├── COCO and Pascal VOC.md
├── LICENSE
├── OneStage
├── ssd
│ ├── README.md
│ └── ssd_img
│ │ ├── SSD-architecture.png
│ │ ├── SSD-box-scales.png
│ │ ├── SSD-framework.png
│ │ └── proof.png
└── yolo
│ ├── README.md
│ ├── Train-a-YOLOv4-model
│ ├── README.md
│ ├── cfg
│ │ ├── 9k.labels
│ │ ├── 9k.names
│ │ ├── 9k.tree
│ │ ├── Gaussian_yolov3_BDD.cfg
│ │ ├── alexnet.cfg
│ │ ├── cd53paspp-gamma.cfg
│ │ ├── cifar.cfg
│ │ ├── cifar.test.cfg
│ │ ├── coco.data
│ │ ├── coco.names
│ │ ├── coco9k.map
│ │ ├── combine9k.data
│ │ ├── crnn.train.cfg
│ │ ├── csdarknet53-omega.cfg
│ │ ├── csresnext50-panet-spp-original-optimal.cfg
│ │ ├── csresnext50-panet-spp.cfg
│ │ ├── darknet.cfg
│ │ ├── darknet19.cfg
│ │ ├── darknet19_448.cfg
│ │ ├── darknet53.cfg
│ │ ├── darknet53_448_xnor.cfg
│ │ ├── densenet201.cfg
│ │ ├── efficientnet-lite3.cfg
│ │ ├── efficientnet_b0.cfg
│ │ ├── enet-coco.cfg
│ │ ├── extraction.cfg
│ │ ├── extraction.conv.cfg
│ │ ├── extraction22k.cfg
│ │ ├── go.test.cfg
│ │ ├── gru.cfg
│ │ ├── imagenet.labels.list
│ │ ├── imagenet.shortnames.list
│ │ ├── imagenet1k.data
│ │ ├── imagenet22k.dataset
│ │ ├── imagenet9k.hierarchy.dataset
│ │ ├── inet9k.map
│ │ ├── jnet-conv.cfg
│ │ ├── lstm.train.cfg
│ │ ├── openimages.data
│ │ ├── resnet101.cfg
│ │ ├── resnet152.cfg
│ │ ├── resnet152_trident.cfg
│ │ ├── resnet50.cfg
│ │ ├── resnext152-32x4d.cfg
│ │ ├── rnn.cfg
│ │ ├── rnn.train.cfg
│ │ ├── strided.cfg
│ │ ├── t1.test.cfg
│ │ ├── tiny-yolo-voc.cfg
│ │ ├── tiny-yolo.cfg
│ │ ├── tiny-yolo_xnor.cfg
│ │ ├── tiny.cfg
│ │ ├── vgg-16.cfg
│ │ ├── vgg-conv.cfg
│ │ ├── voc.data
│ │ ├── writing.cfg
│ │ ├── yolo-voc.2.0.cfg
│ │ ├── yolo-voc.cfg
│ │ ├── yolo.2.0.cfg
│ │ ├── yolo.cfg
│ │ ├── yolo9000.cfg
│ │ ├── yolov1
│ │ │ ├── tiny-coco.cfg
│ │ │ ├── tiny-yolo.cfg
│ │ │ ├── xyolo.test.cfg
│ │ │ ├── yolo-coco.cfg
│ │ │ ├── yolo-small.cfg
│ │ │ ├── yolo.cfg
│ │ │ ├── yolo.train.cfg
│ │ │ └── yolo2.cfg
│ │ ├── yolov2-tiny-voc.cfg
│ │ ├── yolov2-tiny.cfg
│ │ ├── yolov2-voc.cfg
│ │ ├── yolov2.cfg
│ │ ├── yolov3-openimages.cfg
│ │ ├── yolov3-spp.cfg
│ │ ├── yolov3-tiny-prn.cfg
│ │ ├── yolov3-tiny.cfg
│ │ ├── yolov3-tiny_3l.cfg
│ │ ├── yolov3-tiny_obj.cfg
│ │ ├── yolov3-tiny_occlusion_track.cfg
│ │ ├── yolov3-tiny_xnor.cfg
│ │ ├── yolov3-voc.cfg
│ │ ├── yolov3-voc.yolov3-giou-40.cfg
│ │ ├── yolov3.cfg
│ │ ├── yolov3.coco-giou-12.cfg
│ │ ├── yolov3_5l.cfg
│ │ ├── yolov4-custom.cfg
│ │ └── yolov4.cfg
│ ├── imgs
│ │ ├── chart_yolov4-custom.png
│ │ └── yolov4.png
│ ├── requirements.txt
│ ├── tools
│ │ ├── img2train.py
│ │ ├── name.py
│ │ └── voc_label.py
│ └── yolov4-custom.cfg
│ ├── coco2voc.md
│ ├── coco2voc.py
│ ├── convert2Yolo
│ ├── Format.py
│ ├── README.md
│ ├── example.py
│ ├── example
│ │ ├── kitti
│ │ │ ├── images
│ │ │ │ └── 000021.jpg
│ │ │ ├── labels
│ │ │ │ └── 000021.txt
│ │ │ └── names.txt
│ │ └── voc
│ │ │ ├── JPEG
│ │ │ └── 000001.jpg
│ │ │ ├── label
│ │ │ └── 000001.xml
│ │ │ └── names.txt
│ ├── images
│ │ ├── voc_image.png
│ │ └── voc_xml.png
│ ├── label_visualization.py
│ ├── msgLogInfo.py
│ └── requirements.txt
│ ├── deep_sort_yolov3
│ ├── LICENSE
│ ├── README.md
│ ├── convert.py
│ ├── deep_sort
│ │ ├── __init__.py
│ │ ├── detection.py
│ │ ├── iou_matching.py
│ │ ├── kalman_filter.py
│ │ ├── linear_assignment.py
│ │ ├── nn_matching.py
│ │ ├── preprocessing.py
│ │ ├── track.py
│ │ └── tracker.py
│ ├── detection.txt
│ ├── main.py
│ ├── model_data
│ │ ├── coco_classes.txt
│ │ ├── market1501.pb
│ │ ├── mars-small128.pb
│ │ ├── mars.pb
│ │ ├── obj.txt
│ │ ├── voc_classes.txt
│ │ ├── yolo3_object.names
│ │ ├── yolo_anchors.txt
│ │ └── yolov3.cfg
│ ├── requirements.txt
│ ├── tools
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-35.pyc
│ │ │ └── generate_detections.cpython-35.pyc
│ │ ├── freeze_model.py
│ │ └── generate_detections.py
│ ├── yolo.py
│ └── yolo3
│ │ ├── model.py
│ │ └── utils.py
│ ├── deep_sort_yolov4
│ ├── README.md
│ ├── convert.py
│ ├── deep_sort
│ │ ├── __init__.py
│ │ ├── detection.py
│ │ ├── detection_yolo.py
│ │ ├── iou_matching.py
│ │ ├── kalman_filter.py
│ │ ├── linear_assignment.py
│ │ ├── nn_matching.py
│ │ ├── preprocessing.py
│ │ ├── track.py
│ │ └── tracker.py
│ ├── main.py
│ ├── model_data
│ │ ├── coco_classes.txt
│ │ ├── market1501.pb
│ │ ├── mars-small128.pb
│ │ ├── mars.pb
│ │ ├── obj.txt
│ │ └── yolo_anchors.txt
│ ├── output
│ │ ├── README.md
│ │ └── comparison.png
│ ├── requirements.txt
│ ├── social_distance.py
│ ├── test_video
│ │ └── README.md
│ ├── tools
│ │ ├── frame2video.py
│ │ ├── freeze_model.py
│ │ ├── generate_detections.py
│ │ └── video2frame.py
│ ├── yolo.py
│ └── yolo4
│ │ ├── model.py
│ │ └── utils.py
│ ├── main.py
│ ├── requirements.txt
│ ├── tools
│ ├── frame2video.py
│ ├── freeze_model.py
│ ├── generate_detections.py
│ └── video2frame.py
│ ├── w_name2txt.py
│ ├── yolo.py
│ ├── yolo4
│ ├── model.py
│ └── utils.py
│ ├── yolo_img
│ ├── 1*DhuOI39lNp6ZrG63h-ioBQ.png
│ ├── Results on MS COCO.png
│ ├── Results on PASCAL VOC 2012 test set.png
│ ├── Screenshot from 2019-05-18 16-55-25.png
│ ├── TownCentreXVID_output_ss.gif
│ ├── model2.png
│ ├── output_49.gif
│ ├── output_car_143.gif
│ ├── output_person_315_1120_s.gif
│ ├── yolo-network-architecture.png
│ ├── yolo-responsible-predictor.png
│ ├── yolo.png
│ ├── yologo_1.png
│ ├── yolov1.png
│ ├── yolov1_lossfunc.png
│ ├── yolov1network.png
│ └── yolov2.png
│ ├── yolov3
│ ├── Annotations
│ │ ├── README.md
│ │ └── t1_video_00001_00001.xml
│ ├── JPEGImages
│ │ ├── README.md
│ │ └── t1_video_00001_00001.jpg
│ ├── README.md
│ ├── backup
│ │ └── README.md
│ ├── cfg
│ │ ├── example.cfg
│ │ ├── yolo3_object.data
│ │ ├── yolov3-cai-tiny.cfg
│ │ ├── yolov3-tiny-action.cfg
│ │ ├── yolov3-voc-object.cfg
│ │ ├── yolov3-voc.cfg
│ │ ├── yolov3.cfg
│ │ └── yolov3_action.cfg
│ ├── img2train.py
│ ├── labels
│ │ ├── README.md
│ │ └── t1_video_00001_00001.txt
│ ├── object_train.txt
│ ├── object_val.txt
│ ├── test_img
│ │ └── predictions.jpg
│ ├── train.txt
│ ├── val.txt
│ ├── voc_label.py
│ └── yolo3_object.names
│ └── yolov3_sort
│ ├── README.md
│ ├── main.py
│ ├── sort.py
│ └── yolo-obj
│ ├── coco.names
│ ├── yolo3_object.names
│ ├── yolov3.cfg
│ └── yolov3_1.cfg
├── README.md
├── Tensorflow detection model zoo.md
├── Two-stage vs One-stage Detectors.md
├── TwoStage
└── R-CNN
│ ├── README.md
│ ├── annotation.jpg
│ └── convert2json.py
├── img
├── 8.1.2.png
├── COCO object detection dataset.jpeg
├── F1.png
├── Object-Detection-Deep-Learning.jpg
├── PASCAL VOC 2007 and 2012 data FPS.png
├── PASCAL VOC 2007 and 2012 data.png
├── ap.png
├── coco.png
├── coco_yolo.png
├── dataset.png
├── deep_learning_object_detection_history.PNG
├── fig1 .png
├── fig1-1.jpeg
├── fig1-2.jpeg
├── fig2.png
├── fig3.png
├── fig4.png
├── objectdetection.gif
├── one_stage.png
├── two_stage.png
├── voc.png
├── voc_yolo.png
└── yolo_vs_rcnn.png
└── mAP&IoU.md
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2021 Bobby Chen
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/OneStage/ssd/README.md:
--------------------------------------------------------------------------------
1 | # SDD: Single Shot MultiBox Detector
2 | *The Single Shot Detector (SSD; Liu et al, 2016) is one of the first attempts at using convolutional neural network’s pyramidal feature hierarchy for efficient detection of objects of various sizes.*
3 |
4 | ## Image Pyramid
5 |
6 | SSD uses the VGG-16 model pre-trained on ImageNet as its base model for extracting useful image features. On top of VGG16, SSD adds several conv feature layers of decreasing sizes. They can be seen as a pyramid representation of images at different scales. Intuitively large fine-grained feature maps at earlier levels are good at capturing small objects and small coarse-grained feature maps can detect large objects well. In SSD, the detection happens in every pyramidal layer, targeting at objects of various sizes.
7 |
8 |
9 |
10 | ## Workflow
11 | Unlike YOLO, SSD does not split the image into grids of arbitrary size but predicts offset of predefined anchor boxes (this is called “default boxes” in the paper) for every location of the feature map. Each box has a fixed size and position relative to its corresponding cell. All the anchor boxes tile the whole feature map in a convolutional manner.
12 |
13 | Feature maps at different levels have different receptive field sizes. The anchor boxes on different levels are rescaled so that one feature map is only responsible for objects at one particular scale. For example, in Fig. 5 the dog can only be detected in the 4x4 feature map (higher level) while the cat is just captured by the 8x8 feature map (lower level).
14 |
15 |
16 |
17 | *The SSD framework. (a) The training data contains images and ground truth boxes for every object. (b) In a fine-grained feature maps (8 x 8), the anchor boxes of different aspect ratios correspond to smaller area of the raw input. (c) In a coarse-grained feature map (4 x 4), the anchor boxes cover larger area of the raw input. (Image source: original paper)*
18 |
19 | The width, height and the center location of an anchor box are all normalized to be (0, 1). At a location (i,j) of the ℓ-th feature layer of size m×n, i=1,…,n,j=1,…,m, we have a unique linear scale proportional to the layer level and 5 different box aspect ratios (width-to-height ratios), in addition to a special scale (why we need this? the paper didn’t explain. maybe just a heuristic trick) when the aspect ratio is 1. This gives us 6 anchor boxes in total per feature cell.
20 |
21 |
22 |
23 |
24 |
25 | *An example of how the anchor box size is scaled up with the layer index ℓ for L=6,smin=0.2,smax=0.9. Only the boxes of aspect ratio r=1 are illustrated.*
26 |
27 | At every location, the model outputs 4 offsets and c class probabilities by applying a 3×3×p conv filter (where p is the number of channels in the feature map) for every one of k anchor boxes. Therefore, given a feature map of size m×n, we need kmn(c+4) prediction filters.
28 |
--------------------------------------------------------------------------------
/OneStage/ssd/ssd_img/SSD-architecture.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yehengchen/Object-Detection-and-Tracking/a7d750efc3ea47a5aee88a464e37016dff016d06/OneStage/ssd/ssd_img/SSD-architecture.png
--------------------------------------------------------------------------------
/OneStage/ssd/ssd_img/SSD-box-scales.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yehengchen/Object-Detection-and-Tracking/a7d750efc3ea47a5aee88a464e37016dff016d06/OneStage/ssd/ssd_img/SSD-box-scales.png
--------------------------------------------------------------------------------
/OneStage/ssd/ssd_img/SSD-framework.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yehengchen/Object-Detection-and-Tracking/a7d750efc3ea47a5aee88a464e37016dff016d06/OneStage/ssd/ssd_img/SSD-framework.png
--------------------------------------------------------------------------------
/OneStage/ssd/ssd_img/proof.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yehengchen/Object-Detection-and-Tracking/a7d750efc3ea47a5aee88a464e37016dff016d06/OneStage/ssd/ssd_img/proof.png
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/alexnet.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=1
4 | height=227
5 | width=227
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | max_crop=256
10 |
11 | learning_rate=0.01
12 | policy=poly
13 | power=4
14 | max_batches=800000
15 |
16 | angle=7
17 | hue = .1
18 | saturation=.75
19 | exposure=.75
20 | aspect=.75
21 |
22 | [convolutional]
23 | filters=96
24 | size=11
25 | stride=4
26 | pad=0
27 | activation=relu
28 |
29 | [maxpool]
30 | size=3
31 | stride=2
32 | padding=0
33 |
34 | [convolutional]
35 | filters=256
36 | size=5
37 | stride=1
38 | pad=1
39 | activation=relu
40 |
41 | [maxpool]
42 | size=3
43 | stride=2
44 | padding=0
45 |
46 | [convolutional]
47 | filters=384
48 | size=3
49 | stride=1
50 | pad=1
51 | activation=relu
52 |
53 | [convolutional]
54 | filters=384
55 | size=3
56 | stride=1
57 | pad=1
58 | activation=relu
59 |
60 | [convolutional]
61 | filters=256
62 | size=3
63 | stride=1
64 | pad=1
65 | activation=relu
66 |
67 | [maxpool]
68 | size=3
69 | stride=2
70 | padding=0
71 |
72 | [connected]
73 | output=4096
74 | activation=relu
75 |
76 | [dropout]
77 | probability=.5
78 |
79 | [connected]
80 | output=4096
81 | activation=relu
82 |
83 | [dropout]
84 | probability=.5
85 |
86 | [connected]
87 | output=1000
88 | activation=linear
89 |
90 | [softmax]
91 | groups=1
92 |
93 | [cost]
94 | type=sse
95 |
96 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/cifar.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=1
4 | height=32
5 | width=32
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.4
11 | policy=poly
12 | power=4
13 | max_batches = 50000
14 |
15 | [crop]
16 | crop_width=28
17 | crop_height=28
18 | flip=1
19 | angle=0
20 | saturation = 1
21 | exposure = 1
22 | noadjust=1
23 |
24 | [convolutional]
25 | batch_normalize=1
26 | filters=128
27 | size=3
28 | stride=1
29 | pad=1
30 | activation=leaky
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=128
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [convolutional]
41 | batch_normalize=1
42 | filters=128
43 | size=3
44 | stride=1
45 | pad=1
46 | activation=leaky
47 |
48 | [maxpool]
49 | size=2
50 | stride=2
51 |
52 | [dropout]
53 | probability=.5
54 |
55 | [convolutional]
56 | batch_normalize=1
57 | filters=256
58 | size=3
59 | stride=1
60 | pad=1
61 | activation=leaky
62 |
63 | [convolutional]
64 | batch_normalize=1
65 | filters=256
66 | size=3
67 | stride=1
68 | pad=1
69 | activation=leaky
70 |
71 | [convolutional]
72 | batch_normalize=1
73 | filters=256
74 | size=3
75 | stride=1
76 | pad=1
77 | activation=leaky
78 |
79 | [maxpool]
80 | size=2
81 | stride=2
82 |
83 | [dropout]
84 | probability=.5
85 |
86 | [convolutional]
87 | batch_normalize=1
88 | filters=512
89 | size=3
90 | stride=1
91 | pad=1
92 | activation=leaky
93 |
94 | [convolutional]
95 | batch_normalize=1
96 | filters=512
97 | size=3
98 | stride=1
99 | pad=1
100 | activation=leaky
101 |
102 | [convolutional]
103 | batch_normalize=1
104 | filters=512
105 | size=3
106 | stride=1
107 | pad=1
108 | activation=leaky
109 |
110 | [dropout]
111 | probability=.5
112 |
113 | [convolutional]
114 | filters=10
115 | size=1
116 | stride=1
117 | pad=1
118 | activation=leaky
119 |
120 | [avgpool]
121 |
122 | [softmax]
123 | groups=1
124 |
125 | [cost]
126 |
127 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/cifar.test.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=1
4 | height=32
5 | width=32
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.4
11 | policy=poly
12 | power=4
13 | max_batches = 50000
14 |
15 |
16 | [convolutional]
17 | batch_normalize=1
18 | filters=128
19 | size=3
20 | stride=1
21 | pad=1
22 | activation=leaky
23 |
24 | [convolutional]
25 | batch_normalize=1
26 | filters=128
27 | size=3
28 | stride=1
29 | pad=1
30 | activation=leaky
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=128
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [maxpool]
41 | size=2
42 | stride=2
43 |
44 | [dropout]
45 | probability=.5
46 |
47 | [convolutional]
48 | batch_normalize=1
49 | filters=256
50 | size=3
51 | stride=1
52 | pad=1
53 | activation=leaky
54 |
55 | [convolutional]
56 | batch_normalize=1
57 | filters=256
58 | size=3
59 | stride=1
60 | pad=1
61 | activation=leaky
62 |
63 | [convolutional]
64 | batch_normalize=1
65 | filters=256
66 | size=3
67 | stride=1
68 | pad=1
69 | activation=leaky
70 |
71 | [maxpool]
72 | size=2
73 | stride=2
74 |
75 | [dropout]
76 | probability=.5
77 |
78 | [convolutional]
79 | batch_normalize=1
80 | filters=512
81 | size=3
82 | stride=1
83 | pad=1
84 | activation=leaky
85 |
86 | [convolutional]
87 | batch_normalize=1
88 | filters=512
89 | size=3
90 | stride=1
91 | pad=1
92 | activation=leaky
93 |
94 | [convolutional]
95 | batch_normalize=1
96 | filters=512
97 | size=3
98 | stride=1
99 | pad=1
100 | activation=leaky
101 |
102 | [dropout]
103 | probability=.5
104 |
105 | [convolutional]
106 | filters=10
107 | size=1
108 | stride=1
109 | pad=1
110 | activation=leaky
111 |
112 | [avgpool]
113 |
114 | [softmax]
115 | groups=1
116 | temperature=3
117 |
118 | [cost]
119 |
120 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/coco.data:
--------------------------------------------------------------------------------
1 | classes= 80
2 | train = /home/pjreddie/data/coco/trainvalno5k.txt
3 | valid = coco_testdev
4 | #valid = data/coco_val_5k.list
5 | names = data/coco.names
6 | backup = /home/pjreddie/backup/
7 | eval=coco
8 |
9 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/coco.names:
--------------------------------------------------------------------------------
1 | person
2 | bicycle
3 | car
4 | motorbike
5 | aeroplane
6 | bus
7 | train
8 | truck
9 | boat
10 | traffic light
11 | fire hydrant
12 | stop sign
13 | parking meter
14 | bench
15 | bird
16 | cat
17 | dog
18 | horse
19 | sheep
20 | cow
21 | elephant
22 | bear
23 | zebra
24 | giraffe
25 | backpack
26 | umbrella
27 | handbag
28 | tie
29 | suitcase
30 | frisbee
31 | skis
32 | snowboard
33 | sports ball
34 | kite
35 | baseball bat
36 | baseball glove
37 | skateboard
38 | surfboard
39 | tennis racket
40 | bottle
41 | wine glass
42 | cup
43 | fork
44 | knife
45 | spoon
46 | bowl
47 | banana
48 | apple
49 | sandwich
50 | orange
51 | broccoli
52 | carrot
53 | hot dog
54 | pizza
55 | donut
56 | cake
57 | chair
58 | sofa
59 | pottedplant
60 | bed
61 | diningtable
62 | toilet
63 | tvmonitor
64 | laptop
65 | mouse
66 | remote
67 | keyboard
68 | cell phone
69 | microwave
70 | oven
71 | toaster
72 | sink
73 | refrigerator
74 | book
75 | clock
76 | vase
77 | scissors
78 | teddy bear
79 | hair drier
80 | toothbrush
81 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/coco9k.map:
--------------------------------------------------------------------------------
1 | 5177
2 | 3768
3 | 3802
4 | 3800
5 | 4107
6 | 4072
7 | 4071
8 | 3797
9 | 4097
10 | 2645
11 | 5150
12 | 2644
13 | 3257
14 | 2523
15 | 6527
16 | 6866
17 | 6912
18 | 7342
19 | 7255
20 | 7271
21 | 7217
22 | 6858
23 | 7343
24 | 7233
25 | 3704
26 | 4374
27 | 3641
28 | 5001
29 | 3899
30 | 2999
31 | 2631
32 | 5141
33 | 2015
34 | 1133
35 | 1935
36 | 1930
37 | 5144
38 | 5143
39 | 2371
40 | 3916
41 | 3745
42 | 3640
43 | 4749
44 | 4736
45 | 4735
46 | 3678
47 | 58
48 | 42
49 | 771
50 | 81
51 | 152
52 | 141
53 | 786
54 | 700
55 | 218
56 | 791
57 | 2518
58 | 2521
59 | 3637
60 | 2458
61 | 2505
62 | 2519
63 | 3499
64 | 2837
65 | 3503
66 | 2597
67 | 3430
68 | 2080
69 | 5103
70 | 5111
71 | 5102
72 | 3013
73 | 5096
74 | 1102
75 | 3218
76 | 4010
77 | 2266
78 | 1127
79 | 5122
80 | 2360
81 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/combine9k.data:
--------------------------------------------------------------------------------
1 | classes= 9418
2 | #train = /home/pjreddie/data/coco/trainvalno5k.txt
3 | train = data/combine9k.train.list
4 | valid = /home/pjreddie/data/imagenet/det.val.files
5 | labels = data/9k.labels
6 | names = data/9k.names
7 | backup = backup/
8 | map = data/inet9k.map
9 | eval = imagenet
10 | results = results
11 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/crnn.train.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | subdivisions=8
3 | inputs=256
4 | batch = 128
5 | momentum=0.9
6 | decay=0.001
7 | max_batches = 2000
8 | time_steps=576
9 | learning_rate=0.1
10 | policy=steps
11 | steps=1000,1500
12 | scales=.1,.1
13 |
14 | try_fix_nan=1
15 |
16 | [connected]
17 | output=256
18 | activation=leaky
19 |
20 | [crnn]
21 | batch_normalize=1
22 | size=1
23 | pad=0
24 | output = 1024
25 | hidden=1024
26 | activation=leaky
27 |
28 | [crnn]
29 | batch_normalize=1
30 | size=1
31 | pad=0
32 | output = 1024
33 | hidden=1024
34 | activation=leaky
35 |
36 | [crnn]
37 | batch_normalize=1
38 | size=1
39 | pad=0
40 | output = 1024
41 | hidden=1024
42 | activation=leaky
43 |
44 | [connected]
45 | output=256
46 | activation=leaky
47 |
48 | [softmax]
49 |
50 | [cost]
51 | type=sse
52 |
53 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/darknet.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=1
4 | height=224
5 | width=224
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | max_crop=320
10 |
11 | learning_rate=0.1
12 | policy=poly
13 | power=4
14 | max_batches=1600000
15 |
16 | [convolutional]
17 | batch_normalize=1
18 | filters=16
19 | size=3
20 | stride=1
21 | pad=1
22 | activation=leaky
23 |
24 | [maxpool]
25 | size=2
26 | stride=2
27 |
28 | [convolutional]
29 | batch_normalize=1
30 | filters=32
31 | size=3
32 | stride=1
33 | pad=1
34 | activation=leaky
35 |
36 | [maxpool]
37 | size=2
38 | stride=2
39 |
40 | [convolutional]
41 | batch_normalize=1
42 | filters=64
43 | size=3
44 | stride=1
45 | pad=1
46 | activation=leaky
47 |
48 | [maxpool]
49 | size=2
50 | stride=2
51 |
52 | [convolutional]
53 | batch_normalize=1
54 | filters=128
55 | size=3
56 | stride=1
57 | pad=1
58 | activation=leaky
59 |
60 | [maxpool]
61 | size=2
62 | stride=2
63 |
64 | [convolutional]
65 | batch_normalize=1
66 | filters=256
67 | size=3
68 | stride=1
69 | pad=1
70 | activation=leaky
71 |
72 | [maxpool]
73 | size=2
74 | stride=2
75 |
76 | [convolutional]
77 | batch_normalize=1
78 | filters=512
79 | size=3
80 | stride=1
81 | pad=1
82 | activation=leaky
83 |
84 | [maxpool]
85 | size=2
86 | stride=2
87 | padding=1
88 |
89 | [convolutional]
90 | batch_normalize=1
91 | filters=1024
92 | size=3
93 | stride=1
94 | pad=1
95 | activation=leaky
96 |
97 | [convolutional]
98 | filters=1000
99 | size=1
100 | stride=1
101 | pad=1
102 | activation=leaky
103 |
104 | [avgpool]
105 |
106 | [softmax]
107 | groups=1
108 |
109 | [cost]
110 | type=sse
111 |
112 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/darknet19.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=1
4 | height=224
5 | width=224
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | max_crop=448
10 |
11 | learning_rate=0.1
12 | policy=poly
13 | power=4
14 | max_batches=1600000
15 |
16 | [convolutional]
17 | batch_normalize=1
18 | filters=32
19 | size=3
20 | stride=1
21 | pad=1
22 | activation=leaky
23 |
24 | [maxpool]
25 | size=2
26 | stride=2
27 |
28 | [convolutional]
29 | batch_normalize=1
30 | filters=64
31 | size=3
32 | stride=1
33 | pad=1
34 | activation=leaky
35 |
36 | [maxpool]
37 | size=2
38 | stride=2
39 |
40 | [convolutional]
41 | batch_normalize=1
42 | filters=128
43 | size=3
44 | stride=1
45 | pad=1
46 | activation=leaky
47 |
48 | [convolutional]
49 | batch_normalize=1
50 | filters=64
51 | size=1
52 | stride=1
53 | pad=1
54 | activation=leaky
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=128
59 | size=3
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [maxpool]
65 | size=2
66 | stride=2
67 |
68 | [convolutional]
69 | batch_normalize=1
70 | filters=256
71 | size=3
72 | stride=1
73 | pad=1
74 | activation=leaky
75 |
76 | [convolutional]
77 | batch_normalize=1
78 | filters=128
79 | size=1
80 | stride=1
81 | pad=1
82 | activation=leaky
83 |
84 | [convolutional]
85 | batch_normalize=1
86 | filters=256
87 | size=3
88 | stride=1
89 | pad=1
90 | activation=leaky
91 |
92 | [maxpool]
93 | size=2
94 | stride=2
95 |
96 | [convolutional]
97 | batch_normalize=1
98 | filters=512
99 | size=3
100 | stride=1
101 | pad=1
102 | activation=leaky
103 |
104 | [convolutional]
105 | batch_normalize=1
106 | filters=256
107 | size=1
108 | stride=1
109 | pad=1
110 | activation=leaky
111 |
112 | [convolutional]
113 | batch_normalize=1
114 | filters=512
115 | size=3
116 | stride=1
117 | pad=1
118 | activation=leaky
119 |
120 | [convolutional]
121 | batch_normalize=1
122 | filters=256
123 | size=1
124 | stride=1
125 | pad=1
126 | activation=leaky
127 |
128 | [convolutional]
129 | batch_normalize=1
130 | filters=512
131 | size=3
132 | stride=1
133 | pad=1
134 | activation=leaky
135 |
136 | [maxpool]
137 | size=2
138 | stride=2
139 |
140 | [convolutional]
141 | batch_normalize=1
142 | filters=1024
143 | size=3
144 | stride=1
145 | pad=1
146 | activation=leaky
147 |
148 | [convolutional]
149 | batch_normalize=1
150 | filters=512
151 | size=1
152 | stride=1
153 | pad=1
154 | activation=leaky
155 |
156 | [convolutional]
157 | batch_normalize=1
158 | filters=1024
159 | size=3
160 | stride=1
161 | pad=1
162 | activation=leaky
163 |
164 | [convolutional]
165 | batch_normalize=1
166 | filters=512
167 | size=1
168 | stride=1
169 | pad=1
170 | activation=leaky
171 |
172 | [convolutional]
173 | batch_normalize=1
174 | filters=1024
175 | size=3
176 | stride=1
177 | pad=1
178 | activation=leaky
179 |
180 | [convolutional]
181 | filters=1000
182 | size=1
183 | stride=1
184 | pad=1
185 | activation=linear
186 |
187 | [avgpool]
188 |
189 | [softmax]
190 | groups=1
191 |
192 | [cost]
193 | type=sse
194 |
195 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/darknet19_448.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | #batch=128
3 | #subdivisions=4
4 | batch=1
5 | subdivisions=1
6 | height=448
7 | width=448
8 | max_crop=512
9 | channels=3
10 | momentum=0.9
11 | decay=0.0005
12 |
13 | learning_rate=0.001
14 | policy=poly
15 | power=4
16 | max_batches=100000
17 |
18 | angle=7
19 | hue = .1
20 | saturation=.75
21 | exposure=.75
22 | aspect=.75
23 |
24 | [convolutional]
25 | batch_normalize=1
26 | filters=32
27 | size=3
28 | stride=1
29 | pad=1
30 | activation=leaky
31 |
32 | [maxpool]
33 | size=2
34 | stride=2
35 |
36 | [convolutional]
37 | batch_normalize=1
38 | filters=64
39 | size=3
40 | stride=1
41 | pad=1
42 | activation=leaky
43 |
44 | [maxpool]
45 | size=2
46 | stride=2
47 |
48 | [convolutional]
49 | batch_normalize=1
50 | filters=128
51 | size=3
52 | stride=1
53 | pad=1
54 | activation=leaky
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=64
59 | size=1
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [convolutional]
65 | batch_normalize=1
66 | filters=128
67 | size=3
68 | stride=1
69 | pad=1
70 | activation=leaky
71 |
72 | [maxpool]
73 | size=2
74 | stride=2
75 |
76 | [convolutional]
77 | batch_normalize=1
78 | filters=256
79 | size=3
80 | stride=1
81 | pad=1
82 | activation=leaky
83 |
84 | [convolutional]
85 | batch_normalize=1
86 | filters=128
87 | size=1
88 | stride=1
89 | pad=1
90 | activation=leaky
91 |
92 | [convolutional]
93 | batch_normalize=1
94 | filters=256
95 | size=3
96 | stride=1
97 | pad=1
98 | activation=leaky
99 |
100 | [maxpool]
101 | size=2
102 | stride=2
103 |
104 | [convolutional]
105 | batch_normalize=1
106 | filters=512
107 | size=3
108 | stride=1
109 | pad=1
110 | activation=leaky
111 |
112 | [convolutional]
113 | batch_normalize=1
114 | filters=256
115 | size=1
116 | stride=1
117 | pad=1
118 | activation=leaky
119 |
120 | [convolutional]
121 | batch_normalize=1
122 | filters=512
123 | size=3
124 | stride=1
125 | pad=1
126 | activation=leaky
127 |
128 | [convolutional]
129 | batch_normalize=1
130 | filters=256
131 | size=1
132 | stride=1
133 | pad=1
134 | activation=leaky
135 |
136 | [convolutional]
137 | batch_normalize=1
138 | filters=512
139 | size=3
140 | stride=1
141 | pad=1
142 | activation=leaky
143 |
144 | [maxpool]
145 | size=2
146 | stride=2
147 |
148 | [convolutional]
149 | batch_normalize=1
150 | filters=1024
151 | size=3
152 | stride=1
153 | pad=1
154 | activation=leaky
155 |
156 | [convolutional]
157 | batch_normalize=1
158 | filters=512
159 | size=1
160 | stride=1
161 | pad=1
162 | activation=leaky
163 |
164 | [convolutional]
165 | batch_normalize=1
166 | filters=1024
167 | size=3
168 | stride=1
169 | pad=1
170 | activation=leaky
171 |
172 | [convolutional]
173 | batch_normalize=1
174 | filters=512
175 | size=1
176 | stride=1
177 | pad=1
178 | activation=leaky
179 |
180 | [convolutional]
181 | batch_normalize=1
182 | filters=1024
183 | size=3
184 | stride=1
185 | pad=1
186 | activation=leaky
187 |
188 | [convolutional]
189 | filters=1000
190 | size=1
191 | stride=1
192 | pad=1
193 | activation=linear
194 |
195 | [avgpool]
196 |
197 | [softmax]
198 | groups=1
199 |
200 | [cost]
201 | type=sse
202 |
203 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/extraction.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=1
4 | height=224
5 | width=224
6 | max_crop=320
7 | channels=3
8 | momentum=0.9
9 | decay=0.0005
10 |
11 | learning_rate=0.1
12 | policy=poly
13 | power=4
14 | max_batches=1600000
15 |
16 | [convolutional]
17 | batch_normalize=1
18 | filters=64
19 | size=7
20 | stride=2
21 | pad=1
22 | activation=leaky
23 |
24 | [maxpool]
25 | size=2
26 | stride=2
27 |
28 | [convolutional]
29 | batch_normalize=1
30 | filters=192
31 | size=3
32 | stride=1
33 | pad=1
34 | activation=leaky
35 |
36 | [maxpool]
37 | size=2
38 | stride=2
39 |
40 | [convolutional]
41 | batch_normalize=1
42 | filters=128
43 | size=1
44 | stride=1
45 | pad=1
46 | activation=leaky
47 |
48 | [convolutional]
49 | batch_normalize=1
50 | filters=256
51 | size=3
52 | stride=1
53 | pad=1
54 | activation=leaky
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=256
59 | size=1
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [convolutional]
65 | batch_normalize=1
66 | filters=512
67 | size=3
68 | stride=1
69 | pad=1
70 | activation=leaky
71 |
72 | [maxpool]
73 | size=2
74 | stride=2
75 |
76 | [convolutional]
77 | batch_normalize=1
78 | filters=256
79 | size=1
80 | stride=1
81 | pad=1
82 | activation=leaky
83 |
84 | [convolutional]
85 | batch_normalize=1
86 | filters=512
87 | size=3
88 | stride=1
89 | pad=1
90 | activation=leaky
91 |
92 | [convolutional]
93 | batch_normalize=1
94 | filters=256
95 | size=1
96 | stride=1
97 | pad=1
98 | activation=leaky
99 |
100 | [convolutional]
101 | batch_normalize=1
102 | filters=512
103 | size=3
104 | stride=1
105 | pad=1
106 | activation=leaky
107 |
108 | [convolutional]
109 | batch_normalize=1
110 | filters=256
111 | size=1
112 | stride=1
113 | pad=1
114 | activation=leaky
115 |
116 | [convolutional]
117 | batch_normalize=1
118 | filters=512
119 | size=3
120 | stride=1
121 | pad=1
122 | activation=leaky
123 |
124 | [convolutional]
125 | batch_normalize=1
126 | filters=256
127 | size=1
128 | stride=1
129 | pad=1
130 | activation=leaky
131 |
132 | [convolutional]
133 | batch_normalize=1
134 | filters=512
135 | size=3
136 | stride=1
137 | pad=1
138 | activation=leaky
139 |
140 | [convolutional]
141 | batch_normalize=1
142 | filters=512
143 | size=1
144 | stride=1
145 | pad=1
146 | activation=leaky
147 |
148 | [convolutional]
149 | batch_normalize=1
150 | filters=1024
151 | size=3
152 | stride=1
153 | pad=1
154 | activation=leaky
155 |
156 | [maxpool]
157 | size=2
158 | stride=2
159 |
160 | [convolutional]
161 | batch_normalize=1
162 | filters=512
163 | size=1
164 | stride=1
165 | pad=1
166 | activation=leaky
167 |
168 | [convolutional]
169 | batch_normalize=1
170 | filters=1024
171 | size=3
172 | stride=1
173 | pad=1
174 | activation=leaky
175 |
176 | [convolutional]
177 | batch_normalize=1
178 | filters=512
179 | size=1
180 | stride=1
181 | pad=1
182 | activation=leaky
183 |
184 | [convolutional]
185 | batch_normalize=1
186 | filters=1024
187 | size=3
188 | stride=1
189 | pad=1
190 | activation=leaky
191 |
192 | [convolutional]
193 | filters=1000
194 | size=1
195 | stride=1
196 | pad=1
197 | activation=leaky
198 |
199 | [avgpool]
200 |
201 | [softmax]
202 | groups=1
203 |
204 | [cost]
205 | type=sse
206 |
207 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/extraction.conv.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | height=256
5 | width=256
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.5
11 | policy=poly
12 | power=6
13 | max_batches=500000
14 |
15 | [convolutional]
16 | filters=64
17 | size=7
18 | stride=2
19 | pad=1
20 | activation=leaky
21 |
22 | [maxpool]
23 | size=2
24 | stride=2
25 |
26 | [convolutional]
27 | filters=192
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | filters=128
39 | size=1
40 | stride=1
41 | pad=1
42 | activation=leaky
43 |
44 | [convolutional]
45 | filters=256
46 | size=3
47 | stride=1
48 | pad=1
49 | activation=leaky
50 |
51 | [convolutional]
52 | filters=256
53 | size=1
54 | stride=1
55 | pad=1
56 | activation=leaky
57 |
58 | [convolutional]
59 | filters=512
60 | size=3
61 | stride=1
62 | pad=1
63 | activation=leaky
64 |
65 | [maxpool]
66 | size=2
67 | stride=2
68 |
69 | [convolutional]
70 | filters=256
71 | size=1
72 | stride=1
73 | pad=1
74 | activation=leaky
75 |
76 | [convolutional]
77 | filters=512
78 | size=3
79 | stride=1
80 | pad=1
81 | activation=leaky
82 |
83 | [convolutional]
84 | filters=256
85 | size=1
86 | stride=1
87 | pad=1
88 | activation=leaky
89 |
90 | [convolutional]
91 | filters=512
92 | size=3
93 | stride=1
94 | pad=1
95 | activation=leaky
96 |
97 | [convolutional]
98 | filters=256
99 | size=1
100 | stride=1
101 | pad=1
102 | activation=leaky
103 |
104 | [convolutional]
105 | filters=512
106 | size=3
107 | stride=1
108 | pad=1
109 | activation=leaky
110 |
111 | [convolutional]
112 | filters=256
113 | size=1
114 | stride=1
115 | pad=1
116 | activation=leaky
117 |
118 | [convolutional]
119 | filters=512
120 | size=3
121 | stride=1
122 | pad=1
123 | activation=leaky
124 |
125 | [convolutional]
126 | filters=512
127 | size=1
128 | stride=1
129 | pad=1
130 | activation=leaky
131 |
132 | [convolutional]
133 | filters=1024
134 | size=3
135 | stride=1
136 | pad=1
137 | activation=leaky
138 |
139 | [maxpool]
140 | size=2
141 | stride=2
142 |
143 | [convolutional]
144 | filters=512
145 | size=1
146 | stride=1
147 | pad=1
148 | activation=leaky
149 |
150 | [convolutional]
151 | filters=1024
152 | size=3
153 | stride=1
154 | pad=1
155 | activation=leaky
156 |
157 | [convolutional]
158 | filters=512
159 | size=1
160 | stride=1
161 | pad=1
162 | activation=leaky
163 |
164 | [convolutional]
165 | filters=1024
166 | size=3
167 | stride=1
168 | pad=1
169 | activation=leaky
170 |
171 | [avgpool]
172 |
173 | [connected]
174 | output=1000
175 | activation=leaky
176 |
177 | [softmax]
178 | groups=1
179 |
180 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/extraction22k.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=1
4 | height=224
5 | width=224
6 | max_crop=320
7 | channels=3
8 | momentum=0.9
9 | decay=0.0005
10 |
11 | learning_rate=0.01
12 | max_batches = 0
13 | policy=steps
14 | steps=444000,590000,970000
15 | scales=.5,.2,.1
16 |
17 | #policy=sigmoid
18 | #gamma=.00008
19 | #step=100000
20 | #max_batches=200000
21 |
22 | [convolutional]
23 | batch_normalize=1
24 | filters=64
25 | size=7
26 | stride=2
27 | pad=1
28 | activation=leaky
29 |
30 | [maxpool]
31 | size=2
32 | stride=2
33 |
34 | [convolutional]
35 | batch_normalize=1
36 | filters=192
37 | size=3
38 | stride=1
39 | pad=1
40 | activation=leaky
41 |
42 | [maxpool]
43 | size=2
44 | stride=2
45 |
46 | [convolutional]
47 | batch_normalize=1
48 | filters=128
49 | size=1
50 | stride=1
51 | pad=1
52 | activation=leaky
53 |
54 | [convolutional]
55 | batch_normalize=1
56 | filters=256
57 | size=3
58 | stride=1
59 | pad=1
60 | activation=leaky
61 |
62 | [convolutional]
63 | batch_normalize=1
64 | filters=256
65 | size=1
66 | stride=1
67 | pad=1
68 | activation=leaky
69 |
70 | [convolutional]
71 | batch_normalize=1
72 | filters=512
73 | size=3
74 | stride=1
75 | pad=1
76 | activation=leaky
77 |
78 | [maxpool]
79 | size=2
80 | stride=2
81 |
82 | [convolutional]
83 | batch_normalize=1
84 | filters=256
85 | size=1
86 | stride=1
87 | pad=1
88 | activation=leaky
89 |
90 | [convolutional]
91 | batch_normalize=1
92 | filters=512
93 | size=3
94 | stride=1
95 | pad=1
96 | activation=leaky
97 |
98 | [convolutional]
99 | batch_normalize=1
100 | filters=256
101 | size=1
102 | stride=1
103 | pad=1
104 | activation=leaky
105 |
106 | [convolutional]
107 | batch_normalize=1
108 | filters=512
109 | size=3
110 | stride=1
111 | pad=1
112 | activation=leaky
113 |
114 | [convolutional]
115 | batch_normalize=1
116 | filters=256
117 | size=1
118 | stride=1
119 | pad=1
120 | activation=leaky
121 |
122 | [convolutional]
123 | batch_normalize=1
124 | filters=512
125 | size=3
126 | stride=1
127 | pad=1
128 | activation=leaky
129 |
130 | [convolutional]
131 | batch_normalize=1
132 | filters=256
133 | size=1
134 | stride=1
135 | pad=1
136 | activation=leaky
137 |
138 | [convolutional]
139 | batch_normalize=1
140 | filters=512
141 | size=3
142 | stride=1
143 | pad=1
144 | activation=leaky
145 |
146 | [convolutional]
147 | batch_normalize=1
148 | filters=512
149 | size=1
150 | stride=1
151 | pad=1
152 | activation=leaky
153 |
154 | [convolutional]
155 | batch_normalize=1
156 | filters=1024
157 | size=3
158 | stride=1
159 | pad=1
160 | activation=leaky
161 |
162 | [maxpool]
163 | size=2
164 | stride=2
165 |
166 | [convolutional]
167 | batch_normalize=1
168 | filters=1024
169 | size=1
170 | stride=1
171 | pad=1
172 | activation=leaky
173 |
174 | [convolutional]
175 | batch_normalize=1
176 | filters=2048
177 | size=3
178 | stride=1
179 | pad=1
180 | activation=leaky
181 |
182 | [convolutional]
183 | batch_normalize=1
184 | filters=1024
185 | size=1
186 | stride=1
187 | pad=1
188 | activation=leaky
189 |
190 | [convolutional]
191 | batch_normalize=1
192 | filters=2048
193 | size=3
194 | stride=1
195 | pad=1
196 | activation=leaky
197 |
198 | [avgpool]
199 |
200 | [connected]
201 | output=21842
202 | activation=leaky
203 |
204 | [softmax]
205 | groups=1
206 |
207 | [cost]
208 | type=sse
209 |
210 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/go.test.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | height=19
5 | width=19
6 | channels=1
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.1
11 | policy=poly
12 | power=4
13 | max_batches=400000
14 |
15 | [convolutional]
16 | filters=192
17 | size=3
18 | stride=1
19 | pad=1
20 | activation=relu
21 | batch_normalize=1
22 |
23 | [convolutional]
24 | filters=192
25 | size=3
26 | stride=1
27 | pad=1
28 | activation=relu
29 | batch_normalize=1
30 |
31 | [convolutional]
32 | filters=192
33 | size=3
34 | stride=1
35 | pad=1
36 | activation=relu
37 | batch_normalize=1
38 |
39 | [convolutional]
40 | filters=192
41 | size=3
42 | stride=1
43 | pad=1
44 | activation=relu
45 | batch_normalize=1
46 |
47 | [convolutional]
48 | filters=192
49 | size=3
50 | stride=1
51 | pad=1
52 | activation=relu
53 | batch_normalize=1
54 |
55 | [convolutional]
56 | filters=192
57 | size=3
58 | stride=1
59 | pad=1
60 | activation=relu
61 | batch_normalize=1
62 |
63 | [convolutional]
64 | filters=192
65 | size=3
66 | stride=1
67 | pad=1
68 | activation=relu
69 | batch_normalize=1
70 |
71 | [convolutional]
72 | filters=192
73 | size=3
74 | stride=1
75 | pad=1
76 | activation=relu
77 | batch_normalize=1
78 |
79 | [convolutional]
80 | filters=192
81 | size=3
82 | stride=1
83 | pad=1
84 | activation=relu
85 | batch_normalize=1
86 |
87 | [convolutional]
88 | filters=192
89 | size=3
90 | stride=1
91 | pad=1
92 | activation=relu
93 | batch_normalize=1
94 |
95 | [convolutional]
96 | filters=192
97 | size=3
98 | stride=1
99 | pad=1
100 | activation=relu
101 | batch_normalize=1
102 |
103 | [convolutional]
104 | filters=192
105 | size=3
106 | stride=1
107 | pad=1
108 | activation=relu
109 | batch_normalize=1
110 |
111 | [convolutional]
112 | filters=192
113 | size=3
114 | stride=1
115 | pad=1
116 | activation=relu
117 | batch_normalize=1
118 |
119 |
120 | [convolutional]
121 | filters=1
122 | size=1
123 | stride=1
124 | pad=1
125 | activation=linear
126 |
127 | [softmax]
128 |
129 | [cost]
130 | type=sse
131 |
132 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/gru.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | subdivisions=1
3 | inputs=256
4 | batch = 1
5 | momentum=0.9
6 | decay=0.001
7 | time_steps=1
8 | learning_rate=0.5
9 |
10 | policy=poly
11 | power=4
12 | max_batches=2000
13 |
14 | [gru]
15 | batch_normalize=1
16 | output = 1024
17 |
18 | [gru]
19 | batch_normalize=1
20 | output = 1024
21 |
22 | [gru]
23 | batch_normalize=1
24 | output = 1024
25 |
26 | [connected]
27 | output=256
28 | activation=linear
29 |
30 | [softmax]
31 |
32 | [cost]
33 | type=sse
34 |
35 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/imagenet1k.data:
--------------------------------------------------------------------------------
1 | classes=1000
2 | train = /data/imagenet/imagenet1k.train.list
3 | valid = /data/imagenet/imagenet1k.valid.list
4 | backup = /home/pjreddie/backup/
5 | labels = data/imagenet.labels.list
6 | names = data/imagenet.shortnames.list
7 | top=5
8 |
9 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/imagenet22k.dataset:
--------------------------------------------------------------------------------
1 | classes=21842
2 | train = /data/imagenet/imagenet22k.train.list
3 | valid = /data/imagenet/imagenet22k.valid.list
4 | backup = /home/pjreddie/backup/
5 | labels = data/imagenet.labels.list
6 | names = data/imagenet.shortnames.list
7 | top = 5
8 |
9 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/imagenet9k.hierarchy.dataset:
--------------------------------------------------------------------------------
1 | classes=9418
2 | train = data/9k.train.list
3 | valid = /data/imagenet/imagenet1k.valid.list
4 | leaves = data/imagenet1k.labels
5 | backup = /home/pjreddie/backup/
6 | labels = data/9k.labels
7 | names = data/9k.names
8 | top=5
9 |
10 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/inet9k.map:
--------------------------------------------------------------------------------
1 | 2687
2 | 4107
3 | 8407
4 | 7254
5 | 42
6 | 6797
7 | 127
8 | 2268
9 | 2442
10 | 3704
11 | 260
12 | 1970
13 | 58
14 | 4443
15 | 2661
16 | 2043
17 | 2039
18 | 4858
19 | 4007
20 | 6858
21 | 8408
22 | 166
23 | 2523
24 | 3768
25 | 4347
26 | 6527
27 | 2446
28 | 5005
29 | 3274
30 | 3678
31 | 4918
32 | 709
33 | 4072
34 | 8428
35 | 7223
36 | 2251
37 | 3802
38 | 3848
39 | 7271
40 | 2677
41 | 8267
42 | 2849
43 | 2518
44 | 2738
45 | 3746
46 | 5105
47 | 3430
48 | 3503
49 | 2249
50 | 1841
51 | 2032
52 | 2358
53 | 122
54 | 3984
55 | 4865
56 | 3246
57 | 5095
58 | 6912
59 | 6878
60 | 8467
61 | 2741
62 | 1973
63 | 3057
64 | 7217
65 | 1872
66 | 44
67 | 2452
68 | 3637
69 | 2704
70 | 6917
71 | 2715
72 | 6734
73 | 2325
74 | 6864
75 | 6677
76 | 2035
77 | 1949
78 | 338
79 | 2664
80 | 5122
81 | 1844
82 | 784
83 | 2223
84 | 7188
85 | 2719
86 | 2670
87 | 4830
88 | 158
89 | 4818
90 | 7228
91 | 1965
92 | 7342
93 | 786
94 | 2095
95 | 8281
96 | 8258
97 | 7406
98 | 3915
99 | 8382
100 | 2437
101 | 2837
102 | 82
103 | 6871
104 | 1876
105 | 7447
106 | 8285
107 | 5007
108 | 2740
109 | 3463
110 | 5103
111 | 3755
112 | 4910
113 | 6809
114 | 3800
115 | 118
116 | 3396
117 | 3092
118 | 2709
119 | 81
120 | 7105
121 | 4036
122 | 2366
123 | 1846
124 | 5177
125 | 2684
126 | 64
127 | 2041
128 | 3919
129 | 700
130 | 3724
131 | 1742
132 | 39
133 | 807
134 | 7184
135 | 2256
136 | 235
137 | 2778
138 | 2996
139 | 2030
140 | 3714
141 | 7167
142 | 2369
143 | 6705
144 | 6861
145 | 5096
146 | 2597
147 | 2166
148 | 2036
149 | 3228
150 | 3747
151 | 2711
152 | 8300
153 | 2226
154 | 7153
155 | 7255
156 | 2631
157 | 7109
158 | 8242
159 | 7445
160 | 3776
161 | 3803
162 | 3690
163 | 2025
164 | 2521
165 | 2316
166 | 7190
167 | 8249
168 | 3352
169 | 2639
170 | 2887
171 | 100
172 | 4219
173 | 3344
174 | 5008
175 | 7224
176 | 3351
177 | 2434
178 | 2074
179 | 2034
180 | 8304
181 | 5004
182 | 6868
183 | 5102
184 | 2645
185 | 4071
186 | 2716
187 | 2717
188 | 7420
189 | 3499
190 | 3763
191 | 5084
192 | 2676
193 | 2046
194 | 5107
195 | 5097
196 | 3944
197 | 4097
198 | 7132
199 | 3956
200 | 7343
201 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/jnet-conv.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | height=10
5 | width=10
6 | channels=3
7 | learning_rate=0.01
8 | momentum=0.9
9 | decay=0.0005
10 |
11 | [convolutional]
12 | filters=32
13 | size=3
14 | stride=1
15 | pad=1
16 | activation=leaky
17 |
18 | [convolutional]
19 | filters=32
20 | size=3
21 | stride=1
22 | pad=1
23 | activation=leaky
24 |
25 | [maxpool]
26 | stride=2
27 | size=2
28 |
29 | [convolutional]
30 | filters=64
31 | size=3
32 | stride=1
33 | pad=1
34 | activation=leaky
35 |
36 | [convolutional]
37 | filters=64
38 | size=3
39 | stride=1
40 | pad=1
41 | activation=leaky
42 |
43 | [maxpool]
44 | stride=2
45 | size=2
46 |
47 | [convolutional]
48 | filters=128
49 | size=3
50 | stride=1
51 | pad=1
52 | activation=leaky
53 |
54 | [convolutional]
55 | filters=128
56 | size=3
57 | stride=1
58 | pad=1
59 | activation=leaky
60 |
61 | [maxpool]
62 | stride=2
63 | size=2
64 |
65 | [convolutional]
66 | filters=256
67 | size=3
68 | stride=1
69 | pad=1
70 | activation=leaky
71 |
72 | [convolutional]
73 | filters=256
74 | size=3
75 | stride=1
76 | pad=1
77 | activation=leaky
78 |
79 | [maxpool]
80 | stride=2
81 | size=2
82 |
83 | [convolutional]
84 | filters=512
85 | size=3
86 | stride=1
87 | pad=1
88 | activation=leaky
89 |
90 | [convolutional]
91 | filters=512
92 | size=3
93 | stride=1
94 | pad=1
95 | activation=leaky
96 |
97 | [maxpool]
98 | stride=2
99 | size=2
100 |
101 | [convolutional]
102 | filters=1024
103 | size=3
104 | stride=1
105 | pad=1
106 | activation=leaky
107 |
108 | [convolutional]
109 | filters=1024
110 | size=3
111 | stride=1
112 | pad=1
113 | activation=leaky
114 |
115 | [maxpool]
116 | size=2
117 | stride=2
118 |
119 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/lstm.train.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | subdivisions=8
3 | inputs=256
4 | batch = 128
5 | momentum=0.9
6 | decay=0.001
7 | max_batches = 2000
8 | time_steps=576
9 | learning_rate=0.5
10 | policy=steps
11 | burn_in=10
12 | steps=1000,1500
13 | scales=.1,.1
14 |
15 | [lstm]
16 | batch_normalize=1
17 | output = 1024
18 |
19 | [lstm]
20 | batch_normalize=1
21 | output = 1024
22 |
23 | [lstm]
24 | batch_normalize=1
25 | output = 1024
26 |
27 | [connected]
28 | output=256
29 | activation=leaky
30 |
31 | [softmax]
32 |
33 | [cost]
34 | type=sse
35 |
36 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/openimages.data:
--------------------------------------------------------------------------------
1 | classes= 601
2 | train = /home/pjreddie/data/openimsv4/openimages.train.list
3 | #valid = coco_testdev
4 | valid = data/coco_val_5k.list
5 | names = data/openimages.names
6 | backup = /home/pjreddie/backup/
7 | eval=coco
8 |
9 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/rnn.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | subdivisions=1
3 | inputs=256
4 | batch = 1
5 | momentum=0.9
6 | decay=0.001
7 | max_batches = 2000
8 | time_steps=1
9 | learning_rate=0.1
10 | policy=steps
11 | steps=1000,1500
12 | scales=.1,.1
13 |
14 | [rnn]
15 | batch_normalize=1
16 | output = 1024
17 | hidden=1024
18 | activation=leaky
19 |
20 | [rnn]
21 | batch_normalize=1
22 | output = 1024
23 | hidden=1024
24 | activation=leaky
25 |
26 | [rnn]
27 | batch_normalize=1
28 | output = 1024
29 | hidden=1024
30 | activation=leaky
31 |
32 | [connected]
33 | output=256
34 | activation=leaky
35 |
36 | [softmax]
37 |
38 | [cost]
39 | type=sse
40 |
41 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/rnn.train.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | subdivisions=8
3 | inputs=256
4 | batch = 128
5 | momentum=0.9
6 | decay=0.001
7 | max_batches = 2000
8 | time_steps=576
9 | learning_rate=0.1
10 | policy=steps
11 | steps=1000,1500
12 | scales=.1,.1
13 |
14 | [rnn]
15 | batch_normalize=1
16 | output = 1024
17 | hidden=1024
18 | activation=leaky
19 |
20 | [rnn]
21 | batch_normalize=1
22 | output = 1024
23 | hidden=1024
24 | activation=leaky
25 |
26 | [rnn]
27 | batch_normalize=1
28 | output = 1024
29 | hidden=1024
30 | activation=leaky
31 |
32 | [connected]
33 | output=256
34 | activation=leaky
35 |
36 | [softmax]
37 |
38 | [cost]
39 | type=sse
40 |
41 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/strided.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=4
4 | height=256
5 | width=256
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.01
11 | policy=steps
12 | scales=.1,.1,.1
13 | steps=200000,300000,400000
14 | max_batches=800000
15 |
16 |
17 | [crop]
18 | crop_height=224
19 | crop_width=224
20 | flip=1
21 | angle=0
22 | saturation=1
23 | exposure=1
24 | shift=.2
25 |
26 | [convolutional]
27 | filters=64
28 | size=7
29 | stride=2
30 | pad=1
31 | activation=ramp
32 |
33 | [convolutional]
34 | filters=192
35 | size=3
36 | stride=2
37 | pad=1
38 | activation=ramp
39 |
40 | [convolutional]
41 | filters=128
42 | size=1
43 | stride=1
44 | pad=1
45 | activation=ramp
46 |
47 | [convolutional]
48 | filters=256
49 | size=3
50 | stride=2
51 | pad=1
52 | activation=ramp
53 |
54 | [convolutional]
55 | filters=128
56 | size=1
57 | stride=1
58 | pad=1
59 | activation=ramp
60 |
61 | [convolutional]
62 | filters=256
63 | size=3
64 | stride=1
65 | pad=1
66 | activation=ramp
67 |
68 | [convolutional]
69 | filters=128
70 | size=1
71 | stride=1
72 | pad=1
73 | activation=ramp
74 |
75 | [convolutional]
76 | filters=512
77 | size=3
78 | stride=2
79 | pad=1
80 | activation=ramp
81 |
82 | [convolutional]
83 | filters=256
84 | size=1
85 | stride=1
86 | pad=1
87 | activation=ramp
88 |
89 | [convolutional]
90 | filters=512
91 | size=3
92 | stride=1
93 | pad=1
94 | activation=ramp
95 |
96 | [convolutional]
97 | filters=256
98 | size=1
99 | stride=1
100 | pad=1
101 | activation=ramp
102 |
103 | [convolutional]
104 | filters=512
105 | size=3
106 | stride=1
107 | pad=1
108 | activation=ramp
109 |
110 | [convolutional]
111 | filters=256
112 | size=1
113 | stride=1
114 | pad=1
115 | activation=ramp
116 |
117 | [convolutional]
118 | filters=512
119 | size=3
120 | stride=1
121 | pad=1
122 | activation=ramp
123 |
124 | [convolutional]
125 | filters=256
126 | size=1
127 | stride=1
128 | pad=1
129 | activation=ramp
130 |
131 | [convolutional]
132 | filters=512
133 | size=3
134 | stride=1
135 | pad=1
136 | activation=ramp
137 |
138 | [convolutional]
139 | filters=256
140 | size=1
141 | stride=1
142 | pad=1
143 | activation=ramp
144 |
145 | [convolutional]
146 | filters=1024
147 | size=3
148 | stride=2
149 | pad=1
150 | activation=ramp
151 |
152 | [convolutional]
153 | filters=512
154 | size=1
155 | stride=1
156 | pad=1
157 | activation=ramp
158 |
159 | [convolutional]
160 | filters=1024
161 | size=3
162 | stride=1
163 | pad=1
164 | activation=ramp
165 |
166 | [maxpool]
167 | size=3
168 | stride=2
169 |
170 | [connected]
171 | output=4096
172 | activation=ramp
173 |
174 | [dropout]
175 | probability=0.5
176 |
177 | [connected]
178 | output=1000
179 | activation=ramp
180 |
181 | [softmax]
182 |
183 | [cost]
184 | type=sse
185 |
186 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/t1.test.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | height=224
5 | width=224
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.0005
11 | policy=steps
12 | steps=200,400,600,20000,30000
13 | scales=2.5,2,2,.1,.1
14 | max_batches = 40000
15 |
16 | [convolutional]
17 | filters=16
18 | size=3
19 | stride=1
20 | pad=1
21 | activation=leaky
22 |
23 | [maxpool]
24 | size=2
25 | stride=2
26 |
27 | [convolutional]
28 | filters=32
29 | size=3
30 | stride=1
31 | pad=1
32 | activation=leaky
33 |
34 | [maxpool]
35 | size=2
36 | stride=2
37 |
38 | [convolutional]
39 | filters=64
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | filters=128
51 | size=3
52 | stride=1
53 | pad=1
54 | activation=leaky
55 |
56 | [maxpool]
57 | size=2
58 | stride=2
59 |
60 | [convolutional]
61 | filters=256
62 | size=3
63 | stride=1
64 | pad=1
65 | activation=leaky
66 |
67 | [maxpool]
68 | size=2
69 | stride=2
70 |
71 | [convolutional]
72 | filters=512
73 | size=3
74 | stride=1
75 | pad=1
76 | activation=leaky
77 |
78 | [convolutional]
79 | filters=1024
80 | size=3
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [convolutional]
86 | filters=1024
87 | size=3
88 | stride=1
89 | pad=1
90 | activation=leaky
91 |
92 | [convolutional]
93 | filters=256
94 | size=3
95 | stride=1
96 | pad=1
97 | activation=leaky
98 |
99 | [connected]
100 | output= 1470
101 | activation=linear
102 |
103 | [detection]
104 | classes=20
105 | coords=4
106 | rescore=1
107 | side=7
108 | num=2
109 | softmax=0
110 | sqrt=1
111 | jitter=.2
112 |
113 | object_scale=1
114 | noobject_scale=.5
115 | class_scale=1
116 | coord_scale=5
117 |
118 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/tiny-yolo-voc.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=8
4 | width=416
5 | height=416
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | angle=0
10 | saturation = 1.5
11 | exposure = 1.5
12 | hue=.1
13 |
14 | learning_rate=0.001
15 | max_batches = 40200
16 | policy=steps
17 | steps=-1,100,20000,30000
18 | scales=.1,10,.1,.1
19 |
20 | [convolutional]
21 | batch_normalize=1
22 | filters=16
23 | size=3
24 | stride=1
25 | pad=1
26 | activation=leaky
27 |
28 | [maxpool]
29 | size=2
30 | stride=2
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=32
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [maxpool]
41 | size=2
42 | stride=2
43 |
44 | [convolutional]
45 | batch_normalize=1
46 | filters=64
47 | size=3
48 | stride=1
49 | pad=1
50 | activation=leaky
51 |
52 | [maxpool]
53 | size=2
54 | stride=2
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=128
59 | size=3
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [maxpool]
65 | size=2
66 | stride=2
67 |
68 | [convolutional]
69 | batch_normalize=1
70 | filters=256
71 | size=3
72 | stride=1
73 | pad=1
74 | activation=leaky
75 |
76 | [maxpool]
77 | size=2
78 | stride=2
79 |
80 | [convolutional]
81 | batch_normalize=1
82 | filters=512
83 | size=3
84 | stride=1
85 | pad=1
86 | activation=leaky
87 |
88 | [maxpool]
89 | size=2
90 | stride=1
91 |
92 | [convolutional]
93 | batch_normalize=1
94 | filters=1024
95 | size=3
96 | stride=1
97 | pad=1
98 | activation=leaky
99 |
100 | ###########
101 |
102 | [convolutional]
103 | batch_normalize=1
104 | size=3
105 | stride=1
106 | pad=1
107 | filters=1024
108 | activation=leaky
109 |
110 | [convolutional]
111 | size=1
112 | stride=1
113 | pad=1
114 | filters=125
115 | activation=linear
116 |
117 | [region]
118 | anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
119 | bias_match=1
120 | classes=20
121 | coords=4
122 | num=5
123 | softmax=1
124 | jitter=.2
125 | rescore=1
126 |
127 | object_scale=5
128 | noobject_scale=1
129 | class_scale=1
130 | coord_scale=1
131 |
132 | absolute=1
133 | thresh = .6
134 | random=1
135 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/tiny-yolo.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=8
4 | width=416
5 | height=416
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | angle=0
10 | saturation = 1.5
11 | exposure = 1.5
12 | hue=.1
13 |
14 | learning_rate=0.001
15 | max_batches = 120000
16 | policy=steps
17 | steps=-1,100,80000,100000
18 | scales=.1,10,.1,.1
19 |
20 | [convolutional]
21 | batch_normalize=1
22 | filters=16
23 | size=3
24 | stride=1
25 | pad=1
26 | activation=leaky
27 |
28 | [maxpool]
29 | size=2
30 | stride=2
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=32
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [maxpool]
41 | size=2
42 | stride=2
43 |
44 | [convolutional]
45 | batch_normalize=1
46 | filters=64
47 | size=3
48 | stride=1
49 | pad=1
50 | activation=leaky
51 |
52 | [maxpool]
53 | size=2
54 | stride=2
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=128
59 | size=3
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [maxpool]
65 | size=2
66 | stride=2
67 |
68 | [convolutional]
69 | batch_normalize=1
70 | filters=256
71 | size=3
72 | stride=1
73 | pad=1
74 | activation=leaky
75 |
76 | [maxpool]
77 | size=2
78 | stride=2
79 |
80 | [convolutional]
81 | batch_normalize=1
82 | filters=512
83 | size=3
84 | stride=1
85 | pad=1
86 | activation=leaky
87 |
88 | [maxpool]
89 | size=2
90 | stride=1
91 |
92 | [convolutional]
93 | batch_normalize=1
94 | filters=1024
95 | size=3
96 | stride=1
97 | pad=1
98 | activation=leaky
99 |
100 | ###########
101 |
102 | [convolutional]
103 | batch_normalize=1
104 | size=3
105 | stride=1
106 | pad=1
107 | filters=1024
108 | activation=leaky
109 |
110 | [convolutional]
111 | size=1
112 | stride=1
113 | pad=1
114 | filters=425
115 | activation=linear
116 |
117 | [region]
118 | anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
119 | bias_match=1
120 | classes=80
121 | coords=4
122 | num=5
123 | softmax=1
124 | jitter=.2
125 | rescore=1
126 |
127 | object_scale=5
128 | noobject_scale=1
129 | class_scale=1
130 | coord_scale=1
131 |
132 | absolute=1
133 | thresh = .6
134 | random=1
135 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/tiny-yolo_xnor.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=8
4 | width=416
5 | height=416
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | angle=0
10 | saturation = 1.5
11 | exposure = 1.5
12 | hue=.1
13 |
14 | learning_rate=0.001
15 | max_batches = 40200
16 | policy=steps
17 | steps=-1,100,20000,30000
18 | scales=.1,10,.1,.1
19 |
20 | [convolutional]
21 | #xnor=1
22 | batch_normalize=1
23 | filters=16
24 | size=3
25 | stride=1
26 | pad=1
27 | activation=leaky
28 |
29 | [maxpool]
30 | size=2
31 | stride=2
32 |
33 | [convolutional]
34 | xnor=1
35 | bin_output=1
36 | batch_normalize=1
37 | filters=32
38 | size=3
39 | stride=1
40 | pad=1
41 | activation=leaky
42 |
43 | [maxpool]
44 | size=2
45 | stride=2
46 |
47 | [convolutional]
48 | xnor=1
49 | bin_output=1
50 | batch_normalize=1
51 | filters=64
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [maxpool]
58 | size=2
59 | stride=2
60 |
61 | [convolutional]
62 | xnor=1
63 | bin_output=1
64 | batch_normalize=1
65 | filters=128
66 | size=3
67 | stride=1
68 | pad=1
69 | activation=leaky
70 |
71 | [maxpool]
72 | size=2
73 | stride=2
74 |
75 | [convolutional]
76 | xnor=1
77 | bin_output=1
78 | batch_normalize=1
79 | filters=256
80 | size=3
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [maxpool]
86 | size=2
87 | stride=2
88 |
89 | [convolutional]
90 | xnor=1
91 | bin_output=1
92 | batch_normalize=1
93 | filters=512
94 | size=3
95 | stride=1
96 | pad=1
97 | activation=leaky
98 |
99 | [maxpool]
100 | size=2
101 | stride=1
102 |
103 | [convolutional]
104 | xnor=1
105 | bin_output=1
106 | batch_normalize=1
107 | filters=1024
108 | size=3
109 | stride=1
110 | pad=1
111 | activation=leaky
112 |
113 | ###########
114 |
115 | [convolutional]
116 | xnor=1
117 | batch_normalize=1
118 | size=3
119 | stride=1
120 | pad=1
121 | filters=1024
122 | activation=leaky
123 |
124 | [convolutional]
125 | size=1
126 | stride=1
127 | pad=1
128 | filters=425
129 | activation=linear
130 |
131 | [region]
132 | anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
133 | bias_match=1
134 | classes=80
135 | coords=4
136 | num=5
137 | softmax=1
138 | jitter=.2
139 | rescore=1
140 |
141 | object_scale=5
142 | noobject_scale=1
143 | class_scale=1
144 | coord_scale=1
145 |
146 | absolute=1
147 | thresh = .6
148 | random=1
149 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/tiny.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=1
4 | height=224
5 | width=224
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | max_crop=320
10 |
11 | learning_rate=0.1
12 | policy=poly
13 | power=4
14 | max_batches=1600000
15 |
16 | angle=7
17 | hue=.1
18 | saturation=.75
19 | exposure=.75
20 | aspect=.75
21 |
22 | [convolutional]
23 | batch_normalize=1
24 | filters=16
25 | size=3
26 | stride=1
27 | pad=1
28 | activation=leaky
29 |
30 | [maxpool]
31 | size=2
32 | stride=2
33 |
34 | [convolutional]
35 | batch_normalize=1
36 | filters=32
37 | size=3
38 | stride=1
39 | pad=1
40 | activation=leaky
41 |
42 | [maxpool]
43 | size=2
44 | stride=2
45 |
46 | [convolutional]
47 | batch_normalize=1
48 | filters=16
49 | size=1
50 | stride=1
51 | pad=1
52 | activation=leaky
53 |
54 | [convolutional]
55 | batch_normalize=1
56 | filters=128
57 | size=3
58 | stride=1
59 | pad=1
60 | activation=leaky
61 |
62 | [convolutional]
63 | batch_normalize=1
64 | filters=16
65 | size=1
66 | stride=1
67 | pad=1
68 | activation=leaky
69 |
70 | [convolutional]
71 | batch_normalize=1
72 | filters=128
73 | size=3
74 | stride=1
75 | pad=1
76 | activation=leaky
77 |
78 | [maxpool]
79 | size=2
80 | stride=2
81 |
82 | [convolutional]
83 | batch_normalize=1
84 | filters=32
85 | size=1
86 | stride=1
87 | pad=1
88 | activation=leaky
89 |
90 | [convolutional]
91 | batch_normalize=1
92 | filters=256
93 | size=3
94 | stride=1
95 | pad=1
96 | activation=leaky
97 |
98 | [convolutional]
99 | batch_normalize=1
100 | filters=32
101 | size=1
102 | stride=1
103 | pad=1
104 | activation=leaky
105 |
106 | [convolutional]
107 | batch_normalize=1
108 | filters=256
109 | size=3
110 | stride=1
111 | pad=1
112 | activation=leaky
113 |
114 | [maxpool]
115 | size=2
116 | stride=2
117 |
118 | [convolutional]
119 | batch_normalize=1
120 | filters=64
121 | size=1
122 | stride=1
123 | pad=1
124 | activation=leaky
125 |
126 | [convolutional]
127 | batch_normalize=1
128 | filters=512
129 | size=3
130 | stride=1
131 | pad=1
132 | activation=leaky
133 |
134 | [convolutional]
135 | batch_normalize=1
136 | filters=64
137 | size=1
138 | stride=1
139 | pad=1
140 | activation=leaky
141 |
142 | [convolutional]
143 | batch_normalize=1
144 | filters=512
145 | size=3
146 | stride=1
147 | pad=1
148 | activation=leaky
149 |
150 | [convolutional]
151 | batch_normalize=1
152 | filters=128
153 | size=1
154 | stride=1
155 | pad=1
156 | activation=leaky
157 |
158 | [convolutional]
159 | filters=1000
160 | size=1
161 | stride=1
162 | pad=1
163 | activation=linear
164 |
165 | [avgpool]
166 |
167 | [softmax]
168 | groups=1
169 |
170 | [cost]
171 | type=sse
172 |
173 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/vgg-16.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=4
4 | height=256
5 | width=256
6 | channels=3
7 | learning_rate=0.00001
8 | momentum=0.9
9 | decay=0.0005
10 |
11 | [crop]
12 | crop_height=224
13 | crop_width=224
14 | flip=1
15 | exposure=1
16 | saturation=1
17 | angle=0
18 |
19 | [convolutional]
20 | filters=64
21 | size=3
22 | stride=1
23 | pad=1
24 | activation=relu
25 |
26 | [convolutional]
27 | filters=64
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=relu
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | filters=128
39 | size=3
40 | stride=1
41 | pad=1
42 | activation=relu
43 |
44 | [convolutional]
45 | filters=128
46 | size=3
47 | stride=1
48 | pad=1
49 | activation=relu
50 |
51 | [maxpool]
52 | size=2
53 | stride=2
54 |
55 | [convolutional]
56 | filters=256
57 | size=3
58 | stride=1
59 | pad=1
60 | activation=relu
61 |
62 | [convolutional]
63 | filters=256
64 | size=3
65 | stride=1
66 | pad=1
67 | activation=relu
68 |
69 | [convolutional]
70 | filters=256
71 | size=3
72 | stride=1
73 | pad=1
74 | activation=relu
75 |
76 | [maxpool]
77 | size=2
78 | stride=2
79 |
80 | [convolutional]
81 | filters=512
82 | size=3
83 | stride=1
84 | pad=1
85 | activation=relu
86 |
87 | [convolutional]
88 | filters=512
89 | size=3
90 | stride=1
91 | pad=1
92 | activation=relu
93 |
94 | [convolutional]
95 | filters=512
96 | size=3
97 | stride=1
98 | pad=1
99 | activation=relu
100 |
101 | [maxpool]
102 | size=2
103 | stride=2
104 |
105 | [convolutional]
106 | filters=512
107 | size=3
108 | stride=1
109 | pad=1
110 | activation=relu
111 |
112 | [convolutional]
113 | filters=512
114 | size=3
115 | stride=1
116 | pad=1
117 | activation=relu
118 |
119 | [convolutional]
120 | filters=512
121 | size=3
122 | stride=1
123 | pad=1
124 | activation=relu
125 |
126 | [maxpool]
127 | size=2
128 | stride=2
129 |
130 | [connected]
131 | output=4096
132 | activation=relu
133 |
134 | [dropout]
135 | probability=.5
136 |
137 | [connected]
138 | output=4096
139 | activation=relu
140 |
141 | [dropout]
142 | probability=.5
143 |
144 | [connected]
145 | output=1000
146 | activation=linear
147 |
148 | [softmax]
149 | groups=1
150 |
151 | [cost]
152 | type=sse
153 |
154 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/vgg-conv.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | width=224
5 | height=224
6 | channels=3
7 | learning_rate=0.00001
8 | momentum=0.9
9 | decay=0.0005
10 |
11 | [convolutional]
12 | filters=64
13 | size=3
14 | stride=1
15 | pad=1
16 | activation=relu
17 |
18 | [convolutional]
19 | filters=64
20 | size=3
21 | stride=1
22 | pad=1
23 | activation=relu
24 |
25 | [maxpool]
26 | size=2
27 | stride=2
28 |
29 | [convolutional]
30 | filters=128
31 | size=3
32 | stride=1
33 | pad=1
34 | activation=relu
35 |
36 | [convolutional]
37 | filters=128
38 | size=3
39 | stride=1
40 | pad=1
41 | activation=relu
42 |
43 | [maxpool]
44 | size=2
45 | stride=2
46 |
47 | [convolutional]
48 | filters=256
49 | size=3
50 | stride=1
51 | pad=1
52 | activation=relu
53 |
54 | [convolutional]
55 | filters=256
56 | size=3
57 | stride=1
58 | pad=1
59 | activation=relu
60 |
61 | [convolutional]
62 | filters=256
63 | size=3
64 | stride=1
65 | pad=1
66 | activation=relu
67 |
68 | [maxpool]
69 | size=2
70 | stride=2
71 |
72 | [convolutional]
73 | filters=512
74 | size=3
75 | stride=1
76 | pad=1
77 | activation=relu
78 |
79 | [convolutional]
80 | filters=512
81 | size=3
82 | stride=1
83 | pad=1
84 | activation=relu
85 |
86 | [convolutional]
87 | filters=512
88 | size=3
89 | stride=1
90 | pad=1
91 | activation=relu
92 |
93 | [maxpool]
94 | size=2
95 | stride=2
96 |
97 | [convolutional]
98 | filters=512
99 | size=3
100 | stride=1
101 | pad=1
102 | activation=relu
103 |
104 | [convolutional]
105 | filters=512
106 | size=3
107 | stride=1
108 | pad=1
109 | activation=relu
110 |
111 | [convolutional]
112 | filters=512
113 | size=3
114 | stride=1
115 | pad=1
116 | activation=relu
117 |
118 | [maxpool]
119 | size=2
120 | stride=2
121 |
122 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/voc.data:
--------------------------------------------------------------------------------
1 | classes= 20
2 | train = /home/pjreddie/data/voc/train.txt
3 | valid = /home/pjreddie/data/voc/2007_test.txt
4 | names = data/voc.names
5 | backup = /home/pjreddie/backup/
6 |
7 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/writing.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=128
3 | subdivisions=2
4 | height=256
5 | width=256
6 | channels=3
7 | learning_rate=0.00000001
8 | momentum=0.9
9 | decay=0.0005
10 | seen=0
11 |
12 | [convolutional]
13 | filters=32
14 | size=3
15 | stride=1
16 | pad=1
17 | activation=leaky
18 |
19 | [convolutional]
20 | filters=32
21 | size=3
22 | stride=1
23 | pad=1
24 | activation=leaky
25 |
26 | [convolutional]
27 | filters=32
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [convolutional]
34 | filters=1
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=logistic
39 |
40 | [cost]
41 |
42 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolo-voc.2.0.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=8
4 | height=416
5 | width=416
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | angle=0
10 | saturation = 1.5
11 | exposure = 1.5
12 | hue=.1
13 |
14 | learning_rate=0.0001
15 | max_batches = 45000
16 | policy=steps
17 | steps=100,25000,35000
18 | scales=10,.1,.1
19 |
20 | [convolutional]
21 | batch_normalize=1
22 | filters=32
23 | size=3
24 | stride=1
25 | pad=1
26 | activation=leaky
27 |
28 | [maxpool]
29 | size=2
30 | stride=2
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=64
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [maxpool]
41 | size=2
42 | stride=2
43 |
44 | [convolutional]
45 | batch_normalize=1
46 | filters=128
47 | size=3
48 | stride=1
49 | pad=1
50 | activation=leaky
51 |
52 | [convolutional]
53 | batch_normalize=1
54 | filters=64
55 | size=1
56 | stride=1
57 | pad=1
58 | activation=leaky
59 |
60 | [convolutional]
61 | batch_normalize=1
62 | filters=128
63 | size=3
64 | stride=1
65 | pad=1
66 | activation=leaky
67 |
68 | [maxpool]
69 | size=2
70 | stride=2
71 |
72 | [convolutional]
73 | batch_normalize=1
74 | filters=256
75 | size=3
76 | stride=1
77 | pad=1
78 | activation=leaky
79 |
80 | [convolutional]
81 | batch_normalize=1
82 | filters=128
83 | size=1
84 | stride=1
85 | pad=1
86 | activation=leaky
87 |
88 | [convolutional]
89 | batch_normalize=1
90 | filters=256
91 | size=3
92 | stride=1
93 | pad=1
94 | activation=leaky
95 |
96 | [maxpool]
97 | size=2
98 | stride=2
99 |
100 | [convolutional]
101 | batch_normalize=1
102 | filters=512
103 | size=3
104 | stride=1
105 | pad=1
106 | activation=leaky
107 |
108 | [convolutional]
109 | batch_normalize=1
110 | filters=256
111 | size=1
112 | stride=1
113 | pad=1
114 | activation=leaky
115 |
116 | [convolutional]
117 | batch_normalize=1
118 | filters=512
119 | size=3
120 | stride=1
121 | pad=1
122 | activation=leaky
123 |
124 | [convolutional]
125 | batch_normalize=1
126 | filters=256
127 | size=1
128 | stride=1
129 | pad=1
130 | activation=leaky
131 |
132 | [convolutional]
133 | batch_normalize=1
134 | filters=512
135 | size=3
136 | stride=1
137 | pad=1
138 | activation=leaky
139 |
140 | [maxpool]
141 | size=2
142 | stride=2
143 |
144 | [convolutional]
145 | batch_normalize=1
146 | filters=1024
147 | size=3
148 | stride=1
149 | pad=1
150 | activation=leaky
151 |
152 | [convolutional]
153 | batch_normalize=1
154 | filters=512
155 | size=1
156 | stride=1
157 | pad=1
158 | activation=leaky
159 |
160 | [convolutional]
161 | batch_normalize=1
162 | filters=1024
163 | size=3
164 | stride=1
165 | pad=1
166 | activation=leaky
167 |
168 | [convolutional]
169 | batch_normalize=1
170 | filters=512
171 | size=1
172 | stride=1
173 | pad=1
174 | activation=leaky
175 |
176 | [convolutional]
177 | batch_normalize=1
178 | filters=1024
179 | size=3
180 | stride=1
181 | pad=1
182 | activation=leaky
183 |
184 |
185 | #######
186 |
187 | [convolutional]
188 | batch_normalize=1
189 | size=3
190 | stride=1
191 | pad=1
192 | filters=1024
193 | activation=leaky
194 |
195 | [convolutional]
196 | batch_normalize=1
197 | size=3
198 | stride=1
199 | pad=1
200 | filters=1024
201 | activation=leaky
202 |
203 | [route]
204 | layers=-9
205 |
206 | [reorg]
207 | stride=2
208 |
209 | [route]
210 | layers=-1,-3
211 |
212 | [convolutional]
213 | batch_normalize=1
214 | size=3
215 | stride=1
216 | pad=1
217 | filters=1024
218 | activation=leaky
219 |
220 | [convolutional]
221 | size=1
222 | stride=1
223 | pad=1
224 | filters=125
225 | activation=linear
226 |
227 | [region]
228 | anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
229 | bias_match=1
230 | classes=20
231 | coords=4
232 | num=5
233 | softmax=1
234 | jitter=.2
235 | rescore=1
236 |
237 | object_scale=5
238 | noobject_scale=1
239 | class_scale=1
240 | coord_scale=1
241 |
242 | absolute=1
243 | thresh = .6
244 | random=0
245 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolo-voc.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | # batch=64
7 | # subdivisions=8
8 | height=416
9 | width=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 80200
21 | policy=steps
22 | steps=40000,60000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=32
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | batch_normalize=1
39 | filters=64
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | batch_normalize=1
51 | filters=128
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [convolutional]
58 | batch_normalize=1
59 | filters=64
60 | size=1
61 | stride=1
62 | pad=1
63 | activation=leaky
64 |
65 | [convolutional]
66 | batch_normalize=1
67 | filters=128
68 | size=3
69 | stride=1
70 | pad=1
71 | activation=leaky
72 |
73 | [maxpool]
74 | size=2
75 | stride=2
76 |
77 | [convolutional]
78 | batch_normalize=1
79 | filters=256
80 | size=3
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [convolutional]
86 | batch_normalize=1
87 | filters=128
88 | size=1
89 | stride=1
90 | pad=1
91 | activation=leaky
92 |
93 | [convolutional]
94 | batch_normalize=1
95 | filters=256
96 | size=3
97 | stride=1
98 | pad=1
99 | activation=leaky
100 |
101 | [maxpool]
102 | size=2
103 | stride=2
104 |
105 | [convolutional]
106 | batch_normalize=1
107 | filters=512
108 | size=3
109 | stride=1
110 | pad=1
111 | activation=leaky
112 |
113 | [convolutional]
114 | batch_normalize=1
115 | filters=256
116 | size=1
117 | stride=1
118 | pad=1
119 | activation=leaky
120 |
121 | [convolutional]
122 | batch_normalize=1
123 | filters=512
124 | size=3
125 | stride=1
126 | pad=1
127 | activation=leaky
128 |
129 | [convolutional]
130 | batch_normalize=1
131 | filters=256
132 | size=1
133 | stride=1
134 | pad=1
135 | activation=leaky
136 |
137 | [convolutional]
138 | batch_normalize=1
139 | filters=512
140 | size=3
141 | stride=1
142 | pad=1
143 | activation=leaky
144 |
145 | [maxpool]
146 | size=2
147 | stride=2
148 |
149 | [convolutional]
150 | batch_normalize=1
151 | filters=1024
152 | size=3
153 | stride=1
154 | pad=1
155 | activation=leaky
156 |
157 | [convolutional]
158 | batch_normalize=1
159 | filters=512
160 | size=1
161 | stride=1
162 | pad=1
163 | activation=leaky
164 |
165 | [convolutional]
166 | batch_normalize=1
167 | filters=1024
168 | size=3
169 | stride=1
170 | pad=1
171 | activation=leaky
172 |
173 | [convolutional]
174 | batch_normalize=1
175 | filters=512
176 | size=1
177 | stride=1
178 | pad=1
179 | activation=leaky
180 |
181 | [convolutional]
182 | batch_normalize=1
183 | filters=1024
184 | size=3
185 | stride=1
186 | pad=1
187 | activation=leaky
188 |
189 |
190 | #######
191 |
192 | [convolutional]
193 | batch_normalize=1
194 | size=3
195 | stride=1
196 | pad=1
197 | filters=1024
198 | activation=leaky
199 |
200 | [convolutional]
201 | batch_normalize=1
202 | size=3
203 | stride=1
204 | pad=1
205 | filters=1024
206 | activation=leaky
207 |
208 | [route]
209 | layers=-9
210 |
211 | [convolutional]
212 | batch_normalize=1
213 | size=1
214 | stride=1
215 | pad=1
216 | filters=64
217 | activation=leaky
218 |
219 | [reorg]
220 | stride=2
221 |
222 | [route]
223 | layers=-1,-4
224 |
225 | [convolutional]
226 | batch_normalize=1
227 | size=3
228 | stride=1
229 | pad=1
230 | filters=1024
231 | activation=leaky
232 |
233 | [convolutional]
234 | size=1
235 | stride=1
236 | pad=1
237 | filters=125
238 | activation=linear
239 |
240 |
241 | [region]
242 | anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
243 | bias_match=1
244 | classes=20
245 | coords=4
246 | num=5
247 | softmax=1
248 | jitter=.3
249 | rescore=1
250 |
251 | object_scale=5
252 | noobject_scale=1
253 | class_scale=1
254 | coord_scale=1
255 |
256 | absolute=1
257 | thresh = .6
258 | random=1
259 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolo.2.0.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | width=416
5 | height=416
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | angle=0
10 | saturation = 1.5
11 | exposure = 1.5
12 | hue=.1
13 |
14 | learning_rate=0.001
15 | max_batches = 120000
16 | policy=steps
17 | steps=-1,100,80000,100000
18 | scales=.1,10,.1,.1
19 |
20 | [convolutional]
21 | batch_normalize=1
22 | filters=32
23 | size=3
24 | stride=1
25 | pad=1
26 | activation=leaky
27 |
28 | [maxpool]
29 | size=2
30 | stride=2
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=64
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [maxpool]
41 | size=2
42 | stride=2
43 |
44 | [convolutional]
45 | batch_normalize=1
46 | filters=128
47 | size=3
48 | stride=1
49 | pad=1
50 | activation=leaky
51 |
52 | [convolutional]
53 | batch_normalize=1
54 | filters=64
55 | size=1
56 | stride=1
57 | pad=1
58 | activation=leaky
59 |
60 | [convolutional]
61 | batch_normalize=1
62 | filters=128
63 | size=3
64 | stride=1
65 | pad=1
66 | activation=leaky
67 |
68 | [maxpool]
69 | size=2
70 | stride=2
71 |
72 | [convolutional]
73 | batch_normalize=1
74 | filters=256
75 | size=3
76 | stride=1
77 | pad=1
78 | activation=leaky
79 |
80 | [convolutional]
81 | batch_normalize=1
82 | filters=128
83 | size=1
84 | stride=1
85 | pad=1
86 | activation=leaky
87 |
88 | [convolutional]
89 | batch_normalize=1
90 | filters=256
91 | size=3
92 | stride=1
93 | pad=1
94 | activation=leaky
95 |
96 | [maxpool]
97 | size=2
98 | stride=2
99 |
100 | [convolutional]
101 | batch_normalize=1
102 | filters=512
103 | size=3
104 | stride=1
105 | pad=1
106 | activation=leaky
107 |
108 | [convolutional]
109 | batch_normalize=1
110 | filters=256
111 | size=1
112 | stride=1
113 | pad=1
114 | activation=leaky
115 |
116 | [convolutional]
117 | batch_normalize=1
118 | filters=512
119 | size=3
120 | stride=1
121 | pad=1
122 | activation=leaky
123 |
124 | [convolutional]
125 | batch_normalize=1
126 | filters=256
127 | size=1
128 | stride=1
129 | pad=1
130 | activation=leaky
131 |
132 | [convolutional]
133 | batch_normalize=1
134 | filters=512
135 | size=3
136 | stride=1
137 | pad=1
138 | activation=leaky
139 |
140 | [maxpool]
141 | size=2
142 | stride=2
143 |
144 | [convolutional]
145 | batch_normalize=1
146 | filters=1024
147 | size=3
148 | stride=1
149 | pad=1
150 | activation=leaky
151 |
152 | [convolutional]
153 | batch_normalize=1
154 | filters=512
155 | size=1
156 | stride=1
157 | pad=1
158 | activation=leaky
159 |
160 | [convolutional]
161 | batch_normalize=1
162 | filters=1024
163 | size=3
164 | stride=1
165 | pad=1
166 | activation=leaky
167 |
168 | [convolutional]
169 | batch_normalize=1
170 | filters=512
171 | size=1
172 | stride=1
173 | pad=1
174 | activation=leaky
175 |
176 | [convolutional]
177 | batch_normalize=1
178 | filters=1024
179 | size=3
180 | stride=1
181 | pad=1
182 | activation=leaky
183 |
184 |
185 | #######
186 |
187 | [convolutional]
188 | batch_normalize=1
189 | size=3
190 | stride=1
191 | pad=1
192 | filters=1024
193 | activation=leaky
194 |
195 | [convolutional]
196 | batch_normalize=1
197 | size=3
198 | stride=1
199 | pad=1
200 | filters=1024
201 | activation=leaky
202 |
203 | [route]
204 | layers=-9
205 |
206 | [reorg]
207 | stride=2
208 |
209 | [route]
210 | layers=-1,-3
211 |
212 | [convolutional]
213 | batch_normalize=1
214 | size=3
215 | stride=1
216 | pad=1
217 | filters=1024
218 | activation=leaky
219 |
220 | [convolutional]
221 | size=1
222 | stride=1
223 | pad=1
224 | filters=425
225 | activation=linear
226 |
227 | [region]
228 | anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
229 | bias_match=1
230 | classes=80
231 | coords=4
232 | num=5
233 | softmax=1
234 | jitter=.2
235 | rescore=1
236 |
237 | object_scale=5
238 | noobject_scale=1
239 | class_scale=1
240 | coord_scale=1
241 |
242 | absolute=1
243 | thresh = .6
244 | random=0
245 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolo.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | # batch=64
7 | # subdivisions=8
8 | height=416
9 | width=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=32
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | batch_normalize=1
39 | filters=64
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | batch_normalize=1
51 | filters=128
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [convolutional]
58 | batch_normalize=1
59 | filters=64
60 | size=1
61 | stride=1
62 | pad=1
63 | activation=leaky
64 |
65 | [convolutional]
66 | batch_normalize=1
67 | filters=128
68 | size=3
69 | stride=1
70 | pad=1
71 | activation=leaky
72 |
73 | [maxpool]
74 | size=2
75 | stride=2
76 |
77 | [convolutional]
78 | batch_normalize=1
79 | filters=256
80 | size=3
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [convolutional]
86 | batch_normalize=1
87 | filters=128
88 | size=1
89 | stride=1
90 | pad=1
91 | activation=leaky
92 |
93 | [convolutional]
94 | batch_normalize=1
95 | filters=256
96 | size=3
97 | stride=1
98 | pad=1
99 | activation=leaky
100 |
101 | [maxpool]
102 | size=2
103 | stride=2
104 |
105 | [convolutional]
106 | batch_normalize=1
107 | filters=512
108 | size=3
109 | stride=1
110 | pad=1
111 | activation=leaky
112 |
113 | [convolutional]
114 | batch_normalize=1
115 | filters=256
116 | size=1
117 | stride=1
118 | pad=1
119 | activation=leaky
120 |
121 | [convolutional]
122 | batch_normalize=1
123 | filters=512
124 | size=3
125 | stride=1
126 | pad=1
127 | activation=leaky
128 |
129 | [convolutional]
130 | batch_normalize=1
131 | filters=256
132 | size=1
133 | stride=1
134 | pad=1
135 | activation=leaky
136 |
137 | [convolutional]
138 | batch_normalize=1
139 | filters=512
140 | size=3
141 | stride=1
142 | pad=1
143 | activation=leaky
144 |
145 | [maxpool]
146 | size=2
147 | stride=2
148 |
149 | [convolutional]
150 | batch_normalize=1
151 | filters=1024
152 | size=3
153 | stride=1
154 | pad=1
155 | activation=leaky
156 |
157 | [convolutional]
158 | batch_normalize=1
159 | filters=512
160 | size=1
161 | stride=1
162 | pad=1
163 | activation=leaky
164 |
165 | [convolutional]
166 | batch_normalize=1
167 | filters=1024
168 | size=3
169 | stride=1
170 | pad=1
171 | activation=leaky
172 |
173 | [convolutional]
174 | batch_normalize=1
175 | filters=512
176 | size=1
177 | stride=1
178 | pad=1
179 | activation=leaky
180 |
181 | [convolutional]
182 | batch_normalize=1
183 | filters=1024
184 | size=3
185 | stride=1
186 | pad=1
187 | activation=leaky
188 |
189 |
190 | #######
191 |
192 | [convolutional]
193 | batch_normalize=1
194 | size=3
195 | stride=1
196 | pad=1
197 | filters=1024
198 | activation=leaky
199 |
200 | [convolutional]
201 | batch_normalize=1
202 | size=3
203 | stride=1
204 | pad=1
205 | filters=1024
206 | activation=leaky
207 |
208 | [route]
209 | layers=-9
210 |
211 | [convolutional]
212 | batch_normalize=1
213 | size=1
214 | stride=1
215 | pad=1
216 | filters=64
217 | activation=leaky
218 |
219 | [reorg]
220 | stride=2
221 |
222 | [route]
223 | layers=-1,-4
224 |
225 | [convolutional]
226 | batch_normalize=1
227 | size=3
228 | stride=1
229 | pad=1
230 | filters=1024
231 | activation=leaky
232 |
233 | [convolutional]
234 | size=1
235 | stride=1
236 | pad=1
237 | filters=425
238 | activation=linear
239 |
240 |
241 | [region]
242 | anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
243 | bias_match=1
244 | classes=80
245 | coords=4
246 | num=5
247 | softmax=1
248 | jitter=.3
249 | rescore=1
250 |
251 | object_scale=5
252 | noobject_scale=1
253 | class_scale=1
254 | coord_scale=1
255 |
256 | absolute=1
257 | thresh = .6
258 | random=1
259 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolo9000.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | # batch=64
7 | # subdivisions=8
8 | batch=1
9 | subdivisions=1
10 | height=544
11 | width=544
12 | channels=3
13 | momentum=0.9
14 | decay=0.0005
15 |
16 | learning_rate=0.001
17 | burn_in=1000
18 | max_batches = 500200
19 | policy=steps
20 | steps=400000,450000
21 | scales=.1,.1
22 |
23 | hue=.1
24 | saturation=.75
25 | exposure=.75
26 |
27 | [convolutional]
28 | batch_normalize=1
29 | filters=32
30 | size=3
31 | stride=1
32 | pad=1
33 | activation=leaky
34 |
35 | [maxpool]
36 | size=2
37 | stride=2
38 |
39 | [convolutional]
40 | batch_normalize=1
41 | filters=64
42 | size=3
43 | stride=1
44 | pad=1
45 | activation=leaky
46 |
47 | [maxpool]
48 | size=2
49 | stride=2
50 |
51 | [convolutional]
52 | batch_normalize=1
53 | filters=128
54 | size=3
55 | stride=1
56 | pad=1
57 | activation=leaky
58 |
59 | [convolutional]
60 | batch_normalize=1
61 | filters=64
62 | size=1
63 | stride=1
64 | pad=1
65 | activation=leaky
66 |
67 | [convolutional]
68 | batch_normalize=1
69 | filters=128
70 | size=3
71 | stride=1
72 | pad=1
73 | activation=leaky
74 |
75 | [maxpool]
76 | size=2
77 | stride=2
78 |
79 | [convolutional]
80 | batch_normalize=1
81 | filters=256
82 | size=3
83 | stride=1
84 | pad=1
85 | activation=leaky
86 |
87 | [convolutional]
88 | batch_normalize=1
89 | filters=128
90 | size=1
91 | stride=1
92 | pad=1
93 | activation=leaky
94 |
95 | [convolutional]
96 | batch_normalize=1
97 | filters=256
98 | size=3
99 | stride=1
100 | pad=1
101 | activation=leaky
102 |
103 | [maxpool]
104 | size=2
105 | stride=2
106 |
107 | [convolutional]
108 | batch_normalize=1
109 | filters=512
110 | size=3
111 | stride=1
112 | pad=1
113 | activation=leaky
114 |
115 | [convolutional]
116 | batch_normalize=1
117 | filters=256
118 | size=1
119 | stride=1
120 | pad=1
121 | activation=leaky
122 |
123 | [convolutional]
124 | batch_normalize=1
125 | filters=512
126 | size=3
127 | stride=1
128 | pad=1
129 | activation=leaky
130 |
131 | [convolutional]
132 | batch_normalize=1
133 | filters=256
134 | size=1
135 | stride=1
136 | pad=1
137 | activation=leaky
138 |
139 | [convolutional]
140 | batch_normalize=1
141 | filters=512
142 | size=3
143 | stride=1
144 | pad=1
145 | activation=leaky
146 |
147 | [maxpool]
148 | size=2
149 | stride=2
150 |
151 | [convolutional]
152 | batch_normalize=1
153 | filters=1024
154 | size=3
155 | stride=1
156 | pad=1
157 | activation=leaky
158 |
159 | [convolutional]
160 | batch_normalize=1
161 | filters=512
162 | size=1
163 | stride=1
164 | pad=1
165 | activation=leaky
166 |
167 | [convolutional]
168 | batch_normalize=1
169 | filters=1024
170 | size=3
171 | stride=1
172 | pad=1
173 | activation=leaky
174 |
175 | [convolutional]
176 | batch_normalize=1
177 | filters=512
178 | size=1
179 | stride=1
180 | pad=1
181 | activation=leaky
182 |
183 | [convolutional]
184 | batch_normalize=1
185 | filters=1024
186 | size=3
187 | stride=1
188 | pad=1
189 | activation=leaky
190 |
191 | [convolutional]
192 | filters=28269
193 | size=1
194 | stride=1
195 | pad=1
196 | activation=linear
197 |
198 | [region]
199 | anchors = 0.77871, 1.14074, 3.00525, 4.31277, 9.22725, 9.61974
200 | bias_match=1
201 | classes=9418
202 | coords=4
203 | num=3
204 | softmax=1
205 | jitter=.2
206 | rescore=1
207 |
208 | object_scale=5
209 | noobject_scale=1
210 | class_scale=1
211 | coord_scale=1
212 |
213 | thresh = .6
214 | absolute=1
215 | random=1
216 |
217 | tree=data/9k.tree
218 | map = data/coco9k.map
219 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov1/tiny-coco.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=2
4 | height=448
5 | width=448
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | hue = .1
11 | saturation=.75
12 | exposure=.75
13 |
14 | learning_rate=0.0005
15 | policy=steps
16 | steps=200,400,600,800,100000,150000
17 | scales=2.5,2,2,2,.1,.1
18 | max_batches = 200000
19 |
20 | [convolutional]
21 | batch_normalize=1
22 | filters=16
23 | size=3
24 | stride=1
25 | pad=1
26 | activation=leaky
27 |
28 | [maxpool]
29 | size=2
30 | stride=2
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=32
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [maxpool]
41 | size=2
42 | stride=2
43 |
44 | [convolutional]
45 | batch_normalize=1
46 | filters=64
47 | size=3
48 | stride=1
49 | pad=1
50 | activation=leaky
51 |
52 | [maxpool]
53 | size=2
54 | stride=2
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=128
59 | size=3
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [maxpool]
65 | size=2
66 | stride=2
67 |
68 | [convolutional]
69 | batch_normalize=1
70 | filters=256
71 | size=3
72 | stride=1
73 | pad=1
74 | activation=leaky
75 |
76 | [maxpool]
77 | size=2
78 | stride=2
79 |
80 | [convolutional]
81 | batch_normalize=1
82 | filters=512
83 | size=3
84 | stride=1
85 | pad=1
86 | activation=leaky
87 |
88 | [maxpool]
89 | size=2
90 | stride=2
91 |
92 | [convolutional]
93 | batch_normalize=1
94 | size=3
95 | stride=1
96 | pad=1
97 | filters=1024
98 | activation=leaky
99 |
100 | [convolutional]
101 | batch_normalize=1
102 | size=3
103 | stride=1
104 | pad=1
105 | filters=256
106 | activation=leaky
107 |
108 | [connected]
109 | output= 4655
110 | activation=linear
111 |
112 | [detection]
113 | classes=80
114 | coords=4
115 | rescore=1
116 | side=7
117 | num=3
118 | softmax=0
119 | sqrt=1
120 | jitter=.2
121 |
122 | object_scale=1
123 | noobject_scale=.5
124 | class_scale=1
125 | coord_scale=5
126 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov1/tiny-yolo.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=2
4 | height=448
5 | width=448
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | saturation=.75
11 | exposure=.75
12 | hue = .1
13 |
14 | learning_rate=0.0005
15 | policy=steps
16 | steps=200,400,600,800,20000,30000
17 | scales=2.5,2,2,2,.1,.1
18 | max_batches = 40000
19 |
20 | [convolutional]
21 | batch_normalize=1
22 | filters=16
23 | size=3
24 | stride=1
25 | pad=1
26 | activation=leaky
27 |
28 | [maxpool]
29 | size=2
30 | stride=2
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=32
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [maxpool]
41 | size=2
42 | stride=2
43 |
44 | [convolutional]
45 | batch_normalize=1
46 | filters=64
47 | size=3
48 | stride=1
49 | pad=1
50 | activation=leaky
51 |
52 | [maxpool]
53 | size=2
54 | stride=2
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=128
59 | size=3
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [maxpool]
65 | size=2
66 | stride=2
67 |
68 | [convolutional]
69 | batch_normalize=1
70 | filters=256
71 | size=3
72 | stride=1
73 | pad=1
74 | activation=leaky
75 |
76 | [maxpool]
77 | size=2
78 | stride=2
79 |
80 | [convolutional]
81 | batch_normalize=1
82 | filters=512
83 | size=3
84 | stride=1
85 | pad=1
86 | activation=leaky
87 |
88 | [maxpool]
89 | size=2
90 | stride=2
91 |
92 | [convolutional]
93 | batch_normalize=1
94 | size=3
95 | stride=1
96 | pad=1
97 | filters=1024
98 | activation=leaky
99 |
100 | [convolutional]
101 | batch_normalize=1
102 | size=3
103 | stride=1
104 | pad=1
105 | filters=256
106 | activation=leaky
107 |
108 | [connected]
109 | output= 1470
110 | activation=linear
111 |
112 | [detection]
113 | classes=20
114 | coords=4
115 | rescore=1
116 | side=7
117 | num=2
118 | softmax=0
119 | sqrt=1
120 | jitter=.2
121 |
122 | object_scale=1
123 | noobject_scale=.5
124 | class_scale=1
125 | coord_scale=5
126 |
127 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov1/xyolo.test.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | height=448
5 | width=448
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.0001
11 | policy=steps
12 | steps=20,40,60,80,20000,30000
13 | scales=5,5,2,2,.1,.1
14 | max_batches = 40000
15 |
16 | [convolutional]
17 | batch_normalize=1
18 | filters=16
19 | size=3
20 | stride=1
21 | pad=1
22 | activation=leaky
23 |
24 | [maxpool]
25 | size=2
26 | stride=2
27 |
28 | [batchnorm]
29 |
30 | [convolutional]
31 | xnor = 1
32 | batch_normalize=1
33 | filters=32
34 | size=3
35 | stride=1
36 | pad=1
37 | activation=leaky
38 |
39 | [maxpool]
40 | size=2
41 | stride=2
42 |
43 | [batchnorm]
44 |
45 | [convolutional]
46 | xnor = 1
47 | batch_normalize=1
48 | filters=64
49 | size=3
50 | stride=1
51 | pad=1
52 | activation=leaky
53 |
54 | [maxpool]
55 | size=2
56 | stride=2
57 |
58 | [batchnorm]
59 |
60 | [convolutional]
61 | xnor = 1
62 | batch_normalize=1
63 | filters=128
64 | size=3
65 | stride=1
66 | pad=1
67 | activation=leaky
68 |
69 | [maxpool]
70 | size=2
71 | stride=2
72 |
73 | [batchnorm]
74 |
75 | [convolutional]
76 | xnor = 1
77 | batch_normalize=1
78 | filters=256
79 | size=3
80 | stride=1
81 | pad=1
82 | activation=leaky
83 |
84 | [maxpool]
85 | size=2
86 | stride=2
87 |
88 | [batchnorm]
89 |
90 | [convolutional]
91 | xnor = 1
92 | batch_normalize=1
93 | filters=512
94 | size=3
95 | stride=1
96 | pad=1
97 | activation=leaky
98 |
99 | [maxpool]
100 | size=2
101 | stride=2
102 |
103 | [batchnorm]
104 |
105 | [convolutional]
106 | xnor = 1
107 | batch_normalize=1
108 | filters=1024
109 | size=3
110 | stride=1
111 | pad=1
112 | activation=leaky
113 |
114 | [batchnorm]
115 |
116 | [convolutional]
117 | xnor = 1
118 | batch_normalize=1
119 | filters=256
120 | size=3
121 | stride=1
122 | pad=1
123 | activation=leaky
124 |
125 | [connected]
126 | output= 1470
127 | activation=linear
128 |
129 | [detection]
130 | classes=20
131 | coords=4
132 | rescore=1
133 | side=7
134 | num=2
135 | softmax=0
136 | sqrt=1
137 | jitter=.2
138 |
139 | object_scale=1
140 | noobject_scale=.5
141 | class_scale=1
142 | coord_scale=5
143 |
144 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov1/yolo-coco.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=4
4 | height=448
5 | width=448
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | hue = .1
11 | saturation=.75
12 | exposure=.75
13 |
14 | learning_rate=0.0005
15 | policy=steps
16 | steps=200,400,600,800,100000,150000
17 | scales=2.5,2,2,2,.1,.1
18 | max_batches = 200000
19 |
20 | [convolutional]
21 | batch_normalize=1
22 | filters=64
23 | size=7
24 | stride=2
25 | pad=1
26 | activation=leaky
27 |
28 | [maxpool]
29 | size=2
30 | stride=2
31 |
32 | [convolutional]
33 | batch_normalize=1
34 | filters=192
35 | size=3
36 | stride=1
37 | pad=1
38 | activation=leaky
39 |
40 | [maxpool]
41 | size=2
42 | stride=2
43 |
44 | [convolutional]
45 | batch_normalize=1
46 | filters=128
47 | size=1
48 | stride=1
49 | pad=1
50 | activation=leaky
51 |
52 | [convolutional]
53 | batch_normalize=1
54 | filters=256
55 | size=3
56 | stride=1
57 | pad=1
58 | activation=leaky
59 |
60 | [convolutional]
61 | batch_normalize=1
62 | filters=256
63 | size=1
64 | stride=1
65 | pad=1
66 | activation=leaky
67 |
68 | [convolutional]
69 | batch_normalize=1
70 | filters=512
71 | size=3
72 | stride=1
73 | pad=1
74 | activation=leaky
75 |
76 | [maxpool]
77 | size=2
78 | stride=2
79 |
80 | [convolutional]
81 | batch_normalize=1
82 | filters=256
83 | size=1
84 | stride=1
85 | pad=1
86 | activation=leaky
87 |
88 | [convolutional]
89 | batch_normalize=1
90 | filters=512
91 | size=3
92 | stride=1
93 | pad=1
94 | activation=leaky
95 |
96 | [convolutional]
97 | batch_normalize=1
98 | filters=256
99 | size=1
100 | stride=1
101 | pad=1
102 | activation=leaky
103 |
104 | [convolutional]
105 | batch_normalize=1
106 | filters=512
107 | size=3
108 | stride=1
109 | pad=1
110 | activation=leaky
111 |
112 | [convolutional]
113 | batch_normalize=1
114 | filters=256
115 | size=1
116 | stride=1
117 | pad=1
118 | activation=leaky
119 |
120 | [convolutional]
121 | batch_normalize=1
122 | filters=512
123 | size=3
124 | stride=1
125 | pad=1
126 | activation=leaky
127 |
128 | [convolutional]
129 | batch_normalize=1
130 | filters=256
131 | size=1
132 | stride=1
133 | pad=1
134 | activation=leaky
135 |
136 | [convolutional]
137 | batch_normalize=1
138 | filters=512
139 | size=3
140 | stride=1
141 | pad=1
142 | activation=leaky
143 |
144 | [convolutional]
145 | batch_normalize=1
146 | filters=512
147 | size=1
148 | stride=1
149 | pad=1
150 | activation=leaky
151 |
152 | [convolutional]
153 | batch_normalize=1
154 | filters=1024
155 | size=3
156 | stride=1
157 | pad=1
158 | activation=leaky
159 |
160 | [maxpool]
161 | size=2
162 | stride=2
163 |
164 | [convolutional]
165 | batch_normalize=1
166 | filters=512
167 | size=1
168 | stride=1
169 | pad=1
170 | activation=leaky
171 |
172 | [convolutional]
173 | batch_normalize=1
174 | filters=1024
175 | size=3
176 | stride=1
177 | pad=1
178 | activation=leaky
179 |
180 | [convolutional]
181 | batch_normalize=1
182 | filters=512
183 | size=1
184 | stride=1
185 | pad=1
186 | activation=leaky
187 |
188 | [convolutional]
189 | batch_normalize=1
190 | filters=1024
191 | size=3
192 | stride=1
193 | pad=1
194 | activation=leaky
195 |
196 | #######
197 |
198 | [convolutional]
199 | batch_normalize=1
200 | size=3
201 | stride=1
202 | pad=1
203 | filters=1024
204 | activation=leaky
205 |
206 | [convolutional]
207 | batch_normalize=1
208 | size=3
209 | stride=2
210 | pad=1
211 | filters=1024
212 | activation=leaky
213 |
214 | [convolutional]
215 | batch_normalize=1
216 | size=3
217 | stride=1
218 | pad=1
219 | filters=1024
220 | activation=leaky
221 |
222 | [convolutional]
223 | batch_normalize=1
224 | size=3
225 | stride=1
226 | pad=1
227 | filters=1024
228 | activation=leaky
229 |
230 | [local]
231 | size=3
232 | stride=1
233 | pad=1
234 | filters=256
235 | activation=leaky
236 |
237 | [connected]
238 | output= 4655
239 | activation=linear
240 |
241 | [detection]
242 | classes=80
243 | coords=4
244 | rescore=1
245 | side=7
246 | num=3
247 | softmax=0
248 | sqrt=1
249 | jitter=.2
250 |
251 | object_scale=1
252 | noobject_scale=.5
253 | class_scale=1
254 | coord_scale=5
255 |
256 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov1/yolo-small.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=64
4 | height=448
5 | width=448
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.001
11 | policy=steps
12 | steps=200,400,600,20000,30000
13 | scales=2.5,2,2,.1,.1
14 | max_batches = 40000
15 |
16 | [crop]
17 | crop_width=448
18 | crop_height=448
19 | flip=0
20 | angle=0
21 | saturation = 1.5
22 | exposure = 1.5
23 |
24 | [convolutional]
25 | filters=64
26 | size=7
27 | stride=2
28 | pad=1
29 | activation=leaky
30 |
31 | [maxpool]
32 | size=2
33 | stride=2
34 |
35 | [convolutional]
36 | filters=192
37 | size=3
38 | stride=1
39 | pad=1
40 | activation=leaky
41 |
42 | [maxpool]
43 | size=2
44 | stride=2
45 |
46 | [convolutional]
47 | filters=128
48 | size=1
49 | stride=1
50 | pad=1
51 | activation=leaky
52 |
53 | [convolutional]
54 | filters=256
55 | size=3
56 | stride=1
57 | pad=1
58 | activation=leaky
59 |
60 | [convolutional]
61 | filters=256
62 | size=1
63 | stride=1
64 | pad=1
65 | activation=leaky
66 |
67 | [convolutional]
68 | filters=512
69 | size=3
70 | stride=1
71 | pad=1
72 | activation=leaky
73 |
74 | [maxpool]
75 | size=2
76 | stride=2
77 |
78 | [convolutional]
79 | filters=256
80 | size=1
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [convolutional]
86 | filters=512
87 | size=3
88 | stride=1
89 | pad=1
90 | activation=leaky
91 |
92 | [convolutional]
93 | filters=256
94 | size=1
95 | stride=1
96 | pad=1
97 | activation=leaky
98 |
99 | [convolutional]
100 | filters=512
101 | size=3
102 | stride=1
103 | pad=1
104 | activation=leaky
105 |
106 | [convolutional]
107 | filters=256
108 | size=1
109 | stride=1
110 | pad=1
111 | activation=leaky
112 |
113 | [convolutional]
114 | filters=512
115 | size=3
116 | stride=1
117 | pad=1
118 | activation=leaky
119 |
120 | [convolutional]
121 | filters=256
122 | size=1
123 | stride=1
124 | pad=1
125 | activation=leaky
126 |
127 | [convolutional]
128 | filters=512
129 | size=3
130 | stride=1
131 | pad=1
132 | activation=leaky
133 |
134 | [convolutional]
135 | filters=512
136 | size=1
137 | stride=1
138 | pad=1
139 | activation=leaky
140 |
141 | [convolutional]
142 | filters=1024
143 | size=3
144 | stride=1
145 | pad=1
146 | activation=leaky
147 |
148 | [maxpool]
149 | size=2
150 | stride=2
151 |
152 | [convolutional]
153 | filters=512
154 | size=1
155 | stride=1
156 | pad=1
157 | activation=leaky
158 |
159 | [convolutional]
160 | filters=1024
161 | size=3
162 | stride=1
163 | pad=1
164 | activation=leaky
165 |
166 | [convolutional]
167 | filters=512
168 | size=1
169 | stride=1
170 | pad=1
171 | activation=leaky
172 |
173 | [convolutional]
174 | filters=1024
175 | size=3
176 | stride=1
177 | pad=1
178 | activation=leaky
179 |
180 | #######
181 |
182 | [convolutional]
183 | size=3
184 | stride=1
185 | pad=1
186 | filters=1024
187 | activation=leaky
188 |
189 | [convolutional]
190 | size=3
191 | stride=2
192 | pad=1
193 | filters=1024
194 | activation=leaky
195 |
196 | [convolutional]
197 | size=3
198 | stride=1
199 | pad=1
200 | filters=1024
201 | activation=leaky
202 |
203 | [convolutional]
204 | size=3
205 | stride=1
206 | pad=1
207 | filters=1024
208 | activation=leaky
209 |
210 | [connected]
211 | output=512
212 | activation=leaky
213 |
214 | [connected]
215 | output=4096
216 | activation=leaky
217 |
218 | [dropout]
219 | probability=.5
220 |
221 | [connected]
222 | output= 1470
223 | activation=linear
224 |
225 | [detection]
226 | classes=20
227 | coords=4
228 | rescore=1
229 | side=7
230 | num=2
231 | softmax=0
232 | sqrt=1
233 | jitter=.2
234 |
235 | object_scale=1
236 | noobject_scale=.5
237 | class_scale=1
238 | coord_scale=5
239 |
240 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov1/yolo.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | height=448
5 | width=448
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | saturation=1.5
10 | exposure=1.5
11 | hue=.1
12 |
13 | learning_rate=0.0005
14 | policy=steps
15 | steps=200,400,600,20000,30000
16 | scales=2.5,2,2,.1,.1
17 | max_batches = 40000
18 |
19 | [convolutional]
20 | batch_normalize=1
21 | filters=64
22 | size=7
23 | stride=2
24 | pad=1
25 | activation=leaky
26 |
27 | [maxpool]
28 | size=2
29 | stride=2
30 |
31 | [convolutional]
32 | batch_normalize=1
33 | filters=192
34 | size=3
35 | stride=1
36 | pad=1
37 | activation=leaky
38 |
39 | [maxpool]
40 | size=2
41 | stride=2
42 |
43 | [convolutional]
44 | batch_normalize=1
45 | filters=128
46 | size=1
47 | stride=1
48 | pad=1
49 | activation=leaky
50 |
51 | [convolutional]
52 | batch_normalize=1
53 | filters=256
54 | size=3
55 | stride=1
56 | pad=1
57 | activation=leaky
58 |
59 | [convolutional]
60 | batch_normalize=1
61 | filters=256
62 | size=1
63 | stride=1
64 | pad=1
65 | activation=leaky
66 |
67 | [convolutional]
68 | batch_normalize=1
69 | filters=512
70 | size=3
71 | stride=1
72 | pad=1
73 | activation=leaky
74 |
75 | [maxpool]
76 | size=2
77 | stride=2
78 |
79 | [convolutional]
80 | batch_normalize=1
81 | filters=256
82 | size=1
83 | stride=1
84 | pad=1
85 | activation=leaky
86 |
87 | [convolutional]
88 | batch_normalize=1
89 | filters=512
90 | size=3
91 | stride=1
92 | pad=1
93 | activation=leaky
94 |
95 | [convolutional]
96 | batch_normalize=1
97 | filters=256
98 | size=1
99 | stride=1
100 | pad=1
101 | activation=leaky
102 |
103 | [convolutional]
104 | batch_normalize=1
105 | filters=512
106 | size=3
107 | stride=1
108 | pad=1
109 | activation=leaky
110 |
111 | [convolutional]
112 | batch_normalize=1
113 | filters=256
114 | size=1
115 | stride=1
116 | pad=1
117 | activation=leaky
118 |
119 | [convolutional]
120 | batch_normalize=1
121 | filters=512
122 | size=3
123 | stride=1
124 | pad=1
125 | activation=leaky
126 |
127 | [convolutional]
128 | batch_normalize=1
129 | filters=256
130 | size=1
131 | stride=1
132 | pad=1
133 | activation=leaky
134 |
135 | [convolutional]
136 | batch_normalize=1
137 | filters=512
138 | size=3
139 | stride=1
140 | pad=1
141 | activation=leaky
142 |
143 | [convolutional]
144 | batch_normalize=1
145 | filters=512
146 | size=1
147 | stride=1
148 | pad=1
149 | activation=leaky
150 |
151 | [convolutional]
152 | batch_normalize=1
153 | filters=1024
154 | size=3
155 | stride=1
156 | pad=1
157 | activation=leaky
158 |
159 | [maxpool]
160 | size=2
161 | stride=2
162 |
163 | [convolutional]
164 | batch_normalize=1
165 | filters=512
166 | size=1
167 | stride=1
168 | pad=1
169 | activation=leaky
170 |
171 | [convolutional]
172 | batch_normalize=1
173 | filters=1024
174 | size=3
175 | stride=1
176 | pad=1
177 | activation=leaky
178 |
179 | [convolutional]
180 | batch_normalize=1
181 | filters=512
182 | size=1
183 | stride=1
184 | pad=1
185 | activation=leaky
186 |
187 | [convolutional]
188 | batch_normalize=1
189 | filters=1024
190 | size=3
191 | stride=1
192 | pad=1
193 | activation=leaky
194 |
195 | #######
196 |
197 | [convolutional]
198 | batch_normalize=1
199 | size=3
200 | stride=1
201 | pad=1
202 | filters=1024
203 | activation=leaky
204 |
205 | [convolutional]
206 | batch_normalize=1
207 | size=3
208 | stride=2
209 | pad=1
210 | filters=1024
211 | activation=leaky
212 |
213 | [convolutional]
214 | batch_normalize=1
215 | size=3
216 | stride=1
217 | pad=1
218 | filters=1024
219 | activation=leaky
220 |
221 | [convolutional]
222 | batch_normalize=1
223 | size=3
224 | stride=1
225 | pad=1
226 | filters=1024
227 | activation=leaky
228 |
229 | [local]
230 | size=3
231 | stride=1
232 | pad=1
233 | filters=256
234 | activation=leaky
235 |
236 | [dropout]
237 | probability=.5
238 |
239 | [connected]
240 | output= 1715
241 | activation=linear
242 |
243 | [detection]
244 | classes=20
245 | coords=4
246 | rescore=1
247 | side=7
248 | num=3
249 | softmax=0
250 | sqrt=1
251 | jitter=.2
252 |
253 | object_scale=1
254 | noobject_scale=.5
255 | class_scale=1
256 | coord_scale=5
257 |
258 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov1/yolo.train.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=64
3 | subdivisions=4
4 | height=448
5 | width=448
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | saturation=1.5
10 | exposure=1.5
11 | hue=.1
12 |
13 | learning_rate=0.0005
14 | policy=steps
15 | steps=200,400,600,20000,30000
16 | scales=2.5,2,2,.1,.1
17 | max_batches = 40000
18 |
19 | [convolutional]
20 | batch_normalize=1
21 | filters=64
22 | size=7
23 | stride=2
24 | pad=1
25 | activation=leaky
26 |
27 | [maxpool]
28 | size=2
29 | stride=2
30 |
31 | [convolutional]
32 | batch_normalize=1
33 | filters=192
34 | size=3
35 | stride=1
36 | pad=1
37 | activation=leaky
38 |
39 | [maxpool]
40 | size=2
41 | stride=2
42 |
43 | [convolutional]
44 | batch_normalize=1
45 | filters=128
46 | size=1
47 | stride=1
48 | pad=1
49 | activation=leaky
50 |
51 | [convolutional]
52 | batch_normalize=1
53 | filters=256
54 | size=3
55 | stride=1
56 | pad=1
57 | activation=leaky
58 |
59 | [convolutional]
60 | batch_normalize=1
61 | filters=256
62 | size=1
63 | stride=1
64 | pad=1
65 | activation=leaky
66 |
67 | [convolutional]
68 | batch_normalize=1
69 | filters=512
70 | size=3
71 | stride=1
72 | pad=1
73 | activation=leaky
74 |
75 | [maxpool]
76 | size=2
77 | stride=2
78 |
79 | [convolutional]
80 | batch_normalize=1
81 | filters=256
82 | size=1
83 | stride=1
84 | pad=1
85 | activation=leaky
86 |
87 | [convolutional]
88 | batch_normalize=1
89 | filters=512
90 | size=3
91 | stride=1
92 | pad=1
93 | activation=leaky
94 |
95 | [convolutional]
96 | batch_normalize=1
97 | filters=256
98 | size=1
99 | stride=1
100 | pad=1
101 | activation=leaky
102 |
103 | [convolutional]
104 | batch_normalize=1
105 | filters=512
106 | size=3
107 | stride=1
108 | pad=1
109 | activation=leaky
110 |
111 | [convolutional]
112 | batch_normalize=1
113 | filters=256
114 | size=1
115 | stride=1
116 | pad=1
117 | activation=leaky
118 |
119 | [convolutional]
120 | batch_normalize=1
121 | filters=512
122 | size=3
123 | stride=1
124 | pad=1
125 | activation=leaky
126 |
127 | [convolutional]
128 | batch_normalize=1
129 | filters=256
130 | size=1
131 | stride=1
132 | pad=1
133 | activation=leaky
134 |
135 | [convolutional]
136 | batch_normalize=1
137 | filters=512
138 | size=3
139 | stride=1
140 | pad=1
141 | activation=leaky
142 |
143 | [convolutional]
144 | batch_normalize=1
145 | filters=512
146 | size=1
147 | stride=1
148 | pad=1
149 | activation=leaky
150 |
151 | [convolutional]
152 | batch_normalize=1
153 | filters=1024
154 | size=3
155 | stride=1
156 | pad=1
157 | activation=leaky
158 |
159 | [maxpool]
160 | size=2
161 | stride=2
162 |
163 | [convolutional]
164 | batch_normalize=1
165 | filters=512
166 | size=1
167 | stride=1
168 | pad=1
169 | activation=leaky
170 |
171 | [convolutional]
172 | batch_normalize=1
173 | filters=1024
174 | size=3
175 | stride=1
176 | pad=1
177 | activation=leaky
178 |
179 | [convolutional]
180 | batch_normalize=1
181 | filters=512
182 | size=1
183 | stride=1
184 | pad=1
185 | activation=leaky
186 |
187 | [convolutional]
188 | batch_normalize=1
189 | filters=1024
190 | size=3
191 | stride=1
192 | pad=1
193 | activation=leaky
194 |
195 | #######
196 |
197 | [convolutional]
198 | batch_normalize=1
199 | size=3
200 | stride=1
201 | pad=1
202 | filters=1024
203 | activation=leaky
204 |
205 | [convolutional]
206 | batch_normalize=1
207 | size=3
208 | stride=2
209 | pad=1
210 | filters=1024
211 | activation=leaky
212 |
213 | [convolutional]
214 | batch_normalize=1
215 | size=3
216 | stride=1
217 | pad=1
218 | filters=1024
219 | activation=leaky
220 |
221 | [convolutional]
222 | batch_normalize=1
223 | size=3
224 | stride=1
225 | pad=1
226 | filters=1024
227 | activation=leaky
228 |
229 | [local]
230 | size=3
231 | stride=1
232 | pad=1
233 | filters=256
234 | activation=leaky
235 |
236 | [dropout]
237 | probability=.5
238 |
239 | [connected]
240 | output= 1715
241 | activation=linear
242 |
243 | [detection]
244 | classes=20
245 | coords=4
246 | rescore=1
247 | side=7
248 | num=3
249 | softmax=0
250 | sqrt=1
251 | jitter=.2
252 |
253 | object_scale=1
254 | noobject_scale=.5
255 | class_scale=1
256 | coord_scale=5
257 |
258 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov1/yolo2.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=1
3 | subdivisions=1
4 | height=448
5 | width=448
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 |
10 | learning_rate=0.0005
11 | policy=steps
12 | steps=200,400,600,20000,30000
13 | scales=2.5,2,2,.1,.1
14 | max_batches = 40000
15 |
16 | [convolutional]
17 | batch_normalize=1
18 | filters=64
19 | size=7
20 | stride=2
21 | pad=1
22 | activation=leaky
23 |
24 | [maxpool]
25 | size=2
26 | stride=2
27 |
28 | [convolutional]
29 | batch_normalize=1
30 | filters=192
31 | size=3
32 | stride=1
33 | pad=1
34 | activation=leaky
35 |
36 | [maxpool]
37 | size=2
38 | stride=2
39 |
40 | [convolutional]
41 | batch_normalize=1
42 | filters=128
43 | size=1
44 | stride=1
45 | pad=1
46 | activation=leaky
47 |
48 | [convolutional]
49 | batch_normalize=1
50 | filters=256
51 | size=3
52 | stride=1
53 | pad=1
54 | activation=leaky
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=256
59 | size=1
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [convolutional]
65 | batch_normalize=1
66 | filters=512
67 | size=3
68 | stride=1
69 | pad=1
70 | activation=leaky
71 |
72 | [maxpool]
73 | size=2
74 | stride=2
75 |
76 | [convolutional]
77 | batch_normalize=1
78 | filters=256
79 | size=1
80 | stride=1
81 | pad=1
82 | activation=leaky
83 |
84 | [convolutional]
85 | batch_normalize=1
86 | filters=512
87 | size=3
88 | stride=1
89 | pad=1
90 | activation=leaky
91 |
92 | [convolutional]
93 | batch_normalize=1
94 | filters=256
95 | size=1
96 | stride=1
97 | pad=1
98 | activation=leaky
99 |
100 | [convolutional]
101 | batch_normalize=1
102 | filters=512
103 | size=3
104 | stride=1
105 | pad=1
106 | activation=leaky
107 |
108 | [convolutional]
109 | batch_normalize=1
110 | filters=256
111 | size=1
112 | stride=1
113 | pad=1
114 | activation=leaky
115 |
116 | [convolutional]
117 | batch_normalize=1
118 | filters=512
119 | size=3
120 | stride=1
121 | pad=1
122 | activation=leaky
123 |
124 | [convolutional]
125 | batch_normalize=1
126 | filters=256
127 | size=1
128 | stride=1
129 | pad=1
130 | activation=leaky
131 |
132 | [convolutional]
133 | batch_normalize=1
134 | filters=512
135 | size=3
136 | stride=1
137 | pad=1
138 | activation=leaky
139 |
140 | [convolutional]
141 | batch_normalize=1
142 | filters=512
143 | size=1
144 | stride=1
145 | pad=1
146 | activation=leaky
147 |
148 | [convolutional]
149 | batch_normalize=1
150 | filters=1024
151 | size=3
152 | stride=1
153 | pad=1
154 | activation=leaky
155 |
156 | [maxpool]
157 | size=2
158 | stride=2
159 |
160 | [convolutional]
161 | batch_normalize=1
162 | filters=512
163 | size=1
164 | stride=1
165 | pad=1
166 | activation=leaky
167 |
168 | [convolutional]
169 | batch_normalize=1
170 | filters=1024
171 | size=3
172 | stride=1
173 | pad=1
174 | activation=leaky
175 |
176 | [convolutional]
177 | batch_normalize=1
178 | filters=512
179 | size=1
180 | stride=1
181 | pad=1
182 | activation=leaky
183 |
184 | [convolutional]
185 | batch_normalize=1
186 | filters=1024
187 | size=3
188 | stride=1
189 | pad=1
190 | activation=leaky
191 |
192 | #######
193 |
194 | [convolutional]
195 | batch_normalize=1
196 | size=3
197 | stride=1
198 | pad=1
199 | filters=1024
200 | activation=leaky
201 |
202 | [convolutional]
203 | batch_normalize=1
204 | size=3
205 | stride=2
206 | pad=1
207 | filters=1024
208 | activation=leaky
209 |
210 | [convolutional]
211 | batch_normalize=1
212 | size=3
213 | stride=1
214 | pad=1
215 | filters=1024
216 | activation=leaky
217 |
218 | [convolutional]
219 | batch_normalize=1
220 | size=3
221 | stride=1
222 | pad=1
223 | filters=1024
224 | activation=leaky
225 |
226 | [local]
227 | size=3
228 | stride=1
229 | pad=1
230 | filters=256
231 | activation=leaky
232 |
233 | [connected]
234 | output= 1715
235 | activation=linear
236 |
237 | [detection]
238 | classes=20
239 | coords=4
240 | rescore=1
241 | side=7
242 | num=3
243 | softmax=0
244 | sqrt=1
245 | jitter=.2
246 |
247 | object_scale=1
248 | noobject_scale=.5
249 | class_scale=1
250 | coord_scale=5
251 |
252 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov2-tiny-voc.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | # batch=64
7 | # subdivisions=2
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | max_batches = 40200
20 | policy=steps
21 | steps=-1,100,20000,30000
22 | scales=.1,10,.1,.1
23 |
24 | [convolutional]
25 | batch_normalize=1
26 | filters=16
27 | size=3
28 | stride=1
29 | pad=1
30 | activation=leaky
31 |
32 | [maxpool]
33 | size=2
34 | stride=2
35 |
36 | [convolutional]
37 | batch_normalize=1
38 | filters=32
39 | size=3
40 | stride=1
41 | pad=1
42 | activation=leaky
43 |
44 | [maxpool]
45 | size=2
46 | stride=2
47 |
48 | [convolutional]
49 | batch_normalize=1
50 | filters=64
51 | size=3
52 | stride=1
53 | pad=1
54 | activation=leaky
55 |
56 | [maxpool]
57 | size=2
58 | stride=2
59 |
60 | [convolutional]
61 | batch_normalize=1
62 | filters=128
63 | size=3
64 | stride=1
65 | pad=1
66 | activation=leaky
67 |
68 | [maxpool]
69 | size=2
70 | stride=2
71 |
72 | [convolutional]
73 | batch_normalize=1
74 | filters=256
75 | size=3
76 | stride=1
77 | pad=1
78 | activation=leaky
79 |
80 | [maxpool]
81 | size=2
82 | stride=2
83 |
84 | [convolutional]
85 | batch_normalize=1
86 | filters=512
87 | size=3
88 | stride=1
89 | pad=1
90 | activation=leaky
91 |
92 | [maxpool]
93 | size=2
94 | stride=1
95 |
96 | [convolutional]
97 | batch_normalize=1
98 | filters=1024
99 | size=3
100 | stride=1
101 | pad=1
102 | activation=leaky
103 |
104 | ###########
105 |
106 | [convolutional]
107 | batch_normalize=1
108 | size=3
109 | stride=1
110 | pad=1
111 | filters=1024
112 | activation=leaky
113 |
114 | [convolutional]
115 | size=1
116 | stride=1
117 | pad=1
118 | filters=125
119 | activation=linear
120 |
121 | [region]
122 | anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
123 | bias_match=1
124 | classes=20
125 | coords=4
126 | num=5
127 | softmax=1
128 | jitter=.2
129 | rescore=1
130 |
131 | object_scale=5
132 | noobject_scale=1
133 | class_scale=1
134 | coord_scale=1
135 |
136 | absolute=1
137 | thresh = .6
138 | random=1
139 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov2-tiny.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | # batch=64
7 | # subdivisions=2
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=16
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | batch_normalize=1
39 | filters=32
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | batch_normalize=1
51 | filters=64
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [maxpool]
58 | size=2
59 | stride=2
60 |
61 | [convolutional]
62 | batch_normalize=1
63 | filters=128
64 | size=3
65 | stride=1
66 | pad=1
67 | activation=leaky
68 |
69 | [maxpool]
70 | size=2
71 | stride=2
72 |
73 | [convolutional]
74 | batch_normalize=1
75 | filters=256
76 | size=3
77 | stride=1
78 | pad=1
79 | activation=leaky
80 |
81 | [maxpool]
82 | size=2
83 | stride=2
84 |
85 | [convolutional]
86 | batch_normalize=1
87 | filters=512
88 | size=3
89 | stride=1
90 | pad=1
91 | activation=leaky
92 |
93 | [maxpool]
94 | size=2
95 | stride=1
96 |
97 | [convolutional]
98 | batch_normalize=1
99 | filters=1024
100 | size=3
101 | stride=1
102 | pad=1
103 | activation=leaky
104 |
105 | ###########
106 |
107 | [convolutional]
108 | batch_normalize=1
109 | size=3
110 | stride=1
111 | pad=1
112 | filters=512
113 | activation=leaky
114 |
115 | [convolutional]
116 | size=1
117 | stride=1
118 | pad=1
119 | filters=425
120 | activation=linear
121 |
122 | [region]
123 | anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
124 | bias_match=1
125 | classes=80
126 | coords=4
127 | num=5
128 | softmax=1
129 | jitter=.2
130 | rescore=0
131 |
132 | object_scale=5
133 | noobject_scale=1
134 | class_scale=1
135 | coord_scale=1
136 |
137 | absolute=1
138 | thresh = .6
139 | random=1
140 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov2-voc.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | # batch=64
7 | # subdivisions=8
8 | height=416
9 | width=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 80200
21 | policy=steps
22 | steps=40000,60000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=32
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | batch_normalize=1
39 | filters=64
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | batch_normalize=1
51 | filters=128
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [convolutional]
58 | batch_normalize=1
59 | filters=64
60 | size=1
61 | stride=1
62 | pad=1
63 | activation=leaky
64 |
65 | [convolutional]
66 | batch_normalize=1
67 | filters=128
68 | size=3
69 | stride=1
70 | pad=1
71 | activation=leaky
72 |
73 | [maxpool]
74 | size=2
75 | stride=2
76 |
77 | [convolutional]
78 | batch_normalize=1
79 | filters=256
80 | size=3
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [convolutional]
86 | batch_normalize=1
87 | filters=128
88 | size=1
89 | stride=1
90 | pad=1
91 | activation=leaky
92 |
93 | [convolutional]
94 | batch_normalize=1
95 | filters=256
96 | size=3
97 | stride=1
98 | pad=1
99 | activation=leaky
100 |
101 | [maxpool]
102 | size=2
103 | stride=2
104 |
105 | [convolutional]
106 | batch_normalize=1
107 | filters=512
108 | size=3
109 | stride=1
110 | pad=1
111 | activation=leaky
112 |
113 | [convolutional]
114 | batch_normalize=1
115 | filters=256
116 | size=1
117 | stride=1
118 | pad=1
119 | activation=leaky
120 |
121 | [convolutional]
122 | batch_normalize=1
123 | filters=512
124 | size=3
125 | stride=1
126 | pad=1
127 | activation=leaky
128 |
129 | [convolutional]
130 | batch_normalize=1
131 | filters=256
132 | size=1
133 | stride=1
134 | pad=1
135 | activation=leaky
136 |
137 | [convolutional]
138 | batch_normalize=1
139 | filters=512
140 | size=3
141 | stride=1
142 | pad=1
143 | activation=leaky
144 |
145 | [maxpool]
146 | size=2
147 | stride=2
148 |
149 | [convolutional]
150 | batch_normalize=1
151 | filters=1024
152 | size=3
153 | stride=1
154 | pad=1
155 | activation=leaky
156 |
157 | [convolutional]
158 | batch_normalize=1
159 | filters=512
160 | size=1
161 | stride=1
162 | pad=1
163 | activation=leaky
164 |
165 | [convolutional]
166 | batch_normalize=1
167 | filters=1024
168 | size=3
169 | stride=1
170 | pad=1
171 | activation=leaky
172 |
173 | [convolutional]
174 | batch_normalize=1
175 | filters=512
176 | size=1
177 | stride=1
178 | pad=1
179 | activation=leaky
180 |
181 | [convolutional]
182 | batch_normalize=1
183 | filters=1024
184 | size=3
185 | stride=1
186 | pad=1
187 | activation=leaky
188 |
189 |
190 | #######
191 |
192 | [convolutional]
193 | batch_normalize=1
194 | size=3
195 | stride=1
196 | pad=1
197 | filters=1024
198 | activation=leaky
199 |
200 | [convolutional]
201 | batch_normalize=1
202 | size=3
203 | stride=1
204 | pad=1
205 | filters=1024
206 | activation=leaky
207 |
208 | [route]
209 | layers=-9
210 |
211 | [convolutional]
212 | batch_normalize=1
213 | size=1
214 | stride=1
215 | pad=1
216 | filters=64
217 | activation=leaky
218 |
219 | [reorg]
220 | stride=2
221 |
222 | [route]
223 | layers=-1,-4
224 |
225 | [convolutional]
226 | batch_normalize=1
227 | size=3
228 | stride=1
229 | pad=1
230 | filters=1024
231 | activation=leaky
232 |
233 | [convolutional]
234 | size=1
235 | stride=1
236 | pad=1
237 | filters=125
238 | activation=linear
239 |
240 |
241 | [region]
242 | anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
243 | bias_match=1
244 | classes=20
245 | coords=4
246 | num=5
247 | softmax=1
248 | jitter=.3
249 | rescore=1
250 |
251 | object_scale=5
252 | noobject_scale=1
253 | class_scale=1
254 | coord_scale=1
255 |
256 | absolute=1
257 | thresh = .6
258 | random=1
259 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov2.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | # batch=64
7 | # subdivisions=8
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=32
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | batch_normalize=1
39 | filters=64
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | batch_normalize=1
51 | filters=128
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [convolutional]
58 | batch_normalize=1
59 | filters=64
60 | size=1
61 | stride=1
62 | pad=1
63 | activation=leaky
64 |
65 | [convolutional]
66 | batch_normalize=1
67 | filters=128
68 | size=3
69 | stride=1
70 | pad=1
71 | activation=leaky
72 |
73 | [maxpool]
74 | size=2
75 | stride=2
76 |
77 | [convolutional]
78 | batch_normalize=1
79 | filters=256
80 | size=3
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [convolutional]
86 | batch_normalize=1
87 | filters=128
88 | size=1
89 | stride=1
90 | pad=1
91 | activation=leaky
92 |
93 | [convolutional]
94 | batch_normalize=1
95 | filters=256
96 | size=3
97 | stride=1
98 | pad=1
99 | activation=leaky
100 |
101 | [maxpool]
102 | size=2
103 | stride=2
104 |
105 | [convolutional]
106 | batch_normalize=1
107 | filters=512
108 | size=3
109 | stride=1
110 | pad=1
111 | activation=leaky
112 |
113 | [convolutional]
114 | batch_normalize=1
115 | filters=256
116 | size=1
117 | stride=1
118 | pad=1
119 | activation=leaky
120 |
121 | [convolutional]
122 | batch_normalize=1
123 | filters=512
124 | size=3
125 | stride=1
126 | pad=1
127 | activation=leaky
128 |
129 | [convolutional]
130 | batch_normalize=1
131 | filters=256
132 | size=1
133 | stride=1
134 | pad=1
135 | activation=leaky
136 |
137 | [convolutional]
138 | batch_normalize=1
139 | filters=512
140 | size=3
141 | stride=1
142 | pad=1
143 | activation=leaky
144 |
145 | [maxpool]
146 | size=2
147 | stride=2
148 |
149 | [convolutional]
150 | batch_normalize=1
151 | filters=1024
152 | size=3
153 | stride=1
154 | pad=1
155 | activation=leaky
156 |
157 | [convolutional]
158 | batch_normalize=1
159 | filters=512
160 | size=1
161 | stride=1
162 | pad=1
163 | activation=leaky
164 |
165 | [convolutional]
166 | batch_normalize=1
167 | filters=1024
168 | size=3
169 | stride=1
170 | pad=1
171 | activation=leaky
172 |
173 | [convolutional]
174 | batch_normalize=1
175 | filters=512
176 | size=1
177 | stride=1
178 | pad=1
179 | activation=leaky
180 |
181 | [convolutional]
182 | batch_normalize=1
183 | filters=1024
184 | size=3
185 | stride=1
186 | pad=1
187 | activation=leaky
188 |
189 |
190 | #######
191 |
192 | [convolutional]
193 | batch_normalize=1
194 | size=3
195 | stride=1
196 | pad=1
197 | filters=1024
198 | activation=leaky
199 |
200 | [convolutional]
201 | batch_normalize=1
202 | size=3
203 | stride=1
204 | pad=1
205 | filters=1024
206 | activation=leaky
207 |
208 | [route]
209 | layers=-9
210 |
211 | [convolutional]
212 | batch_normalize=1
213 | size=1
214 | stride=1
215 | pad=1
216 | filters=64
217 | activation=leaky
218 |
219 | [reorg]
220 | stride=2
221 |
222 | [route]
223 | layers=-1,-4
224 |
225 | [convolutional]
226 | batch_normalize=1
227 | size=3
228 | stride=1
229 | pad=1
230 | filters=1024
231 | activation=leaky
232 |
233 | [convolutional]
234 | size=1
235 | stride=1
236 | pad=1
237 | filters=425
238 | activation=linear
239 |
240 |
241 | [region]
242 | anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
243 | bias_match=1
244 | classes=80
245 | coords=4
246 | num=5
247 | softmax=1
248 | jitter=.3
249 | rescore=1
250 |
251 | object_scale=5
252 | noobject_scale=1
253 | class_scale=1
254 | coord_scale=1
255 |
256 | absolute=1
257 | thresh = .6
258 | random=1
259 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov3-tiny-prn.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | #batch=1
4 | #subdivisions=1
5 | # Training
6 | batch=64
7 | subdivisions=8
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=16
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | batch_normalize=1
39 | filters=32
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | batch_normalize=1
51 | filters=64
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [maxpool]
58 | size=2
59 | stride=2
60 |
61 | [convolutional]
62 | batch_normalize=1
63 | filters=128
64 | size=3
65 | stride=1
66 | pad=1
67 | activation=leaky
68 |
69 | [maxpool]
70 | size=2
71 | stride=2
72 |
73 | [convolutional]
74 | batch_normalize=1
75 | filters=256
76 | size=3
77 | stride=1
78 | pad=1
79 | activation=leaky
80 |
81 | [maxpool]
82 | size=2
83 | stride=2
84 |
85 | [convolutional]
86 | batch_normalize=1
87 | filters=512
88 | size=3
89 | stride=1
90 | pad=1
91 | activation=leaky
92 |
93 | [maxpool]
94 | size=2
95 | stride=1
96 |
97 | [convolutional]
98 | batch_normalize=1
99 | filters=512
100 | size=3
101 | stride=1
102 | pad=1
103 | activation=leaky
104 |
105 | [shortcut]
106 | activation=leaky
107 | from=-3
108 |
109 | ###########
110 |
111 | [convolutional]
112 | batch_normalize=1
113 | filters=256
114 | size=1
115 | stride=1
116 | pad=1
117 | activation=leaky
118 |
119 | [convolutional]
120 | batch_normalize=1
121 | filters=256
122 | size=3
123 | stride=1
124 | pad=1
125 | activation=leaky
126 |
127 | [shortcut]
128 | activation=leaky
129 | from=-2
130 |
131 | [convolutional]
132 | size=1
133 | stride=1
134 | pad=1
135 | filters=255
136 | activation=linear
137 |
138 |
139 |
140 | [yolo]
141 | mask = 3,4,5
142 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
143 | classes=80
144 | num=6
145 | jitter=.3
146 | ignore_thresh = .7
147 | truth_thresh = 1
148 | random=1
149 |
150 | [route]
151 | layers = -4
152 |
153 | [convolutional]
154 | batch_normalize=1
155 | filters=128
156 | size=1
157 | stride=1
158 | pad=1
159 | activation=leaky
160 |
161 | [upsample]
162 | stride=2
163 |
164 | [shortcut]
165 | activation=leaky
166 | from=8
167 |
168 | [convolutional]
169 | batch_normalize=1
170 | filters=128
171 | size=3
172 | stride=1
173 | pad=1
174 | activation=leaky
175 |
176 | [shortcut]
177 | activation=leaky
178 | from=-3
179 |
180 | [shortcut]
181 | activation=leaky
182 | from=8
183 |
184 | [convolutional]
185 | size=1
186 | stride=1
187 | pad=1
188 | filters=255
189 | activation=linear
190 |
191 | [yolo]
192 | mask = 1,2,3
193 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
194 | classes=80
195 | num=6
196 | jitter=.3
197 | ignore_thresh = .7
198 | truth_thresh = 1
199 | random=1
200 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov3-tiny.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | batch=1
4 | subdivisions=1
5 | # Training
6 | # batch=64
7 | # subdivisions=2
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=16
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | batch_normalize=1
39 | filters=32
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | batch_normalize=1
51 | filters=64
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [maxpool]
58 | size=2
59 | stride=2
60 |
61 | [convolutional]
62 | batch_normalize=1
63 | filters=128
64 | size=3
65 | stride=1
66 | pad=1
67 | activation=leaky
68 |
69 | [maxpool]
70 | size=2
71 | stride=2
72 |
73 | [convolutional]
74 | batch_normalize=1
75 | filters=256
76 | size=3
77 | stride=1
78 | pad=1
79 | activation=leaky
80 |
81 | [maxpool]
82 | size=2
83 | stride=2
84 |
85 | [convolutional]
86 | batch_normalize=1
87 | filters=512
88 | size=3
89 | stride=1
90 | pad=1
91 | activation=leaky
92 |
93 | [maxpool]
94 | size=2
95 | stride=1
96 |
97 | [convolutional]
98 | batch_normalize=1
99 | filters=1024
100 | size=3
101 | stride=1
102 | pad=1
103 | activation=leaky
104 |
105 | ###########
106 |
107 | [convolutional]
108 | batch_normalize=1
109 | filters=256
110 | size=1
111 | stride=1
112 | pad=1
113 | activation=leaky
114 |
115 | [convolutional]
116 | batch_normalize=1
117 | filters=512
118 | size=3
119 | stride=1
120 | pad=1
121 | activation=leaky
122 |
123 | [convolutional]
124 | size=1
125 | stride=1
126 | pad=1
127 | filters=255
128 | activation=linear
129 |
130 |
131 |
132 | [yolo]
133 | mask = 3,4,5
134 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
135 | classes=80
136 | num=6
137 | jitter=.3
138 | ignore_thresh = .7
139 | truth_thresh = 1
140 | random=1
141 |
142 | [route]
143 | layers = -4
144 |
145 | [convolutional]
146 | batch_normalize=1
147 | filters=128
148 | size=1
149 | stride=1
150 | pad=1
151 | activation=leaky
152 |
153 | [upsample]
154 | stride=2
155 |
156 | [route]
157 | layers = -1, 8
158 |
159 | [convolutional]
160 | batch_normalize=1
161 | filters=256
162 | size=3
163 | stride=1
164 | pad=1
165 | activation=leaky
166 |
167 | [convolutional]
168 | size=1
169 | stride=1
170 | pad=1
171 | filters=255
172 | activation=linear
173 |
174 | [yolo]
175 | mask = 0,1,2
176 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
177 | classes=80
178 | num=6
179 | jitter=.3
180 | ignore_thresh = .7
181 | truth_thresh = 1
182 | random=1
183 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov3-tiny_3l.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | # batch=1
4 | # subdivisions=1
5 | # Training
6 | batch=64
7 | subdivisions=16
8 | width=608
9 | height=608
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 200000
21 | policy=steps
22 | steps=180000,190000
23 | scales=.1,.1
24 |
25 |
26 | [convolutional]
27 | batch_normalize=1
28 | filters=16
29 | size=3
30 | stride=1
31 | pad=1
32 | activation=leaky
33 |
34 | [maxpool]
35 | size=2
36 | stride=2
37 |
38 | [convolutional]
39 | batch_normalize=1
40 | filters=32
41 | size=3
42 | stride=1
43 | pad=1
44 | activation=leaky
45 |
46 | [maxpool]
47 | size=2
48 | stride=2
49 |
50 | [convolutional]
51 | batch_normalize=1
52 | filters=64
53 | size=3
54 | stride=1
55 | pad=1
56 | activation=leaky
57 |
58 | [maxpool]
59 | size=2
60 | stride=2
61 |
62 | [convolutional]
63 | batch_normalize=1
64 | filters=128
65 | size=3
66 | stride=1
67 | pad=1
68 | activation=leaky
69 |
70 | [maxpool]
71 | size=2
72 | stride=2
73 |
74 | [convolutional]
75 | batch_normalize=1
76 | filters=256
77 | size=3
78 | stride=1
79 | pad=1
80 | activation=leaky
81 |
82 | [maxpool]
83 | size=2
84 | stride=2
85 |
86 | [convolutional]
87 | batch_normalize=1
88 | filters=512
89 | size=3
90 | stride=1
91 | pad=1
92 | activation=leaky
93 |
94 | [maxpool]
95 | size=2
96 | stride=1
97 |
98 | [convolutional]
99 | batch_normalize=1
100 | filters=1024
101 | size=3
102 | stride=1
103 | pad=1
104 | activation=leaky
105 |
106 | ###########
107 |
108 | [convolutional]
109 | batch_normalize=1
110 | filters=256
111 | size=1
112 | stride=1
113 | pad=1
114 | activation=leaky
115 |
116 | [convolutional]
117 | batch_normalize=1
118 | filters=512
119 | size=3
120 | stride=1
121 | pad=1
122 | activation=leaky
123 |
124 | [convolutional]
125 | size=1
126 | stride=1
127 | pad=1
128 | filters=21
129 | activation=linear
130 |
131 |
132 |
133 | [yolo]
134 | mask = 6,7,8
135 | anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
136 | classes=2
137 | num=9
138 | jitter=.3
139 | ignore_thresh = .7
140 | truth_thresh = 1
141 | random=1
142 |
143 | [route]
144 | layers = -4
145 |
146 | [convolutional]
147 | batch_normalize=1
148 | filters=128
149 | size=1
150 | stride=1
151 | pad=1
152 | activation=leaky
153 |
154 | [upsample]
155 | stride=2
156 |
157 | [route]
158 | layers = -1, 8
159 |
160 | [convolutional]
161 | batch_normalize=1
162 | filters=256
163 | size=3
164 | stride=1
165 | pad=1
166 | activation=leaky
167 |
168 | [convolutional]
169 | size=1
170 | stride=1
171 | pad=1
172 | filters=21
173 | activation=linear
174 |
175 | [yolo]
176 | mask = 3,4,5
177 | anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
178 | classes=2
179 | num=9
180 | jitter=.3
181 | ignore_thresh = .7
182 | truth_thresh = 1
183 | random=1
184 |
185 |
186 |
187 | [route]
188 | layers = -3
189 |
190 | [convolutional]
191 | batch_normalize=1
192 | filters=128
193 | size=1
194 | stride=1
195 | pad=1
196 | activation=leaky
197 |
198 | [upsample]
199 | stride=2
200 |
201 | [route]
202 | layers = -1, 6
203 |
204 | [convolutional]
205 | batch_normalize=1
206 | filters=128
207 | size=3
208 | stride=1
209 | pad=1
210 | activation=leaky
211 |
212 | [convolutional]
213 | size=1
214 | stride=1
215 | pad=1
216 | filters=21
217 | activation=linear
218 |
219 | [yolo]
220 | mask = 0,1,2
221 | anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
222 | classes=2
223 | num=9
224 | jitter=.3
225 | ignore_thresh = .7
226 | truth_thresh = 1
227 | random=1
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov3-tiny_obj.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | #batch=1
4 | #subdivisions=1
5 | # Training
6 | batch=64
7 | subdivisions=2
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=16
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | batch_normalize=1
39 | filters=32
40 | size=3
41 | stride=1
42 | pad=1
43 | activation=leaky
44 |
45 | [maxpool]
46 | size=2
47 | stride=2
48 |
49 | [convolutional]
50 | batch_normalize=1
51 | filters=64
52 | size=3
53 | stride=1
54 | pad=1
55 | activation=leaky
56 |
57 | [maxpool]
58 | size=2
59 | stride=2
60 |
61 | [convolutional]
62 | batch_normalize=1
63 | filters=128
64 | size=3
65 | stride=1
66 | pad=1
67 | activation=leaky
68 |
69 | [maxpool]
70 | size=2
71 | stride=2
72 |
73 | [convolutional]
74 | batch_normalize=1
75 | filters=256
76 | size=3
77 | stride=1
78 | pad=1
79 | activation=leaky
80 |
81 | [maxpool]
82 | size=2
83 | stride=2
84 |
85 | [convolutional]
86 | batch_normalize=1
87 | filters=512
88 | size=3
89 | stride=1
90 | pad=1
91 | activation=leaky
92 |
93 | [maxpool]
94 | size=2
95 | stride=1
96 |
97 | [convolutional]
98 | batch_normalize=1
99 | filters=1024
100 | size=3
101 | stride=1
102 | pad=1
103 | activation=leaky
104 |
105 | ###########
106 |
107 | [convolutional]
108 | batch_normalize=1
109 | filters=256
110 | size=1
111 | stride=1
112 | pad=1
113 | activation=leaky
114 |
115 | [convolutional]
116 | batch_normalize=1
117 | filters=512
118 | size=3
119 | stride=1
120 | pad=1
121 | activation=leaky
122 |
123 | [convolutional]
124 | size=1
125 | stride=1
126 | pad=1
127 | filters=255
128 | activation=linear
129 |
130 |
131 |
132 | [yolo]
133 | mask = 3,4,5
134 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
135 | classes=80
136 | num=6
137 | jitter=.3
138 | ignore_thresh = .7
139 | truth_thresh = 1
140 | random=1
141 |
142 | [route]
143 | layers = -4
144 |
145 | [convolutional]
146 | batch_normalize=1
147 | filters=128
148 | size=1
149 | stride=1
150 | pad=1
151 | activation=leaky
152 |
153 | [upsample]
154 | stride=2
155 |
156 | [route]
157 | layers = -1, 8
158 |
159 | [convolutional]
160 | batch_normalize=1
161 | filters=256
162 | size=3
163 | stride=1
164 | pad=1
165 | activation=leaky
166 |
167 | [convolutional]
168 | size=1
169 | stride=1
170 | pad=1
171 | filters=255
172 | activation=linear
173 |
174 | [yolo]
175 | mask = 0,1,2
176 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
177 | classes=80
178 | num=6
179 | jitter=.3
180 | ignore_thresh = .7
181 | truth_thresh = 1
182 | random=1
183 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov3-tiny_occlusion_track.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | #batch=1
4 | #subdivisions=1
5 | # Training
6 | batch=8
7 | subdivisions=4
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | track=1
19 | time_steps=20
20 | augment_speed=3
21 |
22 | learning_rate=0.001
23 | burn_in=1000
24 | max_batches = 10000
25 | policy=steps
26 | steps=9000,9500
27 | scales=.1,.1
28 |
29 | [convolutional]
30 | batch_normalize=1
31 | filters=16
32 | size=3
33 | stride=1
34 | pad=1
35 | activation=leaky
36 |
37 | [maxpool]
38 | size=2
39 | stride=2
40 |
41 | [convolutional]
42 | batch_normalize=1
43 | filters=32
44 | size=3
45 | stride=1
46 | pad=1
47 | activation=leaky
48 |
49 | [maxpool]
50 | size=2
51 | stride=2
52 |
53 | [convolutional]
54 | batch_normalize=1
55 | filters=64
56 | size=3
57 | stride=1
58 | pad=1
59 | activation=leaky
60 |
61 | [maxpool]
62 | size=2
63 | stride=2
64 |
65 | [convolutional]
66 | batch_normalize=1
67 | filters=128
68 | size=3
69 | stride=1
70 | pad=1
71 | activation=leaky
72 |
73 | [maxpool]
74 | size=2
75 | stride=2
76 |
77 | [convolutional]
78 | batch_normalize=1
79 | filters=256
80 | size=3
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [maxpool]
86 | size=2
87 | stride=2
88 |
89 | [convolutional]
90 | batch_normalize=1
91 | filters=512
92 | size=3
93 | stride=1
94 | pad=1
95 | activation=leaky
96 |
97 | [maxpool]
98 | size=2
99 | stride=1
100 |
101 | [convolutional]
102 | batch_normalize=1
103 | filters=1024
104 | size=3
105 | stride=1
106 | pad=1
107 | activation=leaky
108 |
109 | ###########
110 |
111 |
112 | [crnn]
113 | batch_normalize=1
114 | size=3
115 | pad=1
116 | output=512
117 | hidden=256
118 | activation=leaky
119 |
120 | #[shortcut]
121 | #from=-2
122 | #activation=linear
123 |
124 | ###########
125 |
126 | [convolutional]
127 | batch_normalize=1
128 | filters=256
129 | size=1
130 | stride=1
131 | pad=1
132 | activation=leaky
133 |
134 | [convolutional]
135 | batch_normalize=1
136 | filters=512
137 | size=3
138 | stride=1
139 | pad=1
140 | activation=leaky
141 |
142 | [convolutional]
143 | batch_normalize=1
144 | filters=512
145 | size=3
146 | stride=1
147 | pad=1
148 | activation=leaky
149 |
150 | [convolutional]
151 | size=1
152 | stride=1
153 | pad=1
154 | filters=18
155 | activation=linear
156 |
157 |
158 |
159 | [yolo]
160 | mask = 3,4,5
161 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
162 | classes=1
163 | num=6
164 | jitter=.3
165 | ignore_thresh = .7
166 | truth_thresh = 1
167 | random=0
168 |
169 | [route]
170 | layers = -4
171 |
172 | [convolutional]
173 | batch_normalize=1
174 | filters=128
175 | size=1
176 | stride=1
177 | pad=1
178 | activation=leaky
179 |
180 | [upsample]
181 | stride=2
182 |
183 | [route]
184 | layers = -1, 8
185 |
186 | [crnn]
187 | batch_normalize=1
188 | size=3
189 | pad=1
190 | output=256
191 | hidden=128
192 | activation=leaky
193 |
194 | [convolutional]
195 | batch_normalize=1
196 | filters=256
197 | size=3
198 | stride=1
199 | pad=1
200 | activation=leaky
201 |
202 |
203 | [convolutional]
204 | size=1
205 | stride=1
206 | pad=1
207 | filters=18
208 | activation=linear
209 |
210 | [yolo]
211 | mask = 0,1,2
212 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
213 | classes=1
214 | num=6
215 | jitter=.3
216 | ignore_thresh = .7
217 | truth_thresh = 1
218 | random=0
219 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/cfg/yolov3-tiny_xnor.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | #batch=1
4 | #subdivisions=1
5 | # Training
6 | batch=64
7 | subdivisions=2
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=16
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | [maxpool]
34 | size=2
35 | stride=2
36 |
37 | [convolutional]
38 | xnor=1
39 | bin_output=1
40 | batch_normalize=1
41 | filters=32
42 | size=3
43 | stride=1
44 | pad=1
45 | activation=leaky
46 |
47 | [maxpool]
48 | size=2
49 | stride=2
50 |
51 | [convolutional]
52 | xnor=1
53 | bin_output=1
54 | batch_normalize=1
55 | filters=64
56 | size=3
57 | stride=1
58 | pad=1
59 | activation=leaky
60 |
61 | [maxpool]
62 | size=2
63 | stride=2
64 |
65 | [convolutional]
66 | xnor=1
67 | bin_output=1
68 | batch_normalize=1
69 | filters=128
70 | size=3
71 | stride=1
72 | pad=1
73 | activation=leaky
74 |
75 | [maxpool]
76 | size=2
77 | stride=2
78 |
79 | [convolutional]
80 | xnor=1
81 | batch_normalize=1
82 | filters=256
83 | size=3
84 | stride=1
85 | pad=1
86 | activation=leaky
87 |
88 | [maxpool]
89 | size=2
90 | stride=2
91 |
92 | [convolutional]
93 | xnor=1
94 | bin_output=1
95 | batch_normalize=1
96 | filters=512
97 | size=3
98 | stride=1
99 | pad=1
100 | activation=leaky
101 |
102 | [maxpool]
103 | size=2
104 | stride=1
105 |
106 | [convolutional]
107 | xnor=1
108 | bin_output=1
109 | batch_normalize=1
110 | filters=1024
111 | size=3
112 | stride=1
113 | pad=1
114 | activation=leaky
115 |
116 | ###########
117 |
118 | [convolutional]
119 | xnor=1
120 | batch_normalize=1
121 | filters=256
122 | size=1
123 | stride=1
124 | pad=1
125 | activation=leaky
126 |
127 | [convolutional]
128 | batch_normalize=1
129 | filters=512
130 | size=3
131 | stride=1
132 | pad=1
133 | activation=leaky
134 |
135 | [convolutional]
136 | size=1
137 | stride=1
138 | pad=1
139 | filters=255
140 | activation=linear
141 |
142 |
143 |
144 | [yolo]
145 | mask = 3,4,5
146 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
147 | classes=80
148 | num=6
149 | jitter=.3
150 | ignore_thresh = .7
151 | truth_thresh = 1
152 | random=1
153 |
154 | [route]
155 | layers = -4
156 |
157 | [convolutional]
158 | xnor=1
159 | batch_normalize=1
160 | filters=128
161 | size=1
162 | stride=1
163 | pad=1
164 | activation=leaky
165 |
166 | [upsample]
167 | stride=2
168 |
169 | [route]
170 | layers = -1, 8
171 |
172 | [convolutional]
173 | xnor=1
174 | batch_normalize=1
175 | filters=256
176 | size=3
177 | stride=1
178 | pad=1
179 | activation=leaky
180 |
181 |
182 | [convolutional]
183 | size=1
184 | stride=1
185 | pad=1
186 | filters=255
187 | activation=linear
188 |
189 | [yolo]
190 | mask = 0,1,2
191 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
192 | classes=80
193 | num=6
194 | jitter=.3
195 | ignore_thresh = .7
196 | truth_thresh = 1
197 | random=1
198 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/imgs/chart_yolov4-custom.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yehengchen/Object-Detection-and-Tracking/a7d750efc3ea47a5aee88a464e37016dff016d06/OneStage/yolo/Train-a-YOLOv4-model/imgs/chart_yolov4-custom.png
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/imgs/yolov4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yehengchen/Object-Detection-and-Tracking/a7d750efc3ea47a5aee88a464e37016dff016d06/OneStage/yolo/Train-a-YOLOv4-model/imgs/yolov4.png
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy==1.18.4
2 | matplotlib
3 | tensorflow
4 | tensorboard
5 | terminaltables
6 | pillow
7 | tqdm
8 | pickle
9 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/tools/img2train.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | # Author : Andy Liu
3 | # Last modified: 2018-8-15
4 |
5 | # This tool is used to create VOC-like txt file by reading image folder
6 | # input: python create_txt_list.py "/home/andy/Data/img"
7 | # output:
8 | # ./train.txt
9 | # ./val.txt
10 |
11 | import argparse
12 | import os,sys
13 | import random
14 | from os import listdir, getcwd
15 | from os.path import join
16 | import cv2
17 | from tqdm import tqdm
18 |
19 |
20 | def parse_args():
21 | parser = argparse.ArgumentParser()
22 | parser.add_argument('srcdir', help='file directory', type=str)
23 |
24 | args = parser.parse_args()
25 | return args
26 |
27 | def makelist(srcdir):
28 | srcdir = os.path.abspath(srcdir)
29 | if srcdir[-1] == "/":
30 | srcdir = srcdir[:-1]
31 |
32 | train_path_txt = "./train.txt"
33 | val_path_txt = "./val.txt"
34 | train_file=open(train_path_txt,'w+') # 'w+' rewrite, 'a' add
35 | val_file=open(val_path_txt,'w+')
36 |
37 | filelist = os.listdir(srcdir)
38 | trainset = random.sample(filelist, int(len(filelist)*0.8))
39 |
40 | for file in tqdm(filelist):
41 | file_name,file_extend=os.path.splitext(file)
42 |
43 | img_path = srcdir + "/" + file
44 | img = cv2.imread(img_path)
45 | if img is None:
46 | print("%s can't read!"%file)
47 | continue
48 |
49 | if file in trainset:
50 | train_file.write(srcdir+"/"+file+'\n')
51 | else:
52 | val_file.write(srcdir+"/"+file+'\n')
53 |
54 | train_file.close()
55 | val_file.close()
56 |
57 | print("Path of train text = ",os.path.abspath(train_path_txt))
58 | print("Path of valid text = ",os.path.abspath(val_path_txt))
59 |
60 | if __name__ == '__main__':
61 | args = parse_args()
62 | srcdir = args.srcdir
63 |
64 | if not os.path.exists(srcdir):
65 | print("Error !!! %s is not exists, please check the parameter"%srcdir)
66 | sys.exit(0)
67 |
68 | makelist(srcdir)
69 | print("Done!")
70 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/tools/name.py:
--------------------------------------------------------------------------------
1 | # -*- coding: UTF-8 -*-
2 | import os
3 | names = os.listdir('/home/cai/workspace/fly_piggy/JPEGImages') #图片路径
4 | i=0
5 | train_val = open('/home/cai/workspace/fly_piggy/train.txt','w') #txt文件路径
6 | for name in names:
7 | index = name.rfind('.')
8 | name = name[:index]
9 | train_val.write(name+'\n')
10 | i=i+1
11 | print(i)
12 |
--------------------------------------------------------------------------------
/OneStage/yolo/Train-a-YOLOv4-model/tools/voc_label.py:
--------------------------------------------------------------------------------
1 | # -*- coding: UTF-8 -*-
2 | import xml.etree.ElementTree as ET
3 | import pickle
4 | import os
5 | from os import listdir, getcwd
6 | from os.path import join
7 |
8 | #我的项目中有4个类别,类别名称在这里修改 change your classes in here
9 | classes = ["holothurian","echinus","scallop","starfish"]
10 | def convert(size, box):
11 | dw = 1./size[0]
12 | dh = 1./size[1]
13 | x = (box[0] + box[1])/2.0
14 | y = (box[2] + box[3])/2.0
15 | w = box[1] - box[0]
16 | h = box[3] - box[2]
17 | x = x*dw
18 | w = w*dw
19 | y = y*dh
20 | h = h*dh
21 | return (x,y,w,h)
22 |
23 | def convert_annotation(image_id):
24 | #这里改为.xml文件夹的路径 change the pth
25 | in_file = open('/home/cai/workspace/fly_piggy/Annotations/%s.xml'%(image_id))
26 | #这里是生成每张图片对应的.txt文件的路径 change the pth
27 | out_file = open('/home/cai/workspace/fly_piggy/labels/%s.txt'%(image_id),'w')
28 | tree=ET.parse(in_file)
29 | root = tree.getroot()
30 | size = root.find('size')
31 | w = int(size.find('width').text)
32 | h = int(size.find('height').text)#
33 |
34 | for obj in root.iter('object'):
35 | cls = obj.find('name').text
36 | if cls not in classes :
37 | continue
38 | cls_id = classes.index(cls)
39 | xmlbox = obj.find('bndbox')
40 | b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
41 | bb = convert((w,h), b)
42 | out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
43 | #这里是train.txt文件的路径 change the pth
44 | image_ids_train = open('/home/cai/workspace/fly_piggy/train.txt').read().strip().split()
45 | #这里是val.txt文件的路径 change the pth
46 | image_ids_val = open('/home/cai/workspace/fly_piggy/val.txt').read().strip().split()
47 |
48 | list_file_train = open('object_train.txt', 'w')
49 | list_file_val = open('object_val.txt', 'w')
50 | for image_id in image_ids_train:
51 | #这里改为样本图片所在文件夹的路径 change the pth
52 | list_file_train.write('/home/cai/workspace/fly_piggy/JPEGImages/%s.jpg\n'%(image_id))
53 | convert_annotation(image_id)
54 | list_file_train.close()
55 | for image_id in image_ids_val:
56 | #这里改为样本图片所在文件夹的路径 change the pth
57 | list_file_val.write('/home/cai/workspace/fly_piggy/JPEGImages/%s.jpg\n'%(image_id))
58 | convert_annotation(image_id)
59 | list_file_val.close()
60 |
--------------------------------------------------------------------------------
/OneStage/yolo/coco2voc.md:
--------------------------------------------------------------------------------
1 | # coco2voc
2 | *提取 coco 数据集中需要的类别和标记进行转换成 yolo 可以使用的数据集*
3 | ### 1. Download coco2017 data
4 | *首先下载 [2017 Train images] 数据集和 [2017 annotations] 并且放入 coco 目录下*
5 |
6 | #### [2017 Train images](http://images.cocodataset.org/zips/train2017.zip) [118K/18GB]
7 |
8 | #### [2017 annotations](http://images.cocodataset.org/annotations/annotations_trainval2017.zip) [241MB]
9 |
10 | [2017 Val images](http://images.cocodataset.org/zips/val2017.zip) [5K/1GB]
11 |
12 | [2017 Test images](http://images.cocodataset.org/zips/test2017.zip) [41K/6GB]
13 |
14 | cd ~/Desktop
15 | mkdir coco
16 | cd coco
17 | unzip train2017.zip -d ~/Desktop/coco && unzip annotations_trainval2017.zip -d ~/Desktop/coco
18 | mkdir -p result/Annotations result/images
19 |
20 |
21 |
22 | ### 2. Install cython
23 | *安装 cython 并且下载 cocoapi*
24 |
25 | pip3 install cython
26 | git clone https://github.com/cocodataset/cocoapi.git
27 | cd coco/PythonAPI
28 | make
29 |
30 | ### 3. Change the classes_names and path
31 | *将 [coco2voc.py](https://github.com/yehengchen/ObjectDetection/blob/master/OneStage/yolo/coco2voc.py) 放在 PythonAPI/ 目录下运行,并且修改 coco2voc.py 相关路径*
32 |
33 | classes_names = ['person', 'fire_extinguisher', 'fireplug', 'car', 'bicycle','motorcycle']
34 |
35 | *修改coco数据集中自己所需要的类别名称*
36 |
37 | python3 coco2voc.py
38 | #result/Annotations 目录将放.xml文件, result/images 目录将放 .jpg文件
39 |
--------------------------------------------------------------------------------
/OneStage/yolo/convert2Yolo/example/kitti/images/000021.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yehengchen/Object-Detection-and-Tracking/a7d750efc3ea47a5aee88a464e37016dff016d06/OneStage/yolo/convert2Yolo/example/kitti/images/000021.jpg
--------------------------------------------------------------------------------
/OneStage/yolo/convert2Yolo/example/kitti/labels/000021.txt:
--------------------------------------------------------------------------------
1 | Skigate 0.0 0 0.0 686 172 746 312 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 | Skier 0.0 0 0.0 438 146 489 214 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 | Person 0.0 0 0.0 353 126 380 192 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 |
--------------------------------------------------------------------------------
/OneStage/yolo/convert2Yolo/example/kitti/names.txt:
--------------------------------------------------------------------------------
1 | Skigate
2 | Skier
3 | Person
4 |
--------------------------------------------------------------------------------
/OneStage/yolo/convert2Yolo/example/voc/JPEG/000001.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yehengchen/Object-Detection-and-Tracking/a7d750efc3ea47a5aee88a464e37016dff016d06/OneStage/yolo/convert2Yolo/example/voc/JPEG/000001.jpg
--------------------------------------------------------------------------------
/OneStage/yolo/convert2Yolo/example/voc/label/000001.xml:
--------------------------------------------------------------------------------
1 |