├── .dockerignore ├── .gitattributes ├── .gitignore ├── Dockerfile ├── LICENSE ├── README.md ├── data ├── argoverse_hd.yaml ├── coco.yaml ├── coco128.yaml ├── hyp.finetune.yaml ├── hyp.scratch.yaml ├── images │ ├── bus.jpg │ └── zidane.jpg ├── screenshot_app.png ├── screenshot_camera.gif ├── screenshot_img.png ├── screenshot_video.gif ├── scripts │ ├── get_argoverse_hd.sh │ ├── get_coco.sh │ └── get_voc.sh ├── test.mp4 └── voc.yaml ├── detect.py ├── hubconf.py ├── main.py ├── models ├── __init__.py ├── common.py ├── experimental.py ├── export.py ├── hub │ ├── anchors.yaml │ ├── yolov3-spp.yaml │ ├── yolov3-tiny.yaml │ ├── yolov3.yaml │ ├── yolov5-fpn.yaml │ ├── yolov5-p2.yaml │ ├── yolov5-p6.yaml │ ├── yolov5-p7.yaml │ ├── yolov5-panet.yaml │ ├── yolov5l6.yaml │ ├── yolov5m6.yaml │ ├── yolov5s-transformer.yaml │ ├── yolov5s6.yaml │ └── yolov5x6.yaml ├── yolo.py ├── yolov5l.yaml ├── yolov5m.yaml ├── yolov5s.yaml └── yolov5x.yaml ├── project.ui ├── requirements.txt ├── test.py ├── train.py ├── tutorial.ipynb ├── utils ├── __init__.py ├── activations.py ├── autoanchor.py ├── aws │ ├── __init__.py │ ├── mime.sh │ ├── resume.py │ └── userdata.sh ├── datasets.py ├── general.py ├── google_app_engine │ ├── Dockerfile │ ├── additional_requirements.txt │ └── app.yaml ├── google_utils.py ├── loss.py ├── metrics.py ├── plots.py ├── torch_utils.py └── wandb_logging │ ├── __init__.py │ ├── log_dataset.py │ └── wandb_utils.py ├── wechat.jpg └── weights └── download_weights.sh /.dockerignore: -------------------------------------------------------------------------------- 1 | # Repo-specific DockerIgnore ------------------------------------------------------------------------------------------- 2 | #.git 3 | .cache 4 | .idea 5 | runs 6 | output 7 | coco 8 | storage.googleapis.com 9 | 10 | data/samples/* 11 | **/results*.txt 12 | *.jpg 13 | 14 | # Neural Network weights ----------------------------------------------------------------------------------------------- 15 | **/*.weights 16 | **/*.pt 17 | **/*.pth 18 | **/*.onnx 19 | **/*.mlmodel 20 | **/*.torchscript 21 | 22 | 23 | # Below Copied From .gitignore ----------------------------------------------------------------------------------------- 24 | # Below Copied From .gitignore ----------------------------------------------------------------------------------------- 25 | 26 | 27 | # GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- 28 | # Byte-compiled / optimized / DLL files 29 | __pycache__/ 30 | *.py[cod] 31 | *$py.class 32 | 33 | # C extensions 34 | *.so 35 | 36 | # Distribution / packaging 37 | .Python 38 | env/ 39 | build/ 40 | develop-eggs/ 41 | dist/ 42 | downloads/ 43 | eggs/ 44 | .eggs/ 45 | lib/ 46 | lib64/ 47 | parts/ 48 | sdist/ 49 | var/ 50 | wheels/ 51 | *.egg-info/ 52 | wandb/ 53 | .installed.cfg 54 | *.egg 55 | 56 | # PyInstaller 57 | # Usually these files are written by a python script from a template 58 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 59 | *.manifest 60 | *.spec 61 | 62 | # Installer logs 63 | pip-log.txt 64 | pip-delete-this-directory.txt 65 | 66 | # Unit test / coverage reports 67 | htmlcov/ 68 | .tox/ 69 | .coverage 70 | .coverage.* 71 | .cache 72 | nosetests.xml 73 | coverage.xml 74 | *.cover 75 | .hypothesis/ 76 | 77 | # Translations 78 | *.mo 79 | *.pot 80 | 81 | # Django stuff: 82 | *.log 83 | local_settings.py 84 | 85 | # Flask stuff: 86 | instance/ 87 | .webassets-cache 88 | 89 | # Scrapy stuff: 90 | .scrapy 91 | 92 | # Sphinx documentation 93 | docs/_build/ 94 | 95 | # PyBuilder 96 | target/ 97 | 98 | # Jupyter Notebook 99 | .ipynb_checkpoints 100 | 101 | # pyenv 102 | .python-version 103 | 104 | # celery beat schedule file 105 | celerybeat-schedule 106 | 107 | # SageMath parsed files 108 | *.sage.py 109 | 110 | # dotenv 111 | .env 112 | 113 | # virtualenv 114 | .venv* 115 | venv*/ 116 | ENV*/ 117 | 118 | # Spyder project settings 119 | .spyderproject 120 | .spyproject 121 | 122 | # Rope project settings 123 | .ropeproject 124 | 125 | # mkdocs documentation 126 | /site 127 | 128 | # mypy 129 | .mypy_cache/ 130 | 131 | 132 | # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- 133 | 134 | # General 135 | .DS_Store 136 | .AppleDouble 137 | .LSOverride 138 | 139 | # Icon must end with two \r 140 | Icon 141 | Icon? 142 | 143 | # Thumbnails 144 | ._* 145 | 146 | # Files that might appear in the root of a volume 147 | .DocumentRevisions-V100 148 | .fseventsd 149 | .Spotlight-V100 150 | .TemporaryItems 151 | .Trashes 152 | .VolumeIcon.icns 153 | .com.apple.timemachine.donotpresent 154 | 155 | # Directories potentially created on remote AFP share 156 | .AppleDB 157 | .AppleDesktop 158 | Network Trash Folder 159 | Temporary Items 160 | .apdisk 161 | 162 | 163 | # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore 164 | # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm 165 | # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 166 | 167 | # User-specific stuff: 168 | .idea/* 169 | .idea/**/workspace.xml 170 | .idea/**/tasks.xml 171 | .idea/dictionaries 172 | .html # Bokeh Plots 173 | .pg # TensorFlow Frozen Graphs 174 | .avi # videos 175 | 176 | # Sensitive or high-churn files: 177 | .idea/**/dataSources/ 178 | .idea/**/dataSources.ids 179 | .idea/**/dataSources.local.xml 180 | .idea/**/sqlDataSources.xml 181 | .idea/**/dynamic.xml 182 | .idea/**/uiDesigner.xml 183 | 184 | # Gradle: 185 | .idea/**/gradle.xml 186 | .idea/**/libraries 187 | 188 | # CMake 189 | cmake-build-debug/ 190 | cmake-build-release/ 191 | 192 | # Mongo Explorer plugin: 193 | .idea/**/mongoSettings.xml 194 | 195 | ## File-based project format: 196 | *.iws 197 | 198 | ## Plugin-specific files: 199 | 200 | # IntelliJ 201 | out/ 202 | 203 | # mpeltonen/sbt-idea plugin 204 | .idea_modules/ 205 | 206 | # JIRA plugin 207 | atlassian-ide-plugin.xml 208 | 209 | # Cursive Clojure plugin 210 | .idea/replstate.xml 211 | 212 | # Crashlytics plugin (for Android Studio and IntelliJ) 213 | com_crashlytics_export_strings.xml 214 | crashlytics.properties 215 | crashlytics-build.properties 216 | fabric.properties 217 | -------------------------------------------------------------------------------- /.gitattributes: -------------------------------------------------------------------------------- 1 | # this drop notebooks from GitHub language stats 2 | *.ipynb linguist-vendored 3 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/.gitignore -------------------------------------------------------------------------------- /Dockerfile: -------------------------------------------------------------------------------- 1 | # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch 2 | FROM nvcr.io/nvidia/pytorch:21.03-py3 3 | 4 | # Install linux packages 5 | RUN apt update && apt install -y zip htop screen libgl1-mesa-glx 6 | 7 | # Install python dependencies 8 | COPY requirements.txt . 9 | RUN python -m pip install --upgrade pip 10 | RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof 11 | RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook 12 | 13 | # Create working directory 14 | RUN mkdir -p /usr/src/app 15 | WORKDIR /usr/src/app 16 | 17 | # Copy contents 18 | COPY . /usr/src/app 19 | 20 | # Set environment variables 21 | ENV HOME=/usr/src/app 22 | 23 | 24 | # --------------------------------------------------- Extras Below --------------------------------------------------- 25 | 26 | # Build and Push 27 | # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t 28 | # for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done 29 | 30 | # Pull and Run 31 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t 32 | 33 | # Pull and Run with local directory access 34 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t 35 | 36 | # Kill all 37 | # sudo docker kill $(sudo docker ps -q) 38 | 39 | # Kill all image-based 40 | # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest) 41 | 42 | # Bash into running container 43 | # sudo docker exec -it 5a9b5863d93d bash 44 | 45 | # Bash into stopped container 46 | # id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash 47 | 48 | # Send weights to GCP 49 | # python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt 50 | 51 | # Clean up 52 | # docker system prune -a --volumes 53 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## 博文地址 2 | 3 | 4 | 5 | ## 代码执行 6 | 7 | 项目中使用 `YOLOv5` 的 v5.0 版本,界面文件是 `project.ui` 8 | 9 | ``` 10 | pip install -r requirements.txt 11 | python main.py 12 | ``` 13 | 14 | 启动界面 15 | 16 | ![yolov5 pyqt5](data/screenshot_app.png) 17 | 18 | 图片检测 19 | 20 | ![yolov5 pyqt5](data/screenshot_img.png) 21 | 22 | 视频检测 23 | 24 | ![yolov5 pyqt5](data/screenshot_video.gif) 25 | 26 | 摄像头检测 27 | 28 | ![yolov5 pyqt5](data/screenshot_camera.gif) 29 | 30 | 图片处理后,预测结果保存在 `prediction.jpg` 31 | 32 | 视频或者摄像头处理后,预测结果保存在 `prediction.avi` 33 | 34 | 官方 **v5.0** 模型下载地址: 35 | 36 | ## exe打包 37 | 38 | 参考我的博文 39 | -------------------------------------------------------------------------------- /data/argoverse_hd.yaml: -------------------------------------------------------------------------------- 1 | # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ 2 | # Train command: python train.py --data argoverse_hd.yaml 3 | # Default dataset location is next to /yolov5: 4 | # /parent_folder 5 | # /argoverse 6 | # /yolov5 7 | 8 | 9 | # download command/URL (optional) 10 | download: bash data/scripts/get_argoverse_hd.sh 11 | 12 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/] 13 | train: ../argoverse/Argoverse-1.1/images/train/ # 39384 images 14 | val: ../argoverse/Argoverse-1.1/images/val/ # 15062 iamges 15 | test: ../argoverse/Argoverse-1.1/images/test/ # Submit to: https://eval.ai/web/challenges/challenge-page/800/overview 16 | 17 | # number of classes 18 | nc: 8 19 | 20 | # class names 21 | names: [ 'person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign' ] 22 | -------------------------------------------------------------------------------- /data/coco.yaml: -------------------------------------------------------------------------------- 1 | # COCO 2017 dataset http://cocodataset.org 2 | # Train command: python train.py --data coco.yaml 3 | # Default dataset location is next to /yolov5: 4 | # /parent_folder 5 | # /coco 6 | # /yolov5 7 | 8 | 9 | # download command/URL (optional) 10 | download: bash data/scripts/get_coco.sh 11 | 12 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/] 13 | train: ../coco/train2017.txt # 118287 images 14 | val: ../coco/val2017.txt # 5000 images 15 | test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 16 | 17 | # number of classes 18 | nc: 80 19 | 20 | # class names 21 | names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 22 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 23 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 24 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 25 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 26 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 27 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 28 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 29 | 'hair drier', 'toothbrush' ] 30 | 31 | # Print classes 32 | # with open('data/coco.yaml') as f: 33 | # d = yaml.load(f, Loader=yaml.FullLoader) # dict 34 | # for i, x in enumerate(d['names']): 35 | # print(i, x) 36 | -------------------------------------------------------------------------------- /data/coco128.yaml: -------------------------------------------------------------------------------- 1 | # COCO 2017 dataset http://cocodataset.org - first 128 training images 2 | # Train command: python train.py --data coco128.yaml 3 | # Default dataset location is next to /yolov5: 4 | # /parent_folder 5 | # /coco128 6 | # /yolov5 7 | 8 | 9 | # download command/URL (optional) 10 | download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip 11 | 12 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/] 13 | train: ../coco128/images/train2017/ # 128 images 14 | val: ../coco128/images/train2017/ # 128 images 15 | 16 | # number of classes 17 | nc: 80 18 | 19 | # class names 20 | names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 21 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 22 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 23 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 24 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 25 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 26 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 27 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 28 | 'hair drier', 'toothbrush' ] 29 | -------------------------------------------------------------------------------- /data/hyp.finetune.yaml: -------------------------------------------------------------------------------- 1 | # Hyperparameters for VOC finetuning 2 | # python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50 3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials 4 | 5 | 6 | # Hyperparameter Evolution Results 7 | # Generations: 306 8 | # P R mAP.5 mAP.5:.95 box obj cls 9 | # Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146 10 | 11 | lr0: 0.0032 12 | lrf: 0.12 13 | momentum: 0.843 14 | weight_decay: 0.00036 15 | warmup_epochs: 2.0 16 | warmup_momentum: 0.5 17 | warmup_bias_lr: 0.05 18 | box: 0.0296 19 | cls: 0.243 20 | cls_pw: 0.631 21 | obj: 0.301 22 | obj_pw: 0.911 23 | iou_t: 0.2 24 | anchor_t: 2.91 25 | # anchors: 3.63 26 | fl_gamma: 0.0 27 | hsv_h: 0.0138 28 | hsv_s: 0.664 29 | hsv_v: 0.464 30 | degrees: 0.373 31 | translate: 0.245 32 | scale: 0.898 33 | shear: 0.602 34 | perspective: 0.0 35 | flipud: 0.00856 36 | fliplr: 0.5 37 | mosaic: 1.0 38 | mixup: 0.243 39 | -------------------------------------------------------------------------------- /data/hyp.scratch.yaml: -------------------------------------------------------------------------------- 1 | # Hyperparameters for COCO training from scratch 2 | # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300 3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials 4 | 5 | 6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) 7 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf) 8 | momentum: 0.937 # SGD momentum/Adam beta1 9 | weight_decay: 0.0005 # optimizer weight decay 5e-4 10 | warmup_epochs: 3.0 # warmup epochs (fractions ok) 11 | warmup_momentum: 0.8 # warmup initial momentum 12 | warmup_bias_lr: 0.1 # warmup initial bias lr 13 | box: 0.05 # box loss gain 14 | cls: 0.5 # cls loss gain 15 | cls_pw: 1.0 # cls BCELoss positive_weight 16 | obj: 1.0 # obj loss gain (scale with pixels) 17 | obj_pw: 1.0 # obj BCELoss positive_weight 18 | iou_t: 0.20 # IoU training threshold 19 | anchor_t: 4.0 # anchor-multiple threshold 20 | # anchors: 3 # anchors per output layer (0 to ignore) 21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) 22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction) 23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) 24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction) 25 | degrees: 0.0 # image rotation (+/- deg) 26 | translate: 0.1 # image translation (+/- fraction) 27 | scale: 0.5 # image scale (+/- gain) 28 | shear: 0.0 # image shear (+/- deg) 29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 30 | flipud: 0.0 # image flip up-down (probability) 31 | fliplr: 0.5 # image flip left-right (probability) 32 | mosaic: 1.0 # image mosaic (probability) 33 | mixup: 0.0 # image mixup (probability) 34 | -------------------------------------------------------------------------------- /data/images/bus.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/data/images/bus.jpg -------------------------------------------------------------------------------- /data/images/zidane.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/data/images/zidane.jpg -------------------------------------------------------------------------------- /data/screenshot_app.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/data/screenshot_app.png -------------------------------------------------------------------------------- /data/screenshot_camera.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/data/screenshot_camera.gif -------------------------------------------------------------------------------- /data/screenshot_img.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/data/screenshot_img.png -------------------------------------------------------------------------------- /data/screenshot_video.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/data/screenshot_video.gif -------------------------------------------------------------------------------- /data/scripts/get_argoverse_hd.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ 3 | # Download command: bash data/scripts/get_argoverse_hd.sh 4 | # Train command: python train.py --data argoverse_hd.yaml 5 | # Default dataset location is next to /yolov5: 6 | # /parent_folder 7 | # /argoverse 8 | # /yolov5 9 | 10 | # Download/unzip images 11 | d='../argoverse/' # unzip directory 12 | mkdir $d 13 | url=https://argoverse-hd.s3.us-east-2.amazonaws.com/ 14 | f=Argoverse-HD-Full.zip 15 | curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &# download, unzip, remove in background 16 | wait # finish background tasks 17 | 18 | cd ../argoverse/Argoverse-1.1/ 19 | ln -s tracking images 20 | 21 | cd ../Argoverse-HD/annotations/ 22 | 23 | python3 - "$@" <train.txt 91 | cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt 92 | 93 | python3 - "$@" <= 1 85 | p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count 86 | else: 87 | p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) 88 | 89 | p = Path(p) # to Path 90 | save_path = str(save_dir / p.name) # img.jpg 91 | txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt 92 | s += '%gx%g ' % img.shape[2:] # print string 93 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh 94 | if len(det): 95 | # Rescale boxes from img_size to im0 size 96 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() 97 | 98 | # Print results 99 | for c in det[:, -1].unique(): 100 | n = (det[:, -1] == c).sum() # detections per class 101 | s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string 102 | 103 | # Write results 104 | for *xyxy, conf, cls in reversed(det): 105 | if save_txt: # Write to file 106 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh 107 | line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format 108 | with open(txt_path + '.txt', 'a') as f: 109 | f.write(('%g ' * len(line)).rstrip() % line + '\n') 110 | 111 | if save_img or view_img: # Add bbox to image 112 | label = f'{names[int(cls)]} {conf:.2f}' 113 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) 114 | 115 | # Print time (inference + NMS) 116 | print(f'{s}Done. ({t2 - t1:.3f}s)') 117 | 118 | # Stream results 119 | if view_img: 120 | cv2.imshow(str(p), im0) 121 | cv2.waitKey(1) # 1 millisecond 122 | 123 | # Save results (image with detections) 124 | if save_img: 125 | if dataset.mode == 'image': 126 | cv2.imwrite(save_path, im0) 127 | else: # 'video' or 'stream' 128 | if vid_path != save_path: # new video 129 | vid_path = save_path 130 | if isinstance(vid_writer, cv2.VideoWriter): 131 | vid_writer.release() # release previous video writer 132 | if vid_cap: # video 133 | fps = vid_cap.get(cv2.CAP_PROP_FPS) 134 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) 135 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) 136 | else: # stream 137 | fps, w, h = 30, im0.shape[1], im0.shape[0] 138 | save_path += '.mp4' 139 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) 140 | vid_writer.write(im0) 141 | 142 | if save_txt or save_img: 143 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' 144 | print(f"Results saved to {save_dir}{s}") 145 | 146 | print(f'Done. ({time.time() - t0:.3f}s)') 147 | 148 | 149 | if __name__ == '__main__': 150 | parser = argparse.ArgumentParser() 151 | parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') 152 | parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam 153 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') 154 | parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') 155 | parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') 156 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') 157 | parser.add_argument('--view-img', action='store_true', help='display results') 158 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') 159 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') 160 | parser.add_argument('--nosave', action='store_true', help='do not save images/videos') 161 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') 162 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') 163 | parser.add_argument('--augment', action='store_true', help='augmented inference') 164 | parser.add_argument('--update', action='store_true', help='update all models') 165 | parser.add_argument('--project', default='runs/detect', help='save results to project/name') 166 | parser.add_argument('--name', default='exp', help='save results to project/name') 167 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') 168 | opt = parser.parse_args() 169 | print(opt) 170 | check_requirements(exclude=('pycocotools', 'thop')) 171 | 172 | with torch.no_grad(): 173 | if opt.update: # update all models (to fix SourceChangeWarning) 174 | for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: 175 | detect() 176 | strip_optimizer(opt.weights) 177 | else: 178 | detect() 179 | -------------------------------------------------------------------------------- /hubconf.py: -------------------------------------------------------------------------------- 1 | """File for accessing YOLOv5 models via PyTorch Hub https://pytorch.org/hub/ultralytics_yolov5/ 2 | 3 | Usage: 4 | import torch 5 | model = torch.hub.load('ultralytics/yolov5', 'yolov5s') 6 | """ 7 | 8 | from pathlib import Path 9 | 10 | import torch 11 | 12 | from models.yolo import Model 13 | from utils.general import check_requirements, set_logging 14 | from utils.google_utils import attempt_download 15 | from utils.torch_utils import select_device 16 | 17 | dependencies = ['torch', 'yaml'] 18 | check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop')) 19 | set_logging() 20 | 21 | 22 | def create(name, pretrained, channels, classes, autoshape): 23 | """Creates a specified YOLOv5 model 24 | 25 | Arguments: 26 | name (str): name of model, i.e. 'yolov5s' 27 | pretrained (bool): load pretrained weights into the model 28 | channels (int): number of input channels 29 | classes (int): number of model classes 30 | 31 | Returns: 32 | pytorch model 33 | """ 34 | config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path 35 | try: 36 | model = Model(config, channels, classes) 37 | if pretrained: 38 | fname = f'{name}.pt' # checkpoint filename 39 | attempt_download(fname) # download if not found locally 40 | ckpt = torch.load(fname, map_location=torch.device('cpu')) # load 41 | msd = model.state_dict() # model state_dict 42 | csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 43 | csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter 44 | model.load_state_dict(csd, strict=False) # load 45 | if len(ckpt['model'].names) == classes: 46 | model.names = ckpt['model'].names # set class names attribute 47 | if autoshape: 48 | model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS 49 | device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available 50 | return model.to(device) 51 | 52 | except Exception as e: 53 | help_url = 'https://github.com/ultralytics/yolov5/issues/36' 54 | s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url 55 | raise Exception(s) from e 56 | 57 | 58 | def custom(path_or_model='path/to/model.pt', autoshape=True): 59 | """YOLOv5-custom model https://github.com/ultralytics/yolov5 60 | 61 | Arguments (3 options): 62 | path_or_model (str): 'path/to/model.pt' 63 | path_or_model (dict): torch.load('path/to/model.pt') 64 | path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] 65 | 66 | Returns: 67 | pytorch model 68 | """ 69 | model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint 70 | if isinstance(model, dict): 71 | model = model['ema' if model.get('ema') else 'model'] # load model 72 | 73 | hub_model = Model(model.yaml).to(next(model.parameters()).device) # create 74 | hub_model.load_state_dict(model.float().state_dict()) # load state_dict 75 | hub_model.names = model.names # class names 76 | if autoshape: 77 | hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS 78 | device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available 79 | return hub_model.to(device) 80 | 81 | 82 | def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True): 83 | # YOLOv5-small model https://github.com/ultralytics/yolov5 84 | return create('yolov5s', pretrained, channels, classes, autoshape) 85 | 86 | 87 | def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True): 88 | # YOLOv5-medium model https://github.com/ultralytics/yolov5 89 | return create('yolov5m', pretrained, channels, classes, autoshape) 90 | 91 | 92 | def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True): 93 | # YOLOv5-large model https://github.com/ultralytics/yolov5 94 | return create('yolov5l', pretrained, channels, classes, autoshape) 95 | 96 | 97 | def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True): 98 | # YOLOv5-xlarge model https://github.com/ultralytics/yolov5 99 | return create('yolov5x', pretrained, channels, classes, autoshape) 100 | 101 | 102 | def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True): 103 | # YOLOv5-small model https://github.com/ultralytics/yolov5 104 | return create('yolov5s6', pretrained, channels, classes, autoshape) 105 | 106 | 107 | def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True): 108 | # YOLOv5-medium model https://github.com/ultralytics/yolov5 109 | return create('yolov5m6', pretrained, channels, classes, autoshape) 110 | 111 | 112 | def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True): 113 | # YOLOv5-large model https://github.com/ultralytics/yolov5 114 | return create('yolov5l6', pretrained, channels, classes, autoshape) 115 | 116 | 117 | def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True): 118 | # YOLOv5-xlarge model https://github.com/ultralytics/yolov5 119 | return create('yolov5x6', pretrained, channels, classes, autoshape) 120 | 121 | 122 | if __name__ == '__main__': 123 | model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example 124 | # model = custom(path_or_model='path/to/model.pt') # custom example 125 | 126 | # Verify inference 127 | import numpy as np 128 | from PIL import Image 129 | 130 | imgs = [Image.open('data/images/bus.jpg'), # PIL 131 | 'data/images/zidane.jpg', # filename 132 | 'https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', # URI 133 | np.zeros((640, 480, 3))] # numpy 134 | 135 | results = model(imgs) # batched inference 136 | results.print() 137 | results.save() 138 | -------------------------------------------------------------------------------- /main.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | 3 | # Form implementation generated from reading ui file '.\project.ui' 4 | # 5 | # Created by: PyQt5 UI code generator 5.9.2 6 | # 7 | # WARNING! All changes made in this file will be lost! 8 | import sys 9 | import cv2 10 | import argparse 11 | import random 12 | import torch 13 | import numpy as np 14 | import torch.backends.cudnn as cudnn 15 | 16 | from PyQt5 import QtCore, QtGui, QtWidgets 17 | 18 | from utils.torch_utils import select_device 19 | from models.experimental import attempt_load 20 | from utils.general import check_img_size, non_max_suppression, scale_coords 21 | from utils.datasets import letterbox 22 | from utils.plots import plot_one_box 23 | 24 | 25 | class Ui_MainWindow(QtWidgets.QMainWindow): 26 | def __init__(self, parent=None): 27 | super(Ui_MainWindow, self).__init__(parent) 28 | self.timer_video = QtCore.QTimer() 29 | self.setupUi(self) 30 | self.init_logo() 31 | self.init_slots() 32 | self.cap = cv2.VideoCapture() 33 | self.out = None 34 | # self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc(*'XVID'), 20.0, (640, 480)) 35 | 36 | parser = argparse.ArgumentParser() 37 | parser.add_argument('--weights', nargs='+', type=str, 38 | default='weights/yolov5s.pt', help='model.pt path(s)') 39 | # file/folder, 0 for webcam 40 | parser.add_argument('--source', type=str, 41 | default='data/images', help='source') 42 | parser.add_argument('--img-size', type=int, 43 | default=640, help='inference size (pixels)') 44 | parser.add_argument('--conf-thres', type=float, 45 | default=0.25, help='object confidence threshold') 46 | parser.add_argument('--iou-thres', type=float, 47 | default=0.45, help='IOU threshold for NMS') 48 | parser.add_argument('--device', default='', 49 | help='cuda device, i.e. 0 or 0,1,2,3 or cpu') 50 | parser.add_argument( 51 | '--view-img', action='store_true', help='display results') 52 | parser.add_argument('--save-txt', action='store_true', 53 | help='save results to *.txt') 54 | parser.add_argument('--save-conf', action='store_true', 55 | help='save confidences in --save-txt labels') 56 | parser.add_argument('--nosave', action='store_true', 57 | help='do not save images/videos') 58 | parser.add_argument('--classes', nargs='+', type=int, 59 | help='filter by class: --class 0, or --class 0 2 3') 60 | parser.add_argument( 61 | '--agnostic-nms', action='store_true', help='class-agnostic NMS') 62 | parser.add_argument('--augment', action='store_true', 63 | help='augmented inference') 64 | parser.add_argument('--update', action='store_true', 65 | help='update all models') 66 | parser.add_argument('--project', default='runs/detect', 67 | help='save results to project/name') 68 | parser.add_argument('--name', default='exp', 69 | help='save results to project/name') 70 | parser.add_argument('--exist-ok', action='store_true', 71 | help='existing project/name ok, do not increment') 72 | self.opt = parser.parse_args() 73 | print(self.opt) 74 | 75 | source, weights, view_img, save_txt, imgsz = self.opt.source, self.opt.weights, self.opt.view_img, self.opt.save_txt, self.opt.img_size 76 | 77 | self.device = select_device(self.opt.device) 78 | self.half = self.device.type != 'cpu' # half precision only supported on CUDA 79 | 80 | cudnn.benchmark = True 81 | 82 | # Load model 83 | self.model = attempt_load( 84 | weights, map_location=self.device) # load FP32 model 85 | stride = int(self.model.stride.max()) # model stride 86 | self.imgsz = check_img_size(imgsz, s=stride) # check img_size 87 | if self.half: 88 | self.model.half() # to FP16 89 | 90 | # Get names and colors 91 | self.names = self.model.module.names if hasattr( 92 | self.model, 'module') else self.model.names 93 | self.colors = [[random.randint(0, 255) 94 | for _ in range(3)] for _ in self.names] 95 | 96 | def setupUi(self, MainWindow): 97 | MainWindow.setObjectName("MainWindow") 98 | MainWindow.resize(800, 600) 99 | self.centralwidget = QtWidgets.QWidget(MainWindow) 100 | self.centralwidget.setObjectName("centralwidget") 101 | self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.centralwidget) 102 | self.horizontalLayout_2.setObjectName("horizontalLayout_2") 103 | self.horizontalLayout = QtWidgets.QHBoxLayout() 104 | self.horizontalLayout.setSizeConstraint( 105 | QtWidgets.QLayout.SetNoConstraint) 106 | self.horizontalLayout.setObjectName("horizontalLayout") 107 | self.verticalLayout = QtWidgets.QVBoxLayout() 108 | self.verticalLayout.setContentsMargins(-1, -1, 0, -1) 109 | self.verticalLayout.setSpacing(80) 110 | self.verticalLayout.setObjectName("verticalLayout") 111 | self.pushButton_img = QtWidgets.QPushButton(self.centralwidget) 112 | sizePolicy = QtWidgets.QSizePolicy( 113 | QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.MinimumExpanding) 114 | sizePolicy.setHorizontalStretch(0) 115 | sizePolicy.setVerticalStretch(0) 116 | sizePolicy.setHeightForWidth( 117 | self.pushButton_img.sizePolicy().hasHeightForWidth()) 118 | self.pushButton_img.setSizePolicy(sizePolicy) 119 | self.pushButton_img.setMinimumSize(QtCore.QSize(150, 100)) 120 | self.pushButton_img.setMaximumSize(QtCore.QSize(150, 100)) 121 | font = QtGui.QFont() 122 | font.setFamily("Agency FB") 123 | font.setPointSize(12) 124 | self.pushButton_img.setFont(font) 125 | self.pushButton_img.setObjectName("pushButton_img") 126 | self.verticalLayout.addWidget( 127 | self.pushButton_img, 0, QtCore.Qt.AlignHCenter) 128 | self.pushButton_camera = QtWidgets.QPushButton(self.centralwidget) 129 | sizePolicy = QtWidgets.QSizePolicy( 130 | QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) 131 | sizePolicy.setHorizontalStretch(0) 132 | sizePolicy.setVerticalStretch(0) 133 | sizePolicy.setHeightForWidth( 134 | self.pushButton_camera.sizePolicy().hasHeightForWidth()) 135 | self.pushButton_camera.setSizePolicy(sizePolicy) 136 | self.pushButton_camera.setMinimumSize(QtCore.QSize(150, 100)) 137 | self.pushButton_camera.setMaximumSize(QtCore.QSize(150, 100)) 138 | font = QtGui.QFont() 139 | font.setFamily("Agency FB") 140 | font.setPointSize(12) 141 | self.pushButton_camera.setFont(font) 142 | self.pushButton_camera.setObjectName("pushButton_camera") 143 | self.verticalLayout.addWidget( 144 | self.pushButton_camera, 0, QtCore.Qt.AlignHCenter) 145 | self.pushButton_video = QtWidgets.QPushButton(self.centralwidget) 146 | sizePolicy = QtWidgets.QSizePolicy( 147 | QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) 148 | sizePolicy.setHorizontalStretch(0) 149 | sizePolicy.setVerticalStretch(0) 150 | sizePolicy.setHeightForWidth( 151 | self.pushButton_video.sizePolicy().hasHeightForWidth()) 152 | self.pushButton_video.setSizePolicy(sizePolicy) 153 | self.pushButton_video.setMinimumSize(QtCore.QSize(150, 100)) 154 | self.pushButton_video.setMaximumSize(QtCore.QSize(150, 100)) 155 | font = QtGui.QFont() 156 | font.setFamily("Agency FB") 157 | font.setPointSize(12) 158 | self.pushButton_video.setFont(font) 159 | self.pushButton_video.setObjectName("pushButton_video") 160 | self.verticalLayout.addWidget( 161 | self.pushButton_video, 0, QtCore.Qt.AlignHCenter) 162 | self.verticalLayout.setStretch(2, 1) 163 | self.horizontalLayout.addLayout(self.verticalLayout) 164 | self.label = QtWidgets.QLabel(self.centralwidget) 165 | self.label.setObjectName("label") 166 | self.horizontalLayout.addWidget(self.label) 167 | self.horizontalLayout.setStretch(0, 1) 168 | self.horizontalLayout.setStretch(1, 3) 169 | self.horizontalLayout_2.addLayout(self.horizontalLayout) 170 | MainWindow.setCentralWidget(self.centralwidget) 171 | self.menubar = QtWidgets.QMenuBar(MainWindow) 172 | self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 23)) 173 | self.menubar.setObjectName("menubar") 174 | MainWindow.setMenuBar(self.menubar) 175 | self.statusbar = QtWidgets.QStatusBar(MainWindow) 176 | self.statusbar.setObjectName("statusbar") 177 | MainWindow.setStatusBar(self.statusbar) 178 | 179 | self.retranslateUi(MainWindow) 180 | QtCore.QMetaObject.connectSlotsByName(MainWindow) 181 | 182 | def retranslateUi(self, MainWindow): 183 | _translate = QtCore.QCoreApplication.translate 184 | MainWindow.setWindowTitle(_translate("MainWindow", "PyQt5+YOLOv5示例")) 185 | self.pushButton_img.setText(_translate("MainWindow", "图片检测")) 186 | self.pushButton_camera.setText(_translate("MainWindow", "摄像头检测")) 187 | self.pushButton_video.setText(_translate("MainWindow", "视频检测")) 188 | self.label.setText(_translate("MainWindow", "TextLabel")) 189 | 190 | def init_slots(self): 191 | self.pushButton_img.clicked.connect(self.button_image_open) 192 | self.pushButton_video.clicked.connect(self.button_video_open) 193 | self.pushButton_camera.clicked.connect(self.button_camera_open) 194 | self.timer_video.timeout.connect(self.show_video_frame) 195 | 196 | def init_logo(self): 197 | pix = QtGui.QPixmap('wechat.jpg') 198 | self.label.setScaledContents(True) 199 | self.label.setPixmap(pix) 200 | 201 | def button_image_open(self): 202 | print('button_image_open') 203 | name_list = [] 204 | 205 | img_name, _ = QtWidgets.QFileDialog.getOpenFileName( 206 | self, "打开图片", "", "*.jpg;;*.png;;All Files(*)") 207 | if not img_name: 208 | return 209 | 210 | img = cv2.imread(img_name) 211 | print(img_name) 212 | showimg = img 213 | with torch.no_grad(): 214 | img = letterbox(img, new_shape=self.opt.img_size)[0] 215 | # Convert 216 | # BGR to RGB, to 3x416x416 217 | img = img[:, :, ::-1].transpose(2, 0, 1) 218 | img = np.ascontiguousarray(img) 219 | img = torch.from_numpy(img).to(self.device) 220 | img = img.half() if self.half else img.float() # uint8 to fp16/32 221 | img /= 255.0 # 0 - 255 to 0.0 - 1.0 222 | if img.ndimension() == 3: 223 | img = img.unsqueeze(0) 224 | # Inference 225 | pred = self.model(img, augment=self.opt.augment)[0] 226 | # Apply NMS 227 | pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes, 228 | agnostic=self.opt.agnostic_nms) 229 | print(pred) 230 | # Process detections 231 | for i, det in enumerate(pred): 232 | if det is not None and len(det): 233 | # Rescale boxes from img_size to im0 size 234 | det[:, :4] = scale_coords( 235 | img.shape[2:], det[:, :4], showimg.shape).round() 236 | 237 | for *xyxy, conf, cls in reversed(det): 238 | label = '%s %.2f' % (self.names[int(cls)], conf) 239 | name_list.append(self.names[int(cls)]) 240 | plot_one_box(xyxy, showimg, label=label, 241 | color=self.colors[int(cls)], line_thickness=2) 242 | 243 | cv2.imwrite('prediction.jpg', showimg) 244 | self.result = cv2.cvtColor(showimg, cv2.COLOR_BGR2BGRA) 245 | self.result = cv2.resize( 246 | self.result, (640, 480), interpolation=cv2.INTER_AREA) 247 | self.QtImg = QtGui.QImage( 248 | self.result.data, self.result.shape[1], self.result.shape[0], QtGui.QImage.Format_RGB32) 249 | self.label.setPixmap(QtGui.QPixmap.fromImage(self.QtImg)) 250 | 251 | def button_video_open(self): 252 | video_name, _ = QtWidgets.QFileDialog.getOpenFileName( 253 | self, "打开视频", "", "*.mp4;;*.avi;;All Files(*)") 254 | 255 | if not video_name: 256 | return 257 | 258 | flag = self.cap.open(video_name) 259 | if flag == False: 260 | QtWidgets.QMessageBox.warning( 261 | self, u"Warning", u"打开视频失败", buttons=QtWidgets.QMessageBox.Ok, defaultButton=QtWidgets.QMessageBox.Ok) 262 | else: 263 | self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc( 264 | *'MJPG'), 20, (int(self.cap.get(3)), int(self.cap.get(4)))) 265 | self.timer_video.start(30) 266 | self.pushButton_video.setDisabled(True) 267 | self.pushButton_img.setDisabled(True) 268 | self.pushButton_camera.setDisabled(True) 269 | 270 | def button_camera_open(self): 271 | if not self.timer_video.isActive(): 272 | # 默认使用第一个本地camera 273 | flag = self.cap.open(0) 274 | if flag == False: 275 | QtWidgets.QMessageBox.warning( 276 | self, u"Warning", u"打开摄像头失败", buttons=QtWidgets.QMessageBox.Ok, defaultButton=QtWidgets.QMessageBox.Ok) 277 | else: 278 | self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc( 279 | *'MJPG'), 20, (int(self.cap.get(3)), int(self.cap.get(4)))) 280 | self.timer_video.start(30) 281 | self.pushButton_video.setDisabled(True) 282 | self.pushButton_img.setDisabled(True) 283 | self.pushButton_camera.setText(u"关闭摄像头") 284 | else: 285 | self.timer_video.stop() 286 | self.cap.release() 287 | self.out.release() 288 | self.label.clear() 289 | self.init_logo() 290 | self.pushButton_video.setDisabled(False) 291 | self.pushButton_img.setDisabled(False) 292 | self.pushButton_camera.setText(u"摄像头检测") 293 | 294 | def show_video_frame(self): 295 | name_list = [] 296 | 297 | flag, img = self.cap.read() 298 | if img is not None: 299 | showimg = img 300 | with torch.no_grad(): 301 | img = letterbox(img, new_shape=self.opt.img_size)[0] 302 | # Convert 303 | # BGR to RGB, to 3x416x416 304 | img = img[:, :, ::-1].transpose(2, 0, 1) 305 | img = np.ascontiguousarray(img) 306 | img = torch.from_numpy(img).to(self.device) 307 | img = img.half() if self.half else img.float() # uint8 to fp16/32 308 | img /= 255.0 # 0 - 255 to 0.0 - 1.0 309 | if img.ndimension() == 3: 310 | img = img.unsqueeze(0) 311 | # Inference 312 | pred = self.model(img, augment=self.opt.augment)[0] 313 | 314 | # Apply NMS 315 | pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes, 316 | agnostic=self.opt.agnostic_nms) 317 | # Process detections 318 | for i, det in enumerate(pred): # detections per image 319 | if det is not None and len(det): 320 | # Rescale boxes from img_size to im0 size 321 | det[:, :4] = scale_coords( 322 | img.shape[2:], det[:, :4], showimg.shape).round() 323 | # Write results 324 | for *xyxy, conf, cls in reversed(det): 325 | label = '%s %.2f' % (self.names[int(cls)], conf) 326 | name_list.append(self.names[int(cls)]) 327 | print(label) 328 | plot_one_box( 329 | xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2) 330 | 331 | self.out.write(showimg) 332 | show = cv2.resize(showimg, (640, 480)) 333 | self.result = cv2.cvtColor(show, cv2.COLOR_BGR2RGB) 334 | showImage = QtGui.QImage(self.result.data, self.result.shape[1], self.result.shape[0], 335 | QtGui.QImage.Format_RGB888) 336 | self.label.setPixmap(QtGui.QPixmap.fromImage(showImage)) 337 | 338 | else: 339 | self.timer_video.stop() 340 | self.cap.release() 341 | self.out.release() 342 | self.label.clear() 343 | self.pushButton_video.setDisabled(False) 344 | self.pushButton_img.setDisabled(False) 345 | self.pushButton_camera.setDisabled(False) 346 | self.init_logo() 347 | 348 | 349 | if __name__ == '__main__': 350 | app = QtWidgets.QApplication(sys.argv) 351 | ui = Ui_MainWindow() 352 | ui.show() 353 | sys.exit(app.exec_()) 354 | -------------------------------------------------------------------------------- /models/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/models/__init__.py -------------------------------------------------------------------------------- /models/common.py: -------------------------------------------------------------------------------- 1 | # YOLOv5 common modules 2 | 3 | import math 4 | from copy import copy 5 | from pathlib import Path 6 | 7 | import numpy as np 8 | import pandas as pd 9 | import requests 10 | import torch 11 | import torch.nn as nn 12 | from PIL import Image 13 | from torch.cuda import amp 14 | 15 | from utils.datasets import letterbox 16 | from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh 17 | from utils.plots import color_list, plot_one_box 18 | from utils.torch_utils import time_synchronized 19 | 20 | 21 | def autopad(k, p=None): # kernel, padding 22 | # Pad to 'same' 23 | if p is None: 24 | p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad 25 | return p 26 | 27 | 28 | def DWConv(c1, c2, k=1, s=1, act=True): 29 | # Depthwise convolution 30 | return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) 31 | 32 | 33 | class Conv(nn.Module): 34 | # Standard convolution 35 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups 36 | super(Conv, self).__init__() 37 | self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) 38 | self.bn = nn.BatchNorm2d(c2) 39 | self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) 40 | 41 | def forward(self, x): 42 | return self.act(self.bn(self.conv(x))) 43 | 44 | def fuseforward(self, x): 45 | return self.act(self.conv(x)) 46 | 47 | 48 | class TransformerLayer(nn.Module): 49 | # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) 50 | def __init__(self, c, num_heads): 51 | super().__init__() 52 | self.q = nn.Linear(c, c, bias=False) 53 | self.k = nn.Linear(c, c, bias=False) 54 | self.v = nn.Linear(c, c, bias=False) 55 | self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) 56 | self.fc1 = nn.Linear(c, c, bias=False) 57 | self.fc2 = nn.Linear(c, c, bias=False) 58 | 59 | def forward(self, x): 60 | x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x 61 | x = self.fc2(self.fc1(x)) + x 62 | return x 63 | 64 | 65 | class TransformerBlock(nn.Module): 66 | # Vision Transformer https://arxiv.org/abs/2010.11929 67 | def __init__(self, c1, c2, num_heads, num_layers): 68 | super().__init__() 69 | self.conv = None 70 | if c1 != c2: 71 | self.conv = Conv(c1, c2) 72 | self.linear = nn.Linear(c2, c2) # learnable position embedding 73 | self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)]) 74 | self.c2 = c2 75 | 76 | def forward(self, x): 77 | if self.conv is not None: 78 | x = self.conv(x) 79 | b, _, w, h = x.shape 80 | p = x.flatten(2) 81 | p = p.unsqueeze(0) 82 | p = p.transpose(0, 3) 83 | p = p.squeeze(3) 84 | e = self.linear(p) 85 | x = p + e 86 | 87 | x = self.tr(x) 88 | x = x.unsqueeze(3) 89 | x = x.transpose(0, 3) 90 | x = x.reshape(b, self.c2, w, h) 91 | return x 92 | 93 | 94 | class Bottleneck(nn.Module): 95 | # Standard bottleneck 96 | def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion 97 | super(Bottleneck, self).__init__() 98 | c_ = int(c2 * e) # hidden channels 99 | self.cv1 = Conv(c1, c_, 1, 1) 100 | self.cv2 = Conv(c_, c2, 3, 1, g=g) 101 | self.add = shortcut and c1 == c2 102 | 103 | def forward(self, x): 104 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) 105 | 106 | 107 | class BottleneckCSP(nn.Module): 108 | # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks 109 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion 110 | super(BottleneckCSP, self).__init__() 111 | c_ = int(c2 * e) # hidden channels 112 | self.cv1 = Conv(c1, c_, 1, 1) 113 | self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) 114 | self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) 115 | self.cv4 = Conv(2 * c_, c2, 1, 1) 116 | self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) 117 | self.act = nn.LeakyReLU(0.1, inplace=True) 118 | self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) 119 | 120 | def forward(self, x): 121 | y1 = self.cv3(self.m(self.cv1(x))) 122 | y2 = self.cv2(x) 123 | return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) 124 | 125 | 126 | class C3(nn.Module): 127 | # CSP Bottleneck with 3 convolutions 128 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion 129 | super(C3, self).__init__() 130 | c_ = int(c2 * e) # hidden channels 131 | self.cv1 = Conv(c1, c_, 1, 1) 132 | self.cv2 = Conv(c1, c_, 1, 1) 133 | self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) 134 | self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) 135 | # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) 136 | 137 | def forward(self, x): 138 | return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) 139 | 140 | 141 | class C3TR(C3): 142 | # C3 module with TransformerBlock() 143 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): 144 | super().__init__(c1, c2, n, shortcut, g, e) 145 | c_ = int(c2 * e) 146 | self.m = TransformerBlock(c_, c_, 4, n) 147 | 148 | 149 | class SPP(nn.Module): 150 | # Spatial pyramid pooling layer used in YOLOv3-SPP 151 | def __init__(self, c1, c2, k=(5, 9, 13)): 152 | super(SPP, self).__init__() 153 | c_ = c1 // 2 # hidden channels 154 | self.cv1 = Conv(c1, c_, 1, 1) 155 | self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) 156 | self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) 157 | 158 | def forward(self, x): 159 | x = self.cv1(x) 160 | return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) 161 | 162 | 163 | class Focus(nn.Module): 164 | # Focus wh information into c-space 165 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups 166 | super(Focus, self).__init__() 167 | self.conv = Conv(c1 * 4, c2, k, s, p, g, act) 168 | # self.contract = Contract(gain=2) 169 | 170 | def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) 171 | return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) 172 | # return self.conv(self.contract(x)) 173 | 174 | 175 | class Contract(nn.Module): 176 | # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) 177 | def __init__(self, gain=2): 178 | super().__init__() 179 | self.gain = gain 180 | 181 | def forward(self, x): 182 | N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain' 183 | s = self.gain 184 | x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2) 185 | x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) 186 | return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40) 187 | 188 | 189 | class Expand(nn.Module): 190 | # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) 191 | def __init__(self, gain=2): 192 | super().__init__() 193 | self.gain = gain 194 | 195 | def forward(self, x): 196 | N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' 197 | s = self.gain 198 | x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80) 199 | x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) 200 | return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160) 201 | 202 | 203 | class Concat(nn.Module): 204 | # Concatenate a list of tensors along dimension 205 | def __init__(self, dimension=1): 206 | super(Concat, self).__init__() 207 | self.d = dimension 208 | 209 | def forward(self, x): 210 | return torch.cat(x, self.d) 211 | 212 | 213 | class NMS(nn.Module): 214 | # Non-Maximum Suppression (NMS) module 215 | conf = 0.25 # confidence threshold 216 | iou = 0.45 # IoU threshold 217 | classes = None # (optional list) filter by class 218 | 219 | def __init__(self): 220 | super(NMS, self).__init__() 221 | 222 | def forward(self, x): 223 | return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) 224 | 225 | 226 | class autoShape(nn.Module): 227 | # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS 228 | conf = 0.25 # NMS confidence threshold 229 | iou = 0.45 # NMS IoU threshold 230 | classes = None # (optional list) filter by class 231 | 232 | def __init__(self, model): 233 | super(autoShape, self).__init__() 234 | self.model = model.eval() 235 | 236 | def autoshape(self): 237 | print('autoShape already enabled, skipping... ') # model already converted to model.autoshape() 238 | return self 239 | 240 | @torch.no_grad() 241 | def forward(self, imgs, size=640, augment=False, profile=False): 242 | # Inference from various sources. For height=640, width=1280, RGB images example inputs are: 243 | # filename: imgs = 'data/samples/zidane.jpg' 244 | # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg' 245 | # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) 246 | # PIL: = Image.open('image.jpg') # HWC x(640,1280,3) 247 | # numpy: = np.zeros((640,1280,3)) # HWC 248 | # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) 249 | # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images 250 | 251 | t = [time_synchronized()] 252 | p = next(self.model.parameters()) # for device and type 253 | if isinstance(imgs, torch.Tensor): # torch 254 | with amp.autocast(enabled=p.device.type != 'cpu'): 255 | return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference 256 | 257 | # Pre-process 258 | n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images 259 | shape0, shape1, files = [], [], [] # image and inference shapes, filenames 260 | for i, im in enumerate(imgs): 261 | f = f'image{i}' # filename 262 | if isinstance(im, str): # filename or uri 263 | im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im 264 | elif isinstance(im, Image.Image): # PIL Image 265 | im, f = np.asarray(im), getattr(im, 'filename', f) or f 266 | files.append(Path(f).with_suffix('.jpg').name) 267 | if im.shape[0] < 5: # image in CHW 268 | im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) 269 | im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input 270 | s = im.shape[:2] # HWC 271 | shape0.append(s) # image shape 272 | g = (size / max(s)) # gain 273 | shape1.append([y * g for y in s]) 274 | imgs[i] = im # update 275 | shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape 276 | x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad 277 | x = np.stack(x, 0) if n > 1 else x[0][None] # stack 278 | x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW 279 | x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 280 | t.append(time_synchronized()) 281 | 282 | with amp.autocast(enabled=p.device.type != 'cpu'): 283 | # Inference 284 | y = self.model(x, augment, profile)[0] # forward 285 | t.append(time_synchronized()) 286 | 287 | # Post-process 288 | y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS 289 | for i in range(n): 290 | scale_coords(shape1, y[i][:, :4], shape0[i]) 291 | 292 | t.append(time_synchronized()) 293 | return Detections(imgs, y, files, t, self.names, x.shape) 294 | 295 | 296 | class Detections: 297 | # detections class for YOLOv5 inference results 298 | def __init__(self, imgs, pred, files, times=None, names=None, shape=None): 299 | super(Detections, self).__init__() 300 | d = pred[0].device # device 301 | gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations 302 | self.imgs = imgs # list of images as numpy arrays 303 | self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) 304 | self.names = names # class names 305 | self.files = files # image filenames 306 | self.xyxy = pred # xyxy pixels 307 | self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels 308 | self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized 309 | self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized 310 | self.n = len(self.pred) # number of images (batch size) 311 | self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) 312 | self.s = shape # inference BCHW shape 313 | 314 | def display(self, pprint=False, show=False, save=False, render=False, save_dir=''): 315 | colors = color_list() 316 | for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): 317 | str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' 318 | if pred is not None: 319 | for c in pred[:, -1].unique(): 320 | n = (pred[:, -1] == c).sum() # detections per class 321 | str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string 322 | if show or save or render: 323 | for *box, conf, cls in pred: # xyxy, confidence, class 324 | label = f'{self.names[int(cls)]} {conf:.2f}' 325 | plot_one_box(box, img, label=label, color=colors[int(cls) % 10]) 326 | img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np 327 | if pprint: 328 | print(str.rstrip(', ')) 329 | if show: 330 | img.show(self.files[i]) # show 331 | if save: 332 | f = self.files[i] 333 | img.save(Path(save_dir) / f) # save 334 | print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n') 335 | if render: 336 | self.imgs[i] = np.asarray(img) 337 | 338 | def print(self): 339 | self.display(pprint=True) # print results 340 | print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) 341 | 342 | def show(self): 343 | self.display(show=True) # show results 344 | 345 | def save(self, save_dir='runs/hub/exp'): 346 | save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir 347 | Path(save_dir).mkdir(parents=True, exist_ok=True) 348 | self.display(save=True, save_dir=save_dir) # save results 349 | 350 | def render(self): 351 | self.display(render=True) # render results 352 | return self.imgs 353 | 354 | def pandas(self): 355 | # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]) 356 | new = copy(self) # return copy 357 | ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns 358 | cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns 359 | for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): 360 | a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update 361 | setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) 362 | return new 363 | 364 | def tolist(self): 365 | # return a list of Detections objects, i.e. 'for result in results.tolist():' 366 | x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)] 367 | for d in x: 368 | for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: 369 | setattr(d, k, getattr(d, k)[0]) # pop out of list 370 | return x 371 | 372 | def __len__(self): 373 | return self.n 374 | 375 | 376 | class Classify(nn.Module): 377 | # Classification head, i.e. x(b,c1,20,20) to x(b,c2) 378 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups 379 | super(Classify, self).__init__() 380 | self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) 381 | self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) 382 | self.flat = nn.Flatten() 383 | 384 | def forward(self, x): 385 | z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list 386 | return self.flat(self.conv(z)) # flatten to x(b,c2) 387 | -------------------------------------------------------------------------------- /models/experimental.py: -------------------------------------------------------------------------------- 1 | # YOLOv5 experimental modules 2 | 3 | import numpy as np 4 | import torch 5 | import torch.nn as nn 6 | 7 | from models.common import Conv, DWConv 8 | from utils.google_utils import attempt_download 9 | 10 | 11 | class CrossConv(nn.Module): 12 | # Cross Convolution Downsample 13 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): 14 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut 15 | super(CrossConv, self).__init__() 16 | c_ = int(c2 * e) # hidden channels 17 | self.cv1 = Conv(c1, c_, (1, k), (1, s)) 18 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) 19 | self.add = shortcut and c1 == c2 20 | 21 | def forward(self, x): 22 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) 23 | 24 | 25 | class Sum(nn.Module): 26 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 27 | def __init__(self, n, weight=False): # n: number of inputs 28 | super(Sum, self).__init__() 29 | self.weight = weight # apply weights boolean 30 | self.iter = range(n - 1) # iter object 31 | if weight: 32 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights 33 | 34 | def forward(self, x): 35 | y = x[0] # no weight 36 | if self.weight: 37 | w = torch.sigmoid(self.w) * 2 38 | for i in self.iter: 39 | y = y + x[i + 1] * w[i] 40 | else: 41 | for i in self.iter: 42 | y = y + x[i + 1] 43 | return y 44 | 45 | 46 | class GhostConv(nn.Module): 47 | # Ghost Convolution https://github.com/huawei-noah/ghostnet 48 | def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups 49 | super(GhostConv, self).__init__() 50 | c_ = c2 // 2 # hidden channels 51 | self.cv1 = Conv(c1, c_, k, s, None, g, act) 52 | self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) 53 | 54 | def forward(self, x): 55 | y = self.cv1(x) 56 | return torch.cat([y, self.cv2(y)], 1) 57 | 58 | 59 | class GhostBottleneck(nn.Module): 60 | # Ghost Bottleneck https://github.com/huawei-noah/ghostnet 61 | def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride 62 | super(GhostBottleneck, self).__init__() 63 | c_ = c2 // 2 64 | self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw 65 | DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw 66 | GhostConv(c_, c2, 1, 1, act=False)) # pw-linear 67 | self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), 68 | Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() 69 | 70 | def forward(self, x): 71 | return self.conv(x) + self.shortcut(x) 72 | 73 | 74 | class MixConv2d(nn.Module): 75 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 76 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): 77 | super(MixConv2d, self).__init__() 78 | groups = len(k) 79 | if equal_ch: # equal c_ per group 80 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices 81 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels 82 | else: # equal weight.numel() per group 83 | b = [c2] + [0] * groups 84 | a = np.eye(groups + 1, groups, k=-1) 85 | a -= np.roll(a, 1, axis=1) 86 | a *= np.array(k) ** 2 87 | a[0] = 1 88 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b 89 | 90 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) 91 | self.bn = nn.BatchNorm2d(c2) 92 | self.act = nn.LeakyReLU(0.1, inplace=True) 93 | 94 | def forward(self, x): 95 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) 96 | 97 | 98 | class Ensemble(nn.ModuleList): 99 | # Ensemble of models 100 | def __init__(self): 101 | super(Ensemble, self).__init__() 102 | 103 | def forward(self, x, augment=False): 104 | y = [] 105 | for module in self: 106 | y.append(module(x, augment)[0]) 107 | # y = torch.stack(y).max(0)[0] # max ensemble 108 | # y = torch.stack(y).mean(0) # mean ensemble 109 | y = torch.cat(y, 1) # nms ensemble 110 | return y, None # inference, train output 111 | 112 | 113 | def attempt_load(weights, map_location=None): 114 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a 115 | model = Ensemble() 116 | for w in weights if isinstance(weights, list) else [weights]: 117 | attempt_download(w) 118 | ckpt = torch.load(w, map_location=map_location) # load 119 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model 120 | 121 | # Compatibility updates 122 | for m in model.modules(): 123 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: 124 | m.inplace = True # pytorch 1.7.0 compatibility 125 | elif type(m) is Conv: 126 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility 127 | 128 | if len(model) == 1: 129 | return model[-1] # return model 130 | else: 131 | print('Ensemble created with %s\n' % weights) 132 | for k in ['names', 'stride']: 133 | setattr(model, k, getattr(model[-1], k)) 134 | return model # return ensemble 135 | -------------------------------------------------------------------------------- /models/export.py: -------------------------------------------------------------------------------- 1 | """Exports a YOLOv5 *.pt model to ONNX and TorchScript formats 2 | 3 | Usage: 4 | $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 5 | """ 6 | 7 | import argparse 8 | import sys 9 | import time 10 | 11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories 12 | 13 | import torch 14 | import torch.nn as nn 15 | 16 | import models 17 | from models.experimental import attempt_load 18 | from utils.activations import Hardswish, SiLU 19 | from utils.general import set_logging, check_img_size 20 | from utils.torch_utils import select_device 21 | 22 | if __name__ == '__main__': 23 | parser = argparse.ArgumentParser() 24 | parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/ 25 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width 26 | parser.add_argument('--batch-size', type=int, default=1, help='batch size') 27 | parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') 28 | parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') 29 | parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') 30 | opt = parser.parse_args() 31 | opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand 32 | print(opt) 33 | set_logging() 34 | t = time.time() 35 | 36 | # Load PyTorch model 37 | device = select_device(opt.device) 38 | model = attempt_load(opt.weights, map_location=device) # load FP32 model 39 | labels = model.names 40 | 41 | # Checks 42 | gs = int(max(model.stride)) # grid size (max stride) 43 | opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples 44 | 45 | # Input 46 | img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection 47 | 48 | # Update model 49 | for k, m in model.named_modules(): 50 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility 51 | if isinstance(m, models.common.Conv): # assign export-friendly activations 52 | if isinstance(m.act, nn.Hardswish): 53 | m.act = Hardswish() 54 | elif isinstance(m.act, nn.SiLU): 55 | m.act = SiLU() 56 | # elif isinstance(m, models.yolo.Detect): 57 | # m.forward = m.forward_export # assign forward (optional) 58 | model.model[-1].export = not opt.grid # set Detect() layer grid export 59 | y = model(img) # dry run 60 | 61 | # TorchScript export 62 | try: 63 | print('\nStarting TorchScript export with torch %s...' % torch.__version__) 64 | f = opt.weights.replace('.pt', '.torchscript.pt') # filename 65 | ts = torch.jit.trace(model, img) 66 | ts.save(f) 67 | print('TorchScript export success, saved as %s' % f) 68 | except Exception as e: 69 | print('TorchScript export failure: %s' % e) 70 | 71 | # ONNX export 72 | try: 73 | import onnx 74 | 75 | print('\nStarting ONNX export with onnx %s...' % onnx.__version__) 76 | f = opt.weights.replace('.pt', '.onnx') # filename 77 | torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], 78 | output_names=['classes', 'boxes'] if y is None else ['output'], 79 | dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) 80 | 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) 81 | 82 | # Checks 83 | onnx_model = onnx.load(f) # load onnx model 84 | onnx.checker.check_model(onnx_model) # check onnx model 85 | # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model 86 | print('ONNX export success, saved as %s' % f) 87 | except Exception as e: 88 | print('ONNX export failure: %s' % e) 89 | 90 | # CoreML export 91 | try: 92 | import coremltools as ct 93 | 94 | print('\nStarting CoreML export with coremltools %s...' % ct.__version__) 95 | # convert model from torchscript and apply pixel scaling as per detect.py 96 | model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) 97 | f = opt.weights.replace('.pt', '.mlmodel') # filename 98 | model.save(f) 99 | print('CoreML export success, saved as %s' % f) 100 | except Exception as e: 101 | print('CoreML export failure: %s' % e) 102 | 103 | # Finish 104 | print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t)) 105 | -------------------------------------------------------------------------------- /models/hub/anchors.yaml: -------------------------------------------------------------------------------- 1 | # Default YOLOv5 anchors for COCO data 2 | 3 | 4 | # P5 ------------------------------------------------------------------------------------------------------------------- 5 | # P5-640: 6 | anchors_p5_640: 7 | - [ 10,13, 16,30, 33,23 ] # P3/8 8 | - [ 30,61, 62,45, 59,119 ] # P4/16 9 | - [ 116,90, 156,198, 373,326 ] # P5/32 10 | 11 | 12 | # P6 ------------------------------------------------------------------------------------------------------------------- 13 | # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387 14 | anchors_p6_640: 15 | - [ 9,11, 21,19, 17,41 ] # P3/8 16 | - [ 43,32, 39,70, 86,64 ] # P4/16 17 | - [ 65,131, 134,130, 120,265 ] # P5/32 18 | - [ 282,180, 247,354, 512,387 ] # P6/64 19 | 20 | # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 21 | anchors_p6_1280: 22 | - [ 19,27, 44,40, 38,94 ] # P3/8 23 | - [ 96,68, 86,152, 180,137 ] # P4/16 24 | - [ 140,301, 303,264, 238,542 ] # P5/32 25 | - [ 436,615, 739,380, 925,792 ] # P6/64 26 | 27 | # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187 28 | anchors_p6_1920: 29 | - [ 28,41, 67,59, 57,141 ] # P3/8 30 | - [ 144,103, 129,227, 270,205 ] # P4/16 31 | - [ 209,452, 455,396, 358,812 ] # P5/32 32 | - [ 653,922, 1109,570, 1387,1187 ] # P6/64 33 | 34 | 35 | # P7 ------------------------------------------------------------------------------------------------------------------- 36 | # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372 37 | anchors_p7_640: 38 | - [ 11,11, 13,30, 29,20 ] # P3/8 39 | - [ 30,46, 61,38, 39,92 ] # P4/16 40 | - [ 78,80, 146,66, 79,163 ] # P5/32 41 | - [ 149,150, 321,143, 157,303 ] # P6/64 42 | - [ 257,402, 359,290, 524,372 ] # P7/128 43 | 44 | # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818 45 | anchors_p7_1280: 46 | - [ 19,22, 54,36, 32,77 ] # P3/8 47 | - [ 70,83, 138,71, 75,173 ] # P4/16 48 | - [ 165,159, 148,334, 375,151 ] # P5/32 49 | - [ 334,317, 251,626, 499,474 ] # P6/64 50 | - [ 750,326, 534,814, 1079,818 ] # P7/128 51 | 52 | # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227 53 | anchors_p7_1920: 54 | - [ 29,34, 81,55, 47,115 ] # P3/8 55 | - [ 105,124, 207,107, 113,259 ] # P4/16 56 | - [ 247,238, 222,500, 563,227 ] # P5/32 57 | - [ 501,476, 376,939, 749,711 ] # P6/64 58 | - [ 1126,489, 801,1222, 1618,1227 ] # P7/128 59 | -------------------------------------------------------------------------------- /models/hub/yolov3-spp.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # darknet53 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Conv, [32, 3, 1]], # 0 16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 17 | [-1, 1, Bottleneck, [64]], 18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 19 | [-1, 2, Bottleneck, [128]], 20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 21 | [-1, 8, Bottleneck, [256]], 22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 23 | [-1, 8, Bottleneck, [512]], 24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 25 | [-1, 4, Bottleneck, [1024]], # 10 26 | ] 27 | 28 | # YOLOv3-SPP head 29 | head: 30 | [[-1, 1, Bottleneck, [1024, False]], 31 | [-1, 1, SPP, [512, [5, 9, 13]]], 32 | [-1, 1, Conv, [1024, 3, 1]], 33 | [-1, 1, Conv, [512, 1, 1]], 34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) 35 | 36 | [-2, 1, Conv, [256, 1, 1]], 37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4 39 | [-1, 1, Bottleneck, [512, False]], 40 | [-1, 1, Bottleneck, [512, False]], 41 | [-1, 1, Conv, [256, 1, 1]], 42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) 43 | 44 | [-2, 1, Conv, [128, 1, 1]], 45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3 47 | [-1, 1, Bottleneck, [256, False]], 48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) 49 | 50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 51 | ] 52 | -------------------------------------------------------------------------------- /models/hub/yolov3-tiny.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,14, 23,27, 37,58] # P4/16 9 | - [81,82, 135,169, 344,319] # P5/32 10 | 11 | # YOLOv3-tiny backbone 12 | backbone: 13 | # [from, number, module, args] 14 | [[-1, 1, Conv, [16, 3, 1]], # 0 15 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 16 | [-1, 1, Conv, [32, 3, 1]], 17 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 18 | [-1, 1, Conv, [64, 3, 1]], 19 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 20 | [-1, 1, Conv, [128, 3, 1]], 21 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 22 | [-1, 1, Conv, [256, 3, 1]], 23 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 24 | [-1, 1, Conv, [512, 3, 1]], 25 | [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11 26 | [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 27 | ] 28 | 29 | # YOLOv3-tiny head 30 | head: 31 | [[-1, 1, Conv, [1024, 3, 1]], 32 | [-1, 1, Conv, [256, 1, 1]], 33 | [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) 34 | 35 | [-2, 1, Conv, [128, 1, 1]], 36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 37 | [[-1, 8], 1, Concat, [1]], # cat backbone P4 38 | [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) 39 | 40 | [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5) 41 | ] 42 | -------------------------------------------------------------------------------- /models/hub/yolov3.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # darknet53 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Conv, [32, 3, 1]], # 0 16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 17 | [-1, 1, Bottleneck, [64]], 18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 19 | [-1, 2, Bottleneck, [128]], 20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 21 | [-1, 8, Bottleneck, [256]], 22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 23 | [-1, 8, Bottleneck, [512]], 24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 25 | [-1, 4, Bottleneck, [1024]], # 10 26 | ] 27 | 28 | # YOLOv3 head 29 | head: 30 | [[-1, 1, Bottleneck, [1024, False]], 31 | [-1, 1, Conv, [512, [1, 1]]], 32 | [-1, 1, Conv, [1024, 3, 1]], 33 | [-1, 1, Conv, [512, 1, 1]], 34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) 35 | 36 | [-2, 1, Conv, [256, 1, 1]], 37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4 39 | [-1, 1, Bottleneck, [512, False]], 40 | [-1, 1, Bottleneck, [512, False]], 41 | [-1, 1, Conv, [256, 1, 1]], 42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) 43 | 44 | [-2, 1, Conv, [128, 1, 1]], 45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3 47 | [-1, 1, Bottleneck, [256, False]], 48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) 49 | 50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 51 | ] 52 | -------------------------------------------------------------------------------- /models/hub/yolov5-fpn.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # YOLOv5 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2 16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 17 | [-1, 3, Bottleneck, [128]], 18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 19 | [-1, 9, BottleneckCSP, [256]], 20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 21 | [-1, 9, BottleneckCSP, [512]], 22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 23 | [-1, 1, SPP, [1024, [5, 9, 13]]], 24 | [-1, 6, BottleneckCSP, [1024]], # 9 25 | ] 26 | 27 | # YOLOv5 FPN head 28 | head: 29 | [[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large) 30 | 31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4 33 | [-1, 1, Conv, [512, 1, 1]], 34 | [-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium) 35 | 36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3 38 | [-1, 1, Conv, [256, 1, 1]], 39 | [-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small) 40 | 41 | [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 42 | ] 43 | -------------------------------------------------------------------------------- /models/hub/yolov5-p2.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 3 8 | 9 | # YOLOv5 backbone 10 | backbone: 11 | # [from, number, module, args] 12 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 13 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 14 | [ -1, 3, C3, [ 128 ] ], 15 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 16 | [ -1, 9, C3, [ 256 ] ], 17 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 18 | [ -1, 9, C3, [ 512 ] ], 19 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 20 | [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], 21 | [ -1, 3, C3, [ 1024, False ] ], # 9 22 | ] 23 | 24 | # YOLOv5 head 25 | head: 26 | [ [ -1, 1, Conv, [ 512, 1, 1 ] ], 27 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 28 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 29 | [ -1, 3, C3, [ 512, False ] ], # 13 30 | 31 | [ -1, 1, Conv, [ 256, 1, 1 ] ], 32 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 33 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 34 | [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) 35 | 36 | [ -1, 1, Conv, [ 128, 1, 1 ] ], 37 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 38 | [ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2 39 | [ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall) 40 | 41 | [ -1, 1, Conv, [ 128, 3, 2 ] ], 42 | [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3 43 | [ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small) 44 | 45 | [ -1, 1, Conv, [ 256, 3, 2 ] ], 46 | [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 47 | [ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium) 48 | 49 | [ -1, 1, Conv, [ 512, 3, 2 ] ], 50 | [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5 51 | [ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large) 52 | 53 | [ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) 54 | ] 55 | -------------------------------------------------------------------------------- /models/hub/yolov5-p6.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 3 8 | 9 | # YOLOv5 backbone 10 | backbone: 11 | # [from, number, module, args] 12 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 13 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 14 | [ -1, 3, C3, [ 128 ] ], 15 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 16 | [ -1, 9, C3, [ 256 ] ], 17 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 18 | [ -1, 9, C3, [ 512 ] ], 19 | [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 20 | [ -1, 3, C3, [ 768 ] ], 21 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 22 | [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], 23 | [ -1, 3, C3, [ 1024, False ] ], # 11 24 | ] 25 | 26 | # YOLOv5 head 27 | head: 28 | [ [ -1, 1, Conv, [ 768, 1, 1 ] ], 29 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 30 | [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 31 | [ -1, 3, C3, [ 768, False ] ], # 15 32 | 33 | [ -1, 1, Conv, [ 512, 1, 1 ] ], 34 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 35 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 36 | [ -1, 3, C3, [ 512, False ] ], # 19 37 | 38 | [ -1, 1, Conv, [ 256, 1, 1 ] ], 39 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 40 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 41 | [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) 42 | 43 | [ -1, 1, Conv, [ 256, 3, 2 ] ], 44 | [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 45 | [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) 46 | 47 | [ -1, 1, Conv, [ 512, 3, 2 ] ], 48 | [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 49 | [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) 50 | 51 | [ -1, 1, Conv, [ 768, 3, 2 ] ], 52 | [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 53 | [ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge) 54 | 55 | [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) 56 | ] 57 | -------------------------------------------------------------------------------- /models/hub/yolov5-p7.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 3 8 | 9 | # YOLOv5 backbone 10 | backbone: 11 | # [from, number, module, args] 12 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 13 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 14 | [ -1, 3, C3, [ 128 ] ], 15 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 16 | [ -1, 9, C3, [ 256 ] ], 17 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 18 | [ -1, 9, C3, [ 512 ] ], 19 | [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 20 | [ -1, 3, C3, [ 768 ] ], 21 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 22 | [ -1, 3, C3, [ 1024 ] ], 23 | [ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128 24 | [ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ], 25 | [ -1, 3, C3, [ 1280, False ] ], # 13 26 | ] 27 | 28 | # YOLOv5 head 29 | head: 30 | [ [ -1, 1, Conv, [ 1024, 1, 1 ] ], 31 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 32 | [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6 33 | [ -1, 3, C3, [ 1024, False ] ], # 17 34 | 35 | [ -1, 1, Conv, [ 768, 1, 1 ] ], 36 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 37 | [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 38 | [ -1, 3, C3, [ 768, False ] ], # 21 39 | 40 | [ -1, 1, Conv, [ 512, 1, 1 ] ], 41 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 42 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 43 | [ -1, 3, C3, [ 512, False ] ], # 25 44 | 45 | [ -1, 1, Conv, [ 256, 1, 1 ] ], 46 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 47 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 48 | [ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small) 49 | 50 | [ -1, 1, Conv, [ 256, 3, 2 ] ], 51 | [ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4 52 | [ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium) 53 | 54 | [ -1, 1, Conv, [ 512, 3, 2 ] ], 55 | [ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5 56 | [ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large) 57 | 58 | [ -1, 1, Conv, [ 768, 3, 2 ] ], 59 | [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6 60 | [ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge) 61 | 62 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], 63 | [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7 64 | [ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge) 65 | 66 | [ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7) 67 | ] 68 | -------------------------------------------------------------------------------- /models/hub/yolov5-panet.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # YOLOv5 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2 16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 17 | [-1, 3, BottleneckCSP, [128]], 18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 19 | [-1, 9, BottleneckCSP, [256]], 20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 21 | [-1, 9, BottleneckCSP, [512]], 22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 23 | [-1, 1, SPP, [1024, [5, 9, 13]]], 24 | [-1, 3, BottleneckCSP, [1024, False]], # 9 25 | ] 26 | 27 | # YOLOv5 PANet head 28 | head: 29 | [[-1, 1, Conv, [512, 1, 1]], 30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4 32 | [-1, 3, BottleneckCSP, [512, False]], # 13 33 | 34 | [-1, 1, Conv, [256, 1, 1]], 35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3 37 | [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small) 38 | 39 | [-1, 1, Conv, [256, 3, 2]], 40 | [[-1, 14], 1, Concat, [1]], # cat head P4 41 | [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium) 42 | 43 | [-1, 1, Conv, [512, 3, 2]], 44 | [[-1, 10], 1, Concat, [1]], # cat head P5 45 | [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large) 46 | 47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 48 | ] 49 | -------------------------------------------------------------------------------- /models/hub/yolov5l6.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [ 19,27, 44,40, 38,94 ] # P3/8 9 | - [ 96,68, 86,152, 180,137 ] # P4/16 10 | - [ 140,301, 303,264, 238,542 ] # P5/32 11 | - [ 436,615, 739,380, 925,792 ] # P6/64 12 | 13 | # YOLOv5 backbone 14 | backbone: 15 | # [from, number, module, args] 16 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 17 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 18 | [ -1, 3, C3, [ 128 ] ], 19 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 20 | [ -1, 9, C3, [ 256 ] ], 21 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 22 | [ -1, 9, C3, [ 512 ] ], 23 | [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 24 | [ -1, 3, C3, [ 768 ] ], 25 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 26 | [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], 27 | [ -1, 3, C3, [ 1024, False ] ], # 11 28 | ] 29 | 30 | # YOLOv5 head 31 | head: 32 | [ [ -1, 1, Conv, [ 768, 1, 1 ] ], 33 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 34 | [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 35 | [ -1, 3, C3, [ 768, False ] ], # 15 36 | 37 | [ -1, 1, Conv, [ 512, 1, 1 ] ], 38 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 39 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 40 | [ -1, 3, C3, [ 512, False ] ], # 19 41 | 42 | [ -1, 1, Conv, [ 256, 1, 1 ] ], 43 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 44 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 45 | [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) 46 | 47 | [ -1, 1, Conv, [ 256, 3, 2 ] ], 48 | [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 49 | [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) 50 | 51 | [ -1, 1, Conv, [ 512, 3, 2 ] ], 52 | [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 53 | [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) 54 | 55 | [ -1, 1, Conv, [ 768, 3, 2 ] ], 56 | [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 57 | [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) 58 | 59 | [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) 60 | ] 61 | -------------------------------------------------------------------------------- /models/hub/yolov5m6.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 0.67 # model depth multiple 4 | width_multiple: 0.75 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [ 19,27, 44,40, 38,94 ] # P3/8 9 | - [ 96,68, 86,152, 180,137 ] # P4/16 10 | - [ 140,301, 303,264, 238,542 ] # P5/32 11 | - [ 436,615, 739,380, 925,792 ] # P6/64 12 | 13 | # YOLOv5 backbone 14 | backbone: 15 | # [from, number, module, args] 16 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 17 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 18 | [ -1, 3, C3, [ 128 ] ], 19 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 20 | [ -1, 9, C3, [ 256 ] ], 21 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 22 | [ -1, 9, C3, [ 512 ] ], 23 | [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 24 | [ -1, 3, C3, [ 768 ] ], 25 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 26 | [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], 27 | [ -1, 3, C3, [ 1024, False ] ], # 11 28 | ] 29 | 30 | # YOLOv5 head 31 | head: 32 | [ [ -1, 1, Conv, [ 768, 1, 1 ] ], 33 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 34 | [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 35 | [ -1, 3, C3, [ 768, False ] ], # 15 36 | 37 | [ -1, 1, Conv, [ 512, 1, 1 ] ], 38 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 39 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 40 | [ -1, 3, C3, [ 512, False ] ], # 19 41 | 42 | [ -1, 1, Conv, [ 256, 1, 1 ] ], 43 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 44 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 45 | [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) 46 | 47 | [ -1, 1, Conv, [ 256, 3, 2 ] ], 48 | [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 49 | [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) 50 | 51 | [ -1, 1, Conv, [ 512, 3, 2 ] ], 52 | [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 53 | [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) 54 | 55 | [ -1, 1, Conv, [ 768, 3, 2 ] ], 56 | [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 57 | [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) 58 | 59 | [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) 60 | ] 61 | -------------------------------------------------------------------------------- /models/hub/yolov5s-transformer.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 0.33 # model depth multiple 4 | width_multiple: 0.50 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # YOLOv5 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2 16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 17 | [-1, 3, C3, [128]], 18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 19 | [-1, 9, C3, [256]], 20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 21 | [-1, 9, C3, [512]], 22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 23 | [-1, 1, SPP, [1024, [5, 9, 13]]], 24 | [-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module 25 | ] 26 | 27 | # YOLOv5 head 28 | head: 29 | [[-1, 1, Conv, [512, 1, 1]], 30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4 32 | [-1, 3, C3, [512, False]], # 13 33 | 34 | [-1, 1, Conv, [256, 1, 1]], 35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3 37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small) 38 | 39 | [-1, 1, Conv, [256, 3, 2]], 40 | [[-1, 14], 1, Concat, [1]], # cat head P4 41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium) 42 | 43 | [-1, 1, Conv, [512, 3, 2]], 44 | [[-1, 10], 1, Concat, [1]], # cat head P5 45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large) 46 | 47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 48 | ] 49 | -------------------------------------------------------------------------------- /models/hub/yolov5s6.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 0.33 # model depth multiple 4 | width_multiple: 0.50 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [ 19,27, 44,40, 38,94 ] # P3/8 9 | - [ 96,68, 86,152, 180,137 ] # P4/16 10 | - [ 140,301, 303,264, 238,542 ] # P5/32 11 | - [ 436,615, 739,380, 925,792 ] # P6/64 12 | 13 | # YOLOv5 backbone 14 | backbone: 15 | # [from, number, module, args] 16 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 17 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 18 | [ -1, 3, C3, [ 128 ] ], 19 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 20 | [ -1, 9, C3, [ 256 ] ], 21 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 22 | [ -1, 9, C3, [ 512 ] ], 23 | [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 24 | [ -1, 3, C3, [ 768 ] ], 25 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 26 | [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], 27 | [ -1, 3, C3, [ 1024, False ] ], # 11 28 | ] 29 | 30 | # YOLOv5 head 31 | head: 32 | [ [ -1, 1, Conv, [ 768, 1, 1 ] ], 33 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 34 | [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 35 | [ -1, 3, C3, [ 768, False ] ], # 15 36 | 37 | [ -1, 1, Conv, [ 512, 1, 1 ] ], 38 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 39 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 40 | [ -1, 3, C3, [ 512, False ] ], # 19 41 | 42 | [ -1, 1, Conv, [ 256, 1, 1 ] ], 43 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 44 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 45 | [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) 46 | 47 | [ -1, 1, Conv, [ 256, 3, 2 ] ], 48 | [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 49 | [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) 50 | 51 | [ -1, 1, Conv, [ 512, 3, 2 ] ], 52 | [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 53 | [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) 54 | 55 | [ -1, 1, Conv, [ 768, 3, 2 ] ], 56 | [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 57 | [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) 58 | 59 | [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) 60 | ] 61 | -------------------------------------------------------------------------------- /models/hub/yolov5x6.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.33 # model depth multiple 4 | width_multiple: 1.25 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [ 19,27, 44,40, 38,94 ] # P3/8 9 | - [ 96,68, 86,152, 180,137 ] # P4/16 10 | - [ 140,301, 303,264, 238,542 ] # P5/32 11 | - [ 436,615, 739,380, 925,792 ] # P6/64 12 | 13 | # YOLOv5 backbone 14 | backbone: 15 | # [from, number, module, args] 16 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 17 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 18 | [ -1, 3, C3, [ 128 ] ], 19 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 20 | [ -1, 9, C3, [ 256 ] ], 21 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 22 | [ -1, 9, C3, [ 512 ] ], 23 | [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 24 | [ -1, 3, C3, [ 768 ] ], 25 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 26 | [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], 27 | [ -1, 3, C3, [ 1024, False ] ], # 11 28 | ] 29 | 30 | # YOLOv5 head 31 | head: 32 | [ [ -1, 1, Conv, [ 768, 1, 1 ] ], 33 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 34 | [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 35 | [ -1, 3, C3, [ 768, False ] ], # 15 36 | 37 | [ -1, 1, Conv, [ 512, 1, 1 ] ], 38 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 39 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 40 | [ -1, 3, C3, [ 512, False ] ], # 19 41 | 42 | [ -1, 1, Conv, [ 256, 1, 1 ] ], 43 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], 44 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 45 | [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) 46 | 47 | [ -1, 1, Conv, [ 256, 3, 2 ] ], 48 | [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 49 | [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) 50 | 51 | [ -1, 1, Conv, [ 512, 3, 2 ] ], 52 | [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 53 | [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) 54 | 55 | [ -1, 1, Conv, [ 768, 3, 2 ] ], 56 | [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 57 | [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge) 58 | 59 | [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) 60 | ] 61 | -------------------------------------------------------------------------------- /models/yolo.py: -------------------------------------------------------------------------------- 1 | # YOLOv5 YOLO-specific modules 2 | 3 | import argparse 4 | import logging 5 | import sys 6 | from copy import deepcopy 7 | 8 | sys.path.append('./') # to run '$ python *.py' files in subdirectories 9 | logger = logging.getLogger(__name__) 10 | 11 | from models.common import * 12 | from models.experimental import * 13 | from utils.autoanchor import check_anchor_order 14 | from utils.general import make_divisible, check_file, set_logging 15 | from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ 16 | select_device, copy_attr 17 | 18 | try: 19 | import thop # for FLOPS computation 20 | except ImportError: 21 | thop = None 22 | 23 | 24 | class Detect(nn.Module): 25 | stride = None # strides computed during build 26 | export = False # onnx export 27 | 28 | def __init__(self, nc=80, anchors=(), ch=()): # detection layer 29 | super(Detect, self).__init__() 30 | self.nc = nc # number of classes 31 | self.no = nc + 5 # number of outputs per anchor 32 | self.nl = len(anchors) # number of detection layers 33 | self.na = len(anchors[0]) // 2 # number of anchors 34 | self.grid = [torch.zeros(1)] * self.nl # init grid 35 | a = torch.tensor(anchors).float().view(self.nl, -1, 2) 36 | self.register_buffer('anchors', a) # shape(nl,na,2) 37 | self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) 38 | self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv 39 | 40 | def forward(self, x): 41 | # x = x.copy() # for profiling 42 | z = [] # inference output 43 | self.training |= self.export 44 | for i in range(self.nl): 45 | x[i] = self.m[i](x[i]) # conv 46 | bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) 47 | x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() 48 | 49 | if not self.training: # inference 50 | if self.grid[i].shape[2:4] != x[i].shape[2:4]: 51 | self.grid[i] = self._make_grid(nx, ny).to(x[i].device) 52 | 53 | y = x[i].sigmoid() 54 | y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy 55 | y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh 56 | z.append(y.view(bs, -1, self.no)) 57 | 58 | return x if self.training else (torch.cat(z, 1), x) 59 | 60 | @staticmethod 61 | def _make_grid(nx=20, ny=20): 62 | yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) 63 | return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() 64 | 65 | 66 | class Model(nn.Module): 67 | def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes 68 | super(Model, self).__init__() 69 | if isinstance(cfg, dict): 70 | self.yaml = cfg # model dict 71 | else: # is *.yaml 72 | import yaml # for torch hub 73 | self.yaml_file = Path(cfg).name 74 | with open(cfg) as f: 75 | self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict 76 | 77 | # Define model 78 | ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels 79 | if nc and nc != self.yaml['nc']: 80 | logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") 81 | self.yaml['nc'] = nc # override yaml value 82 | if anchors: 83 | logger.info(f'Overriding model.yaml anchors with anchors={anchors}') 84 | self.yaml['anchors'] = round(anchors) # override yaml value 85 | self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist 86 | self.names = [str(i) for i in range(self.yaml['nc'])] # default names 87 | # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) 88 | 89 | # Build strides, anchors 90 | m = self.model[-1] # Detect() 91 | if isinstance(m, Detect): 92 | s = 256 # 2x min stride 93 | m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward 94 | m.anchors /= m.stride.view(-1, 1, 1) 95 | check_anchor_order(m) 96 | self.stride = m.stride 97 | self._initialize_biases() # only run once 98 | # print('Strides: %s' % m.stride.tolist()) 99 | 100 | # Init weights, biases 101 | initialize_weights(self) 102 | self.info() 103 | logger.info('') 104 | 105 | def forward(self, x, augment=False, profile=False): 106 | if augment: 107 | img_size = x.shape[-2:] # height, width 108 | s = [1, 0.83, 0.67] # scales 109 | f = [None, 3, None] # flips (2-ud, 3-lr) 110 | y = [] # outputs 111 | for si, fi in zip(s, f): 112 | xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) 113 | yi = self.forward_once(xi)[0] # forward 114 | # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save 115 | yi[..., :4] /= si # de-scale 116 | if fi == 2: 117 | yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud 118 | elif fi == 3: 119 | yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr 120 | y.append(yi) 121 | return torch.cat(y, 1), None # augmented inference, train 122 | else: 123 | return self.forward_once(x, profile) # single-scale inference, train 124 | 125 | def forward_once(self, x, profile=False): 126 | y, dt = [], [] # outputs 127 | for m in self.model: 128 | if m.f != -1: # if not from previous layer 129 | x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers 130 | 131 | if profile: 132 | o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS 133 | t = time_synchronized() 134 | for _ in range(10): 135 | _ = m(x) 136 | dt.append((time_synchronized() - t) * 100) 137 | print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) 138 | 139 | x = m(x) # run 140 | y.append(x if m.i in self.save else None) # save output 141 | 142 | if profile: 143 | print('%.1fms total' % sum(dt)) 144 | return x 145 | 146 | def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency 147 | # https://arxiv.org/abs/1708.02002 section 3.3 148 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. 149 | m = self.model[-1] # Detect() module 150 | for mi, s in zip(m.m, m.stride): # from 151 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) 152 | b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) 153 | b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls 154 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) 155 | 156 | def _print_biases(self): 157 | m = self.model[-1] # Detect() module 158 | for mi in m.m: # from 159 | b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) 160 | print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) 161 | 162 | # def _print_weights(self): 163 | # for m in self.model.modules(): 164 | # if type(m) is Bottleneck: 165 | # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights 166 | 167 | def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers 168 | print('Fusing layers... ') 169 | for m in self.model.modules(): 170 | if type(m) is Conv and hasattr(m, 'bn'): 171 | m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv 172 | delattr(m, 'bn') # remove batchnorm 173 | m.forward = m.fuseforward # update forward 174 | self.info() 175 | return self 176 | 177 | def nms(self, mode=True): # add or remove NMS module 178 | present = type(self.model[-1]) is NMS # last layer is NMS 179 | if mode and not present: 180 | print('Adding NMS... ') 181 | m = NMS() # module 182 | m.f = -1 # from 183 | m.i = self.model[-1].i + 1 # index 184 | self.model.add_module(name='%s' % m.i, module=m) # add 185 | self.eval() 186 | elif not mode and present: 187 | print('Removing NMS... ') 188 | self.model = self.model[:-1] # remove 189 | return self 190 | 191 | def autoshape(self): # add autoShape module 192 | print('Adding autoShape... ') 193 | m = autoShape(self) # wrap model 194 | copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes 195 | return m 196 | 197 | def info(self, verbose=False, img_size=640): # print model information 198 | model_info(self, verbose, img_size) 199 | 200 | 201 | def parse_model(d, ch): # model_dict, input_channels(3) 202 | logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) 203 | anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] 204 | na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors 205 | no = na * (nc + 5) # number of outputs = anchors * (classes + 5) 206 | 207 | layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out 208 | for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args 209 | m = eval(m) if isinstance(m, str) else m # eval strings 210 | for j, a in enumerate(args): 211 | try: 212 | args[j] = eval(a) if isinstance(a, str) else a # eval strings 213 | except: 214 | pass 215 | 216 | n = max(round(n * gd), 1) if n > 1 else n # depth gain 217 | if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, 218 | C3, C3TR]: 219 | c1, c2 = ch[f], args[0] 220 | if c2 != no: # if not output 221 | c2 = make_divisible(c2 * gw, 8) 222 | 223 | args = [c1, c2, *args[1:]] 224 | if m in [BottleneckCSP, C3, C3TR]: 225 | args.insert(2, n) # number of repeats 226 | n = 1 227 | elif m is nn.BatchNorm2d: 228 | args = [ch[f]] 229 | elif m is Concat: 230 | c2 = sum([ch[x] for x in f]) 231 | elif m is Detect: 232 | args.append([ch[x] for x in f]) 233 | if isinstance(args[1], int): # number of anchors 234 | args[1] = [list(range(args[1] * 2))] * len(f) 235 | elif m is Contract: 236 | c2 = ch[f] * args[0] ** 2 237 | elif m is Expand: 238 | c2 = ch[f] // args[0] ** 2 239 | else: 240 | c2 = ch[f] 241 | 242 | m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module 243 | t = str(m)[8:-2].replace('__main__.', '') # module type 244 | np = sum([x.numel() for x in m_.parameters()]) # number params 245 | m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params 246 | logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print 247 | save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist 248 | layers.append(m_) 249 | if i == 0: 250 | ch = [] 251 | ch.append(c2) 252 | return nn.Sequential(*layers), sorted(save) 253 | 254 | 255 | if __name__ == '__main__': 256 | parser = argparse.ArgumentParser() 257 | parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') 258 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') 259 | opt = parser.parse_args() 260 | opt.cfg = check_file(opt.cfg) # check file 261 | set_logging() 262 | device = select_device(opt.device) 263 | 264 | # Create model 265 | model = Model(opt.cfg).to(device) 266 | model.train() 267 | 268 | # Profile 269 | # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device) 270 | # y = model(img, profile=True) 271 | 272 | # Tensorboard 273 | # from torch.utils.tensorboard import SummaryWriter 274 | # tb_writer = SummaryWriter() 275 | # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/") 276 | # tb_writer.add_graph(model.model, img) # add model to tensorboard 277 | # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard 278 | -------------------------------------------------------------------------------- /models/yolov5l.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.0 # model depth multiple 4 | width_multiple: 1.0 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # YOLOv5 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2 16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 17 | [-1, 3, C3, [128]], 18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 19 | [-1, 9, C3, [256]], 20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 21 | [-1, 9, C3, [512]], 22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 23 | [-1, 1, SPP, [1024, [5, 9, 13]]], 24 | [-1, 3, C3, [1024, False]], # 9 25 | ] 26 | 27 | # YOLOv5 head 28 | head: 29 | [[-1, 1, Conv, [512, 1, 1]], 30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4 32 | [-1, 3, C3, [512, False]], # 13 33 | 34 | [-1, 1, Conv, [256, 1, 1]], 35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3 37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small) 38 | 39 | [-1, 1, Conv, [256, 3, 2]], 40 | [[-1, 14], 1, Concat, [1]], # cat head P4 41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium) 42 | 43 | [-1, 1, Conv, [512, 3, 2]], 44 | [[-1, 10], 1, Concat, [1]], # cat head P5 45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large) 46 | 47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 48 | ] 49 | -------------------------------------------------------------------------------- /models/yolov5m.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 0.67 # model depth multiple 4 | width_multiple: 0.75 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # YOLOv5 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2 16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 17 | [-1, 3, C3, [128]], 18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 19 | [-1, 9, C3, [256]], 20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 21 | [-1, 9, C3, [512]], 22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 23 | [-1, 1, SPP, [1024, [5, 9, 13]]], 24 | [-1, 3, C3, [1024, False]], # 9 25 | ] 26 | 27 | # YOLOv5 head 28 | head: 29 | [[-1, 1, Conv, [512, 1, 1]], 30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4 32 | [-1, 3, C3, [512, False]], # 13 33 | 34 | [-1, 1, Conv, [256, 1, 1]], 35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3 37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small) 38 | 39 | [-1, 1, Conv, [256, 3, 2]], 40 | [[-1, 14], 1, Concat, [1]], # cat head P4 41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium) 42 | 43 | [-1, 1, Conv, [512, 3, 2]], 44 | [[-1, 10], 1, Concat, [1]], # cat head P5 45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large) 46 | 47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 48 | ] 49 | -------------------------------------------------------------------------------- /models/yolov5s.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 0.33 # model depth multiple 4 | width_multiple: 0.50 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # YOLOv5 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2 16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 17 | [-1, 3, C3, [128]], 18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 19 | [-1, 9, C3, [256]], 20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 21 | [-1, 9, C3, [512]], 22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 23 | [-1, 1, SPP, [1024, [5, 9, 13]]], 24 | [-1, 3, C3, [1024, False]], # 9 25 | ] 26 | 27 | # YOLOv5 head 28 | head: 29 | [[-1, 1, Conv, [512, 1, 1]], 30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4 32 | [-1, 3, C3, [512, False]], # 13 33 | 34 | [-1, 1, Conv, [256, 1, 1]], 35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3 37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small) 38 | 39 | [-1, 1, Conv, [256, 3, 2]], 40 | [[-1, 14], 1, Concat, [1]], # cat head P4 41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium) 42 | 43 | [-1, 1, Conv, [512, 3, 2]], 44 | [[-1, 10], 1, Concat, [1]], # cat head P5 45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large) 46 | 47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 48 | ] 49 | -------------------------------------------------------------------------------- /models/yolov5x.yaml: -------------------------------------------------------------------------------- 1 | # parameters 2 | nc: 80 # number of classes 3 | depth_multiple: 1.33 # model depth multiple 4 | width_multiple: 1.25 # layer channel multiple 5 | 6 | # anchors 7 | anchors: 8 | - [10,13, 16,30, 33,23] # P3/8 9 | - [30,61, 62,45, 59,119] # P4/16 10 | - [116,90, 156,198, 373,326] # P5/32 11 | 12 | # YOLOv5 backbone 13 | backbone: 14 | # [from, number, module, args] 15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2 16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 17 | [-1, 3, C3, [128]], 18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 19 | [-1, 9, C3, [256]], 20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 21 | [-1, 9, C3, [512]], 22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 23 | [-1, 1, SPP, [1024, [5, 9, 13]]], 24 | [-1, 3, C3, [1024, False]], # 9 25 | ] 26 | 27 | # YOLOv5 head 28 | head: 29 | [[-1, 1, Conv, [512, 1, 1]], 30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4 32 | [-1, 3, C3, [512, False]], # 13 33 | 34 | [-1, 1, Conv, [256, 1, 1]], 35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']], 36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3 37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small) 38 | 39 | [-1, 1, Conv, [256, 3, 2]], 40 | [[-1, 14], 1, Concat, [1]], # cat head P4 41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium) 42 | 43 | [-1, 1, Conv, [512, 3, 2]], 44 | [[-1, 10], 1, Concat, [1]], # cat head P5 45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large) 46 | 47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 48 | ] 49 | -------------------------------------------------------------------------------- /project.ui: -------------------------------------------------------------------------------- 1 | 2 | 3 | MainWindow 4 | 5 | 6 | 7 | 0 8 | 0 9 | 800 10 | 600 11 | 12 | 13 | 14 | PyQt5+YOLOv5示例 15 | 16 | 17 | 18 | 19 | 20 | 21 | QLayout::SetNoConstraint 22 | 23 | 24 | 25 | 26 | 80 27 | 28 | 29 | 0 30 | 31 | 32 | 33 | 34 | 35 | 0 36 | 0 37 | 38 | 39 | 40 | 41 | 150 42 | 100 43 | 44 | 45 | 46 | 47 | 150 48 | 100 49 | 50 | 51 | 52 | 53 | Agency FB 54 | 12 55 | 56 | 57 | 58 | 图片检测 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 0 67 | 0 68 | 69 | 70 | 71 | 72 | 150 73 | 100 74 | 75 | 76 | 77 | 78 | 150 79 | 100 80 | 81 | 82 | 83 | 84 | Agency FB 85 | 12 86 | 87 | 88 | 89 | 摄像头检测 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 0 98 | 0 99 | 100 | 101 | 102 | 103 | 150 104 | 100 105 | 106 | 107 | 108 | 109 | 150 110 | 100 111 | 112 | 113 | 114 | 115 | Agency FB 116 | 12 117 | 118 | 119 | 120 | 视频检测 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | TextLabel 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 0 141 | 0 142 | 800 143 | 23 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | # pip install -r requirements.txt 2 | 3 | # base ---------------------------------------- 4 | matplotlib>=3.2.2 5 | numpy>=1.18.5 6 | opencv-python>=4.1.2 7 | Pillow 8 | PyYAML>=5.3.1 9 | scipy>=1.4.1 10 | torch>=1.7.0 11 | torchvision>=0.8.1 12 | tqdm>=4.41.0 13 | 14 | # logging ------------------------------------- 15 | tensorboard>=2.4.1 16 | # wandb 17 | 18 | # plotting ------------------------------------ 19 | seaborn>=0.11.0 20 | pandas 21 | 22 | # export -------------------------------------- 23 | # coremltools>=4.1 24 | # onnx>=1.8.1 25 | # scikit-learn==0.19.2 # for coreml quantization 26 | 27 | # extras -------------------------------------- 28 | thop # FLOPS computation 29 | pycocotools>=2.0 # COCO mAP 30 | 31 | # pyqt5 32 | pyqt5 33 | pyqt5-tools 34 | -------------------------------------------------------------------------------- /utils/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/utils/__init__.py -------------------------------------------------------------------------------- /utils/activations.py: -------------------------------------------------------------------------------- 1 | # Activation functions 2 | 3 | import torch 4 | import torch.nn as nn 5 | import torch.nn.functional as F 6 | 7 | 8 | # SiLU https://arxiv.org/pdf/1606.08415.pdf ---------------------------------------------------------------------------- 9 | class SiLU(nn.Module): # export-friendly version of nn.SiLU() 10 | @staticmethod 11 | def forward(x): 12 | return x * torch.sigmoid(x) 13 | 14 | 15 | class Hardswish(nn.Module): # export-friendly version of nn.Hardswish() 16 | @staticmethod 17 | def forward(x): 18 | # return x * F.hardsigmoid(x) # for torchscript and CoreML 19 | return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX 20 | 21 | 22 | class MemoryEfficientSwish(nn.Module): 23 | class F(torch.autograd.Function): 24 | @staticmethod 25 | def forward(ctx, x): 26 | ctx.save_for_backward(x) 27 | return x * torch.sigmoid(x) 28 | 29 | @staticmethod 30 | def backward(ctx, grad_output): 31 | x = ctx.saved_tensors[0] 32 | sx = torch.sigmoid(x) 33 | return grad_output * (sx * (1 + x * (1 - sx))) 34 | 35 | def forward(self, x): 36 | return self.F.apply(x) 37 | 38 | 39 | # Mish https://github.com/digantamisra98/Mish -------------------------------------------------------------------------- 40 | class Mish(nn.Module): 41 | @staticmethod 42 | def forward(x): 43 | return x * F.softplus(x).tanh() 44 | 45 | 46 | class MemoryEfficientMish(nn.Module): 47 | class F(torch.autograd.Function): 48 | @staticmethod 49 | def forward(ctx, x): 50 | ctx.save_for_backward(x) 51 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) 52 | 53 | @staticmethod 54 | def backward(ctx, grad_output): 55 | x = ctx.saved_tensors[0] 56 | sx = torch.sigmoid(x) 57 | fx = F.softplus(x).tanh() 58 | return grad_output * (fx + x * sx * (1 - fx * fx)) 59 | 60 | def forward(self, x): 61 | return self.F.apply(x) 62 | 63 | 64 | # FReLU https://arxiv.org/abs/2007.11824 ------------------------------------------------------------------------------- 65 | class FReLU(nn.Module): 66 | def __init__(self, c1, k=3): # ch_in, kernel 67 | super().__init__() 68 | self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) 69 | self.bn = nn.BatchNorm2d(c1) 70 | 71 | def forward(self, x): 72 | return torch.max(x, self.bn(self.conv(x))) 73 | -------------------------------------------------------------------------------- /utils/autoanchor.py: -------------------------------------------------------------------------------- 1 | # Auto-anchor utils 2 | 3 | import numpy as np 4 | import torch 5 | import yaml 6 | from scipy.cluster.vq import kmeans 7 | from tqdm import tqdm 8 | 9 | from utils.general import colorstr 10 | 11 | 12 | def check_anchor_order(m): 13 | # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary 14 | a = m.anchor_grid.prod(-1).view(-1) # anchor area 15 | da = a[-1] - a[0] # delta a 16 | ds = m.stride[-1] - m.stride[0] # delta s 17 | if da.sign() != ds.sign(): # same order 18 | print('Reversing anchor order') 19 | m.anchors[:] = m.anchors.flip(0) 20 | m.anchor_grid[:] = m.anchor_grid.flip(0) 21 | 22 | 23 | def check_anchors(dataset, model, thr=4.0, imgsz=640): 24 | # Check anchor fit to data, recompute if necessary 25 | prefix = colorstr('autoanchor: ') 26 | print(f'\n{prefix}Analyzing anchors... ', end='') 27 | m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() 28 | shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) 29 | scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale 30 | wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh 31 | 32 | def metric(k): # compute metric 33 | r = wh[:, None] / k[None] 34 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric 35 | best = x.max(1)[0] # best_x 36 | aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold 37 | bpr = (best > 1. / thr).float().mean() # best possible recall 38 | return bpr, aat 39 | 40 | anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors 41 | bpr, aat = metric(anchors) 42 | print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='') 43 | if bpr < 0.98: # threshold to recompute 44 | print('. Attempting to improve anchors, please wait...') 45 | na = m.anchor_grid.numel() // 2 # number of anchors 46 | try: 47 | anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) 48 | except Exception as e: 49 | print(f'{prefix}ERROR: {e}') 50 | new_bpr = metric(anchors)[0] 51 | if new_bpr > bpr: # replace anchors 52 | anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) 53 | m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference 54 | m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss 55 | check_anchor_order(m) 56 | print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.') 57 | else: 58 | print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.') 59 | print('') # newline 60 | 61 | 62 | def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): 63 | """ Creates kmeans-evolved anchors from training dataset 64 | 65 | Arguments: 66 | path: path to dataset *.yaml, or a loaded dataset 67 | n: number of anchors 68 | img_size: image size used for training 69 | thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 70 | gen: generations to evolve anchors using genetic algorithm 71 | verbose: print all results 72 | 73 | Return: 74 | k: kmeans evolved anchors 75 | 76 | Usage: 77 | from utils.autoanchor import *; _ = kmean_anchors() 78 | """ 79 | thr = 1. / thr 80 | prefix = colorstr('autoanchor: ') 81 | 82 | def metric(k, wh): # compute metrics 83 | r = wh[:, None] / k[None] 84 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric 85 | # x = wh_iou(wh, torch.tensor(k)) # iou metric 86 | return x, x.max(1)[0] # x, best_x 87 | 88 | def anchor_fitness(k): # mutation fitness 89 | _, best = metric(torch.tensor(k, dtype=torch.float32), wh) 90 | return (best * (best > thr).float()).mean() # fitness 91 | 92 | def print_results(k): 93 | k = k[np.argsort(k.prod(1))] # sort small to large 94 | x, best = metric(k, wh0) 95 | bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr 96 | print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr') 97 | print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' 98 | f'past_thr={x[x > thr].mean():.3f}-mean: ', end='') 99 | for i, x in enumerate(k): 100 | print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg 101 | return k 102 | 103 | if isinstance(path, str): # *.yaml file 104 | with open(path) as f: 105 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict 106 | from utils.datasets import LoadImagesAndLabels 107 | dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) 108 | else: 109 | dataset = path # dataset 110 | 111 | # Get label wh 112 | shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) 113 | wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh 114 | 115 | # Filter 116 | i = (wh0 < 3.0).any(1).sum() 117 | if i: 118 | print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') 119 | wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels 120 | # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 121 | 122 | # Kmeans calculation 123 | print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...') 124 | s = wh.std(0) # sigmas for whitening 125 | k, dist = kmeans(wh / s, n, iter=30) # points, mean distance 126 | assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}') 127 | k *= s 128 | wh = torch.tensor(wh, dtype=torch.float32) # filtered 129 | wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered 130 | k = print_results(k) 131 | 132 | # Plot 133 | # k, d = [None] * 20, [None] * 20 134 | # for i in tqdm(range(1, 21)): 135 | # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance 136 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) 137 | # ax = ax.ravel() 138 | # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') 139 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh 140 | # ax[0].hist(wh[wh[:, 0]<100, 0],400) 141 | # ax[1].hist(wh[wh[:, 1]<100, 1],400) 142 | # fig.savefig('wh.png', dpi=200) 143 | 144 | # Evolve 145 | npr = np.random 146 | f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma 147 | pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar 148 | for _ in pbar: 149 | v = np.ones(sh) 150 | while (v == 1).all(): # mutate until a change occurs (prevent duplicates) 151 | v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) 152 | kg = (k.copy() * v).clip(min=2.0) 153 | fg = anchor_fitness(kg) 154 | if fg > f: 155 | f, k = fg, kg.copy() 156 | pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' 157 | if verbose: 158 | print_results(k) 159 | 160 | return print_results(k) 161 | -------------------------------------------------------------------------------- /utils/aws/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/utils/aws/__init__.py -------------------------------------------------------------------------------- /utils/aws/mime.sh: -------------------------------------------------------------------------------- 1 | # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/ 2 | # This script will run on every instance restart, not only on first start 3 | # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA --- 4 | 5 | Content-Type: multipart/mixed; boundary="//" 6 | MIME-Version: 1.0 7 | 8 | --// 9 | Content-Type: text/cloud-config; charset="us-ascii" 10 | MIME-Version: 1.0 11 | Content-Transfer-Encoding: 7bit 12 | Content-Disposition: attachment; filename="cloud-config.txt" 13 | 14 | #cloud-config 15 | cloud_final_modules: 16 | - [scripts-user, always] 17 | 18 | --// 19 | Content-Type: text/x-shellscript; charset="us-ascii" 20 | MIME-Version: 1.0 21 | Content-Transfer-Encoding: 7bit 22 | Content-Disposition: attachment; filename="userdata.txt" 23 | 24 | #!/bin/bash 25 | # --- paste contents of userdata.sh here --- 26 | --// 27 | -------------------------------------------------------------------------------- /utils/aws/resume.py: -------------------------------------------------------------------------------- 1 | # Resume all interrupted trainings in yolov5/ dir including DDP trainings 2 | # Usage: $ python utils/aws/resume.py 3 | 4 | import os 5 | import sys 6 | from pathlib import Path 7 | 8 | import torch 9 | import yaml 10 | 11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories 12 | 13 | port = 0 # --master_port 14 | path = Path('').resolve() 15 | for last in path.rglob('*/**/last.pt'): 16 | ckpt = torch.load(last) 17 | if ckpt['optimizer'] is None: 18 | continue 19 | 20 | # Load opt.yaml 21 | with open(last.parent.parent / 'opt.yaml') as f: 22 | opt = yaml.load(f, Loader=yaml.SafeLoader) 23 | 24 | # Get device count 25 | d = opt['device'].split(',') # devices 26 | nd = len(d) # number of devices 27 | ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel 28 | 29 | if ddp: # multi-GPU 30 | port += 1 31 | cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}' 32 | else: # single-GPU 33 | cmd = f'python train.py --resume {last}' 34 | 35 | cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread 36 | print(cmd) 37 | os.system(cmd) 38 | -------------------------------------------------------------------------------- /utils/aws/userdata.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html 3 | # This script will run only once on first instance start (for a re-start script see mime.sh) 4 | # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir 5 | # Use >300 GB SSD 6 | 7 | cd home/ubuntu 8 | if [ ! -d yolov5 ]; then 9 | echo "Running first-time script." # install dependencies, download COCO, pull Docker 10 | git clone https://github.com/ultralytics/yolov5 && sudo chmod -R 777 yolov5 11 | cd yolov5 12 | bash data/scripts/get_coco.sh && echo "Data done." & 13 | sudo docker pull ultralytics/yolov5:latest && echo "Docker done." & 14 | python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." & 15 | wait && echo "All tasks done." # finish background tasks 16 | else 17 | echo "Running re-start script." # resume interrupted runs 18 | i=0 19 | list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour' 20 | while IFS= read -r id; do 21 | ((i++)) 22 | echo "restarting container $i: $id" 23 | sudo docker start $id 24 | # sudo docker exec -it $id python train.py --resume # single-GPU 25 | sudo docker exec -d $id python utils/aws/resume.py # multi-scenario 26 | done <<<"$list" 27 | fi 28 | -------------------------------------------------------------------------------- /utils/google_app_engine/Dockerfile: -------------------------------------------------------------------------------- 1 | FROM gcr.io/google-appengine/python 2 | 3 | # Create a virtualenv for dependencies. This isolates these packages from 4 | # system-level packages. 5 | # Use -p python3 or -p python3.7 to select python version. Default is version 2. 6 | RUN virtualenv /env -p python3 7 | 8 | # Setting these environment variables are the same as running 9 | # source /env/bin/activate. 10 | ENV VIRTUAL_ENV /env 11 | ENV PATH /env/bin:$PATH 12 | 13 | RUN apt-get update && apt-get install -y python-opencv 14 | 15 | # Copy the application's requirements.txt and run pip to install all 16 | # dependencies into the virtualenv. 17 | ADD requirements.txt /app/requirements.txt 18 | RUN pip install -r /app/requirements.txt 19 | 20 | # Add the application source code. 21 | ADD . /app 22 | 23 | # Run a WSGI server to serve the application. gunicorn must be declared as 24 | # a dependency in requirements.txt. 25 | CMD gunicorn -b :$PORT main:app 26 | -------------------------------------------------------------------------------- /utils/google_app_engine/additional_requirements.txt: -------------------------------------------------------------------------------- 1 | # add these requirements in your app on top of the existing ones 2 | pip==18.1 3 | Flask==1.0.2 4 | gunicorn==19.9.0 5 | -------------------------------------------------------------------------------- /utils/google_app_engine/app.yaml: -------------------------------------------------------------------------------- 1 | runtime: custom 2 | env: flex 3 | 4 | service: yolov5app 5 | 6 | liveness_check: 7 | initial_delay_sec: 600 8 | 9 | manual_scaling: 10 | instances: 1 11 | resources: 12 | cpu: 1 13 | memory_gb: 4 14 | disk_size_gb: 20 -------------------------------------------------------------------------------- /utils/google_utils.py: -------------------------------------------------------------------------------- 1 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries 2 | 3 | import os 4 | import platform 5 | import subprocess 6 | import time 7 | from pathlib import Path 8 | 9 | import requests 10 | import torch 11 | 12 | 13 | def gsutil_getsize(url=''): 14 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du 15 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8') 16 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes 17 | 18 | 19 | def attempt_download(file, repo='ultralytics/yolov5'): 20 | # Attempt file download if does not exist 21 | file = Path(str(file).strip().replace("'", '').lower()) 22 | 23 | if not file.exists(): 24 | try: 25 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api 26 | assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...] 27 | tag = response['tag_name'] # i.e. 'v1.0' 28 | except: # fallback plan 29 | assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt'] 30 | tag = subprocess.check_output('git tag', shell=True).decode().split()[-1] 31 | 32 | name = file.name 33 | if name in assets: 34 | msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/' 35 | redundant = False # second download option 36 | try: # GitHub 37 | url = f'https://github.com/{repo}/releases/download/{tag}/{name}' 38 | print(f'Downloading {url} to {file}...') 39 | torch.hub.download_url_to_file(url, file) 40 | assert file.exists() and file.stat().st_size > 1E6 # check 41 | except Exception as e: # GCP 42 | print(f'Download error: {e}') 43 | assert redundant, 'No secondary mirror' 44 | url = f'https://storage.googleapis.com/{repo}/ckpt/{name}' 45 | print(f'Downloading {url} to {file}...') 46 | os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights) 47 | finally: 48 | if not file.exists() or file.stat().st_size < 1E6: # check 49 | file.unlink(missing_ok=True) # remove partial downloads 50 | print(f'ERROR: Download failure: {msg}') 51 | print('') 52 | return 53 | 54 | 55 | def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'): 56 | # Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download() 57 | t = time.time() 58 | file = Path(file) 59 | cookie = Path('cookie') # gdrive cookie 60 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='') 61 | file.unlink(missing_ok=True) # remove existing file 62 | cookie.unlink(missing_ok=True) # remove existing cookie 63 | 64 | # Attempt file download 65 | out = "NUL" if platform.system() == "Windows" else "/dev/null" 66 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}') 67 | if os.path.exists('cookie'): # large file 68 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}' 69 | else: # small file 70 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"' 71 | r = os.system(s) # execute, capture return 72 | cookie.unlink(missing_ok=True) # remove existing cookie 73 | 74 | # Error check 75 | if r != 0: 76 | file.unlink(missing_ok=True) # remove partial 77 | print('Download error ') # raise Exception('Download error') 78 | return r 79 | 80 | # Unzip if archive 81 | if file.suffix == '.zip': 82 | print('unzipping... ', end='') 83 | os.system(f'unzip -q {file}') # unzip 84 | file.unlink() # remove zip to free space 85 | 86 | print(f'Done ({time.time() - t:.1f}s)') 87 | return r 88 | 89 | 90 | def get_token(cookie="./cookie"): 91 | with open(cookie) as f: 92 | for line in f: 93 | if "download" in line: 94 | return line.split()[-1] 95 | return "" 96 | 97 | # def upload_blob(bucket_name, source_file_name, destination_blob_name): 98 | # # Uploads a file to a bucket 99 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python 100 | # 101 | # storage_client = storage.Client() 102 | # bucket = storage_client.get_bucket(bucket_name) 103 | # blob = bucket.blob(destination_blob_name) 104 | # 105 | # blob.upload_from_filename(source_file_name) 106 | # 107 | # print('File {} uploaded to {}.'.format( 108 | # source_file_name, 109 | # destination_blob_name)) 110 | # 111 | # 112 | # def download_blob(bucket_name, source_blob_name, destination_file_name): 113 | # # Uploads a blob from a bucket 114 | # storage_client = storage.Client() 115 | # bucket = storage_client.get_bucket(bucket_name) 116 | # blob = bucket.blob(source_blob_name) 117 | # 118 | # blob.download_to_filename(destination_file_name) 119 | # 120 | # print('Blob {} downloaded to {}.'.format( 121 | # source_blob_name, 122 | # destination_file_name)) 123 | -------------------------------------------------------------------------------- /utils/loss.py: -------------------------------------------------------------------------------- 1 | # Loss functions 2 | 3 | import torch 4 | import torch.nn as nn 5 | 6 | from utils.general import bbox_iou 7 | from utils.torch_utils import is_parallel 8 | 9 | 10 | def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 11 | # return positive, negative label smoothing BCE targets 12 | return 1.0 - 0.5 * eps, 0.5 * eps 13 | 14 | 15 | class BCEBlurWithLogitsLoss(nn.Module): 16 | # BCEwithLogitLoss() with reduced missing label effects. 17 | def __init__(self, alpha=0.05): 18 | super(BCEBlurWithLogitsLoss, self).__init__() 19 | self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() 20 | self.alpha = alpha 21 | 22 | def forward(self, pred, true): 23 | loss = self.loss_fcn(pred, true) 24 | pred = torch.sigmoid(pred) # prob from logits 25 | dx = pred - true # reduce only missing label effects 26 | # dx = (pred - true).abs() # reduce missing label and false label effects 27 | alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) 28 | loss *= alpha_factor 29 | return loss.mean() 30 | 31 | 32 | class FocalLoss(nn.Module): 33 | # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) 34 | def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): 35 | super(FocalLoss, self).__init__() 36 | self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() 37 | self.gamma = gamma 38 | self.alpha = alpha 39 | self.reduction = loss_fcn.reduction 40 | self.loss_fcn.reduction = 'none' # required to apply FL to each element 41 | 42 | def forward(self, pred, true): 43 | loss = self.loss_fcn(pred, true) 44 | # p_t = torch.exp(-loss) 45 | # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability 46 | 47 | # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py 48 | pred_prob = torch.sigmoid(pred) # prob from logits 49 | p_t = true * pred_prob + (1 - true) * (1 - pred_prob) 50 | alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) 51 | modulating_factor = (1.0 - p_t) ** self.gamma 52 | loss *= alpha_factor * modulating_factor 53 | 54 | if self.reduction == 'mean': 55 | return loss.mean() 56 | elif self.reduction == 'sum': 57 | return loss.sum() 58 | else: # 'none' 59 | return loss 60 | 61 | 62 | class QFocalLoss(nn.Module): 63 | # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) 64 | def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): 65 | super(QFocalLoss, self).__init__() 66 | self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() 67 | self.gamma = gamma 68 | self.alpha = alpha 69 | self.reduction = loss_fcn.reduction 70 | self.loss_fcn.reduction = 'none' # required to apply FL to each element 71 | 72 | def forward(self, pred, true): 73 | loss = self.loss_fcn(pred, true) 74 | 75 | pred_prob = torch.sigmoid(pred) # prob from logits 76 | alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) 77 | modulating_factor = torch.abs(true - pred_prob) ** self.gamma 78 | loss *= alpha_factor * modulating_factor 79 | 80 | if self.reduction == 'mean': 81 | return loss.mean() 82 | elif self.reduction == 'sum': 83 | return loss.sum() 84 | else: # 'none' 85 | return loss 86 | 87 | 88 | class ComputeLoss: 89 | # Compute losses 90 | def __init__(self, model, autobalance=False): 91 | super(ComputeLoss, self).__init__() 92 | device = next(model.parameters()).device # get model device 93 | h = model.hyp # hyperparameters 94 | 95 | # Define criteria 96 | BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) 97 | BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) 98 | 99 | # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 100 | self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets 101 | 102 | # Focal loss 103 | g = h['fl_gamma'] # focal loss gamma 104 | if g > 0: 105 | BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) 106 | 107 | det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module 108 | self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 109 | self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index 110 | self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance 111 | for k in 'na', 'nc', 'nl', 'anchors': 112 | setattr(self, k, getattr(det, k)) 113 | 114 | def __call__(self, p, targets): # predictions, targets, model 115 | device = targets.device 116 | lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) 117 | tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets 118 | 119 | # Losses 120 | for i, pi in enumerate(p): # layer index, layer predictions 121 | b, a, gj, gi = indices[i] # image, anchor, gridy, gridx 122 | tobj = torch.zeros_like(pi[..., 0], device=device) # target obj 123 | 124 | n = b.shape[0] # number of targets 125 | if n: 126 | ps = pi[b, a, gj, gi] # prediction subset corresponding to targets 127 | 128 | # Regression 129 | pxy = ps[:, :2].sigmoid() * 2. - 0.5 130 | pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] 131 | pbox = torch.cat((pxy, pwh), 1) # predicted box 132 | iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) 133 | lbox += (1.0 - iou).mean() # iou loss 134 | 135 | # Objectness 136 | tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio 137 | 138 | # Classification 139 | if self.nc > 1: # cls loss (only if multiple classes) 140 | t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets 141 | t[range(n), tcls[i]] = self.cp 142 | lcls += self.BCEcls(ps[:, 5:], t) # BCE 143 | 144 | # Append targets to text file 145 | # with open('targets.txt', 'a') as file: 146 | # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] 147 | 148 | obji = self.BCEobj(pi[..., 4], tobj) 149 | lobj += obji * self.balance[i] # obj loss 150 | if self.autobalance: 151 | self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() 152 | 153 | if self.autobalance: 154 | self.balance = [x / self.balance[self.ssi] for x in self.balance] 155 | lbox *= self.hyp['box'] 156 | lobj *= self.hyp['obj'] 157 | lcls *= self.hyp['cls'] 158 | bs = tobj.shape[0] # batch size 159 | 160 | loss = lbox + lobj + lcls 161 | return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() 162 | 163 | def build_targets(self, p, targets): 164 | # Build targets for compute_loss(), input targets(image,class,x,y,w,h) 165 | na, nt = self.na, targets.shape[0] # number of anchors, targets 166 | tcls, tbox, indices, anch = [], [], [], [] 167 | gain = torch.ones(7, device=targets.device) # normalized to gridspace gain 168 | ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) 169 | targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices 170 | 171 | g = 0.5 # bias 172 | off = torch.tensor([[0, 0], 173 | [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m 174 | # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm 175 | ], device=targets.device).float() * g # offsets 176 | 177 | for i in range(self.nl): 178 | anchors = self.anchors[i] 179 | gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain 180 | 181 | # Match targets to anchors 182 | t = targets * gain 183 | if nt: 184 | # Matches 185 | r = t[:, :, 4:6] / anchors[:, None] # wh ratio 186 | j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare 187 | # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) 188 | t = t[j] # filter 189 | 190 | # Offsets 191 | gxy = t[:, 2:4] # grid xy 192 | gxi = gain[[2, 3]] - gxy # inverse 193 | j, k = ((gxy % 1. < g) & (gxy > 1.)).T 194 | l, m = ((gxi % 1. < g) & (gxi > 1.)).T 195 | j = torch.stack((torch.ones_like(j), j, k, l, m)) 196 | t = t.repeat((5, 1, 1))[j] 197 | offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] 198 | else: 199 | t = targets[0] 200 | offsets = 0 201 | 202 | # Define 203 | b, c = t[:, :2].long().T # image, class 204 | gxy = t[:, 2:4] # grid xy 205 | gwh = t[:, 4:6] # grid wh 206 | gij = (gxy - offsets).long() 207 | gi, gj = gij.T # grid xy indices 208 | 209 | # Append 210 | a = t[:, 6].long() # anchor indices 211 | indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices 212 | tbox.append(torch.cat((gxy - gij, gwh), 1)) # box 213 | anch.append(anchors[a]) # anchors 214 | tcls.append(c) # class 215 | 216 | return tcls, tbox, indices, anch 217 | -------------------------------------------------------------------------------- /utils/metrics.py: -------------------------------------------------------------------------------- 1 | # Model validation metrics 2 | 3 | from pathlib import Path 4 | 5 | import matplotlib.pyplot as plt 6 | import numpy as np 7 | import torch 8 | 9 | from . import general 10 | 11 | 12 | def fitness(x): 13 | # Model fitness as a weighted combination of metrics 14 | w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] 15 | return (x[:, :4] * w).sum(1) 16 | 17 | 18 | def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()): 19 | """ Compute the average precision, given the recall and precision curves. 20 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. 21 | # Arguments 22 | tp: True positives (nparray, nx1 or nx10). 23 | conf: Objectness value from 0-1 (nparray). 24 | pred_cls: Predicted object classes (nparray). 25 | target_cls: True object classes (nparray). 26 | plot: Plot precision-recall curve at mAP@0.5 27 | save_dir: Plot save directory 28 | # Returns 29 | The average precision as computed in py-faster-rcnn. 30 | """ 31 | 32 | # Sort by objectness 33 | i = np.argsort(-conf) 34 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] 35 | 36 | # Find unique classes 37 | unique_classes = np.unique(target_cls) 38 | nc = unique_classes.shape[0] # number of classes, number of detections 39 | 40 | # Create Precision-Recall curve and compute AP for each class 41 | px, py = np.linspace(0, 1, 1000), [] # for plotting 42 | ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) 43 | for ci, c in enumerate(unique_classes): 44 | i = pred_cls == c 45 | n_l = (target_cls == c).sum() # number of labels 46 | n_p = i.sum() # number of predictions 47 | 48 | if n_p == 0 or n_l == 0: 49 | continue 50 | else: 51 | # Accumulate FPs and TPs 52 | fpc = (1 - tp[i]).cumsum(0) 53 | tpc = tp[i].cumsum(0) 54 | 55 | # Recall 56 | recall = tpc / (n_l + 1e-16) # recall curve 57 | r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases 58 | 59 | # Precision 60 | precision = tpc / (tpc + fpc) # precision curve 61 | p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score 62 | 63 | # AP from recall-precision curve 64 | for j in range(tp.shape[1]): 65 | ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) 66 | if plot and j == 0: 67 | py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 68 | 69 | # Compute F1 (harmonic mean of precision and recall) 70 | f1 = 2 * p * r / (p + r + 1e-16) 71 | if plot: 72 | plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names) 73 | plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1') 74 | plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision') 75 | plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall') 76 | 77 | i = f1.mean(0).argmax() # max F1 index 78 | return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32') 79 | 80 | 81 | def compute_ap(recall, precision): 82 | """ Compute the average precision, given the recall and precision curves 83 | # Arguments 84 | recall: The recall curve (list) 85 | precision: The precision curve (list) 86 | # Returns 87 | Average precision, precision curve, recall curve 88 | """ 89 | 90 | # Append sentinel values to beginning and end 91 | mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01])) 92 | mpre = np.concatenate(([1.], precision, [0.])) 93 | 94 | # Compute the precision envelope 95 | mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) 96 | 97 | # Integrate area under curve 98 | method = 'interp' # methods: 'continuous', 'interp' 99 | if method == 'interp': 100 | x = np.linspace(0, 1, 101) # 101-point interp (COCO) 101 | ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate 102 | else: # 'continuous' 103 | i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes 104 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve 105 | 106 | return ap, mpre, mrec 107 | 108 | 109 | class ConfusionMatrix: 110 | # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix 111 | def __init__(self, nc, conf=0.25, iou_thres=0.45): 112 | self.matrix = np.zeros((nc + 1, nc + 1)) 113 | self.nc = nc # number of classes 114 | self.conf = conf 115 | self.iou_thres = iou_thres 116 | 117 | def process_batch(self, detections, labels): 118 | """ 119 | Return intersection-over-union (Jaccard index) of boxes. 120 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format. 121 | Arguments: 122 | detections (Array[N, 6]), x1, y1, x2, y2, conf, class 123 | labels (Array[M, 5]), class, x1, y1, x2, y2 124 | Returns: 125 | None, updates confusion matrix accordingly 126 | """ 127 | detections = detections[detections[:, 4] > self.conf] 128 | gt_classes = labels[:, 0].int() 129 | detection_classes = detections[:, 5].int() 130 | iou = general.box_iou(labels[:, 1:], detections[:, :4]) 131 | 132 | x = torch.where(iou > self.iou_thres) 133 | if x[0].shape[0]: 134 | matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() 135 | if x[0].shape[0] > 1: 136 | matches = matches[matches[:, 2].argsort()[::-1]] 137 | matches = matches[np.unique(matches[:, 1], return_index=True)[1]] 138 | matches = matches[matches[:, 2].argsort()[::-1]] 139 | matches = matches[np.unique(matches[:, 0], return_index=True)[1]] 140 | else: 141 | matches = np.zeros((0, 3)) 142 | 143 | n = matches.shape[0] > 0 144 | m0, m1, _ = matches.transpose().astype(np.int16) 145 | for i, gc in enumerate(gt_classes): 146 | j = m0 == i 147 | if n and sum(j) == 1: 148 | self.matrix[gc, detection_classes[m1[j]]] += 1 # correct 149 | else: 150 | self.matrix[self.nc, gc] += 1 # background FP 151 | 152 | if n: 153 | for i, dc in enumerate(detection_classes): 154 | if not any(m1 == i): 155 | self.matrix[dc, self.nc] += 1 # background FN 156 | 157 | def matrix(self): 158 | return self.matrix 159 | 160 | def plot(self, save_dir='', names=()): 161 | try: 162 | import seaborn as sn 163 | 164 | array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize 165 | array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) 166 | 167 | fig = plt.figure(figsize=(12, 9), tight_layout=True) 168 | sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size 169 | labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels 170 | sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True, 171 | xticklabels=names + ['background FP'] if labels else "auto", 172 | yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1)) 173 | fig.axes[0].set_xlabel('True') 174 | fig.axes[0].set_ylabel('Predicted') 175 | fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) 176 | except Exception as e: 177 | pass 178 | 179 | def print(self): 180 | for i in range(self.nc + 1): 181 | print(' '.join(map(str, self.matrix[i]))) 182 | 183 | 184 | # Plots ---------------------------------------------------------------------------------------------------------------- 185 | 186 | def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()): 187 | # Precision-recall curve 188 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) 189 | py = np.stack(py, axis=1) 190 | 191 | if 0 < len(names) < 21: # display per-class legend if < 21 classes 192 | for i, y in enumerate(py.T): 193 | ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) 194 | else: 195 | ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) 196 | 197 | ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) 198 | ax.set_xlabel('Recall') 199 | ax.set_ylabel('Precision') 200 | ax.set_xlim(0, 1) 201 | ax.set_ylim(0, 1) 202 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") 203 | fig.savefig(Path(save_dir), dpi=250) 204 | 205 | 206 | def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'): 207 | # Metric-confidence curve 208 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) 209 | 210 | if 0 < len(names) < 21: # display per-class legend if < 21 classes 211 | for i, y in enumerate(py): 212 | ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) 213 | else: 214 | ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) 215 | 216 | y = py.mean(0) 217 | ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') 218 | ax.set_xlabel(xlabel) 219 | ax.set_ylabel(ylabel) 220 | ax.set_xlim(0, 1) 221 | ax.set_ylim(0, 1) 222 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") 223 | fig.savefig(Path(save_dir), dpi=250) 224 | -------------------------------------------------------------------------------- /utils/torch_utils.py: -------------------------------------------------------------------------------- 1 | # YOLOv5 PyTorch utils 2 | 3 | import datetime 4 | import logging 5 | import math 6 | import os 7 | import platform 8 | import subprocess 9 | import time 10 | from contextlib import contextmanager 11 | from copy import deepcopy 12 | from pathlib import Path 13 | 14 | import torch 15 | import torch.backends.cudnn as cudnn 16 | import torch.nn as nn 17 | import torch.nn.functional as F 18 | import torchvision 19 | 20 | try: 21 | import thop # for FLOPS computation 22 | except ImportError: 23 | thop = None 24 | logger = logging.getLogger(__name__) 25 | 26 | 27 | @contextmanager 28 | def torch_distributed_zero_first(local_rank: int): 29 | """ 30 | Decorator to make all processes in distributed training wait for each local_master to do something. 31 | """ 32 | if local_rank not in [-1, 0]: 33 | torch.distributed.barrier() 34 | yield 35 | if local_rank == 0: 36 | torch.distributed.barrier() 37 | 38 | 39 | def init_torch_seeds(seed=0): 40 | # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html 41 | torch.manual_seed(seed) 42 | if seed == 0: # slower, more reproducible 43 | cudnn.benchmark, cudnn.deterministic = False, True 44 | else: # faster, less reproducible 45 | cudnn.benchmark, cudnn.deterministic = True, False 46 | 47 | 48 | def date_modified(path=__file__): 49 | # return human-readable file modification date, i.e. '2021-3-26' 50 | t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime) 51 | return f'{t.year}-{t.month}-{t.day}' 52 | 53 | 54 | def git_describe(path=Path(__file__).parent): # path must be a directory 55 | # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe 56 | s = f'git -C {path} describe --tags --long --always' 57 | try: 58 | return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1] 59 | except subprocess.CalledProcessError as e: 60 | return '' # not a git repository 61 | 62 | 63 | def select_device(device='', batch_size=None): 64 | # device = 'cpu' or '0' or '0,1,2,3' 65 | s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string 66 | cpu = device.lower() == 'cpu' 67 | if cpu: 68 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False 69 | elif device: # non-cpu device requested 70 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable 71 | assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability 72 | 73 | cuda = not cpu and torch.cuda.is_available() 74 | if cuda: 75 | n = torch.cuda.device_count() 76 | if n > 1 and batch_size: # check that batch_size is compatible with device_count 77 | assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' 78 | space = ' ' * len(s) 79 | for i, d in enumerate(device.split(',') if device else range(n)): 80 | p = torch.cuda.get_device_properties(i) 81 | s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB 82 | else: 83 | s += 'CPU\n' 84 | 85 | logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe 86 | return torch.device('cuda:0' if cuda else 'cpu') 87 | 88 | 89 | def time_synchronized(): 90 | # pytorch-accurate time 91 | if torch.cuda.is_available(): 92 | torch.cuda.synchronize() 93 | return time.time() 94 | 95 | 96 | def profile(x, ops, n=100, device=None): 97 | # profile a pytorch module or list of modules. Example usage: 98 | # x = torch.randn(16, 3, 640, 640) # input 99 | # m1 = lambda x: x * torch.sigmoid(x) 100 | # m2 = nn.SiLU() 101 | # profile(x, [m1, m2], n=100) # profile speed over 100 iterations 102 | 103 | device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 104 | x = x.to(device) 105 | x.requires_grad = True 106 | print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') 107 | print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") 108 | for m in ops if isinstance(ops, list) else [ops]: 109 | m = m.to(device) if hasattr(m, 'to') else m # device 110 | m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type 111 | dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward 112 | try: 113 | flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS 114 | except: 115 | flops = 0 116 | 117 | for _ in range(n): 118 | t[0] = time_synchronized() 119 | y = m(x) 120 | t[1] = time_synchronized() 121 | try: 122 | _ = y.sum().backward() 123 | t[2] = time_synchronized() 124 | except: # no backward method 125 | t[2] = float('nan') 126 | dtf += (t[1] - t[0]) * 1000 / n # ms per op forward 127 | dtb += (t[2] - t[1]) * 1000 / n # ms per op backward 128 | 129 | s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' 130 | s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' 131 | p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters 132 | print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}') 133 | 134 | 135 | def is_parallel(model): 136 | return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) 137 | 138 | 139 | def intersect_dicts(da, db, exclude=()): 140 | # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values 141 | return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} 142 | 143 | 144 | def initialize_weights(model): 145 | for m in model.modules(): 146 | t = type(m) 147 | if t is nn.Conv2d: 148 | pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') 149 | elif t is nn.BatchNorm2d: 150 | m.eps = 1e-3 151 | m.momentum = 0.03 152 | elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: 153 | m.inplace = True 154 | 155 | 156 | def find_modules(model, mclass=nn.Conv2d): 157 | # Finds layer indices matching module class 'mclass' 158 | return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] 159 | 160 | 161 | def sparsity(model): 162 | # Return global model sparsity 163 | a, b = 0., 0. 164 | for p in model.parameters(): 165 | a += p.numel() 166 | b += (p == 0).sum() 167 | return b / a 168 | 169 | 170 | def prune(model, amount=0.3): 171 | # Prune model to requested global sparsity 172 | import torch.nn.utils.prune as prune 173 | print('Pruning model... ', end='') 174 | for name, m in model.named_modules(): 175 | if isinstance(m, nn.Conv2d): 176 | prune.l1_unstructured(m, name='weight', amount=amount) # prune 177 | prune.remove(m, 'weight') # make permanent 178 | print(' %.3g global sparsity' % sparsity(model)) 179 | 180 | 181 | def fuse_conv_and_bn(conv, bn): 182 | # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ 183 | fusedconv = nn.Conv2d(conv.in_channels, 184 | conv.out_channels, 185 | kernel_size=conv.kernel_size, 186 | stride=conv.stride, 187 | padding=conv.padding, 188 | groups=conv.groups, 189 | bias=True).requires_grad_(False).to(conv.weight.device) 190 | 191 | # prepare filters 192 | w_conv = conv.weight.clone().view(conv.out_channels, -1) 193 | w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) 194 | fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) 195 | 196 | # prepare spatial bias 197 | b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias 198 | b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) 199 | fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) 200 | 201 | return fusedconv 202 | 203 | 204 | def model_info(model, verbose=False, img_size=640): 205 | # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] 206 | n_p = sum(x.numel() for x in model.parameters()) # number parameters 207 | n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients 208 | if verbose: 209 | print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) 210 | for i, (name, p) in enumerate(model.named_parameters()): 211 | name = name.replace('module_list.', '') 212 | print('%5g %40s %9s %12g %20s %10.3g %10.3g' % 213 | (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) 214 | 215 | try: # FLOPS 216 | from thop import profile 217 | stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 218 | img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input 219 | flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS 220 | img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float 221 | fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS 222 | except (ImportError, Exception): 223 | fs = '' 224 | 225 | logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") 226 | 227 | 228 | def load_classifier(name='resnet101', n=2): 229 | # Loads a pretrained model reshaped to n-class output 230 | model = torchvision.models.__dict__[name](pretrained=True) 231 | 232 | # ResNet model properties 233 | # input_size = [3, 224, 224] 234 | # input_space = 'RGB' 235 | # input_range = [0, 1] 236 | # mean = [0.485, 0.456, 0.406] 237 | # std = [0.229, 0.224, 0.225] 238 | 239 | # Reshape output to n classes 240 | filters = model.fc.weight.shape[1] 241 | model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) 242 | model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) 243 | model.fc.out_features = n 244 | return model 245 | 246 | 247 | def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) 248 | # scales img(bs,3,y,x) by ratio constrained to gs-multiple 249 | if ratio == 1.0: 250 | return img 251 | else: 252 | h, w = img.shape[2:] 253 | s = (int(h * ratio), int(w * ratio)) # new size 254 | img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize 255 | if not same_shape: # pad/crop img 256 | h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] 257 | return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean 258 | 259 | 260 | def copy_attr(a, b, include=(), exclude=()): 261 | # Copy attributes from b to a, options to only include [...] and to exclude [...] 262 | for k, v in b.__dict__.items(): 263 | if (len(include) and k not in include) or k.startswith('_') or k in exclude: 264 | continue 265 | else: 266 | setattr(a, k, v) 267 | 268 | 269 | class ModelEMA: 270 | """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models 271 | Keep a moving average of everything in the model state_dict (parameters and buffers). 272 | This is intended to allow functionality like 273 | https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage 274 | A smoothed version of the weights is necessary for some training schemes to perform well. 275 | This class is sensitive where it is initialized in the sequence of model init, 276 | GPU assignment and distributed training wrappers. 277 | """ 278 | 279 | def __init__(self, model, decay=0.9999, updates=0): 280 | # Create EMA 281 | self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA 282 | # if next(model.parameters()).device.type != 'cpu': 283 | # self.ema.half() # FP16 EMA 284 | self.updates = updates # number of EMA updates 285 | self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) 286 | for p in self.ema.parameters(): 287 | p.requires_grad_(False) 288 | 289 | def update(self, model): 290 | # Update EMA parameters 291 | with torch.no_grad(): 292 | self.updates += 1 293 | d = self.decay(self.updates) 294 | 295 | msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict 296 | for k, v in self.ema.state_dict().items(): 297 | if v.dtype.is_floating_point: 298 | v *= d 299 | v += (1. - d) * msd[k].detach() 300 | 301 | def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): 302 | # Update EMA attributes 303 | copy_attr(self.ema, model, include, exclude) 304 | -------------------------------------------------------------------------------- /utils/wandb_logging/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/utils/wandb_logging/__init__.py -------------------------------------------------------------------------------- /utils/wandb_logging/log_dataset.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | 3 | import yaml 4 | 5 | from wandb_utils import WandbLogger 6 | 7 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' 8 | 9 | 10 | def create_dataset_artifact(opt): 11 | with open(opt.data) as f: 12 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict 13 | logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation') 14 | 15 | 16 | if __name__ == '__main__': 17 | parser = argparse.ArgumentParser() 18 | parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') 19 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') 20 | parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project') 21 | opt = parser.parse_args() 22 | opt.resume = False # Explicitly disallow resume check for dataset upload job 23 | 24 | create_dataset_artifact(opt) 25 | -------------------------------------------------------------------------------- /utils/wandb_logging/wandb_utils.py: -------------------------------------------------------------------------------- 1 | import json 2 | import sys 3 | from pathlib import Path 4 | 5 | import torch 6 | import yaml 7 | from tqdm import tqdm 8 | 9 | sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path 10 | from utils.datasets import LoadImagesAndLabels 11 | from utils.datasets import img2label_paths 12 | from utils.general import colorstr, xywh2xyxy, check_dataset 13 | 14 | try: 15 | import wandb 16 | from wandb import init, finish 17 | except ImportError: 18 | wandb = None 19 | 20 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' 21 | 22 | 23 | def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX): 24 | return from_string[len(prefix):] 25 | 26 | 27 | def check_wandb_config_file(data_config_file): 28 | wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path 29 | if Path(wandb_config).is_file(): 30 | return wandb_config 31 | return data_config_file 32 | 33 | 34 | def get_run_info(run_path): 35 | run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX)) 36 | run_id = run_path.stem 37 | project = run_path.parent.stem 38 | model_artifact_name = 'run_' + run_id + '_model' 39 | return run_id, project, model_artifact_name 40 | 41 | 42 | def check_wandb_resume(opt): 43 | process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None 44 | if isinstance(opt.resume, str): 45 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): 46 | if opt.global_rank not in [-1, 0]: # For resuming DDP runs 47 | run_id, project, model_artifact_name = get_run_info(opt.resume) 48 | api = wandb.Api() 49 | artifact = api.artifact(project + '/' + model_artifact_name + ':latest') 50 | modeldir = artifact.download() 51 | opt.weights = str(Path(modeldir) / "last.pt") 52 | return True 53 | return None 54 | 55 | 56 | def process_wandb_config_ddp_mode(opt): 57 | with open(opt.data) as f: 58 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict 59 | train_dir, val_dir = None, None 60 | if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX): 61 | api = wandb.Api() 62 | train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias) 63 | train_dir = train_artifact.download() 64 | train_path = Path(train_dir) / 'data/images/' 65 | data_dict['train'] = str(train_path) 66 | 67 | if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX): 68 | api = wandb.Api() 69 | val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias) 70 | val_dir = val_artifact.download() 71 | val_path = Path(val_dir) / 'data/images/' 72 | data_dict['val'] = str(val_path) 73 | if train_dir or val_dir: 74 | ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml') 75 | with open(ddp_data_path, 'w') as f: 76 | yaml.dump(data_dict, f) 77 | opt.data = ddp_data_path 78 | 79 | 80 | class WandbLogger(): 81 | def __init__(self, opt, name, run_id, data_dict, job_type='Training'): 82 | # Pre-training routine -- 83 | self.job_type = job_type 84 | self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict 85 | # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call 86 | if isinstance(opt.resume, str): # checks resume from artifact 87 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): 88 | run_id, project, model_artifact_name = get_run_info(opt.resume) 89 | model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name 90 | assert wandb, 'install wandb to resume wandb runs' 91 | # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config 92 | self.wandb_run = wandb.init(id=run_id, project=project, resume='allow') 93 | opt.resume = model_artifact_name 94 | elif self.wandb: 95 | self.wandb_run = wandb.init(config=opt, 96 | resume="allow", 97 | project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem, 98 | name=name, 99 | job_type=job_type, 100 | id=run_id) if not wandb.run else wandb.run 101 | if self.wandb_run: 102 | if self.job_type == 'Training': 103 | if not opt.resume: 104 | wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict 105 | # Info useful for resuming from artifacts 106 | self.wandb_run.config.opt = vars(opt) 107 | self.wandb_run.config.data_dict = wandb_data_dict 108 | self.data_dict = self.setup_training(opt, data_dict) 109 | if self.job_type == 'Dataset Creation': 110 | self.data_dict = self.check_and_upload_dataset(opt) 111 | else: 112 | prefix = colorstr('wandb: ') 113 | print(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)") 114 | 115 | def check_and_upload_dataset(self, opt): 116 | assert wandb, 'Install wandb to upload dataset' 117 | check_dataset(self.data_dict) 118 | config_path = self.log_dataset_artifact(opt.data, 119 | opt.single_cls, 120 | 'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem) 121 | print("Created dataset config file ", config_path) 122 | with open(config_path) as f: 123 | wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader) 124 | return wandb_data_dict 125 | 126 | def setup_training(self, opt, data_dict): 127 | self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants 128 | self.bbox_interval = opt.bbox_interval 129 | if isinstance(opt.resume, str): 130 | modeldir, _ = self.download_model_artifact(opt) 131 | if modeldir: 132 | self.weights = Path(modeldir) / "last.pt" 133 | config = self.wandb_run.config 134 | opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str( 135 | self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \ 136 | config.opt['hyp'] 137 | data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume 138 | if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download 139 | self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'), 140 | opt.artifact_alias) 141 | self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'), 142 | opt.artifact_alias) 143 | self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None 144 | if self.train_artifact_path is not None: 145 | train_path = Path(self.train_artifact_path) / 'data/images/' 146 | data_dict['train'] = str(train_path) 147 | if self.val_artifact_path is not None: 148 | val_path = Path(self.val_artifact_path) / 'data/images/' 149 | data_dict['val'] = str(val_path) 150 | self.val_table = self.val_artifact.get("val") 151 | self.map_val_table_path() 152 | if self.val_artifact is not None: 153 | self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") 154 | self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"]) 155 | if opt.bbox_interval == -1: 156 | self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 157 | return data_dict 158 | 159 | def download_dataset_artifact(self, path, alias): 160 | if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX): 161 | dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) 162 | assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'" 163 | datadir = dataset_artifact.download() 164 | return datadir, dataset_artifact 165 | return None, None 166 | 167 | def download_model_artifact(self, opt): 168 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): 169 | model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest") 170 | assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist' 171 | modeldir = model_artifact.download() 172 | epochs_trained = model_artifact.metadata.get('epochs_trained') 173 | total_epochs = model_artifact.metadata.get('total_epochs') 174 | assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % ( 175 | total_epochs) 176 | return modeldir, model_artifact 177 | return None, None 178 | 179 | def log_model(self, path, opt, epoch, fitness_score, best_model=False): 180 | model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={ 181 | 'original_url': str(path), 182 | 'epochs_trained': epoch + 1, 183 | 'save period': opt.save_period, 184 | 'project': opt.project, 185 | 'total_epochs': opt.epochs, 186 | 'fitness_score': fitness_score 187 | }) 188 | model_artifact.add_file(str(path / 'last.pt'), name='last.pt') 189 | wandb.log_artifact(model_artifact, 190 | aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else '']) 191 | print("Saving model artifact on epoch ", epoch + 1) 192 | 193 | def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False): 194 | with open(data_file) as f: 195 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict 196 | nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names']) 197 | names = {k: v for k, v in enumerate(names)} # to index dictionary 198 | self.train_artifact = self.create_dataset_table(LoadImagesAndLabels( 199 | data['train']), names, name='train') if data.get('train') else None 200 | self.val_artifact = self.create_dataset_table(LoadImagesAndLabels( 201 | data['val']), names, name='val') if data.get('val') else None 202 | if data.get('train'): 203 | data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train') 204 | if data.get('val'): 205 | data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val') 206 | path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path 207 | data.pop('download', None) 208 | with open(path, 'w') as f: 209 | yaml.dump(data, f) 210 | 211 | if self.job_type == 'Training': # builds correct artifact pipeline graph 212 | self.wandb_run.use_artifact(self.val_artifact) 213 | self.wandb_run.use_artifact(self.train_artifact) 214 | self.val_artifact.wait() 215 | self.val_table = self.val_artifact.get('val') 216 | self.map_val_table_path() 217 | else: 218 | self.wandb_run.log_artifact(self.train_artifact) 219 | self.wandb_run.log_artifact(self.val_artifact) 220 | return path 221 | 222 | def map_val_table_path(self): 223 | self.val_table_map = {} 224 | print("Mapping dataset") 225 | for i, data in enumerate(tqdm(self.val_table.data)): 226 | self.val_table_map[data[3]] = data[0] 227 | 228 | def create_dataset_table(self, dataset, class_to_id, name='dataset'): 229 | # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging 230 | artifact = wandb.Artifact(name=name, type="dataset") 231 | img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None 232 | img_files = tqdm(dataset.img_files) if not img_files else img_files 233 | for img_file in img_files: 234 | if Path(img_file).is_dir(): 235 | artifact.add_dir(img_file, name='data/images') 236 | labels_path = 'labels'.join(dataset.path.rsplit('images', 1)) 237 | artifact.add_dir(labels_path, name='data/labels') 238 | else: 239 | artifact.add_file(img_file, name='data/images/' + Path(img_file).name) 240 | label_file = Path(img2label_paths([img_file])[0]) 241 | artifact.add_file(str(label_file), 242 | name='data/labels/' + label_file.name) if label_file.exists() else None 243 | table = wandb.Table(columns=["id", "train_image", "Classes", "name"]) 244 | class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()]) 245 | for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)): 246 | height, width = shapes[0] 247 | labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height]) 248 | box_data, img_classes = [], {} 249 | for cls, *xyxy in labels[:, 1:].tolist(): 250 | cls = int(cls) 251 | box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, 252 | "class_id": cls, 253 | "box_caption": "%s" % (class_to_id[cls]), 254 | "scores": {"acc": 1}, 255 | "domain": "pixel"}) 256 | img_classes[cls] = class_to_id[cls] 257 | boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space 258 | table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes), 259 | Path(paths).name) 260 | artifact.add(table, name) 261 | return artifact 262 | 263 | def log_training_progress(self, predn, path, names): 264 | if self.val_table and self.result_table: 265 | class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()]) 266 | box_data = [] 267 | total_conf = 0 268 | for *xyxy, conf, cls in predn.tolist(): 269 | if conf >= 0.25: 270 | box_data.append( 271 | {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, 272 | "class_id": int(cls), 273 | "box_caption": "%s %.3f" % (names[cls], conf), 274 | "scores": {"class_score": conf}, 275 | "domain": "pixel"}) 276 | total_conf = total_conf + conf 277 | boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space 278 | id = self.val_table_map[Path(path).name] 279 | self.result_table.add_data(self.current_epoch, 280 | id, 281 | wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set), 282 | total_conf / max(1, len(box_data)) 283 | ) 284 | 285 | def log(self, log_dict): 286 | if self.wandb_run: 287 | for key, value in log_dict.items(): 288 | self.log_dict[key] = value 289 | 290 | def end_epoch(self, best_result=False): 291 | if self.wandb_run: 292 | wandb.log(self.log_dict) 293 | self.log_dict = {} 294 | if self.result_artifact: 295 | train_results = wandb.JoinedTable(self.val_table, self.result_table, "id") 296 | self.result_artifact.add(train_results, 'result') 297 | wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch), 298 | ('best' if best_result else '')]) 299 | self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"]) 300 | self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") 301 | 302 | def finish_run(self): 303 | if self.wandb_run: 304 | if self.log_dict: 305 | wandb.log(self.log_dict) 306 | wandb.run.finish() 307 | -------------------------------------------------------------------------------- /wechat.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/xugaoxiang/yolov5-pyqt5/2b5f04e914afea156718a5af705f9e7e9902544a/wechat.jpg -------------------------------------------------------------------------------- /weights/download_weights.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Download latest models from https://github.com/ultralytics/yolov5/releases 3 | # Usage: 4 | # $ bash weights/download_weights.sh 5 | 6 | python - <