2.7e3, 107 | 'HAM80': 2.7e3, 108 | 'HAM40': 2.7e3, 109 | 'HAM20': 2.7e3, 110 | 'CB': 10e3, 111 | 'MARINE': 16e3, 112 | 'AIR_VOICE': 8.33e3, 113 | 'NOAA': 25e3, 114 | 'FT8_40': 3e3, 115 | 'FT8_20': 3e3, 116 | 'PSK31_40': 500, 117 | 'PSK31_20': 500, 118 | 'RTTY_40': 3e3, 119 | 'RTTY_20': 3e3, 120 | 'CW_80': 500, 121 | 'CW_40': 500, 122 | 'CW_30': 500, 123 | 'CW_20': 500, 124 | 'SAT_VHF': 50e3, 125 | 'SAT_UHF': 50e3, 126 | 'NOAA_SAT': 40e3, 127 | } 128 | 129 | MORSE_CODE = { 130 | '.-': 'A', '-...': 'B', '-.-.': 'C', '-..': 'D', '.': 'E', 131 | '..-.': 'F', '--.': 'G', '....': 'H', '..': 'I', '.---': 'J', 132 | '-.-': 'K', '.-..': 'L', '--': 'M', '-.': 'N', '---': 'O', 133 | '.--.': 'P', '--.-': 'Q', '.-.': 'R', '...': 'S', '-': 'T', 134 | '..-': 'U', '...-': 'V', '.--': 'W', '-..-': 'X', '-.--': 'Y', 135 | '--..': 'Z', '.----': '1', '..---': '2', '...--': '3', '....-': '4', 136 | '.....': '5', '-....': '6', '--...': '7', '---..': '8', '----.': '9', 137 | '-----': '0', '--..--': ',', '.-.-.-': '.', '..--..': '?', 138 | '-..-.': '/', '-....-': '-', '-.--.': '(', '-.--.-': ')', 139 | '.-...': '&', '---...': ':', '-.-.-.': ';', '-...-': '=', 140 | '.-.-.': '+', '.-..-.': '"', '...-..-': '$', '.--.-.': '@', 141 | '..--.-': '_', '...---...': 'SOS' 142 | } 143 | 144 | # Define help content with categories 145 | help_content = [ 146 | ("General Controls", [ 147 | ("q", "Quit program"), 148 | ("h", "Show this help screen"), 149 | ("w", "Save current settings"), 150 | ("m", "Cycle through display modes"), 151 | ("1-6", "Quick switch display modes"), 152 | ("/", "RTL Commands Selector"), 153 | ]), 154 | ("Frequency Controls", [ 155 | ("F/f", "Change frequency up/down by step"), 156 | ("Up/Down", "Change frequency by 1 MHz"), 157 | ("Right/Left", "Change frequency by 0.5 MHz"), 158 | ("x", "Set exact frequency"), 159 | ("T/t", "Increase/decrease frequency step"), 160 | ]), 161 | ("Signal Controls", [ 162 | ("B/b", "Increase/reduce bandwidth"), 163 | ("S/s", "Increase/decrease samples"), 164 | ("G/g", "Increase/decrease gain"), 165 | ("A", "Toggle Automatic Gain Control (AGC)"), 166 | ]), 167 | ("Frequency Correction", [ 168 | ("P/p", "Increase/decrease PPM correction"), 169 | ("O", "Set exact PPM correction value"), 170 | ]), 171 | ("Audio Controls", [ 172 | ("a", "Toggle audio on/off"), 173 | ("d", "Change demodulation mode"), 174 | ("R", "Start/Stop audio recording"), 175 | ("I", "Start/Stop named PIPE at /tmp/sdrpipe"), 176 | ]), 177 | ("Decoders", [ 178 | ("M", "Morse Code Decoder (experimental)"), 179 | (".", "APRS Decoder (experimental)"), 180 | ]), 181 | ("Frequency Management", [ 182 | ("k/l", "Save/Load frequency bookmark"), 183 | ("n", "Access band presets"), 184 | ("c", "Start frequency scanner"), 185 | ("C", "Show scan results"), 186 | ("", ""), 187 | ]), 188 | ] -------------------------------------------------------------------------------- /pyspecsdr.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/python3 2 | 3 | ''' 4 | ____ ____ ____ ____ ____ 5 | | _ \ _ _/ ___| _ __ ___ ___/ ___|| _ \| _ \ 6 | | |_) | | | \___ \| '_ \ / _ \/ __\___ \| | | | |_) | 7 | | __/| |_| |___) | |_) | __/ (__ ___) | |_| | _ < 8 | |_| \__, |____/| .__/ \___|\___|____/|____/|_| \_\ 9 | |___/ |_| 10 | 11 | PySpecSDR - Python SDR Spectrum Analyzer and Signal Processor 12 | =========================================================== 13 | 14 | A feature-rich Software Defined Radio (SDR) spectrum analyzer with real-time 15 | visualization, demodulation, and signal analysis capabilities. 16 | 17 | Features: 18 | - Real-time spectrum analysis and waterfall display 19 | - Multiple visualization modes (spectrum, waterfall, persistence, surface, gradient) 20 | - FM, AM, SSB demodulation with audio output 21 | - Frequency scanning and signal classification 22 | - Bookmark management for frequencies of interest 23 | - Automatic Gain Control (AGC) 24 | - Recording capabilities for both RF and audio 25 | - Band presets for common frequency ranges 26 | - Configurable display and processing parameters 27 | 28 | Requirements: 29 | - RTL-SDR compatible device 30 | - Python 3.7 or higher 31 | - Dependencies listed in requirements.txt 32 | 33 | License: GPL-3.0-or-later 34 | 35 | Copyright (c) 2024 [XQTR] 36 | 37 | Permission is hereby granted, free of charge, to any person obtaining a copy 38 | of this software and associated documentation files (the "Software"), to deal 39 | in the Software without restriction, including without limitation the rights 40 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 41 | copies of the Software, and to permit persons to whom the Software is 42 | furnished to do so, subject to the following conditions: 43 | 44 | The above copyright notice and this permission notice shall be included in all 45 | copies or substantial portions of the Software. 46 | 47 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 48 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 49 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 50 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 51 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 52 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 53 | SOFTWARE. 54 | 55 | Author: XQTR 56 | Email: xqtr@gmx.com // xqtr.xqtr@gmail.com 57 | GitHub: https://github.com/xqtr/PySpecSDR 58 | Version: 1.0.5 59 | Last Updated: 2024/12/15 60 | 61 | Usage: 62 | python3 pyspecsdr.py 63 | 64 | Key Bindings: 65 | q - Quit 66 | h - Show help menu 67 | For full list of controls, press 'h' while running 68 | 69 | Changelog: 70 | 71 | Read the CHANGELOG.md file 72 | 73 | 74 | ''' 75 | 76 | from pyspecconst import * 77 | import numpy as np 78 | import curses 79 | from rtlsdr import RtlSdr 80 | from scipy.signal import decimate 81 | import sounddevice as sd 82 | from scipy.signal import butter, lfilter 83 | from scipy.signal import firwin 84 | from scipy.signal import bilinear 85 | from scipy.signal import hilbert 86 | from scipy.signal import welch 87 | from collections import deque 88 | import time 89 | import os 90 | import configparser 91 | import json 92 | import os.path 93 | import wave 94 | import struct 95 | import SoapySDR 96 | from SoapySDR import SOAPY_SDR_RX, SOAPY_SDR_CF32 97 | import signal 98 | import pyspecaprs 99 | 100 | 101 | audio_buffer = deque(maxlen=24) # Increased from 16 for better continuity 102 | SAMPLES = 7 103 | INTENSITY_CHARS = ' .,:|\\' # Simple ASCII characters for intensity levels 104 | BOOKMARK_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), "sdr_bookmarks.json") 105 | SETTINGS_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), "sdr_settings.ini") 106 | PIPE_PATH = "/tmp/sdrpipe" 107 | PIPE_FILE = None 108 | USE_PIPE = False 109 | 110 | # Add global flag for audio availability 111 | AUDIO_AVAILABLE = False 112 | try: 113 | import sounddevice as sd 114 | AUDIO_AVAILABLE = True 115 | except ImportError: 116 | pass 117 | 118 | # Add these constants near the top of the file 119 | AGC_TARGET_POWER = -30 # Target power level in dB 120 | AGC_ENABLED = False # Global flag for AGC state 121 | AGC_UPDATE_INTERVAL = 0.5 # Seconds between AGC updates 122 | AGC_STEP = 1.0 # Gain adjustment step size 123 | last_agc_update = 0 # Track last AGC update time 124 | SIGNAL_THRESHOLD = -40 # dB threshold for signal detection 125 | SCAN_STEP = 100e3 # 100 kHz steps by default 126 | MIN_SIGNAL_BANDWIDTH = 50e3 # Minimum bandwidth to consider as a signal 127 | SCAN_DWELL_TIME = 0.1 # Seconds to dwell on each frequency 128 | SCAN_ACTIVE = False # Global flag for scan state 129 | 130 | # Add these constants near the top with other constants 131 | WATERFALL_HISTORY = [] 132 | WATERFALL_MAX_LINES = 30 # Number of history lines to keep 133 | WATERFALL_MODE = False # Toggle between spectrum and waterfall 134 | WATERFALL_COLORS = [ 135 | curses.COLOR_BLACK, # Weakest signal 136 | curses.COLOR_BLUE, 137 | curses.COLOR_CYAN, 138 | curses.COLOR_GREEN, 139 | curses.COLOR_YELLOW, 140 | curses.COLOR_RED, # Strongest signal 141 | ] 142 | 143 | # Add these constants near the top with other constants 144 | DEMOD_MODES = { 145 | 'NFM': {'name': 'NFM', 'bandwidth': 200e3, 'description': 'Narrow FM'}, 146 | 'WFM': {'name': 'Wide FM', 'bandwidth': 180e3, 'description': 'Wide FM (Broadcast)'}, 147 | 'AM': {'name': 'AM', 'bandwidth': 10e3, 'description': 'Amplitude Modulation'}, 148 | 'USB': {'name': 'USB', 'bandwidth': 3e3, 'description': 'Upper Sideband'}, 149 | 'LSB': {'name': 'LSB', 'bandwidth': 3e3, 'description': 'Lower Sideband'}, 150 | 'RAW': {'name': 'RAW', 'bandwidth': None, 'description': 'Raw IQ Samples'} 151 | } 152 | CURRENT_DEMOD = 'NFM' # Default demodulation mode 153 | 154 | # Add this with other constants near the top of the file 155 | zoom_step = 0.1e6 # 100 kHz zoom step 156 | 157 | # Add near other constants 158 | PERSISTENCE_HISTORY = [] 159 | PERSISTENCE_ALPHA = 0.7 # Decay factor 160 | PERSISTENCE_LENGTH = 10 # Number of traces to keep 161 | PERSISTENCE_MODE = False 162 | 163 | # Add near other constants 164 | SURFACE_MODE = False 165 | SURFACE_ANGLE = 45 # Viewing angle in degrees 166 | 167 | # Add near other constants 168 | GRADIENT_COLORS = [ 169 | (0, 0, 0), # Black 170 | (0, 0, 139), # Dark Blue 171 | (0, 0, 255), # Blue 172 | (0, 255, 255), # Cyan 173 | (0, 255, 0), # Green 174 | (255, 255, 0), # Yellow 175 | (255, 0, 0), # Red 176 | ] 177 | 178 | # Add with other constants 179 | DISPLAY_MODES = ['SPECTRUM', 'WATERFALL', 'PERSISTENCE', 'SURFACE', 'GRADIENT', 'VECTOR'] 180 | current_display_mode = 'SPECTRUM' 181 | 182 | # Add near the top with other constants 183 | DEFAULT_PPM = 0 # Default PPM correction value 184 | 185 | # Add near the top with other global variables 186 | LAST_SCAN_RESULTS = [] # Store the last scan results 187 | 188 | # Variable to save the RTL command 189 | RTL_COMMAND = "" 190 | 191 | def init_colors(): 192 | curses.start_color() 193 | curses.init_pair(1, curses.COLOR_YELLOW, curses.COLOR_BLACK) 194 | curses.init_pair(2, curses.COLOR_WHITE, curses.COLOR_BLACK) 195 | curses.init_pair(3, curses.COLOR_RED, curses.COLOR_BLACK) 196 | curses.init_pair(4, curses.COLOR_GREEN, curses.COLOR_BLACK) 197 | curses.init_pair(5, curses.COLOR_CYAN, curses.COLOR_BLACK) 198 | curses.init_pair(6, curses.COLOR_BLUE, curses.COLOR_BLACK) 199 | # Add waterfall color pairs (starting from 10 to avoid conflicts) 200 | for i, color in enumerate(WATERFALL_COLORS): 201 | curses.init_pair(10 + i, color, curses.COLOR_BLACK) 202 | 203 | def showhelp(stdscr): 204 | """Display help information with scrolling capability""" 205 | max_height, max_width = stdscr.getmaxyx() 206 | 207 | # Calculate total content height 208 | total_height = sum(2 + len(section[1]) for section in help_content) + 15 209 | # Initialize scroll position 210 | scroll_pos = 0 211 | max_scroll = max(0, total_height - (max_height - 2)) 212 | stdscr.nodelay(0) 213 | while True: 214 | # Clear screen 215 | stdscr.clear() 216 | current_line = 0 217 | 218 | # Draw title 219 | title = "PySpecSDR Help" 220 | stdscr.addstr(0, 2, title, curses.color_pair(1) | curses.A_BOLD) 221 | current_line += 1 222 | 223 | # Draw horizontal line 224 | stdscr.addstr(1, 1, "-" * (max_width - 2), curses.color_pair(2)) 225 | current_line += 1 226 | 227 | # Draw visible content 228 | visible_line = 0 229 | startline = 2 230 | for section_title, commands in help_content: 231 | if current_line - scroll_pos >= 0 and current_line - scroll_pos < max_height - 3: 232 | try: 233 | stdscr.addstr(startline + current_line - scroll_pos, 2, 234 | "+" + "-" * (len(section_title) + 2) + "+", 235 | curses.color_pair(4)) 236 | except curses.error: 237 | pass 238 | current_line += 1 239 | 240 | if current_line - scroll_pos >= 0 and current_line - scroll_pos < max_height - 3: 241 | try: 242 | stdscr.addstr(startline + current_line - scroll_pos, 2, 243 | "| " + section_title + " |", 244 | curses.color_pair(4) | curses.A_BOLD) 245 | except curses.error: 246 | pass 247 | current_line += 1 248 | 249 | if current_line - scroll_pos >= 0 and current_line - scroll_pos < max_height - 3: 250 | try: 251 | stdscr.addstr(startline + current_line - scroll_pos, 2, 252 | "+" + "-" * (len(section_title) + 2) + "+", 253 | curses.color_pair(4)) 254 | except curses.error: 255 | pass 256 | current_line += 1 257 | 258 | for key, description in commands: 259 | if current_line - scroll_pos >= 0 and current_line - scroll_pos < max_height - 3: 260 | try: 261 | key_str = f"[ {key:6} ]" 262 | stdscr.addstr(startline + current_line - scroll_pos, 4, key_str, 263 | curses.color_pair(1) | curses.A_BOLD) 264 | stdscr.addstr(startline + current_line - scroll_pos, 15, "->", 265 | curses.color_pair(2)) 266 | stdscr.addstr(startline + current_line - scroll_pos, 18, description, 267 | curses.color_pair(2)) 268 | except curses.error: 269 | pass 270 | current_line += 1 271 | current_line += 1 272 | 273 | # Draw scrollbar 274 | if total_height > max_height - 2: 275 | for y in range(2, max_height - 1): 276 | pos = int((y - 2) * total_height / (max_height - 3)) 277 | if pos >= scroll_pos and pos <= scroll_pos + max_height: 278 | char = "#" 279 | else: 280 | char = "|" 281 | try: 282 | stdscr.addstr(y, max_width - 1, char, curses.color_pair(2)) 283 | except curses.error: 284 | pass 285 | 286 | # Draw navigation instructions 287 | nav_text = "[ UP/DOWN | PgUp/PgDn | q:Exit ]" 288 | nav_pos = (max_width - len(nav_text)) // 2 289 | try: 290 | stdscr.addstr(max_height - 1, nav_pos, nav_text, 291 | curses.color_pair(5) | curses.A_BOLD) 292 | except curses.error: 293 | pass 294 | 295 | stdscr.refresh() 296 | 297 | # Handle input 298 | key = stdscr.getch() 299 | if key == ord('q'): 300 | break 301 | elif key == curses.KEY_UP and scroll_pos > 0: 302 | scroll_pos = max(0, scroll_pos - 1) 303 | elif key == curses.KEY_DOWN and scroll_pos < max_scroll: 304 | scroll_pos = min(max_scroll, scroll_pos + 1) 305 | elif key == curses.KEY_PPAGE: # Page Up 306 | scroll_pos = max(0, scroll_pos - (max_height - 3)) 307 | elif key == curses.KEY_NPAGE: # Page Down 308 | scroll_pos = min(max_scroll, scroll_pos + (max_height - 3)) 309 | 310 | # Restore original nodelay state 311 | stdscr.nodelay(True) 312 | 313 | # Pipe Functions 314 | def create_pipe(): 315 | global PIPE_PATH 316 | """Create a named pipe for output.""" 317 | try: 318 | os.mkfifo(PIPE_PATH) 319 | except FileExistsError: 320 | pass # Pipe already exists 321 | 322 | def open_file_pipe(): 323 | #Open file and return value 324 | #fifo = open(PIPE_PATH, 'wb', buffering=0) 325 | fifo = open(PIPE_PATH, 'wb', os.O_NONBLOCK) 326 | return fifo 327 | 328 | def write_to_pipe(fifof,data,stdscr): 329 | """Write audio data to the named pipe.""" 330 | if data.dtype != np.int16: 331 | data = np.int16(data * 32767) 332 | fifof.write(data) 333 | 334 | def close_file_pipe(fifo): 335 | fifo.close 336 | 337 | def clean_pipe(signum, frame): 338 | """Cleanup function to remove the named pipe.""" 339 | if os.path.exists(PIPE_PATH): 340 | #os.remove(PIPE_PATH) 341 | os.unlink(PIPE_PATH) 342 | 343 | def start_pipe_recording(stdscr): 344 | global PIPE_FILE, PIPE_PATH,USE_PIPE 345 | create_pipe() 346 | PIPE_FILE = open_file_pipe() 347 | USE_PIPE = True 348 | stdscr.addstr(0, 0, f"Started recording to {PIPE_PATH}", curses.color_pair(4)) 349 | time.sleep(1) 350 | 351 | def stop_pipe_recording(stdscr): 352 | global PIPE_FILE, PIPE_PATH,USE_PIPE 353 | USE_PIPE = False 354 | close_file_pipe(PIPE_FILE) 355 | clean_pipe(None,None) 356 | PIPE_FILE = None 357 | stdscr.addstr(0, 0, "Recording stopped", curses.color_pair(4)) 358 | time.sleep(1) 359 | 360 | signal.signal(signal.SIGINT, clean_pipe) 361 | signal.signal(signal.SIGTERM, clean_pipe) # Handle termination signal 362 | 363 | def setfreq(stdscr): 364 | draw_clearheader(stdscr) 365 | stdscr.addstr(0,0,"Enter frequency in Hz: ",curses.color_pair(1) | curses.A_BOLD) 366 | # Enable echo and cursor 367 | curses.echo() 368 | curses.curs_set(1) 369 | stdscr.nodelay(False) 370 | freq = stdscr.getstr() 371 | draw_clearheader(stdscr) 372 | # Disable echo and cursor after input 373 | curses.noecho() 374 | curses.curs_set(0) 375 | stdscr.nodelay(True) 376 | 377 | res = freq.decode('utf-8') # Convert bytes to string 378 | if len(res)<3: return None 379 | if res[-1] in 'mM' or res[-1] in 'kK': 380 | num = res[:-1] 381 | try: 382 | int(num) 383 | except: 384 | return None 385 | else: 386 | try: 387 | int(freq) 388 | except: 389 | return None 390 | return res 391 | 392 | 393 | def draw_clearheader(stdscr): 394 | max_height, max_width = stdscr.getmaxyx() 395 | stdscr.addstr(0, 0, " "*(max_width-1)) 396 | stdscr.addstr(1, 0, " "*(max_width-1)) 397 | 398 | def draw_header(stdscr, freq_data, frequencies, center_freq, bandwidth, gain, step, 399 | sdr, is_recording=False, recording_duration=None): 400 | 401 | max_height, max_width = stdscr.getmaxyx() 402 | 403 | x_pos = 0 404 | if is_recording: 405 | recording_text = f"Recording: {recording_duration:.1f}s" 406 | stdscr.addstr(0, max_width - len(recording_text) - 1, recording_text, 407 | curses.color_pair(3) | curses.A_BOLD) 408 | available_width = max_width - len(recording_text) - 2 409 | else: 410 | available_width = max_width 411 | 412 | # Draw the colored header 413 | freq_text = f"req: {center_freq/1e6:.6f} MHz" 414 | bw_text = f"andwidth: {bandwidth/1e6:.2f} MHz" 415 | gain_text = f"ain: {gain}" 416 | samples_text = f"amples: {2**SAMPLES}" 417 | step_text = f"ep: {step/1e6:.3f} MHz" 418 | ppm_text = f"PM: {sdr.ppm}" # Add PPM text 419 | agc_text = f"GC: {'On' if AGC_ENABLED else 'Off'}" 420 | 421 | x_pos = 0 422 | stdscr.addstr(0, x_pos, "F", curses.color_pair(1) | curses.A_BOLD) 423 | stdscr.addstr(0, x_pos+1, freq_text, curses.color_pair(2)) 424 | x_pos += len(freq_text) + 3 425 | stdscr.addstr(0, x_pos, "B", curses.color_pair(1) | curses.A_BOLD) 426 | stdscr.addstr(0, x_pos+1, bw_text, curses.color_pair(2)) 427 | x_pos += len(bw_text) + 3 428 | stdscr.addstr(0, x_pos, "G", curses.color_pair(1) | curses.A_BOLD) 429 | stdscr.addstr(0, x_pos+1, gain_text, curses.color_pair(2)) 430 | x_pos = 0 431 | stdscr.addstr(1, x_pos, "S", curses.color_pair(1) | curses.A_BOLD) 432 | stdscr.addstr(1, x_pos+1, samples_text, curses.color_pair(2)) 433 | x_pos += len(samples_text) + 3 434 | stdscr.addstr(1, x_pos, "S", curses.color_pair(2)) 435 | stdscr.addstr(1, x_pos+1, "t", curses.color_pair(1) | curses.A_BOLD) 436 | stdscr.addstr(1, x_pos+2, step_text, curses.color_pair(2)) 437 | x_pos += len(step_text) + 4 438 | try: 439 | stdscr.addstr(1, x_pos, "P", curses.color_pair(1) | curses.A_BOLD) 440 | stdscr.addstr(1, x_pos+1, ppm_text, curses.color_pair(2)) 441 | except curses.error: 442 | pass # Ignore if screen is too small 443 | x_pos += len(ppm_text) + 4 444 | stdscr.addstr(1, x_pos, "A", curses.color_pair(1) | curses.A_BOLD) 445 | stdscr.addstr(1, x_pos+1, agc_text, curses.color_pair(2)) 446 | 447 | # Add signal strength indicator 448 | peak_power = np.max(freq_data) 449 | avg_power = np.mean(freq_data) 450 | strength_text = f"Peak: {peak_power:.1f} dB Avg: {avg_power:.1f} dB" 451 | stdscr.addstr(1, max_width - len(strength_text) - 1, strength_text, curses.color_pair(2)) 452 | 453 | #debug string 454 | #txt = str(sdr.sample_rate) 455 | #stdscr.addstr(0, max_width - len(txt) - 1, txt, curses.color_pair(2) | curses.A_BOLD) 456 | 457 | 458 | def draw_spectrogram(stdscr, freq_data, frequencies, center_freq, bandwidth, gain, step, 459 | sdr, is_recording=False, recording_duration=None): 460 | """Draw the spectrum display with improved signal-to-noise ratio visualization""" 461 | max_height, max_width = stdscr.getmaxyx() 462 | 463 | # Calculate display dimensions 464 | display_width = max_width - 10 # Reserve space for dB scale 465 | display_height = max_height - 4 # Reserve space for header and labels 466 | 467 | # Clear the display area (preserve header) 468 | for y in range(2, max_height-1): 469 | try: 470 | stdscr.addstr(y, 0, " " * (max_width-1), curses.color_pair(1)) 471 | except curses.error: 472 | pass 473 | 474 | # Set fixed dB range for display with noise floor adjustment 475 | min_db = np.min(freq_data[np.isfinite(freq_data)]) 476 | max_db = np.max(freq_data[np.isfinite(freq_data)]) 477 | 478 | # Calculate noise floor (using lower percentile) 479 | noise_floor = np.percentile(freq_data[np.isfinite(freq_data)], 20) 480 | 481 | # Adjust dynamic range to emphasize signals above noise 482 | db_range = max_db - noise_floor 483 | display_min = noise_floor - (db_range * 0.1) # Show some noise below floor 484 | display_max = max_db + (db_range * 0.05) # Add headroom 485 | 486 | # Draw dB scale on the left 487 | for i in range(display_height): 488 | db_value = display_max - (i * (display_max - display_min) / display_height) 489 | if i % 3 == 0: # Show scale every 3 lines 490 | db_label = f"{db_value:4.0f}dB" 491 | try: 492 | stdscr.addstr(i + 2, 0, db_label, curses.color_pair(2)) 493 | # Add scale markers 494 | stdscr.addstr(i + 2, 8, "|", curses.color_pair(2)) 495 | except curses.error: 496 | pass 497 | 498 | # Normalize data for display using adjusted range 499 | normalized_data = np.clip((freq_data - display_min) / (display_max - display_min), 0, 1) 500 | 501 | # Apply non-linear scaling to emphasize signals 502 | normalized_data = np.power(normalized_data, 0.7) # Adjust exponent to taste 503 | 504 | # Resample data to fit display width 505 | resampled = np.interp( 506 | np.linspace(0, len(normalized_data) - 1, display_width), 507 | np.arange(len(normalized_data)), 508 | normalized_data 509 | ) 510 | 511 | # Draw spectrum with improved character selection 512 | for x, value in enumerate(resampled): 513 | if np.isfinite(value): 514 | # Calculate height in display units 515 | height = int(value * display_height) 516 | height = min(height, display_height) 517 | 518 | # First clear the entire column 519 | for y in range(display_height): 520 | try: 521 | stdscr.addstr(y + 2, x + 9, " ", curses.color_pair(1)) 522 | except curses.error: 523 | pass 524 | 525 | # Then draw the bar with varied characters based on signal strength 526 | peak_height = 0 527 | for y in range(display_height - height, display_height): 528 | try: 529 | # Calculate relative position in the bar 530 | rel_pos = (y - (display_height - height)) / height if height > 0 else 0 531 | 532 | # Select character based on signal strength and position 533 | if value > 0.8: # Strong signals 534 | char = "#" if rel_pos > 0.5 else "=" 535 | elif value > 0.4: # Medium signals 536 | char = "=" if rel_pos > 0.5 else "-" 537 | elif value > 0.2: # Weak signals 538 | char = "-" if rel_pos > 0.5 else "." 539 | else: # Noise level 540 | if rel_pos > 0.7: 541 | char = "." 542 | else: 543 | char = " " 544 | 545 | stdscr.addstr(y + 2, x + 9, char, curses.color_pair(1)) 546 | 547 | except curses.error: 548 | pass 549 | 550 | # Use standardized frequency labels 551 | draw_frequency_labels(stdscr, center_freq, bandwidth, display_height, display_width) 552 | 553 | # Run this function before using the rtl-sdr samples to remove dc offset and correct iq 554 | def iq_correction(samples: np.ndarray) -> np.ndarray: 555 | # Remove DC and calculate input power 556 | centered_samples = samples - np.mean(samples) 557 | input_power = np.var(centered_samples) 558 | 559 | # Calculate scaling factor for Q 560 | q_amplitude = np.sqrt(2 * np.mean(samples.imag ** 2)) 561 | 562 | # Normalize Q component 563 | normalized_samples = samples / q_amplitude 564 | 565 | i_samples, q_samples = normalized_samples.real, normalized_samples.imag 566 | 567 | # Estimate alpha and sin_phi 568 | alpha_est = np.sqrt(2 * np.mean(i_samples ** 2)) 569 | sin_phi_est = (2 / alpha_est) * np.mean(i_samples * q_samples) 570 | 571 | # Estimate cos_phi 572 | cos_phi_est = np.sqrt(1 - sin_phi_est ** 2) 573 | 574 | # Apply phase and amplitude correction 575 | i_new = (1 / alpha_est) * i_samples 576 | q_new = (-sin_phi_est / alpha_est) * i_samples + q_samples 577 | 578 | # Corrected signal 579 | corrected_samples = (i_new + 1j * q_new) / cos_phi_est 580 | 581 | # Calculate and print phase and amplitude errors 582 | phase_error_deg = np.round(np.abs(np.arccos(cos_phi_est) * 180 / np.pi), 4) 583 | amplitude_error_db = np.round(np.abs(20 * np.log10(alpha_est)), 4) 584 | 585 | # Print phase and amplitude errors 586 | #print(f"Phase Error: {phase_error_deg}") 587 | #print(f"Amplitude Error: {amplitude_error_db}") 588 | 589 | return corrected_samples * np.sqrt(input_power / np.var(corrected_samples)) 590 | 591 | def decode_mono(samples: np.ndarray, fs: int): 592 | """Decode FM modulation to mono audio.""" 593 | demod_gain = fs / (2 * np.pi * np.pi * 75e3) # 75e3 is the frequency deviation 594 | 595 | # FM Demodulation 596 | demod = demod_gain * np.angle(samples[:-1] * samples.conj()[1:]) 597 | 598 | # Sample rate after decimation will be 41666.67 599 | decimation = 6 600 | 601 | # Decimate to get mono audio 602 | #mono = signal.decimate(demod, decimation, ftype="fir") 603 | mono = decimate(demod, decimation, ftype="fir") 604 | 605 | # De-emphasis is 75e-6 for North America, 50e-6 for everywhere else 606 | deemphasis = 75e-6 607 | 608 | # Create filter coefficients for de-emphasis 609 | bz, az = bilinear([1], [deemphasis, 1], fs=fs) 610 | 611 | # Apply the de-emphasis filter 612 | mono = lfilter(bz, az, mono) 613 | mono -= mono.mean() 614 | 615 | mono *= 0.75 # Volume factor 616 | mono *= 32768 617 | mono = mono.astype(np.int16) 618 | 619 | return mono 620 | 621 | def demodulate_signal(samples, sample_rate, mode='NFM'): 622 | """Advanced demodulation function supporting multiple modes""" 623 | samples = iq_correction(samples) 624 | if mode == 'NFM': 625 | return demodulate_nfm(samples, sample_rate) 626 | elif mode == 'WFM': 627 | return demodulate_wfm(samples, sample_rate) 628 | elif mode == 'AM': 629 | return demodulate_am(samples) 630 | elif mode == 'USB': 631 | return demodulate_ssb(samples, sample_rate, lower=False) 632 | elif mode == 'LSB': 633 | return demodulate_ssb(samples, sample_rate, lower=True) 634 | elif mode == 'RAW': 635 | return np.real(samples) # Return raw I samples 636 | #return np.zeros_like(samples) # Return silence if mode not recognized 637 | return np.zeros((len(samples), 2)) # Ensure it returns a shape of (n, 2) 638 | 639 | # Filter to cut freq below/higher than 300/3000hz 640 | def butter_bandpass(lowcut, highcut, fs, order=5): 641 | nyq = 0.5 * fs 642 | low = lowcut / nyq 643 | high = highcut / nyq 644 | b, a = butter(order, [low, high], btype='band') 645 | return b, a 646 | 647 | def mono_to_stereo(mono_audio): 648 | """Convert mono audio to stereo by duplicating the mono signal.""" 649 | stereo_audio = np.zeros((len(mono_audio), 2)) # Initialize stereo array 650 | stereo_audio[:, 0] = mono_audio # Left channel 651 | stereo_audio[:, 1] = mono_audio # Right channel (duplicate) 652 | return stereo_audio 653 | 654 | def demodulate_nfm(samples, sample_rate, target_rate=44100): 655 | """Simplified FM demodulation""" 656 | # Basic FM demodulation 657 | demod = np.angle(samples[1:] * np.conj(samples[:-1])) 658 | 659 | # Simple scaling 660 | demod = demod * (sample_rate / (2 * np.pi)) 661 | 662 | # Apply the bandpass filter for NFM 663 | lowcut = 300.0 # Low cutoff frequency 664 | highcut = 3000.0 # High cutoff frequency 665 | filtered_demod = bandpass_filter(demod, lowcut, highcut, sample_rate) 666 | 667 | # Basic lowpass filter 668 | nyq = sample_rate / 2 669 | cutoff = 15000 670 | taps = firwin(numtaps=65, cutoff=cutoff/nyq) 671 | filtered = lfilter(taps, 1.0, demod) 672 | 673 | # Simple decimation 674 | decimation_factor = int(sample_rate / target_rate) 675 | audio = decimate(filtered, decimation_factor) 676 | 677 | # Basic normalization 678 | audio = audio / np.max(np.abs(audio)) * 0.95 679 | return mono_to_stereo(audio) 680 | 681 | def bandpass_filter(data, lowcut, highcut, sample_rate): 682 | """Apply a bandpass filter to the data.""" 683 | from scipy.signal import butter, sosfilt 684 | if lowcut <= 0: 685 | # Use a lowpass filter if lowcut is not valid 686 | sos = butter(10, highcut / (sample_rate / 2), btype='low', output='sos') 687 | else: 688 | sos = butter(10, [lowcut / (sample_rate / 2), highcut / (sample_rate / 2)], btype='band', output='sos') 689 | return sosfilt(sos, data) 690 | 691 | 692 | def demodulate_wfm(samples, sample_rate, target_rate=44100): 693 | """Wide FM demodulation with stereo decoding.""" 694 | # Step 1: FM demodulation 695 | demod = np.angle(samples[1:] * np.conj(samples[:-1])) 696 | 697 | # Step 2: Extract the baseband (L+R), pilot, and stereo difference (L-R) signals 698 | # Lowpass filter for L+R (0-15 kHz) 699 | l_plus_r = bandpass_filter(demod, 0, 15000, sample_rate) 700 | 701 | 702 | # Bandpass filter for the 19 kHz pilot tone 703 | pilot = bandpass_filter(demod, 19000 - 200, 19000 + 200, sample_rate) 704 | pilot = np.sin(np.unwrap(np.angle(lfilter([1], [1, -0.99], pilot)))) # Extract phase 705 | 706 | # Bandpass filter for the 38 kHz L-R signal 707 | l_minus_r = bandpass_filter(demod, 38000 - 15000, 38000 + 15000, sample_rate) 708 | l_minus_r = l_minus_r * (2 * pilot) # Demodulate using the pilot tone 709 | 710 | # Lowpass filter the demodulated L-R signal to remove high-frequency artifacts 711 | l_minus_r = bandpass_filter(l_minus_r, 0, 15000, sample_rate) 712 | 713 | # Step 3: Combine L+R and L-R to get L and R 714 | left = (l_plus_r + l_minus_r) / 2 715 | right = (l_plus_r - l_minus_r) / 2 716 | 717 | # Step 4: De-emphasis filter (75 µs time constant) 718 | deemph_tc = 75e-6 # 75 µs (FM standard) 719 | alpha = np.exp(-1 / (deemph_tc * sample_rate)) 720 | b = [1 - alpha] 721 | a = [1, -alpha] 722 | left = lfilter(b, a, left) 723 | right = lfilter(b, a, right) 724 | 725 | # Step 5: Decimate to target sample rate 726 | decimation_factor = int(sample_rate / target_rate) 727 | if decimation_factor > 1: 728 | left = decimate(left, decimation_factor, zero_phase=True) 729 | right = decimate(right, decimation_factor, zero_phase=True) 730 | 731 | # Step 6: Normalize the audio 732 | max_val = max(np.max(np.abs(left)), np.max(np.abs(right))) 733 | left /= max_val 734 | right /= max_val 735 | 736 | # Step 7: Combine into stereo 737 | audio = np.column_stack((left, right)) 738 | return audio 739 | 740 | def demodulate_am(samples): 741 | """AM demodulation using envelope detection""" 742 | # Get the amplitude envelope 743 | envelope = np.abs(samples) 744 | 745 | # DC removal (high-pass filter) 746 | envelope = envelope - np.mean(envelope) 747 | 748 | # Apply the bandpass filter to remove low and high frequency harmonics 749 | fs = 44100 # Sample rate (adjust as necessary) 750 | lowcut = 300.0 # Low cutoff frequency 751 | highcut = 3000.0 # High cutoff frequency 752 | filtered_envelope = bandpass_filter(envelope, lowcut, highcut, fs) 753 | 754 | # Normalize 755 | audio = filtered_envelope / np.max(np.abs(filtered_envelope)) * 0.95 756 | return mono_to_stereo(audio) 757 | 758 | def demodulate_ssb(samples, sample_rate, lower=True): 759 | """Single-sideband demodulation""" 760 | # Complex bandpass filter 761 | if lower: 762 | # LSB: negative frequencies only 763 | taps = firwin(65, 3000/sample_rate, window='hamming') 764 | analytical = lfilter(taps, 1.0, samples) 765 | analytical = hilbert(np.real(analytical)) 766 | else: 767 | # USB: positive frequencies only 768 | taps = firwin(65, 3000/sample_rate, window='hamming') 769 | analytical = lfilter(taps, 1.0, samples) 770 | analytical = hilbert(np.real(analytical)) 771 | 772 | # Demodulate 773 | demod = np.real(analytical) 774 | 775 | # Normalize 776 | audio = demod / np.max(np.abs(demod)) * 0.95 777 | return mono_to_stereo(audio) 778 | 779 | # APRS Functions 780 | 781 | def decode_afsk(samples, sample_rate): 782 | """ 783 | Demodulate Bell 202 AFSK (1200/2200 Hz) 784 | Returns bit stream 785 | """ 786 | # Filter for AFSK tones 787 | filtered_1200 = bandpass_filter(samples, 1100, 1300, sample_rate) 788 | filtered_2200 = bandpass_filter(samples, 2100, 2300, sample_rate) 789 | 790 | # Calculate energy in each band 791 | window = int(sample_rate / 1200) # One bit period 792 | bits = [] 793 | 794 | for i in range(0, len(samples) - window, window): 795 | e1200 = np.sum(filtered_1200[i:i+window]**2) 796 | e2200 = np.sum(filtered_2200[i:i+window]**2) 797 | bits.append(1 if e2200 > e1200 else 0) 798 | 799 | return bits 800 | 801 | def decode_aprs(samples, sample_rate): 802 | """ 803 | Decode APRS packets from audio samples 804 | Returns list of decoded packets 805 | """ 806 | # Convert to real if complex 807 | if np.iscomplexobj(samples): 808 | samples = np.real(samples) 809 | 810 | # Normalize audio 811 | samples = samples / np.max(np.abs(samples)) 812 | 813 | # Demodulate AFSK to get bit stream 814 | bits = decode_afsk(samples, sample_rate) 815 | 816 | # Decode AX.25 frame 817 | packet = pyspecaprs.decode_ax25_frame(bits) 818 | 819 | return [packet] if packet else [] 820 | 821 | def show_aprs_decoder(stdscr, sdr, sample_rate): 822 | """ 823 | Show APRS decoder interface 824 | """ 825 | stdscr.clear() 826 | stdscr.addstr(0, 0, "APRS Decoder - Press 'q' to exit") 827 | stdscr.addstr(2, 0, "Listening for APRS packets...") 828 | stdscr.refresh() 829 | 830 | while True: 831 | # Read samples 832 | samples = sdr.read_samples(int(sample_rate * 0.5)) # 0.5 second buffer 833 | 834 | # Decode APRS 835 | packets = decode_aprs(samples, sample_rate) 836 | 837 | # Display results 838 | if packets: 839 | for i, packet in enumerate(packets): 840 | if packet and 4 + i < stdscr.getmaxyx()[0]: 841 | # Clean the packet string - remove null chars and non-printable chars 842 | clean_packet = ''.join(c for c in packet if c.isprintable() or c.isspace()) 843 | # Truncate to screen width 844 | max_width = stdscr.getmaxyx()[1] - 1 845 | display_str = clean_packet[:max_width] 846 | try: 847 | stdscr.addstr(4 + i, 0, display_str) 848 | except: 849 | pass # Skip if we can't display this packet 850 | 851 | stdscr.refresh() 852 | 853 | # Check for quit 854 | if stdscr.getch() == ord('q'): 855 | break 856 | 857 | # Morse Code functions 858 | 859 | def decode_morse(samples, sample_rate, threshold=-20): 860 | """ 861 | Decode Morse code from audio samples 862 | 863 | Args: 864 | samples: numpy array of audio samples (complex IQ data) 865 | sample_rate: sampling rate in Hz 866 | threshold: signal detection threshold in dB 867 | 868 | Returns: 869 | decoded_text: string of decoded text 870 | timing_data: dict with timing statistics 871 | """ 872 | # Convert complex samples to magnitude 873 | envelope = np.abs(samples) 874 | 875 | # Normalize and convert to dB 876 | envelope = envelope / np.max(envelope) 877 | envelope_db = 20 * np.log10(envelope + 1e-10) 878 | 879 | # Rest of the function remains the same... 880 | # Detect signals above threshold 881 | signals = envelope_db > threshold 882 | 883 | # Find transitions 884 | transitions = np.diff(signals.astype(int)) 885 | rise_times = np.where(transitions == 1)[0] 886 | fall_times = np.where(transitions == -1)[0] 887 | 888 | if len(rise_times) == 0 or len(fall_times) == 0: 889 | return "", {"dot": 0, "dash": 0, "gap": 0} 890 | 891 | # Ensure we have matching rises and falls 892 | if fall_times[0] < rise_times[0]: 893 | fall_times = fall_times[1:] 894 | if len(rise_times) > len(fall_times): 895 | rise_times = rise_times[:-1] 896 | 897 | # Calculate pulse durations 898 | durations = (fall_times - rise_times) / sample_rate 899 | gaps = (rise_times[1:] - fall_times[:-1]) / sample_rate 900 | 901 | if len(durations) == 0: 902 | return "", {"dot": 0, "dash": 0, "gap": 0} 903 | 904 | # Estimate dot/dash threshold using k-means clustering 905 | if len(durations) > 1: 906 | from scipy.cluster import vq 907 | centroids, _ = vq.kmeans(durations.reshape(-1, 1), 2) 908 | dot_duration = np.min(centroids) 909 | dash_duration = np.max(centroids) 910 | else: 911 | dot_duration = np.min(durations) 912 | dash_duration = dot_duration * 3 913 | 914 | # Classify dots and dashes 915 | morse_symbols = [] 916 | current_letter = [] 917 | 918 | for i, duration in enumerate(durations): 919 | # Add symbol 920 | if duration < (dot_duration + dash_duration) / 2: 921 | current_letter.append('.') 922 | else: 923 | current_letter.append('-') 924 | 925 | # Check for letter gaps 926 | if i < len(gaps): 927 | if gaps[i] > dot_duration * 3: 928 | morse_symbols.append(''.join(current_letter)) 929 | current_letter = [] 930 | # Check for word gaps 931 | if gaps[i] > dot_duration * 7: 932 | morse_symbols.append(' ') 933 | 934 | # Add final letter if present 935 | if current_letter: 936 | morse_symbols.append(''.join(current_letter)) 937 | 938 | # Translate to text 939 | decoded_text = '' 940 | for symbol in morse_symbols: 941 | if symbol == ' ': 942 | decoded_text += ' ' 943 | elif symbol in MORSE_CODE: 944 | decoded_text += MORSE_CODE[symbol] 945 | else: 946 | decoded_text += '?' 947 | 948 | timing_data = { 949 | "dot": dot_duration, 950 | "dash": dash_duration, 951 | "gap": np.mean(gaps) if len(gaps) > 0 else 0 952 | } 953 | 954 | return decoded_text, timing_data 955 | 956 | def show_morse_decoder(stdscr, sdr, sample_rate): 957 | """Display Morse code decoder interface with continuous decoding""" 958 | max_height, max_width = stdscr.getmaxyx() 959 | 960 | # Save original SDR settings 961 | original_freq = sdr.center_freq 962 | original_sample_rate = sdr.sample_rate 963 | original_gain = sdr.gain 964 | 965 | try: 966 | # Configure SDR for Morse reception 967 | sdr.sample_rate = 48000 # Lower sample rate for CW 968 | sdr.bandwidth = 2000 # Narrow bandwidth for CW 969 | time.sleep(0.1) # Let the SDR settle 970 | 971 | # Enable nodelay for continuous updates 972 | stdscr.nodelay(True) 973 | 974 | # Initialize display buffer for scrolling text 975 | text_buffer = [] 976 | max_buffer_lines = max_height - 12 # Reserve space for header and timing info 977 | 978 | while True: 979 | try: 980 | # Read new samples 981 | num_samples = int(sdr.sample_rate * 0.5) # 0.5 seconds of data 982 | samples = sdr.read_samples(num_samples) 983 | 984 | if len(samples) == 0: 985 | continue 986 | 987 | # Decode the morse code 988 | decoded_text, timing = decode_morse(samples, sdr.sample_rate) 989 | 990 | if decoded_text.strip(): # Only add non-empty decoded text 991 | text_buffer.append(decoded_text) 992 | # Keep buffer size limited 993 | if len(text_buffer) > max_buffer_lines: 994 | text_buffer.pop(0) 995 | 996 | # Clear screen and show results 997 | stdscr.clear() 998 | 999 | # Show header 1000 | header = "Morse Code Decoder (Press 'q' to quit)" 1001 | stdscr.addstr(0, 2, header, curses.color_pair(1) | curses.A_BOLD) 1002 | stdscr.addstr(1, 2, "-" * len(header), curses.color_pair(2)) 1003 | 1004 | # Show current frequency 1005 | freq_info = f"Frequency: {sdr.center_freq/1e6:.3f} MHz" 1006 | stdscr.addstr(2, 2, freq_info, curses.color_pair(2)) 1007 | 1008 | # Show timing information 1009 | timing_info = (f"Timing Statistics:\n" 1010 | f"Dot duration: {timing['dot']*1000:.1f} ms\n" 1011 | f"Dash duration: {timing['dash']*1000:.1f} ms\n" 1012 | f"Average gap: {timing['gap']*1000:.1f} ms") 1013 | 1014 | for i, line in enumerate(timing_info.split('\n')): 1015 | stdscr.addstr(4+i, 2, line, curses.color_pair(2)) 1016 | 1017 | # Show decoded text header 1018 | stdscr.addstr(9, 2, "Decoded Text:", curses.color_pair(1) | curses.A_BOLD) 1019 | 1020 | # Show scrolling decoded text 1021 | for i, text in enumerate(text_buffer): 1022 | try: 1023 | # Word wrap each line 1024 | words = text.split() 1025 | current_line = "" 1026 | line_num = i 1027 | 1028 | for word in words: 1029 | if len(current_line) + len(word) + 1 > max_width - 4: 1030 | stdscr.addstr(10+line_num, 2, current_line, curses.color_pair(4)) 1031 | current_line = word 1032 | line_num += 1 1033 | else: 1034 | current_line += (" " + word if current_line else word) 1035 | 1036 | if current_line: 1037 | stdscr.addstr(10+line_num, 2, current_line, curses.color_pair(4)) 1038 | 1039 | except curses.error: 1040 | # Skip if we run out of screen space 1041 | pass 1042 | 1043 | # Show footer 1044 | stdscr.addstr(max_height-2, 2, "Press 'q' to quit", curses.color_pair(2)) 1045 | 1046 | stdscr.refresh() 1047 | 1048 | # Check for quit command 1049 | try: 1050 | key = stdscr.getch() 1051 | if key == ord('q'): 1052 | break 1053 | except curses.error: 1054 | pass 1055 | 1056 | # Small delay to prevent excessive CPU usage 1057 | time.sleep(0.1) 1058 | 1059 | except RuntimeError as e: 1060 | # Handle stream errors 1061 | stdscr.addstr(max_height-1, 2, f"Stream error: {str(e)}", curses.color_pair(3)) 1062 | stdscr.refresh() 1063 | time.sleep(1) 1064 | continue 1065 | 1066 | finally: 1067 | # Restore original SDR settings 1068 | sdr.center_freq = original_freq 1069 | sdr.sample_rate = original_sample_rate 1070 | sdr.gain = original_gain 1071 | time.sleep(0.1) # Let the SDR settle 1072 | 1073 | # Restore normal terminal behavior 1074 | stdscr.nodelay(False) 1075 | 1076 | 1077 | # End of Morse Code functions 1078 | 1079 | def butter_lowpass(cutoff, fs, order=5): 1080 | nyq = 0.5 * fs 1081 | normal_cutoff = cutoff / nyq 1082 | b, a = butter(order, normal_cutoff, btype='low', analog=False) 1083 | return b, a 1084 | 1085 | def lowpass_filter(data, cutoff=3000, fs=44100, order=5): 1086 | b, a = butter_lowpass(cutoff, fs, order=order) 1087 | y = lfilter(b, a, data) 1088 | return y 1089 | 1090 | def audio_callback(outdata, frames, time, status): 1091 | """Audio callback that writes stereo data to the output.""" 1092 | if len(audio_buffer) > 0: 1093 | data = np.concatenate(list(audio_buffer)) 1094 | if len(data) >= frames: 1095 | outdata[:] = data[:frames].reshape(-1, 2) # Reshape for stereo output 1096 | audio_buffer.clear() 1097 | if len(data) > frames: 1098 | audio_buffer.append(data[frames:]) 1099 | else: 1100 | outdata[:] = np.zeros((frames, 2)) # Stereo output 1101 | else: 1102 | outdata[:] = np.zeros((frames, 2)) # Stereo output 1103 | 1104 | def load_bookmarks(): 1105 | try: 1106 | with open(BOOKMARK_FILE, 'r') as f: 1107 | return json.load(f) 1108 | except (FileNotFoundError, json.JSONDecodeError): 1109 | return {} 1110 | 1111 | def save_bookmark(name, freq,bandwidth): 1112 | bookmarks = load_bookmarks() 1113 | bookmarks[name] = [freq, CURRENT_DEMOD, bandwidth] 1114 | with open(BOOKMARK_FILE, 'w') as f: 1115 | json.dump(bookmarks, f, indent=2) 1116 | 1117 | def add_bookmark(stdscr, freq,bandwidth): 1118 | max_height, max_width = stdscr.getmaxyx() 1119 | draw_clearheader(stdscr) 1120 | stdscr.addstr(0, 0, "Enter bookmark name: ", curses.color_pair(1) | curses.A_BOLD) 1121 | curses.echo() 1122 | curses.curs_set(1) 1123 | stdscr.nodelay(False) 1124 | name = stdscr.getstr().decode('utf-8') 1125 | draw_clearheader(stdscr) 1126 | curses.noecho() 1127 | curses.curs_set(0) 1128 | stdscr.nodelay(True) 1129 | if name: 1130 | save_bookmark(name, freq, bandwidth) 1131 | 1132 | def show_bookmarks(stdscr): 1133 | """Display bookmarks with pagination and deletion capability""" 1134 | bookmarks = load_bookmarks() 1135 | if not bookmarks: 1136 | show_popup_msg(stdscr, "No bookmarks found!", error=True) 1137 | return None 1138 | 1139 | # Initialize pagination variables 1140 | max_height, max_width = stdscr.getmaxyx() 1141 | items_per_page = max_height - 7 # Reserve space for header and footer 1142 | total_items = len(bookmarks) 1143 | total_pages = (total_items + items_per_page - 1) // items_per_page 1144 | current_page = 0 1145 | 1146 | while True: 1147 | stdscr.clear() 1148 | 1149 | # Draw header 1150 | header = "Bookmarks" 1151 | stdscr.addstr(0, 2, header, curses.color_pair(1) | curses.A_BOLD) 1152 | stdscr.addstr(1, 2, "-" * len(header), curses.color_pair(2)) 1153 | 1154 | # Calculate slice for current page 1155 | start_idx = current_page * items_per_page 1156 | end_idx = min(start_idx + items_per_page, total_items) 1157 | current_items = list(bookmarks.items())[start_idx:end_idx] 1158 | 1159 | # Display bookmarks for current page 1160 | for i, (name, details) in enumerate(current_items, 1): 1161 | freq = details[0] 1162 | mode = details[1] 1163 | band = details[2] 1164 | abs_index = start_idx + i 1165 | line = f"{abs_index:2d}. {name:<20}: {freq/1e6:.3f} MHz {mode:<3} {band:>9}Hz" 1166 | try: 1167 | stdscr.addstr(i + 2, 2, line, curses.color_pair(2)) 1168 | except curses.error: 1169 | pass 1170 | 1171 | # Draw footer with navigation help 1172 | footer = f"Page {current_page + 1}/{total_pages} | [n]ext/[p]rev page | [d]elete | [q]uit" 1173 | try: 1174 | stdscr.addstr(max_height-2, 2, footer, curses.color_pair(5)) 1175 | stdscr.addstr(max_height-1, 2, "Choice: ", curses.color_pair(1) | curses.A_BOLD) 1176 | except curses.error: 1177 | pass 1178 | 1179 | # Handle input 1180 | curses.echo() 1181 | curses.curs_set(1) 1182 | stdscr.nodelay(False) 1183 | 1184 | try: 1185 | choice = stdscr.getstr().decode('utf-8').lower() 1186 | 1187 | if choice == 'q': 1188 | break 1189 | elif choice == 'n' and current_page < total_pages - 1: 1190 | current_page += 1 1191 | continue 1192 | elif choice == 'p' and current_page > 0: 1193 | current_page -= 1 1194 | continue 1195 | elif choice == 'd': 1196 | # Handle bookmark deletion 1197 | stdscr.addstr(max_height-1, 2, "Enter number to delete: ", 1198 | curses.color_pair(3) | curses.A_BOLD) 1199 | try: 1200 | del_choice = int(stdscr.getstr().decode('utf-8')) 1201 | if 1 <= del_choice <= total_items: 1202 | # Get bookmark name and delete it 1203 | del_name = list(bookmarks.keys())[del_choice - 1] 1204 | del bookmarks[del_name] 1205 | # Save updated bookmarks 1206 | with open(BOOKMARK_FILE, 'w') as f: 1207 | json.dump(bookmarks, f, indent=2) 1208 | # Update pagination variables 1209 | total_items = len(bookmarks) 1210 | total_pages = (total_items + items_per_page - 1) // items_per_page 1211 | current_page = min(current_page, total_pages - 1) 1212 | show_popup_msg(stdscr, f"Deleted bookmark: {del_name}") 1213 | if not bookmarks: 1214 | return None 1215 | except ValueError: 1216 | show_popup_msg(stdscr, "Invalid selection!", error=True) 1217 | else: 1218 | try: 1219 | choice_num = int(choice) 1220 | if 1 <= choice_num <= total_items: 1221 | return list(bookmarks.values())[choice_num - 1] 1222 | except ValueError: 1223 | show_popup_msg(stdscr, "Invalid selection!", error=True) 1224 | 1225 | except curses.error: 1226 | pass 1227 | finally: 1228 | stdscr.nodelay(True) 1229 | curses.noecho() 1230 | curses.curs_set(0) 1231 | 1232 | return None 1233 | 1234 | def record_signal(sdr, duration, filename): 1235 | """Record raw IQ samples to a file""" 1236 | samples = sdr.read_samples(int(duration * sdr.sample_rate)) 1237 | np.save(filename, samples) 1238 | return samples 1239 | 1240 | def play_recorded_signal(filename): 1241 | """Play back recorded IQ samples""" 1242 | samples = np.load(filename) 1243 | return samples 1244 | 1245 | def start_audio_recording(filename, sample_rate=44100): 1246 | """Start recording audio to a WAV file""" 1247 | wav_file = wave.open(filename, 'wb') 1248 | wav_file.setnchannels(2) # stereo 1249 | wav_file.setsampwidth(2) # 2 bytes per sample 1250 | wav_file.setframerate(sample_rate) 1251 | return wav_file 1252 | 1253 | def write_audio_samples(wav_file, samples): 1254 | """Write audio samples to the WAV file""" 1255 | # Convert float samples to 16-bit integers 1256 | scaled = np.int16(samples * 32767) 1257 | wav_file.writeframes(scaled.tobytes()) 1258 | 1259 | def stop_audio_recording(wav_file): 1260 | """Close the WAV file""" 1261 | wav_file.close() 1262 | 1263 | def save_settings(sdr, bandwidth, freq_step, samples, agc_enabled): 1264 | """Save current SDR settings to a config file""" 1265 | config = configparser.ConfigParser() 1266 | 1267 | # Find current band (if any) 1268 | current_band = None 1269 | for band, (start, end, _) in BAND_PRESETS.items(): 1270 | if start <= sdr.center_freq <= end: 1271 | current_band = band 1272 | break 1273 | 1274 | config['SDR'] = { 1275 | 'frequency': str(sdr.center_freq), 1276 | 'sample_rate': str(sdr.sample_rate), 1277 | 'gain': str(sdr.gain), 1278 | 'bandwidth': str(bandwidth), 1279 | 'freq_step': str(freq_step), 1280 | 'samples': str(samples), 1281 | 'agc_enabled': str(agc_enabled), 1282 | 'current_band': str(current_band) if current_band else '', 1283 | 'ppm': str(sdr.ppm) # Add PPM to saved settings 1284 | } 1285 | 1286 | with open(SETTINGS_FILE, 'w') as configfile: 1287 | config.write(configfile) 1288 | 1289 | def load_settings(): 1290 | """Load SDR settings from config file""" 1291 | config = configparser.ConfigParser() 1292 | default_settings = { 1293 | 'frequency': '92.5e6', 1294 | 'sample_rate': '1.024e6', 1295 | 'gain': 'auto', # Keep as string for 'auto' 1296 | 'bandwidth': '1e6', 1297 | 'freq_step': '0.1e6', 1298 | 'samples': '7', 1299 | 'agc_enabled': 'False', 1300 | 'current_band': '', 1301 | 'ppm': '0' # Add default PPM value 1302 | } 1303 | 1304 | if os.path.exists(SETTINGS_FILE): 1305 | config.read(SETTINGS_FILE) 1306 | if 'SDR' in config: 1307 | return { 1308 | 'frequency': float(config['SDR'].get('frequency', default_settings['frequency'])), 1309 | 'sample_rate': float(config['SDR'].get('sample_rate', default_settings['sample_rate'])), 1310 | 'gain': config['SDR'].get('gain', default_settings['gain']), # Keep as string 1311 | 'bandwidth': float(config['SDR'].get('bandwidth', default_settings['bandwidth'])), 1312 | 'freq_step': float(config['SDR'].get('freq_step', default_settings['freq_step'])), 1313 | 'samples': int(config['SDR'].get('samples', default_settings['samples'])), 1314 | 'agc_enabled': config['SDR'].get('agc_enabled', default_settings['agc_enabled']) == 'True', 1315 | 'current_band': config['SDR'].get('current_band', default_settings['current_band']), 1316 | 'ppm': int(config['SDR'].get('ppm', default_settings['ppm'])) 1317 | } 1318 | 1319 | # Convert default settings to appropriate types 1320 | return { 1321 | 'frequency': float(default_settings['frequency']), 1322 | 'sample_rate': float(default_settings['sample_rate']), 1323 | 'gain': default_settings['gain'], # Keep as string 1324 | 'bandwidth': float(default_settings['bandwidth']), 1325 | 'freq_step': float(default_settings['freq_step']), 1326 | 'samples': int(default_settings['samples']), 1327 | 'agc_enabled': default_settings['agc_enabled'] == 'True', 1328 | 'current_band': default_settings['current_band'], 1329 | 'ppm': int(default_settings['ppm']) 1330 | } 1331 | 1332 | def measure_signal_power(samples): 1333 | """Calculate average power of signal in dB""" 1334 | power = np.mean(np.abs(samples)**2) 1335 | return 10 * np.log10(power + 1e-10) # Add small value to prevent log(0) 1336 | 1337 | def adjust_gain(sdr, current_power, gainindex): 1338 | """Adjust gain to reach target power level""" 1339 | power_diff = AGC_TARGET_POWER - current_power 1340 | 1341 | # Only adjust if difference is significant 1342 | if abs(power_diff) < 2: # 2 dB threshold 1343 | return gainindex 1344 | 1345 | if power_diff > 0: # Signal too weak, increase gain 1346 | gainindex += 1 1347 | if gainindex <= len(sdr.valid_gains_db) - 1: 1348 | sdr.gain = sdr.valid_gains_db[gainindex] 1349 | else: 1350 | gainindex = len(sdr.valid_gains_db) - 1 1351 | else: # Signal too strong, decrease gain 1352 | gainindex -= 1 1353 | if gainindex >= 0: 1354 | sdr.gain = sdr.valid_gains_db[gainindex] 1355 | else: 1356 | gainindex = 0 1357 | 1358 | return gainindex 1359 | 1360 | def show_popup_msg(stdscr,msg,error=False,pause=2): 1361 | draw_clearheader(stdscr) 1362 | if error: 1363 | stdscr.addstr(0, 0, msg, curses.color_pair(3)) 1364 | else: 1365 | stdscr.addstr(0, 0, msg, curses.color_pair(4)) 1366 | stdscr.refresh() 1367 | time.sleep(pause) 1368 | draw_clearheader(stdscr) 1369 | 1370 | def show_band_presets(stdscr): 1371 | """Display and select from available band presets with scrolling support""" 1372 | max_height, max_width = stdscr.getmaxyx() 1373 | available_height = max_height - 6 # Reserve space for header and footer 1374 | 1375 | # Calculate total entries and pages 1376 | total_entries = len(BAND_PRESETS) 1377 | entries_per_page = available_height 1378 | total_pages = (total_entries + entries_per_page - 1) // entries_per_page 1379 | current_page = 0 1380 | 1381 | while True: 1382 | stdscr.clear() 1383 | 1384 | # Draw header 1385 | header = "Available Band Presets" 1386 | stdscr.addstr(0, 2, header, curses.color_pair(1) | curses.A_BOLD) 1387 | stdscr.addstr(1, 2, "-" * len(header), curses.color_pair(2)) 1388 | 1389 | # Calculate slice for current page 1390 | start_idx = current_page * entries_per_page 1391 | end_idx = min(start_idx + entries_per_page, total_entries) 1392 | 1393 | # Display current page of presets 1394 | current_items = list(BAND_PRESETS.items())[start_idx:end_idx] 1395 | for i, (key, (start, end, description)) in enumerate(current_items, 1): 1396 | # Calculate absolute index for selection 1397 | abs_index = start_idx + i 1398 | # Add recommended bandwidth to display if available 1399 | if key in BAND_BANDWIDTHS: 1400 | bw_info = f" (BW: {BAND_BANDWIDTHS[key]/1e3:.0f}kHz)" 1401 | else: 1402 | bw_info = "" 1403 | line = f"{abs_index:2d}. {key:<8} : {description:<25}{bw_info} ({start/1e6:.3f}-{end/1e6:.3f} MHz)" 1404 | try: 1405 | stdscr.addstr(i + 2, 2, line, curses.color_pair(2)) 1406 | except curses.error: 1407 | pass 1408 | 1409 | # Draw footer with navigation help 1410 | footer = f"Page {current_page + 1}/{total_pages} | [n]ext/[p]rev page | [q]uit | Enter number to select" 1411 | try: 1412 | stdscr.addstr(max_height-2, 2, footer, curses.color_pair(5)) 1413 | stdscr.addstr(max_height-1, 2, "Choice: ", curses.color_pair(1) | curses.A_BOLD) 1414 | except curses.error: 1415 | pass 1416 | 1417 | # Handle input 1418 | curses.echo() 1419 | curses.curs_set(1) 1420 | stdscr.nodelay(False) 1421 | 1422 | try: 1423 | choice = stdscr.getstr().decode('utf-8').lower() 1424 | 1425 | if choice == 'q': 1426 | break 1427 | elif choice == 'n' and current_page < total_pages - 1: 1428 | current_page += 1 1429 | continue 1430 | elif choice == 'p' and current_page > 0: 1431 | current_page -= 1 1432 | continue 1433 | 1434 | try: 1435 | choice_num = int(choice) 1436 | if 1 <= choice_num <= total_entries: 1437 | # Get selected band 1438 | band_key = list(BAND_PRESETS.keys())[choice_num - 1] 1439 | start, end, _ = BAND_PRESETS[band_key] 1440 | # Use recommended bandwidth if available, otherwise calculate 1441 | if band_key in BAND_BANDWIDTHS: 1442 | bandwidth = BAND_BANDWIDTHS[band_key] 1443 | else: 1444 | bandwidth = min(end - start, 2e6) # Limit bandwidth to 2MHz or band width 1445 | return start + (end - start)/2, bandwidth 1446 | except ValueError: 1447 | pass 1448 | 1449 | except curses.error: 1450 | pass 1451 | finally: 1452 | stdscr.nodelay(True) 1453 | curses.noecho() 1454 | curses.curs_set(0) 1455 | 1456 | return None, None 1457 | 1458 | def scan_frequencies(stdscr,sdr, start_freq, end_freq, threshold, step=SCAN_STEP): 1459 | """Scan frequency range and detect signals above threshold""" 1460 | signals = [] 1461 | current_freq = start_freq 1462 | samples_per_scan = int(SCAN_DWELL_TIME * sdr.sample_rate) 1463 | max_height, max_width = stdscr.getmaxyx() # Get screen dimensions 1464 | 1465 | # Calculate total steps for progress bar 1466 | total_steps = int((end_freq - start_freq) / step) 1467 | current_step = 0 1468 | 1469 | while current_freq <= end_freq: 1470 | try: 1471 | # Update scanning status display 1472 | draw_scanning_status(stdscr, current_freq, start_freq, end_freq, sdr) 1473 | 1474 | # Check for user interrupt ('q' to quit scanning) 1475 | if stdscr.getch() == ord('q'): 1476 | break 1477 | 1478 | sdr.center_freq = current_freq 1479 | time.sleep(0.01) # Small delay to let SDR settle 1480 | samples = sdr.read_samples(samples_per_scan) 1481 | 1482 | if len(samples) == 0: 1483 | continue 1484 | 1485 | # Compute power spectrum 1486 | spectrum = np.fft.fftshift(np.fft.fft(samples)) 1487 | power_db = 10 * np.log10(np.abs(spectrum)**2 + 1e-10) 1488 | max_power = np.max(power_db) 1489 | 1490 | if max_power > threshold: 1491 | # Estimate signal bandwidth 1492 | mask = power_db > threshold 1493 | bandwidth = np.sum(mask) * (sdr.sample_rate / len(power_db)) 1494 | 1495 | if bandwidth > MIN_SIGNAL_BANDWIDTH: 1496 | # Classify signal 1497 | signal_type = classify_signal(samples, sdr.sample_rate, bandwidth) 1498 | 1499 | signals.append({ 1500 | 'frequency': current_freq, 1501 | 'power': max_power, 1502 | 'bandwidth': bandwidth, 1503 | 'type': signal_type 1504 | }) 1505 | 1506 | # Show immediate detection 1507 | status_msg = f"Signal detected at {current_freq/1e6:.3f} MHz ({signal_type})" 1508 | stdscr.addstr(max_height-1, 0, " " * (max_width-1)) # Clear line 1509 | stdscr.addstr(max_height-1, 0, status_msg, curses.color_pair(4)) 1510 | stdscr.refresh() 1511 | 1512 | except Exception as e: 1513 | stdscr.addstr(max_height-1, 0, f"Error: {str(e)}", curses.color_pair(3)) 1514 | stdscr.refresh() 1515 | time.sleep(0.5) 1516 | 1517 | current_freq += step 1518 | current_step += 1 1519 | 1520 | # Remove duplicates and sort by frequency 1521 | unique_signals = [] 1522 | seen_freqs = set() 1523 | for signal in sorted(signals, key=lambda x: x['frequency']): 1524 | rounded_freq = round(signal['frequency'] / 100e3) * 100e3 1525 | if rounded_freq not in seen_freqs: 1526 | seen_freqs.add(rounded_freq) 1527 | unique_signals.append(signal) 1528 | 1529 | return unique_signals 1530 | 1531 | def show_scanner_menu(stdscr): 1532 | """Display scanner configuration menu with band selection""" 1533 | max_height, max_width = stdscr.getmaxyx() 1534 | available_height = max_height - 6 # Reserve space for header and footer 1535 | 1536 | # Calculate total entries and pages 1537 | total_entries = len(BAND_PRESETS) 1538 | entries_per_page = available_height 1539 | total_pages = (total_entries + entries_per_page - 1) // entries_per_page 1540 | current_page = 0 1541 | 1542 | while True: 1543 | stdscr.clear() 1544 | 1545 | # Draw header 1546 | header = "Scanner Configuration - Select Band to Scan" 1547 | stdscr.addstr(0, 2, header, curses.color_pair(1) | curses.A_BOLD) 1548 | stdscr.addstr(1, 2, "-" * len(header), curses.color_pair(2)) 1549 | 1550 | # Calculate slice for current page 1551 | start_idx = current_page * entries_per_page 1552 | end_idx = min(start_idx + entries_per_page, total_entries) 1553 | 1554 | # Display current page of presets 1555 | current_items = list(BAND_PRESETS.items())[start_idx:end_idx] 1556 | for i, (key, (start, end, description)) in enumerate(current_items, 1): 1557 | # Calculate absolute index for selection 1558 | abs_index = start_idx + i 1559 | line = f"{abs_index:2d}. {key:<8} : {description:<25} ({start/1e6:.3f}-{end/1e6:.3f} MHz)" 1560 | try: 1561 | stdscr.addstr(i + 2, 2, line, curses.color_pair(2)) 1562 | except curses.error: 1563 | pass 1564 | 1565 | # Add custom range option 1566 | custom_option = f"{total_entries + 1}. Custom frequency range" 1567 | try: 1568 | stdscr.addstr(end_idx - start_idx + 3, 2, custom_option, curses.color_pair(4)) 1569 | except curses.error: 1570 | pass 1571 | 1572 | # Draw footer with navigation help 1573 | footer = f"Page {current_page + 1}/{total_pages} | [n]ext/[p]rev page | [q]uit | Enter number to select" 1574 | try: 1575 | stdscr.addstr(max_height-3, 2, footer, curses.color_pair(5)) 1576 | stdscr.addstr(max_height-2, 2, "Choice: ", curses.color_pair(1) | curses.A_BOLD) 1577 | except curses.error: 1578 | pass 1579 | 1580 | # Handle input 1581 | curses.echo() 1582 | curses.curs_set(1) 1583 | stdscr.nodelay(False) 1584 | 1585 | try: 1586 | choice = stdscr.getstr().decode('utf-8').lower() 1587 | 1588 | if choice == 'q': 1589 | return None, None, None 1590 | elif choice == 'n' and current_page < total_pages - 1: 1591 | current_page += 1 1592 | continue 1593 | elif choice == 'p' and current_page > 0: 1594 | current_page -= 1 1595 | continue 1596 | 1597 | try: 1598 | choice_num = int(choice) 1599 | if 1 <= choice_num <= total_entries: 1600 | # Get selected band 1601 | band_key = list(BAND_PRESETS.keys())[choice_num - 1] 1602 | start, end, _ = BAND_PRESETS[band_key] 1603 | 1604 | # Get threshold 1605 | stdscr.clear() 1606 | stdscr.addstr(0, 2, "Enter signal strength threshold \n(dB, recommended -40 to -20): ", 1607 | curses.color_pair(2)) 1608 | threshold = float(stdscr.getstr().decode('utf-8')) 1609 | 1610 | return start, end, threshold 1611 | 1612 | elif choice_num == total_entries + 1: 1613 | # Handle custom range 1614 | stdscr.clear() 1615 | stdscr.addstr(0, 2, "Enter start frequency (MHz): ", curses.color_pair(2)) 1616 | start = float(stdscr.getstr().decode('utf-8')) * 1e6 1617 | stdscr.addstr(1, 2, "Enter end frequency (MHz): ", curses.color_pair(2)) 1618 | end = float(stdscr.getstr().decode('utf-8')) * 1e6 1619 | stdscr.addstr(2, 2, "Enter signal strength threshold \n(dB, recommended -40 to -20): ", 1620 | curses.color_pair(2)) 1621 | threshold = float(stdscr.getstr().decode('utf-8')) 1622 | 1623 | return start, end, threshold 1624 | 1625 | except ValueError: 1626 | pass 1627 | 1628 | except curses.error: 1629 | pass 1630 | finally: 1631 | stdscr.nodelay(True) 1632 | curses.noecho() 1633 | curses.curs_set(0) 1634 | 1635 | return None, None, None 1636 | 1637 | def display_scan_results(stdscr, signals, threshold): 1638 | """Display scanner results with pagination and allow selection""" 1639 | # Ensure we're in the right mode for user input 1640 | stdscr.nodelay(False) # Make sure we wait for input 1641 | curses.echo() # Show user input 1642 | curses.curs_set(1) # Show cursor 1643 | 1644 | try: 1645 | if not signals: 1646 | stdscr.addstr(0, 0, "\nNo signals found above threshold.\n", curses.color_pair(3)) 1647 | stdscr.addstr(2, 0, "\nPress any key to continue...", curses.color_pair(2)) 1648 | stdscr.getch() # Wait for keypress 1649 | return None 1650 | 1651 | max_height, max_width = stdscr.getmaxyx() 1652 | results_per_page = max_height - 7 # Reserve space for header and footer 1653 | total_pages = (len(signals) + results_per_page - 1) // results_per_page 1654 | current_page = 0 1655 | 1656 | while True: 1657 | stdscr.clear() 1658 | 1659 | # Draw header 1660 | header = f"Detected Signals ({len(signals)} found) - Page {current_page + 1}/{total_pages}" 1661 | stdscr.addstr(0, 0, header, curses.color_pair(1) | curses.A_BOLD) 1662 | stdscr.addstr(1, 0, "-" * len(header), curses.color_pair(2)) 1663 | 1664 | # Calculate slice for current page 1665 | start_idx = current_page * results_per_page 1666 | end_idx = min(start_idx + results_per_page, len(signals)) 1667 | 1668 | # Display signals for current page 1669 | current_line = 2 1670 | for i, signal in enumerate(signals[start_idx:end_idx], start_idx + 1): 1671 | power_str = f"{signal['power']:.1f}".rjust(6) 1672 | freq_str = f"{signal['frequency']/1e6:.3f}".rjust(8) 1673 | bw_str = f"{signal['bandwidth']/1e3:.1f}".rjust(6) 1674 | type_str = signal['type'].ljust(15) 1675 | 1676 | line = f"{str(i).rjust(3)}. {freq_str} MHz Power: {power_str} dB BW: {bw_str} kHz Type: {type_str}" 1677 | 1678 | # Color code by signal type 1679 | if signal['type'] == 'FM_BROADCAST': 1680 | color = curses.color_pair(4) # Green 1681 | elif signal['type'] == 'DIGITAL': 1682 | color = curses.color_pair(5) # Cyan 1683 | elif signal['type'] == 'UNKNOWN': 1684 | color = curses.color_pair(2) # White 1685 | else: 1686 | color = curses.color_pair(1) # Yellow 1687 | 1688 | stdscr.addstr(current_line, 0, line[:max_width-1], color) 1689 | current_line += 1 1690 | 1691 | # Draw navigation footer 1692 | footer = "Navigation: [n]ext page, [p]revious page, [number] to select, [q]uit" 1693 | stdscr.addstr(max_height-1, 0, footer, curses.color_pair(2)) 1694 | stdscr.addstr(max_height-2, 0, "Enter choice: ", curses.color_pair(1) | curses.A_BOLD) 1695 | 1696 | stdscr.refresh() 1697 | 1698 | # Get user input 1699 | try: 1700 | choice = stdscr.getstr().decode('utf-8').lower() 1701 | 1702 | if choice == 'q': 1703 | break 1704 | elif choice == 'n' and current_page < total_pages - 1: 1705 | current_page += 1 1706 | elif choice == 'p' and current_page > 0: 1707 | current_page -= 1 1708 | else: 1709 | try: 1710 | choice_num = int(choice) 1711 | if 1 <= choice_num <= len(signals): 1712 | return signals[choice_num-1]['frequency'] 1713 | except ValueError: 1714 | pass 1715 | except curses.error: 1716 | pass 1717 | 1718 | except Exception as e: 1719 | # Debug output for unexpected errors 1720 | stdscr.addstr(max_height-1, 0, f"Display error ({type(e).__name__}): {str(e)}", 1721 | curses.color_pair(3)) 1722 | stdscr.refresh() 1723 | stdscr.getch() # Wait for key press to see error 1724 | 1725 | finally: 1726 | # Restore original terminal settings 1727 | stdscr.nodelay(True) 1728 | curses.noecho() 1729 | curses.curs_set(0) 1730 | stdscr.clear() 1731 | 1732 | return None 1733 | 1734 | def draw_scanning_status(stdscr, current_freq, start_freq, end_freq, sdr): 1735 | """Draw scanning progress at the top of the screen""" 1736 | try: 1737 | max_height, max_width = stdscr.getmaxyx() 1738 | 1739 | # Calculate progress percentage 1740 | total_range = end_freq - start_freq 1741 | if total_range > 0: # Prevent division by zero 1742 | progress = (current_freq - start_freq) / total_range 1743 | else: 1744 | progress = 0 1745 | 1746 | # Calculate progress bar width (70% of screen width) 1747 | bar_width = int(max_width * 0.7) 1748 | filled = int(bar_width * progress) 1749 | 1750 | # Clear the status lines 1751 | stdscr.addstr(0, 0, " " * max_width) 1752 | stdscr.addstr(1, 0, " " * max_width) 1753 | 1754 | # Create the status text 1755 | status_text = f"Scanning: {current_freq/1e6:8.3f} MHz " 1756 | progress_bar = "[" + "=" * filled + " " * (bar_width - filled) + "]" 1757 | percentage = f" {progress * 100:3.0f}%" 1758 | 1759 | # Calculate starting position to center the display 1760 | total_length = len(status_text) + len(progress_bar) + len(percentage) 1761 | start_pos = max(0, (max_width - total_length) // 2) 1762 | 1763 | # Draw the components with colors 1764 | stdscr.addstr(0, start_pos, status_text, curses.color_pair(1) | curses.A_BOLD) 1765 | stdscr.addstr(1, start_pos, progress_bar, curses.color_pair(2)) 1766 | stdscr.addstr(1, start_pos + len(progress_bar), percentage, curses.color_pair(4)) 1767 | 1768 | # Force screen update 1769 | stdscr.refresh() 1770 | 1771 | except curses.error: 1772 | pass # Ignore curses errors 1773 | 1774 | def draw_waterfall(stdscr, freq_data, frequencies, center_freq, bandwidth, gain, step, 1775 | sdr, is_recording=False, recording_duration=None): 1776 | """Draw the waterfall display using ASCII characters""" 1777 | global WATERFALL_HISTORY 1778 | max_height, max_width = stdscr.getmaxyx() 1779 | display_width = max_width - 8 1780 | display_height = max_height - 4 1781 | 1782 | # Add current data to history 1783 | WATERFALL_HISTORY.append(freq_data) 1784 | if len(WATERFALL_HISTORY) > WATERFALL_MAX_LINES: 1785 | WATERFALL_HISTORY.pop(0) 1786 | 1787 | # Normalize all data for consistent coloring 1788 | all_data = np.array(WATERFALL_HISTORY) 1789 | min_val = np.min(all_data[np.isfinite(all_data)]) 1790 | max_val = np.max(all_data[np.isfinite(all_data)]) 1791 | 1792 | # Draw dB scale on the left 1793 | for i in range(display_height): 1794 | db_value = max_val - (i * (max_val - min_val) / display_height) 1795 | if i % 3 == 0: # Show scale every 3 lines 1796 | db_label = f"{db_value:4.0f}dB" 1797 | try: 1798 | stdscr.addstr(i + 2, 0, db_label, curses.color_pair(2)) 1799 | # Add scale markers 1800 | stdscr.addstr(i + 2, 8, "|", curses.color_pair(2)) 1801 | except curses.error: 1802 | pass 1803 | 1804 | # Draw each line of the waterfall 1805 | for y, line_data in enumerate(reversed(WATERFALL_HISTORY)): 1806 | if y >= display_height: 1807 | break 1808 | 1809 | # Resample data to fit screen width 1810 | resampled = np.interp( 1811 | np.linspace(0, len(line_data) - 1, display_width), 1812 | np.arange(len(line_data)), 1813 | line_data 1814 | ) 1815 | 1816 | # Draw each point in the line using ASCII characters 1817 | for x, value in enumerate(resampled): 1818 | if np.isfinite(value): 1819 | # Normalize value and select ASCII character and color 1820 | norm_value = (value - min_val) / (max_val - min_val) 1821 | color_index = int(norm_value * 5) # 0-5 for the 6 color pairs 1822 | 1823 | if norm_value > 0.75: 1824 | char = "#" 1825 | elif norm_value > 0.5: 1826 | char = "=" 1827 | elif norm_value > 0.25: 1828 | char = "-" 1829 | else: 1830 | char = "." 1831 | 1832 | try: 1833 | stdscr.addstr(y + 3, x + 9, char, curses.color_pair(10 + color_index)) 1834 | except curses.error: 1835 | pass 1836 | 1837 | # Use standardized frequency labels 1838 | draw_frequency_labels(stdscr, center_freq, bandwidth, display_height, display_width) 1839 | 1840 | def draw_frequency_labels(stdscr, center_freq, bandwidth, display_height, display_width, x_offset=9): 1841 | """Standardized function to draw frequency labels and axis using ASCII only""" 1842 | try: 1843 | # Draw horizontal axis background to reflect center frequency 1844 | half_bw = bandwidth / 2 1845 | start_freq = center_freq - half_bw 1846 | end_freq = center_freq + half_bw 1847 | 1848 | # Calculate center marker width proportional to bandwidth 1849 | # For example: 2MHz -> 4 chars, 1MHz -> 2 chars, 0.5MHz -> 1 char 1850 | center_marker_width = max(1, int(bandwidth / 250000)) # 1 char per 500kHz 1851 | center_x = display_width // 2 # Center position in display units 1852 | 1853 | # Draw the axis background with different characters for different frequency ranges 1854 | axis_line = "" 1855 | for x in range(display_width): 1856 | # Use different characters based on position relative to center 1857 | if abs(x - center_x) < center_marker_width: # Center marker 1858 | axis_line += "=" 1859 | else: 1860 | axis_line += "-" # Same character for both sides 1861 | 1862 | # Draw the axis with background 1863 | stdscr.addstr(display_height + 2, x_offset, axis_line, curses.color_pair(2)) 1864 | 1865 | # Calculate frequency steps and format labels 1866 | freq_step = bandwidth / 5 1867 | 1868 | # Draw frequency labels and tick marks 1869 | for i in range(6): 1870 | freq = start_freq + (i * freq_step) 1871 | label = f"{freq/1e6:.2f}MHz" 1872 | pos = int(x_offset + (i * (display_width-1)/5)) 1873 | 1874 | try: 1875 | # Draw tick mark 1876 | stdscr.addstr(display_height + 2, pos, "|", curses.color_pair(2)) 1877 | 1878 | # Center the label under the tick mark 1879 | label_pos = max(pos - len(label)//2, x_offset) 1880 | stdscr.addstr(display_height + 3, label_pos, label, curses.color_pair(2)) 1881 | except curses.error: 1882 | pass 1883 | 1884 | # Add band name indicator if frequency is in a known band 1885 | current_band = None 1886 | # Add small tolerance for floating point comparison (1 kHz) 1887 | tolerance = 1e3 1888 | for band, (start, end, description) in BAND_PRESETS.items(): 1889 | if (start - tolerance) <= center_freq <= (end + tolerance): 1890 | current_band = band 1891 | break 1892 | 1893 | if current_band: 1894 | try: 1895 | band_text = f"[{current_band}]" 1896 | # Position the band name at the start of the axis 1897 | stdscr.addstr(display_height + 2, x_offset - len(band_text) - 1, 1898 | band_text, curses.color_pair(4) | curses.A_BOLD) 1899 | 1900 | # Debug output (optional) 1901 | #debug_text = f"F:{center_freq/1e6:.3f}MHz B:{start/1e6:.3f}-{end/1e6:.3f}MHz" 1902 | #stdscr.addstr(0, 0, debug_text, curses.color_pair(2)) 1903 | except curses.error: 1904 | pass 1905 | 1906 | except curses.error: 1907 | pass 1908 | 1909 | def show_demod_menu(stdscr): 1910 | """Display demodulation mode selection menu""" 1911 | stdscr.clear() 1912 | stdscr.addstr("Select Demodulation Mode:\n\n", curses.color_pair(1) | curses.A_BOLD) 1913 | 1914 | for i, (mode, info) in enumerate(DEMOD_MODES.items(), 1): 1915 | line = f"{i}. {info['name']}: {info['description']}" 1916 | if mode == CURRENT_DEMOD: 1917 | line += " (Current)" 1918 | stdscr.addstr(line + "\n", curses.color_pair(4) | curses.A_BOLD) 1919 | else: 1920 | stdscr.addstr(line + "\n", curses.color_pair(2)) 1921 | 1922 | stdscr.addstr("\nEnter choice (or any other key to cancel): ", 1923 | curses.color_pair(1) | curses.A_BOLD) 1924 | 1925 | curses.echo() 1926 | curses.curs_set(1) 1927 | stdscr.nodelay(False) 1928 | 1929 | try: 1930 | choice = int(stdscr.getstr().decode('utf-8')) 1931 | if 1 <= choice <= len(DEMOD_MODES): 1932 | return list(DEMOD_MODES.keys())[choice-1] 1933 | except (ValueError, IndexError): 1934 | pass 1935 | finally: 1936 | stdscr.nodelay(True) 1937 | curses.noecho() 1938 | curses.curs_set(0) 1939 | 1940 | return None 1941 | 1942 | def classify_signal(samples, sample_rate, bandwidth): 1943 | """Classify signal type based on spectral characteristics""" 1944 | # Calculate power spectral density 1945 | freqs, psd = welch(samples, fs=sample_rate, nperseg=1024) 1946 | 1947 | # Calculate basic signal characteristics 1948 | signal_bw = estimate_bandwidth(psd, freqs) 1949 | modulation_index = estimate_modulation_index(samples) 1950 | spectral_flatness = np.exp(np.mean(np.log(psd + 1e-10))) / np.mean(psd) 1951 | 1952 | # Classification logic 1953 | if signal_bw > 150e3: 1954 | if modulation_index > 0.8: 1955 | return 'FM_BROADCAST' 1956 | elif 8e3 <= signal_bw <= 16e3: 1957 | if modulation_index < 0.3: 1958 | return 'NARROW_FM' 1959 | elif 8e3 <= signal_bw <= 10e3: 1960 | if modulation_index < 0.2 and spectral_flatness < 0.3: 1961 | return 'AM_BROADCAST' 1962 | elif 2e3 <= signal_bw <= 3e3: 1963 | if spectral_flatness < 0.2: 1964 | return 'SSB' 1965 | elif spectral_flatness > 0.7: 1966 | return 'DIGITAL' 1967 | 1968 | return 'UNKNOWN' 1969 | 1970 | def estimate_bandwidth(psd, freqs, threshold_db=-20): 1971 | """Estimate signal bandwidth using power spectral density""" 1972 | # Convert to dB 1973 | psd_db = 10 * np.log10(psd + 1e-10) 1974 | max_power = np.max(psd_db) 1975 | 1976 | # Find frequencies above threshold 1977 | mask = psd_db > (max_power + threshold_db) 1978 | if not np.any(mask): 1979 | return 0 1980 | 1981 | # Calculate bandwidth 1982 | freq_range = freqs[mask] 1983 | return freq_range[-1] - freq_range[0] 1984 | 1985 | def estimate_modulation_index(samples): 1986 | """Estimate modulation index using amplitude variation""" 1987 | # Use magnitude of complex samples instead of Hilbert transform 1988 | amplitude_env = np.abs(samples) 1989 | phase_env = np.unwrap(np.angle(samples)) 1990 | 1991 | # Calculate variance ratios 1992 | amp_var = np.var(amplitude_env) 1993 | phase_var = np.var(np.diff(phase_env)) 1994 | 1995 | return phase_var / (amp_var + 1e-10) 1996 | 1997 | def draw_persistence(stdscr, freq_data, frequencies, center_freq, bandwidth, gain, step, 1998 | sdr, is_recording=False, recording_duration=None): 1999 | """Draw spectrum with persistence effect""" 2000 | global PERSISTENCE_HISTORY 2001 | max_height, max_width = stdscr.getmaxyx() 2002 | display_width = max_width - 8 # Reserve space for dB scale 2003 | display_height = max_height - 4 2004 | 2005 | # Add current data to history 2006 | PERSISTENCE_HISTORY.append(freq_data) 2007 | if len(PERSISTENCE_HISTORY) > PERSISTENCE_LENGTH: 2008 | PERSISTENCE_HISTORY.pop(0) 2009 | 2010 | # Draw dB scale on the left 2011 | min_val = np.min(freq_data[np.isfinite(freq_data)]) 2012 | max_val = np.max(freq_data[np.isfinite(freq_data)]) 2013 | db_range = max_val - min_val 2014 | for i in range(max_height - 3): 2015 | db_value = max_val - (i * db_range / (max_height - 3)) 2016 | if i % 3 == 0: # Show scale every 3 lines 2017 | db_label = f"{db_value:4.0f}dB" 2018 | try: 2019 | stdscr.addstr(i + 2, 0, db_label, curses.color_pair(2)) 2020 | except curses.error: 2021 | pass 2022 | 2023 | # Draw each trace with ASCII characters 2024 | for i, historical_data in enumerate(PERSISTENCE_HISTORY): 2025 | alpha = PERSISTENCE_ALPHA ** (PERSISTENCE_LENGTH - i) 2026 | color_pair = int(1 + (5 * (1 - alpha))) 2027 | 2028 | for x in range(display_width): 2029 | try: 2030 | y = int(max_height - 2 - (historical_data[x] / 100 * (max_height - 3))) 2031 | if 2 <= y < max_height - 1: 2032 | stdscr.addstr(y, x + 8, '*', curses.color_pair(color_pair)) 2033 | except curses.error: 2034 | pass 2035 | 2036 | # Use standardized frequency labels 2037 | draw_frequency_labels(stdscr, center_freq, bandwidth, display_height, display_width) 2038 | 2039 | def draw_surface_plot(stdscr, freq_data, frequencies, center_freq, bandwidth, gain, step, 2040 | sdr, is_recording=False, recording_duration=None): 2041 | """Draw spectrum as pseudo-3D surface with frequency labels""" 2042 | max_height, max_width = stdscr.getmaxyx() 2043 | display_width = max_width - 8 2044 | display_height = max_height - 4 2045 | 2046 | # Calculate frequency range 2047 | half_bw = bandwidth / 2 2048 | start_freq = center_freq - half_bw 2049 | end_freq = center_freq + half_bw 2050 | 2051 | # Draw surface with ASCII characters 2052 | angle_rad = np.radians(SURFACE_ANGLE) 2053 | for x in range(max_width - 10): # Reserve space for labels 2054 | magnitude = freq_data[x] 2055 | for y in range(int(magnitude)): 2056 | screen_x = int(x - y * np.cos(angle_rad)) + 8 # Offset for labels 2057 | screen_y = int(max_height - 2 - y * np.sin(angle_rad)) 2058 | 2059 | if 0 <= screen_x < max_width and 2 <= screen_y < max_height - 1: 2060 | try: 2061 | stdscr.addstr(screen_y, screen_x, '#', 2062 | curses.color_pair(1 + (y % 5))) 2063 | except curses.error: 2064 | pass 2065 | 2066 | # Use standardized frequency labels 2067 | draw_frequency_labels(stdscr, center_freq, bandwidth, display_height, display_width) 2068 | 2069 | # Draw amplitude scale on the left 2070 | min_val = np.min(freq_data[np.isfinite(freq_data)]) 2071 | max_val = np.max(freq_data[np.isfinite(freq_data)]) 2072 | db_range = max_val - min_val 2073 | for i in range(max_height - 3): 2074 | db_value = max_val - (i * db_range / (max_height - 3)) 2075 | if i % 3 == 0: # Show scale every 3 lines 2076 | db_label = f"{db_value:4.0f}dB" 2077 | try: 2078 | stdscr.addstr(i + 2, 0, db_label, curses.color_pair(2)) 2079 | except curses.error: 2080 | pass 2081 | 2082 | def interpolate_color(color1, color2, factor): 2083 | """Interpolate between two RGB colors""" 2084 | return tuple(int(color1[i] + (color2[i] - color1[i]) * factor) for i in range(3)) 2085 | 2086 | def get_gradient_color(value): 2087 | """Get smooth color from gradient for given value between 0 and 1""" 2088 | if value <= 0: 2089 | return GRADIENT_COLORS[0] 2090 | if value >= 1: 2091 | return GRADIENT_COLORS[-1] 2092 | 2093 | segment_size = 1.0 / (len(GRADIENT_COLORS) - 1) 2094 | segment = int(value / segment_size) 2095 | factor = (value - segment * segment_size) / segment_size 2096 | 2097 | return interpolate_color(GRADIENT_COLORS[segment], 2098 | GRADIENT_COLORS[segment + 1], 2099 | factor) 2100 | 2101 | def draw_gradient_waterfall(stdscr, freq_data, frequencies, center_freq, bandwidth, gain, step, 2102 | sdr, is_recording=False, recording_duration=None): 2103 | """Draw waterfall with ASCII characters for better compatibility""" 2104 | global WATERFALL_HISTORY 2105 | max_height, max_width = stdscr.getmaxyx() 2106 | display_width = max_width - 10 2107 | display_height = max_height - 4 2108 | 2109 | # Add current data to history 2110 | WATERFALL_HISTORY.append(freq_data) 2111 | if len(WATERFALL_HISTORY) > WATERFALL_MAX_LINES: 2112 | WATERFALL_HISTORY.pop(0) 2113 | 2114 | # Normalize data 2115 | all_data = np.array(WATERFALL_HISTORY) 2116 | min_val = np.min(all_data[np.isfinite(all_data)]) 2117 | max_val = np.max(all_data[np.isfinite(all_data)]) 2118 | 2119 | # Draw dB scale on the left 2120 | for i in range(display_height): 2121 | db_value = max_val - (i * (max_val - min_val) / display_height) 2122 | if i % 3 == 0: # Show scale every 3 lines 2123 | db_label = f"{db_value:4.0f}dB" 2124 | try: 2125 | stdscr.addstr(i + 2, 0, db_label, curses.color_pair(2)) 2126 | # Add scale markers 2127 | stdscr.addstr(i + 2, 8, "|", curses.color_pair(2)) 2128 | except curses.error: 2129 | pass 2130 | 2131 | # Define ASCII intensity characters (from darkest to brightest) 2132 | intensity_chars = ' ._-=+*#@' # 9 levels of intensity 2133 | 2134 | # Draw each line with ASCII characters 2135 | for y, line_data in enumerate(reversed(WATERFALL_HISTORY)): 2136 | if y >= display_height: 2137 | break 2138 | 2139 | # Resample data to fit display width 2140 | resampled = np.interp( 2141 | np.linspace(0, len(line_data) - 1, display_width), 2142 | np.arange(len(line_data)), line_data) 2143 | 2144 | for x, value in enumerate(resampled): 2145 | if np.isfinite(value): 2146 | # Normalize value between 0 and 1 2147 | normalized = (value - min_val) / (max_val - min_val) 2148 | 2149 | # Convert normalized value to character index 2150 | char_index = int(normalized * (len(intensity_chars) - 1)) 2151 | char = intensity_chars[char_index] 2152 | 2153 | # Select color based on intensity 2154 | color_index = int(normalized * 5) # 6 color pairs (0-5) 2155 | 2156 | try: 2157 | stdscr.addstr(y + 2, x + 9, char, 2158 | curses.color_pair(10 + color_index)) 2159 | except curses.error: 2160 | pass 2161 | 2162 | # Draw intensity scale on the right 2163 | for i in range(display_height): 2164 | normalized = 1 - (i / display_height) 2165 | char_index = int(normalized * (len(intensity_chars) - 1)) 2166 | try: 2167 | stdscr.addstr(i + 2, max_width - 2, 2168 | intensity_chars[char_index] * 2, 2169 | curses.color_pair(10 + int(normalized * 5))) 2170 | except curses.error: 2171 | pass 2172 | 2173 | # Use standardized frequency labels 2174 | draw_frequency_labels(stdscr, center_freq, bandwidth, display_height, display_width) 2175 | 2176 | def draw_vector_display(stdscr, samples, center_freq, bandwidth, gain, step, sdr, 2177 | is_recording=False, recording_duration=None): 2178 | """Draw I/Q samples as vector constellation""" 2179 | max_height, max_width = stdscr.getmaxyx() 2180 | display_width = max_width - 8 2181 | display_height = max_height - 4 2182 | 2183 | # Create coordinate system 2184 | center_x = max_width // 2 2185 | center_y = max_height // 2 2186 | scale = min(max_width, max_height) // 4 2187 | 2188 | # Draw axes with ASCII characters 2189 | for i in range(max_width): 2190 | try: 2191 | stdscr.addstr(center_y, i, '-') 2192 | except curses.error: 2193 | pass 2194 | for i in range(max_height): 2195 | try: 2196 | stdscr.addstr(i, center_x, '|') 2197 | except curses.error: 2198 | pass 2199 | 2200 | # Plot I/Q samples with ASCII dot 2201 | for i, q in zip(np.real(samples), np.imag(samples)): 2202 | x = int(center_x + i * scale) 2203 | y = int(center_y - q * scale) 2204 | 2205 | if 0 <= x < max_width and 0 <= y < max_height: 2206 | try: 2207 | stdscr.addstr(y, x, '.', curses.color_pair(1)) 2208 | except curses.error: 2209 | pass 2210 | 2211 | # Use standardized frequency labels 2212 | draw_frequency_labels(stdscr, center_freq, bandwidth, display_height, display_width) 2213 | 2214 | # Add new class to handle different SDR backends 2215 | class SDRDevice: 2216 | def __init__(self, backend='SOAPY', stdscr=None): 2217 | self.backend = backend 2218 | self.device = None 2219 | self.sample_rate = 2.048e6 2220 | self.center_freq = 100e6 2221 | self.gain = 20 2222 | self.bandwidth = 2e6 2223 | self.ppm = DEFAULT_PPM 2224 | self.stdscr = stdscr 2225 | self._valid_gains = None 2226 | 2227 | def enumerate_devices(self): 2228 | """List all available SDR devices""" 2229 | try: 2230 | devices = SoapySDR.Device.enumerate() 2231 | formatted_devices = [] 2232 | 2233 | for i, device in enumerate(devices, 1): 2234 | # Extract relevant device information using SoapySDRKwargs methods 2235 | driver = device['driver'] if 'driver' in device else 'Unknown' 2236 | label = device['label'] if 'label' in device else '' 2237 | serial = device['serial'] if 'serial' in device else '' 2238 | 2239 | # Create formatted device string 2240 | device_str = f"{driver}" 2241 | if label: 2242 | device_str += f" ({label})" 2243 | if serial: 2244 | device_str += f" [SN: {serial}]" 2245 | 2246 | formatted_devices.append((i, device_str, device)) 2247 | 2248 | return formatted_devices 2249 | 2250 | except Exception as e: 2251 | raise RuntimeError(f"Error enumerating devices: {e}") 2252 | 2253 | def select_device(self): 2254 | """Display device selection menu and return chosen device args""" 2255 | try: 2256 | devices = self.enumerate_devices() 2257 | if not devices: 2258 | raise RuntimeError("No SDR devices found") 2259 | 2260 | if len(devices) == 1: 2261 | # If only one device, use it automatically 2262 | self.stdscr.addstr(0, 0, "Found single SDR device, using it automatically...", 2263 | curses.color_pair(4)) 2264 | self.stdscr.refresh() 2265 | time.sleep(1) 2266 | return devices[0][2] 2267 | 2268 | # Display device selection menu 2269 | self.stdscr.clear() 2270 | self.stdscr.addstr(0, 0, "Available SDR Devices:", curses.color_pair(1) | curses.A_BOLD) 2271 | self.stdscr.addstr(1, 0, "-" * 50, curses.color_pair(2)) 2272 | 2273 | for idx, name, _ in devices: 2274 | self.stdscr.addstr(idx + 1, 0, f"{idx}. {name}", curses.color_pair(2)) 2275 | 2276 | self.stdscr.addstr(len(devices) + 3, 0, "Select device (1-{}): ".format(len(devices)), curses.color_pair(1) | curses.A_BOLD) 2277 | 2278 | # Get user input 2279 | curses.echo() 2280 | curses.curs_set(1) 2281 | self.stdscr.nodelay(False) 2282 | 2283 | while True: 2284 | try: 2285 | choice = int(self.stdscr.getstr().decode('utf-8')) 2286 | if 1 <= choice <= len(devices): 2287 | return devices[choice-1][2] 2288 | else: 2289 | raise ValueError 2290 | except ValueError: 2291 | self.stdscr.addstr(len(devices) + 4, 0, "Invalid choice. Try again: ", 2292 | curses.color_pair(3)) 2293 | self.stdscr.refresh() 2294 | 2295 | finally: 2296 | curses.noecho() 2297 | curses.curs_set(0) 2298 | self.stdscr.nodelay(True) 2299 | self.stdscr.clear() 2300 | 2301 | def init_device(self): 2302 | """Initialize SoapySDR device with device selection""" 2303 | try: 2304 | # Get device arguments from selection menu 2305 | args = self.select_device() 2306 | 2307 | # Create device instance with selected device 2308 | self.device = SoapySDR.Device(args) 2309 | 2310 | # Set initial parameters BEFORE creating the stream 2311 | self.set_sample_rate(self.sample_rate) 2312 | self.set_center_freq(self.center_freq) 2313 | self.set_gain(self.gain) 2314 | self.set_bandwidth(self.bandwidth) 2315 | 2316 | # Initialize gain range 2317 | self._valid_gains = self._get_valid_gains() 2318 | 2319 | # Setup RX stream AFTER setting parameters 2320 | self.stream = self.device.setupStream(SOAPY_SDR_RX, SOAPY_SDR_CF32) 2321 | self.device.activateStream(self.stream) 2322 | 2323 | except Exception as e: 2324 | raise RuntimeError(f"Error initializing SoapySDR device: {e}") 2325 | 2326 | def _get_valid_gains(self): 2327 | """Get list of valid gain values""" 2328 | try: 2329 | gain_range = self.device.getGainRange(SOAPY_SDR_RX, 0) 2330 | step = gain_range.step() if gain_range.step() > 0 else 1 2331 | return np.arange(gain_range.minimum(), gain_range.maximum() + step, step) 2332 | except Exception: 2333 | return np.arange(0, 50, 1) # Fallback range 2334 | 2335 | def read_samples(self, num_samples): 2336 | """Read samples from the SDR device""" 2337 | buff = np.array([0]*num_samples, np.complex64) 2338 | ret = self.device.readStream(self.stream, [buff], len(buff)) 2339 | if ret.ret < 0: 2340 | raise RuntimeError(f"Stream error: {ret.ret}") 2341 | return buff 2342 | 2343 | def close(self): 2344 | if self.device: 2345 | self.device.deactivateStream(self.stream) 2346 | self.device.closeStream(self.stream) 2347 | self.device = None 2348 | 2349 | @property 2350 | def valid_gains_db(self): 2351 | return self._valid_gains 2352 | 2353 | def set_gain(self, gain): 2354 | """Set the gain value""" 2355 | if gain == 'auto': 2356 | self.device.setGainMode(SOAPY_SDR_RX, 0, True) 2357 | else: 2358 | self.device.setGainMode(SOAPY_SDR_RX, 0, False) 2359 | self.device.setGain(SOAPY_SDR_RX, 0, float(gain)) 2360 | self.gain = gain 2361 | 2362 | def set_center_freq(self, freq): 2363 | self.device.setFrequency(SOAPY_SDR_RX, 0, float(freq)) 2364 | self.center_freq = freq 2365 | 2366 | def set_sample_rate(self, rate): 2367 | self.device.setSampleRate(SOAPY_SDR_RX, 0, float(rate)) 2368 | self.sample_rate = rate 2369 | 2370 | def set_bandwidth(self, bw): 2371 | self.device.setBandwidth(SOAPY_SDR_RX, 0, float(bw)) 2372 | self.bandwidth = bw 2373 | 2374 | def set_ppm(self, ppm): 2375 | """Set frequency correction if supported""" 2376 | try: 2377 | if 'freqCorrection' in self.device.getSettingInfo(): 2378 | self.device.writeSetting('freqCorrection', str(ppm)) 2379 | self.ppm = ppm 2380 | return True 2381 | except Exception as e: 2382 | if self.stdscr: 2383 | self.stdscr.addstr(0, 0, f"PPM correction not supported: {str(e)}", 2384 | curses.color_pair(3) | curses.A_BOLD) 2385 | self.stdscr.refresh() 2386 | time.sleep(1) 2387 | return False 2388 | 2389 | def show_rtl_commands(stdscr, sdr): 2390 | """Display RTL commands from JSON file with pagination""" 2391 | try: 2392 | # Try to load the JSON file 2393 | with open('rtlcoms.json', 'r') as f: 2394 | commands = json.load(f) 2395 | except (FileNotFoundError, json.JSONDecodeError): 2396 | show_popup_msg(stdscr, "rtlcoms.json not found or invalid!", error=True) 2397 | return 2398 | 2399 | max_height, max_width = stdscr.getmaxyx() 2400 | available_height = max_height - 6 # Reserve space for header and footer 2401 | 2402 | # Calculate total entries and pages, accounting for 2 lines per entry 2403 | entries_per_page = available_height // 2 # Divide by 2 since each entry takes 2 lines 2404 | total_entries = len(commands) 2405 | total_pages = (total_entries + entries_per_page - 1) // entries_per_page 2406 | current_page = 0 2407 | 2408 | while True: 2409 | stdscr.clear() 2410 | 2411 | # Draw header 2412 | header = "Available RTL Commands" 2413 | stdscr.addstr(0, 2, header, curses.color_pair(1) | curses.A_BOLD) 2414 | stdscr.addstr(1, 2, "-" * len(header), curses.color_pair(2)) 2415 | 2416 | # Calculate slice for current page 2417 | start_idx = current_page * entries_per_page 2418 | end_idx = min(start_idx + entries_per_page, total_entries) 2419 | 2420 | # Display current page of commands 2421 | current_items = list(commands.items())[start_idx:end_idx] 2422 | for i, (name, command) in enumerate(current_items, 1): 2423 | # Calculate absolute index for selection 2424 | abs_index = start_idx + i 2425 | 2426 | # Format the command with actual values 2427 | try: 2428 | formatted_command = command.format( 2429 | freq=f"{sdr.center_freq/1e6:.3f}", 2430 | sample_rate=f"{sdr.sample_rate/1e6:.3f}", 2431 | gain=sdr.gain if isinstance(sdr.gain, str) else f"{sdr.gain:.1f}", 2432 | ppm=sdr.ppm 2433 | ) 2434 | except Exception: 2435 | formatted_command = command # Use raw command if formatting fails 2436 | 2437 | # Calculate display position 2438 | display_line = (i - 1) * 2 + 3 # Start at line 3, increment by 2 for each entry 2439 | 2440 | try: 2441 | # Display name in bold white 2442 | name_line = f"{abs_index:2d}. {name}" 2443 | stdscr.addstr(display_line, 2, name_line, curses.color_pair(1) | curses.A_BOLD) 2444 | 2445 | # Display command in cyan on next line 2446 | cmd_line = f" {formatted_command}" 2447 | stdscr.addstr(display_line + 1, 2, cmd_line, curses.color_pair(5)) 2448 | except curses.error: 2449 | pass 2450 | 2451 | # Draw footer with navigation help 2452 | footer = f"Page {current_page + 1}/{total_pages} | [n]ext/[p]rev page | [q]uit | Enter number to select" 2453 | try: 2454 | stdscr.addstr(max_height-2, 2, footer, curses.color_pair(5)) 2455 | stdscr.addstr(max_height-1, 2, "Choice: ", curses.color_pair(1) | curses.A_BOLD) 2456 | except curses.error: 2457 | pass 2458 | 2459 | # Handle input 2460 | curses.echo() 2461 | curses.curs_set(1) 2462 | stdscr.nodelay(False) 2463 | 2464 | try: 2465 | choice = stdscr.getstr().decode('utf-8').lower() 2466 | 2467 | if choice == 'q': 2468 | break 2469 | elif choice == 'n' and current_page < total_pages - 1: 2470 | current_page += 1 2471 | continue 2472 | elif choice == 'p' and current_page > 0: 2473 | current_page -= 1 2474 | continue 2475 | 2476 | try: 2477 | choice_num = int(choice) 2478 | if 1 <= choice_num <= total_entries: 2479 | # Get selected command 2480 | command = list(commands.values())[choice_num - 1] 2481 | # Format command with current values 2482 | formatted_command = command.format( 2483 | freq=f"{sdr.center_freq/1e6:.3f}", 2484 | sample_rate=f"{sdr.sample_rate/1e6:.3f}", 2485 | gain=sdr.gain if isinstance(sdr.gain, str) else f"{sdr.gain:.1f}", 2486 | ppm=sdr.ppm 2487 | ) 2488 | # Store command for display at exit 2489 | global RTL_COMMAND 2490 | RTL_COMMAND = formatted_command 2491 | return 2492 | except ValueError: 2493 | pass 2494 | 2495 | except curses.error: 2496 | pass 2497 | finally: 2498 | stdscr.nodelay(True) 2499 | curses.noecho() 2500 | curses.curs_set(0) 2501 | 2502 | def init_audio_device(): 2503 | """Initialize audio device with error handling and backend selection""" 2504 | try: 2505 | # Try to create output stream without specifying backend 2506 | test_stream = sd.OutputStream( 2507 | channels=2, 2508 | samplerate=44100, 2509 | blocksize=2048, 2510 | dtype=np.float32 2511 | ) 2512 | test_stream.close() 2513 | return True 2514 | except sd.PortAudioError as e: 2515 | print(f"Audio initialization error: {e}") 2516 | return False 2517 | 2518 | def init_device(self): 2519 | """Initialize SDR device with error handling for PPM correction""" 2520 | try: 2521 | if self.backend == 'RTL': 2522 | self.device = RtlSdr() 2523 | 2524 | # Set basic parameters first, without PPM 2525 | self.device.sample_rate = self.sample_rate 2526 | self.device.center_freq = self.center_freq 2527 | self.device.gain = self.gain 2528 | 2529 | # Don't try to set PPM during initialization 2530 | self.ppm = 0 # Start with 0 PPM 2531 | 2532 | except Exception as e: 2533 | raise RuntimeError(f"Error initializing SDR device: {e}") 2534 | 2535 | def main(stdscr): 2536 | global SCAN_ACTIVE, AGC_ENABLED, last_agc_update, SAMPLES, WATERFALL_MODE, CURRENT_DEMOD,USE_PIPE,PIPE_FILE 2537 | init_colors() 2538 | gainindex = -1 2539 | 2540 | # Get initial screen dimensions 2541 | max_height, max_width = stdscr.getmaxyx() 2542 | # Initialize display mode 2543 | current_display_mode = 'SPECTRUM' 2544 | 2545 | # Initialize audio 2546 | audio_available = init_audio_device() 2547 | if not audio_available: 2548 | stdscr.addstr(0, 0, "Warning: Audio system initialization failed", 2549 | curses.color_pair(3) | curses.A_BOLD) 2550 | stdscr.refresh() 2551 | time.sleep(2) 2552 | 2553 | # Add audio state variables 2554 | audio_enabled = False 2555 | stream = None 2556 | 2557 | # Add new variables for audio recording 2558 | audio_recording = False 2559 | wav_file = None 2560 | recording_start_time = None 2561 | 2562 | # Initialize SDR device with selected backend 2563 | try: 2564 | sdr = SDRDevice(stdscr=stdscr) 2565 | sdr.init_device() 2566 | 2567 | # Load saved settings if available 2568 | settings = load_settings() 2569 | sdr.set_sample_rate(settings['sample_rate']) 2570 | sdr.set_center_freq(settings['frequency']) 2571 | 2572 | # Handle gain setting properly 2573 | if settings['gain'] == 'auto': 2574 | sdr.set_gain('auto') 2575 | gainindex = -1 2576 | else: 2577 | try: 2578 | gain_value = float(settings['gain']) 2579 | valid_gains = sdr.valid_gains_db 2580 | gainindex = min(range(len(valid_gains)), 2581 | key=lambda i: abs(valid_gains[i] - gain_value)) 2582 | sdr.set_gain(valid_gains[gainindex]) 2583 | except (ValueError, TypeError): 2584 | sdr.set_gain('auto') 2585 | gainindex = -1 2586 | 2587 | # Try to set PPM after device is initialized 2588 | try: 2589 | if settings['ppm'] != 0: # Only try to set non-zero PPM 2590 | sdr.set_ppm(settings['ppm']) 2591 | except Exception as e: 2592 | stdscr.addstr(0, 0, f"Warning: PPM correction not supported: {str(e)}", 2593 | curses.color_pair(3) | curses.A_BOLD) 2594 | stdscr.refresh() 2595 | time.sleep(1) 2596 | sdr.ppm = 0 # Reset to 0 if setting fails 2597 | 2598 | bandwidth = settings['bandwidth'] 2599 | freq_step = settings['freq_step'] 2600 | SAMPLES = settings['samples'] 2601 | AGC_ENABLED = settings['agc_enabled'] 2602 | 2603 | # Enable non-blocking input 2604 | stdscr.nodelay(True) 2605 | 2606 | while True: 2607 | try: 2608 | current_time = time.time() 2609 | 2610 | # Update screen dimensions in case terminal was resized 2611 | max_height, max_width = stdscr.getmaxyx() 2612 | 2613 | # Read samples and compute FFT 2614 | try: 2615 | samples = sdr.read_samples((2**SAMPLES) * 256) 2616 | if len(samples) == 0 or np.all(samples == 0): 2617 | stdscr.addstr(max_height-1, 0, "Error reading samples, retrying...", 2618 | curses.color_pair(3)) 2619 | stdscr.refresh() 2620 | time.sleep(0.1) 2621 | continue 2622 | except Exception as e: 2623 | stdscr.addstr(max_height-1, 0, f"Error: {str(e)}", curses.color_pair(3)) 2624 | stdscr.refresh() 2625 | time.sleep(0.1) 2626 | continue 2627 | 2628 | # Handle AGC if enabled 2629 | if AGC_ENABLED and (current_time - last_agc_update) >= AGC_UPDATE_INTERVAL: 2630 | current_power = measure_signal_power(samples) 2631 | gainindex = adjust_gain(sdr, current_power, gainindex) 2632 | last_agc_update = current_time 2633 | 2634 | # Update audio processing logic 2635 | if AUDIO_AVAILABLE and audio_enabled: 2636 | audio = demodulate_signal(samples, sdr.sample_rate, CURRENT_DEMOD) 2637 | audio_buffer.append(audio) 2638 | 2639 | # Update audio processing logic for PIPE 2640 | if USE_PIPE: 2641 | audio = demodulate_signal(samples, sdr.sample_rate, CURRENT_DEMOD) 2642 | audio_buffer.append(audio) 2643 | 2644 | # Calculate frequency bins 2645 | num_bins = 1024 # Reduced from 2048 2646 | freq_bins = np.fft.fftshift(np.fft.fftfreq(num_bins, d=1/sdr.sample_rate)) + sdr.center_freq 2647 | 2648 | # Compute FFT with improved processing 2649 | fft = np.fft.fft(samples * np.hamming(len(samples))) 2650 | fft = np.fft.fftshift(fft) 2651 | 2652 | # Compute power spectrum with better noise handling 2653 | freq_data = 20 * np.log10(np.abs(fft) + 1e-10) 2654 | 2655 | # Apply moving average smoothing 2656 | window_size = 5 2657 | freq_data = np.convolve(freq_data, np.ones(window_size)/window_size, mode='valid') 2658 | 2659 | # Apply additional noise reduction 2660 | noise_threshold = np.median(freq_data) - 10 2661 | freq_data[freq_data < noise_threshold] = noise_threshold 2662 | 2663 | # Update the draw_spectrogram call to include recording status 2664 | recording_duration = time.time() - recording_start_time if audio_recording else None 2665 | 2666 | draw_header(stdscr, freq_data, freq_bins, sdr.center_freq, bandwidth, sdr.gain, freq_step, sdr, audio_recording, recording_duration) 2667 | 2668 | if current_display_mode == 'SPECTRUM': 2669 | draw_spectrogram(stdscr, freq_data, freq_bins, sdr.center_freq, 2670 | bandwidth, sdr.gain, freq_step, sdr, # Add sdr here 2671 | audio_recording, recording_duration) 2672 | elif current_display_mode == 'WATERFALL': 2673 | draw_waterfall(stdscr, freq_data, freq_bins, sdr.center_freq, 2674 | bandwidth, sdr.gain, freq_step, sdr, # Add sdr here 2675 | audio_recording, recording_duration) 2676 | elif current_display_mode == 'PERSISTENCE': 2677 | draw_persistence(stdscr, freq_data, freq_bins, sdr.center_freq, 2678 | bandwidth, sdr.gain, freq_step, sdr, # Add sdr here 2679 | audio_recording, recording_duration) 2680 | elif current_display_mode == 'SURFACE': 2681 | draw_surface_plot(stdscr, freq_data, freq_bins, sdr.center_freq, 2682 | bandwidth, sdr.gain, freq_step, sdr, # Add sdr here 2683 | audio_recording, recording_duration) 2684 | elif current_display_mode == 'GRADIENT': 2685 | draw_gradient_waterfall(stdscr, freq_data, freq_bins, sdr.center_freq, 2686 | bandwidth, sdr.gain, freq_step, sdr, 2687 | audio_recording, recording_duration) 2688 | elif current_display_mode == 'VECTOR': 2689 | draw_vector_display(stdscr, samples, sdr.center_freq, 2690 | bandwidth, sdr.gain, freq_step, sdr) 2691 | 2692 | 2693 | # Handle user input 2694 | key = stdscr.getch() 2695 | if key == ord('q'): # Quit 2696 | break 2697 | elif key == ord('I'): 2698 | draw_clearheader(stdscr) 2699 | #if not audio_recording and AUDIO_AVAILABLE and audio_enabled and not USE_PIPE: 2700 | if not USE_PIPE: 2701 | # Start recording 2702 | recording_start_time = time.time() 2703 | #show_popup_msg(stdscr,"Sample rate: " + str(sdr.sample_rate),pause=4) 2704 | start_pipe_recording(stdscr) 2705 | elif audio_recording: 2706 | # Stop recording 2707 | stop_pipe_recording(stdscr) 2708 | elif key == ord('a'): # Toggle audio 2709 | if USE_PIPE: 2710 | show_popup_msg(stdscr,"Disable PIPE export first!",error=True) 2711 | else: 2712 | if audio_available: 2713 | audio_enabled = not audio_enabled 2714 | if audio_enabled and stream is None: 2715 | try: 2716 | stream = sd.OutputStream( 2717 | channels=2, 2718 | samplerate=44100, 2719 | callback=audio_callback, 2720 | blocksize=2048, 2721 | latency=0.1, 2722 | dtype=np.float32 2723 | ) 2724 | stream.start() 2725 | except sd.PortAudioError as e: 2726 | stdscr.addstr(0, 0, f"Audio error: {str(e)}", 2727 | curses.color_pair(3) | curses.A_BOLD) 2728 | stdscr.refresh() 2729 | time.sleep(2) 2730 | audio_enabled = False 2731 | stream = None 2732 | elif not audio_enabled and stream is not None: 2733 | try: 2734 | stream.stop() 2735 | stream.close() 2736 | except: 2737 | pass 2738 | stream = None 2739 | audio_buffer.clear() 2740 | elif key == curses.KEY_UP: # Increase frequency by 1 MHz 2741 | sdr.set_center_freq(sdr.center_freq + 1e6) 2742 | elif key == curses.KEY_DOWN: # Decrease frequency by 1 MHz 2743 | sdr.set_center_freq(max(0, sdr.center_freq - 1e6)) 2744 | elif key == curses.KEY_RIGHT: # Increase frequency by 0.5 MHz 2745 | sdr.set_center_freq(sdr.center_freq + 0.5e6) 2746 | elif key == curses.KEY_LEFT: # Decrease frequency by 0.5 MHz 2747 | sdr.set_center_freq(max(0, sdr.center_freq - 0.5e6)) 2748 | elif key == ord('x'): # Set Frequency 2749 | freq = setfreq(stdscr) 2750 | if freq: 2751 | if freq[-1] in 'mM ': 2752 | freq = float(freq[:-1]) * 1e6 2753 | elif freq[-1] in 'kK': 2754 | freq = float(freq[:-1]) * 1e3 2755 | sdr.set_center_freq(int(freq)) 2756 | elif key == ord('t'): # Decrease step 2757 | freq_step = max(0.01e6, freq_step - 0.01e6) 2758 | draw_clearheader(stdscr) 2759 | elif key == ord('T'): # Increase step 2760 | freq_step = min(sdr.sample_rate / 2, freq_step + 0.01e6) 2761 | draw_clearheader(stdscr) 2762 | elif key == ord('h'): # Help 2763 | showhelp(stdscr) 2764 | stdscr.clear() 2765 | stdscr.refresh() 2766 | elif key == ord('b'): # Zoom in (reduce bandwidth) 2767 | bandwidth = max(0.1e6, bandwidth - zoom_step) 2768 | draw_clearheader(stdscr) 2769 | elif key == ord('B'): # Zoom out (increase bandwidth) 2770 | bandwidth = min(sdr.sample_rate, bandwidth + zoom_step) 2771 | draw_clearheader(stdscr) 2772 | elif key == ord('f'): # Shift center frequency down 2773 | sdr.set_center_freq(max(0, sdr.center_freq - freq_step)) 2774 | draw_clearheader(stdscr) 2775 | elif key == ord('F'): # Shift center frequency up 2776 | sdr.set_center_freq(sdr.center_freq + freq_step) 2777 | draw_clearheader(stdscr) 2778 | elif key == ord('s'): # Decrease samples 2779 | SAMPLES -= 1 2780 | if SAMPLES < 5: 2781 | SAMPLES = 5 2782 | draw_clearheader(stdscr) 2783 | elif key == ord('S'): # Increase samples 2784 | SAMPLES += 1 2785 | if SAMPLES > 12: 2786 | SAMPLES = 12 2787 | draw_clearheader(stdscr) 2788 | elif key == ord('G'): 2789 | gainindex +=1 2790 | if gainindex <= len(sdr.valid_gains_db)-1: 2791 | sdr.set_gain(sdr.valid_gains_db[gainindex]) 2792 | else: 2793 | sdr.set_gain("auto") 2794 | gainindex = -1 2795 | draw_clearheader(stdscr) 2796 | elif key == ord('g'): 2797 | gainindex -= 1 2798 | if gainindex < 0: 2799 | sdr.set_gain(sdr.valid_gains_db[0]) 2800 | gainindex = 0 2801 | else: 2802 | sdr.set_gain(sdr.valid_gains_db[gainindex]) 2803 | draw_clearheader(stdscr) 2804 | elif key == ord('k'): # Save bookmark 2805 | add_bookmark(stdscr, sdr.center_freq, bandwidth) 2806 | elif key == ord('l'): # Load bookmark 2807 | bkm = show_bookmarks(stdscr) 2808 | if bkm is not None: 2809 | new_freq = bkm[0] 2810 | sdr.set_center_freq(new_freq) 2811 | bandwidth = bkm[2] 2812 | CURRENT_DEMOD = bkm[1] 2813 | elif key == ord('R'): # Start/Stop recording 2814 | draw_clearheader(stdscr) 2815 | if not audio_recording and AUDIO_AVAILABLE and audio_enabled: 2816 | # Start recording 2817 | timestamp = time.strftime("%Y%m%d-%H%M%S") 2818 | filename = f"sdr_recording_{timestamp}.wav" 2819 | wav_file = start_audio_recording(filename) 2820 | audio_recording = True 2821 | recording_start_time = time.time() 2822 | stdscr.addstr(max_height-1, 0, f"Started recording to {filename}", 2823 | curses.color_pair(4)) 2824 | elif audio_recording: 2825 | # Stop recording 2826 | stop_audio_recording(wav_file) 2827 | audio_recording = False 2828 | wav_file = None 2829 | stdscr.addstr(max_height-1, 0, "Recording stopped", 2830 | curses.color_pair(4)) 2831 | else: 2832 | stdscr.addstr(max_height-1, 0, 2833 | "Audio must be enabled to record (press 'a' first)", 2834 | curses.color_pair(3)) 2835 | stdscr.refresh() 2836 | elif key == ord('w'): # Save settings 2837 | save_settings(sdr, bandwidth, freq_step, SAMPLES, AGC_ENABLED) 2838 | stdscr.addstr(max_height-1, 0, "Settings saved", curses.color_pair(4)) 2839 | stdscr.refresh() 2840 | time.sleep(1) # Show message briefly 2841 | elif key == ord('v'): # Toggle waterfall mode 2842 | WATERFALL_MODE = not WATERFALL_MODE 2843 | WATERFALL_HISTORY.clear() # Clear history when switching modes 2844 | stdscr.clear() 2845 | elif key == ord('r'): # Load settings 2846 | settings = load_settings() 2847 | sdr.set_sample_rate(settings['sample_rate']) 2848 | sdr.set_center_freq(settings['frequency']) 2849 | sdr.set_gain(settings['gain']) 2850 | bandwidth = settings['bandwidth'] 2851 | freq_step = settings['freq_step'] 2852 | SAMPLES = settings['samples'] 2853 | AGC_ENABLED = settings['agc_enabled'] 2854 | stdscr.addstr(max_height-1, 0, "Settings loaded", curses.color_pair(4)) 2855 | stdscr.refresh() 2856 | time.sleep(1) # Show message briefly 2857 | elif key == ord('A'): # Toggle AGC 2858 | draw_clearheader(stdscr) 2859 | AGC_ENABLED = not AGC_ENABLED 2860 | if not AGC_ENABLED: 2861 | # Reset to manual gain mode 2862 | if gainindex >= 0 and gainindex < len(sdr.valid_gains_db): 2863 | sdr.set_gain(sdr.valid_gains_db[gainindex]) 2864 | else: 2865 | sdr.set_gain('auto') 2866 | gainindex = -1 2867 | elif key == ord('n'): # Band presets 2868 | new_freq, new_bandwidth = show_band_presets(stdscr) 2869 | stdscr.clear() 2870 | if new_freq is not None: 2871 | sdr.set_center_freq(new_freq) 2872 | bandwidth = new_bandwidth 2873 | # Adjust gain for the new frequency range 2874 | if AGC_ENABLED: 2875 | # Force an immediate AGC update 2876 | last_agc_update = 0 2877 | show_popup_msg(stdscr,f"Switched to band: {new_freq/1e6:.3f} MHz") 2878 | elif key == ord('c'): # Start frequency scanner 2879 | # Get scanner configuration 2880 | start_freq, end_freq, threshold = show_scanner_menu(stdscr) 2881 | if start_freq is not None: 2882 | SCAN_ACTIVE = True 2883 | signals = [] 2884 | current_freq = start_freq 2885 | 2886 | # Scanning loop 2887 | while current_freq <= end_freq and SCAN_ACTIVE: 2888 | # Update progress display 2889 | draw_scanning_status(stdscr, current_freq, start_freq, end_freq, sdr) 2890 | 2891 | # Check for cancel 2892 | if stdscr.getch() == ord('q'): 2893 | SCAN_ACTIVE = False 2894 | break 2895 | 2896 | # Perform scan for current chunk 2897 | try: 2898 | # Set frequency and allow settling time 2899 | sdr.set_center_freq(current_freq) 2900 | time.sleep(0.01) # Short settling time 2901 | 2902 | # Read samples and compute FFT 2903 | samples = sdr.read_samples(2048) # Reduced sample size for speed 2904 | if len(samples) > 0: 2905 | # Compute power spectrum 2906 | spectrum = np.fft.fftshift(np.fft.fft(samples)) 2907 | power_db = 10 * np.log10(np.abs(spectrum)**2 + 1e-10) 2908 | 2909 | # Find peak power 2910 | peak_power = np.max(power_db) 2911 | 2912 | # If signal detected 2913 | if peak_power > threshold: 2914 | # Estimate bandwidth 2915 | mask = power_db > (peak_power - 20) # Points within 20dB of peak 2916 | bandwidth = np.sum(mask) * (sdr.sample_rate / len(power_db)) 2917 | 2918 | # Only add if bandwidth is reasonable 2919 | if bandwidth > MIN_SIGNAL_BANDWIDTH: 2920 | signals.append({ 2921 | 'frequency': current_freq, 2922 | 'power': peak_power, 2923 | 'bandwidth': bandwidth, 2924 | 'type': classify_signal(samples, sdr.sample_rate, bandwidth) 2925 | }) 2926 | 2927 | # Debug output 2928 | stdscr.addstr(max_height-1, 0, 2929 | f"Signal found: {current_freq/1e6:.3f} MHz, " 2930 | f"Power: {peak_power:.1f} dB, " 2931 | f"BW: {bandwidth/1e3:.1f} kHz", 2932 | curses.color_pair(4)) 2933 | stdscr.refresh() 2934 | 2935 | except Exception as e: 2936 | stdscr.addstr(max_height-1, 0, 2937 | f"Scan error ({type(e).__name__}): {str(e)}", 2938 | curses.color_pair(3)) 2939 | stdscr.refresh() 2940 | 2941 | # Move to next frequency 2942 | current_freq += SCAN_STEP 2943 | 2944 | # After scanning, store results globally 2945 | if signals: 2946 | global LAST_SCAN_RESULTS 2947 | LAST_SCAN_RESULTS = signals.copy() # Store a copy of the results 2948 | 2949 | # Display results and get selected frequency 2950 | new_freq = display_scan_results(stdscr, signals, threshold) 2951 | 2952 | # ... rest of existing scanning code ... 2953 | 2954 | # Reset scan state 2955 | SCAN_ACTIVE = False 2956 | stdscr.clear() 2957 | elif key == ord('d'): # Change demodulation mode 2958 | new_mode = show_demod_menu(stdscr) 2959 | if new_mode is not None: 2960 | CURRENT_DEMOD = new_mode 2961 | # Update bandwidth based on mode 2962 | if DEMOD_MODES[CURRENT_DEMOD]['bandwidth']: 2963 | bandwidth = DEMOD_MODES[CURRENT_DEMOD]['bandwidth'] 2964 | stdscr.addstr(max_height-1, 0, 2965 | f"Switched to {DEMOD_MODES[CURRENT_DEMOD]['name']} mode", 2966 | curses.color_pair(4)) 2967 | stdscr.refresh() 2968 | time.sleep(1) 2969 | elif key == ord('M'): # Add Morse decoder option 2970 | show_morse_decoder(stdscr, sdr, sdr.sample_rate) 2971 | stdscr.clear() 2972 | stdscr.refresh() 2973 | elif key == ord('.'): # Add APRS decoder option 2974 | show_aprs_decoder(stdscr, sdr, sdr.sample_rate) 2975 | stdscr.clear() 2976 | stdscr.refresh() 2977 | elif key == ord('m'): # Mode switch 2978 | current_mode_index = DISPLAY_MODES.index(current_display_mode) 2979 | current_display_mode = DISPLAY_MODES[(current_mode_index + 1) % len(DISPLAY_MODES)] 2980 | stdscr.clear() 2981 | elif key == ord('/'): # RTL Commands 2982 | show_rtl_commands(stdscr, sdr) # Pass sdr here 2983 | elif key == ord('1'): # Spectrum Mode switch 2984 | current_mode_index = 0 2985 | current_display_mode = DISPLAY_MODES[0] 2986 | stdscr.clear() 2987 | elif key == ord('2'): # Waterfall Mode switch 2988 | current_mode_index = 1 2989 | current_display_mode = DISPLAY_MODES[1] 2990 | stdscr.clear() 2991 | elif key == ord('3'): # Persistence Mode switch 2992 | current_mode_index = 2 2993 | current_display_mode = DISPLAY_MODES[2] 2994 | stdscr.clear() 2995 | elif key == ord('4'): # Surface Mode switch 2996 | current_mode_index = 3 2997 | current_display_mode = DISPLAY_MODES[3] 2998 | stdscr.clear() 2999 | elif key == ord('5'): # Gradient Mode switch 3000 | current_mode_index = 4 3001 | current_display_mode = DISPLAY_MODES[4] 3002 | stdscr.clear() 3003 | elif key == ord('6'): # Vector Mode switch 3004 | current_mode_index = 5 3005 | current_display_mode = DISPLAY_MODES[5] 3006 | stdscr.clear() 3007 | elif key == ord('P'): # Increase PPM 3008 | draw_clearheader(stdscr) 3009 | if sdr.ppm < 1000: # Add reasonable limit 3010 | if sdr.set_ppm(sdr.ppm + 1): 3011 | show_popup_msg(stdscr, f"PPM set to {sdr.ppm}") 3012 | else: 3013 | show_popup_msg(stdscr, "Failed to set PPM", error=True) 3014 | elif key == ord('p'): # Decrease PPM 3015 | draw_clearheader(stdscr) 3016 | if sdr.ppm > -1000: # Add reasonable limit 3017 | if sdr.set_ppm(sdr.ppm - 1): 3018 | show_popup_msg(stdscr, f"PPM set to {sdr.ppm}") 3019 | else: 3020 | show_popup_msg(stdscr, "Failed to set PPM", error=True) 3021 | elif key == ord('O'): # Set exact PPM value 3022 | draw_clearheader(stdscr) 3023 | stdscr.addstr(0, 0, "Enter PPM correction value: ", 3024 | curses.color_pair(1) | curses.A_BOLD) 3025 | curses.echo() 3026 | curses.curs_set(1) 3027 | stdscr.nodelay(False) 3028 | try: 3029 | ppm = int(stdscr.getstr().decode('utf-8')) 3030 | if sdr.set_ppm(ppm): 3031 | show_popup_msg(stdscr, f"PPM set to {sdr.ppm}") 3032 | else: 3033 | show_popup_msg(stdscr, "Failed to set PPM", error=True) 3034 | except ValueError: 3035 | show_popup_msg(stdscr, "Invalid PPM value!", error=True) 3036 | finally: 3037 | curses.noecho() 3038 | curses.curs_set(0) 3039 | stdscr.nodelay(True) 3040 | # Add new key handler for showing last results 3041 | elif key == ord('C'): # Show last scan results 3042 | if LAST_SCAN_RESULTS: 3043 | stdscr.nodelay(False) 3044 | curses.flushinp() 3045 | 3046 | # Display the stored results 3047 | new_freq = display_scan_results(stdscr, LAST_SCAN_RESULTS, SIGNAL_THRESHOLD) 3048 | 3049 | # If frequency was selected, tune to it 3050 | if new_freq is not None: 3051 | sdr.set_center_freq(new_freq) 3052 | 3053 | stdscr.nodelay(True) 3054 | stdscr.clear() 3055 | else: 3056 | # Show message if no previous scan results exist 3057 | draw_clearheader(stdscr) 3058 | stdscr.addstr(0, 0, "No previous scan results available", curses.color_pair(3)) 3059 | stdscr.refresh() 3060 | time.sleep(2) 3061 | draw_clearheader(stdscr) 3062 | 3063 | # Remove the separate recording duration display since it's now handled in draw_spectrogram 3064 | if audio_recording and AUDIO_AVAILABLE and audio_enabled: 3065 | if len(audio_buffer) > 0: 3066 | audio_data = np.concatenate(list(audio_buffer)) 3067 | write_audio_samples(wav_file, audio_data) 3068 | audio_buffer.clear() 3069 | 3070 | if USE_PIPE: 3071 | if len(audio_buffer) > 0: 3072 | try: 3073 | audio_data = np.concatenate(list(audio_buffer)) 3074 | write_to_pipe(PIPE_FILE,audio_data,stdscr) 3075 | #write_to_pipe(PIPE_FILE,data[:frames].tobytes()) 3076 | audio_buffer.clear() 3077 | 3078 | stdscr.addstr(".") 3079 | except BlockingIOError as e: 3080 | if e.errno == errno.EAGAIN: 3081 | show_popup_msg(stdscr,"No reader available. Skipping write...",error=True,pause=3) 3082 | else: 3083 | raise # Unexpected error, re-raise 3084 | except FileNotFoundError: 3085 | show_popup_msg(stdscr,f"The pipe {PIPE_PATH} was not found.",error=True,pause=3) 3086 | close_file_pipe(PIPE_FILE) 3087 | USE_PIPE = False 3088 | clean_pipe(None,None) 3089 | except BrokenPipeError: 3090 | show_popup_msg(stdscr,f"The reader has closed the pipe. Exiting.",error=True,pause=3) 3091 | close_file_pipe(PIPE_FILE) 3092 | USE_PIPE = False 3093 | clean_pipe(None,None) 3094 | except Exception as e: 3095 | show_popup_msg(stdscr,f"An unexpected error occurred: {e}",error=True,pause=3) 3096 | close_file_pipe(PIPE_FILE) 3097 | USE_PIPE = False 3098 | clean_pipe(None,None) 3099 | 3100 | 3101 | 3102 | except curses.error: 3103 | # Handle curses errors (like terminal resize) 3104 | continue 3105 | 3106 | except KeyboardInterrupt: 3107 | pass 3108 | finally: 3109 | sdr.close() 3110 | if stream: 3111 | stream.stop() 3112 | stream.close() 3113 | 3114 | # Make sure to close the WAV file if we exit while recording 3115 | if wav_file: 3116 | stop_audio_recording(wav_file) 3117 | 3118 | 3119 | def compute_fft(samples): 3120 | """Compute normalized FFT with proper scaling""" 3121 | # Apply window function to reduce spectral leakage 3122 | window = np.hamming(len(samples)) 3123 | windowed_samples = samples * window 3124 | 3125 | # Compute FFT and shift zero frequency to center 3126 | fft = np.fft.fftshift(np.fft.fft(windowed_samples)) 3127 | 3128 | # Convert to power spectrum in dB, with proper scaling 3129 | power_db = 20 * np.log10(np.abs(fft) + 1e-10) 3130 | 3131 | # Apply calibration factors 3132 | system_gain = -30 # Adjustment for system gain 3133 | ref_level = -70 # Reference level adjustment 3134 | 3135 | # Apply calibration and clip to reasonable range 3136 | power_db = np.clip(power_db + system_gain + ref_level, -100, -20) 3137 | 3138 | return power_db 3139 | 3140 | if __name__ == "__main__": 3141 | curses.wrapper(main) 3142 | if RTL_COMMAND: 3143 | print(RTL_COMMAND) 3144 | try: 3145 | clean_pipe(None, None) 3146 | except: 3147 | pass 3148 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | numpy>=1.20.0 2 | scipy>=1.7.0 3 | sounddevice>=0.4.1 4 | SoapySDR>=0.8.0 5 | pyrtlsdr>=0.2.91 6 | -------------------------------------------------------------------------------- /rtlcoms.json: -------------------------------------------------------------------------------- 1 | { 2 | "Listen FM Radio":"rtl_fm -f {freq}M -M wbfm -s 200k -r 48k | play -r 48k -t raw -e signed-integer -b 16 -c 1 -V1 -", 3 | "Listen AM":"rtl_fm -f {freq}M -M am -s 12k -r 12k | play -r 12k -t raw -e s -b 16 -c 1 -", 4 | "Listen CB Radio":"rtl_fm -f {freq}M -M am -s 12k -r 12k | play -r 12k -t raw -e s -b 16 -c 1 -", 5 | "Capture NOAA in .wav":"rtl_fm -f 137.62M -M fm -s 60k -g 50 -p 0 -E deemp | sox -t raw -r 60k -e signed -b 16 -c 1 -V1 - NOAA.wav && wxtoimg NOAA.wav NOAA.png", 6 | "Decode Aircraft Transmissions":"dump1090 --net --interactive", 7 | "Decode APRS (def:144.8M)":"rtl_fm -f {freq}M -M fm -s 22050 -r 22050 | direwolf -c direwolf.conf -r 22050 -", 8 | "Decode smart devices (def:433.92M)":"rtl_433 -f {freq}M", 9 | "Decode Pager (def:153.2M)":"rtl_fm -f {freq}M -M fm -s 22050 -r 22050 | multimon-ng -t raw -a POCSAG1200 -", 10 | "Decode GSM signals":"grgsm_livemon -f {freq}M", 11 | "Decode NOAA HRIT/EMWIN Satellite Signals (Def. 1694.1M)":"rtl_fm -f {freq}M -M usb -s 700k -g 50 | goestools", 12 | "Decode MORSE code":"rtl_fm -f {freq}M -M am -s 12k -r 12k | multimon-ng -a CW -t raw -", 13 | "Decode Digital Voice (DMR, D-Star, etc.)":"rtl_fm -f {freq}M -M fm -s 48k -r 48k | dsd -i /dev/stdin -o /dev/stdout", 14 | "Stream to ICECAST server":"rtl_fm -f {freq}M -M wbfm -s 200k -r 48k | ffmpeg -re -i pipe:0 -acodec libmp3lame -f mp3 icecast://source:password@yourserver:8000/mount", 15 | "Receive AIS (Marine Automatic Identification System)":"rtl_fm -f {freq}M -M fm -s 48k -r 48k | aisdecoder -h -d /dev/stdin", 16 | "Monitor Trunked Radio Systems (P25, DMR, etc. Def.851.0125)":"rtl_fm -f {freq}M -M fm -s 48k -g 40 | multimon-ng -a P25 -t raw -", 17 | "Monitor Pager traffic (Def. 138M)":"rtl_fm -f {freq}M -M fm -s 22050 -r 22050 | multimon-ng -a FLEX -t raw -" 18 | } 19 | -------------------------------------------------------------------------------- /sdr_bookmarks.json: -------------------------------------------------------------------------------- 1 | { 2 | "\u001b": [ 3 | 92500000.0, 4 | "NFM", 5 | 1000000.0 6 | ] 7 | } --------------------------------------------------------------------------------