├── LICENSE ├── README.md ├── __pycache__ └── data_loader.cpython-38.pyc ├── clipping_camera.jpg ├── data_loader.py ├── figures ├── 3d-photo-re.jpg ├── LensOCR.jpg ├── U2NETPR.png ├── U2Net_Logo.png ├── art_transfer.JPG ├── bg-removal.gif ├── bg-rm-aug.gif ├── clipping_camera.jpg ├── close-seg.jpg ├── gradio_web_demo.jpg ├── hotpot.png ├── human_seg.png ├── human_seg_results.gif ├── human_seg_video.gif ├── im_composite.jpg ├── lensto.png ├── motor-demo.gif ├── pixelmator.jpg ├── portrait-ios-app.jpg ├── portrait_kids.png ├── portrait_ladies.png ├── portrait_men.png ├── profuai.png ├── qual.png ├── quan_1.png ├── quan_2.png ├── rembg.png ├── rm_bg.JPG ├── ship-demo.gif ├── silueta.png ├── sky-seg.png ├── style-trans.JPG ├── swift-u2net.jpeg ├── u2net-best-paper.jpg ├── u2netqual.png ├── view-move.gif └── xuebin-demo.png ├── gradio └── demo.py ├── model ├── __init__.py ├── __pycache__ │ ├── __init__.cpython-36.pyc │ ├── __init__.cpython-37.pyc │ ├── __init__.cpython-38.pyc │ ├── u2net.cpython-36.pyc │ ├── u2net.cpython-37.pyc │ └── u2net.cpython-38.pyc ├── u2net.py └── u2net_refactor.py ├── requirements.txt ├── saved_models └── face_detection_cv2 │ └── haarcascade_frontalface_default.xml ├── setup_model_weights.py ├── test_data ├── test_human_images │ ├── 19035828_web1__12294096_web1_180615-PNR-newmayorchallenge.jpg │ ├── 2019-LADIES-NIGHT-2ND-GOMES.jpg │ ├── 480112-637286191695715805-16x9.jpg │ ├── 5-mental-skills-of-successful-athletes-image.jpg │ ├── Athlete-Intake.jpg │ ├── Two_dancers.jpg │ ├── coach-yelling-at-athlete-716268.jpg │ ├── download.jpeg │ ├── f2dc6965e31f7ff0bb54618d53437006.jpg │ ├── image1440x560cropped.jpg │ ├── images (1).jpeg │ ├── images (2).jpeg │ ├── images.jpeg │ ├── julia+trotti_17.jpg │ ├── language_1280p.jpg │ ├── lionel-messi-athletes-fashion.jpg │ ├── olympic-athletes-need-to-know-2018-winter-1.jpg │ ├── photo-1552374196-c4e7ffc6e126.jpeg │ └── track-runners-hurdles-1280.jpg ├── test_images │ ├── 0002-01.jpg │ ├── 0003.jpg │ ├── bike.jpg │ ├── boat.jpg │ ├── girl.png │ ├── hockey.png │ ├── horse.jpg │ ├── im_01.png │ ├── im_14.png │ ├── im_21.png │ ├── im_27.png │ ├── lamp2_meitu_1.jpg │ ├── long.jpg │ ├── rifle1.jpg │ ├── rifle2.jpeg │ ├── sailboat3.jpg │ ├── vangogh.jpeg │ └── whisk.png ├── test_portrait_images │ ├── portrait_im │ │ ├── img_1585.png │ │ ├── img_1588.png │ │ ├── img_1594.png │ │ ├── img_1616.png │ │ ├── img_1695.png │ │ ├── img_1696.png │ │ ├── img_1771.png │ │ └── img_1859.png │ ├── portrait_results │ │ ├── img_1585.png │ │ ├── img_1588.png │ │ ├── img_1594.png │ │ ├── img_1616.png │ │ ├── img_1695.png │ │ ├── img_1696.png │ │ ├── img_1771.png │ │ └── img_1859.png │ ├── your_portrait_im │ │ ├── GalGadot.jpg │ │ ├── guliNazha3.jpg │ │ ├── kid1.jpg │ │ ├── kid2.jpg │ │ ├── kid3.jpg │ │ ├── man.jpg │ │ ├── man2.jpg │ │ ├── man4.jpg │ │ ├── man5.jpg │ │ └── smile.jpg │ └── your_portrait_results │ │ ├── GalGadot.png │ │ ├── GalGadot_sigma_20.0_alpha_0.5_composite.png │ │ ├── guliNazha3.png │ │ ├── guliNazha3_sigma_20.0_alpha_0.5_composite.png │ │ ├── kid1.png │ │ ├── kid1_sigma_20.0_alpha_0.5_composite.png │ │ ├── kid2.png │ │ ├── kid2_sigma_20.0_alpha_0.5_composite.png │ │ ├── kid3.png │ │ ├── kid3_sigma_20.0_alpha_0.5_composite.png │ │ ├── man.png │ │ ├── man2.png │ │ ├── man2_sigma_20.0_alpha_0.5_composite.png │ │ ├── man4.png │ │ ├── man4_sigma_20.0_alpha_0.5_composite.png │ │ ├── man5.png │ │ ├── man5_sigma_20.0_alpha_0.5_composite.png │ │ ├── man_sigma_20.0_alpha_0.5_composite.png │ │ ├── smile.png │ │ └── smile_sigma_20.0_alpha_0.5_composite.png ├── u2net_results │ ├── 0002-01.png │ ├── 0003.png │ ├── bike.png │ ├── boat.png │ ├── girl.png │ ├── hockey.png │ ├── horse.png │ ├── im_01.png │ ├── im_14.png │ ├── im_21.png │ ├── im_27.png │ ├── lamp2_meitu_1.png │ ├── long.png │ ├── rifle1.png │ ├── rifle2.png │ ├── sailboat3.png │ ├── vangogh.png │ └── whisk.png ├── u2net_test_human_images_results │ ├── 19035828_web1__12294096_web1_180615-PNR-newmayorchallenge.png │ ├── 2019-LADIES-NIGHT-2ND-GOMES.png │ ├── 480112-637286191695715805-16x9.png │ ├── 5-mental-skills-of-successful-athletes-image.png │ ├── Athlete-Intake.png │ ├── Two_dancers.png │ ├── coach-yelling-at-athlete-716268.png │ ├── download.png │ ├── f2dc6965e31f7ff0bb54618d53437006.png │ ├── image1440x560cropped.png │ ├── images (1).png │ ├── images (2).png │ ├── images.png │ ├── julia+trotti_17.png │ ├── language_1280p.png │ ├── lionel-messi-athletes-fashion.png │ ├── olympic-athletes-need-to-know-2018-winter-1.png │ ├── photo-1552374196-c4e7ffc6e126.png │ └── track-runners-hurdles-1280.png └── u2netp_results │ ├── 0002-01.png │ ├── 0003.png │ ├── bike.png │ ├── boat.png │ ├── girl.png │ ├── hockey.png │ ├── horse.png │ ├── im_01.png │ ├── im_14.png │ ├── im_21.png │ ├── im_27.png │ ├── lamp2_meitu_1.png │ ├── long.png │ ├── rifle1.png │ ├── rifle2.png │ ├── sailboat3.png │ ├── vangogh.png │ └── whisk.png ├── u2net_human_seg_test.py ├── u2net_portrait_composite.py ├── u2net_portrait_demo.py ├── u2net_portrait_test.py ├── u2net_test.py └── u2net_train.py /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 |
2 |
3 |
4 |
U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection | Github Repo
" 31 | 32 | examples = [ 33 | ['fox.jpg'], 34 | ['parrot.jpg'] 35 | ] 36 | 37 | gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() -------------------------------------------------------------------------------- /model/__init__.py: -------------------------------------------------------------------------------- 1 | from .u2net import U2NET 2 | from .u2net import U2NETP 3 | -------------------------------------------------------------------------------- /model/__pycache__/__init__.cpython-36.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/model/__pycache__/__init__.cpython-36.pyc -------------------------------------------------------------------------------- /model/__pycache__/__init__.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/model/__pycache__/__init__.cpython-37.pyc -------------------------------------------------------------------------------- /model/__pycache__/__init__.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/model/__pycache__/__init__.cpython-38.pyc -------------------------------------------------------------------------------- /model/__pycache__/u2net.cpython-36.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/model/__pycache__/u2net.cpython-36.pyc -------------------------------------------------------------------------------- /model/__pycache__/u2net.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/model/__pycache__/u2net.cpython-37.pyc -------------------------------------------------------------------------------- /model/__pycache__/u2net.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/model/__pycache__/u2net.cpython-38.pyc -------------------------------------------------------------------------------- /model/u2net.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | import torch.nn.functional as F 4 | 5 | class REBNCONV(nn.Module): 6 | def __init__(self,in_ch=3,out_ch=3,dirate=1): 7 | super(REBNCONV,self).__init__() 8 | 9 | self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate) 10 | self.bn_s1 = nn.BatchNorm2d(out_ch) 11 | self.relu_s1 = nn.ReLU(inplace=True) 12 | 13 | def forward(self,x): 14 | 15 | hx = x 16 | xout = self.relu_s1(self.bn_s1(self.conv_s1(hx))) 17 | 18 | return xout 19 | 20 | ## upsample tensor 'src' to have the same spatial size with tensor 'tar' 21 | def _upsample_like(src,tar): 22 | 23 | src = F.upsample(src,size=tar.shape[2:],mode='bilinear') 24 | 25 | return src 26 | 27 | 28 | ### RSU-7 ### 29 | class RSU7(nn.Module):#UNet07DRES(nn.Module): 30 | 31 | def __init__(self, in_ch=3, mid_ch=12, out_ch=3): 32 | super(RSU7,self).__init__() 33 | 34 | self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) 35 | 36 | self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) 37 | self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 38 | 39 | self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1) 40 | self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 41 | 42 | self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1) 43 | self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 44 | 45 | self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1) 46 | self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 47 | 48 | self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1) 49 | self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 50 | 51 | self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1) 52 | 53 | self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2) 54 | 55 | self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 56 | self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 57 | self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 58 | self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 59 | self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 60 | self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) 61 | 62 | def forward(self,x): 63 | 64 | hx = x 65 | hxin = self.rebnconvin(hx) 66 | 67 | hx1 = self.rebnconv1(hxin) 68 | hx = self.pool1(hx1) 69 | 70 | hx2 = self.rebnconv2(hx) 71 | hx = self.pool2(hx2) 72 | 73 | hx3 = self.rebnconv3(hx) 74 | hx = self.pool3(hx3) 75 | 76 | hx4 = self.rebnconv4(hx) 77 | hx = self.pool4(hx4) 78 | 79 | hx5 = self.rebnconv5(hx) 80 | hx = self.pool5(hx5) 81 | 82 | hx6 = self.rebnconv6(hx) 83 | 84 | hx7 = self.rebnconv7(hx6) 85 | 86 | hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1)) 87 | hx6dup = _upsample_like(hx6d,hx5) 88 | 89 | hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1)) 90 | hx5dup = _upsample_like(hx5d,hx4) 91 | 92 | hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1)) 93 | hx4dup = _upsample_like(hx4d,hx3) 94 | 95 | hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1)) 96 | hx3dup = _upsample_like(hx3d,hx2) 97 | 98 | hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1)) 99 | hx2dup = _upsample_like(hx2d,hx1) 100 | 101 | hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1)) 102 | 103 | return hx1d + hxin 104 | 105 | ### RSU-6 ### 106 | class RSU6(nn.Module):#UNet06DRES(nn.Module): 107 | 108 | def __init__(self, in_ch=3, mid_ch=12, out_ch=3): 109 | super(RSU6,self).__init__() 110 | 111 | self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) 112 | 113 | self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) 114 | self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 115 | 116 | self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1) 117 | self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 118 | 119 | self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1) 120 | self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 121 | 122 | self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1) 123 | self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 124 | 125 | self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1) 126 | 127 | self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2) 128 | 129 | self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 130 | self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 131 | self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 132 | self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 133 | self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) 134 | 135 | def forward(self,x): 136 | 137 | hx = x 138 | 139 | hxin = self.rebnconvin(hx) 140 | 141 | hx1 = self.rebnconv1(hxin) 142 | hx = self.pool1(hx1) 143 | 144 | hx2 = self.rebnconv2(hx) 145 | hx = self.pool2(hx2) 146 | 147 | hx3 = self.rebnconv3(hx) 148 | hx = self.pool3(hx3) 149 | 150 | hx4 = self.rebnconv4(hx) 151 | hx = self.pool4(hx4) 152 | 153 | hx5 = self.rebnconv5(hx) 154 | 155 | hx6 = self.rebnconv6(hx5) 156 | 157 | 158 | hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1)) 159 | hx5dup = _upsample_like(hx5d,hx4) 160 | 161 | hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1)) 162 | hx4dup = _upsample_like(hx4d,hx3) 163 | 164 | hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1)) 165 | hx3dup = _upsample_like(hx3d,hx2) 166 | 167 | hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1)) 168 | hx2dup = _upsample_like(hx2d,hx1) 169 | 170 | hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1)) 171 | 172 | return hx1d + hxin 173 | 174 | ### RSU-5 ### 175 | class RSU5(nn.Module):#UNet05DRES(nn.Module): 176 | 177 | def __init__(self, in_ch=3, mid_ch=12, out_ch=3): 178 | super(RSU5,self).__init__() 179 | 180 | self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) 181 | 182 | self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) 183 | self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 184 | 185 | self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1) 186 | self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 187 | 188 | self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1) 189 | self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 190 | 191 | self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1) 192 | 193 | self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2) 194 | 195 | self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 196 | self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 197 | self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 198 | self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) 199 | 200 | def forward(self,x): 201 | 202 | hx = x 203 | 204 | hxin = self.rebnconvin(hx) 205 | 206 | hx1 = self.rebnconv1(hxin) 207 | hx = self.pool1(hx1) 208 | 209 | hx2 = self.rebnconv2(hx) 210 | hx = self.pool2(hx2) 211 | 212 | hx3 = self.rebnconv3(hx) 213 | hx = self.pool3(hx3) 214 | 215 | hx4 = self.rebnconv4(hx) 216 | 217 | hx5 = self.rebnconv5(hx4) 218 | 219 | hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1)) 220 | hx4dup = _upsample_like(hx4d,hx3) 221 | 222 | hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1)) 223 | hx3dup = _upsample_like(hx3d,hx2) 224 | 225 | hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1)) 226 | hx2dup = _upsample_like(hx2d,hx1) 227 | 228 | hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1)) 229 | 230 | return hx1d + hxin 231 | 232 | ### RSU-4 ### 233 | class RSU4(nn.Module):#UNet04DRES(nn.Module): 234 | 235 | def __init__(self, in_ch=3, mid_ch=12, out_ch=3): 236 | super(RSU4,self).__init__() 237 | 238 | self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) 239 | 240 | self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) 241 | self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 242 | 243 | self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1) 244 | self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 245 | 246 | self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1) 247 | 248 | self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2) 249 | 250 | self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 251 | self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1) 252 | self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) 253 | 254 | def forward(self,x): 255 | 256 | hx = x 257 | 258 | hxin = self.rebnconvin(hx) 259 | 260 | hx1 = self.rebnconv1(hxin) 261 | hx = self.pool1(hx1) 262 | 263 | hx2 = self.rebnconv2(hx) 264 | hx = self.pool2(hx2) 265 | 266 | hx3 = self.rebnconv3(hx) 267 | 268 | hx4 = self.rebnconv4(hx3) 269 | 270 | hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1)) 271 | hx3dup = _upsample_like(hx3d,hx2) 272 | 273 | hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1)) 274 | hx2dup = _upsample_like(hx2d,hx1) 275 | 276 | hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1)) 277 | 278 | return hx1d + hxin 279 | 280 | ### RSU-4F ### 281 | class RSU4F(nn.Module):#UNet04FRES(nn.Module): 282 | 283 | def __init__(self, in_ch=3, mid_ch=12, out_ch=3): 284 | super(RSU4F,self).__init__() 285 | 286 | self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) 287 | 288 | self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) 289 | self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2) 290 | self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4) 291 | 292 | self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8) 293 | 294 | self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4) 295 | self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2) 296 | self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) 297 | 298 | def forward(self,x): 299 | 300 | hx = x 301 | 302 | hxin = self.rebnconvin(hx) 303 | 304 | hx1 = self.rebnconv1(hxin) 305 | hx2 = self.rebnconv2(hx1) 306 | hx3 = self.rebnconv3(hx2) 307 | 308 | hx4 = self.rebnconv4(hx3) 309 | 310 | hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1)) 311 | hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1)) 312 | hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1)) 313 | 314 | return hx1d + hxin 315 | 316 | 317 | ##### U^2-Net #### 318 | class U2NET(nn.Module): 319 | 320 | def __init__(self,in_ch=3,out_ch=1): 321 | super(U2NET,self).__init__() 322 | 323 | self.stage1 = RSU7(in_ch,32,64) 324 | self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 325 | 326 | self.stage2 = RSU6(64,32,128) 327 | self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 328 | 329 | self.stage3 = RSU5(128,64,256) 330 | self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 331 | 332 | self.stage4 = RSU4(256,128,512) 333 | self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 334 | 335 | self.stage5 = RSU4F(512,256,512) 336 | self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 337 | 338 | self.stage6 = RSU4F(512,256,512) 339 | 340 | # decoder 341 | self.stage5d = RSU4F(1024,256,512) 342 | self.stage4d = RSU4(1024,128,256) 343 | self.stage3d = RSU5(512,64,128) 344 | self.stage2d = RSU6(256,32,64) 345 | self.stage1d = RSU7(128,16,64) 346 | 347 | self.side1 = nn.Conv2d(64,out_ch,3,padding=1) 348 | self.side2 = nn.Conv2d(64,out_ch,3,padding=1) 349 | self.side3 = nn.Conv2d(128,out_ch,3,padding=1) 350 | self.side4 = nn.Conv2d(256,out_ch,3,padding=1) 351 | self.side5 = nn.Conv2d(512,out_ch,3,padding=1) 352 | self.side6 = nn.Conv2d(512,out_ch,3,padding=1) 353 | 354 | self.outconv = nn.Conv2d(6*out_ch,out_ch,1) 355 | 356 | def forward(self,x): 357 | 358 | hx = x 359 | 360 | #stage 1 361 | hx1 = self.stage1(hx) 362 | hx = self.pool12(hx1) 363 | 364 | #stage 2 365 | hx2 = self.stage2(hx) 366 | hx = self.pool23(hx2) 367 | 368 | #stage 3 369 | hx3 = self.stage3(hx) 370 | hx = self.pool34(hx3) 371 | 372 | #stage 4 373 | hx4 = self.stage4(hx) 374 | hx = self.pool45(hx4) 375 | 376 | #stage 5 377 | hx5 = self.stage5(hx) 378 | hx = self.pool56(hx5) 379 | 380 | #stage 6 381 | hx6 = self.stage6(hx) 382 | hx6up = _upsample_like(hx6,hx5) 383 | 384 | #-------------------- decoder -------------------- 385 | hx5d = self.stage5d(torch.cat((hx6up,hx5),1)) 386 | hx5dup = _upsample_like(hx5d,hx4) 387 | 388 | hx4d = self.stage4d(torch.cat((hx5dup,hx4),1)) 389 | hx4dup = _upsample_like(hx4d,hx3) 390 | 391 | hx3d = self.stage3d(torch.cat((hx4dup,hx3),1)) 392 | hx3dup = _upsample_like(hx3d,hx2) 393 | 394 | hx2d = self.stage2d(torch.cat((hx3dup,hx2),1)) 395 | hx2dup = _upsample_like(hx2d,hx1) 396 | 397 | hx1d = self.stage1d(torch.cat((hx2dup,hx1),1)) 398 | 399 | 400 | #side output 401 | d1 = self.side1(hx1d) 402 | 403 | d2 = self.side2(hx2d) 404 | d2 = _upsample_like(d2,d1) 405 | 406 | d3 = self.side3(hx3d) 407 | d3 = _upsample_like(d3,d1) 408 | 409 | d4 = self.side4(hx4d) 410 | d4 = _upsample_like(d4,d1) 411 | 412 | d5 = self.side5(hx5d) 413 | d5 = _upsample_like(d5,d1) 414 | 415 | d6 = self.side6(hx6) 416 | d6 = _upsample_like(d6,d1) 417 | 418 | d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1)) 419 | 420 | return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6) 421 | 422 | ### U^2-Net small ### 423 | class U2NETP(nn.Module): 424 | 425 | def __init__(self,in_ch=3,out_ch=1): 426 | super(U2NETP,self).__init__() 427 | 428 | self.stage1 = RSU7(in_ch,16,64) 429 | self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 430 | 431 | self.stage2 = RSU6(64,16,64) 432 | self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 433 | 434 | self.stage3 = RSU5(64,16,64) 435 | self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 436 | 437 | self.stage4 = RSU4(64,16,64) 438 | self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 439 | 440 | self.stage5 = RSU4F(64,16,64) 441 | self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True) 442 | 443 | self.stage6 = RSU4F(64,16,64) 444 | 445 | # decoder 446 | self.stage5d = RSU4F(128,16,64) 447 | self.stage4d = RSU4(128,16,64) 448 | self.stage3d = RSU5(128,16,64) 449 | self.stage2d = RSU6(128,16,64) 450 | self.stage1d = RSU7(128,16,64) 451 | 452 | self.side1 = nn.Conv2d(64,out_ch,3,padding=1) 453 | self.side2 = nn.Conv2d(64,out_ch,3,padding=1) 454 | self.side3 = nn.Conv2d(64,out_ch,3,padding=1) 455 | self.side4 = nn.Conv2d(64,out_ch,3,padding=1) 456 | self.side5 = nn.Conv2d(64,out_ch,3,padding=1) 457 | self.side6 = nn.Conv2d(64,out_ch,3,padding=1) 458 | 459 | self.outconv = nn.Conv2d(6*out_ch,out_ch,1) 460 | 461 | def forward(self,x): 462 | 463 | hx = x 464 | 465 | #stage 1 466 | hx1 = self.stage1(hx) 467 | hx = self.pool12(hx1) 468 | 469 | #stage 2 470 | hx2 = self.stage2(hx) 471 | hx = self.pool23(hx2) 472 | 473 | #stage 3 474 | hx3 = self.stage3(hx) 475 | hx = self.pool34(hx3) 476 | 477 | #stage 4 478 | hx4 = self.stage4(hx) 479 | hx = self.pool45(hx4) 480 | 481 | #stage 5 482 | hx5 = self.stage5(hx) 483 | hx = self.pool56(hx5) 484 | 485 | #stage 6 486 | hx6 = self.stage6(hx) 487 | hx6up = _upsample_like(hx6,hx5) 488 | 489 | #decoder 490 | hx5d = self.stage5d(torch.cat((hx6up,hx5),1)) 491 | hx5dup = _upsample_like(hx5d,hx4) 492 | 493 | hx4d = self.stage4d(torch.cat((hx5dup,hx4),1)) 494 | hx4dup = _upsample_like(hx4d,hx3) 495 | 496 | hx3d = self.stage3d(torch.cat((hx4dup,hx3),1)) 497 | hx3dup = _upsample_like(hx3d,hx2) 498 | 499 | hx2d = self.stage2d(torch.cat((hx3dup,hx2),1)) 500 | hx2dup = _upsample_like(hx2d,hx1) 501 | 502 | hx1d = self.stage1d(torch.cat((hx2dup,hx1),1)) 503 | 504 | 505 | #side output 506 | d1 = self.side1(hx1d) 507 | 508 | d2 = self.side2(hx2d) 509 | d2 = _upsample_like(d2,d1) 510 | 511 | d3 = self.side3(hx3d) 512 | d3 = _upsample_like(d3,d1) 513 | 514 | d4 = self.side4(hx4d) 515 | d4 = _upsample_like(d4,d1) 516 | 517 | d5 = self.side5(hx5d) 518 | d5 = _upsample_like(d5,d1) 519 | 520 | d6 = self.side6(hx6) 521 | d6 = _upsample_like(d6,d1) 522 | 523 | d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1)) 524 | 525 | return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6) 526 | -------------------------------------------------------------------------------- /model/u2net_refactor.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn as nn 3 | 4 | import math 5 | 6 | __all__ = ['U2NET_full', 'U2NET_lite'] 7 | 8 | 9 | def _upsample_like(x, size): 10 | return nn.Upsample(size=size, mode='bilinear', align_corners=False)(x) 11 | 12 | 13 | def _size_map(x, height): 14 | # {height: size} for Upsample 15 | size = list(x.shape[-2:]) 16 | sizes = {} 17 | for h in range(1, height): 18 | sizes[h] = size 19 | size = [math.ceil(w / 2) for w in size] 20 | return sizes 21 | 22 | 23 | class REBNCONV(nn.Module): 24 | def __init__(self, in_ch=3, out_ch=3, dilate=1): 25 | super(REBNCONV, self).__init__() 26 | 27 | self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dilate, dilation=1 * dilate) 28 | self.bn_s1 = nn.BatchNorm2d(out_ch) 29 | self.relu_s1 = nn.ReLU(inplace=True) 30 | 31 | def forward(self, x): 32 | return self.relu_s1(self.bn_s1(self.conv_s1(x))) 33 | 34 | 35 | class RSU(nn.Module): 36 | def __init__(self, name, height, in_ch, mid_ch, out_ch, dilated=False): 37 | super(RSU, self).__init__() 38 | self.name = name 39 | self.height = height 40 | self.dilated = dilated 41 | self._make_layers(height, in_ch, mid_ch, out_ch, dilated) 42 | 43 | def forward(self, x): 44 | sizes = _size_map(x, self.height) 45 | x = self.rebnconvin(x) 46 | 47 | # U-Net like symmetric encoder-decoder structure 48 | def unet(x, height=1): 49 | if height < self.height: 50 | x1 = getattr(self, f'rebnconv{height}')(x) 51 | if not self.dilated and height < self.height - 1: 52 | x2 = unet(getattr(self, 'downsample')(x1), height + 1) 53 | else: 54 | x2 = unet(x1, height + 1) 55 | 56 | x = getattr(self, f'rebnconv{height}d')(torch.cat((x2, x1), 1)) 57 | return _upsample_like(x, sizes[height - 1]) if not self.dilated and height > 1 else x 58 | else: 59 | return getattr(self, f'rebnconv{height}')(x) 60 | 61 | return x + unet(x) 62 | 63 | def _make_layers(self, height, in_ch, mid_ch, out_ch, dilated=False): 64 | self.add_module('rebnconvin', REBNCONV(in_ch, out_ch)) 65 | self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True)) 66 | 67 | self.add_module(f'rebnconv1', REBNCONV(out_ch, mid_ch)) 68 | self.add_module(f'rebnconv1d', REBNCONV(mid_ch * 2, out_ch)) 69 | 70 | for i in range(2, height): 71 | dilate = 1 if not dilated else 2 ** (i - 1) 72 | self.add_module(f'rebnconv{i}', REBNCONV(mid_ch, mid_ch, dilate=dilate)) 73 | self.add_module(f'rebnconv{i}d', REBNCONV(mid_ch * 2, mid_ch, dilate=dilate)) 74 | 75 | dilate = 2 if not dilated else 2 ** (height - 1) 76 | self.add_module(f'rebnconv{height}', REBNCONV(mid_ch, mid_ch, dilate=dilate)) 77 | 78 | 79 | class U2NET(nn.Module): 80 | def __init__(self, cfgs, out_ch): 81 | super(U2NET, self).__init__() 82 | self.out_ch = out_ch 83 | self._make_layers(cfgs) 84 | 85 | def forward(self, x): 86 | sizes = _size_map(x, self.height) 87 | maps = [] # storage for maps 88 | 89 | # side saliency map 90 | def unet(x, height=1): 91 | if height < 6: 92 | x1 = getattr(self, f'stage{height}')(x) 93 | x2 = unet(getattr(self, 'downsample')(x1), height + 1) 94 | x = getattr(self, f'stage{height}d')(torch.cat((x2, x1), 1)) 95 | side(x, height) 96 | return _upsample_like(x, sizes[height - 1]) if height > 1 else x 97 | else: 98 | x = getattr(self, f'stage{height}')(x) 99 | side(x, height) 100 | return _upsample_like(x, sizes[height - 1]) 101 | 102 | def side(x, h): 103 | # side output saliency map (before sigmoid) 104 | x = getattr(self, f'side{h}')(x) 105 | x = _upsample_like(x, sizes[1]) 106 | maps.append(x) 107 | 108 | def fuse(): 109 | # fuse saliency probability maps 110 | maps.reverse() 111 | x = torch.cat(maps, 1) 112 | x = getattr(self, 'outconv')(x) 113 | maps.insert(0, x) 114 | return [torch.sigmoid(x) for x in maps] 115 | 116 | unet(x) 117 | maps = fuse() 118 | return maps 119 | 120 | def _make_layers(self, cfgs): 121 | self.height = int((len(cfgs) + 1) / 2) 122 | self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True)) 123 | for k, v in cfgs.items(): 124 | # build rsu block 125 | self.add_module(k, RSU(v[0], *v[1])) 126 | if v[2] > 0: 127 | # build side layer 128 | self.add_module(f'side{v[0][-1]}', nn.Conv2d(v[2], self.out_ch, 3, padding=1)) 129 | # build fuse layer 130 | self.add_module('outconv', nn.Conv2d(int(self.height * self.out_ch), self.out_ch, 1)) 131 | 132 | 133 | def U2NET_full(): 134 | full = { 135 | # cfgs for building RSUs and sides 136 | # {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]} 137 | 'stage1': ['En_1', (7, 3, 32, 64), -1], 138 | 'stage2': ['En_2', (6, 64, 32, 128), -1], 139 | 'stage3': ['En_3', (5, 128, 64, 256), -1], 140 | 'stage4': ['En_4', (4, 256, 128, 512), -1], 141 | 'stage5': ['En_5', (4, 512, 256, 512, True), -1], 142 | 'stage6': ['En_6', (4, 512, 256, 512, True), 512], 143 | 'stage5d': ['De_5', (4, 1024, 256, 512, True), 512], 144 | 'stage4d': ['De_4', (4, 1024, 128, 256), 256], 145 | 'stage3d': ['De_3', (5, 512, 64, 128), 128], 146 | 'stage2d': ['De_2', (6, 256, 32, 64), 64], 147 | 'stage1d': ['De_1', (7, 128, 16, 64), 64], 148 | } 149 | return U2NET(cfgs=full, out_ch=1) 150 | 151 | 152 | def U2NET_lite(): 153 | lite = { 154 | # cfgs for building RSUs and sides 155 | # {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]} 156 | 'stage1': ['En_1', (7, 3, 16, 64), -1], 157 | 'stage2': ['En_2', (6, 64, 16, 64), -1], 158 | 'stage3': ['En_3', (5, 64, 16, 64), -1], 159 | 'stage4': ['En_4', (4, 64, 16, 64), -1], 160 | 'stage5': ['En_5', (4, 64, 16, 64, True), -1], 161 | 'stage6': ['En_6', (4, 64, 16, 64, True), 64], 162 | 'stage5d': ['De_5', (4, 128, 16, 64, True), 64], 163 | 'stage4d': ['De_4', (4, 128, 16, 64), 64], 164 | 'stage3d': ['De_3', (5, 128, 16, 64), 64], 165 | 'stage2d': ['De_2', (6, 128, 16, 64), 64], 166 | 'stage1d': ['De_1', (7, 128, 16, 64), 64], 167 | } 168 | return U2NET(cfgs=lite, out_ch=1) 169 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | numpy==1.15.2 2 | scikit-image==0.14.0 3 | torch 4 | torchvision 5 | pillow==8.1.1 6 | opencv-python 7 | paddlepaddle 8 | paddlehub 9 | gradio 10 | -------------------------------------------------------------------------------- /setup_model_weights.py: -------------------------------------------------------------------------------- 1 | import os 2 | import gdown 3 | 4 | os.makedirs('./saved_models/u2net', exist_ok=True) 5 | os.makedirs('./saved_models/u2net_portrait', exist_ok=True) 6 | 7 | gdown.download('https://drive.google.com/uc?id=1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ', 8 | './saved_models/u2net/u2net.pth', 9 | quiet=False) 10 | 11 | gdown.download('https://drive.google.com/uc?id=1IG3HdpcRiDoWNookbncQjeaPN28t90yW', 12 | './saved_models/u2net_portrait/u2net_portrait.pth', 13 | quiet=False) 14 | -------------------------------------------------------------------------------- /test_data/test_human_images/19035828_web1__12294096_web1_180615-PNR-newmayorchallenge.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/19035828_web1__12294096_web1_180615-PNR-newmayorchallenge.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/2019-LADIES-NIGHT-2ND-GOMES.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/2019-LADIES-NIGHT-2ND-GOMES.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/480112-637286191695715805-16x9.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/480112-637286191695715805-16x9.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/5-mental-skills-of-successful-athletes-image.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/5-mental-skills-of-successful-athletes-image.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/Athlete-Intake.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/Athlete-Intake.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/Two_dancers.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/Two_dancers.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/coach-yelling-at-athlete-716268.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/coach-yelling-at-athlete-716268.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/download.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/download.jpeg -------------------------------------------------------------------------------- /test_data/test_human_images/f2dc6965e31f7ff0bb54618d53437006.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/f2dc6965e31f7ff0bb54618d53437006.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/image1440x560cropped.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/image1440x560cropped.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/images (1).jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/images (1).jpeg -------------------------------------------------------------------------------- /test_data/test_human_images/images (2).jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/images (2).jpeg -------------------------------------------------------------------------------- /test_data/test_human_images/images.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/images.jpeg -------------------------------------------------------------------------------- /test_data/test_human_images/julia+trotti_17.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/julia+trotti_17.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/language_1280p.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/language_1280p.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/lionel-messi-athletes-fashion.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/lionel-messi-athletes-fashion.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/olympic-athletes-need-to-know-2018-winter-1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/olympic-athletes-need-to-know-2018-winter-1.jpg -------------------------------------------------------------------------------- /test_data/test_human_images/photo-1552374196-c4e7ffc6e126.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/photo-1552374196-c4e7ffc6e126.jpeg -------------------------------------------------------------------------------- /test_data/test_human_images/track-runners-hurdles-1280.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_human_images/track-runners-hurdles-1280.jpg -------------------------------------------------------------------------------- /test_data/test_images/0002-01.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/0002-01.jpg -------------------------------------------------------------------------------- /test_data/test_images/0003.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/0003.jpg -------------------------------------------------------------------------------- /test_data/test_images/bike.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/bike.jpg -------------------------------------------------------------------------------- /test_data/test_images/boat.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/boat.jpg -------------------------------------------------------------------------------- /test_data/test_images/girl.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/girl.png -------------------------------------------------------------------------------- /test_data/test_images/hockey.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/hockey.png -------------------------------------------------------------------------------- /test_data/test_images/horse.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/horse.jpg -------------------------------------------------------------------------------- /test_data/test_images/im_01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/im_01.png -------------------------------------------------------------------------------- /test_data/test_images/im_14.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/im_14.png -------------------------------------------------------------------------------- /test_data/test_images/im_21.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/im_21.png -------------------------------------------------------------------------------- /test_data/test_images/im_27.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/im_27.png -------------------------------------------------------------------------------- /test_data/test_images/lamp2_meitu_1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/lamp2_meitu_1.jpg -------------------------------------------------------------------------------- /test_data/test_images/long.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/long.jpg -------------------------------------------------------------------------------- /test_data/test_images/rifle1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/rifle1.jpg -------------------------------------------------------------------------------- /test_data/test_images/rifle2.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/rifle2.jpeg -------------------------------------------------------------------------------- /test_data/test_images/sailboat3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/sailboat3.jpg -------------------------------------------------------------------------------- /test_data/test_images/vangogh.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/vangogh.jpeg -------------------------------------------------------------------------------- /test_data/test_images/whisk.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_images/whisk.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_im/img_1585.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_im/img_1585.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_im/img_1588.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_im/img_1588.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_im/img_1594.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_im/img_1594.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_im/img_1616.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_im/img_1616.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_im/img_1695.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_im/img_1695.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_im/img_1696.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_im/img_1696.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_im/img_1771.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_im/img_1771.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_im/img_1859.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_im/img_1859.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_results/img_1585.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_results/img_1585.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_results/img_1588.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_results/img_1588.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_results/img_1594.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_results/img_1594.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_results/img_1616.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_results/img_1616.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_results/img_1695.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_results/img_1695.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_results/img_1696.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_results/img_1696.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_results/img_1771.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_results/img_1771.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/portrait_results/img_1859.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/portrait_results/img_1859.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/GalGadot.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/GalGadot.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/guliNazha3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/guliNazha3.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/kid1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/kid1.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/kid2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/kid2.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/kid3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/kid3.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/man.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/man.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/man2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/man2.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/man4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/man4.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/man5.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/man5.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_im/smile.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_im/smile.jpg -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/GalGadot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/GalGadot.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/GalGadot_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/GalGadot_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/guliNazha3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/guliNazha3.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/guliNazha3_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/guliNazha3_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/kid1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/kid1.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/kid1_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/kid1_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/kid2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/kid2.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/kid2_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/kid2_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/kid3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/kid3.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/kid3_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/kid3_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/man.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/man.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/man2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/man2.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/man2_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/man2_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/man4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/man4.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/man4_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/man4_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/man5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/man5.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/man5_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/man5_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/man_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/man_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/smile.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/smile.png -------------------------------------------------------------------------------- /test_data/test_portrait_images/your_portrait_results/smile_sigma_20.0_alpha_0.5_composite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/test_portrait_images/your_portrait_results/smile_sigma_20.0_alpha_0.5_composite.png -------------------------------------------------------------------------------- /test_data/u2net_results/0002-01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/0002-01.png -------------------------------------------------------------------------------- /test_data/u2net_results/0003.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/0003.png -------------------------------------------------------------------------------- /test_data/u2net_results/bike.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/bike.png -------------------------------------------------------------------------------- /test_data/u2net_results/boat.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/boat.png -------------------------------------------------------------------------------- /test_data/u2net_results/girl.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/girl.png -------------------------------------------------------------------------------- /test_data/u2net_results/hockey.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/hockey.png -------------------------------------------------------------------------------- /test_data/u2net_results/horse.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/horse.png -------------------------------------------------------------------------------- /test_data/u2net_results/im_01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/im_01.png -------------------------------------------------------------------------------- /test_data/u2net_results/im_14.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/im_14.png -------------------------------------------------------------------------------- /test_data/u2net_results/im_21.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/im_21.png -------------------------------------------------------------------------------- /test_data/u2net_results/im_27.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/im_27.png -------------------------------------------------------------------------------- /test_data/u2net_results/lamp2_meitu_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/lamp2_meitu_1.png -------------------------------------------------------------------------------- /test_data/u2net_results/long.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/long.png -------------------------------------------------------------------------------- /test_data/u2net_results/rifle1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/rifle1.png -------------------------------------------------------------------------------- /test_data/u2net_results/rifle2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/rifle2.png -------------------------------------------------------------------------------- /test_data/u2net_results/sailboat3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/sailboat3.png -------------------------------------------------------------------------------- /test_data/u2net_results/vangogh.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/vangogh.png -------------------------------------------------------------------------------- /test_data/u2net_results/whisk.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_results/whisk.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/19035828_web1__12294096_web1_180615-PNR-newmayorchallenge.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/19035828_web1__12294096_web1_180615-PNR-newmayorchallenge.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/2019-LADIES-NIGHT-2ND-GOMES.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/2019-LADIES-NIGHT-2ND-GOMES.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/480112-637286191695715805-16x9.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/480112-637286191695715805-16x9.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/5-mental-skills-of-successful-athletes-image.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/5-mental-skills-of-successful-athletes-image.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/Athlete-Intake.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/Athlete-Intake.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/Two_dancers.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/Two_dancers.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/coach-yelling-at-athlete-716268.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/coach-yelling-at-athlete-716268.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/download.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/download.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/f2dc6965e31f7ff0bb54618d53437006.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/f2dc6965e31f7ff0bb54618d53437006.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/image1440x560cropped.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/image1440x560cropped.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/images (1).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/images (1).png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/images (2).png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/images (2).png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/images.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/images.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/julia+trotti_17.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/julia+trotti_17.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/language_1280p.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/language_1280p.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/lionel-messi-athletes-fashion.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/lionel-messi-athletes-fashion.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/olympic-athletes-need-to-know-2018-winter-1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/olympic-athletes-need-to-know-2018-winter-1.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/photo-1552374196-c4e7ffc6e126.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/photo-1552374196-c4e7ffc6e126.png -------------------------------------------------------------------------------- /test_data/u2net_test_human_images_results/track-runners-hurdles-1280.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2net_test_human_images_results/track-runners-hurdles-1280.png -------------------------------------------------------------------------------- /test_data/u2netp_results/0002-01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/0002-01.png -------------------------------------------------------------------------------- /test_data/u2netp_results/0003.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/0003.png -------------------------------------------------------------------------------- /test_data/u2netp_results/bike.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/bike.png -------------------------------------------------------------------------------- /test_data/u2netp_results/boat.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/boat.png -------------------------------------------------------------------------------- /test_data/u2netp_results/girl.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/girl.png -------------------------------------------------------------------------------- /test_data/u2netp_results/hockey.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/hockey.png -------------------------------------------------------------------------------- /test_data/u2netp_results/horse.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/horse.png -------------------------------------------------------------------------------- /test_data/u2netp_results/im_01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/im_01.png -------------------------------------------------------------------------------- /test_data/u2netp_results/im_14.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/im_14.png -------------------------------------------------------------------------------- /test_data/u2netp_results/im_21.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/im_21.png -------------------------------------------------------------------------------- /test_data/u2netp_results/im_27.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/im_27.png -------------------------------------------------------------------------------- /test_data/u2netp_results/lamp2_meitu_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/lamp2_meitu_1.png -------------------------------------------------------------------------------- /test_data/u2netp_results/long.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/long.png -------------------------------------------------------------------------------- /test_data/u2netp_results/rifle1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/rifle1.png -------------------------------------------------------------------------------- /test_data/u2netp_results/rifle2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/rifle2.png -------------------------------------------------------------------------------- /test_data/u2netp_results/sailboat3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/sailboat3.png -------------------------------------------------------------------------------- /test_data/u2netp_results/vangogh.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/vangogh.png -------------------------------------------------------------------------------- /test_data/u2netp_results/whisk.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xuebinqin/U-2-Net/ac7e1c817ecab7c7dff5ce6b1abba61cd213ff29/test_data/u2netp_results/whisk.png -------------------------------------------------------------------------------- /u2net_human_seg_test.py: -------------------------------------------------------------------------------- 1 | import os 2 | from skimage import io, transform 3 | import torch 4 | import torchvision 5 | from torch.autograd import Variable 6 | import torch.nn as nn 7 | import torch.nn.functional as F 8 | from torch.utils.data import Dataset, DataLoader 9 | from torchvision import transforms#, utils 10 | # import torch.optim as optim 11 | 12 | import numpy as np 13 | from PIL import Image 14 | import glob 15 | 16 | from data_loader import RescaleT 17 | from data_loader import ToTensor 18 | from data_loader import ToTensorLab 19 | from data_loader import SalObjDataset 20 | 21 | from model import U2NET # full size version 173.6 MB 22 | 23 | # normalize the predicted SOD probability map 24 | def normPRED(d): 25 | ma = torch.max(d) 26 | mi = torch.min(d) 27 | 28 | dn = (d-mi)/(ma-mi) 29 | 30 | return dn 31 | 32 | def save_output(image_name,pred,d_dir): 33 | 34 | predict = pred 35 | predict = predict.squeeze() 36 | predict_np = predict.cpu().data.numpy() 37 | 38 | im = Image.fromarray(predict_np*255).convert('RGB') 39 | img_name = image_name.split(os.sep)[-1] 40 | image = io.imread(image_name) 41 | imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR) 42 | 43 | pb_np = np.array(imo) 44 | 45 | aaa = img_name.split(".") 46 | bbb = aaa[0:-1] 47 | imidx = bbb[0] 48 | for i in range(1,len(bbb)): 49 | imidx = imidx + "." + bbb[i] 50 | 51 | imo.save(d_dir+imidx+'.png') 52 | 53 | def main(): 54 | 55 | # --------- 1. get image path and name --------- 56 | model_name='u2net' 57 | 58 | 59 | image_dir = os.path.join(os.getcwd(), 'test_data', 'test_human_images') 60 | prediction_dir = os.path.join(os.getcwd(), 'test_data', 'test_human_images' + '_results' + os.sep) 61 | model_dir = os.path.join(os.getcwd(), 'saved_models', model_name+'_human_seg', model_name + '_human_seg.pth') 62 | 63 | img_name_list = glob.glob(image_dir + os.sep + '*') 64 | print(img_name_list) 65 | 66 | # --------- 2. dataloader --------- 67 | #1. dataloader 68 | test_salobj_dataset = SalObjDataset(img_name_list = img_name_list, 69 | lbl_name_list = [], 70 | transform=transforms.Compose([RescaleT(320), 71 | ToTensorLab(flag=0)]) 72 | ) 73 | test_salobj_dataloader = DataLoader(test_salobj_dataset, 74 | batch_size=1, 75 | shuffle=False, 76 | num_workers=1) 77 | 78 | # --------- 3. model define --------- 79 | if(model_name=='u2net'): 80 | print("...load U2NET---173.6 MB") 81 | net = U2NET(3,1) 82 | 83 | if torch.cuda.is_available(): 84 | net.load_state_dict(torch.load(model_dir)) 85 | net.cuda() 86 | else: 87 | net.load_state_dict(torch.load(model_dir, map_location='cpu')) 88 | net.eval() 89 | 90 | # --------- 4. inference for each image --------- 91 | for i_test, data_test in enumerate(test_salobj_dataloader): 92 | 93 | print("inferencing:",img_name_list[i_test].split(os.sep)[-1]) 94 | 95 | inputs_test = data_test['image'] 96 | inputs_test = inputs_test.type(torch.FloatTensor) 97 | 98 | if torch.cuda.is_available(): 99 | inputs_test = Variable(inputs_test.cuda()) 100 | else: 101 | inputs_test = Variable(inputs_test) 102 | 103 | d1,d2,d3,d4,d5,d6,d7= net(inputs_test) 104 | 105 | # normalization 106 | pred = d1[:,0,:,:] 107 | pred = normPRED(pred) 108 | 109 | # save results to test_results folder 110 | if not os.path.exists(prediction_dir): 111 | os.makedirs(prediction_dir, exist_ok=True) 112 | save_output(img_name_list[i_test],pred,prediction_dir) 113 | 114 | del d1,d2,d3,d4,d5,d6,d7 115 | 116 | if __name__ == "__main__": 117 | main() 118 | -------------------------------------------------------------------------------- /u2net_portrait_composite.py: -------------------------------------------------------------------------------- 1 | import os 2 | from skimage import io, transform 3 | from skimage.filters import gaussian 4 | import torch 5 | import torchvision 6 | from torch.autograd import Variable 7 | import torch.nn as nn 8 | import torch.nn.functional as F 9 | from torch.utils.data import Dataset, DataLoader 10 | from torchvision import transforms#, utils 11 | # import torch.optim as optim 12 | 13 | import numpy as np 14 | from PIL import Image 15 | import glob 16 | 17 | from data_loader import RescaleT 18 | from data_loader import ToTensor 19 | from data_loader import ToTensorLab 20 | from data_loader import SalObjDataset 21 | 22 | from model import U2NET # full size version 173.6 MB 23 | from model import U2NETP # small version u2net 4.7 MB 24 | 25 | import argparse 26 | 27 | # normalize the predicted SOD probability map 28 | def normPRED(d): 29 | ma = torch.max(d) 30 | mi = torch.min(d) 31 | 32 | dn = (d-mi)/(ma-mi) 33 | 34 | return dn 35 | 36 | def save_output(image_name,pred,d_dir,sigma=2,alpha=0.5): 37 | 38 | predict = pred 39 | predict = predict.squeeze() 40 | predict_np = predict.cpu().data.numpy() 41 | 42 | image = io.imread(image_name) 43 | pd = transform.resize(predict_np,image.shape[0:2],order=2) 44 | pd = pd/(np.amax(pd)+1e-8)*255 45 | pd = pd[:,:,np.newaxis] 46 | 47 | print(image.shape) 48 | print(pd.shape) 49 | 50 | ## fuse the orignal portrait image and the portraits into one composite image 51 | ## 1. use gaussian filter to blur the orginal image 52 | sigma=sigma 53 | image = gaussian(image, sigma=sigma, preserve_range=True) 54 | 55 | ## 2. fuse these orignal image and the portrait with certain weight: alpha 56 | alpha = alpha 57 | im_comp = image*alpha+pd*(1-alpha) 58 | 59 | print(im_comp.shape) 60 | 61 | 62 | img_name = image_name.split(os.sep)[-1] 63 | aaa = img_name.split(".") 64 | bbb = aaa[0:-1] 65 | imidx = bbb[0] 66 | for i in range(1,len(bbb)): 67 | imidx = imidx + "." + bbb[i] 68 | io.imsave(d_dir+'/'+imidx+'_sigma_' + str(sigma) + '_alpha_' + str(alpha) + '_composite.png',im_comp) 69 | 70 | def main(): 71 | 72 | parser = argparse.ArgumentParser(description="image and portrait composite") 73 | parser.add_argument('-s',action='store',dest='sigma') 74 | parser.add_argument('-a',action='store',dest='alpha') 75 | args = parser.parse_args() 76 | print(args.sigma) 77 | print(args.alpha) 78 | print("--------------------") 79 | 80 | # --------- 1. get image path and name --------- 81 | model_name='u2net_portrait'#u2netp 82 | 83 | 84 | image_dir = './test_data/test_portrait_images/your_portrait_im' 85 | prediction_dir = './test_data/test_portrait_images/your_portrait_results' 86 | if(not os.path.exists(prediction_dir)): 87 | os.mkdir(prediction_dir) 88 | 89 | model_dir = './saved_models/u2net_portrait/u2net_portrait.pth' 90 | 91 | img_name_list = glob.glob(image_dir+'/*') 92 | print("Number of images: ", len(img_name_list)) 93 | 94 | # --------- 2. dataloader --------- 95 | #1. dataloader 96 | test_salobj_dataset = SalObjDataset(img_name_list = img_name_list, 97 | lbl_name_list = [], 98 | transform=transforms.Compose([RescaleT(512), 99 | ToTensorLab(flag=0)]) 100 | ) 101 | test_salobj_dataloader = DataLoader(test_salobj_dataset, 102 | batch_size=1, 103 | shuffle=False, 104 | num_workers=1) 105 | 106 | # --------- 3. model define --------- 107 | 108 | print("...load U2NET---173.6 MB") 109 | net = U2NET(3,1) 110 | 111 | net.load_state_dict(torch.load(model_dir)) 112 | if torch.cuda.is_available(): 113 | net.cuda() 114 | net.eval() 115 | 116 | # --------- 4. inference for each image --------- 117 | for i_test, data_test in enumerate(test_salobj_dataloader): 118 | 119 | print("inferencing:",img_name_list[i_test].split(os.sep)[-1]) 120 | 121 | inputs_test = data_test['image'] 122 | inputs_test = inputs_test.type(torch.FloatTensor) 123 | 124 | if torch.cuda.is_available(): 125 | inputs_test = Variable(inputs_test.cuda()) 126 | else: 127 | inputs_test = Variable(inputs_test) 128 | 129 | d1,d2,d3,d4,d5,d6,d7= net(inputs_test) 130 | 131 | # normalization 132 | pred = 1.0 - d1[:,0,:,:] 133 | pred = normPRED(pred) 134 | 135 | # save results to test_results folder 136 | save_output(img_name_list[i_test],pred,prediction_dir,sigma=float(args.sigma),alpha=float(args.alpha)) 137 | 138 | del d1,d2,d3,d4,d5,d6,d7 139 | 140 | if __name__ == "__main__": 141 | main() 142 | -------------------------------------------------------------------------------- /u2net_portrait_demo.py: -------------------------------------------------------------------------------- 1 | import cv2 2 | import torch 3 | from model import U2NET 4 | from torch.autograd import Variable 5 | import numpy as np 6 | from glob import glob 7 | import os 8 | 9 | def detect_single_face(face_cascade,img): 10 | # Convert into grayscale 11 | gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 12 | 13 | # Detect faces 14 | faces = face_cascade.detectMultiScale(gray, 1.1, 4) 15 | if(len(faces)==0): 16 | print("Warming: no face detection, the portrait u2net will run on the whole image!") 17 | return None 18 | 19 | # filter to keep the largest face 20 | wh = 0 21 | idx = 0 22 | for i in range(0,len(faces)): 23 | (x,y,w,h) = faces[i] 24 | if(wh