├── README.md
├── TransUNet
├── LICENSE
├── README.md
├── networks
│ ├── vit_seg_configs.py
│ ├── vit_seg_modeling.py
│ └── vit_seg_modeling_resnet_skip.py
├── requirements.txt
├── test.py
├── train.py
├── trainer.py
└── utils.py
├── data
├── .DS_Store
├── ._.DS_Store
├── VISDA-C
│ ├── download_visda2017.sh
│ ├── test_list.txt
│ ├── train_list.txt
│ └── validation_list.txt
├── generate_label.py
├── office-caltech
│ ├── amazon_list.txt
│ ├── caltech_list.txt
│ ├── dslr_list.txt
│ └── webcam_list.txt
├── office-home
│ ├── Art.txt
│ ├── Art_list.txt
│ ├── Clipart.txt
│ ├── Clipart_list.txt
│ ├── Product.txt
│ ├── Product_list.txt
│ ├── RealWorld_list.txt
│ └── Real_World.txt
└── office
│ ├── amazon_list.txt
│ ├── dslr_list.txt
│ └── webcam_list.txt
├── data_list.py
├── image
├── overview.png
├── result_office31.png
└── result_officehome.png
├── image_pretrained.py
├── image_source.py
├── image_target.py
├── image_target_oda.py
├── image_test.py
├── loss.py
├── network.py
├── non_local_embedded_gaussian.py
├── run_office_home_more.sh
├── run_office_home_uda.sh
├── run_office_uda.sh
├── run_office_uda_ab.sh
└── run_visda.sh
/README.md:
--------------------------------------------------------------------------------
1 | # Official implementation for TransDA
2 | Official pytorch implement for [“Transformer-Based Source-Free Domain Adaptation”](https://arxiv.org/abs/2105.14138).
3 | Accepted by APIN 2022
4 | ## Overview:
5 |
6 |
7 | ## Result:
8 |
9 |
10 |
11 |
12 | ## Prerequisites:
13 | - python == 3.6.8
14 | - pytorch ==1.1.0
15 | - torchvision == 0.3.0
16 | - numpy, scipy, sklearn, PIL, argparse, tqdm
17 |
18 | ## Prepare pretrain model
19 | We choose R50-ViT-B_16 as our encoder.
20 | ```bash root transformerdepth
21 | wget https://storage.googleapis.com/vit_models/imagenet21k/R50+ViT-B_16.npz
22 | mkdir ./model/vit_checkpoint/imagenet21k
23 | mv R50+ViT-B_16.npz ./model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz
24 | ```
25 | Our checkpoints could be find in [Dropbox](https://www.dropbox.com/sh/vost4yt3c2vuuec/AAAHEszAwM4ZTA-BxRe6_9p2a?dl=0)
26 | ## Dataset:
27 | - Please manually download the datasets [Office](https://www.dropbox.com/sh/vja4cdimm0k2um3/AACCKNKV8-HVbEZDPDCyAyf_a?dl=0), [Office-Home](https://www.dropbox.com/sh/vja4cdimm0k2um3/AACCKNKV8-HVbEZDPDCyAyf_a?dl=0), [VisDA](https://github.com/VisionLearningGroup/taskcv-2017-public/tree/master/classification), [Office-Caltech](https://www.dropbox.com/sh/vja4cdimm0k2um3/AACCKNKV8-HVbEZDPDCyAyf_a?dl=0) from the official websites, and modify the path of images in each '.txt' under the folder './data/'.
28 | - The script "download_visda2017.sh" in data fold also can use to download visda
29 | ## Training
30 | ### Office-31
31 | ```python
32 | sh run_office_uda.sh
33 | ```
34 | ### Office-Home
35 | ```python
36 | sh run_office_home_uda.sh
37 | ```
38 | ### Office-VisDA
39 | ```python
40 | sh run_visda.sh
41 | ```
42 | # Reference
43 |
44 | [ViT](https://github.com/jeonsworld/ViT-pytorch)
45 |
46 | [TransUNet](https://github.com/Beckschen/TransUNet)
47 |
48 | [SHOT](https://github.com/tim-learn/SHOT)
49 |
--------------------------------------------------------------------------------
/TransUNet/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/TransUNet/README.md:
--------------------------------------------------------------------------------
1 | # TransUNet
2 | This repo holds code for [TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation](https://arxiv.org/pdf/2102.04306.pdf)
3 |
4 | ## Usage
5 |
6 | ### 1. Download Google pre-trained ViT models
7 | * [Get models in this link](https://console.cloud.google.com/storage/vit_models/): R50-ViT-B_16, ViT-B_16, ViT-L_16...
8 | ```bash
9 | wget https://storage.googleapis.com/vit_models/imagenet21k/{MODEL_NAME}.npz &&
10 | mkdir ../model/vit_checkpoint/imagenet21k &&
11 | mv {MODEL_NAME}.npz ../model/vit_checkpoint/imagenet21k/{MODEL_NAME}.npz
12 | ```
13 |
14 | ### 2. Prepare data
15 |
16 | Please go to ["./datasets/README.md"](datasets/README.md) for details, or please send an Email to jienengchen01 AT gmail.com to request the preprocessed data. If you would like to use the preprocessed data, please use it for research purposes and do not redistribute it.
17 |
18 | ### 3. Environment
19 |
20 | Please prepare an environment with python=3.7, and then use the command "pip install -r requirements.txt" for the dependencies.
21 |
22 | ### 4. Train/Test
23 |
24 | - Run the train script on synapse dataset. The batch size can be reduced to 12 or 6 to save memory (please also decrease the base_lr linearly), and both can reach similar performance.
25 |
26 | ```bash
27 | CUDA_VISIBLE_DEVICES=0 python train.py --dataset Synapse --vit_name R50-ViT-B_16
28 | ```
29 |
30 | - Run the test script on synapse dataset. It supports testing for both 2D images and 3D volumes.
31 |
32 | ```bash
33 | python test.py --dataset Synapse --vit_name R50-ViT-B_16
34 | ```
35 |
36 | ## Reference
37 | * [Google ViT](https://github.com/google-research/vision_transformer)
38 | * [ViT-pytorch](https://github.com/jeonsworld/ViT-pytorch)
39 | * [segmentation_models.pytorch](https://github.com/qubvel/segmentation_models.pytorch)
40 |
41 | ## Citations
42 |
43 | ```bibtex
44 | @article{chen2021transunet,
45 | title={TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation},
46 | author={Chen, Jieneng and Lu, Yongyi and Yu, Qihang and Luo, Xiangde and Adeli, Ehsan and Wang, Yan and Lu, Le and Yuille, Alan L., and Zhou, Yuyin},
47 | journal={arXiv preprint arXiv:2102.04306},
48 | year={2021}
49 | }
50 | ```
51 |
--------------------------------------------------------------------------------
/TransUNet/networks/vit_seg_configs.py:
--------------------------------------------------------------------------------
1 | import ml_collections
2 |
3 | def get_b16_config():
4 | """Returns the ViT-B/16 configuration."""
5 | config = ml_collections.ConfigDict()
6 | config.patches = ml_collections.ConfigDict({'size': (16, 16)})
7 | config.hidden_size = 768
8 | config.transformer = ml_collections.ConfigDict()
9 | config.transformer.mlp_dim = 3072
10 | config.transformer.num_heads = 12
11 | config.transformer.num_layers = 12
12 | config.transformer.attention_dropout_rate = 0.0
13 | config.transformer.dropout_rate = 0.1
14 |
15 | config.classifier = 'seg'
16 | config.representation_size = None
17 | config.resnet_pretrained_path = None
18 | config.pretrained_path = './model/vit_checkpoint/imagenet21k/ViT-B_16.npz'
19 | config.patch_size = 16
20 |
21 | config.decoder_channels = (256, 128, 64, 16)
22 | config.n_classes = 2
23 | config.activation = 'softmax'
24 | return config
25 |
26 |
27 | def get_testing():
28 | """Returns a minimal configuration for testing."""
29 | config = ml_collections.ConfigDict()
30 | config.patches = ml_collections.ConfigDict({'size': (16, 16)})
31 | config.hidden_size = 1
32 | config.transformer = ml_collections.ConfigDict()
33 | config.transformer.mlp_dim = 1
34 | config.transformer.num_heads = 1
35 | config.transformer.num_layers = 1
36 | config.transformer.attention_dropout_rate = 0.0
37 | config.transformer.dropout_rate = 0.1
38 | config.classifier = 'token'
39 | config.representation_size = None
40 | return config
41 |
42 | def get_r50_b16_config():
43 | """Returns the Resnet50 + ViT-B/16 configuration."""
44 | config = get_b16_config()
45 | config.patches.grid = (16, 16)
46 | config.resnet = ml_collections.ConfigDict()
47 | config.resnet.num_layers = (3, 4, 9)
48 | config.resnet.width_factor = 1
49 |
50 | config.classifier = 'seg'
51 | config.pretrained_path = './model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz'
52 | config.decoder_channels = (256, 128, 64, 16)
53 | config.skip_channels = [512, 256, 64, 16]
54 | config.n_classes = 2
55 | config.n_skip = 3
56 | config.activation = 'softmax'
57 |
58 | return config
59 |
60 |
61 | def get_b32_config():
62 | """Returns the ViT-B/32 configuration."""
63 | config = get_b16_config()
64 | config.patches.size = (32, 32)
65 | config.pretrained_path = './model/vit_checkpoint/imagenet21k/ViT-B_32.npz'
66 | return config
67 |
68 |
69 | def get_l16_config():
70 | """Returns the ViT-L/16 configuration."""
71 | config = ml_collections.ConfigDict()
72 | config.patches = ml_collections.ConfigDict({'size': (16, 16)})
73 | config.hidden_size = 1024
74 | config.transformer = ml_collections.ConfigDict()
75 | config.transformer.mlp_dim = 4096
76 | config.transformer.num_heads = 16
77 | config.transformer.num_layers = 24
78 | config.transformer.attention_dropout_rate = 0.0
79 | config.transformer.dropout_rate = 0.1
80 | config.representation_size = None
81 |
82 | # custom
83 | config.classifier = 'seg'
84 | config.resnet_pretrained_path = None
85 | config.pretrained_path = './model/vit_checkpoint/imagenet21k/ViT-L_16.npz'
86 | config.decoder_channels = (256, 128, 64, 16)
87 | config.n_classes = 2
88 | config.activation = 'softmax'
89 | return config
90 |
91 |
92 | def get_r50_l16_config():
93 | """Returns the Resnet50 + ViT-L/16 configuration. customized """
94 | config = get_l16_config()
95 | config.patches.grid = (16, 16)
96 | config.resnet = ml_collections.ConfigDict()
97 | config.resnet.num_layers = (3, 4, 9)
98 | config.resnet.width_factor = 1
99 |
100 | config.classifier = 'seg'
101 | config.resnet_pretrained_path = './model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz'
102 | config.decoder_channels = (256, 128, 64, 16)
103 | config.skip_channels = [512, 256, 64, 16]
104 | config.n_classes = 2
105 | config.activation = 'softmax'
106 | return config
107 |
108 |
109 | def get_l32_config():
110 | """Returns the ViT-L/32 configuration."""
111 | config = get_l16_config()
112 | config.patches.size = (32, 32)
113 | return config
114 |
115 |
116 | def get_h14_config():
117 | """Returns the ViT-L/16 configuration."""
118 | config = ml_collections.ConfigDict()
119 | config.patches = ml_collections.ConfigDict({'size': (14, 14)})
120 | config.hidden_size = 1280
121 | config.transformer = ml_collections.ConfigDict()
122 | config.transformer.mlp_dim = 5120
123 | config.transformer.num_heads = 16
124 | config.transformer.num_layers = 32
125 | config.transformer.attention_dropout_rate = 0.0
126 | config.transformer.dropout_rate = 0.1
127 | config.classifier = 'token'
128 | config.representation_size = None
129 |
130 | return config
131 |
--------------------------------------------------------------------------------
/TransUNet/networks/vit_seg_modeling.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | from __future__ import absolute_import
3 | from __future__ import division
4 | from __future__ import print_function
5 |
6 | import copy
7 | import logging
8 | import math
9 |
10 | from os.path import join as pjoin
11 |
12 | import torch
13 | import torch.nn as nn
14 | import numpy as np
15 |
16 | from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
17 | from torch.nn.modules.utils import _pair
18 | from scipy import ndimage
19 | from . import vit_seg_configs as configs
20 | from .vit_seg_modeling_resnet_skip import ResNetV2
21 |
22 |
23 | logger = logging.getLogger(__name__)
24 |
25 |
26 | ATTENTION_Q = "MultiHeadDotProductAttention_1/query"
27 | ATTENTION_K = "MultiHeadDotProductAttention_1/key"
28 | ATTENTION_V = "MultiHeadDotProductAttention_1/value"
29 | ATTENTION_OUT = "MultiHeadDotProductAttention_1/out"
30 | FC_0 = "MlpBlock_3/Dense_0"
31 | FC_1 = "MlpBlock_3/Dense_1"
32 | ATTENTION_NORM = "LayerNorm_0"
33 | MLP_NORM = "LayerNorm_2"
34 |
35 |
36 | def np2th(weights, conv=False):
37 | """Possibly convert HWIO to OIHW."""
38 | if conv:
39 | weights = weights.transpose([3, 2, 0, 1])
40 | return torch.from_numpy(weights)
41 |
42 |
43 | def swish(x):
44 | return x * torch.sigmoid(x)
45 |
46 |
47 | ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish}
48 |
49 |
50 | class Attention(nn.Module):
51 | def __init__(self, config, vis):
52 | super(Attention, self).__init__()
53 | self.vis = vis
54 | self.num_attention_heads = config.transformer["num_heads"]
55 | self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
56 | self.all_head_size = self.num_attention_heads * self.attention_head_size
57 |
58 | self.query = Linear(config.hidden_size, self.all_head_size)
59 | self.key = Linear(config.hidden_size, self.all_head_size)
60 | self.value = Linear(config.hidden_size, self.all_head_size)
61 |
62 | self.out = Linear(config.hidden_size, config.hidden_size)
63 | self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])
64 | self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])
65 |
66 | self.softmax = Softmax(dim=-1)
67 |
68 | def transpose_for_scores(self, x):
69 | new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
70 | x = x.view(*new_x_shape)
71 | return x.permute(0, 2, 1, 3)
72 |
73 | def forward(self, hidden_states):
74 | mixed_query_layer = self.query(hidden_states)
75 | mixed_key_layer = self.key(hidden_states)
76 | mixed_value_layer = self.value(hidden_states)
77 |
78 | query_layer = self.transpose_for_scores(mixed_query_layer)
79 | key_layer = self.transpose_for_scores(mixed_key_layer)
80 | value_layer = self.transpose_for_scores(mixed_value_layer)
81 |
82 | attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
83 | attention_scores = attention_scores / math.sqrt(self.attention_head_size)
84 | attention_probs = self.softmax(attention_scores)
85 | weights = attention_probs if self.vis else None
86 | attention_probs = self.attn_dropout(attention_probs)
87 |
88 | context_layer = torch.matmul(attention_probs, value_layer)
89 | context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
90 | new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
91 | context_layer = context_layer.view(*new_context_layer_shape)
92 | attention_output = self.out(context_layer)
93 | attention_output = self.proj_dropout(attention_output)
94 | return attention_output, weights
95 |
96 |
97 | class Mlp(nn.Module):
98 | def __init__(self, config):
99 | super(Mlp, self).__init__()
100 | self.fc1 = Linear(config.hidden_size, config.transformer["mlp_dim"])
101 | self.fc2 = Linear(config.transformer["mlp_dim"], config.hidden_size)
102 | self.act_fn = ACT2FN["gelu"]
103 | self.dropout = Dropout(config.transformer["dropout_rate"])
104 |
105 | self._init_weights()
106 |
107 | def _init_weights(self):
108 | nn.init.xavier_uniform_(self.fc1.weight)
109 | nn.init.xavier_uniform_(self.fc2.weight)
110 | nn.init.normal_(self.fc1.bias, std=1e-6)
111 | nn.init.normal_(self.fc2.bias, std=1e-6)
112 |
113 | def forward(self, x):
114 | x = self.fc1(x)
115 | x = self.act_fn(x)
116 | x = self.dropout(x)
117 | x = self.fc2(x)
118 | x = self.dropout(x)
119 | return x
120 |
121 |
122 | class Embeddings(nn.Module):
123 | """Construct the embeddings from patch, position embeddings.
124 | """
125 | def __init__(self, config, img_size, in_channels=3):
126 | super(Embeddings, self).__init__()
127 | self.hybrid = None
128 | self.config = config
129 | # img_size = _pair(img_size)
130 |
131 | if config.patches.get("grid") is not None: # ResNet
132 | grid_size = config.patches["grid"]
133 | patch_size = (img_size[0] // 16 // grid_size[0], img_size[1] // 16 // grid_size[1])
134 | patch_size_real = (patch_size[0] * 16, patch_size[1] * 16)
135 | n_patches = (img_size[0] // patch_size_real[0]) * (img_size[1] // patch_size_real[1])
136 | self.hybrid = True
137 | else:
138 | patch_size = _pair(config.patches["size"])
139 | n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])
140 | self.hybrid = False
141 |
142 | if self.hybrid:
143 | self.hybrid_model = ResNetV2(block_units=config.resnet.num_layers, width_factor=config.resnet.width_factor)
144 | in_channels = self.hybrid_model.width * 16
145 | self.patch_embeddings = Conv2d(in_channels=in_channels,
146 | out_channels=config.hidden_size,
147 | kernel_size=patch_size,
148 | stride=patch_size)
149 | # self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, config.hidden_size))
150 |
151 | self.dropout = Dropout(config.transformer["dropout_rate"])
152 |
153 |
154 | def forward(self, x):
155 | if self.hybrid:
156 | x, features = self.hybrid_model(x)
157 | else:
158 | features = None
159 | x = self.patch_embeddings(x) # (B, hidden. n_patches^(1/2), n_patches^(1/2))
160 | x = x.flatten(2)
161 | x = x.transpose(-1, -2) # (B, n_patches, hidden)
162 | embeddings = x
163 | embeddings = self.dropout(embeddings)
164 |
165 | return embeddings, features
166 |
167 |
168 | class Block(nn.Module):
169 | def __init__(self, config, vis):
170 | super(Block, self).__init__()
171 | self.hidden_size = config.hidden_size
172 | self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
173 | self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6)
174 | self.ffn = Mlp(config)
175 | self.attn = Attention(config, vis)
176 |
177 | def forward(self, x):
178 | h = x
179 | x = self.attention_norm(x)
180 | x, weights = self.attn(x)
181 | x = x + h
182 |
183 | h = x
184 | x = self.ffn_norm(x)
185 | x = self.ffn(x)
186 | x = x + h
187 | return x, weights
188 |
189 | def load_from(self, weights, n_block):
190 | ROOT = f"Transformer/encoderblock_{n_block}"
191 | with torch.no_grad():
192 | query_weight = np2th(weights[pjoin(ROOT, ATTENTION_Q, "kernel")]).view(self.hidden_size, self.hidden_size).t()
193 | key_weight = np2th(weights[pjoin(ROOT, ATTENTION_K, "kernel")]).view(self.hidden_size, self.hidden_size).t()
194 | value_weight = np2th(weights[pjoin(ROOT, ATTENTION_V, "kernel")]).view(self.hidden_size, self.hidden_size).t()
195 | out_weight = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "kernel")]).view(self.hidden_size, self.hidden_size).t()
196 |
197 | query_bias = np2th(weights[pjoin(ROOT, ATTENTION_Q, "bias")]).view(-1)
198 | key_bias = np2th(weights[pjoin(ROOT, ATTENTION_K, "bias")]).view(-1)
199 | value_bias = np2th(weights[pjoin(ROOT, ATTENTION_V, "bias")]).view(-1)
200 | out_bias = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "bias")]).view(-1)
201 |
202 | self.attn.query.weight.copy_(query_weight)
203 | self.attn.key.weight.copy_(key_weight)
204 | self.attn.value.weight.copy_(value_weight)
205 | self.attn.out.weight.copy_(out_weight)
206 | self.attn.query.bias.copy_(query_bias)
207 | self.attn.key.bias.copy_(key_bias)
208 | self.attn.value.bias.copy_(value_bias)
209 | self.attn.out.bias.copy_(out_bias)
210 |
211 | mlp_weight_0 = np2th(weights[pjoin(ROOT, FC_0, "kernel")]).t()
212 | mlp_weight_1 = np2th(weights[pjoin(ROOT, FC_1, "kernel")]).t()
213 | mlp_bias_0 = np2th(weights[pjoin(ROOT, FC_0, "bias")]).t()
214 | mlp_bias_1 = np2th(weights[pjoin(ROOT, FC_1, "bias")]).t()
215 |
216 | self.ffn.fc1.weight.copy_(mlp_weight_0)
217 | self.ffn.fc2.weight.copy_(mlp_weight_1)
218 | self.ffn.fc1.bias.copy_(mlp_bias_0)
219 | self.ffn.fc2.bias.copy_(mlp_bias_1)
220 |
221 | self.attention_norm.weight.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "scale")]))
222 | self.attention_norm.bias.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "bias")]))
223 | self.ffn_norm.weight.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "scale")]))
224 | self.ffn_norm.bias.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "bias")]))
225 |
226 |
227 | class Encoder(nn.Module):
228 | def __init__(self, config, vis):
229 | super(Encoder, self).__init__()
230 | self.vis = vis
231 | self.layer = nn.ModuleList()
232 | self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6)
233 | for _ in range(config.transformer["num_layers"]):
234 | layer = Block(config, vis)
235 | self.layer.append(copy.deepcopy(layer))
236 |
237 | def forward(self, hidden_states):
238 | attn_weights = []
239 | for layer_block in self.layer:
240 | hidden_states, weights = layer_block(hidden_states)
241 | if self.vis:
242 | attn_weights.append(weights)
243 | encoded = self.encoder_norm(hidden_states)
244 | return encoded, attn_weights
245 |
246 |
247 | class Transformer(nn.Module):
248 | def __init__(self, config, img_size, vis):
249 | super(Transformer, self).__init__()
250 | self.embeddings = Embeddings(config, img_size=img_size)
251 | self.encoder = Encoder(config, vis)
252 |
253 | def forward(self, input_ids):
254 | embedding_output, features = self.embeddings(input_ids)
255 | encoded, attn_weights = self.encoder(embedding_output) # (B, n_patch, hidden)
256 | return encoded, attn_weights, features
257 |
258 |
259 | class Conv2dReLU(nn.Sequential):
260 | def __init__(
261 | self,
262 | in_channels,
263 | out_channels,
264 | kernel_size,
265 | padding=0,
266 | stride=1,
267 | use_batchnorm=True,
268 | ):
269 | conv = nn.Conv2d(
270 | in_channels,
271 | out_channels,
272 | kernel_size,
273 | stride=stride,
274 | padding=padding,
275 | bias=not (use_batchnorm),
276 | )
277 | relu = nn.ReLU(inplace=True)
278 |
279 | bn = nn.BatchNorm2d(out_channels)
280 |
281 | super(Conv2dReLU, self).__init__(conv, bn, relu)
282 |
283 |
284 | class DecoderBlock(nn.Module):
285 | def __init__(
286 | self,
287 | in_channels,
288 | out_channels,
289 | skip_channels=0,
290 | use_batchnorm=True,
291 | ):
292 | super().__init__()
293 | self.conv1 = Conv2dReLU(
294 | in_channels + skip_channels,
295 | out_channels,
296 | kernel_size=3,
297 | padding=1,
298 | use_batchnorm=use_batchnorm,
299 | )
300 | self.conv2 = Conv2dReLU(
301 | out_channels,
302 | out_channels,
303 | kernel_size=3,
304 | padding=1,
305 | use_batchnorm=use_batchnorm,
306 | )
307 | self.up = nn.UpsamplingBilinear2d(scale_factor=2)
308 |
309 | def forward(self, x, skip=None):
310 | x = self.up(x)
311 | if skip is not None:
312 | x = torch.cat([x, skip], dim=1)
313 | x = self.conv1(x)
314 | x = self.conv2(x)
315 | return x
316 |
317 |
318 | class SegmentationHead(nn.Sequential):
319 |
320 | def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1):
321 | conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2)
322 | upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity()
323 | super().__init__(conv2d, upsampling)
324 |
325 |
326 | class DecoderCup(nn.Module):
327 | def __init__(self, config):
328 | super().__init__()
329 | self.config = config
330 | head_channels = 512
331 | # self.conv_more = Conv2dReLU(
332 | # config.hidden_size,
333 | # 1024,
334 | # kernel_size=3,
335 | # padding=1,
336 | # use_batchnorm=True,
337 | # )
338 | # self.conv_more_ = Conv2dReLU(
339 | # 1024,
340 | # 2048,
341 | # kernel_size=3,
342 | # stride=2,
343 | # padding=1,
344 | # use_batchnorm=True,
345 | # )
346 | self.fc= nn.Linear(config.hidden_size,2048)
347 | decoder_channels = config.decoder_channels
348 | in_channels = [head_channels] + list(decoder_channels[:-1])
349 | out_channels = decoder_channels
350 |
351 | if self.config.n_skip != 0:
352 | skip_channels = self.config.skip_channels
353 | for i in range(4-self.config.n_skip): # re-select the skip channels according to n_skip
354 | skip_channels[3-i]=0
355 |
356 | else:
357 | skip_channels=[0,0,0,0]
358 |
359 | blocks = [
360 | DecoderBlock(in_ch, out_ch, sk_ch) for in_ch, out_ch, sk_ch in zip(in_channels, out_channels, skip_channels)
361 | ]
362 | self.blocks = nn.ModuleList(blocks)
363 | self.avgpool= nn.AdaptiveAvgPool1d(1)
364 | # self.transfermer_f34=nn.Transformer(nhead=4, num_encoder_layers=3,d_model=768)
365 | def forward(self, hidden_states, features=None):
366 | B, n_patch, hidden = hidden_states.size() # reshape from (B, n_patch, hidden) to (B, h, w, hidden)
367 | h, w = int(features[0].shape[2]/2), int(features[0].shape[3]/2)
368 | ### unified multi-scale transformer
369 |
370 | x = hidden_states.permute(0, 2, 1)
371 | x = self.avgpool(x)
372 | ### for vis
373 | # vis = x.contiguous().view(B, hidden, h, w)
374 | # vis = functional.interpolate(vis, size=(224,224), mode="bilinear", align_corners=False)
375 |
376 | x = x.contiguous().view(B, hidden)
377 | x = self.fc(x)
378 |
379 | return x
380 |
381 |
382 | class VisionTransformer(nn.Module):
383 | def __init__(self, config, img_size=224, num_classes=21843, zero_head=False, vis=False):
384 | super(VisionTransformer, self).__init__()
385 | self.num_classes = num_classes
386 | self.zero_head = zero_head
387 | self.classifier = config.classifier
388 | self.transformer = Transformer(config, img_size, vis)
389 | self.decoder = DecoderCup(config)
390 |
391 | self.config = config
392 |
393 | def forward(self, x):
394 | if x.size()[1] == 1:
395 | x = x.repeat(1,3,1,1)
396 | x0, attn_weights, features = self.transformer(x) # (B, n_patch, hidden)
397 | x1 = self.decoder(x0, features)
398 | f=list(reversed(features))
399 | f.append(x1)
400 | f.insert(0, x)
401 | return f,x1
402 |
403 | def load_from(self, weights):
404 | with torch.no_grad():
405 |
406 | res_weight = weights
407 | self.transformer.embeddings.patch_embeddings.weight.copy_(np2th(weights["embedding/kernel"], conv=True))
408 | self.transformer.embeddings.patch_embeddings.bias.copy_(np2th(weights["embedding/bias"]))
409 |
410 | self.transformer.encoder.encoder_norm.weight.copy_(np2th(weights["Transformer/encoder_norm/scale"]))
411 | self.transformer.encoder.encoder_norm.bias.copy_(np2th(weights["Transformer/encoder_norm/bias"]))
412 |
413 | # posemb = np2th(weights["Transformer/posembed_input/pos_embedding"])
414 | #
415 | # posemb_new = self.transformer.embeddings.position_embeddings
416 | # if posemb.size() == posemb_new.size():
417 | # self.transformer.embeddings.position_embeddings.copy_(posemb)
418 | # elif posemb.size()[1]-1 == posemb_new.size()[1]:
419 | # posemb = posemb[:, 1:]
420 | # self.transformer.embeddings.position_embeddings.copy_(posemb)
421 | # else:
422 | # logger.info("load_pretrained: resized variant: %s to %s" % (posemb.size(), posemb_new.size()))
423 | # ntok_new = posemb_new.size(1)
424 | # if self.classifier == "seg":
425 | # _, posemb_grid = posemb[:, :1], posemb[0, 1:]
426 | # gs_old = int(np.sqrt(len(posemb_grid)))
427 | # gs_new = int(np.sqrt(ntok_new))
428 | # print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new))
429 | # posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1)
430 | # zoom = (gs_new / gs_old, gs_new / gs_old, 1)
431 | # posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1) # th2np
432 | # posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1)
433 | # posemb = posemb_grid
434 | #
435 | # # self.transformer.embeddings.position_embeddings.copy_(np2th(posemb))
436 | # self.transformer.embeddings.position_embeddings[:,0:posemb.shape[1],:]=np2th(posemb)
437 | # Encoder whole
438 | for bname, block in self.transformer.encoder.named_children():
439 | for uname, unit in block.named_children():
440 | unit.load_from(weights, n_block=uname)
441 |
442 | if self.transformer.embeddings.hybrid:
443 | self.transformer.embeddings.hybrid_model.root.conv.weight.copy_(np2th(res_weight["conv_root/kernel"], conv=True))
444 | gn_weight = np2th(res_weight["gn_root/scale"]).view(-1)
445 | gn_bias = np2th(res_weight["gn_root/bias"]).view(-1)
446 | self.transformer.embeddings.hybrid_model.root.gn.weight.copy_(gn_weight)
447 | self.transformer.embeddings.hybrid_model.root.gn.bias.copy_(gn_bias)
448 |
449 | for bname, block in self.transformer.embeddings.hybrid_model.body.named_children():
450 | for uname, unit in block.named_children():
451 | unit.load_from(res_weight, n_block=bname, n_unit=uname)
452 |
453 | CONFIGS = {
454 | 'ViT-B_16': configs.get_b16_config(),
455 | 'ViT-B_32': configs.get_b32_config(),
456 | 'ViT-L_16': configs.get_l16_config(),
457 | 'ViT-L_32': configs.get_l32_config(),
458 | 'ViT-H_14': configs.get_h14_config(),
459 | 'R50-ViT-B_16': configs.get_r50_b16_config(),
460 | 'R50-ViT-L_16': configs.get_r50_l16_config(),
461 | 'testing': configs.get_testing(),
462 | }
463 |
464 |
465 |
--------------------------------------------------------------------------------
/TransUNet/networks/vit_seg_modeling_resnet_skip.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | from os.path import join as pjoin
4 | from collections import OrderedDict
5 |
6 | import torch
7 | import torch.nn as nn
8 | import torch.nn.functional as F
9 |
10 |
11 | def np2th(weights, conv=False):
12 | """Possibly convert HWIO to OIHW."""
13 | if conv:
14 | weights = weights.transpose([3, 2, 0, 1])
15 | return torch.from_numpy(weights)
16 |
17 |
18 | class StdConv2d(nn.Conv2d):
19 |
20 | def forward(self, x):
21 | w = self.weight
22 | v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
23 | w = (w - m) / torch.sqrt(v + 1e-5)
24 | return F.conv2d(x, w, self.bias, self.stride, self.padding,
25 | self.dilation, self.groups)
26 |
27 |
28 | def conv3x3(cin, cout, stride=1, groups=1, bias=False):
29 | return StdConv2d(cin, cout, kernel_size=3, stride=stride,
30 | padding=1, bias=bias, groups=groups)
31 |
32 |
33 | def conv1x1(cin, cout, stride=1, bias=False):
34 | return StdConv2d(cin, cout, kernel_size=1, stride=stride,
35 | padding=0, bias=bias)
36 |
37 |
38 | class PreActBottleneck(nn.Module):
39 | """Pre-activation (v2) bottleneck block.
40 | """
41 |
42 | def __init__(self, cin, cout=None, cmid=None, stride=1):
43 | super().__init__()
44 | cout = cout or cin
45 | cmid = cmid or cout//4
46 |
47 | self.gn1 = nn.GroupNorm(32, cmid, eps=1e-6)
48 | self.conv1 = conv1x1(cin, cmid, bias=False)
49 | self.gn2 = nn.GroupNorm(32, cmid, eps=1e-6)
50 | self.conv2 = conv3x3(cmid, cmid, stride, bias=False) # Original code has it on conv1!!
51 | self.gn3 = nn.GroupNorm(32, cout, eps=1e-6)
52 | self.conv3 = conv1x1(cmid, cout, bias=False)
53 | self.relu = nn.ReLU(inplace=True)
54 |
55 | if (stride != 1 or cin != cout):
56 | # Projection also with pre-activation according to paper.
57 | self.downsample = conv1x1(cin, cout, stride, bias=False)
58 | self.gn_proj = nn.GroupNorm(cout, cout)
59 |
60 | def forward(self, x):
61 |
62 | # Residual branch
63 | residual = x
64 | if hasattr(self, 'downsample'):
65 | residual = self.downsample(x)
66 | residual = self.gn_proj(residual)
67 |
68 | # Unit's branch
69 | y = self.relu(self.gn1(self.conv1(x)))
70 | y = self.relu(self.gn2(self.conv2(y)))
71 | y = self.gn3(self.conv3(y))
72 |
73 | y = self.relu(residual + y)
74 | return y
75 |
76 | def load_from(self, weights, n_block, n_unit):
77 | conv1_weight = np2th(weights[pjoin(n_block, n_unit, "conv1/kernel")], conv=True)
78 | conv2_weight = np2th(weights[pjoin(n_block, n_unit, "conv2/kernel")], conv=True)
79 | conv3_weight = np2th(weights[pjoin(n_block, n_unit, "conv3/kernel")], conv=True)
80 |
81 | gn1_weight = np2th(weights[pjoin(n_block, n_unit, "gn1/scale")])
82 | gn1_bias = np2th(weights[pjoin(n_block, n_unit, "gn1/bias")])
83 |
84 | gn2_weight = np2th(weights[pjoin(n_block, n_unit, "gn2/scale")])
85 | gn2_bias = np2th(weights[pjoin(n_block, n_unit, "gn2/bias")])
86 |
87 | gn3_weight = np2th(weights[pjoin(n_block, n_unit, "gn3/scale")])
88 | gn3_bias = np2th(weights[pjoin(n_block, n_unit, "gn3/bias")])
89 |
90 | self.conv1.weight.copy_(conv1_weight)
91 | self.conv2.weight.copy_(conv2_weight)
92 | self.conv3.weight.copy_(conv3_weight)
93 |
94 | self.gn1.weight.copy_(gn1_weight.view(-1))
95 | self.gn1.bias.copy_(gn1_bias.view(-1))
96 |
97 | self.gn2.weight.copy_(gn2_weight.view(-1))
98 | self.gn2.bias.copy_(gn2_bias.view(-1))
99 |
100 | self.gn3.weight.copy_(gn3_weight.view(-1))
101 | self.gn3.bias.copy_(gn3_bias.view(-1))
102 |
103 | if hasattr(self, 'downsample'):
104 | proj_conv_weight = np2th(weights[pjoin(n_block, n_unit, "conv_proj/kernel")], conv=True)
105 | proj_gn_weight = np2th(weights[pjoin(n_block, n_unit, "gn_proj/scale")])
106 | proj_gn_bias = np2th(weights[pjoin(n_block, n_unit, "gn_proj/bias")])
107 |
108 | self.downsample.weight.copy_(proj_conv_weight)
109 | self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
110 | self.gn_proj.bias.copy_(proj_gn_bias.view(-1))
111 |
112 | class ResNetV2(nn.Module):
113 | """Implementation of Pre-activation (v2) ResNet mode."""
114 |
115 | def __init__(self, block_units, width_factor):
116 | super().__init__()
117 | width = int(64 * width_factor)
118 | self.width = width
119 |
120 | self.root = nn.Sequential(OrderedDict([
121 | ('conv', StdConv2d(3, width, kernel_size=7, stride=2, bias=False, padding=3)),
122 | ('gn', nn.GroupNorm(32, width, eps=1e-6)),
123 | ('relu', nn.ReLU(inplace=True)),
124 | # ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))
125 | ]))
126 |
127 | self.body = nn.Sequential(OrderedDict([
128 | ('block1', nn.Sequential(OrderedDict(
129 | [('unit1', PreActBottleneck(cin=width, cout=width*4, cmid=width))] +
130 | [(f'unit{i:d}', PreActBottleneck(cin=width*4, cout=width*4, cmid=width)) for i in range(2, block_units[0] + 1)],
131 | ))),
132 | ('block2', nn.Sequential(OrderedDict(
133 | [('unit1', PreActBottleneck(cin=width*4, cout=width*8, cmid=width*2, stride=2))] +
134 | [(f'unit{i:d}', PreActBottleneck(cin=width*8, cout=width*8, cmid=width*2)) for i in range(2, block_units[1] + 1)],
135 | ))),
136 | ('block3', nn.Sequential(OrderedDict(
137 | [('unit1', PreActBottleneck(cin=width*8, cout=width*16, cmid=width*4, stride=2))] +
138 | [(f'unit{i:d}', PreActBottleneck(cin=width*16, cout=width*16, cmid=width*4)) for i in range(2, block_units[2] + 1)],
139 | ))),
140 | ]))
141 |
142 | def forward(self, x):
143 | features = []
144 | b, c, in_size, size_ = x.size()
145 | x = self.root(x)
146 | features.append(x)
147 | x = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)(x)
148 | for i in range(len(self.body)-1):
149 | x = self.body[i](x)
150 | left_size = int(in_size / 4 / (i+1))
151 | right_size =int(size_ / 4 / (i+1))
152 | if x.size()[2] != left_size:
153 | pad = left_size - x.size()[2]
154 | assert pad < 3 and pad > 0, "x {} should {}".format(x.size(), left_size)
155 | feat = torch.zeros((b, x.size()[1], left_size,right_size ), device=x.device)
156 | feat[:, :, 0:x.size()[2], 0:x.size()[3]] = x[:]
157 | else:
158 | feat = x
159 | features.append(feat)
160 | x = self.body[-1](x)
161 | return x, features[::-1]
162 |
--------------------------------------------------------------------------------
/TransUNet/requirements.txt:
--------------------------------------------------------------------------------
1 | torch==1.4.0
2 | torchvision==0.5.0
3 | numpy
4 | tqdm
5 | tensorboard
6 | tensorboardX
7 | ml-collections
8 | medpy
9 | SimpleITK
10 | scipy
11 | h5py
12 |
--------------------------------------------------------------------------------
/TransUNet/test.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import logging
3 | import os
4 | import random
5 | import sys
6 | import numpy as np
7 | import torch
8 | import torch.backends.cudnn as cudnn
9 | import torch.nn as nn
10 | from torch.utils.data import DataLoader
11 | from tqdm import tqdm
12 | from datasets.dataset_synapse import Synapse_dataset
13 | from utils import test_single_volume
14 | from networks.vit_seg_modeling import VisionTransformer as ViT_seg
15 | from networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
16 |
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument('--volume_path', type=str,
19 | default='../data/Synapse/test_vol_h5', help='root dir for validation volume data') # for acdc volume_path=root_dir
20 | parser.add_argument('--dataset', type=str,
21 | default='Synapse', help='experiment_name')
22 | parser.add_argument('--num_classes', type=int,
23 | default=4, help='output channel of network')
24 | parser.add_argument('--list_dir', type=str,
25 | default='./lists/lists_Synapse', help='list dir')
26 |
27 | parser.add_argument('--max_iterations', type=int,default=20000, help='maximum epoch number to train')
28 | parser.add_argument('--max_epochs', type=int, default=30, help='maximum epoch number to train')
29 | parser.add_argument('--batch_size', type=int, default=24,
30 | help='batch_size per gpu')
31 | parser.add_argument('--img_size', type=int, default=224, help='input patch size of network input')
32 | parser.add_argument('--is_savenii', action="store_true", help='whether to save results during inference')
33 |
34 | parser.add_argument('--n_skip', type=int, default=3, help='using number of skip-connect, default is num')
35 | parser.add_argument('--vit_name', type=str, default='ViT-B_16', help='select one vit model')
36 |
37 | parser.add_argument('--test_save_dir', type=str, default='../predictions', help='saving prediction as nii!')
38 | parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training')
39 | parser.add_argument('--base_lr', type=float, default=0.01, help='segmentation network learning rate')
40 | parser.add_argument('--seed', type=int, default=1234, help='random seed')
41 | parser.add_argument('--vit_patches_size', type=int, default=16, help='vit_patches_size, default is 16')
42 | args = parser.parse_args()
43 |
44 |
45 | def inference(args, model, test_save_path=None):
46 | db_test = args.Dataset(base_dir=args.volume_path, split="test_vol", list_dir=args.list_dir)
47 | testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)
48 | logging.info("{} test iterations per epoch".format(len(testloader)))
49 | model.eval()
50 | metric_list = 0.0
51 | for i_batch, sampled_batch in tqdm(enumerate(testloader)):
52 | h, w = sampled_batch["image"].size()[2:]
53 | image, label, case_name = sampled_batch["image"], sampled_batch["label"], sampled_batch['case_name'][0]
54 | metric_i = test_single_volume(image, label, model, classes=args.num_classes, patch_size=[args.img_size, args.img_size],
55 | test_save_path=test_save_path, case=case_name, z_spacing=args.z_spacing)
56 | metric_list += np.array(metric_i)
57 | logging.info('idx %d case %s mean_dice %f mean_hd95 %f' % (i_batch, case_name, np.mean(metric_i, axis=0)[0], np.mean(metric_i, axis=0)[1]))
58 | metric_list = metric_list / len(db_test)
59 | for i in range(1, args.num_classes):
60 | logging.info('Mean class %d mean_dice %f mean_hd95 %f' % (i, metric_list[i-1][0], metric_list[i-1][1]))
61 | performance = np.mean(metric_list, axis=0)[0]
62 | mean_hd95 = np.mean(metric_list, axis=0)[1]
63 | logging.info('Testing performance in best val model: mean_dice : %f mean_hd95 : %f' % (performance, mean_hd95))
64 | return "Testing Finished!"
65 |
66 |
67 | if __name__ == "__main__":
68 |
69 | if not args.deterministic:
70 | cudnn.benchmark = True
71 | cudnn.deterministic = False
72 | else:
73 | cudnn.benchmark = False
74 | cudnn.deterministic = True
75 | random.seed(args.seed)
76 | np.random.seed(args.seed)
77 | torch.manual_seed(args.seed)
78 | torch.cuda.manual_seed(args.seed)
79 |
80 | dataset_config = {
81 | 'Synapse': {
82 | 'Dataset': Synapse_dataset,
83 | 'volume_path': '../data/Synapse/test_vol_h5',
84 | 'list_dir': './lists/lists_Synapse',
85 | 'num_classes': 9,
86 | 'z_spacing': 1,
87 | },
88 | }
89 | dataset_name = args.dataset
90 | args.num_classes = dataset_config[dataset_name]['num_classes']
91 | args.volume_path = dataset_config[dataset_name]['volume_path']
92 | args.Dataset = dataset_config[dataset_name]['Dataset']
93 | args.list_dir = dataset_config[dataset_name]['list_dir']
94 | args.z_spacing = dataset_config[dataset_name]['z_spacing']
95 | args.is_pretrain = True
96 |
97 | # name the same snapshot defined in train script!
98 | args.exp = 'TU_' + dataset_name + str(args.img_size)
99 | snapshot_path = "../model/{}/{}".format(args.exp, 'TU')
100 | snapshot_path = snapshot_path + '_pretrain' if args.is_pretrain else snapshot_path
101 | snapshot_path += '_' + args.vit_name
102 | snapshot_path = snapshot_path + '_skip' + str(args.n_skip)
103 | snapshot_path = snapshot_path + '_vitpatch' + str(args.vit_patches_size) if args.vit_patches_size!=16 else snapshot_path
104 | snapshot_path = snapshot_path + '_epo' + str(args.max_epochs) if args.max_epochs != 30 else snapshot_path
105 | if dataset_name == 'ACDC': # using max_epoch instead of iteration to control training duration
106 | snapshot_path = snapshot_path + '_' + str(args.max_iterations)[0:2] + 'k' if args.max_iterations != 30000 else snapshot_path
107 | snapshot_path = snapshot_path+'_bs'+str(args.batch_size)
108 | snapshot_path = snapshot_path + '_lr' + str(args.base_lr) if args.base_lr != 0.01 else snapshot_path
109 | snapshot_path = snapshot_path + '_'+str(args.img_size)
110 | snapshot_path = snapshot_path + '_s'+str(args.seed) if args.seed!=1234 else snapshot_path
111 |
112 | config_vit = CONFIGS_ViT_seg[args.vit_name]
113 | config_vit.n_classes = args.num_classes
114 | config_vit.n_skip = args.n_skip
115 | config_vit.patches.size = (args.vit_patches_size, args.vit_patches_size)
116 | if args.vit_name.find('R50') !=-1:
117 | config_vit.patches.grid = (int(args.img_size/args.vit_patches_size), int(args.img_size/args.vit_patches_size))
118 | net = ViT_seg(config_vit, img_size=args.img_size, num_classes=config_vit.n_classes).cuda()
119 |
120 | snapshot = os.path.join(snapshot_path, 'best_model.pth')
121 | if not os.path.exists(snapshot): snapshot = snapshot.replace('best_model', 'epoch_'+str(args.max_epochs-1))
122 | net.load_state_dict(torch.load(snapshot))
123 | snapshot_name = snapshot_path.split('/')[-1]
124 |
125 | log_folder = './test_log/test_log_' + args.exp
126 | os.makedirs(log_folder, exist_ok=True)
127 | logging.basicConfig(filename=log_folder + '/'+snapshot_name+".txt", level=logging.INFO, format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
128 | logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
129 | logging.info(str(args))
130 | logging.info(snapshot_name)
131 |
132 | if args.is_savenii:
133 | args.test_save_dir = '../predictions'
134 | test_save_path = os.path.join(args.test_save_dir, args.exp, snapshot_name)
135 | os.makedirs(test_save_path, exist_ok=True)
136 | else:
137 | test_save_path = None
138 | inference(args, net, test_save_path)
139 |
140 |
141 |
--------------------------------------------------------------------------------
/TransUNet/train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import logging
3 | import os
4 | import random
5 | import numpy as np
6 | import torch
7 | import torch.backends.cudnn as cudnn
8 | from networks.vit_seg_modeling import VisionTransformer as ViT_seg
9 | from networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
10 | from trainer import trainer_synapse
11 |
12 | parser = argparse.ArgumentParser()
13 | parser.add_argument('--root_path', type=str,
14 | default='../data/Synapse/train_npz', help='root dir for data')
15 | parser.add_argument('--dataset', type=str,
16 | default='Synapse', help='experiment_name')
17 | parser.add_argument('--list_dir', type=str,
18 | default='./lists/lists_Synapse', help='list dir')
19 | parser.add_argument('--num_classes', type=int,
20 | default=9, help='output channel of network')
21 | parser.add_argument('--max_iterations', type=int,
22 | default=30000, help='maximum epoch number to train')
23 | parser.add_argument('--max_epochs', type=int,
24 | default=150, help='maximum epoch number to train')
25 | parser.add_argument('--batch_size', type=int,
26 | default=24, help='batch_size per gpu')
27 | parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
28 | parser.add_argument('--deterministic', type=int, default=1,
29 | help='whether use deterministic training')
30 | parser.add_argument('--base_lr', type=float, default=0.01,
31 | help='segmentation network learning rate')
32 | parser.add_argument('--img_size', type=int,
33 | default=224, help='input patch size of network input')
34 | parser.add_argument('--seed', type=int,
35 | default=1234, help='random seed')
36 | parser.add_argument('--n_skip', type=int,
37 | default=3, help='using number of skip-connect, default is num')
38 | parser.add_argument('--vit_name', type=str,
39 | default='R50-ViT-B_16', help='select one vit model')
40 | parser.add_argument('--vit_patches_size', type=int,
41 | default=16, help='vit_patches_size, default is 16')
42 | args = parser.parse_args()
43 |
44 |
45 | if __name__ == "__main__":
46 | if not args.deterministic:
47 | cudnn.benchmark = True
48 | cudnn.deterministic = False
49 | else:
50 | cudnn.benchmark = False
51 | cudnn.deterministic = True
52 |
53 | random.seed(args.seed)
54 | np.random.seed(args.seed)
55 | torch.manual_seed(args.seed)
56 | torch.cuda.manual_seed(args.seed)
57 | dataset_name = args.dataset
58 | dataset_config = {
59 | 'Synapse': {
60 | 'root_path': '../data/Synapse/train_npz',
61 | 'list_dir': './lists/lists_Synapse',
62 | 'num_classes': 9,
63 | },
64 | }
65 | args.num_classes = dataset_config[dataset_name]['num_classes']
66 | args.root_path = dataset_config[dataset_name]['root_path']
67 | args.list_dir = dataset_config[dataset_name]['list_dir']
68 | args.is_pretrain = True
69 | args.exp = 'TU_' + dataset_name + str(args.img_size)
70 | snapshot_path = "../model/{}/{}".format(args.exp, 'TU')
71 | snapshot_path = snapshot_path + '_pretrain' if args.is_pretrain else snapshot_path
72 | snapshot_path += '_' + args.vit_name
73 | snapshot_path = snapshot_path + '_skip' + str(args.n_skip)
74 | snapshot_path = snapshot_path + '_vitpatch' + str(args.vit_patches_size) if args.vit_patches_size!=16 else snapshot_path
75 | snapshot_path = snapshot_path+'_'+str(args.max_iterations)[0:2]+'k' if args.max_iterations != 30000 else snapshot_path
76 | snapshot_path = snapshot_path + '_epo' +str(args.max_epochs) if args.max_epochs != 30 else snapshot_path
77 | snapshot_path = snapshot_path+'_bs'+str(args.batch_size)
78 | snapshot_path = snapshot_path + '_lr' + str(args.base_lr) if args.base_lr != 0.01 else snapshot_path
79 | snapshot_path = snapshot_path + '_'+str(args.img_size)
80 | snapshot_path = snapshot_path + '_s'+str(args.seed) if args.seed!=1234 else snapshot_path
81 |
82 | if not os.path.exists(snapshot_path):
83 | os.makedirs(snapshot_path)
84 | config_vit = CONFIGS_ViT_seg[args.vit_name]
85 | config_vit.n_classes = args.num_classes
86 | config_vit.n_skip = args.n_skip
87 | if args.vit_name.find('R50') != -1:
88 | config_vit.patches.grid = (int(args.img_size / args.vit_patches_size), int(args.img_size / args.vit_patches_size))
89 | net = ViT_seg(config_vit, img_size=args.img_size, num_classes=config_vit.n_classes).cuda()
90 | net.load_from(weights=np.load(config_vit.pretrained_path))
91 |
92 | trainer = {'Synapse': trainer_synapse,}
93 | trainer[dataset_name](args, net, snapshot_path)
--------------------------------------------------------------------------------
/TransUNet/trainer.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import logging
3 | import os
4 | import random
5 | import sys
6 | import time
7 | import numpy as np
8 | import torch
9 | import torch.nn as nn
10 | import torch.optim as optim
11 | from tensorboardX import SummaryWriter
12 | from torch.nn.modules.loss import CrossEntropyLoss
13 | from torch.utils.data import DataLoader
14 | from tqdm import tqdm
15 | from utils import DiceLoss
16 | from torchvision import transforms
17 |
18 | def trainer_synapse(args, model, snapshot_path):
19 | from datasets.dataset_synapse import Synapse_dataset, RandomGenerator
20 | logging.basicConfig(filename=snapshot_path + "/log.txt", level=logging.INFO,
21 | format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
22 | logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
23 | logging.info(str(args))
24 | base_lr = args.base_lr
25 | num_classes = args.num_classes
26 | batch_size = args.batch_size * args.n_gpu
27 | # max_iterations = args.max_iterations
28 | db_train = Synapse_dataset(base_dir=args.root_path, list_dir=args.list_dir, split="train",
29 | transform=transforms.Compose(
30 | [RandomGenerator(output_size=[args.img_size, args.img_size])]))
31 | print("The length of train set is: {}".format(len(db_train)))
32 |
33 | def worker_init_fn(worker_id):
34 | random.seed(args.seed + worker_id)
35 |
36 | trainloader = DataLoader(db_train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True,
37 | worker_init_fn=worker_init_fn)
38 | if args.n_gpu > 1:
39 | model = nn.DataParallel(model)
40 | model.train()
41 | ce_loss = CrossEntropyLoss()
42 | dice_loss = DiceLoss(num_classes)
43 | optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
44 | writer = SummaryWriter(snapshot_path + '/log')
45 | iter_num = 0
46 | max_epoch = args.max_epochs
47 | max_iterations = args.max_epochs * len(trainloader) # max_epoch = max_iterations // len(trainloader) + 1
48 | logging.info("{} iterations per epoch. {} max iterations ".format(len(trainloader), max_iterations))
49 | best_performance = 0.0
50 | iterator = tqdm(range(max_epoch), ncols=70)
51 | for epoch_num in iterator:
52 | for i_batch, sampled_batch in enumerate(trainloader):
53 | image_batch, label_batch = sampled_batch['image'], sampled_batch['label']
54 | image_batch, label_batch = image_batch.cuda(), label_batch.cuda()
55 | outputs = model(image_batch)
56 | loss_ce = ce_loss(outputs, label_batch[:].long())
57 | loss_dice = dice_loss(outputs, label_batch, softmax=True)
58 | loss = 0.5 * loss_ce + 0.5 * loss_dice
59 | optimizer.zero_grad()
60 | loss.backward()
61 | optimizer.step()
62 | lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
63 | for param_group in optimizer.param_groups:
64 | param_group['lr'] = lr_
65 |
66 | iter_num = iter_num + 1
67 | writer.add_scalar('info/lr', lr_, iter_num)
68 | writer.add_scalar('info/total_loss', loss, iter_num)
69 | writer.add_scalar('info/loss_ce', loss_ce, iter_num)
70 |
71 | logging.info('iteration %d : loss : %f, loss_ce: %f' % (iter_num, loss.item(), loss_ce.item()))
72 |
73 | if iter_num % 20 == 0:
74 | image = image_batch[1, 0:1, :, :]
75 | image = (image - image.min()) / (image.max() - image.min())
76 | writer.add_image('train/Image', image, iter_num)
77 | outputs = torch.argmax(torch.softmax(outputs, dim=1), dim=1, keepdim=True)
78 | writer.add_image('train/Prediction', outputs[1, ...] * 50, iter_num)
79 | labs = label_batch[1, ...].unsqueeze(0) * 50
80 | writer.add_image('train/GroundTruth', labs, iter_num)
81 |
82 | save_interval = 50 # int(max_epoch/6)
83 | if epoch_num > int(max_epoch / 2) and (epoch_num + 1) % save_interval == 0:
84 | save_mode_path = os.path.join(snapshot_path, 'epoch_' + str(epoch_num) + '.pth')
85 | torch.save(model.state_dict(), save_mode_path)
86 | logging.info("save model to {}".format(save_mode_path))
87 |
88 | if epoch_num >= max_epoch - 1:
89 | save_mode_path = os.path.join(snapshot_path, 'epoch_' + str(epoch_num) + '.pth')
90 | torch.save(model.state_dict(), save_mode_path)
91 | logging.info("save model to {}".format(save_mode_path))
92 | iterator.close()
93 | break
94 |
95 | writer.close()
96 | return "Training Finished!"
--------------------------------------------------------------------------------
/TransUNet/utils.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | from medpy import metric
4 | from scipy.ndimage import zoom
5 | import torch.nn as nn
6 | import SimpleITK as sitk
7 |
8 |
9 | class DiceLoss(nn.Module):
10 | def __init__(self, n_classes):
11 | super(DiceLoss, self).__init__()
12 | self.n_classes = n_classes
13 |
14 | def _one_hot_encoder(self, input_tensor):
15 | tensor_list = []
16 | for i in range(self.n_classes):
17 | temp_prob = input_tensor == i # * torch.ones_like(input_tensor)
18 | tensor_list.append(temp_prob.unsqueeze(1))
19 | output_tensor = torch.cat(tensor_list, dim=1)
20 | return output_tensor.float()
21 |
22 | def _dice_loss(self, score, target):
23 | target = target.float()
24 | smooth = 1e-5
25 | intersect = torch.sum(score * target)
26 | y_sum = torch.sum(target * target)
27 | z_sum = torch.sum(score * score)
28 | loss = (2 * intersect + smooth) / (z_sum + y_sum + smooth)
29 | loss = 1 - loss
30 | return loss
31 |
32 | def forward(self, inputs, target, weight=None, softmax=False):
33 | if softmax:
34 | inputs = torch.softmax(inputs, dim=1)
35 | target = self._one_hot_encoder(target)
36 | if weight is None:
37 | weight = [1] * self.n_classes
38 | assert inputs.size() == target.size(), 'predict {} & target {} shape do not match'.format(inputs.size(), target.size())
39 | class_wise_dice = []
40 | loss = 0.0
41 | for i in range(0, self.n_classes):
42 | dice = self._dice_loss(inputs[:, i], target[:, i])
43 | class_wise_dice.append(1.0 - dice.item())
44 | loss += dice * weight[i]
45 | return loss / self.n_classes
46 |
47 |
48 | def calculate_metric_percase(pred, gt):
49 | pred[pred > 0] = 1
50 | gt[gt > 0] = 1
51 | if pred.sum() > 0 and gt.sum()>0:
52 | dice = metric.binary.dc(pred, gt)
53 | hd95 = metric.binary.hd95(pred, gt)
54 | return dice, hd95
55 | elif pred.sum() > 0 and gt.sum()==0:
56 | return 1, 0
57 | else:
58 | return 0, 0
59 |
60 |
61 | def test_single_volume(image, label, net, classes, patch_size=[256, 256], test_save_path=None, case=None, z_spacing=1):
62 | image, label = image.squeeze(0).cpu().detach().numpy(), label.squeeze(0).cpu().detach().numpy()
63 | if len(image.shape) == 3:
64 | prediction = np.zeros_like(label)
65 | for ind in range(image.shape[0]):
66 | slice = image[ind, :, :]
67 | x, y = slice.shape[0], slice.shape[1]
68 | if x != patch_size[0] or y != patch_size[1]:
69 | slice = zoom(slice, (patch_size[0] / x, patch_size[1] / y), order=3) # previous using 0
70 | input = torch.from_numpy(slice).unsqueeze(0).unsqueeze(0).float().cuda()
71 | net.eval()
72 | with torch.no_grad():
73 | outputs = net(input)
74 | out = torch.argmax(torch.softmax(outputs, dim=1), dim=1).squeeze(0)
75 | out = out.cpu().detach().numpy()
76 | if x != patch_size[0] or y != patch_size[1]:
77 | pred = zoom(out, (x / patch_size[0], y / patch_size[1]), order=0)
78 | else:
79 | pred = out
80 | prediction[ind] = pred
81 | else:
82 | input = torch.from_numpy(image).unsqueeze(
83 | 0).unsqueeze(0).float().cuda()
84 | net.eval()
85 | with torch.no_grad():
86 | out = torch.argmax(torch.softmax(net(input), dim=1), dim=1).squeeze(0)
87 | prediction = out.cpu().detach().numpy()
88 | metric_list = []
89 | for i in range(1, classes):
90 | metric_list.append(calculate_metric_percase(prediction == i, label == i))
91 |
92 | if test_save_path is not None:
93 | img_itk = sitk.GetImageFromArray(image.astype(np.float32))
94 | prd_itk = sitk.GetImageFromArray(prediction.astype(np.float32))
95 | lab_itk = sitk.GetImageFromArray(label.astype(np.float32))
96 | img_itk.SetSpacing((1, 1, z_spacing))
97 | prd_itk.SetSpacing((1, 1, z_spacing))
98 | lab_itk.SetSpacing((1, 1, z_spacing))
99 | sitk.WriteImage(prd_itk, test_save_path + '/'+case + "_pred.nii.gz")
100 | sitk.WriteImage(img_itk, test_save_path + '/'+ case + "_img.nii.gz")
101 | sitk.WriteImage(lab_itk, test_save_path + '/'+ case + "_gt.nii.gz")
102 | return metric_list
--------------------------------------------------------------------------------
/data/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ygjwd12345/TransDA/76c76cc42a00ce465c353d51f084eb13d7f53620/data/.DS_Store
--------------------------------------------------------------------------------
/data/._.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ygjwd12345/TransDA/76c76cc42a00ce465c353d51f084eb13d7f53620/data/._.DS_Store
--------------------------------------------------------------------------------
/data/VISDA-C/download_visda2017.sh:
--------------------------------------------------------------------------------
1 | wget http://csr.bu.edu/ftp/visda17/clf/train.tar;
2 | tar xvf train.tar;
3 | wget http://csr.bu.edu/ftp/visda17/clf/validation.tar;
4 | tar xvf validation.tar;
5 |
6 | wget http://csr.bu.edu/ftp/visda17/clf/test.tar;
7 | tar xvf test.tar;
--------------------------------------------------------------------------------
/data/generate_label.py:
--------------------------------------------------------------------------------
1 | import os
2 | import torchvision.datasets as datasets
3 | import torch
4 | import glob
5 |
6 | phase=['amazon','caltech','dslr','webcam']
7 |
8 | dict={'back_pack': 0,
9 | 'bike':1,
10 | 'calculator':2,
11 | 'headphones':3,
12 | 'keyboard':4,
13 | 'laptop_computer':5,
14 | 'monitor':6,
15 | 'mouse':7,
16 | 'mug':8,
17 | 'projector':9}
18 | for i in range(len(phase)):
19 | path = os.path.join('/data2/gyang/DA-transformer-other/object/data/office_caltech',phase[i])
20 | text_path=phase[i]+'_list.txt'
21 | f=open(text_path,'w')
22 |
23 | for label in os.listdir(path):
24 | img_list = glob.glob(os.path.join(path, label, "*.jpg"))
25 | for img in img_list:
26 | f.write(img + " " + str(dict[label]) + "\n")
27 | print("create txt done...")
--------------------------------------------------------------------------------
/data/office-caltech/dslr_list.txt:
--------------------------------------------------------------------------------
1 | ./data/office-caltech/dslr/headphones/frame_0007.jpg 3
2 | ./data/office-caltech/dslr/headphones/frame_0001.jpg 3
3 | ./data/office-caltech/dslr/headphones/frame_0004.jpg 3
4 | ./data/office-caltech/dslr/headphones/frame_0002.jpg 3
5 | ./data/office-caltech/dslr/headphones/frame_0012.jpg 3
6 | ./data/office-caltech/dslr/headphones/frame_0013.jpg 3
7 | ./data/office-caltech/dslr/headphones/frame_0008.jpg 3
8 | ./data/office-caltech/dslr/headphones/frame_0010.jpg 3
9 | ./data/office-caltech/dslr/headphones/frame_0005.jpg 3
10 | ./data/office-caltech/dslr/headphones/frame_0003.jpg 3
11 | ./data/office-caltech/dslr/headphones/frame_0011.jpg 3
12 | ./data/office-caltech/dslr/headphones/frame_0006.jpg 3
13 | ./data/office-caltech/dslr/headphones/frame_0009.jpg 3
14 | ./data/office-caltech/dslr/laptop_computer/frame_0014.jpg 5
15 | ./data/office-caltech/dslr/laptop_computer/frame_0017.jpg 5
16 | ./data/office-caltech/dslr/laptop_computer/frame_0007.jpg 5
17 | ./data/office-caltech/dslr/laptop_computer/frame_0001.jpg 5
18 | ./data/office-caltech/dslr/laptop_computer/frame_0004.jpg 5
19 | ./data/office-caltech/dslr/laptop_computer/frame_0024.jpg 5
20 | ./data/office-caltech/dslr/laptop_computer/frame_0002.jpg 5
21 | ./data/office-caltech/dslr/laptop_computer/frame_0023.jpg 5
22 | ./data/office-caltech/dslr/laptop_computer/frame_0022.jpg 5
23 | ./data/office-caltech/dslr/laptop_computer/frame_0018.jpg 5
24 | ./data/office-caltech/dslr/laptop_computer/frame_0012.jpg 5
25 | ./data/office-caltech/dslr/laptop_computer/frame_0021.jpg 5
26 | ./data/office-caltech/dslr/laptop_computer/frame_0013.jpg 5
27 | ./data/office-caltech/dslr/laptop_computer/frame_0020.jpg 5
28 | ./data/office-caltech/dslr/laptop_computer/frame_0008.jpg 5
29 | ./data/office-caltech/dslr/laptop_computer/frame_0010.jpg 5
30 | ./data/office-caltech/dslr/laptop_computer/frame_0005.jpg 5
31 | ./data/office-caltech/dslr/laptop_computer/frame_0003.jpg 5
32 | ./data/office-caltech/dslr/laptop_computer/frame_0011.jpg 5
33 | ./data/office-caltech/dslr/laptop_computer/frame_0015.jpg 5
34 | ./data/office-caltech/dslr/laptop_computer/frame_0016.jpg 5
35 | ./data/office-caltech/dslr/laptop_computer/frame_0006.jpg 5
36 | ./data/office-caltech/dslr/laptop_computer/frame_0009.jpg 5
37 | ./data/office-caltech/dslr/laptop_computer/frame_0019.jpg 5
38 | ./data/office-caltech/dslr/back_pack/frame_0007.jpg 0
39 | ./data/office-caltech/dslr/back_pack/frame_0001.jpg 0
40 | ./data/office-caltech/dslr/back_pack/frame_0004.jpg 0
41 | ./data/office-caltech/dslr/back_pack/frame_0002.jpg 0
42 | ./data/office-caltech/dslr/back_pack/frame_0012.jpg 0
43 | ./data/office-caltech/dslr/back_pack/frame_0008.jpg 0
44 | ./data/office-caltech/dslr/back_pack/frame_0010.jpg 0
45 | ./data/office-caltech/dslr/back_pack/frame_0005.jpg 0
46 | ./data/office-caltech/dslr/back_pack/frame_0003.jpg 0
47 | ./data/office-caltech/dslr/back_pack/frame_0011.jpg 0
48 | ./data/office-caltech/dslr/back_pack/frame_0006.jpg 0
49 | ./data/office-caltech/dslr/back_pack/frame_0009.jpg 0
50 | ./data/office-caltech/dslr/bike/frame_0014.jpg 1
51 | ./data/office-caltech/dslr/bike/frame_0017.jpg 1
52 | ./data/office-caltech/dslr/bike/frame_0007.jpg 1
53 | ./data/office-caltech/dslr/bike/frame_0001.jpg 1
54 | ./data/office-caltech/dslr/bike/frame_0004.jpg 1
55 | ./data/office-caltech/dslr/bike/frame_0002.jpg 1
56 | ./data/office-caltech/dslr/bike/frame_0018.jpg 1
57 | ./data/office-caltech/dslr/bike/frame_0012.jpg 1
58 | ./data/office-caltech/dslr/bike/frame_0021.jpg 1
59 | ./data/office-caltech/dslr/bike/frame_0013.jpg 1
60 | ./data/office-caltech/dslr/bike/frame_0020.jpg 1
61 | ./data/office-caltech/dslr/bike/frame_0008.jpg 1
62 | ./data/office-caltech/dslr/bike/frame_0010.jpg 1
63 | ./data/office-caltech/dslr/bike/frame_0005.jpg 1
64 | ./data/office-caltech/dslr/bike/frame_0003.jpg 1
65 | ./data/office-caltech/dslr/bike/frame_0011.jpg 1
66 | ./data/office-caltech/dslr/bike/frame_0015.jpg 1
67 | ./data/office-caltech/dslr/bike/frame_0016.jpg 1
68 | ./data/office-caltech/dslr/bike/frame_0006.jpg 1
69 | ./data/office-caltech/dslr/bike/frame_0009.jpg 1
70 | ./data/office-caltech/dslr/bike/frame_0019.jpg 1
71 | ./data/office-caltech/dslr/monitor/frame_0014.jpg 6
72 | ./data/office-caltech/dslr/monitor/frame_0017.jpg 6
73 | ./data/office-caltech/dslr/monitor/frame_0007.jpg 6
74 | ./data/office-caltech/dslr/monitor/frame_0001.jpg 6
75 | ./data/office-caltech/dslr/monitor/frame_0004.jpg 6
76 | ./data/office-caltech/dslr/monitor/frame_0002.jpg 6
77 | ./data/office-caltech/dslr/monitor/frame_0022.jpg 6
78 | ./data/office-caltech/dslr/monitor/frame_0018.jpg 6
79 | ./data/office-caltech/dslr/monitor/frame_0012.jpg 6
80 | ./data/office-caltech/dslr/monitor/frame_0021.jpg 6
81 | ./data/office-caltech/dslr/monitor/frame_0013.jpg 6
82 | ./data/office-caltech/dslr/monitor/frame_0020.jpg 6
83 | ./data/office-caltech/dslr/monitor/frame_0008.jpg 6
84 | ./data/office-caltech/dslr/monitor/frame_0010.jpg 6
85 | ./data/office-caltech/dslr/monitor/frame_0005.jpg 6
86 | ./data/office-caltech/dslr/monitor/frame_0003.jpg 6
87 | ./data/office-caltech/dslr/monitor/frame_0011.jpg 6
88 | ./data/office-caltech/dslr/monitor/frame_0015.jpg 6
89 | ./data/office-caltech/dslr/monitor/frame_0016.jpg 6
90 | ./data/office-caltech/dslr/monitor/frame_0006.jpg 6
91 | ./data/office-caltech/dslr/monitor/frame_0009.jpg 6
92 | ./data/office-caltech/dslr/monitor/frame_0019.jpg 6
93 | ./data/office-caltech/dslr/calculator/frame_0007.jpg 2
94 | ./data/office-caltech/dslr/calculator/frame_0001.jpg 2
95 | ./data/office-caltech/dslr/calculator/frame_0004.jpg 2
96 | ./data/office-caltech/dslr/calculator/frame_0002.jpg 2
97 | ./data/office-caltech/dslr/calculator/frame_0012.jpg 2
98 | ./data/office-caltech/dslr/calculator/frame_0008.jpg 2
99 | ./data/office-caltech/dslr/calculator/frame_0010.jpg 2
100 | ./data/office-caltech/dslr/calculator/frame_0005.jpg 2
101 | ./data/office-caltech/dslr/calculator/frame_0003.jpg 2
102 | ./data/office-caltech/dslr/calculator/frame_0011.jpg 2
103 | ./data/office-caltech/dslr/calculator/frame_0006.jpg 2
104 | ./data/office-caltech/dslr/calculator/frame_0009.jpg 2
105 | ./data/office-caltech/dslr/mug/frame_0007.jpg 8
106 | ./data/office-caltech/dslr/mug/frame_0001.jpg 8
107 | ./data/office-caltech/dslr/mug/frame_0004.jpg 8
108 | ./data/office-caltech/dslr/mug/frame_0002.jpg 8
109 | ./data/office-caltech/dslr/mug/frame_0008.jpg 8
110 | ./data/office-caltech/dslr/mug/frame_0005.jpg 8
111 | ./data/office-caltech/dslr/mug/frame_0003.jpg 8
112 | ./data/office-caltech/dslr/mug/frame_0006.jpg 8
113 | ./data/office-caltech/dslr/keyboard/frame_0007.jpg 4
114 | ./data/office-caltech/dslr/keyboard/frame_0001.jpg 4
115 | ./data/office-caltech/dslr/keyboard/frame_0004.jpg 4
116 | ./data/office-caltech/dslr/keyboard/frame_0002.jpg 4
117 | ./data/office-caltech/dslr/keyboard/frame_0008.jpg 4
118 | ./data/office-caltech/dslr/keyboard/frame_0010.jpg 4
119 | ./data/office-caltech/dslr/keyboard/frame_0005.jpg 4
120 | ./data/office-caltech/dslr/keyboard/frame_0003.jpg 4
121 | ./data/office-caltech/dslr/keyboard/frame_0006.jpg 4
122 | ./data/office-caltech/dslr/keyboard/frame_0009.jpg 4
123 | ./data/office-caltech/dslr/mouse/frame_0007.jpg 7
124 | ./data/office-caltech/dslr/mouse/frame_0001.jpg 7
125 | ./data/office-caltech/dslr/mouse/frame_0004.jpg 7
126 | ./data/office-caltech/dslr/mouse/frame_0002.jpg 7
127 | ./data/office-caltech/dslr/mouse/frame_0012.jpg 7
128 | ./data/office-caltech/dslr/mouse/frame_0008.jpg 7
129 | ./data/office-caltech/dslr/mouse/frame_0010.jpg 7
130 | ./data/office-caltech/dslr/mouse/frame_0005.jpg 7
131 | ./data/office-caltech/dslr/mouse/frame_0003.jpg 7
132 | ./data/office-caltech/dslr/mouse/frame_0011.jpg 7
133 | ./data/office-caltech/dslr/mouse/frame_0006.jpg 7
134 | ./data/office-caltech/dslr/mouse/frame_0009.jpg 7
135 | ./data/office-caltech/dslr/projector/frame_0014.jpg 9
136 | ./data/office-caltech/dslr/projector/frame_0017.jpg 9
137 | ./data/office-caltech/dslr/projector/frame_0007.jpg 9
138 | ./data/office-caltech/dslr/projector/frame_0001.jpg 9
139 | ./data/office-caltech/dslr/projector/frame_0004.jpg 9
140 | ./data/office-caltech/dslr/projector/frame_0002.jpg 9
141 | ./data/office-caltech/dslr/projector/frame_0023.jpg 9
142 | ./data/office-caltech/dslr/projector/frame_0022.jpg 9
143 | ./data/office-caltech/dslr/projector/frame_0018.jpg 9
144 | ./data/office-caltech/dslr/projector/frame_0012.jpg 9
145 | ./data/office-caltech/dslr/projector/frame_0021.jpg 9
146 | ./data/office-caltech/dslr/projector/frame_0013.jpg 9
147 | ./data/office-caltech/dslr/projector/frame_0020.jpg 9
148 | ./data/office-caltech/dslr/projector/frame_0008.jpg 9
149 | ./data/office-caltech/dslr/projector/frame_0010.jpg 9
150 | ./data/office-caltech/dslr/projector/frame_0005.jpg 9
151 | ./data/office-caltech/dslr/projector/frame_0003.jpg 9
152 | ./data/office-caltech/dslr/projector/frame_0011.jpg 9
153 | ./data/office-caltech/dslr/projector/frame_0015.jpg 9
154 | ./data/office-caltech/dslr/projector/frame_0016.jpg 9
155 | ./data/office-caltech/dslr/projector/frame_0006.jpg 9
156 | ./data/office-caltech/dslr/projector/frame_0009.jpg 9
157 | ./data/office-caltech/dslr/projector/frame_0019.jpg 9
158 |
--------------------------------------------------------------------------------
/data/office-caltech/webcam_list.txt:
--------------------------------------------------------------------------------
1 | ./data/office-caltech/webcam/headphones/frame_0014.jpg 3
2 | ./data/office-caltech/webcam/headphones/frame_0017.jpg 3
3 | ./data/office-caltech/webcam/headphones/frame_0007.jpg 3
4 | ./data/office-caltech/webcam/headphones/frame_0001.jpg 3
5 | ./data/office-caltech/webcam/headphones/frame_0004.jpg 3
6 | ./data/office-caltech/webcam/headphones/frame_0025.jpg 3
7 | ./data/office-caltech/webcam/headphones/frame_0024.jpg 3
8 | ./data/office-caltech/webcam/headphones/frame_0002.jpg 3
9 | ./data/office-caltech/webcam/headphones/frame_0023.jpg 3
10 | ./data/office-caltech/webcam/headphones/frame_0022.jpg 3
11 | ./data/office-caltech/webcam/headphones/frame_0018.jpg 3
12 | ./data/office-caltech/webcam/headphones/frame_0012.jpg 3
13 | ./data/office-caltech/webcam/headphones/frame_0021.jpg 3
14 | ./data/office-caltech/webcam/headphones/frame_0013.jpg 3
15 | ./data/office-caltech/webcam/headphones/frame_0020.jpg 3
16 | ./data/office-caltech/webcam/headphones/frame_0026.jpg 3
17 | ./data/office-caltech/webcam/headphones/frame_0008.jpg 3
18 | ./data/office-caltech/webcam/headphones/frame_0010.jpg 3
19 | ./data/office-caltech/webcam/headphones/frame_0027.jpg 3
20 | ./data/office-caltech/webcam/headphones/frame_0005.jpg 3
21 | ./data/office-caltech/webcam/headphones/frame_0003.jpg 3
22 | ./data/office-caltech/webcam/headphones/frame_0011.jpg 3
23 | ./data/office-caltech/webcam/headphones/frame_0015.jpg 3
24 | ./data/office-caltech/webcam/headphones/frame_0016.jpg 3
25 | ./data/office-caltech/webcam/headphones/frame_0006.jpg 3
26 | ./data/office-caltech/webcam/headphones/frame_0009.jpg 3
27 | ./data/office-caltech/webcam/headphones/frame_0019.jpg 3
28 | ./data/office-caltech/webcam/laptop_computer/frame_0014.jpg 5
29 | ./data/office-caltech/webcam/laptop_computer/frame_0017.jpg 5
30 | ./data/office-caltech/webcam/laptop_computer/frame_0007.jpg 5
31 | ./data/office-caltech/webcam/laptop_computer/frame_0001.jpg 5
32 | ./data/office-caltech/webcam/laptop_computer/frame_0004.jpg 5
33 | ./data/office-caltech/webcam/laptop_computer/frame_0025.jpg 5
34 | ./data/office-caltech/webcam/laptop_computer/frame_0024.jpg 5
35 | ./data/office-caltech/webcam/laptop_computer/frame_0002.jpg 5
36 | ./data/office-caltech/webcam/laptop_computer/frame_0029.jpg 5
37 | ./data/office-caltech/webcam/laptop_computer/frame_0023.jpg 5
38 | ./data/office-caltech/webcam/laptop_computer/frame_0022.jpg 5
39 | ./data/office-caltech/webcam/laptop_computer/frame_0018.jpg 5
40 | ./data/office-caltech/webcam/laptop_computer/frame_0030.jpg 5
41 | ./data/office-caltech/webcam/laptop_computer/frame_0012.jpg 5
42 | ./data/office-caltech/webcam/laptop_computer/frame_0021.jpg 5
43 | ./data/office-caltech/webcam/laptop_computer/frame_0013.jpg 5
44 | ./data/office-caltech/webcam/laptop_computer/frame_0020.jpg 5
45 | ./data/office-caltech/webcam/laptop_computer/frame_0026.jpg 5
46 | ./data/office-caltech/webcam/laptop_computer/frame_0008.jpg 5
47 | ./data/office-caltech/webcam/laptop_computer/frame_0010.jpg 5
48 | ./data/office-caltech/webcam/laptop_computer/frame_0027.jpg 5
49 | ./data/office-caltech/webcam/laptop_computer/frame_0005.jpg 5
50 | ./data/office-caltech/webcam/laptop_computer/frame_0003.jpg 5
51 | ./data/office-caltech/webcam/laptop_computer/frame_0011.jpg 5
52 | ./data/office-caltech/webcam/laptop_computer/frame_0015.jpg 5
53 | ./data/office-caltech/webcam/laptop_computer/frame_0016.jpg 5
54 | ./data/office-caltech/webcam/laptop_computer/frame_0028.jpg 5
55 | ./data/office-caltech/webcam/laptop_computer/frame_0006.jpg 5
56 | ./data/office-caltech/webcam/laptop_computer/frame_0009.jpg 5
57 | ./data/office-caltech/webcam/laptop_computer/frame_0019.jpg 5
58 | ./data/office-caltech/webcam/back_pack/frame_0014.jpg 0
59 | ./data/office-caltech/webcam/back_pack/frame_0017.jpg 0
60 | ./data/office-caltech/webcam/back_pack/frame_0007.jpg 0
61 | ./data/office-caltech/webcam/back_pack/frame_0001.jpg 0
62 | ./data/office-caltech/webcam/back_pack/frame_0004.jpg 0
63 | ./data/office-caltech/webcam/back_pack/frame_0025.jpg 0
64 | ./data/office-caltech/webcam/back_pack/frame_0024.jpg 0
65 | ./data/office-caltech/webcam/back_pack/frame_0002.jpg 0
66 | ./data/office-caltech/webcam/back_pack/frame_0029.jpg 0
67 | ./data/office-caltech/webcam/back_pack/frame_0023.jpg 0
68 | ./data/office-caltech/webcam/back_pack/frame_0022.jpg 0
69 | ./data/office-caltech/webcam/back_pack/frame_0018.jpg 0
70 | ./data/office-caltech/webcam/back_pack/frame_0012.jpg 0
71 | ./data/office-caltech/webcam/back_pack/frame_0021.jpg 0
72 | ./data/office-caltech/webcam/back_pack/frame_0013.jpg 0
73 | ./data/office-caltech/webcam/back_pack/frame_0020.jpg 0
74 | ./data/office-caltech/webcam/back_pack/frame_0026.jpg 0
75 | ./data/office-caltech/webcam/back_pack/frame_0008.jpg 0
76 | ./data/office-caltech/webcam/back_pack/frame_0010.jpg 0
77 | ./data/office-caltech/webcam/back_pack/frame_0027.jpg 0
78 | ./data/office-caltech/webcam/back_pack/frame_0005.jpg 0
79 | ./data/office-caltech/webcam/back_pack/frame_0003.jpg 0
80 | ./data/office-caltech/webcam/back_pack/frame_0011.jpg 0
81 | ./data/office-caltech/webcam/back_pack/frame_0015.jpg 0
82 | ./data/office-caltech/webcam/back_pack/frame_0016.jpg 0
83 | ./data/office-caltech/webcam/back_pack/frame_0028.jpg 0
84 | ./data/office-caltech/webcam/back_pack/frame_0006.jpg 0
85 | ./data/office-caltech/webcam/back_pack/frame_0009.jpg 0
86 | ./data/office-caltech/webcam/back_pack/frame_0019.jpg 0
87 | ./data/office-caltech/webcam/bike/frame_0014.jpg 1
88 | ./data/office-caltech/webcam/bike/frame_0017.jpg 1
89 | ./data/office-caltech/webcam/bike/frame_0007.jpg 1
90 | ./data/office-caltech/webcam/bike/frame_0001.jpg 1
91 | ./data/office-caltech/webcam/bike/frame_0004.jpg 1
92 | ./data/office-caltech/webcam/bike/frame_0002.jpg 1
93 | ./data/office-caltech/webcam/bike/frame_0018.jpg 1
94 | ./data/office-caltech/webcam/bike/frame_0012.jpg 1
95 | ./data/office-caltech/webcam/bike/frame_0021.jpg 1
96 | ./data/office-caltech/webcam/bike/frame_0013.jpg 1
97 | ./data/office-caltech/webcam/bike/frame_0020.jpg 1
98 | ./data/office-caltech/webcam/bike/frame_0008.jpg 1
99 | ./data/office-caltech/webcam/bike/frame_0010.jpg 1
100 | ./data/office-caltech/webcam/bike/frame_0005.jpg 1
101 | ./data/office-caltech/webcam/bike/frame_0003.jpg 1
102 | ./data/office-caltech/webcam/bike/frame_0011.jpg 1
103 | ./data/office-caltech/webcam/bike/frame_0015.jpg 1
104 | ./data/office-caltech/webcam/bike/frame_0016.jpg 1
105 | ./data/office-caltech/webcam/bike/frame_0006.jpg 1
106 | ./data/office-caltech/webcam/bike/frame_0009.jpg 1
107 | ./data/office-caltech/webcam/bike/frame_0019.jpg 1
108 | ./data/office-caltech/webcam/monitor/frame_0014.jpg 6
109 | ./data/office-caltech/webcam/monitor/frame_0017.jpg 6
110 | ./data/office-caltech/webcam/monitor/frame_0035.jpg 6
111 | ./data/office-caltech/webcam/monitor/frame_0033.jpg 6
112 | ./data/office-caltech/webcam/monitor/frame_0007.jpg 6
113 | ./data/office-caltech/webcam/monitor/frame_0037.jpg 6
114 | ./data/office-caltech/webcam/monitor/frame_0001.jpg 6
115 | ./data/office-caltech/webcam/monitor/frame_0039.jpg 6
116 | ./data/office-caltech/webcam/monitor/frame_0004.jpg 6
117 | ./data/office-caltech/webcam/monitor/frame_0025.jpg 6
118 | ./data/office-caltech/webcam/monitor/frame_0024.jpg 6
119 | ./data/office-caltech/webcam/monitor/frame_0002.jpg 6
120 | ./data/office-caltech/webcam/monitor/frame_0029.jpg 6
121 | ./data/office-caltech/webcam/monitor/frame_0023.jpg 6
122 | ./data/office-caltech/webcam/monitor/frame_0022.jpg 6
123 | ./data/office-caltech/webcam/monitor/frame_0036.jpg 6
124 | ./data/office-caltech/webcam/monitor/frame_0038.jpg 6
125 | ./data/office-caltech/webcam/monitor/frame_0018.jpg 6
126 | ./data/office-caltech/webcam/monitor/frame_0030.jpg 6
127 | ./data/office-caltech/webcam/monitor/frame_0012.jpg 6
128 | ./data/office-caltech/webcam/monitor/frame_0021.jpg 6
129 | ./data/office-caltech/webcam/monitor/frame_0031.jpg 6
130 | ./data/office-caltech/webcam/monitor/frame_0013.jpg 6
131 | ./data/office-caltech/webcam/monitor/frame_0020.jpg 6
132 | ./data/office-caltech/webcam/monitor/frame_0026.jpg 6
133 | ./data/office-caltech/webcam/monitor/frame_0008.jpg 6
134 | ./data/office-caltech/webcam/monitor/frame_0032.jpg 6
135 | ./data/office-caltech/webcam/monitor/frame_0010.jpg 6
136 | ./data/office-caltech/webcam/monitor/frame_0027.jpg 6
137 | ./data/office-caltech/webcam/monitor/frame_0041.jpg 6
138 | ./data/office-caltech/webcam/monitor/frame_0040.jpg 6
139 | ./data/office-caltech/webcam/monitor/frame_0034.jpg 6
140 | ./data/office-caltech/webcam/monitor/frame_0043.jpg 6
141 | ./data/office-caltech/webcam/monitor/frame_0005.jpg 6
142 | ./data/office-caltech/webcam/monitor/frame_0042.jpg 6
143 | ./data/office-caltech/webcam/monitor/frame_0003.jpg 6
144 | ./data/office-caltech/webcam/monitor/frame_0011.jpg 6
145 | ./data/office-caltech/webcam/monitor/frame_0015.jpg 6
146 | ./data/office-caltech/webcam/monitor/frame_0016.jpg 6
147 | ./data/office-caltech/webcam/monitor/frame_0028.jpg 6
148 | ./data/office-caltech/webcam/monitor/frame_0006.jpg 6
149 | ./data/office-caltech/webcam/monitor/frame_0009.jpg 6
150 | ./data/office-caltech/webcam/monitor/frame_0019.jpg 6
151 | ./data/office-caltech/webcam/calculator/frame_0014.jpg 2
152 | ./data/office-caltech/webcam/calculator/frame_0017.jpg 2
153 | ./data/office-caltech/webcam/calculator/frame_0007.jpg 2
154 | ./data/office-caltech/webcam/calculator/frame_0001.jpg 2
155 | ./data/office-caltech/webcam/calculator/frame_0004.jpg 2
156 | ./data/office-caltech/webcam/calculator/frame_0025.jpg 2
157 | ./data/office-caltech/webcam/calculator/frame_0024.jpg 2
158 | ./data/office-caltech/webcam/calculator/frame_0002.jpg 2
159 | ./data/office-caltech/webcam/calculator/frame_0029.jpg 2
160 | ./data/office-caltech/webcam/calculator/frame_0023.jpg 2
161 | ./data/office-caltech/webcam/calculator/frame_0022.jpg 2
162 | ./data/office-caltech/webcam/calculator/frame_0018.jpg 2
163 | ./data/office-caltech/webcam/calculator/frame_0030.jpg 2
164 | ./data/office-caltech/webcam/calculator/frame_0012.jpg 2
165 | ./data/office-caltech/webcam/calculator/frame_0021.jpg 2
166 | ./data/office-caltech/webcam/calculator/frame_0031.jpg 2
167 | ./data/office-caltech/webcam/calculator/frame_0013.jpg 2
168 | ./data/office-caltech/webcam/calculator/frame_0020.jpg 2
169 | ./data/office-caltech/webcam/calculator/frame_0026.jpg 2
170 | ./data/office-caltech/webcam/calculator/frame_0008.jpg 2
171 | ./data/office-caltech/webcam/calculator/frame_0010.jpg 2
172 | ./data/office-caltech/webcam/calculator/frame_0027.jpg 2
173 | ./data/office-caltech/webcam/calculator/frame_0005.jpg 2
174 | ./data/office-caltech/webcam/calculator/frame_0003.jpg 2
175 | ./data/office-caltech/webcam/calculator/frame_0011.jpg 2
176 | ./data/office-caltech/webcam/calculator/frame_0015.jpg 2
177 | ./data/office-caltech/webcam/calculator/frame_0016.jpg 2
178 | ./data/office-caltech/webcam/calculator/frame_0028.jpg 2
179 | ./data/office-caltech/webcam/calculator/frame_0006.jpg 2
180 | ./data/office-caltech/webcam/calculator/frame_0009.jpg 2
181 | ./data/office-caltech/webcam/calculator/frame_0019.jpg 2
182 | ./data/office-caltech/webcam/mug/frame_0014.jpg 8
183 | ./data/office-caltech/webcam/mug/frame_0017.jpg 8
184 | ./data/office-caltech/webcam/mug/frame_0007.jpg 8
185 | ./data/office-caltech/webcam/mug/frame_0001.jpg 8
186 | ./data/office-caltech/webcam/mug/frame_0004.jpg 8
187 | ./data/office-caltech/webcam/mug/frame_0025.jpg 8
188 | ./data/office-caltech/webcam/mug/frame_0024.jpg 8
189 | ./data/office-caltech/webcam/mug/frame_0002.jpg 8
190 | ./data/office-caltech/webcam/mug/frame_0023.jpg 8
191 | ./data/office-caltech/webcam/mug/frame_0022.jpg 8
192 | ./data/office-caltech/webcam/mug/frame_0018.jpg 8
193 | ./data/office-caltech/webcam/mug/frame_0012.jpg 8
194 | ./data/office-caltech/webcam/mug/frame_0021.jpg 8
195 | ./data/office-caltech/webcam/mug/frame_0013.jpg 8
196 | ./data/office-caltech/webcam/mug/frame_0020.jpg 8
197 | ./data/office-caltech/webcam/mug/frame_0026.jpg 8
198 | ./data/office-caltech/webcam/mug/frame_0008.jpg 8
199 | ./data/office-caltech/webcam/mug/frame_0010.jpg 8
200 | ./data/office-caltech/webcam/mug/frame_0027.jpg 8
201 | ./data/office-caltech/webcam/mug/frame_0005.jpg 8
202 | ./data/office-caltech/webcam/mug/frame_0003.jpg 8
203 | ./data/office-caltech/webcam/mug/frame_0011.jpg 8
204 | ./data/office-caltech/webcam/mug/frame_0015.jpg 8
205 | ./data/office-caltech/webcam/mug/frame_0016.jpg 8
206 | ./data/office-caltech/webcam/mug/frame_0006.jpg 8
207 | ./data/office-caltech/webcam/mug/frame_0009.jpg 8
208 | ./data/office-caltech/webcam/mug/frame_0019.jpg 8
209 | ./data/office-caltech/webcam/keyboard/frame_0014.jpg 4
210 | ./data/office-caltech/webcam/keyboard/frame_0017.jpg 4
211 | ./data/office-caltech/webcam/keyboard/frame_0007.jpg 4
212 | ./data/office-caltech/webcam/keyboard/frame_0001.jpg 4
213 | ./data/office-caltech/webcam/keyboard/frame_0004.jpg 4
214 | ./data/office-caltech/webcam/keyboard/frame_0025.jpg 4
215 | ./data/office-caltech/webcam/keyboard/frame_0024.jpg 4
216 | ./data/office-caltech/webcam/keyboard/frame_0002.jpg 4
217 | ./data/office-caltech/webcam/keyboard/frame_0023.jpg 4
218 | ./data/office-caltech/webcam/keyboard/frame_0022.jpg 4
219 | ./data/office-caltech/webcam/keyboard/frame_0018.jpg 4
220 | ./data/office-caltech/webcam/keyboard/frame_0012.jpg 4
221 | ./data/office-caltech/webcam/keyboard/frame_0021.jpg 4
222 | ./data/office-caltech/webcam/keyboard/frame_0013.jpg 4
223 | ./data/office-caltech/webcam/keyboard/frame_0020.jpg 4
224 | ./data/office-caltech/webcam/keyboard/frame_0026.jpg 4
225 | ./data/office-caltech/webcam/keyboard/frame_0008.jpg 4
226 | ./data/office-caltech/webcam/keyboard/frame_0010.jpg 4
227 | ./data/office-caltech/webcam/keyboard/frame_0027.jpg 4
228 | ./data/office-caltech/webcam/keyboard/frame_0005.jpg 4
229 | ./data/office-caltech/webcam/keyboard/frame_0003.jpg 4
230 | ./data/office-caltech/webcam/keyboard/frame_0011.jpg 4
231 | ./data/office-caltech/webcam/keyboard/frame_0015.jpg 4
232 | ./data/office-caltech/webcam/keyboard/frame_0016.jpg 4
233 | ./data/office-caltech/webcam/keyboard/frame_0006.jpg 4
234 | ./data/office-caltech/webcam/keyboard/frame_0009.jpg 4
235 | ./data/office-caltech/webcam/keyboard/frame_0019.jpg 4
236 | ./data/office-caltech/webcam/mouse/frame_0014.jpg 7
237 | ./data/office-caltech/webcam/mouse/frame_0017.jpg 7
238 | ./data/office-caltech/webcam/mouse/frame_0007.jpg 7
239 | ./data/office-caltech/webcam/mouse/frame_0001.jpg 7
240 | ./data/office-caltech/webcam/mouse/frame_0004.jpg 7
241 | ./data/office-caltech/webcam/mouse/frame_0025.jpg 7
242 | ./data/office-caltech/webcam/mouse/frame_0024.jpg 7
243 | ./data/office-caltech/webcam/mouse/frame_0002.jpg 7
244 | ./data/office-caltech/webcam/mouse/frame_0029.jpg 7
245 | ./data/office-caltech/webcam/mouse/frame_0023.jpg 7
246 | ./data/office-caltech/webcam/mouse/frame_0022.jpg 7
247 | ./data/office-caltech/webcam/mouse/frame_0018.jpg 7
248 | ./data/office-caltech/webcam/mouse/frame_0030.jpg 7
249 | ./data/office-caltech/webcam/mouse/frame_0012.jpg 7
250 | ./data/office-caltech/webcam/mouse/frame_0021.jpg 7
251 | ./data/office-caltech/webcam/mouse/frame_0013.jpg 7
252 | ./data/office-caltech/webcam/mouse/frame_0020.jpg 7
253 | ./data/office-caltech/webcam/mouse/frame_0026.jpg 7
254 | ./data/office-caltech/webcam/mouse/frame_0008.jpg 7
255 | ./data/office-caltech/webcam/mouse/frame_0010.jpg 7
256 | ./data/office-caltech/webcam/mouse/frame_0027.jpg 7
257 | ./data/office-caltech/webcam/mouse/frame_0005.jpg 7
258 | ./data/office-caltech/webcam/mouse/frame_0003.jpg 7
259 | ./data/office-caltech/webcam/mouse/frame_0011.jpg 7
260 | ./data/office-caltech/webcam/mouse/frame_0015.jpg 7
261 | ./data/office-caltech/webcam/mouse/frame_0016.jpg 7
262 | ./data/office-caltech/webcam/mouse/frame_0028.jpg 7
263 | ./data/office-caltech/webcam/mouse/frame_0006.jpg 7
264 | ./data/office-caltech/webcam/mouse/frame_0009.jpg 7
265 | ./data/office-caltech/webcam/mouse/frame_0019.jpg 7
266 | ./data/office-caltech/webcam/projector/frame_0014.jpg 9
267 | ./data/office-caltech/webcam/projector/frame_0017.jpg 9
268 | ./data/office-caltech/webcam/projector/frame_0007.jpg 9
269 | ./data/office-caltech/webcam/projector/frame_0001.jpg 9
270 | ./data/office-caltech/webcam/projector/frame_0004.jpg 9
271 | ./data/office-caltech/webcam/projector/frame_0025.jpg 9
272 | ./data/office-caltech/webcam/projector/frame_0024.jpg 9
273 | ./data/office-caltech/webcam/projector/frame_0002.jpg 9
274 | ./data/office-caltech/webcam/projector/frame_0029.jpg 9
275 | ./data/office-caltech/webcam/projector/frame_0023.jpg 9
276 | ./data/office-caltech/webcam/projector/frame_0022.jpg 9
277 | ./data/office-caltech/webcam/projector/frame_0018.jpg 9
278 | ./data/office-caltech/webcam/projector/frame_0030.jpg 9
279 | ./data/office-caltech/webcam/projector/frame_0012.jpg 9
280 | ./data/office-caltech/webcam/projector/frame_0021.jpg 9
281 | ./data/office-caltech/webcam/projector/frame_0013.jpg 9
282 | ./data/office-caltech/webcam/projector/frame_0020.jpg 9
283 | ./data/office-caltech/webcam/projector/frame_0026.jpg 9
284 | ./data/office-caltech/webcam/projector/frame_0008.jpg 9
285 | ./data/office-caltech/webcam/projector/frame_0010.jpg 9
286 | ./data/office-caltech/webcam/projector/frame_0027.jpg 9
287 | ./data/office-caltech/webcam/projector/frame_0005.jpg 9
288 | ./data/office-caltech/webcam/projector/frame_0003.jpg 9
289 | ./data/office-caltech/webcam/projector/frame_0011.jpg 9
290 | ./data/office-caltech/webcam/projector/frame_0015.jpg 9
291 | ./data/office-caltech/webcam/projector/frame_0016.jpg 9
292 | ./data/office-caltech/webcam/projector/frame_0028.jpg 9
293 | ./data/office-caltech/webcam/projector/frame_0006.jpg 9
294 | ./data/office-caltech/webcam/projector/frame_0009.jpg 9
295 | ./data/office-caltech/webcam/projector/frame_0019.jpg 9
296 |
--------------------------------------------------------------------------------
/data_list.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import random
4 | from PIL import Image
5 | from torch.utils.data import Dataset
6 | import os
7 | import os.path
8 | import cv2
9 | import torchvision
10 |
11 | def make_dataset(image_list, labels):
12 | if labels:
13 | len_ = len(image_list)
14 | images = [(image_list[i].strip(), labels[i, :]) for i in range(len_)]
15 | else:
16 | if len(image_list[0].split()) > 2:
17 | images = [(val.split()[0], np.array([int(la) for la in val.split()[1:]])) for val in image_list]
18 | else:
19 | images = [(val.split()[0], int(val.split()[1])) for val in image_list]
20 | return images
21 |
22 |
23 | def rgb_loader(path):
24 | with open(path, 'rb') as f:
25 | with Image.open(f) as img:
26 | return img.convert('RGB')
27 |
28 | def l_loader(path):
29 | with open(path, 'rb') as f:
30 | with Image.open(f) as img:
31 | return img.convert('L')
32 |
33 | class ImageList(Dataset):
34 | def __init__(self, image_list, labels=None, transform=None, target_transform=None, mode='RGB'):
35 | imgs = make_dataset(image_list, labels)
36 | if len(imgs) == 0:
37 | raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
38 | "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
39 |
40 | self.imgs = imgs
41 | self.transform = transform
42 | self.target_transform = target_transform
43 | if mode == 'RGB':
44 | self.loader = rgb_loader
45 | elif mode == 'L':
46 | self.loader = l_loader
47 |
48 | def __getitem__(self, index):
49 | path, target = self.imgs[index]
50 | img = self.loader(path)
51 | if self.transform is not None:
52 | img = self.transform(img)
53 | if self.target_transform is not None:
54 | target = self.target_transform(target)
55 |
56 | return img, target
57 |
58 | def __len__(self):
59 | return len(self.imgs)
60 |
61 | class ImageList_idx(Dataset):
62 | def __init__(self, image_list, labels=None, transform=None, target_transform=None, mode='RGB'):
63 | imgs = make_dataset(image_list, labels)
64 | if len(imgs) == 0:
65 | raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
66 | "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
67 |
68 | self.imgs = imgs
69 | self.transform = transform
70 | self.target_transform = target_transform
71 | if mode == 'RGB':
72 | self.loader = rgb_loader
73 | elif mode == 'L':
74 | self.loader = l_loader
75 |
76 | def __getitem__(self, index):
77 | path, target = self.imgs[index]
78 | img = self.loader(path)
79 | if self.transform is not None:
80 | img = self.transform(img)
81 | if self.target_transform is not None:
82 | target = self.target_transform(target)
83 |
84 | return img, target, index
85 |
86 | def __len__(self):
87 | return len(self.imgs)
--------------------------------------------------------------------------------
/image/overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ygjwd12345/TransDA/76c76cc42a00ce465c353d51f084eb13d7f53620/image/overview.png
--------------------------------------------------------------------------------
/image/result_office31.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ygjwd12345/TransDA/76c76cc42a00ce465c353d51f084eb13d7f53620/image/result_office31.png
--------------------------------------------------------------------------------
/image/result_officehome.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ygjwd12345/TransDA/76c76cc42a00ce465c353d51f084eb13d7f53620/image/result_officehome.png
--------------------------------------------------------------------------------
/image_pretrained.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os, sys
3 | import os.path as osp
4 | import torchvision
5 | from torchvision import transforms
6 | import numpy as np
7 | import torch
8 | import torch.nn as nn
9 | import torch.optim as optim
10 | import network, loss
11 | from torch.utils.data import DataLoader
12 | from data_list import ImageList, ImageList_idx
13 | import random, pdb, math, copy
14 | from tqdm import tqdm
15 | from scipy.spatial.distance import cdist
16 | from sklearn.metrics import confusion_matrix
17 |
18 | def op_copy(optimizer):
19 | for param_group in optimizer.param_groups:
20 | param_group['lr0'] = param_group['lr']
21 | return optimizer
22 |
23 | def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75):
24 | decay = (1 + gamma * iter_num / max_iter) ** (-power)
25 | for param_group in optimizer.param_groups:
26 | param_group['lr'] = param_group['lr0'] * decay
27 | param_group['weight_decay'] = 1e-3
28 | param_group['momentum'] = 0.9
29 | param_group['nesterov'] = True
30 | return optimizer
31 |
32 | def image_train(resize_size=256, crop_size=224, alexnet=False):
33 | if not alexnet:
34 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
35 | std=[0.229, 0.224, 0.225])
36 | else:
37 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
38 | return transforms.Compose([
39 | transforms.Resize((resize_size, resize_size)),
40 | transforms.RandomCrop(crop_size),
41 | transforms.RandomHorizontalFlip(),
42 | transforms.ToTensor(),
43 | normalize
44 | ])
45 |
46 | def image_test(resize_size=256, crop_size=224, alexnet=False):
47 | if not alexnet:
48 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
49 | std=[0.229, 0.224, 0.225])
50 | else:
51 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
52 | return transforms.Compose([
53 | transforms.Resize((resize_size, resize_size)),
54 | transforms.CenterCrop(crop_size),
55 | transforms.ToTensor(),
56 | normalize
57 | ])
58 |
59 | def data_load(args):
60 | dsets = {}
61 | dset_loaders = {}
62 | train_bs = args.batch_size
63 | txt_tar = open(args.t_dset_path).readlines()
64 | txt_test = open(args.test_dset_path).readlines()
65 |
66 | dsets["target"] = ImageList_idx(txt_tar, transform=image_train())
67 | dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, shuffle=True, num_workers=args.worker, drop_last=False)
68 | dsets["test"] = ImageList_idx(txt_test, transform=image_test())
69 | dset_loaders["test"] = DataLoader(dsets["test"], batch_size=train_bs*3, shuffle=False, num_workers=args.worker, drop_last=False)
70 |
71 | return dset_loaders
72 |
73 | def cal_acc(loader, net, flag=False):
74 | start_test = True
75 | with torch.no_grad():
76 | iter_test = iter(loader)
77 | for i in range(len(loader)):
78 | data = iter_test.next()
79 | inputs = data[0]
80 | labels = data[1]
81 | inputs = inputs.cuda()
82 | _, outputs = net(inputs)
83 | if start_test:
84 | all_output = outputs.float().cpu()
85 | all_label = labels.float()
86 | start_test = False
87 | else:
88 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
89 | all_label = torch.cat((all_label, labels.float()), 0)
90 | _, predict = torch.max(all_output, 1)
91 | all_output = nn.Softmax(dim=1)(all_output)
92 | ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1) / np.log(all_output.size(1))
93 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
94 | mean_ent = torch.mean(loss.Entropy(nn.Softmax(dim=1)(all_output))).cpu().data.item()
95 |
96 | return accuracy, mean_ent
97 |
98 | def train_target(args):
99 | dset_loaders = data_load(args)
100 | netF = network.Res50().cuda()
101 |
102 | param_group = []
103 | for k, v in netF.named_parameters():
104 | if k.__contains__("fc"):
105 | v.requires_grad = False
106 | else:
107 | param_group += [{'params': v, 'lr': args.lr*args.lr_decay1}]
108 |
109 | optimizer = optim.SGD(param_group)
110 | optimizer = op_copy(optimizer)
111 |
112 | max_iter = args.max_epoch * len(dset_loaders["target"])
113 | interval_iter = max_iter // args.interval
114 | iter_num = 0
115 |
116 | netF.train()
117 | while iter_num < max_iter:
118 | try:
119 | inputs_test, _, tar_idx = iter_test.next()
120 | except:
121 | iter_test = iter(dset_loaders["target"])
122 | inputs_test, _, tar_idx = iter_test.next()
123 |
124 | if inputs_test.size(0) == 1:
125 | continue
126 |
127 | if iter_num % interval_iter == 0 and args.cls_par > 0:
128 | netF.eval()
129 | mem_label = obtain_label(dset_loaders['test'], netF, args)
130 | mem_label = torch.from_numpy(mem_label).cuda()
131 | netF.train()
132 |
133 | inputs_test = inputs_test.cuda()
134 | iter_num += 1
135 | lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
136 |
137 | features_test, outputs_test = netF(inputs_test)
138 |
139 | if args.cls_par > 0:
140 | pred = mem_label[tar_idx]
141 | classifier_loss = nn.CrossEntropyLoss()(outputs_test, pred)
142 | classifier_loss *= args.cls_par
143 | else:
144 | classifier_loss = torch.tensor(0.0).cuda()
145 |
146 | if args.ent:
147 | softmax_out = nn.Softmax(dim=1)(outputs_test)
148 | entropy_loss = torch.mean(loss.Entropy(softmax_out))
149 | if args.gent:
150 | msoftmax = softmax_out.mean(dim=0)
151 | gentropy_loss = torch.sum(-msoftmax * torch.log(msoftmax + args.epsilon))
152 | entropy_loss -= gentropy_loss
153 | classifier_loss += entropy_loss * args.ent_par
154 |
155 | optimizer.zero_grad()
156 | classifier_loss.backward()
157 | optimizer.step()
158 |
159 | if iter_num % interval_iter == 0 or iter_num == max_iter:
160 | netF.eval()
161 | acc, ment = cal_acc(dset_loaders['test'], netF)
162 | log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.dset, iter_num, max_iter, acc*100)
163 | args.out_file.write(log_str + '\n')
164 | args.out_file.flush()
165 | print(log_str+'\n')
166 | netF.train()
167 |
168 | if args.issave:
169 | torch.save(netF.state_dict(), osp.join(args.output_dir, "target" + args.savename + ".pt"))
170 |
171 | return netF
172 |
173 | def print_args(args):
174 | s = "==========================================\n"
175 | for arg, content in args.__dict__.items():
176 | s += "{}:{}\n".format(arg, content)
177 | return s
178 |
179 | def obtain_label(loader, net, args):
180 | start_test = True
181 | with torch.no_grad():
182 | iter_test = iter(loader)
183 | for _ in range(len(loader)):
184 | data = iter_test.next()
185 | inputs = data[0]
186 | labels = data[1]
187 | inputs = inputs.cuda()
188 | feas, outputs = net(inputs)
189 | if start_test:
190 | all_fea = feas.float().cpu()
191 | all_output = outputs.float().cpu()
192 | all_label = labels.float()
193 | start_test = False
194 | else:
195 | all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
196 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
197 | all_label = torch.cat((all_label, labels.float()), 0)
198 |
199 | all_output = nn.Softmax(dim=1)(all_output)
200 | ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1)
201 | unknown_weight = 1 - ent / np.log(args.class_num)
202 | _, predict = torch.max(all_output, 1)
203 |
204 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
205 | if args.distance == 'cosine':
206 | all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
207 | all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
208 |
209 | all_fea = all_fea.float().cpu().numpy()
210 | K = all_output.size(1)
211 | aff = all_output.float().cpu().numpy()
212 | initc = aff.transpose().dot(all_fea)
213 | initc = initc / (1e-8 + aff.sum(axis=0)[:,None])
214 | cls_count = np.eye(K)[predict].sum(axis=0)
215 | labelset = np.where(cls_count>args.threshold)
216 | labelset = labelset[0]
217 | # print(labelset)
218 |
219 | dd = cdist(all_fea, initc[labelset], args.distance)
220 | pred_label = dd.argmin(axis=1)
221 | pred_label = labelset[pred_label]
222 |
223 | for round in range(1):
224 | aff = np.eye(K)[pred_label]
225 | initc = aff.transpose().dot(all_fea)
226 | initc = initc / (1e-8 + aff.sum(axis=0)[:,None])
227 | dd = cdist(all_fea, initc[labelset], args.distance)
228 | pred_label = dd.argmin(axis=1)
229 | pred_label = labelset[pred_label]
230 |
231 | acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
232 | log_str = 'Accuracy = {:.2f}% -> {:.2f}%'.format(accuracy*100, acc*100)
233 |
234 | args.out_file.write(log_str + '\n')
235 | args.out_file.flush()
236 | print(log_str+'\n')
237 |
238 | return pred_label.astype('int') #, labelset
239 |
240 |
241 | if __name__ == "__main__":
242 | parser = argparse.ArgumentParser(description='SHOT')
243 | parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
244 | parser.add_argument('--max_epoch', type=int, default=15, help="max iterations")
245 | parser.add_argument('--interval', type=int, default=15, help="max iterations")
246 | parser.add_argument('--batch_size', type=int, default=64, help="batch_size")
247 | parser.add_argument('--worker', type=int, default=4, help="number of workers")
248 | parser.add_argument('--distance', type=str, default='cosine', choices=["euclidean", "cosine"])
249 | parser.add_argument('--dset', type=str, default='imagenet_caltech', choices=['imagenet_caltech'])
250 | parser.add_argument('--lr', type=float, default=1e-2, help="learning rate")
251 | parser.add_argument('--net', type=str, default='resnet50', help="vgg16, resnet50, resnet101")
252 | parser.add_argument('--seed', type=int, default=2019, help="random seed")
253 | parser.add_argument('--epsilon', type=float, default=1e-5)
254 | parser.add_argument('--gent', type=bool, default=False)
255 | parser.add_argument('--ent', type=bool, default=True)
256 | parser.add_argument('--threshold', type=int, default=30)
257 |
258 | parser.add_argument('--cls_par', type=float, default=0.3)
259 | parser.add_argument('--ent_par', type=float, default=1.0)
260 | parser.add_argument('--output', type=str, default='seed')
261 | parser.add_argument('--da', type=str, default='pda', choices=['pda'])
262 | parser.add_argument('--issave', type=bool, default=True)
263 | parser.add_argument('--lr_decay1', type=float, default=0.1)
264 |
265 | args = parser.parse_args()
266 |
267 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
268 | SEED = args.seed
269 | torch.manual_seed(SEED)
270 | torch.cuda.manual_seed(SEED)
271 | np.random.seed(SEED)
272 | random.seed(SEED)
273 | # torch.backends.cudnn.deterministic = True
274 |
275 | args.class_num = 1000
276 | folder = './data/'
277 | if args.da == 'pda':
278 | args.t_dset_path = folder + args.dset + '/' + 'caltech_84' + '_list.txt'
279 | args.test_dset_path = args.t_dset_path
280 |
281 | args.output_dir = osp.join(args.output, args.da, args.dset)
282 | args.name = args.dset
283 |
284 | if not osp.exists(args.output_dir):
285 | os.system('mkdir -p ' + args.output_dir)
286 | if not osp.exists(args.output_dir):
287 | os.mkdir(args.output_dir)
288 |
289 | args.savename = 'par_' + str(args.cls_par)
290 | if args.da == 'pda':
291 | args.savename = 'par_' + str(args.cls_par) + '_thr' + str(args.threshold)
292 | args.out_file = open(osp.join(args.output_dir, 'log_' + args.savename + '.txt'), 'w')
293 | args.out_file.write(print_args(args)+'\n')
294 | args.out_file.flush()
295 | train_target(args)
--------------------------------------------------------------------------------
/image_source.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os, sys
3 | import os.path as osp
4 | import torchvision
5 | import numpy as np
6 | import torch
7 | import torch.nn as nn
8 | import torch.optim as optim
9 | from torchvision import transforms
10 | import network, loss
11 | from torch.utils.data import DataLoader
12 | from data_list import ImageList
13 | import random, pdb, math, copy
14 | from tqdm import tqdm
15 | from loss import CrossEntropyLabelSmooth
16 | from scipy.spatial.distance import cdist
17 | from sklearn.metrics import confusion_matrix
18 | from sklearn.cluster import KMeans
19 |
20 | def op_copy(optimizer):
21 | for param_group in optimizer.param_groups:
22 | param_group['lr0'] = param_group['lr']
23 | return optimizer
24 |
25 | def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75):
26 | decay = (1 + gamma * iter_num / max_iter) ** (-power)
27 | for param_group in optimizer.param_groups:
28 | param_group['lr'] = param_group['lr0'] * decay
29 | param_group['weight_decay'] = 1e-3
30 | param_group['momentum'] = 0.9
31 | param_group['nesterov'] = True
32 | return optimizer
33 |
34 | def image_train(resize_size=256, crop_size=224, alexnet=False):
35 | if not alexnet:
36 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
37 | std=[0.229, 0.224, 0.225])
38 | else:
39 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
40 | return transforms.Compose([
41 | transforms.Resize((resize_size, resize_size)),
42 | transforms.RandomCrop(crop_size),
43 | transforms.RandomHorizontalFlip(),
44 | transforms.ToTensor(),
45 | normalize
46 | ])
47 |
48 | def image_test(resize_size=256, crop_size=224, alexnet=False):
49 | if not alexnet:
50 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
51 | std=[0.229, 0.224, 0.225])
52 | else:
53 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
54 | return transforms.Compose([
55 | transforms.Resize((resize_size, resize_size)),
56 | transforms.CenterCrop(crop_size),
57 | transforms.ToTensor(),
58 | normalize
59 | ])
60 |
61 | def data_load(args):
62 | ## prepare data
63 | dsets = {}
64 | dset_loaders = {}
65 | train_bs = args.batch_size
66 | # print(args.s_dset_path)
67 | txt_src = open(args.s_dset_path).readlines()
68 | txt_test = open(args.test_dset_path).readlines()
69 |
70 | if not args.da == 'uda':
71 | label_map_s = {}
72 | for i in range(len(args.src_classes)):
73 | label_map_s[args.src_classes[i]] = i
74 |
75 | new_src = []
76 | for i in range(len(txt_src)):
77 | rec = txt_src[i]
78 | reci = rec.strip().split(' ')
79 | if int(reci[1]) in args.src_classes:
80 | line = reci[0] + ' ' + str(label_map_s[int(reci[1])]) + '\n'
81 | new_src.append(line)
82 | txt_src = new_src.copy()
83 |
84 | new_tar = []
85 | for i in range(len(txt_test)):
86 | rec = txt_test[i]
87 | reci = rec.strip().split(' ')
88 | if int(reci[1]) in args.tar_classes:
89 | if int(reci[1]) in args.src_classes:
90 | line = reci[0] + ' ' + str(label_map_s[int(reci[1])]) + '\n'
91 | new_tar.append(line)
92 | else:
93 | line = reci[0] + ' ' + str(len(label_map_s)) + '\n'
94 | new_tar.append(line)
95 | txt_test = new_tar.copy()
96 |
97 | if args.trte == "val":
98 | dsize = len(txt_src)
99 | tr_size = int(0.9*dsize)
100 | # print(dsize, tr_size, dsize - tr_size)
101 | tr_txt, te_txt = torch.utils.data.random_split(txt_src, [tr_size, dsize - tr_size])
102 | else:
103 | dsize = len(txt_src)
104 | tr_size = int(0.9*dsize)
105 | _, te_txt = torch.utils.data.random_split(txt_src, [tr_size, dsize - tr_size])
106 | tr_txt = txt_src
107 |
108 | dsets["source_tr"] = ImageList(tr_txt, transform=image_train())
109 | dset_loaders["source_tr"] = DataLoader(dsets["source_tr"], batch_size=train_bs, shuffle=True, num_workers=args.worker, drop_last=False)
110 | dsets["source_te"] = ImageList(te_txt, transform=image_test())
111 | dset_loaders["source_te"] = DataLoader(dsets["source_te"], batch_size=train_bs, shuffle=True, num_workers=args.worker, drop_last=False)
112 | dsets["test"] = ImageList(txt_test, transform=image_test())
113 | dset_loaders["test"] = DataLoader(dsets["test"], batch_size=train_bs*2, shuffle=True, num_workers=args.worker, drop_last=False)
114 |
115 | return dset_loaders
116 |
117 | def cal_acc(loader, netF, netB, netC, flag=False):
118 | start_test = True
119 | with torch.no_grad():
120 | iter_test = iter(loader)
121 | for i in range(len(loader)):
122 | data = iter_test.next()
123 | inputs = data[0]
124 | labels = data[1]
125 | inputs = inputs.cuda()
126 | outputs = netC(netB(netF(inputs)))
127 | if start_test:
128 | all_output = outputs.float().cpu()
129 | all_label = labels.float()
130 | start_test = False
131 | else:
132 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
133 | all_label = torch.cat((all_label, labels.float()), 0)
134 |
135 | all_output = nn.Softmax(dim=1)(all_output)
136 | _, predict = torch.max(all_output, 1)
137 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
138 | mean_ent = torch.mean(loss.Entropy(all_output)).cpu().data.item()
139 |
140 | if flag:
141 | matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
142 | acc = matrix.diagonal()/matrix.sum(axis=1) * 100
143 | aacc = acc.mean()
144 | aa = [str(np.round(i, 2)) for i in acc]
145 | acc = ' '.join(aa)
146 | return aacc, acc
147 | else:
148 | return accuracy*100, mean_ent
149 |
150 | def cal_acc_oda(loader, netF, netB, netC):
151 | start_test = True
152 | with torch.no_grad():
153 | iter_test = iter(loader)
154 | for i in range(len(loader)):
155 | data = iter_test.next()
156 | inputs = data[0]
157 | labels = data[1]
158 | inputs = inputs.cuda()
159 | outputs = netC(netB(netF(inputs)))
160 | if start_test:
161 | all_output = outputs.float().cpu()
162 | all_label = labels.float()
163 | start_test = False
164 | else:
165 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
166 | all_label = torch.cat((all_label, labels.float()), 0)
167 |
168 | all_output = nn.Softmax(dim=1)(all_output)
169 | _, predict = torch.max(all_output, 1)
170 | ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1) / np.log(args.class_num)
171 | ent = ent.float().cpu()
172 | initc = np.array([[0], [1]])
173 | kmeans = KMeans(n_clusters=2, random_state=0, init=initc, n_init=1).fit(ent.reshape(-1,1))
174 | threshold = (kmeans.cluster_centers_).mean()
175 |
176 | predict[ent>threshold] = args.class_num
177 | matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
178 | matrix = matrix[np.unique(all_label).astype(int),:]
179 |
180 | acc = matrix.diagonal()/matrix.sum(axis=1) * 100
181 | unknown_acc = acc[-1:].item()
182 |
183 | return np.mean(acc[:-1]), np.mean(acc), unknown_acc
184 | # return np.mean(acc), np.mean(acc[:-1])
185 |
186 | def train_source(args):
187 | dset_loaders = data_load(args)
188 | ## set base network
189 | if args.net[0:3] == 'res':
190 | netF = network.ResBase(res_name=args.net,se=args.se,nl=args.nl).cuda()
191 | elif args.net[0:3] == 'vgg':
192 | netF = network.VGGBase(vgg_name=args.net).cuda()
193 | elif args.net == 'vit':
194 | netF = network.ViT().cuda()
195 |
196 | ### test model paremet size
197 | # model=network.ResBase(res_name=args.net)
198 | # num_params = sum([np.prod(p.size()) for p in model.parameters()])
199 | # print("Total number of parameters: {}".format(num_params))
200 | #
201 | # num_params_update = sum([np.prod(p.shape) for p in model.parameters() if p.requires_grad])
202 | # print("Total number of learning parameters: {}".format(num_params_update))
203 |
204 | netB = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features, bottleneck_dim=args.bottleneck).cuda()
205 | netC = network.feat_classifier(type=args.layer, class_num = args.class_num, bottleneck_dim=args.bottleneck).cuda()
206 |
207 | param_group = []
208 | learning_rate = args.lr
209 | for k, v in netF.named_parameters():
210 | param_group += [{'params': v, 'lr': learning_rate*0.1}]
211 | for k, v in netB.named_parameters():
212 | param_group += [{'params': v, 'lr': learning_rate}]
213 | for k, v in netC.named_parameters():
214 | param_group += [{'params': v, 'lr': learning_rate}]
215 | optimizer = optim.SGD(param_group)
216 | optimizer = op_copy(optimizer)
217 |
218 | acc_init = 0
219 | max_iter = args.max_epoch * len(dset_loaders["source_tr"])
220 | interval_iter = max_iter // 10
221 | iter_num = 0
222 |
223 | netF.train()
224 | netB.train()
225 | netC.train()
226 |
227 | while iter_num < max_iter:
228 | try:
229 | inputs_source, labels_source = iter_source.next()
230 | except:
231 | iter_source = iter(dset_loaders["source_tr"])
232 | inputs_source, labels_source = iter_source.next()
233 |
234 | if inputs_source.size(0) == 1:
235 | continue
236 |
237 | iter_num += 1
238 | lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
239 |
240 | inputs_source, labels_source = inputs_source.cuda(), labels_source.cuda()
241 | outputs_source = netC(netB(netF(inputs_source)))
242 | classifier_loss = CrossEntropyLabelSmooth(num_classes=args.class_num, epsilon=args.smooth)(outputs_source, labels_source)
243 |
244 |
245 | optimizer.zero_grad()
246 | classifier_loss.backward()
247 | optimizer.step()
248 |
249 | if iter_num % interval_iter == 0 or iter_num == max_iter:
250 | netF.eval()
251 | netB.eval()
252 | netC.eval()
253 | if args.dset=='VISDA-C':
254 | acc_s_te, acc_list = cal_acc(dset_loaders['source_te'], netF, netB, netC, True)
255 | log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name_src, iter_num, max_iter, acc_s_te) + '\n' + acc_list
256 | else:
257 | acc_s_te, _ = cal_acc(dset_loaders['source_te'], netF, netB, netC, False)
258 | log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name_src, iter_num, max_iter, acc_s_te)
259 | args.out_file.write(log_str + '\n')
260 | args.out_file.flush()
261 | print(log_str+'\n')
262 |
263 | if acc_s_te >= acc_init:
264 | acc_init = acc_s_te
265 | best_netF = netF.state_dict()
266 | best_netB = netB.state_dict()
267 | best_netC = netC.state_dict()
268 |
269 | netF.train()
270 | netB.train()
271 | netC.train()
272 |
273 | torch.save(best_netF, osp.join(args.output_dir_src, "source_F.pt"))
274 | torch.save(best_netB, osp.join(args.output_dir_src, "source_B.pt"))
275 | torch.save(best_netC, osp.join(args.output_dir_src, "source_C.pt"))
276 |
277 | return netF, netB, netC
278 |
279 | def test_target(args):
280 | dset_loaders = data_load(args)
281 | ## set base network
282 | if args.net[0:3] == 'res':
283 | netF = network.ResBase(res_name=args.net).cuda()
284 | elif args.net[0:3] == 'vgg':
285 | netF = network.VGGBase(vgg_name=args.net).cuda()
286 | else:
287 | netF = network.ViT().cuda()
288 |
289 | netB = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features, bottleneck_dim=args.bottleneck).cuda()
290 | netC = network.feat_classifier(type=args.layer, class_num = args.class_num, bottleneck_dim=args.bottleneck).cuda()
291 |
292 | args.modelpath = args.output_dir_src + '/source_F.pt'
293 | netF.load_state_dict(torch.load(args.modelpath))
294 | args.modelpath = args.output_dir_src + '/source_B.pt'
295 | netB.load_state_dict(torch.load(args.modelpath))
296 | args.modelpath = args.output_dir_src + '/source_C.pt'
297 | netC.load_state_dict(torch.load(args.modelpath))
298 | netF.eval()
299 | netB.eval()
300 | netC.eval()
301 |
302 | if args.da == 'oda':
303 | acc_os1, acc_os2, acc_unknown = cal_acc_oda(dset_loaders['test'], netF, netB, netC)
304 | log_str = '\nTraining: {}, Task: {}, Accuracy = {:.2f}% / {:.2f}% / {:.2f}%'.format(args.trte, args.name, acc_os2, acc_os1, acc_unknown)
305 | else:
306 | if args.dset=='VISDA-C':
307 | acc, acc_list = cal_acc(dset_loaders['test'], netF, netB, netC, True)
308 | log_str = '\nTraining: {}, Task: {}, Accuracy = {:.2f}%'.format(args.trte, args.name, acc) + '\n' + acc_list
309 | else:
310 | acc, _ = cal_acc(dset_loaders['test'], netF, netB, netC, False)
311 | log_str = '\nTraining: {}, Task: {}, Accuracy = {:.2f}%'.format(args.trte, args.name, acc)
312 |
313 | args.out_file.write(log_str)
314 | args.out_file.flush()
315 | print(log_str)
316 |
317 | def print_args(args):
318 | s = "==========================================\n"
319 | for arg, content in args.__dict__.items():
320 | s += "{}:{}\n".format(arg, content)
321 | return s
322 |
323 | if __name__ == "__main__":
324 | parser = argparse.ArgumentParser(description='SHOT')
325 | parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
326 | parser.add_argument('--s', type=int, default=0, help="source")
327 | parser.add_argument('--t', type=int, default=1, help="target")
328 | parser.add_argument('--max_epoch', type=int, default=20, help="max iterations")
329 | parser.add_argument('--batch_size', type=int, default=64, help="batch_size")
330 | parser.add_argument('--worker', type=int, default=4, help="number of workers")
331 | parser.add_argument('--dset', type=str, default='office-home', choices=['VISDA-C', 'office', 'office-home', 'office-caltech'])
332 | parser.add_argument('--lr', type=float, default=1e-2, help="learning rate")
333 | parser.add_argument('--net', type=str, default='vit', help="vgg16, resnet50, resnet101")
334 | parser.add_argument('--seed', type=int, default=2020, help="random seed")
335 | parser.add_argument('--bottleneck', type=int, default=256)
336 | parser.add_argument('--epsilon', type=float, default=1e-5)
337 | parser.add_argument('--layer', type=str, default="wn", choices=["linear", "wn"])
338 | parser.add_argument('--classifier', type=str, default="bn", choices=["ori", "bn"])
339 | parser.add_argument('--smooth', type=float, default=0.1)
340 | parser.add_argument('--output', type=str, default='san')
341 | parser.add_argument('--da', type=str, default='uda', choices=['uda', 'pda', 'oda'])
342 | parser.add_argument('--trte', type=str, default='val', choices=['full', 'val'])
343 | parser.add_argument('--bsp', type=bool, default=False)
344 | parser.add_argument('--se', type=bool, default=False)
345 | parser.add_argument('--nl', type=bool, default=False)
346 | args = parser.parse_args()
347 |
348 | if args.dset == 'office-home':
349 | names = ['Art', 'Clipart', 'Product', 'RealWorld']
350 | args.class_num = 65
351 | if args.dset == 'office':
352 | names = ['amazon', 'dslr', 'webcam']
353 | args.class_num = 31
354 | if args.dset == 'VISDA-C':
355 | names = ['train', 'validation']
356 | args.class_num = 12
357 | if args.dset == 'office-caltech':
358 | names = ['amazon', 'caltech', 'dslr', 'webcam']
359 | args.class_num = 10
360 |
361 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
362 | SEED = args.seed
363 | torch.manual_seed(SEED)
364 | torch.cuda.manual_seed(SEED)
365 | np.random.seed(SEED)
366 | random.seed(SEED)
367 | # torch.backends.cudnn.deterministic = True
368 |
369 | folder = './data/'
370 | args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_list.txt'
371 | args.test_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
372 |
373 | if args.dset == 'office-home':
374 | if args.da == 'pda':
375 | args.class_num = 65
376 | args.src_classes = [i for i in range(65)]
377 | args.tar_classes = [i for i in range(25)]
378 | if args.da == 'oda':
379 | args.class_num = 25
380 | args.src_classes = [i for i in range(25)]
381 | args.tar_classes = [i for i in range(65)]
382 |
383 | args.output_dir_src = osp.join(args.output, args.da, args.dset, names[args.s][0].upper())
384 | args.name_src = names[args.s][0].upper()
385 | if not osp.exists(args.output_dir_src):
386 | os.system('mkdir -p ' + args.output_dir_src)
387 | if not osp.exists(args.output_dir_src):
388 | os.mkdir(args.output_dir_src)
389 |
390 | args.out_file = open(osp.join(args.output_dir_src, 'log.txt'), 'w')
391 | args.out_file.write(print_args(args)+'\n')
392 | args.out_file.flush()
393 | train_source(args)
394 |
395 | args.out_file = open(osp.join(args.output_dir_src, 'log_test.txt'), 'w')
396 | for i in range(len(names)):
397 | if i == args.s:
398 | continue
399 | args.t = i
400 | args.name = names[args.s][0].upper() + names[args.t][0].upper()
401 |
402 | folder = './data/'
403 | args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_list.txt'
404 | args.test_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
405 |
406 | if args.dset == 'office-home':
407 | if args.da == 'pda':
408 | args.class_num = 65
409 | args.src_classes = [i for i in range(65)]
410 | args.tar_classes = [i for i in range(25)]
411 | if args.da == 'oda':
412 | args.class_num = 25
413 | args.src_classes = [i for i in range(25)]
414 | args.tar_classes = [i for i in range(65)]
415 |
416 | test_target(args)
417 |
418 |
419 |
--------------------------------------------------------------------------------
/image_target.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os, sys
3 | import os.path as osp
4 | import torchvision
5 | import numpy as np
6 | import torch
7 | import torch.nn as nn
8 | import torch.optim as optim
9 | from torchvision import transforms
10 | import network, loss
11 | from torch.utils.data import DataLoader
12 | from data_list import ImageList, ImageList_idx
13 | import random, pdb, math, copy
14 | from tqdm import tqdm
15 | from scipy.spatial.distance import cdist
16 | from sklearn.metrics import confusion_matrix
17 | from loss import KnowledgeDistillationLoss
18 |
19 |
20 | def op_copy(optimizer):
21 | for param_group in optimizer.param_groups:
22 | param_group['lr0'] = param_group['lr']
23 | return optimizer
24 |
25 |
26 | def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75):
27 | decay = (1 + gamma * iter_num / max_iter) ** (-power)
28 | for param_group in optimizer.param_groups:
29 | param_group['lr'] = param_group['lr0'] * decay
30 | param_group['weight_decay'] = 1e-3
31 | param_group['momentum'] = 0.9
32 | param_group['nesterov'] = True
33 | return optimizer
34 |
35 |
36 | def image_train(resize_size=256, crop_size=224, alexnet=False):
37 | if not alexnet:
38 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
39 | std=[0.229, 0.224, 0.225])
40 | else:
41 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
42 | return transforms.Compose([
43 | transforms.Resize((resize_size, resize_size)),
44 | transforms.RandomCrop(crop_size),
45 | transforms.RandomHorizontalFlip(),
46 | transforms.ToTensor(),
47 | normalize
48 | ])
49 |
50 |
51 | def image_test(resize_size=256, crop_size=224, alexnet=False):
52 | if not alexnet:
53 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
54 | std=[0.229, 0.224, 0.225])
55 | else:
56 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
57 | return transforms.Compose([
58 | transforms.Resize((resize_size, resize_size)),
59 | transforms.CenterCrop(crop_size),
60 | transforms.ToTensor(),
61 | normalize
62 | ])
63 |
64 |
65 | def data_load(args):
66 | ## prepare data
67 | dsets = {}
68 | dset_loaders = {}
69 | train_bs = args.batch_size
70 | txt_tar = open(args.t_dset_path).readlines()
71 | txt_test = open(args.test_dset_path).readlines()
72 |
73 | if not args.da == 'uda':
74 | label_map_s = {}
75 | for i in range(len(args.src_classes)):
76 | label_map_s[args.src_classes[i]] = i
77 |
78 | new_tar = []
79 | for i in range(len(txt_tar)):
80 | rec = txt_tar[i]
81 | reci = rec.strip().split(' ')
82 | if int(reci[1]) in args.tar_classes:
83 | if int(reci[1]) in args.src_classes:
84 | line = reci[0] + ' ' + str(label_map_s[int(reci[1])]) + '\n'
85 | new_tar.append(line)
86 | else:
87 | line = reci[0] + ' ' + str(len(label_map_s)) + '\n'
88 | new_tar.append(line)
89 | txt_tar = new_tar.copy()
90 | txt_test = txt_tar.copy()
91 |
92 | dsets["target"] = ImageList_idx(txt_tar, transform=image_train())
93 | dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, shuffle=True, num_workers=args.worker,
94 | drop_last=False)
95 | dsets["test"] = ImageList_idx(txt_test, transform=image_test())
96 | dset_loaders["test"] = DataLoader(dsets["test"], batch_size=train_bs * 3, shuffle=False, num_workers=args.worker,
97 | drop_last=False)
98 |
99 | return dset_loaders
100 |
101 |
102 | def cal_acc(loader, netF, netB, netC, flag=False):
103 | start_test = True
104 | with torch.no_grad():
105 | iter_test = iter(loader)
106 | for i in range(len(loader)):
107 | data = iter_test.next()
108 | inputs = data[0]
109 | labels = data[1]
110 | inputs = inputs.cuda()
111 | outputs = netC(netB(netF(inputs)))
112 | if start_test:
113 | all_output = outputs.float().cpu()
114 | all_label = labels.float()
115 | start_test = False
116 | else:
117 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
118 | all_label = torch.cat((all_label, labels.float()), 0)
119 | _, predict = torch.max(all_output, 1)
120 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
121 | mean_ent = torch.mean(loss.Entropy(nn.Softmax(dim=1)(all_output))).cpu().data.item()
122 |
123 | if flag:
124 | matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
125 | acc = matrix.diagonal() / matrix.sum(axis=1) * 100
126 | aacc = acc.mean()
127 | aa = [str(np.round(i, 2)) for i in acc]
128 | acc = ' '.join(aa)
129 | return aacc, acc
130 | else:
131 | return accuracy * 100, mean_ent
132 |
133 |
134 | def train_target(args):
135 | dset_loaders = data_load(args)
136 | ## set base network
137 | if args.net[0:3] == 'res':
138 | netF = network.ResBase(res_name=args.net, se=args.se, nl=args.nl).cuda()
139 | elif args.net[0:3] == 'vgg':
140 | netF = network.VGGBase(vgg_name=args.net).cuda()
141 | elif args.net == 'vit':
142 | netF = network.ViT().cuda()
143 | netB = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features,
144 | bottleneck_dim=args.bottleneck).cuda()
145 | netC = network.feat_classifier(type=args.layer, class_num=args.class_num, bottleneck_dim=args.bottleneck).cuda()
146 |
147 | modelpath = args.output_dir_src + '/source_F.pt'
148 | netF.load_state_dict(torch.load(modelpath), strict=False)
149 | modelpath = args.output_dir_src + '/source_B.pt'
150 | netB.load_state_dict(torch.load(modelpath))
151 | modelpath = args.output_dir_src + '/source_C.pt'
152 | netC.load_state_dict(torch.load(modelpath))
153 | netC.eval()
154 | for k, v in netC.named_parameters():
155 | v.requires_grad = False
156 | ### add teacher module
157 | if args.net[0:3] == 'res':
158 | netF_t = network.ResBase(res_name=args.net, se=args.se, nl=args.nl).cuda()
159 | elif args.net[0:3] == 'vgg':
160 | netF_t = network.VGGBase(vgg_name=args.net).cuda()
161 | elif args.net == 'vit':
162 | netF_t = network.ViT().cuda()
163 | netB_t = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features,
164 | bottleneck_dim=args.bottleneck).cuda()
165 | ### initial from student
166 | netF_t.load_state_dict(netF.state_dict())
167 | netB_t.load_state_dict(netB.state_dict())
168 |
169 | ### remove grad
170 | for k, v in netF_t.named_parameters():
171 | v.requires_grad = False
172 | for k, v in netB_t.named_parameters():
173 | v.requires_grad = False
174 |
175 | param_group = []
176 | for k, v in netF.named_parameters():
177 | if args.lr_decay1 > 0:
178 | param_group += [{'params': v, 'lr': args.lr * args.lr_decay1}]
179 | else:
180 | v.requires_grad = False
181 | for k, v in netB.named_parameters():
182 | if args.lr_decay2 > 0:
183 | param_group += [{'params': v, 'lr': args.lr * args.lr_decay2}]
184 | else:
185 | v.requires_grad = False
186 |
187 | optimizer = optim.SGD(param_group)
188 | optimizer = op_copy(optimizer)
189 |
190 | max_iter = args.max_epoch * len(dset_loaders["target"])
191 | interval_iter = max_iter // args.interval
192 | iter_num = 0
193 |
194 | while iter_num < max_iter:
195 | try:
196 | inputs_test, _, tar_idx = iter_test.next()
197 | except:
198 | iter_test = iter(dset_loaders["target"])
199 | inputs_test, _, tar_idx = iter_test.next()
200 |
201 | if inputs_test.size(0) == 1:
202 | continue
203 |
204 | if iter_num % interval_iter == 0 and args.cls_par > 0:
205 | netF.eval()
206 | netB.eval()
207 | netF_t.eval()
208 | netB_t.eval()
209 | mem_label, dd = obtain_label(dset_loaders['test'], netF_t, netB_t, netC, args)
210 | mem_label = torch.from_numpy(mem_label).cuda()
211 | dd = torch.from_numpy(dd).cuda()
212 |
213 | netF.train()
214 | netB.train()
215 |
216 | inputs_test = inputs_test.cuda()
217 |
218 | iter_num += 1
219 | lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
220 |
221 | features_test = netB(netF(inputs_test))
222 | outputs_test = netC(features_test)
223 |
224 | if args.cls_par > 0:
225 | pred = mem_label[tar_idx]
226 | pred_soft = dd[tar_idx]
227 | classifier_loss = nn.CrossEntropyLoss()(outputs_test, pred)
228 | classifier_loss *= args.cls_par
229 | if args.kd:
230 | kd_loss = KnowledgeDistillationLoss()(outputs_test, pred_soft)
231 | classifier_loss += kd_loss
232 | if iter_num < interval_iter and args.dset == "VISDA-C":
233 | classifier_loss *= 0
234 | else:
235 | classifier_loss = torch.tensor(0.0).cuda()
236 |
237 | if args.ent:
238 | softmax_out = nn.Softmax(dim=1)(outputs_test)
239 | entropy_loss = torch.mean(loss.Entropy(softmax_out))
240 | if args.gent:
241 | msoftmax = softmax_out.mean(dim=0)
242 | gentropy_loss = torch.sum(-msoftmax * torch.log(msoftmax + args.epsilon))
243 | entropy_loss -= gentropy_loss
244 | im_loss = entropy_loss * args.ent_par
245 | classifier_loss += im_loss
246 |
247 | optimizer.zero_grad()
248 | classifier_loss.backward()
249 | optimizer.step()
250 | # EMA update for the teacher
251 | with torch.no_grad():
252 | m = 0.001 # momentum parameter
253 | for param_q, param_k in zip(netF.parameters(), netF_t.parameters()):
254 | param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
255 | for param_q, param_k in zip(netB.parameters(), netB_t.parameters()):
256 | param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
257 | if iter_num % interval_iter == 0 or iter_num == max_iter:
258 | netF.eval()
259 | netB.eval()
260 | if args.dset == 'VISDA-C':
261 | acc_s_te, acc_list = cal_acc(dset_loaders['test'], netF, netB, netC, True)
262 | log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name, iter_num, max_iter,
263 | acc_s_te) + '\n' + acc_list
264 | else:
265 | acc_s_te, _ = cal_acc(dset_loaders['test'], netF, netB, netC, False)
266 | log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name, iter_num, max_iter, acc_s_te)
267 |
268 | args.out_file.write(log_str + '\n')
269 | args.out_file.flush()
270 | print(log_str + '\n')
271 | netF.train()
272 | netB.train()
273 |
274 | if args.issave:
275 | torch.save(netF.state_dict(), osp.join(args.output_dir, "target_F_" + args.savename + ".pt"))
276 | torch.save(netB.state_dict(), osp.join(args.output_dir, "target_B_" + args.savename + ".pt"))
277 | torch.save(netC.state_dict(), osp.join(args.output_dir, "target_C_" + args.savename + ".pt"))
278 |
279 | return netF, netB, netC
280 |
281 |
282 | def print_args(args):
283 | s = "==========================================\n"
284 | for arg, content in args.__dict__.items():
285 | s += "{}:{}\n".format(arg, content)
286 | return s
287 |
288 |
289 | def obtain_label(loader, netF, netB, netC, args):
290 | start_test = True
291 | with torch.no_grad():
292 | iter_test = iter(loader)
293 | for _ in range(len(loader)):
294 | data = iter_test.next()
295 | inputs = data[0]
296 | labels = data[1]
297 | inputs = inputs.cuda()
298 | feas = netB(netF(inputs))
299 | outputs = netC(feas)
300 | if start_test:
301 | all_fea = feas.float().cpu()
302 | all_output = outputs.float().cpu()
303 | all_label = labels.float()
304 | start_test = False
305 | else:
306 | all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
307 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
308 | all_label = torch.cat((all_label, labels.float()), 0)
309 |
310 | all_output = nn.Softmax(dim=1)(all_output)
311 | # print(all_output.shape)
312 | # ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1)
313 | # unknown_weight = 1 - ent / np.log(args.class_num)
314 | _, predict = torch.max(all_output, 1)
315 |
316 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
317 |
318 | if args.distance == 'cosine':
319 | all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
320 | all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
321 | ### all_fea: extractor feature [bs,N]
322 | # print(all_fea.shape)
323 | all_fea = all_fea.float().cpu().numpy()
324 | K = all_output.size(1)
325 | aff = all_output.float().cpu().numpy()
326 | ### aff: softmax output [bs,c]
327 | # print(aff.shape)
328 | initc = aff.transpose().dot(all_fea)
329 | initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
330 | # print(initc.shape)
331 | cls_count = np.eye(K)[predict].sum(axis=0)
332 | labelset = np.where(cls_count > args.threshold)
333 | labelset = labelset[0]
334 | # print(labelset)
335 |
336 | dd = cdist(all_fea, initc[labelset], args.distance)
337 | pred_label = dd.argmin(axis=1)
338 | pred_label = labelset[pred_label]
339 | # acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
340 | # log_str = 'Accuracy = {:.2f}% -> {:.2f}%'.format(accuracy * 100, acc * 100)
341 | # args.out_file.write(log_str + '\n')
342 | # args.out_file.flush()
343 | # print(log_str+'\n')
344 |
345 | for round in range(1):
346 | aff = np.eye(K)[pred_label]
347 | initc = aff.transpose().dot(all_fea)
348 | initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
349 | dd = cdist(all_fea, initc[labelset], args.distance)
350 | pred_label = dd.argmin(axis=1)
351 | pred_label = labelset[pred_label]
352 |
353 | acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
354 | log_str = 'Accuracy = {:.2f}% -> {:.2f}%'.format(accuracy * 100, acc * 100)
355 |
356 | args.out_file.write(log_str + '\n')
357 | args.out_file.flush()
358 | print(log_str + '\n')
359 |
360 | return pred_label.astype('int'), dd
361 |
362 |
363 | if __name__ == "__main__":
364 | parser = argparse.ArgumentParser(description='SHOT')
365 | parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
366 | parser.add_argument('--s', type=int, default=0, help="source")
367 | parser.add_argument('--t', type=int, default=1, help="target")
368 | parser.add_argument('--max_epoch', type=int, default=15, help="max iterations")
369 | parser.add_argument('--interval', type=int, default=15)
370 | parser.add_argument('--batch_size', type=int, default=64, help="batch_size")
371 | parser.add_argument('--worker', type=int, default=4, help="number of workers")
372 | parser.add_argument('--dset', type=str, default='office-home',
373 | choices=['VISDA-C', 'office', 'office-home', 'office-caltech'])
374 | parser.add_argument('--lr', type=float, default=1e-2, help="learning rate")
375 | parser.add_argument('--net', type=str, default='vit', help="alexnet, vgg16, resnet50, res101")
376 | parser.add_argument('--seed', type=int, default=2020, help="random seed")
377 |
378 | parser.add_argument('--gent', type=bool, default=True)
379 | parser.add_argument('--ent', type=bool, default=True)
380 | parser.add_argument('--kd', type=bool, default=False)
381 | parser.add_argument('--se', type=bool, default=False)
382 | parser.add_argument('--nl', type=bool, default=False)
383 |
384 | parser.add_argument('--threshold', type=int, default=0)
385 | parser.add_argument('--cls_par', type=float, default=0.3)
386 | parser.add_argument('--ent_par', type=float, default=1.0)
387 | parser.add_argument('--lr_decay1', type=float, default=0.1)
388 | parser.add_argument('--lr_decay2', type=float, default=1.0)
389 |
390 | parser.add_argument('--bottleneck', type=int, default=256)
391 | parser.add_argument('--epsilon', type=float, default=1e-5)
392 | parser.add_argument('--layer', type=str, default="wn", choices=["linear", "wn"])
393 | parser.add_argument('--classifier', type=str, default="bn", choices=["ori", "bn"])
394 | parser.add_argument('--distance', type=str, default='cosine', choices=["euclidean", "cosine"])
395 | parser.add_argument('--output', type=str, default='san')
396 | parser.add_argument('--output_src', type=str, default='san')
397 | parser.add_argument('--da', type=str, default='uda', choices=['uda', 'pda'])
398 | parser.add_argument('--issave', type=bool, default=True)
399 | args = parser.parse_args()
400 |
401 | if args.dset == 'office-home':
402 | names = ['Art', 'Clipart', 'Product', 'RealWorld']
403 | args.class_num = 65
404 | if args.dset == 'office':
405 | names = ['amazon', 'dslr', 'webcam']
406 | args.class_num = 31
407 | if args.dset == 'VISDA-C':
408 | names = ['train', 'validation']
409 | args.class_num = 12
410 | if args.dset == 'office-caltech':
411 | names = ['amazon', 'caltech', 'dslr', 'webcam']
412 | args.class_num = 10
413 |
414 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
415 | SEED = args.seed
416 | torch.manual_seed(SEED)
417 | torch.cuda.manual_seed(SEED)
418 | np.random.seed(SEED)
419 | random.seed(SEED)
420 | # torch.backends.cudnn.deterministic = True
421 |
422 | for i in range(len(names)):
423 | if i == args.s:
424 | continue
425 | args.t = i
426 |
427 | folder = './data/'
428 | args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_list.txt'
429 | args.t_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
430 | args.test_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
431 |
432 | if args.dset == 'office-home':
433 | if args.da == 'pda':
434 | args.class_num = 65
435 | args.src_classes = [i for i in range(65)]
436 | args.tar_classes = [i for i in range(25)]
437 |
438 | args.output_dir_src = osp.join(args.output_src, args.da, args.dset, names[args.s][0].upper())
439 | args.output_dir = osp.join(args.output, args.da, args.dset, names[args.s][0].upper() + names[args.t][0].upper())
440 | args.name = names[args.s][0].upper() + names[args.t][0].upper()
441 |
442 | if not osp.exists(args.output_dir):
443 | os.system('mkdir -p ' + args.output_dir)
444 | if not osp.exists(args.output_dir):
445 | os.mkdir(args.output_dir)
446 |
447 | args.savename = 'par_' + str(args.cls_par)
448 | if args.da == 'pda':
449 | args.gent = ''
450 | args.savename = 'par_' + str(args.cls_par) + '_thr' + str(args.threshold)
451 | args.out_file = open(osp.join(args.output_dir, 'log_' + args.savename + '.txt'), 'w')
452 | args.out_file.write(print_args(args) + '\n')
453 | args.out_file.flush()
454 | train_target(args)
--------------------------------------------------------------------------------
/image_target_oda.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os, sys
3 | import os.path as osp
4 | import torchvision
5 | import numpy as np
6 | import torch
7 | import torch.nn as nn
8 | import torch.optim as optim
9 | from torchvision import transforms
10 | import network, loss
11 | from torch.utils.data import DataLoader
12 | from data_list import ImageList, ImageList_idx
13 | import random, pdb, math, copy
14 | from tqdm import tqdm
15 | from scipy.spatial.distance import cdist
16 | from sklearn.metrics import confusion_matrix
17 | from sklearn.cluster import KMeans
18 | from loss import KnowledgeDistillationLoss
19 |
20 |
21 | def op_copy(optimizer):
22 | for param_group in optimizer.param_groups:
23 | param_group['lr0'] = param_group['lr']
24 | return optimizer
25 |
26 |
27 | def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75):
28 | decay = (1 + gamma * iter_num / max_iter) ** (-power)
29 | for param_group in optimizer.param_groups:
30 | param_group['lr'] = param_group['lr0'] * decay
31 | param_group['weight_decay'] = 1e-3
32 | param_group['momentum'] = 0.9
33 | param_group['nesterov'] = True
34 | return optimizer
35 |
36 |
37 | def image_train(resize_size=256, crop_size=224, alexnet=False):
38 | if not alexnet:
39 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
40 | std=[0.229, 0.224, 0.225])
41 | else:
42 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
43 | return transforms.Compose([
44 | transforms.Resize((resize_size, resize_size)),
45 | transforms.RandomCrop(crop_size),
46 | transforms.RandomHorizontalFlip(),
47 | transforms.ToTensor(),
48 | normalize
49 | ])
50 |
51 |
52 | def image_test(resize_size=256, crop_size=224, alexnet=False):
53 | if not alexnet:
54 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
55 | std=[0.229, 0.224, 0.225])
56 | else:
57 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
58 | return transforms.Compose([
59 | transforms.Resize((resize_size, resize_size)),
60 | transforms.CenterCrop(crop_size),
61 | transforms.ToTensor(),
62 | normalize
63 | ])
64 |
65 |
66 | def data_load(args):
67 | ## prepare data
68 | dsets = {}
69 | dset_loaders = {}
70 | train_bs = args.batch_size
71 | txt_src = open(args.s_dset_path).readlines()
72 | txt_tar = open(args.t_dset_path).readlines()
73 | txt_test = open(args.test_dset_path).readlines()
74 |
75 | if not args.da == 'uda':
76 | label_map_s = {}
77 | for i in range(len(args.src_classes)):
78 | label_map_s[args.src_classes[i]] = i
79 |
80 | new_tar = []
81 | for i in range(len(txt_tar)):
82 | rec = txt_tar[i]
83 | reci = rec.strip().split(' ')
84 | if int(reci[1]) in args.tar_classes:
85 | if int(reci[1]) in args.src_classes:
86 | line = reci[0] + ' ' + str(label_map_s[int(reci[1])]) + '\n'
87 | new_tar.append(line)
88 | else:
89 | line = reci[0] + ' ' + str(len(label_map_s)) + '\n'
90 | new_tar.append(line)
91 | txt_tar = new_tar.copy()
92 | txt_test = txt_tar.copy()
93 |
94 | dsets["target"] = ImageList_idx(txt_tar, transform=image_train())
95 | dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, shuffle=True, num_workers=args.worker,
96 | drop_last=False)
97 | dsets["test"] = ImageList(txt_test, transform=image_test())
98 | dset_loaders["test"] = DataLoader(dsets["test"], batch_size=train_bs * 3, shuffle=False, num_workers=args.worker,
99 | drop_last=False)
100 |
101 | return dset_loaders
102 |
103 |
104 | def cal_acc(loader, netF, netB, netC, flag=False, threshold=0.1):
105 | start_test = True
106 | with torch.no_grad():
107 | iter_test = iter(loader)
108 | for i in range(len(loader)):
109 | data = iter_test.next()
110 | inputs = data[0]
111 | labels = data[1]
112 | inputs = inputs.cuda()
113 | outputs = netC(netB(netF(inputs)))
114 | if start_test:
115 | all_output = outputs.float().cpu()
116 | all_label = labels.float()
117 | start_test = False
118 | else:
119 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
120 | all_label = torch.cat((all_label, labels.float()), 0)
121 | _, predict = torch.max(all_output, 1)
122 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
123 | mean_ent = torch.mean(loss.Entropy(nn.Softmax(dim=1)(all_output))).cpu().data.item()
124 |
125 | if flag:
126 | all_output = nn.Softmax(dim=1)(all_output)
127 | ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1) / np.log(args.class_num)
128 |
129 | from sklearn.cluster import KMeans
130 | kmeans = KMeans(2, random_state=0).fit(ent.reshape(-1, 1))
131 | labels = kmeans.predict(ent.reshape(-1, 1))
132 |
133 | idx = np.where(labels == 1)[0]
134 | iidx = 0
135 | if ent[idx].mean() > ent.mean():
136 | iidx = 1
137 | predict[np.where(labels == iidx)[0]] = args.class_num
138 |
139 | matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
140 | matrix = matrix[np.unique(all_label).astype(int), :]
141 |
142 | acc = matrix.diagonal() / matrix.sum(axis=1) * 100
143 | unknown_acc = acc[-1:].item()
144 | return np.mean(acc[:-1]), np.mean(acc), unknown_acc
145 | else:
146 | return accuracy * 100, mean_ent
147 |
148 |
149 | def print_args(args):
150 | s = "==========================================\n"
151 | for arg, content in args.__dict__.items():
152 | s += "{}:{}\n".format(arg, content)
153 | return s
154 |
155 |
156 | def train_target(args):
157 | dset_loaders = data_load(args)
158 | ## set base network
159 | if args.net[0:3] == 'res':
160 | netF = network.ResBase(res_name=args.net).cuda()
161 | elif args.net[0:3] == 'vgg':
162 | netF = network.VGGBase(vgg_name=args.net).cuda()
163 | else:
164 | netF = network.ViT().cuda()
165 | netB = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features,
166 | bottleneck_dim=args.bottleneck).cuda()
167 | netC = network.feat_classifier(type=args.layer, class_num=args.class_num, bottleneck_dim=args.bottleneck).cuda()
168 |
169 | args.modelpath = args.output_dir_src + '/source_F.pt'
170 | netF.load_state_dict(torch.load(args.modelpath))
171 | args.modelpath = args.output_dir_src + '/source_B.pt'
172 | netB.load_state_dict(torch.load(args.modelpath))
173 | args.modelpath = args.output_dir_src + '/source_C.pt'
174 | netC.load_state_dict(torch.load(args.modelpath))
175 | netC.eval()
176 | for k, v in netC.named_parameters():
177 | v.requires_grad = False
178 | ### add teacher module
179 | if args.net[0:3] == 'res':
180 | netF_t = network.ResBase(res_name=args.net, se=args.se, nl=args.nl).cuda()
181 | elif args.net[0:3] == 'vgg':
182 | netF_t = network.VGGBase(vgg_name=args.net).cuda()
183 | elif args.net == 'vit':
184 | netF_t = network.ViT().cuda()
185 | netB_t = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features,
186 | bottleneck_dim=args.bottleneck).cuda()
187 | ### initial from student
188 | netF_t.load_state_dict(netF.state_dict())
189 | netB_t.load_state_dict(netB.state_dict())
190 |
191 | ### remove grad
192 | for k, v in netF_t.named_parameters():
193 | v.requires_grad = False
194 | for k, v in netB_t.named_parameters():
195 | v.requires_grad = False
196 | param_group = []
197 |
198 | for k, v in netF.named_parameters():
199 | if args.lr_decay1 > 0:
200 | param_group += [{'params': v, 'lr': args.lr * args.lr_decay1}]
201 | else:
202 | v.requires_grad = False
203 | for k, v in netB.named_parameters():
204 | if args.lr_decay2 > 0:
205 | param_group += [{'params': v, 'lr': args.lr * args.lr_decay2}]
206 | else:
207 | v.requires_grad = False
208 |
209 | optimizer = optim.SGD(param_group)
210 | optimizer = op_copy(optimizer)
211 |
212 | tt = 0
213 | iter_num = 0
214 | max_iter = args.max_epoch * len(dset_loaders["target"])
215 | interval_iter = max_iter // args.interval
216 |
217 | while iter_num < max_iter:
218 | try:
219 | inputs_test, _, tar_idx = iter_test.next()
220 | except:
221 | iter_test = iter(dset_loaders["target"])
222 | inputs_test, _, tar_idx = iter_test.next()
223 |
224 | if inputs_test.size(0) == 1:
225 | continue
226 |
227 | if iter_num % interval_iter == 0:
228 | netF.eval()
229 | netB.eval()
230 | mem_label, ENT_THRESHOLD,dd = obtain_label(dset_loaders['test'], netF_t, netB_t, netC, args)
231 | mem_label = torch.from_numpy(mem_label).cuda()
232 | netF.train()
233 | netB.train()
234 |
235 | inputs_test = inputs_test.cuda()
236 |
237 | iter_num += 1
238 | lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
239 |
240 | pred = mem_label[tar_idx]
241 | features_test = netB(netF(inputs_test))
242 | outputs_test = netC(features_test)
243 |
244 | softmax_out = nn.Softmax(dim=1)(outputs_test)
245 | outputs_test_known = outputs_test[pred < args.class_num, :]
246 | pred = pred[pred < args.class_num]
247 | pred_soft = dd[tar_idx]
248 | pred_soft = torch.tensor(pred_soft).cuda()
249 | if len(pred) == 0:
250 | print(tt)
251 | del features_test
252 | del outputs_test
253 | tt += 1
254 | continue
255 |
256 | if args.cls_par > 0:
257 | classifier_loss = nn.CrossEntropyLoss()(outputs_test_known, pred)
258 | classifier_loss *= args.cls_par
259 | if args.kd:
260 | kd_loss = KnowledgeDistillationLoss()(outputs_test, pred_soft)
261 | classifier_loss += kd_loss
262 | else:
263 | classifier_loss = torch.tensor(0.0).cuda()
264 |
265 | if args.ent:
266 | softmax_out_known = nn.Softmax(dim=1)(outputs_test_known)
267 | entropy_loss = torch.mean(loss.Entropy(softmax_out_known))
268 | if args.gent:
269 | msoftmax = softmax_out.mean(dim=0)
270 | gentropy_loss = torch.sum(-msoftmax * torch.log(msoftmax + args.epsilon))
271 | entropy_loss -= gentropy_loss
272 | classifier_loss += entropy_loss * args.ent_par
273 | # EMA update for the teacher
274 | with torch.no_grad():
275 | m = 0.001 # momentum parameter
276 | for param_q, param_k in zip(netF.parameters(), netF_t.parameters()):
277 | param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
278 | for param_q, param_k in zip(netB.parameters(), netB_t.parameters()):
279 | param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
280 | optimizer.zero_grad()
281 | classifier_loss.backward()
282 | optimizer.step()
283 |
284 | if iter_num % interval_iter == 0 or iter_num == max_iter:
285 | netF.eval()
286 | netB.eval()
287 | acc_os1, acc_os2, acc_unknown = cal_acc(dset_loaders['test'], netF, netB, netC, True, ENT_THRESHOLD)
288 | log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}% / {:.2f}% / {:.2f}%'.format(args.name, iter_num,
289 | max_iter, acc_os2, acc_os1,
290 | acc_unknown)
291 | args.out_file.write(log_str + '\n')
292 | args.out_file.flush()
293 | print(log_str + '\n')
294 | netF.train()
295 | netB.train()
296 |
297 | if args.issave:
298 | torch.save(netF.state_dict(), osp.join(args.output_dir, "target_F_" + args.savename + ".pt"))
299 | torch.save(netB.state_dict(), osp.join(args.output_dir, "target_B_" + args.savename + ".pt"))
300 | torch.save(netC.state_dict(), osp.join(args.output_dir, "target_C_" + args.savename + ".pt"))
301 |
302 | return netF, netB, netC
303 |
304 |
305 | def obtain_label(loader, netF, netB, netC, args):
306 | start_test = True
307 | with torch.no_grad():
308 | iter_test = iter(loader)
309 | for _ in range(len(loader)):
310 | data = iter_test.next()
311 | inputs = data[0]
312 | labels = data[1]
313 | inputs = inputs.cuda()
314 | feas = netB(netF(inputs))
315 | outputs = netC(feas)
316 | if start_test:
317 | all_fea = feas.float().cpu()
318 | all_output = outputs.float().cpu()
319 | all_label = labels.float()
320 | start_test = False
321 | else:
322 | all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
323 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
324 | all_label = torch.cat((all_label, labels.float()), 0)
325 |
326 | all_output = nn.Softmax(dim=1)(all_output)
327 | _, predict = torch.max(all_output, 1)
328 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
329 | if args.distance == 'cosine':
330 | all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
331 | all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
332 |
333 | ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1) / np.log(args.class_num)
334 | ent = ent.float().cpu()
335 |
336 | from sklearn.cluster import KMeans
337 | kmeans = KMeans(2, random_state=0).fit(ent.reshape(-1, 1))
338 | labels = kmeans.predict(ent.reshape(-1, 1))
339 |
340 | idx = np.where(labels == 1)[0]
341 | iidx = 0
342 | if ent[idx].mean() > ent.mean():
343 | iidx = 1
344 | known_idx = np.where(kmeans.labels_ != iidx)[0]
345 |
346 | all_fea = all_fea[known_idx, :]
347 | all_output = all_output[known_idx, :]
348 | predict = predict[known_idx]
349 | all_label_idx = all_label[known_idx]
350 | ENT_THRESHOLD = (kmeans.cluster_centers_).mean()
351 |
352 | all_fea = all_fea.float().cpu().numpy()
353 | K = all_output.size(1)
354 | aff = all_output.float().cpu().numpy()
355 | initc = aff.transpose().dot(all_fea)
356 | initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
357 | cls_count = np.eye(K)[predict].sum(axis=0)
358 | labelset = np.where(cls_count > args.threshold)
359 | labelset = labelset[0]
360 |
361 | dd = cdist(all_fea, initc[labelset], args.distance)
362 | pred_label = dd.argmin(axis=1)
363 | pred_label = labelset[pred_label]
364 |
365 | for round in range(1):
366 | aff = np.eye(K)[pred_label]
367 | initc = aff.transpose().dot(all_fea)
368 | initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
369 | dd = cdist(all_fea, initc[labelset], args.distance)
370 | pred_label = dd.argmin(axis=1)
371 | pred_label = labelset[pred_label]
372 |
373 | guess_label = args.class_num * np.ones(len(all_label), )
374 | guess_label[known_idx] = pred_label
375 | D =np.ones((len(all_label),dd.shape[1] ))
376 | D[known_idx] = dd
377 | acc = np.sum(guess_label == all_label.float().numpy()) / len(all_label_idx)
378 | log_str = 'Threshold = {:.2f}, Accuracy = {:.2f}% -> {:.2f}%'.format(ENT_THRESHOLD, accuracy * 100, acc * 100)
379 |
380 | return guess_label.astype('int'), ENT_THRESHOLD,D
381 |
382 |
383 | if __name__ == "__main__":
384 | parser = argparse.ArgumentParser(description='SHOT')
385 | parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
386 | parser.add_argument('--s', type=int, default=0, help="source")
387 | parser.add_argument('--t', type=int, default=1, help="target")
388 | parser.add_argument('--max_epoch', type=int, default=15, help="max iterations")
389 | parser.add_argument('--interval', type=int, default=15)
390 | parser.add_argument('--batch_size', type=int, default=64, help="batch_size")
391 | parser.add_argument('--worker', type=int, default=4, help="number of workers")
392 | parser.add_argument('--dset', type=str, default='office-home', choices=['office-home'])
393 | parser.add_argument('--lr', type=float, default=1e-2, help="learning rate")
394 | parser.add_argument('--net', type=str, default='vit', help="vgg16, resnet50, resnet101")
395 | parser.add_argument('--seed', type=int, default=2020, help="random seed")
396 |
397 | parser.add_argument('--gent', type=bool, default=True)
398 | parser.add_argument('--ent', type=bool, default=True)
399 | parser.add_argument('--kd', type=bool, default=False)
400 |
401 | parser.add_argument('--threshold', type=int, default=0)
402 | parser.add_argument('--cls_par', type=float, default=0.3)
403 | parser.add_argument('--ent_par', type=float, default=1.0)
404 | parser.add_argument('--lr_decay1', type=float, default=0.1)
405 | parser.add_argument('--lr_decay2', type=float, default=1.0)
406 |
407 | parser.add_argument('--bottleneck', type=int, default=256)
408 | parser.add_argument('--epsilon', type=float, default=1e-5)
409 | parser.add_argument('--layer', type=str, default="wn", choices=["linear", "wn"])
410 | parser.add_argument('--classifier', type=str, default="bn", choices=["ori", "bn"])
411 | parser.add_argument('--distance', type=str, default='cosine', choices=["euclidean", "cosine"])
412 | parser.add_argument('--output', type=str, default='san')
413 | parser.add_argument('--output_src', type=str, default='san')
414 | parser.add_argument('--da', type=str, default='oda', choices=['oda'])
415 | parser.add_argument('--issave', type=bool, default=True)
416 | args = parser.parse_args()
417 |
418 | if args.dset == 'office-home':
419 | names = ['Art', 'Clipart', 'Product', 'RealWorld']
420 | args.class_num = 65
421 |
422 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
423 | SEED = args.seed
424 | torch.manual_seed(SEED)
425 | torch.cuda.manual_seed(SEED)
426 | np.random.seed(SEED)
427 | random.seed(SEED)
428 | # torch.backends.cudnn.deterministic = True
429 |
430 | for i in range(len(names)):
431 | if i == args.s:
432 | continue
433 | args.t = i
434 |
435 | folder = './data/'
436 | args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_list.txt'
437 | args.t_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
438 | args.test_dset_path = args.t_dset_path
439 |
440 | if args.dset == 'office-home':
441 | if args.da == 'oda':
442 | args.class_num = 25
443 | args.src_classes = [i for i in range(25)]
444 | args.tar_classes = [i for i in range(65)]
445 |
446 | args.output_dir_src = osp.join(args.output_src, args.da, args.dset, names[args.s][0].upper())
447 | args.output_dir = osp.join(args.output, args.da, args.dset, names[args.s][0].upper() + names[args.t][0].upper())
448 | args.name = names[args.s][0].upper() + names[args.t][0].upper()
449 |
450 | if not osp.exists(args.output_dir):
451 | os.system('mkdir -p ' + args.output_dir)
452 | if not osp.exists(args.output_dir):
453 | os.mkdir(args.output_dir)
454 |
455 | args.savename = 'par_' + str(args.cls_par)
456 | args.out_file = open(osp.join(args.output_dir, 'log_' + args.savename + '.txt'), 'w')
457 | args.out_file.write(print_args(args) + '\n')
458 | args.out_file.flush()
459 | train_target(args)
--------------------------------------------------------------------------------
/image_test.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os, sys
3 | import os.path as osp
4 | import torchvision
5 | import numpy as np
6 | import torch
7 | import torch.nn as nn
8 | import torch.optim as optim
9 | from torchvision import transforms
10 | import network, loss
11 | from torch.utils.data import DataLoader
12 | from data_list import ImageList, ImageList_idx
13 | import random, pdb, math, copy
14 | from tqdm import tqdm
15 | from scipy.spatial.distance import cdist
16 | from sklearn.metrics import confusion_matrix
17 |
18 |
19 | def op_copy(optimizer):
20 | for param_group in optimizer.param_groups:
21 | param_group['lr0'] = param_group['lr']
22 | return optimizer
23 |
24 |
25 | def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75):
26 | decay = (1 + gamma * iter_num / max_iter) ** (-power)
27 | for param_group in optimizer.param_groups:
28 | param_group['lr'] = param_group['lr0'] * decay
29 | param_group['weight_decay'] = 1e-3
30 | param_group['momentum'] = 0.9
31 | param_group['nesterov'] = True
32 | return optimizer
33 |
34 |
35 | def image_train(resize_size=256, crop_size=224, alexnet=False):
36 | if not alexnet:
37 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
38 | std=[0.229, 0.224, 0.225])
39 | else:
40 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
41 | return transforms.Compose([
42 | transforms.Resize((resize_size, resize_size)),
43 | transforms.RandomCrop(crop_size),
44 | transforms.RandomHorizontalFlip(),
45 | transforms.ToTensor(),
46 | normalize
47 | ])
48 |
49 |
50 | def image_test(resize_size=256, crop_size=224, alexnet=False):
51 | if not alexnet:
52 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
53 | std=[0.229, 0.224, 0.225])
54 | else:
55 | normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
56 | return transforms.Compose([
57 | transforms.Resize((resize_size, resize_size)),
58 | transforms.CenterCrop(crop_size),
59 | transforms.ToTensor(),
60 | normalize
61 | ])
62 |
63 |
64 | def data_load(args):
65 | ## prepare data
66 | dsets = {}
67 | dset_loaders = {}
68 | train_bs = args.batch_size
69 | txt_tar = open(args.t_dset_path).readlines()
70 | txt_test = open(args.test_dset_path).readlines()
71 |
72 | if not args.da == 'uda':
73 | label_map_s = {}
74 | for i in range(len(args.src_classes)):
75 | label_map_s[args.src_classes[i]] = i
76 |
77 | new_tar = []
78 | for i in range(len(txt_tar)):
79 | rec = txt_tar[i]
80 | reci = rec.strip().split(' ')
81 | if int(reci[1]) in args.tar_classes:
82 | if int(reci[1]) in args.src_classes:
83 | line = reci[0] + ' ' + str(label_map_s[int(reci[1])]) + '\n'
84 | new_tar.append(line)
85 | else:
86 | line = reci[0] + ' ' + str(len(label_map_s)) + '\n'
87 | new_tar.append(line)
88 | txt_tar = new_tar.copy()
89 | txt_test = txt_tar.copy()
90 |
91 | dsets["target"] = ImageList_idx(txt_tar, transform=image_train())
92 | dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, shuffle=True, num_workers=args.worker,
93 | drop_last=False)
94 | dsets["test"] = ImageList_idx(txt_test, transform=image_test())
95 | dset_loaders["test"] = DataLoader(dsets["test"], batch_size=train_bs * 3, shuffle=False, num_workers=args.worker,
96 | drop_last=False)
97 |
98 | return dset_loaders
99 |
100 |
101 | def cal_acc(loader, netF, netB, netC, flag=False):
102 | start_test = True
103 | with torch.no_grad():
104 | iter_test = iter(loader)
105 | for i in range(len(loader)):
106 | data = iter_test.next()
107 | inputs = data[0]
108 | labels = data[1]
109 | inputs = inputs.cuda()
110 | outputs = netC(netB(netF(inputs)))
111 | outputs_tsne=netB(netF(inputs))
112 | if start_test:
113 | all_output = outputs.float().cpu()
114 | all_output_tsne= outputs_tsne.float().cpu()
115 | all_label = labels.float()
116 | start_test = False
117 | else:
118 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
119 | all_output_tsne = torch.cat((all_output_tsne, outputs_tsne.float().cpu()), 0)
120 | all_label = torch.cat((all_label, labels.float()), 0)
121 | ### tsne
122 | b_out = all_output_tsne.squeeze().cpu()
123 | b_label = all_label.cpu()
124 | colormap_dir = './tsne'
125 | if not os.path.isdir(colormap_dir):
126 | os.mkdir(colormap_dir)
127 | from sklearn.manifold import TSNE
128 | from matplotlib import pyplot as plt
129 | import seaborn as sns
130 | from datetime import datetime
131 | now = datetime.now()
132 | timestamp = datetime.timestamp(now)
133 | dt_object = datetime.fromtimestamp(timestamp)
134 |
135 | colors = sns.color_palette('pastel').as_hex() + sns.color_palette('dark').as_hex() + sns.color_palette('deep').as_hex() + sns.color_palette('muted').as_hex()
136 | print('tsne start!!!')
137 | tsne = TSNE(n_components=2, random_state=0, n_jobs=16)
138 | out_2d = tsne.fit_transform(b_out)
139 | print('tsne done!!!')
140 | # plot the result
141 | vis_x = out_2d[:, 0]
142 | vis_y = out_2d[:, 1]
143 | fig, ax = plt.subplots()
144 | print(np.unique(b_label).shape)
145 | for j in np.unique(b_label).astype(np.int64):
146 | plt.scatter(vis_x[b_label == j], vis_y[b_label == j], c=colors[j])
147 | # plt.colorbar(ticks=range(21))
148 | fig.tight_layout()
149 | ## save confusion matrx
150 | fig.savefig(os.path.join(colormap_dir, str(dt_object)+'tsne.png'))
151 | ###
152 |
153 | _, predict = torch.max(all_output, 1)
154 | ### output record
155 |
156 | with open("Output.txt", "w") as text_file:
157 | for i in range(all_label.size()[0]):
158 | a=(torch.squeeze(predict).float() == all_label)[i]
159 | text_file.write("%s \n" % a)
160 |
161 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
162 | mean_ent = torch.mean(loss.Entropy(nn.Softmax(dim=1)(all_output))).cpu().data.item()
163 |
164 | if flag:
165 | matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
166 | acc = matrix.diagonal() / matrix.sum(axis=1) * 100
167 | aacc = acc.mean()
168 | aa = [str(np.round(i, 2)) for i in acc]
169 | acc = ' '.join(aa)
170 | return aacc, acc
171 | else:
172 | return accuracy * 100, mean_ent
173 |
174 |
175 | def train_target(args):
176 | dset_loaders = data_load(args)
177 | # netF = network.ResBase(res_name=args.net).cuda()
178 |
179 | netF = network.ViT().cuda()
180 | netB = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features,
181 | bottleneck_dim=args.bottleneck).cuda()
182 | netC = network.feat_classifier(type=args.layer, class_num=args.class_num, bottleneck_dim=args.bottleneck).cuda()
183 | ### target
184 | modelpath = args.checkpoint+ '/target_F_par_0.3.pt'
185 | netF.load_state_dict(torch.load(modelpath),strict=False)
186 | modelpath = args.checkpoint + '/target_B_par_0.3.pt'
187 | netB.load_state_dict(torch.load(modelpath))
188 | modelpath = args.checkpoint + '/target_C_par_0.3.pt'
189 | netC.load_state_dict(torch.load(modelpath))
190 | ### source
191 | # modelpath = args.checkpoint+ '/source_F.pt'
192 | # netF.load_state_dict(torch.load(modelpath))
193 | # modelpath = args.checkpoint + '/source_B.pt'
194 | # netB.load_state_dict(torch.load(modelpath))
195 | # modelpath = args.checkpoint + '/source_C.pt'
196 | # netC.load_state_dict(torch.load(modelpath))
197 | netC.eval()
198 | for k, v in netC.named_parameters():
199 | v.requires_grad = False
200 |
201 | param_group = []
202 | for k, v in netF.named_parameters():
203 | if args.lr_decay1 > 0:
204 | param_group += [{'params': v, 'lr': args.lr * args.lr_decay1}]
205 | else:
206 | v.requires_grad = False
207 | for k, v in netB.named_parameters():
208 | if args.lr_decay2 > 0:
209 | param_group += [{'params': v, 'lr': args.lr * args.lr_decay2}]
210 | else:
211 | v.requires_grad = False
212 |
213 | optimizer = optim.SGD(param_group)
214 | optimizer = op_copy(optimizer)
215 |
216 | max_iter = args.max_epoch * len(dset_loaders["target"])
217 | interval_iter = max_iter // args.interval
218 |
219 |
220 |
221 | netF.eval()
222 | netB.eval()
223 | if args.dset == 'VISDA-C':
224 | acc_s_te, acc_list = cal_acc(dset_loaders['test'], netF, netB, netC, True)
225 | log_str = 'Task: {}; Accuracy = {:.2f}%'.format(args.name, acc_s_te) + '\n' + acc_list
226 | else:
227 | acc_s_te, _ = cal_acc(dset_loaders['test'], netF, netB, netC, False)
228 | log_str = 'Task: {}; Accuracy = {:.2f}%'.format(args.name, acc_s_te)
229 |
230 | args.out_file.write(log_str + '\n')
231 | args.out_file.flush()
232 | print(log_str + '\n')
233 |
234 |
235 |
236 | return 1
237 |
238 |
239 | def print_args(args):
240 | s = "==========================================\n"
241 | for arg, content in args.__dict__.items():
242 | s += "{}:{}\n".format(arg, content)
243 | return s
244 |
245 |
246 | def obtain_label(loader, netF, netB, netC, args):
247 | start_test = True
248 | with torch.no_grad():
249 | iter_test = iter(loader)
250 | for _ in range(len(loader)):
251 | data = iter_test.next()
252 | inputs = data[0]
253 | labels = data[1]
254 | inputs = inputs.cuda()
255 | feas = netB(netF(inputs))
256 | outputs = netC(feas)
257 | if start_test:
258 | all_fea = feas.float().cpu()
259 | all_output = outputs.float().cpu()
260 | all_label = labels.float()
261 | start_test = False
262 | else:
263 | all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
264 | all_output = torch.cat((all_output, outputs.float().cpu()), 0)
265 | all_label = torch.cat((all_label, labels.float()), 0)
266 |
267 | all_output = nn.Softmax(dim=1)(all_output)
268 | ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1)
269 | unknown_weight = 1 - ent / np.log(args.class_num)
270 | _, predict = torch.max(all_output, 1)
271 |
272 | accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
273 | if args.distance == 'cosine':
274 | all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
275 | all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
276 |
277 | all_fea = all_fea.float().cpu().numpy()
278 | K = all_output.size(1)
279 | aff = all_output.float().cpu().numpy()
280 | initc = aff.transpose().dot(all_fea)
281 | initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
282 | cls_count = np.eye(K)[predict].sum(axis=0)
283 | labelset = np.where(cls_count > args.threshold)
284 | labelset = labelset[0]
285 | # print(labelset)
286 |
287 | dd = cdist(all_fea, initc[labelset], args.distance)
288 | pred_label = dd.argmin(axis=1)
289 | pred_label = labelset[pred_label]
290 |
291 | for round in range(1):
292 | aff = np.eye(K)[pred_label]
293 | initc = aff.transpose().dot(all_fea)
294 | initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
295 | dd = cdist(all_fea, initc[labelset], args.distance)
296 | pred_label = dd.argmin(axis=1)
297 | pred_label = labelset[pred_label]
298 |
299 | acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
300 | log_str = 'Accuracy = {:.2f}% -> {:.2f}%'.format(accuracy * 100, acc * 100)
301 |
302 | args.out_file.write(log_str + '\n')
303 | args.out_file.flush()
304 | print(log_str + '\n')
305 |
306 | return pred_label.astype('int')
307 |
308 |
309 | if __name__ == "__main__":
310 | parser = argparse.ArgumentParser(description='SHOT')
311 | parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
312 | parser.add_argument('--s', type=int, default=0, help="source")
313 | parser.add_argument('--t', type=int, default=1, help="target")
314 | parser.add_argument('--max_epoch', type=int, default=15, help="max iterations")
315 | parser.add_argument('--interval', type=int, default=15)
316 | parser.add_argument('--batch_size', type=int, default=64, help="batch_size")
317 | parser.add_argument('--worker', type=int, default=4, help="number of workers")
318 | parser.add_argument('--dset', type=str, default='office-home',
319 | choices=['VISDA-C', 'office', 'office-home', 'office-caltech'])
320 | parser.add_argument('--lr', type=float, default=1e-2, help="learning rate")
321 | parser.add_argument('--net', type=str, default='vit', help="alexnet, vgg16, resnet50, res101")
322 | parser.add_argument('--seed', type=int, default=2020, help="random seed")
323 |
324 | parser.add_argument('--gent', type=bool, default=True)
325 | parser.add_argument('--ent', type=bool, default=True)
326 | parser.add_argument('--bnm', type=bool, default=False)
327 |
328 | parser.add_argument('--threshold', type=int, default=0)
329 | parser.add_argument('--cls_par', type=float, default=0.3)
330 | parser.add_argument('--ent_par', type=float, default=1.0)
331 | parser.add_argument('--lr_decay1', type=float, default=0.1)
332 | parser.add_argument('--lr_decay2', type=float, default=1.0)
333 |
334 | parser.add_argument('--bottleneck', type=int, default=256)
335 | parser.add_argument('--epsilon', type=float, default=1e-5)
336 | parser.add_argument('--layer', type=str, default="wn", choices=["linear", "wn"])
337 | parser.add_argument('--classifier', type=str, default="bn", choices=["ori", "bn"])
338 | parser.add_argument('--distance', type=str, default='cosine', choices=["euclidean", "cosine"])
339 | parser.add_argument('--output', type=str, default='san')
340 | parser.add_argument('--output_src', type=str, default='san')
341 | parser.add_argument('--da', type=str, default='uda', choices=['uda', 'pda'])
342 | parser.add_argument('--issave', type=bool, default=True)
343 | parser.add_argument('--checkpoint', type=str, default='')
344 | args = parser.parse_args()
345 |
346 | if args.dset == 'office-home':
347 | names = ['Art', 'Clipart', 'Product', 'RealWorld']
348 | args.class_num = 65
349 | if args.dset == 'office':
350 | names = ['amazon', 'dslr', 'webcam']
351 | args.class_num = 31
352 | if args.dset == 'VISDA-C':
353 | names = ['train', 'validation']
354 | args.class_num = 12
355 | if args.dset == 'office-caltech':
356 | names = ['amazon', 'caltech', 'dslr', 'webcam']
357 | args.class_num = 10
358 |
359 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
360 | SEED = args.seed
361 | torch.manual_seed(SEED)
362 | torch.cuda.manual_seed(SEED)
363 | np.random.seed(SEED)
364 | random.seed(SEED)
365 | # torch.backends.cudnn.deterministic = True
366 |
367 | for i in range(len(names)):
368 | if i == args.s:
369 | continue
370 | args.t = i
371 |
372 | folder = './data/'
373 | args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_list.txt'
374 | args.t_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
375 | args.test_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
376 |
377 | if args.dset == 'office-home':
378 | if args.da == 'pda':
379 | args.class_num = 65
380 | args.src_classes = [i for i in range(65)]
381 | args.tar_classes = [i for i in range(25)]
382 |
383 | args.output_dir_src = osp.join(args.output_src, args.da, args.dset, names[args.s][0].upper())
384 | args.output_dir = osp.join(args.output, args.da, args.dset, names[args.s][0].upper() + names[args.t][0].upper())
385 | args.name = names[args.s][0].upper() + names[args.t][0].upper()
386 |
387 | if not osp.exists(args.output_dir):
388 | os.system('mkdir -p ' + args.output_dir)
389 | if not osp.exists(args.output_dir):
390 | os.mkdir(args.output_dir)
391 |
392 | args.savename = 'par_' + str(args.cls_par)
393 | if args.da == 'pda':
394 | args.gent = ''
395 | args.savename = 'par_' + str(args.cls_par) + '_thr' + str(args.threshold)
396 | args.out_file = open(osp.join(args.output_dir, 'log_' + args.savename + '.txt'), 'w')
397 | args.out_file.write(print_args(args) + '\n')
398 | args.out_file.flush()
399 | train_target(args)
--------------------------------------------------------------------------------
/loss.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | import torch.nn as nn
4 | from torch.autograd import Variable
5 | import math
6 | import torch.nn.functional as F
7 | import pdb
8 |
9 | def Entropy(input_):
10 | bs = input_.size(0)
11 | epsilon = 1e-5
12 | entropy = -input_ * torch.log(input_ + epsilon)
13 | entropy = torch.sum(entropy, dim=1)
14 | return entropy
15 |
16 | def grl_hook(coeff):
17 | def fun1(grad):
18 | return -coeff*grad.clone()
19 | return fun1
20 |
21 | def CDAN(input_list, ad_net, entropy=None, coeff=None, random_layer=None):
22 | softmax_output = input_list[1].detach()
23 | feature = input_list[0]
24 | if random_layer is None:
25 | op_out = torch.bmm(softmax_output.unsqueeze(2), feature.unsqueeze(1))
26 | ad_out = ad_net(op_out.view(-1, softmax_output.size(1) * feature.size(1)))
27 | else:
28 | random_out = random_layer.forward([feature, softmax_output])
29 | ad_out = ad_net(random_out.view(-1, random_out.size(1)))
30 | batch_size = softmax_output.size(0) // 2
31 | dc_target = torch.from_numpy(np.array([[1]] * batch_size + [[0]] * batch_size)).float().cuda()
32 | if entropy is not None:
33 | entropy.register_hook(grl_hook(coeff))
34 | entropy = 1.0+torch.exp(-entropy)
35 | source_mask = torch.ones_like(entropy)
36 | source_mask[feature.size(0)//2:] = 0
37 | source_weight = entropy*source_mask
38 | target_mask = torch.ones_like(entropy)
39 | target_mask[0:feature.size(0)//2] = 0
40 | target_weight = entropy*target_mask
41 | weight = source_weight / torch.sum(source_weight).detach().item() + \
42 | target_weight / torch.sum(target_weight).detach().item()
43 | return torch.sum(weight.view(-1, 1) * nn.BCELoss(reduction='none')(ad_out, dc_target)) / torch.sum(weight).detach().item()
44 | else:
45 | return nn.BCELoss()(ad_out, dc_target)
46 |
47 | def DANN(features, ad_net):
48 | ad_out = ad_net(features)
49 | batch_size = ad_out.size(0) // 2
50 | dc_target = torch.from_numpy(np.array([[1]] * batch_size + [[0]] * batch_size)).float().cuda()
51 | return nn.BCELoss()(ad_out, dc_target)
52 |
53 |
54 | class CrossEntropyLabelSmooth(nn.Module):
55 | """Cross entropy loss with label smoothing regularizer.
56 | Reference:
57 | Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
58 | Equation: y = (1 - epsilon) * y + epsilon / K.
59 | Args:
60 | num_classes (int): number of classes.
61 | epsilon (float): weight.
62 | """
63 |
64 | def __init__(self, num_classes, epsilon=0.1, use_gpu=True, reduction=True):
65 | super(CrossEntropyLabelSmooth, self).__init__()
66 | self.num_classes = num_classes
67 | self.epsilon = epsilon
68 | self.use_gpu = use_gpu
69 | self.reduction = reduction
70 | self.logsoftmax = nn.LogSoftmax(dim=1)
71 |
72 | def forward(self, inputs, targets):
73 | """
74 | Args:
75 | inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
76 | targets: ground truth labels with shape (num_classes)
77 | """
78 | log_probs = self.logsoftmax(inputs)
79 | targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).cpu(), 1)
80 | if self.use_gpu: targets = targets.cuda()
81 | targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
82 | loss = (- targets * log_probs).sum(dim=1)
83 | if self.reduction:
84 | return loss.mean()
85 | else:
86 | return loss
87 | return loss
88 |
89 | class SupConLoss(nn.Module):
90 | """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
91 | It also supports the unsupervised contrastive loss in SimCLR"""
92 | def __init__(self, temperature=0.07, contrast_mode='all',
93 | base_temperature=0.07):
94 | super(SupConLoss, self).__init__()
95 | self.temperature = temperature
96 | self.contrast_mode = contrast_mode
97 | self.base_temperature = base_temperature
98 |
99 | def forward(self, features, labels=None, mask=None):
100 | """Compute loss for model. If both `labels` and `mask` are None,
101 | it degenerates to SimCLR unsupervised loss:
102 | https://arxiv.org/pdf/2002.05709.pdf
103 | Args:
104 | features: hidden vector of shape [bsz, n_views, ...].
105 | labels: ground truth of shape [bsz].
106 | mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
107 | has the same class as sample i. Can be asymmetric.
108 | Returns:
109 | A loss scalar.
110 | """
111 | device = (torch.device('cuda')
112 | if features.is_cuda
113 | else torch.device('cpu'))
114 |
115 | if len(features.shape) < 3:
116 | features=features.unsqueeze(dim=1)
117 | # raise ValueError('`features` needs to be [bsz, n_views, ...],'
118 | # 'at least 3 dimensions are required')
119 | if len(features.shape) > 3:
120 | features = features.view(features.shape[0], features.shape[1], -1)
121 |
122 | batch_size = features.shape[0]
123 | if labels is not None and mask is not None:
124 | raise ValueError('Cannot define both `labels` and `mask`')
125 | elif labels is None and mask is None:
126 | mask = torch.eye(batch_size, dtype=torch.float32).to(device)
127 | elif labels is not None:
128 | labels = labels.contiguous().view(-1, 1)
129 | if labels.shape[0] != batch_size:
130 | raise ValueError('Num of labels does not match num of features')
131 | mask = torch.eq(labels, labels.T).float().to(device)
132 | else:
133 | mask = mask.float().to(device)
134 |
135 | contrast_count = features.shape[1]
136 | contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
137 | if self.contrast_mode == 'one':
138 | anchor_feature = features[:, 0]
139 | anchor_count = 1
140 | elif self.contrast_mode == 'all':
141 | anchor_feature = contrast_feature
142 | anchor_count = contrast_count
143 | else:
144 | raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
145 |
146 | # compute logits
147 | anchor_dot_contrast = torch.div(
148 | torch.matmul(anchor_feature, contrast_feature.T),
149 | self.temperature)
150 | # for numerical stability
151 | logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
152 | logits = anchor_dot_contrast - logits_max.detach()
153 |
154 | # tile mask
155 | mask = mask.repeat(anchor_count, contrast_count)
156 | # mask-out self-contrast cases
157 | logits_mask = torch.scatter(
158 | torch.ones_like(mask),
159 | 1,
160 | torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
161 | 0
162 | )
163 | mask = mask * logits_mask
164 |
165 | # compute log_prob
166 | exp_logits = torch.exp(logits) * logits_mask
167 | log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
168 |
169 | # compute mean of log-likelihood over positive
170 | mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
171 |
172 | # loss
173 | loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
174 | loss = loss.view(anchor_count, batch_size).mean()
175 |
176 | return loss
177 | class SCELoss(torch.nn.Module):
178 | def __init__(self, alpha, beta, num_classes=10):
179 | super(SCELoss, self).__init__()
180 | self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
181 | self.alpha = alpha
182 | self.beta = beta
183 | self.num_classes = num_classes
184 | self.cross_entropy = torch.nn.CrossEntropyLoss()
185 |
186 | def forward(self, pred, labels):
187 | # CCE
188 | ce = self.cross_entropy(pred, labels)
189 |
190 | # RCE
191 | pred = F.softmax(pred, dim=1)
192 | pred = torch.clamp(pred, min=1e-7, max=1.0)
193 | label_one_hot = torch.nn.functional.one_hot(labels, self.num_classes).float().to(self.device)
194 | label_one_hot = torch.clamp(label_one_hot, min=1e-4, max=1.0)
195 | rce = (-1*torch.sum(pred * torch.log(label_one_hot), dim=1))
196 |
197 | # Loss
198 | loss = self.alpha * ce + self.beta * rce.mean()
199 | return loss
200 |
201 |
202 | class KnowledgeDistillationLoss(nn.Module):
203 | def __init__(self, reduction='mean', alpha=-1.):
204 | super().__init__()
205 | self.reduction = reduction
206 | self.alpha = alpha
207 |
208 | def forward(self, inputs, targets, mask=None):
209 | inputs = inputs.narrow(1, 0, targets.shape[1])
210 |
211 | outputs = torch.log_softmax(inputs, dim=1)
212 | labels = torch.softmax(targets * self.alpha, dim=1)
213 |
214 | loss = (outputs * labels).mean(dim=1)
215 |
216 | if mask is not None:
217 | loss = loss * mask.float()
218 |
219 | if self.reduction == 'mean':
220 | outputs = -torch.mean(loss)
221 | elif self.reduction == 'sum':
222 | outputs = -torch.sum(loss)
223 | else:
224 | outputs = -loss
225 |
226 | return outputs
--------------------------------------------------------------------------------
/network.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | import torch.nn as nn
4 | import torchvision
5 | from torchvision import models
6 | from torch.autograd import Variable
7 | import math
8 | import torch.nn.utils.weight_norm as weightNorm
9 | from collections import OrderedDict
10 | from TransUNet.networks.vit_seg_modeling import VisionTransformer as ViT_seg
11 | from TransUNet.networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
12 | from non_local_embedded_gaussian import NONLocalBlock2D
13 |
14 | def calc_coeff(iter_num, high=1.0, low=0.0, alpha=10.0, max_iter=10000.0):
15 | return np.float(2.0 * (high - low) / (1.0 + np.exp(-alpha*iter_num / max_iter)) - (high - low) + low)
16 |
17 | def init_weights(m):
18 | classname = m.__class__.__name__
19 | if classname.find('Conv2d') != -1 or classname.find('ConvTranspose2d') != -1:
20 | nn.init.kaiming_uniform_(m.weight)
21 | nn.init.zeros_(m.bias)
22 | elif classname.find('BatchNorm') != -1:
23 | nn.init.normal_(m.weight, 1.0, 0.02)
24 | nn.init.zeros_(m.bias)
25 | elif classname.find('Linear') != -1:
26 | nn.init.xavier_normal_(m.weight)
27 | nn.init.zeros_(m.bias)
28 |
29 | vgg_dict = {"vgg11":models.vgg11, "vgg13":models.vgg13, "vgg16":models.vgg16, "vgg19":models.vgg19,
30 | "vgg11bn":models.vgg11_bn, "vgg13bn":models.vgg13_bn, "vgg16bn":models.vgg16_bn, "vgg19bn":models.vgg19_bn}
31 | class VGGBase(nn.Module):
32 | def __init__(self, vgg_name):
33 | super(VGGBase, self).__init__()
34 | model_vgg = vgg_dict[vgg_name](pretrained=True)
35 | self.features = model_vgg.features
36 | self.classifier = nn.Sequential()
37 | for i in range(6):
38 | self.classifier.add_module("classifier"+str(i), model_vgg.classifier[i])
39 | self.in_features = model_vgg.classifier[6].in_features
40 |
41 | def forward(self, x):
42 | x = self.features(x)
43 | x = x.view(x.size(0), -1)
44 | x = self.classifier(x)
45 | return x
46 |
47 | res_dict = {"resnet18":models.resnet18, "resnet34":models.resnet34, "resnet50":models.resnet50,
48 | "resnet101":models.resnet101, "resnet152":models.resnet152, "resnext50":models.resnext50_32x4d, "resnext101":models.resnext101_32x8d}
49 |
50 | class ViT(nn.Module):
51 | def __init__(self):
52 | super(ViT, self).__init__()
53 | config_vit = CONFIGS_ViT_seg['R50-ViT-B_16']
54 | config_vit.n_classes = 100
55 | config_vit.n_skip = 3
56 | config_vit.patches.grid = (int(224 / 16), int(224 / 16))
57 | self.feature_extractor = ViT_seg(config_vit, img_size=[224, 224], num_classes=config_vit.n_classes)
58 | self.feature_extractor.load_from(weights=np.load(config_vit.pretrained_path))
59 | self.in_features = 2048
60 |
61 | def forward(self, x):
62 | _, feat = self.feature_extractor(x)
63 | return feat
64 |
65 | class ResBase(nn.Module):
66 | def __init__(self, res_name,se=False, nl=False):
67 | super(ResBase, self).__init__()
68 | model_resnet = res_dict[res_name](pretrained=True)
69 | self.conv1 = model_resnet.conv1
70 | self.bn1 = model_resnet.bn1
71 | self.relu = model_resnet.relu
72 | self.maxpool = model_resnet.maxpool
73 | self.layer1 = model_resnet.layer1
74 | self.layer2 = model_resnet.layer2
75 | self.layer3 = model_resnet.layer3
76 | self.layer4 = model_resnet.layer4
77 | self.avgpool = model_resnet.avgpool
78 | self.in_features = model_resnet.fc.in_features
79 | self.se=se
80 | self.nl=nl
81 | if self.se:
82 | self.SELayer=SELayer(self.in_features)
83 | if self.nl:
84 | self.nlLayer=NONLocalBlock2D(self.in_features)
85 |
86 | def forward(self, x):
87 | x = self.conv1(x)
88 | x = self.bn1(x)
89 | x = self.relu(x)
90 | x = self.maxpool(x)
91 | x = self.layer1(x)
92 | x = self.layer2(x)
93 | x = self.layer3(x)
94 | x = self.layer4(x)
95 | if self.se:
96 | x=self.SELayer(x)
97 | if self.nl:
98 | x=self.nlLayer(x)
99 | x = self.avgpool(x)
100 | x = x.view(x.size(0), -1)
101 |
102 | return x
103 |
104 | class feat_bootleneck(nn.Module):
105 | def __init__(self, feature_dim, bottleneck_dim=256, type="ori"):
106 | super(feat_bootleneck, self).__init__()
107 | self.bn = nn.BatchNorm1d(bottleneck_dim, affine=True)
108 | self.relu = nn.ReLU(inplace=True)
109 | self.dropout = nn.Dropout(p=0.5)
110 | self.bottleneck = nn.Linear(feature_dim, bottleneck_dim)
111 | self.bottleneck.apply(init_weights)
112 | self.type = type
113 |
114 | def forward(self, x):
115 | x = self.bottleneck(x)
116 | if self.type == "bn":
117 | x = self.bn(x)
118 | return x
119 |
120 | class feat_classifier(nn.Module):
121 | def __init__(self, class_num, bottleneck_dim=256, type="linear"):
122 | super(feat_classifier, self).__init__()
123 | self.type = type
124 | if type == 'wn':
125 | self.fc = weightNorm(nn.Linear(bottleneck_dim, class_num), name="weight")
126 | self.fc.apply(init_weights)
127 | else:
128 | self.fc = nn.Linear(bottleneck_dim, class_num)
129 | self.fc.apply(init_weights)
130 |
131 | def forward(self, x):
132 | x = self.fc(x)
133 | return x
134 |
135 | class feat_classifier_two(nn.Module):
136 | def __init__(self, class_num, input_dim, bottleneck_dim=256):
137 | super(feat_classifier_two, self).__init__()
138 | self.type = type
139 | self.fc0 = nn.Linear(input_dim, bottleneck_dim)
140 | self.fc0.apply(init_weights)
141 | self.fc1 = nn.Linear(bottleneck_dim, class_num)
142 | self.fc1.apply(init_weights)
143 |
144 | def forward(self, x):
145 | x = self.fc0(x)
146 | x = self.fc1(x)
147 | return x
148 |
149 | class Res50(nn.Module):
150 | def __init__(self):
151 | super(Res50, self).__init__()
152 | model_resnet = models.resnet50(pretrained=True)
153 | self.conv1 = model_resnet.conv1
154 | self.bn1 = model_resnet.bn1
155 | self.relu = model_resnet.relu
156 | self.maxpool = model_resnet.maxpool
157 | self.layer1 = model_resnet.layer1
158 | self.layer2 = model_resnet.layer2
159 | self.layer3 = model_resnet.layer3
160 | self.layer4 = model_resnet.layer4
161 | self.avgpool = model_resnet.avgpool
162 | self.in_features = model_resnet.fc.in_features
163 | self.fc = model_resnet.fc
164 |
165 | def forward(self, x):
166 | x = self.conv1(x)
167 | x = self.bn1(x)
168 | x = self.relu(x)
169 | x = self.maxpool(x)
170 | x = self.layer1(x)
171 | x = self.layer2(x)
172 | x = self.layer3(x)
173 | x = self.layer4(x)
174 | x = self.avgpool(x)
175 | x = x.view(x.size(0), -1)
176 | y = self.fc(x)
177 | return x, y
178 | class SELayer(nn.Module):
179 | def __init__(self, channel, reduction=16):
180 | super(SELayer, self).__init__()
181 | self.avg_pool = nn.AdaptiveAvgPool2d(1)
182 | self.fc = nn.Sequential(
183 | nn.Linear(channel, channel // reduction, bias=False),
184 | nn.ReLU(inplace=True),
185 | nn.Linear(channel // reduction, channel, bias=False),
186 | nn.Sigmoid()
187 | )
188 |
189 | def forward(self, x):
190 | b, c, _, _ = x.size()
191 | y = self.avg_pool(x).view(b, c)
192 | y = self.fc(y).view(b, c, 1, 1)
193 | return x * y.expand_as(x)
--------------------------------------------------------------------------------
/non_local_embedded_gaussian.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | from torch.nn import functional as F
4 |
5 |
6 | class _NonLocalBlockND(nn.Module):
7 | def __init__(self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True):
8 | super(_NonLocalBlockND, self).__init__()
9 |
10 | assert dimension in [1, 2, 3]
11 |
12 | self.dimension = dimension
13 | self.sub_sample = sub_sample
14 |
15 | self.in_channels = in_channels
16 | self.inter_channels = inter_channels
17 |
18 | if self.inter_channels is None:
19 | self.inter_channels = in_channels // 2
20 | if self.inter_channels == 0:
21 | self.inter_channels = 1
22 |
23 | if dimension == 3:
24 | conv_nd = nn.Conv3d
25 | max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
26 | bn = nn.BatchNorm3d
27 | elif dimension == 2:
28 | conv_nd = nn.Conv2d
29 | max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
30 | bn = nn.BatchNorm2d
31 | else:
32 | conv_nd = nn.Conv1d
33 | max_pool_layer = nn.MaxPool1d(kernel_size=(2))
34 | bn = nn.BatchNorm1d
35 |
36 | self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,
37 | kernel_size=1, stride=1, padding=0)
38 |
39 | if bn_layer:
40 | self.W = nn.Sequential(
41 | conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,
42 | kernel_size=1, stride=1, padding=0),
43 | bn(self.in_channels)
44 | )
45 | nn.init.constant_(self.W[1].weight, 0)
46 | nn.init.constant_(self.W[1].bias, 0)
47 | else:
48 | self.W = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,
49 | kernel_size=1, stride=1, padding=0)
50 | nn.init.constant_(self.W.weight, 0)
51 | nn.init.constant_(self.W.bias, 0)
52 |
53 | self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,
54 | kernel_size=1, stride=1, padding=0)
55 | self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,
56 | kernel_size=1, stride=1, padding=0)
57 |
58 | if sub_sample:
59 | self.g = nn.Sequential(self.g, max_pool_layer)
60 | self.phi = nn.Sequential(self.phi, max_pool_layer)
61 |
62 | def forward(self, x):
63 | '''
64 | :param x: (b, c, t, h, w)
65 | :return:
66 | '''
67 |
68 | batch_size = x.size(0)
69 |
70 | g_x = self.g(x).view(batch_size, self.inter_channels, -1)
71 | g_x = g_x.permute(0, 2, 1)
72 |
73 | theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
74 | theta_x = theta_x.permute(0, 2, 1)
75 | phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
76 | f = torch.matmul(theta_x, phi_x)
77 | f_div_C = F.softmax(f, dim=-1)
78 |
79 | y = torch.matmul(f_div_C, g_x)
80 | y = y.permute(0, 2, 1).contiguous()
81 | y = y.view(batch_size, self.inter_channels, *x.size()[2:])
82 | W_y = self.W(y)
83 | z = W_y+x
84 |
85 | return z
86 |
87 |
88 | class NONLocalBlock1D(_NonLocalBlockND):
89 | def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):
90 | super(NONLocalBlock1D, self).__init__(in_channels,
91 | inter_channels=inter_channels,
92 | dimension=1, sub_sample=sub_sample,
93 | bn_layer=bn_layer)
94 |
95 |
96 | class NONLocalBlock2D(_NonLocalBlockND):
97 | def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):
98 | super(NONLocalBlock2D, self).__init__(in_channels,
99 | inter_channels=inter_channels,
100 | dimension=2, sub_sample=sub_sample,
101 | bn_layer=bn_layer)
102 |
103 |
104 | class NONLocalBlock3D(_NonLocalBlockND):
105 | def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):
106 | super(NONLocalBlock3D, self).__init__(in_channels,
107 | inter_channels=inter_channels,
108 | dimension=3, sub_sample=sub_sample,
109 | bn_layer=bn_layer)
110 |
111 |
112 | if __name__ == '__main__':
113 | import torch
114 |
115 | for (sub_sample, bn_layer) in [(True, True), (False, False), (True, False), (False, True)]:
116 | img = torch.zeros(2, 3, 20)
117 | net = NONLocalBlock1D(3, sub_sample=sub_sample, bn_layer=bn_layer)
118 | out = net(img)
119 | print(out.size())
120 |
121 | img = torch.zeros(2, 3, 20, 20)
122 | net = NONLocalBlock2D(3, sub_sample=sub_sample, bn_layer=bn_layer)
123 | out = net(img)
124 | print(out.size())
125 |
126 | img = torch.randn(2, 3, 8, 20, 20)
127 | net = NONLocalBlock3D(3, sub_sample=sub_sample, bn_layer=bn_layer)
128 | out = net(img)
129 | print(out.size())
--------------------------------------------------------------------------------
/run_office_home_more.sh:
--------------------------------------------------------------------------------
1 | ### pda
2 | python image_source.py --trte val --output ckps/source/ --da pda --gpu_id 0 --dset office-home --max_epoch 50 --s 0 --seed 2019;
3 | python image_target.py --cls_par 0.3 --threshold 10 --da pda --dset office-home --gpu_id 0 --s 0 --output_src ckps/source/ --output ckps/target/ --seed 2019 --kd Ture;
4 |
5 | python image_source.py --trte val --output ckps/source/ --da pda --gpu_id 0 --dset office-home --max_epoch 50 --s 1 --seed 2019;
6 | python image_target.py --cls_par 0.3 --threshold 10 --da pda --dset office-home --gpu_id 0 --s 1 --output_src ckps/source/ --output ckps/target/ --seed 2019 --kd Ture;
7 |
8 | python image_source.py --trte val --output ckps/source/ --da pda --gpu_id 0 --dset office-home --max_epoch 50 --s 2 --seed 2019;
9 | python image_target.py --cls_par 0.3 --threshold 10 --da pda --dset office-home --gpu_id 0 --s 2 --output_src ckps/source/ --output ckps/target/ --seed 2019 --kd Ture;
10 |
11 | python image_source.py --trte val --output ckps/source/ --da pda --gpu_id 0 --dset office-home --max_epoch 50 --s 3 --seed 2019;
12 | python image_target.py --cls_par 0.3 --threshold 10 --da pda --dset office-home --gpu_id 0 --s 3 --output_src ckps/source/ --output ckps/target/ --seed 2019 --kd Ture;
13 |
14 |
15 | ### oda
16 | python image_source.py --trte val --output ckps/source/ --da oda --gpu_id 0 --dset office-home --max_epoch 50 --s 0 --seed 2019;
17 | python image_target_oda.py --cls_par 0.3 --da oda --dset office-home --gpu_id 0 --s 0 --output_src ckps/source/ --output ckps/target/ --seed 2019 --kd Ture;
18 |
19 | python image_source.py --trte val --output ckps/source/ --da oda --gpu_id 0 --dset office-home --max_epoch 50 --s 1 --seed 2019;
20 | python image_target_oda.py --cls_par 0.3 --da oda --dset office-home --gpu_id 0 --s 1 --output_src ckps/source/ --output ckps/target/ --seed 2019 --kd Ture;
21 |
22 | python image_source.py --trte val --output ckps/source/ --da oda --gpu_id 0 --dset office-home --max_epoch 50 --s 2 --seed 2019;
23 | python image_target_oda.py --cls_par 0.3 --da oda --dset office-home --gpu_id 0 --s 2 --output_src ckps/source/ --output ckps/target/ --seed 2019 --kd Ture;
24 |
25 | python image_source.py --trte val --output ckps/source/ --da oda --gpu_id 0 --dset office-home --max_epoch 50 --s 3 --seed 2019;
26 | python image_target_oda.py --cls_par 0.3 --da oda --dset office-home --gpu_id 0 --s 3 --output_src ckps/source/ --output ckps/target/ --seed 2019 --kd Ture;
27 |
--------------------------------------------------------------------------------
/run_office_home_uda.sh:
--------------------------------------------------------------------------------
1 |
2 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office-home --max_epoch 100 --s 0;
3 | python image_target.py --cls_par 0.3 --da uda --dset office-home --gpu_id 0 --s 0 --output_src ckps/source/ --output ckps/target/ --kd Ture;
4 |
5 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office-home --max_epoch 100 --s 1;
6 | python image_target.py --cls_par 0.3 --da uda --dset office-home --gpu_id 0 --s 1 --output_src ckps/source/ --output ckps/target/ --kd Ture;
7 |
8 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office-home --max_epoch 100 --s 2;
9 | python image_target.py --cls_par 0.3 --da uda --dset office-home --gpu_id 0 --s 2 --output_src ckps/source/ --output ckps/target/ --kd Ture;
10 |
11 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office-home --max_epoch 100 --s 3;
12 | python image_target.py --cls_par 0.3 --da uda --dset office-home --gpu_id 0 --s 3 --output_src ckps/source/ --output ckps/target/ --kd Ture;
13 |
14 |
15 |
--------------------------------------------------------------------------------
/run_office_uda.sh:
--------------------------------------------------------------------------------
1 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 0;
2 | python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 0 --output_src ckps/source/ --output ckps/target/ --kd Ture;
3 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 1;
4 | python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 1 --output_src ckps/source/ --output ckps/target/ --kd Ture;
5 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 2;
6 | python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 2 --output_src ckps/source/ --output ckps/target/ --kd Ture;
7 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 1 --dset office --max_epoch 100 --s 0 --bs 2;
8 |
--------------------------------------------------------------------------------
/run_office_uda_ab.sh:
--------------------------------------------------------------------------------
1 | ### se
2 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 0 --net resnet50 --se Ture ;
3 | python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 0 --output_src ckps/source/ --output ckps/target/ --se Ture --net resnet50;
4 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 1 --net resnet50 --se Ture;
5 | python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 1 --output_src ckps/source/ --output ckps/target/ --net resnet50 --se Ture;
6 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 2 --net resnet50 --se Ture ;
7 | python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 2 --output_src ckps/source/ --output ckps/target/ --net resnet50 --se Ture;
8 | ### nonlocal
9 | #python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 0 --net resnet50 --nl Ture;
10 | #python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 0 --output_src ckps/source/ --output ckps/target/ --net resnet50 --nl Ture;
11 | #python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 1 --net resnet50 --nl Ture;
12 | #python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 1 --output_src ckps/source/ --output ckps/target/ --net resnet50 --nl Ture;
13 | #python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 2 --net resnet50 --nl Ture;
14 | #python image_target.py --cls_par 0.3 --da uda --dset office --gpu_id 0 --s 2 --output_src ckps/source/ --output ckps/target/ --net resnet50 --nl Ture;
15 |
16 |
--------------------------------------------------------------------------------
/run_visda.sh:
--------------------------------------------------------------------------------
1 | python image_source.py --trte val --output ckps/source/ --da uda --gpu_id 0 --dset VISDA-C --net resnet101 --lr 1e-3 --max_epoch 10 --s 0;
2 | python image_target.py --cls_par 0.3 --da uda --dset VISDA-C --gpu_id 0 --s 0 --output_src ckps/source/ --output ckps/target/ --kd Ture --lr 1e-3;
3 |
--------------------------------------------------------------------------------