├── .gitignore ├── README.md ├── data ├── monarch.bmp ├── monarch_ARCNN.png ├── monarch_S-Net.png └── monarch_jpeg_q10.png ├── dataset.py ├── example.py ├── main.py ├── model.py └── utils.py /.gitignore: -------------------------------------------------------------------------------- 1 | .DS_Store 2 | .idea 3 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # S-Net 2 | 3 | This repository is implementation of the "S-Net: A Scalable Convolutional Neural Network for JPEG Compression Artifact Reduction".
4 | 5 | ## Requirements 6 | - Python 3.7 7 | - PyTorch 1.0.0 8 | - Tensorflow 1.13.0 9 | - tqdm 4.30.0 10 | - Numpy 1.15.4 11 | - Pillow 5.4.1 12 | 13 | **Tensorflow** is required for quickly fetching image in training phase. 14 | 15 | ## Results 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 26 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 38 | 41 | 42 |
Input
JPEG (Quality 10)
24 |
25 |
27 |
28 |
AR-CNN
S-Net - Metric 8
36 |
37 |
39 |
40 |
43 | 44 | ## Usages 45 | 46 | ### Train 47 | 48 | When training begins, the model weights will be saved every epoch.
49 | If you want to train quickly, you should use **--use_fast_loader** option. 50 | 51 | ```bash 52 | python main.py --num_metrics 8 \ 53 | --structure_type "advanced" \ # classic, advanced 54 | --images_dir "" \ 55 | --outputs_dir "" \ 56 | --jpeg_quality 10 \ 57 | --patch_size 48 \ 58 | --batch_size 16 \ 59 | --num_epochs 20 \ 60 | --lr 1e-4 \ 61 | --threads 8 \ 62 | --seed 123 \ 63 | --use_fast_loader 64 | ``` 65 | 66 | ### Test 67 | 68 | Output results consist of image compressed with JPEG and image with artifacts reduced. 69 | 70 | ```bash 71 | python example --num_metrics 8 \ 72 | --structure_type "advanced" \ # classic, advanced 73 | --weights_path "" \ 74 | --image_path "" \ 75 | --outputs_dir "" \ 76 | --jpeg_quality 10 77 | ``` 78 | -------------------------------------------------------------------------------- /data/monarch.bmp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yjn870/SNet-pytorch/3fd6cc07f5646eeb9afafdb58d874afc0a4b5d46/data/monarch.bmp -------------------------------------------------------------------------------- /data/monarch_ARCNN.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yjn870/SNet-pytorch/3fd6cc07f5646eeb9afafdb58d874afc0a4b5d46/data/monarch_ARCNN.png -------------------------------------------------------------------------------- /data/monarch_S-Net.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yjn870/SNet-pytorch/3fd6cc07f5646eeb9afafdb58d874afc0a4b5d46/data/monarch_S-Net.png -------------------------------------------------------------------------------- /data/monarch_jpeg_q10.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yjn870/SNet-pytorch/3fd6cc07f5646eeb9afafdb58d874afc0a4b5d46/data/monarch_jpeg_q10.png -------------------------------------------------------------------------------- /dataset.py: -------------------------------------------------------------------------------- 1 | import os 2 | os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 3 | 4 | import random 5 | import glob 6 | import io 7 | import numpy as np 8 | import PIL.Image as pil_image 9 | 10 | import tensorflow as tf 11 | config = tf.ConfigProto() 12 | config.gpu_options.allow_growth = True 13 | tf.enable_eager_execution(config=config) 14 | 15 | 16 | class Dataset(object): 17 | def __init__(self, images_dir, patch_size, jpeg_quality, use_fast_loader=False): 18 | self.image_files = sorted(glob.glob(images_dir + '/*')) 19 | self.patch_size = patch_size 20 | self.jpeg_quality = jpeg_quality 21 | self.use_fast_loader = use_fast_loader 22 | 23 | def __getitem__(self, idx): 24 | if self.use_fast_loader: 25 | label = tf.read_file(self.image_files[idx]) 26 | label = tf.image.decode_jpeg(label, channels=3) 27 | label = pil_image.fromarray(label.numpy()) 28 | else: 29 | label = pil_image.open(self.image_files[idx]).convert('RGB') 30 | 31 | # randomly crop patch from training set 32 | crop_x = random.randint(0, label.width - self.patch_size) 33 | crop_y = random.randint(0, label.height - self.patch_size) 34 | label = label.crop((crop_x, crop_y, crop_x + self.patch_size, crop_y + self.patch_size)) 35 | 36 | # additive jpeg noise 37 | buffer = io.BytesIO() 38 | label.save(buffer, format='jpeg', quality=self.jpeg_quality) 39 | input = pil_image.open(buffer) 40 | 41 | input = np.array(input).astype(np.float32) 42 | label = np.array(label).astype(np.float32) 43 | input = np.transpose(input, axes=[2, 0, 1]) 44 | label = np.transpose(label, axes=[2, 0, 1]) 45 | 46 | # normalization 47 | input /= 255.0 48 | label /= 255.0 49 | 50 | return input, label 51 | 52 | def __len__(self): 53 | return len(self.image_files) 54 | -------------------------------------------------------------------------------- /example.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | import os 3 | import io 4 | import torch 5 | import torch.backends.cudnn as cudnn 6 | from torchvision import transforms 7 | import PIL.Image as pil_image 8 | from model import S_Net 9 | 10 | cudnn.benchmark = True 11 | device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 12 | 13 | 14 | if __name__ == '__main__': 15 | parser = argparse.ArgumentParser() 16 | parser.add_argument('--arch', type=str, default='S-Net') 17 | parser.add_argument('--num_metrics', type=int, default=8) 18 | parser.add_argument('--structure_type', type=str, default='classic') 19 | parser.add_argument('--weights_path', type=str, required=True) 20 | parser.add_argument('--image_path', type=str, required=True) 21 | parser.add_argument('--outputs_dir', type=str, required=True) 22 | parser.add_argument('--jpeg_quality', type=int, default=10) 23 | opt = parser.parse_args() 24 | 25 | if not os.path.exists(opt.outputs_dir): 26 | os.makedirs(opt.outputs_dir) 27 | 28 | model = S_Net(opt.num_metrics, opt.structure_type) 29 | 30 | state_dict = model.state_dict() 31 | for n, p in torch.load(opt.weights_path, map_location=lambda storage, loc: storage).items(): 32 | if n in state_dict.keys(): 33 | state_dict[n].copy_(p) 34 | else: 35 | raise KeyError(n) 36 | 37 | model = model.to(device) 38 | model.eval() 39 | 40 | filename = os.path.basename(opt.image_path).split('.')[0] 41 | 42 | input = pil_image.open(opt.image_path).convert('RGB') 43 | 44 | buffer = io.BytesIO() 45 | input.save(buffer, format='jpeg', quality=opt.jpeg_quality) 46 | input = pil_image.open(buffer) 47 | input.save(os.path.join(opt.outputs_dir, '{}_jpeg_q{}.png'.format(filename, opt.jpeg_quality))) 48 | 49 | input = transforms.ToTensor()(input).unsqueeze(0).to(device) 50 | 51 | with torch.no_grad(): 52 | pred = model(input)[-1] 53 | 54 | pred = pred.mul_(255.0).clamp_(0.0, 255.0).squeeze(0).permute(1, 2, 0).byte().cpu().numpy() 55 | output = pil_image.fromarray(pred, mode='RGB') 56 | output.save(os.path.join(opt.outputs_dir, '{}_{}.png'.format(filename, opt.arch))) 57 | -------------------------------------------------------------------------------- /main.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | import os 3 | import torch 4 | from torch import nn 5 | import torch.optim as optim 6 | import torch.backends.cudnn as cudnn 7 | from torch.utils.data.dataloader import DataLoader 8 | from tqdm import tqdm 9 | from model import S_Net 10 | from dataset import Dataset 11 | from utils import AverageMeter 12 | 13 | cudnn.benchmark = True 14 | device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 15 | 16 | 17 | if __name__ == '__main__': 18 | parser = argparse.ArgumentParser() 19 | parser.add_argument('--arch', type=str, default='S-Net') 20 | parser.add_argument('--num_metrics', type=int, default=8) 21 | parser.add_argument('--structure_type', type=str, default='classic') 22 | parser.add_argument('--images_dir', type=str, required=True) 23 | parser.add_argument('--outputs_dir', type=str, required=True) 24 | parser.add_argument('--jpeg_quality', type=int, default=10) 25 | parser.add_argument('--patch_size', type=int, default=48) 26 | parser.add_argument('--batch_size', type=int, default=16) 27 | parser.add_argument('--num_epochs', type=int, default=20) 28 | parser.add_argument('--lr', type=float, default=1e-4) 29 | parser.add_argument('--threads', type=int, default=8) 30 | parser.add_argument('--seed', type=int, default=123) 31 | parser.add_argument('--use_fast_loader', action='store_true') 32 | opt = parser.parse_args() 33 | 34 | if not os.path.exists(opt.outputs_dir): 35 | os.makedirs(opt.outputs_dir) 36 | 37 | torch.manual_seed(opt.seed) 38 | 39 | model = S_Net(opt.num_metrics, opt.structure_type).to(device) 40 | criterion = nn.MSELoss() 41 | optimizer = optim.Adam(model.parameters(), lr=opt.lr) 42 | 43 | dataset = Dataset(opt.images_dir, opt.patch_size, opt.jpeg_quality, opt.use_fast_loader) 44 | dataloader = DataLoader(dataset=dataset, 45 | batch_size=opt.batch_size, 46 | shuffle=True, 47 | num_workers=opt.threads, 48 | pin_memory=True, 49 | drop_last=True) 50 | 51 | for epoch in range(opt.num_epochs): 52 | epoch_losses = AverageMeter() 53 | 54 | with tqdm(total=(len(dataset) - len(dataset) % opt.batch_size)) as _tqdm: 55 | _tqdm.set_description('epoch: {}/{}'.format(epoch + 1, opt.num_epochs)) 56 | for data in dataloader: 57 | inputs, labels = data 58 | inputs = inputs.to(device) 59 | labels = labels.to(device) 60 | 61 | outs = model(inputs) 62 | 63 | loss = 0.0 64 | for i in range(opt.num_metrics): 65 | loss += criterion(outs[i], labels) 66 | 67 | epoch_losses.update(loss.item(), len(inputs)) 68 | 69 | optimizer.zero_grad() 70 | loss.backward() 71 | optimizer.step() 72 | 73 | _tqdm.set_postfix(loss='{:.6f}'.format(epoch_losses.avg)) 74 | _tqdm.update(len(inputs)) 75 | 76 | torch.save(model.state_dict(), os.path.join(opt.outputs_dir, '{}_epoch_{}.pth'.format(opt.arch, epoch))) 77 | -------------------------------------------------------------------------------- /model.py: -------------------------------------------------------------------------------- 1 | from torch import nn 2 | 3 | 4 | class EncoderBlock(nn.Module): 5 | def __init__(self): 6 | super(EncoderBlock, self).__init__() 7 | self.net = nn.Sequential( 8 | nn.Conv2d(3, 256, kernel_size=5, padding=2), 9 | nn.ReLU(inplace=True), 10 | nn.Conv2d(256, 256, kernel_size=3, padding=1), 11 | nn.ReLU(inplace=True) 12 | ) 13 | 14 | def forward(self, x): 15 | return self.net(x) 16 | 17 | 18 | class DecoderBlock(nn.Module): 19 | def __init__(self): 20 | super(DecoderBlock, self).__init__() 21 | self.net = nn.Sequential( 22 | nn.Conv2d(256, 256, kernel_size=3, padding=1), 23 | nn.ReLU(inplace=True), 24 | nn.Conv2d(256, 3, kernel_size=5, padding=2), 25 | nn.ReLU(inplace=True) 26 | ) 27 | 28 | def forward(self, x): 29 | return self.net(x) 30 | 31 | 32 | class ConvolutionalUnit(nn.Module): 33 | def __init__(self, structure_type): 34 | super(ConvolutionalUnit, self).__init__() 35 | self.structure_type = structure_type 36 | 37 | if structure_type == 'classic': 38 | self.net = nn.Sequential( 39 | nn.Conv2d(256, 256, kernel_size=3, padding=1), 40 | nn.ReLU(inplace=True) 41 | ) 42 | elif structure_type == 'advanced': 43 | self.net = nn.Sequential( 44 | nn.Conv2d(256, 256, kernel_size=3, padding=1), 45 | nn.ReLU(inplace=True), 46 | nn.Conv2d(256, 256, kernel_size=3, padding=1), 47 | ) 48 | else: 49 | raise ValueError(structure_type) 50 | 51 | def forward(self, x): 52 | residual = x 53 | x = self.net(x) 54 | if self.structure_type == 'advanced': 55 | x = 0.1 * x 56 | x = residual + x 57 | return x 58 | 59 | 60 | class S_Net(nn.Module): 61 | def __init__(self, num_metrics=8, structure_type='classic'): 62 | super(S_Net, self).__init__() 63 | self.num_metrics = num_metrics 64 | 65 | self.encoder = EncoderBlock() 66 | self.convolution_units = nn.Sequential(*[ConvolutionalUnit(structure_type) for i in range(num_metrics)]) 67 | self.decoders = nn.Sequential(*[DecoderBlock() for i in range(num_metrics)]) 68 | 69 | def forward(self, x): 70 | x = self.encoder(x) 71 | 72 | outs = [] 73 | prev_out = x 74 | for i in range(self.num_metrics): 75 | out = self.convolution_units[i](prev_out) 76 | prev_out = out 77 | outs.append(self.decoders[i](out)) 78 | 79 | return outs 80 | -------------------------------------------------------------------------------- /utils.py: -------------------------------------------------------------------------------- 1 | class AverageMeter(object): 2 | def __init__(self): 3 | self.reset() 4 | 5 | def reset(self): 6 | self.val = 0 7 | self.avg = 0 8 | self.sum = 0 9 | self.count = 0 10 | 11 | def update(self, val, n=1): 12 | self.val = val 13 | self.sum += val * n 14 | self.count += n 15 | self.avg = self.sum / self.count 16 | --------------------------------------------------------------------------------