├── README.md
├── framework_n4.png
└── framework_n5.png
/README.md:
--------------------------------------------------------------------------------
1 | # Neural-Style-Transfer-Papers
2 | Selected papers, corresponding codes and pre-trained models in our review paper **"Neural Style Transfer: A Review" [[arXiv Version]](https://arxiv.org/abs/1705.04058) [[IEEE Version]](https://ieeexplore.ieee.org/document/8732370)**
3 |
4 | The corresponding OSF repository can be found at: https://osf.io/f8tu4/.
5 |
6 | *If I missed your paper in this review, please email me or just pull a request here. I am more than happy to add it. Thanks!*
7 |
8 |
9 | ## Citation
10 | If you find this repository useful for your research, please consider citing
11 |
12 | ```
13 | @article{jing2019neural,
14 | title={Neural Style Transfer: A Review},
15 | author={Jing, Yongcheng and Yang, Yezhou and Feng, Zunlei and Ye, Jingwen and Yu, Yizhou and Song, Mingli},
16 | journal={IEEE Transactions on Visualization and Computer Graphics},
17 | year={2019}
18 | }
19 | ```
20 | Please also consider citing our ECCV paper and AAAI (Oral) paper:
21 |
22 | ```
23 | @inproceedings{jing2018stroke,
24 | title={Stroke Controllable Fast Style Transfer with Adaptive Receptive Fields},
25 | author={Jing, Yongcheng and Liu, Yang and Yang, Yezhou and Feng, Zunlei and Yu, Yizhou and Tao, Dacheng and Song, Mingli},
26 | booktitle={ECCV},
27 | year={2018}
28 | }
29 | ```
30 | ```
31 | @inproceedings{jing2020dynamic,
32 | title={Dynamic Instance Normalization for Arbitrary Style Transfer},
33 | author={Jing, Yongcheng and Liu, Xiao and Ding, Yukang and Wang, Xinchao and Ding, Errui and Song, Mingli and Wen, Shilei},
34 | booktitle={AAAI},
35 | year={2020}
36 | }
37 | ```
38 |
39 | Thanks!
40 |
41 | ## Framework
42 |
43 | There is a recent nice NST framework called [pystiche](https://github.com/ycjing/Neural-Style-Transfer-Papers/issues/17#issue-725784148), developed by [Philip Meier](https://github.com/pmeier). If you are interested, please refer to https://github.com/pmeier/pystiche. A package that comprises reference implementations of NST papers with pystiche can be found at [pystiche_papers](https://github.com/pmeier/pystiche_papers) (work in progress).
44 |
45 |
46 | ---
47 |
48 | ## *News!*
49 |
50 | - [June, 2019] Update the *Images (TVCG)* (.png) and *Supplementary Material (TVCG)* in the *Materials*. **Warmly welcome to use *Images (TVCG)* for comparison results in your paper!**
51 |
52 | - [May, 2019] Our paper *Neural Style Transfer: A Review* has been accepted by TVCG as a regular paper. This repository will be updated soon.
53 |
54 | - [July, 2018] Our paper *Stroke Controllable Fast Style Transfer with Adaptive Receptive Fields* has been accepted by ECCV 2018. Our review will be updated correspondingly.
55 |
56 | - [June, 2018] Upload a new version of our paper on arXiv which adds several missing papers (e.g., the work of Wang et al. *ZM-Net: Real-time Zero-shot Image Manipulation Network*).
57 |
58 | - [Apr, 2018] We have released a new version of the paper with significant changes at: https://arxiv.org/pdf/1705.04058.pdf Appreciate the feedback!
59 |
60 | - [Feb, 2018] Update the *Images* *(Images_neuralStyleTransferReview_v2)* in the *Materials*. Add the results of Li et al.'s NIPS 2017 paper.
61 |
62 | - [Jan, 2018] *Pre-trained models* and all the *content images*, the *style images*, and the *stylized results* in the paper have been released.
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 | ## Materials corresponding to Our Paper
72 |
73 | :white_check_mark: [**Supplementary Material (TVCG)**](https://drive.google.com/file/d/1_VTS4rUSl488wgSrz2K5BfKra33gvaHH/view?usp=sharing)
74 |
75 | :white_check_mark: [**Pre-trained Models**](https://www.dropbox.com/s/37lje23pb75ecob/Models_neuralStyleTransferReview.zip?dl=0)
76 |
77 | :white_check_mark: [**Images (TVCG)(.png)**](https://drive.google.com/file/d/14RN0GN09-rordzRqp4o8oU30BB7uiNcj/view?usp=sharing)
78 |
79 | ## A Taxonomy of Current Methods
80 |
81 | ### 1. Image-Optimisation-Based Online Neural Methods
82 |
83 | ### 1.1. Parametric Neural Methods with Summary Statistics
84 |
85 | :white_check_mark: [**A Neural Algorithm of Artistic Style**] [[Paper]](https://arxiv.org/pdf/1508.06576.pdf) *(First Neural Style Transfer Paper)*
86 |
87 | :sparkle: **Code:**
88 |
89 | * [Torch-based](https://github.com/jcjohnson/neural-style)
90 | * [TensorFlow-based](https://github.com/anishathalye/neural-style)
91 | * [TensorFlow-based with L-BFGS optimizer support](https://github.com/cysmith/neural-style-tf)
92 | * [Caffe-based](https://github.com/fzliu/style-transfer)
93 | * [Keras-based](https://github.com/titu1994/Neural-Style-Transfer)
94 | * [MXNet-based](https://github.com/pavelgonchar/neural-art-mini)
95 | * [MatConvNet-based](https://github.com/aravindhm/neural-style-matconvnet)
96 |
97 | :white_check_mark: [**Image Style Transfer Using Convolutional Neural Networks**] [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf) *(CVPR 2016)*
98 |
99 | :white_check_mark: [**Incorporating Long-range Consistency in CNN-based Texture Generation**] [[Paper]](https://arxiv.org/pdf/1606.01286.pdf) *(ICLR 2017)*
100 |
101 | :sparkle: **Code:**
102 |
103 | * [Theano-based](https://github.com/guillaumebrg/texture_generation)
104 |
105 | :white_check_mark: [**Laplacian-Steered Neural Style Transfer**] [[Paper]](https://arxiv.org/pdf/1707.01253.pdf) *(ACM MM 2017)*
106 |
107 | :sparkle: **Code:**
108 |
109 | * [Torch-based & TensorFlow-based](https://github.com/askerlee/lapstyle)
110 |
111 | :white_check_mark: [**Demystifying Neural Style Transfer**] [[Paper]](https://arxiv.org/pdf/1701.01036.pdf) *(Theoretical Explanation)* *(IJCAI 2017)*
112 |
113 | :sparkle: **Code:**
114 |
115 | * [MXNet-based](https://github.com/lyttonhao/Neural-Style-MMD)
116 |
117 | :white_check_mark: [**Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses**] [[Paper]](https://arxiv.org/pdf/1701.08893.pdf)
118 |
119 |
120 | ### 1.2. Non-parametric Neural Methods with MRFs
121 |
122 | :white_check_mark: [**Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis**] [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Li_Combining_Markov_Random_CVPR_2016_paper.pdf) *(CVPR 2016)*
123 |
124 | :sparkle: **Code:**
125 |
126 | * [Torch-based](https://github.com/chuanli11/CNNMRF)
127 |
128 |
129 | :white_check_mark: [**Arbitrary Style Transfer with Deep Feature Reshuffle**] [[Paper]](https://arxiv.org/pdf/1805.04103.pdf) *(CVPR 2018)*
130 |
131 | ### 2. Model-Optimisation-Based Offline Neural Methods
132 |
133 | ### 2.1. Per-Style-Per-Model Neural Methods
134 |
135 |
136 | :white_check_mark: [**Perceptual Losses for Real-Time Style Transfer and Super-Resolution**] [[Paper]](https://arxiv.org/pdf/1603.08155.pdf) *(ECCV 2016)*
137 |
138 | :sparkle: **Code:**
139 |
140 | * [Torch-based](https://github.com/jcjohnson/fast-neural-style)
141 | * [TensorFlow-based](https://github.com/lengstrom/fast-style-transfer)
142 | * [Chainer-based](https://github.com/yusuketomoto/chainer-fast-neuralstyle)
143 |
144 | :sparkle: **Pre-trained Models:**
145 |
146 | * [Torch-models](https://github.com/ProGamerGov/Torch-Models)
147 | * [Chainer-models](https://github.com/gafr/chainer-fast-neuralstyle-models)
148 |
149 |
150 | :white_check_mark: [**Texture Networks: Feed-forward Synthesis of Textures and Stylized Images**] [[Paper]](http://www.jmlr.org/proceedings/papers/v48/ulyanov16.pdf) *(ICML 2016)*
151 |
152 | :sparkle: **Code:**
153 |
154 | * [Torch-based](https://github.com/DmitryUlyanov/texture_nets)
155 | * [TensorFlow-based](https://github.com/tgyg-jegli/tf_texture_net)
156 |
157 |
158 | :white_check_mark: [**Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks**] [[Paper]](https://arxiv.org/pdf/1604.04382.pdf) *(ECCV 2016)*
159 |
160 | :sparkle: **Code:**
161 |
162 | * [Torch-based](https://github.com/chuanli11/MGANs)
163 |
164 |
165 |
166 |
167 | ### 2.2. Multiple-Style-Per-Model Neural Methods
168 |
169 | :white_check_mark: [**A Learned Representation for Artistic Style**] [[Paper]](https://arxiv.org/pdf/1610.07629.pdf) *(ICLR 2017)*
170 |
171 | :sparkle: **Code:**
172 |
173 | * [TensorFlow-based](https://github.com/tensorflow/magenta/tree/master/magenta/models/image_stylization)
174 |
175 | :white_check_mark: [**Multi-style Generative Network for Real-time Transfer**] [[Paper]](https://arxiv.org/pdf/1703.06953.pdf) ***(arXiv, 03/2017)***
176 |
177 | :sparkle: **Code:**
178 |
179 | * [PyTorch-based](https://github.com/zhanghang1989/PyTorch-Style-Transfer)
180 | * [Torch-based](https://github.com/zhanghang1989/MSG-Net)
181 |
182 | :white_check_mark: [**Diversified Texture Synthesis With Feed-Forward Networks**] [[Paper]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Diversified_Texture_Synthesis_CVPR_2017_paper.pdf) *(CVPR 2017)*
183 |
184 | :sparkle: **Code:**
185 |
186 | * [Torch-based](https://github.com/Yijunmaverick/MultiTextureSynthesis)
187 |
188 | :white_check_mark: [**StyleBank: An Explicit Representation for Neural Image Style Transfer**] [[Paper]](https://arxiv.org/pdf/1703.09210.pdf) *(CVPR 2017)*
189 |
190 |
191 |
192 | ### 2.3. Arbitrary-Style-Per-Model Neural Methods
193 |
194 | :white_check_mark: [**Fast Patch-based Style Transfer of Arbitrary Style**] [[Paper]](https://arxiv.org/pdf/1612.04337.pdf)
195 |
196 | :sparkle: **Code:**
197 |
198 | * [Torch-based](https://github.com/rtqichen/style-swap)
199 |
200 | :white_check_mark: [**Exploring the Structure of a Real-time, Arbitrary Neural Artistic Stylization Network**] [[Paper]](https://arxiv.org/pdf/1705.06830.pdf) *(BMVC 2017)*
201 |
202 | :sparkle: **Code:**
203 |
204 | * [TensorFlow-based](https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary_image_stylization)
205 |
206 |
207 | :white_check_mark: [**Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization**] [[Paper]](https://arxiv.org/pdf/1703.06868.pdf) *(ICCV 2017)*
208 |
209 | :sparkle: **Code:**
210 |
211 | * [Torch-based](https://github.com/xunhuang1995/AdaIN-style)
212 | * [TensorFlow-based with Keras](https://github.com/eridgd/AdaIN-TF)
213 | * [TensorFlow-based without Keras](https://github.com/elleryqueenhomels/arbitrary_style_transfer)
214 |
215 | :white_check_mark: [**Dynamic Instance Normalization for Arbitrary Style Transfer**] [[Paper]](https://arxiv.org/pdf/1911.06953.pdf) *(AAAI 2020)*
216 |
217 | :white_check_mark: [**Universal Style Transfer via Feature Transforms**] [[Paper]](https://arxiv.org/pdf/1705.08086.pdf) *(NIPS 2017)*
218 |
219 | :sparkle: **Code:**
220 |
221 | * [Torch-based](https://github.com/Yijunmaverick/UniversalStyleTransfer)
222 | * [TensorFlow-based](https://github.com/eridgd/WCT-TF)
223 | * [PyTorch-based #1](https://github.com/sunshineatnoon/PytorchWCT)
224 | * [PyTorch-based #2](https://github.com/pietrocarbo/deep-transfer)
225 |
226 | :white_check_mark: [**Meta Networks for Neural Style Transfer**] [[Paper]](https://arxiv.org/pdf/1709.04111.pdf) *(CVPR 2018)*
227 |
228 | :sparkle: **Code:**
229 |
230 | * [Caffe-based](https://github.com/FalongShen/styletransfer)
231 |
232 | :white_check_mark: [**ZM-Net: Real-time Zero-shot Image Manipulation Network**] [[Paper]](https://arxiv.org/pdf/1703.07255.pdf)
233 |
234 | :white_check_mark: [**Avatar-Net: Multi-Scale Zero-Shot Style Transfer by Feature Decoration**] [[Paper]](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/0137.pdf) *(CVPR 2018)*
235 |
236 | :sparkle: **Code:**
237 |
238 | * [TensorFlow-based](https://github.com/LucasSheng/avatar-net)
239 |
240 | :white_check_mark: [**Learning Linear Transformations for Fast Arbitrary Style Transfer**] [[Paper]](https://arxiv.org/pdf/1808.04537.pdf)
241 |
242 | :sparkle: **Code:**
243 |
244 | * [PyTorch-based](https://github.com/sunshineatnoon/LinearStyleTransfer)
245 |
246 | ## Improvements and Extensions
247 |
248 | :white_check_mark: [**Preserving Color in Neural Artistic Style Transfer**] [[Paper]](https://arxiv.org/pdf/1606.05897.pdf)
249 |
250 | :white_check_mark: [**Controlling Perceptual Factors in Neural Style Transfer**] [[Paper]](https://arxiv.org/pdf/1611.07865.pdf) *(CVPR 2017)*
251 |
252 | :sparkle: **Code:**
253 |
254 | * [Torch-based](https://github.com/leongatys/NeuralImageSynthesis)
255 |
256 | :white_check_mark: [**Content-Aware Neural Style Transfer**] [[Paper]](https://arxiv.org/pdf/1601.04568.pdf)
257 |
258 | :white_check_mark: [**Towards Deep Style Transfer: A Content-Aware Perspective**] [[Paper]](http://www.bmva.org/bmvc/2016/papers/paper008/paper008.pdf) *(BMVC 2016)*
259 |
260 | :white_check_mark: [**Neural Doodle_Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork**] [[Paper]](https://arxiv.org/pdf/1603.01768.pdf)
261 |
262 | :white_check_mark: [**Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork**] [[Paper]](https://arxiv.org/pdf/1603.01768.pdf)
263 |
264 | :sparkle: **Code:**
265 |
266 | * [Torch-based](https://github.com/alexjc/neural-doodle)
267 |
268 | :white_check_mark: [**The Contextual Loss for Image Transformation with Non-Aligned Data**] [[Paper]](https://arxiv.org/pdf/1803.02077) *(ECCV 2018)*
269 |
270 | :sparkle: **Code:**
271 |
272 | * [TensorFlow-based](https://github.com/roimehrez/contextualLoss)
273 |
274 | :white_check_mark: [**Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis**] [[Paper]](https://arxiv.org/pdf/1701.02096.pdf) *(CVPR 2017)*
275 |
276 | :sparkle: **Code:**
277 |
278 | * [Torch-based](https://github.com/DmitryUlyanov/texture_nets)
279 |
280 | :white_check_mark: [**Instance Normalization:The Missing Ingredient for Fast Stylization**] [[Paper]](https://arxiv.org/pdf/1607.08022.pdf)
281 |
282 | :sparkle: **Code:**
283 |
284 | * [Torch-based](https://github.com/DmitryUlyanov/texture_nets)
285 |
286 | :white_check_mark: [**A Style-Aware Content Loss for Real-time HD Style Transfer**] [[Paper]](https://arxiv.org/pdf/1807.10201) *(ECCV 2018)*
287 |
288 | :white_check_mark: [**Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast Artistic Style Transfer**] [[Paper]](https://arxiv.org/pdf/1612.01895.pdf) *(CVPR 2017)*
289 |
290 | :sparkle: **Code:**
291 |
292 | * [TensorFlow-based](https://github.com/fullfanta/multimodal_transfer)
293 |
294 | :white_check_mark: [**Stroke Controllable Fast Style Transfer with Adaptive Receptive Fields**] [[Paper]](https://arxiv.org/pdf/1802.07101.pdf) *(ECCV 2018)*
295 |
296 | :sparkle: **Code:**
297 |
298 | * [TensorFlow-based](https://github.com/LouieYang/stroke-controllable-fast-style-transfer)
299 |
300 |
301 | :white_check_mark: [**Depth-Preserving Style Transfer**] [[Paper]](https://github.com/xiumingzhang/depth-preserving-neural-style-transfer/blob/master/report/egpaper_final.pdf)
302 |
303 | :sparkle: **Code:**
304 |
305 | * [Torch-based](https://github.com/xiumingzhang/depth-preserving-neural-style-transfer)
306 |
307 | :white_check_mark: [**Depth-Aware Neural Style Transfer**] [[Paper]](https://dl.acm.org/citation.cfm?id=3092924) *(NPAR 2017)*
308 |
309 | :white_check_mark: [**Neural Style Transfer: A Paradigm Shift for Image-based Artistic Rendering?**] [[Paper]](https://tobias.isenberg.cc/personal/papers/Semmo_2017_NST.pdf) *(NPAR 2017)*
310 |
311 | :white_check_mark: [**Pictory: Combining Neural Style Transfer and Image Filtering**] [[Paper]](https://www.researchgate.net/publication/320035123_Demo_Pictory_-_Neural_Style_Transfer_and_Editing_with_CoreML) *(ACM SIGGRAPH 2017 Appy Hour)*
312 |
313 | :white_check_mark: [**Painting Style Transfer for Head Portraits Using Convolutional Neural Networks**] [[Paper]](http://dl.acm.org/citation.cfm?id=2925968) *(SIGGRAPH 2016)*
314 |
315 | :white_check_mark: [**Son of Zorn's Lemma Targeted Style Transfer Using Instance-aware Semantic Segmentation**] [[Paper]](https://arxiv.org/pdf/1701.02357.pdf) *(ICASSP 2017)*
316 |
317 | :white_check_mark: [**Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN**] [[Paper]](https://arxiv.org/pdf/1706.03319.pdf) *(ACPR 2017)*
318 |
319 | :white_check_mark: [**Artistic Style Transfer for Videos**] [[Paper]](https://arxiv.org/pdf/1604.08610.pdf) *(GCPR 2016)*
320 |
321 | :sparkle: **Code:**
322 |
323 | * [Torch-based](https://github.com/manuelruder/artistic-videos)
324 |
325 | :white_check_mark: [**DeepMovie: Using Optical Flow and Deep Neural Networks to Stylize Movies**] [[Paper]](https://arxiv.org/pdf/1605.08153.pdf)
326 |
327 | :white_check_mark: [**Characterizing and Improving Stability in Neural Style Transfer**] [[Paper]](https://arxiv.org/pdf/1705.02092.pdf)) *(ICCV 2017)*
328 |
329 | :white_check_mark: [**Coherent Online Video Style Transfer**] [[Paper]](https://arxiv.org/pdf/1703.09211.pdf) *(ICCV 2017)*
330 |
331 | :white_check_mark: [**Real-Time Neural Style Transfer for Videos**] [[Paper]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Real-Time_Neural_Style_CVPR_2017_paper.pdf) *(CVPR 2017)*
332 |
333 | :white_check_mark: [**A Common Framework for Interactive Texture Transfer**] [[Paper]](http://www.icst.pku.edu.cn/F/zLian/papers/CVPR18-Men.pdf) *(CVPR 2018)*
334 |
335 | :white_check_mark: [**Deep Photo Style Transfer**] [[Paper]](https://arxiv.org/pdf/1703.07511.pdf) *(CVPR 2017)*
336 |
337 |
338 | :sparkle: **Code:**
339 |
340 | * [Torch-based](https://github.com/luanfujun/deep-photo-styletransfer)
341 | * [TensorFlow-based](https://github.com/LouieYang/deep-photo-styletransfer-tf)
342 |
343 | :white_check_mark: [**A Closed-form Solution to Photorealistic Image Stylization**] [[Paper]](https://arxiv.org/pdf/1802.06474.pdf) *(ECCV 2018)*
344 |
345 | :sparkle: **Code:**
346 |
347 | * [PyTorch-based](https://github.com/NVIDIA/FastPhotoStyle)
348 |
349 | :white_check_mark: [**Photorealistic Style Transfer via Wavelet Transforms**] [[Paper]](https://arxiv.org/pdf/1903.09760.pdf)
350 |
351 | :sparkle: **Code:**
352 |
353 | * [PyTorch-based](https://github.com/clovaai/WCT2)
354 |
355 | :white_check_mark: [**Decoder Network Over Lightweight Reconstructed Feature for Fast Semantic Style Transfer**] [[Paper]](http://feng-xu.com/papers/iccv2017_style.pdf) *(ICCV 2017)*
356 |
357 | :white_check_mark: [**Stereoscopic Neural Style Transfer**] [[Paper]](https://arxiv.org/pdf/1802.10591.pdf) *(CVPR 2018)*
358 |
359 |
360 |
361 |
362 |
363 | :white_check_mark: [**Awesome Typography: Statistics-based Text Effects Transfer**] [[Paper]](https://arxiv.org/abs/1611.09026) *(CVPR 2017)*
364 |
365 | :sparkle: **Code:**
366 |
367 | * [Matlab-based](https://github.com/williamyang1991/Text-Effects-Transfer)
368 |
369 | :white_check_mark: [**Neural Font Style Transfer**] [[Paper]](http://ieeexplore.ieee.org/document/8270274/) *(ICDAR 2017)*
370 |
371 | :white_check_mark: [**Rewrite: Neural Style Transfer For Chinese Fonts**] [[Project]](https://github.com/kaonashi-tyc/Rewrite)
372 |
373 | :white_check_mark: [**Separating Style and Content for Generalized Style Transfer**] [[Paper]](https://arxiv.org/pdf/1711.06454.pdf) *(CVPR 2018)*
374 |
375 | :white_check_mark: [**Visual Attribute Transfer through Deep Image Analogy**] [[Paper]](https://arxiv.org/pdf/1705.01088.pdf) *(SIGGRAPH 2017)*
376 |
377 | :sparkle: **Code:**
378 |
379 | * [Caffe-based](https://github.com/msracver/Deep-Image-Analogy)
380 |
381 | :white_check_mark: [**Fashion Style Generator**] [[Paper]](https://www.ijcai.org/proceedings/2017/0520.pdf) *(IJCAI 2017)*
382 |
383 | :white_check_mark: [**Deep Painterly Harmonization**] [[Paper]](https://arxiv.org/abs/1804.03189)
384 |
385 | :sparkle: **Code:**
386 |
387 | * [Torch-based](https://github.com/luanfujun/deep-painterly-harmonization)
388 |
389 | :white_check_mark: [**Fast Face-Swap Using Convolutional Neural Networks**] [[Paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Korshunova_Fast_Face-Swap_Using_ICCV_2017_paper.pdf) *(ICCV 2017)*
390 |
391 | :white_check_mark: [**Learning Selfie-Friendly Abstraction from Artistic Style Images**] [[Paper]]() *(ACML 2018)*
392 |
393 | :white_check_mark: [**Style Transfer with Adaptation to the Central Objects of the Scene**] [[Paper]](https://link.springer.com/chapter/10.1007/978-3-030-30425-6_40) *(NEUROINFORMATICS 2019)*
394 |
395 |
396 | ## Application
397 |
398 | :white_check_mark: [**Prisma**](https://prisma-ai.com/)
399 |
400 | :white_check_mark: [**Ostagram**](https://ostagram.ru/)
401 |
402 | :white_check_mark: [**AlterDraw**](https://alterdraw.com/en/)
403 |
404 | :white_check_mark: [**Vinci**](https://play.google.com/store/apps/details?id=io.vinci.android&hl=en_US&gl=US)
405 |
406 | :white_check_mark: [**Artisto**](https://en.wikipedia.org/wiki/Artisto)
407 |
408 | :sparkle: **Code:**
409 |
410 | * [Website code](https://github.com/SergeyMorugin/ostagram)
411 |
412 | :white_check_mark: [**Deep Forger**](https://deepforger.com/)
413 |
414 | :white_check_mark: [**NeuralStyler**](http://neuralstyler.com/)
415 |
416 | :white_check_mark: [**Style2Paints**](http://paintstransfer.com/)
417 |
418 | :sparkle: **Code:**
419 |
420 | * [Website code](https://github.com/lllyasviel/style2paints)
421 |
422 | ## Application Papers
423 |
424 | :white_check_mark: [**Bringing Impressionism to Life with Neural Style Transfer in Come Swim**] [[Paper]](https://arxiv.org/pdf/1701.04928.pdf)
425 |
426 | :white_check_mark: [**Imaging Novecento. A Mobile App for Automatic Recognition of Artworks and Transfer of Artistic Styles**] [[Paper]](https://www.micc.unifi.it/wp-content/uploads/2017/01/imaging900.pdf)
427 |
428 | :white_check_mark: [**ProsumerFX: Mobile Design of Image Stylization Components**] [[Paper]](https://www.researchgate.net/publication/319631844_ProsumerFX_Mobile_Design_of_Image_Stylization_Components)
429 |
430 | :white_check_mark: [**Pictory - Neural Style Transfer and Editing with coreML**] [[Paper]](https://www.researchgate.net/publication/320035123_Demo_Pictory_-_Neural_Style_Transfer_and_Editing_with_CoreML)
431 |
432 | :white_check_mark: [**Tiny Transform Net for Mobile Image Stylization**] [[Paper]](https://dl.acm.org/citation.cfm?id=3079034) *(ICMR 2017)*
433 |
434 | ## Blogs
435 |
436 | :white_check_mark: [**Caffe2Go**][https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/]
437 |
438 | :white_check_mark: [**Supercharging Style Transfer**][https://research.googleblog.com/2016/10/supercharging-style-transfer.html]
439 |
440 | :white_check_mark: [**Issue of Layer Chosen Strategy**][http://yongchengjing.com/pdf/Issue_layerChosenStrategy_neuralStyleTransfer.pdf]
441 |
442 | :white_check_mark: [**Picking an optimizer for Style Transfer**][https://blog.slavv.com/picking-an-optimizer-for-style-transfer-86e7b8cba84b]
443 |
444 | :white_check_mark: [**Enhanced Color Style Transfer (Photo-surrealism Style Transfer)**] [[Project]](https://github.com/TJCoding/Enhanced-Image-Colour-Transfer)
445 |
446 |
447 | ## Others
448 |
449 | :white_check_mark: [**Conditional Fast Style Transfer Network**] [[Paper]](http://img.cs.uec.ac.jp/pub/conf17/170612yanai_0.pdf)
450 |
451 | :white_check_mark: [**Unseen Style Transfer Based on a Conditional Fast Style Transfer Network**] [[Paper]](https://openreview.net/forum?id=H1Y7-1HYg¬eId=H1Y7-1HYg)
452 |
453 | :white_check_mark: [**DeepStyleCam: A Real-time Style Transfer App on iOS**] [[Paper]](http://img.cs.uec.ac.jp/pub/conf16/170103tanno_0.pdf)
454 |
455 | :white_check_mark: [**Deep Feature Rotation for Multimodal Image Style Transfer**] [[Paper]](https://arxiv.org/pdf/2202.04426.pdf) *(NICS 2021)*
456 |
457 | :sparkle: **Code:**
458 |
459 | * [TensorFlow-based](https://github.com/sonnguyen129/deep-feature-rotation)
460 |
461 |
--------------------------------------------------------------------------------
/framework_n4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ycjing/Neural-Style-Transfer-Papers/dca522b0a2da37bf4e189830fe6204330f38980e/framework_n4.png
--------------------------------------------------------------------------------
/framework_n5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ycjing/Neural-Style-Transfer-Papers/dca522b0a2da37bf4e189830fe6204330f38980e/framework_n5.png
--------------------------------------------------------------------------------