├── Datasets
└── vase.mat
├── LICENSE
├── README.md
├── Toolbox
├── DCT_Poisson.m
├── DST_Poisson.m
├── FFT_Poisson.m
├── anisotropic_diffusion_integration.m
├── horn_brooks.m
├── make_gradient.m
├── mumford_shah_integration.m
├── phi1_integration.m
├── phi2_integration.m
├── smooth_integration.m
└── tv_integration.m
├── demo_1_survey.m
├── demo_2_quadratic.m
└── demo_3_discontinuities.m
/Datasets/vase.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yqueau/normal_integration/1f69b9f1f35bb79457f6a8af753a5d4978811b11/Datasets/vase.mat
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Codes_Integration
2 | Matlab codes for integration of normals (gradient) over a non-rectangular 2D grid, without boundary condition.
3 |
4 | ## Introduction
5 |
6 | In many computer vision applications (e.g. photometric stereo, shape-from-shading, shape-from-polarization or deflectometry), one estimates the local surface orientation (i.e., normals) in each pixel. A subsequent step consists in integrating these normals into a depth map. These Matlab codes implement the variational normal integration methods discussed in [1], and three famous methods for solving the Poisson equation, which were discussed in our survey [2]. These journal papers summarize research previously presented in the conference papers [3,4,5].
7 |
8 | Features:
9 | - Implementations of Poisson solvers using FFT (see Sec. 3.3 in [2]), using DCT (see Sec. 3.4 in [2], and the modified Jacobi scheme of Horn and Brooks (see Sec. 3.2 in [2], and demo 1);
10 | - A fast (almost n log(n)) quadratic integration over a non-rectangular domain, without boundary condition, without parameter to tune (see Sec. 3 in [1], and demo 2);
11 | - Various non-quadratic, discontinuity-preserving integrators: total variation, non-convex, anisotropic diffusion and Mumford-Shah (all are slower than quadratic integration, and require at least one parameter to be tuned) (see Sec. 4 in [1], and demo 3);
12 | - Possibility to include a depth prior in each method (see Sec. 2.4 in [1]).
13 |
14 |
15 | ## Demos
16 |
17 | The following demo files are provided:
18 |
19 | - `demo_1_survey.m` : demo of the methods presented in Sec. 3 of the survey paper [2]. This shows the importance of boundary conditions, hence the superiority of DCT over DST/FFT for solving the Poisson equation. However, it handles only a rectangular domain, hence Horn and Brook's method is much more accurate for non-rectangular domains. Still, the latter is very slow, hence the quadratic method proposed in [1] is much better: it handles free boundary and free-form domain, while being almost as fast as DCT.
20 |
21 | - `demo_2_domain.m` : demo of fast quadratic integration over a non-rectangular grid. Script shows that when explicitly using the domain, integration is faster and way more accurate (no bias on the boundary of the object due to discontinuity).
22 |
23 | - `demo_3_discontinuities.m` : demo of the four discontinuity-preserving methods. They can be used if the domain of integration has not been pre-calculated.
24 |
25 |
26 |
27 | ## Contents
28 |
29 | The main fuctions for the new variational methods in [1] are in the Toolbox/ folder:
30 | - `make_gradient.m`: given a 2D binary mask, returns the matrix differentiation operators in all 4 directions (D_{u/v}^{+/-} in Sec. 3 in [1])
31 | - `smooth_integration.m`: function for quadratic integration over a non-rectangular grid (Sec. 3 in [1])
32 | - `tv_integration.m`: function for TV integration over a non-rectangular grid (Sec. 4.1 in [1])
33 | - `phi1_integration.m`: function for non-convex (Phi_1 estimator) integration over a non-rectangular grid (Sec. 4.2 in [1])
34 | - `phi2_integration.m`: function for non-convex (Phi_2 estimator) integration over a non-rectangular grid (Sec. 4.2 in [1])
35 | - `anisotropic_diffusion_integration.m`: function for anisotropic diffusion integration over a non-rectangular grid (Sec. 4.3 in [1])
36 | - `mumford_shah_integration.m`: function for Mulford-Sjaj integration over a non-rectangular grid (Sec. 4.4 in [1])
37 |
38 | The four Poisson solvers discussed in [2, Sec. 3] are also provided:
39 | - `horn_brooks.m`: implementation of the modified Horn and Brook's scheme (Jacobi iterations) for Poisson integration over a non-rectangular grid. Needs no boundary condition, but very slow (Sec. 3.2 in [2]).
40 | - `FFT_Poisson.m`: implementation of the FFT integrator. Super fast, but requires a rectangular grid and periodic boundary condition (Sec. 3.3 in [2])
41 | - `DCT_Poisson`: implementation of the DCT integrator. Still very fast, and requires no boundary condition, but domain must be rectangular (Sec. 3.4 in [2])
42 | - `DST_Poisson`: implementation of the DST integrator. Still very fast, handles Dirichlet boundary condition. Domain must be rectangular (Sec. 3.4 in [2]).
43 |
44 |
45 | ## Dependencies
46 |
47 | We strongly recommend to use the CMG preconditioner from Koutis et al., which can be downloaded here:
48 | http://www.cs.cmu.edu/~jkoutis/cmg.html
49 |
50 | If CMG it is not installed, set the "precond" parameter to "none" (no preconditioning, can be very slow for large data) or to "ichol" (modified incomplete Cholesky preconditioner advised in [6], slower than CMG but overall OK). This will be slower, but it should run without any additional library.
51 |
52 |
53 |
54 | ## Usage
55 | - All methods require to provide:
56 | * p: estimation of the gradient in bottom direction (matrix)
57 | * q: estimation of the gradient in right direction (matrix)
58 | - Optional parameters common to all methods
59 | * mask: binary mask of the area of interest (matrix)
60 | * lambda: field of regularization weights for depth prior (matrix)
61 | * z0: depth prior (matrix)
62 | - Discontinuity-preserving methods and Horn and Brook's one require a few other settings, see demos 1 and 3 for details.
63 |
64 | ## References
65 |
66 | [1] "Variational Methods for Normal Integration", Quéau et al., Journal of Mathematical Imaging and Vision 60(4), pp 609--632, 2018. (Arxiv preprint: https://arxiv.org/abs/1709.05965)
67 |
68 | [2] "Normal Integration: a Survey", Quéau et al., Journal of Mathematical Imaging and Vision 60(4), pp 576--593, 2018. (Arxiv preprint: https://arxiv.org/abs/1709.05940)
69 |
70 | These methods build upon three previous conference papers. The new quadratic method is an extension of the method in [3]. The non-convex integrator was introduced in [4], and the TV one in [5].
71 |
72 | [3] "Integration of a Normal Field without Boundary Condition", Durou and Courteille, ICCVW 2007
73 |
74 | [4] "Integrating the Normal Field of a Surface in the Presence of Discontinuities", Durou et al., EMMCVPR2009
75 |
76 | [5] "Edge-Preserving Integration of a Normal Field: Weighted Least Squares and L1 Approaches", Quéau and Durou, SSVM2015
77 |
78 | The modified incomplete Cholesky preconditioner is advised in:
79 |
80 | [6] "Fast and accurate surface normal integration on non-rectangular domains", Bähr et al., Computational Visual Media 3(2), pp. 107--129, 2017
81 |
82 |
83 | Author of codes: Yvain Quéau, Technical University Munich, yvain.queau@tum.de
84 |
85 |
86 |
87 |
--------------------------------------------------------------------------------
/Toolbox/DCT_Poisson.m:
--------------------------------------------------------------------------------
1 | function z = DCT_Poisson(p,q)
2 | % An implementation of the use of DCT for solving the Poisson equation,
3 | % (integration with Neumann boundary condition)
4 | % Code is based on the description in [1], Sec. 3.4
5 | %
6 | % [1] Normal Integration: a Survey - Queau et al., 2017
7 | %
8 | % Usage :
9 | % u=DCT_Poisson(p,q)
10 | % where p and q are MxN matrices, solves in the least square sense
11 | % \nabla u = [p,q] , assuming natural Neumann boundary condition
12 | %
13 | % \nabla u \cdot \eta = [p,q] \cdot \eta on boundaries
14 | %
15 | % Axis : O->y
16 | % |
17 | % x
18 | %
19 | % Fast solution is provided by Discrete Cosine Transform
20 | %
21 | % Implementation : Yvain Queau
22 |
23 | % Divergence of (p,q) using central differences
24 | px = 0.5*(p([2:end end],:)-p([1 1:end-1],:));
25 | qy = 0.5*(q(:,[2:end end])-q(:,[1 1:end-1]));
26 |
27 | % Div(p,q)
28 | f = px+qy;
29 |
30 | % Right hand side of the boundary condition
31 | b = zeros(size(p));
32 | b(1,2:end-1) = -p(1,2:end-1);
33 | b(end,2:end-1) = p(end,2:end-1);
34 | b(2:end-1,1) = -q(2:end-1,1);
35 | b(2:end-1,end) = q(2:end-1,end);
36 | b(1,1) = (1/sqrt(2))*(-p(1,1)-q(1,1));
37 | b(1,end) = (1/sqrt(2))*(-p(1,end)+q(1,end));
38 | b(end,end) = (1/sqrt(2))*(p(end,end)+q(end,end));
39 | b(end,1) = (1/sqrt(2))*(p(end,1)-q(end,1));
40 |
41 | % Modification near the boundaries to enforce the non-homogeneous Neumann BC (Eq. 53 in [1])
42 | f(1,2:end-1) = f(1,2:end-1)-b(1,2:end-1);
43 | f(end,2:end-1) = f(end,2:end-1)-b(end,2:end-1);
44 | f(2:end-1,1) = f(2:end-1,1)-b(2:end-1,1);
45 | f(2:end-1,end) = f(2:end-1,end)-b(2:end-1,end);
46 |
47 | % Modification near the corners (Eq. 54 in [1])
48 | f(1,end) = f(1,end)-sqrt(2)*b(1,end);
49 | f(end,end) = f(end,end)-sqrt(2)*b(end,end);
50 | f(end,1) = f(end,1)-sqrt(2)*b(end,1);
51 | f(1,1) = f(1,1)-sqrt(2)*b(1,1);
52 |
53 | % Cosine transform of f
54 | fcos=dct2(f);
55 |
56 |
57 | % Cosine transform of z (Eq. 55 in [1])
58 | [x,y] = meshgrid(0:size(p,2)-1,0:size(p,1)-1);
59 | denom = 4*((sin(0.5*pi*x/size(p,2))).^2 + (sin(0.5*pi*y/size(p,1))).^2);
60 | z_bar_bar = -fcos./max(eps,denom);
61 |
62 | % Inverse cosine transform :
63 | z = idct2(z_bar_bar);
64 | z=z-min(z(:)); % Z known up to a positive constant, so offset it to get from 0 to max
65 |
66 | return
67 |
68 |
--------------------------------------------------------------------------------
/Toolbox/DST_Poisson.m:
--------------------------------------------------------------------------------
1 | function z = DST_Poisson(p,q,ub)
2 | % An implementation of the use of DST for solving the Poisson equatio,
3 | % (integration with Dirichlet boundary condition)
4 | % Code is based on the description in [1], Sec. 3.4
5 | %
6 | % [1] Normal Integration: a Survey - Queau et al., 2017
7 | %
8 | % Usage :
9 | % u=DST_Poisson(p,q)
10 | % where p and q are MxN matrices, solves in the least square sense
11 | % \nabla u = [p,q] , assuming homogeneous Dirichlet boundary
12 | % condition u = 0 on the boundary
13 | %
14 | % u=DST_Poisson(p,q,ub)
15 | % where p,q and ub are NxM matrix, such as ub(1,:) contains the values
16 | % on the first line, ub(end,:) contains the values on the last line etc.
17 | % Apart from the boundary ub can be anything
18 | %
19 | % Example (weird)
20 | % p = zeros(100,100);
21 | % q = zeros(100,100);
22 | % ub = zeros(size(p));
23 | % ub(1,:)=1:1OO;
24 | % u = DST_Poisson(p,q,ub);
25 | % surfl(u)
26 | %
27 | % This performs the least square solution to \nabla u = [p,q], i.e. :
28 | % min \int_\Omega \| \nablua U - [p,q] \|^2
29 | % where \Omega is square and the Dirichlet boundary condition
30 | % u = ub on the boundary of \Omega.
31 | %
32 | % Axis : O->y
33 | % |
34 | % x
35 | %
36 | % Fast solution is provided by Discrete Sine Transform
37 | %
38 | % Implementation : Yvain Queau
39 |
40 |
41 | if(nargin<3)
42 | ub=zeros(size(p));
43 | end
44 |
45 | % Divergence of (p,q) using central differences
46 | px = 0.5*(p([2:end end],:)-p([1 1:end-1],:));
47 | qy = 0.5*(q(:,[2:end end])-q(:,[1 1:end-1]));
48 | f = px + qy;
49 |
50 | % Modification near the boundaries (Eq. 46 in [1])
51 | f(2,3:end-2) = f(2,3:end-2) - ub(1,3:end-2);
52 | f(end-1,3:end-2) = f(end-1,3:end-2) - ub(end,3:end-2);
53 | f(3:end-2,2) = f(3:end-2,2) - ub(3:end-2,1);
54 | f(3:end-2,end-1) = f(3:end-2,end-1) - ub(3:end-2,end);
55 |
56 | % Modification near the corners (Eq. 47 in [1])
57 | f(2,2) = f(2,2) - ub(2,1) - ub(1,2);
58 | f(2,end-1) = f(2,end-1) - ub(2,end) - ub(1,end-1);
59 | f(end-1,end-1) = f(end-1,end-1) - ub(end-1,end) - ub(end,end-1);
60 | f(end-1,2) = f(end-1,2) - ub(end-1,1) - ub(end,2);
61 |
62 | % Sine transform of f
63 | fsin=dst2(f(2:end-1,2:end-1));
64 |
65 | % Denominator
66 | [x,y] = meshgrid(0:size(p,2)-1,0:size(p,1)-1);
67 | denom = (sin(0.5*pi*x/size(p,2))).^2 + (sin(0.5*pi*y/size(p,1))).^2;
68 | z_bar = -0.25*fsin./denom(2:end-1,2:end-1);
69 |
70 | % Inverse Sine transform :
71 | z=ub;
72 | z(2:end-1,2:end-1) = idst2(z_bar);
73 |
74 | return
75 |
76 |
77 | function y = dst2(x)
78 | y = dst(dst(x)')';
79 | return
80 |
81 | function Y=idst2(X);
82 | Z=idst(X');
83 | Y=idst(Z');
84 | return
85 |
86 |
87 |
--------------------------------------------------------------------------------
/Toolbox/FFT_Poisson.m:
--------------------------------------------------------------------------------
1 | function z = FFT_Poisson(p,q,ub)
2 | % An implementation of the use of FFT for solving the Poisson equation,
3 | % (integration with periodic boundary condition)
4 | % Code is based on the description in [1], Sec. 3.3
5 | %
6 | % [1] Normal Integration: a Survey - Queau et al., 2017
7 | %
8 | % Usage :
9 | % u=FFT_Poisson(p,q)
10 | % where p and q are MxN matrices, solves in the least square sense
11 | % \nabla u = [p,q] , assuming periodic boundary condition
12 | %
13 | % This performs the least square solution to \nabla u = [p,q], i.e. :
14 | % min \int_\Omega \| \nablua U - [p,q] \|^2
15 | % where \Omega is square and periodic boundary condition is enforced
16 | %
17 | % Axis : O->y
18 | % |
19 | % x
20 | %
21 | % Fast solution is provided by Fast Fourier Transform
22 | %
23 | % Implementation : Yvain Queau
24 |
25 |
26 | % Fourier transforms of p and q
27 | p_hat = fft2(p);
28 | q_hat = fft2(q);
29 |
30 | % Fourier transform of z (Eq. 42 in [1])
31 | [y,x] = meshgrid(0:size(p,2)-1,0:size(p,1)-1);
32 | numerator = sin(2*pi*x/size(p,1)).*p_hat+sin(2*pi*y/size(p,2)).*q_hat;
33 | denominator = max(eps,4*j*((sin(pi*x/size(p,1))).^2+(sin(pi*y/size(p,2))).^2));
34 |
35 | % Inverse Fourier transform
36 | z = real(ifft2(numerator./denominator));
37 | z=z-min(z(:)); % Z known up to a positive constant, so offset it to get from 0 to max
38 |
39 | return
40 |
41 |
42 |
43 |
--------------------------------------------------------------------------------
/Toolbox/anisotropic_diffusion_integration.m:
--------------------------------------------------------------------------------
1 | function [z,tab_nrj,tab_rmse] = anisotropic_diffusion_integration(p,q,mask,lambda,z0,mu,nu,maxit,tol,zinit,gt)
2 |
3 | % Check arguments
4 | if(nargin < 2)
5 | disp('Error: Not enough arguments');
6 | return;
7 | end
8 |
9 | [nrows,ncols] = size(p);
10 |
11 | % Set default values for missing arguments
12 | if (~exist('mask','var')|isempty(mask)) mask=ones(nrows,ncols); end;
13 | if (~exist('lambda','var')|isempty(lambda)) lambda = 1e-9*mask; end;
14 | if (~exist('z0','var')|isempty(z0)) z0 = zeros(nrows,ncols); end;
15 | if (~exist('mu','var')|isempty(mu)) mu = 0.01; end;
16 | if (~exist('nu','var')|isempty(nu)) nu = 0.01; end;
17 | if (~exist('maxit','var')|isempty(maxit)) maxit = 100; end;
18 | if (~exist('tol','var')|isempty(tol)) tol = 1e-4; end;
19 | if (~exist('zinit','var')|isempty(zinit)) zinit = z0; end;
20 | if (~exist('gt','var')|isempty(gt)) gt = z0; end;
21 |
22 |
23 | % If lambda is a scalar, make it a matrix
24 | if(size(lambda,1)==1)
25 | lambda = lambda*mask;
26 | end
27 |
28 | % Make finite differences operators
29 | [Dup,Dum,Dvp,Dvm,imask,imaskup,imaskum,imaskvp,imaskvm] = make_gradient(mask);
30 | npix = length(imask);
31 |
32 | % Some stuff used later
33 | Lambda_two = spdiags(lambda(imask),0,npix,npix); % Regularization
34 | if(nargout>1)
35 | tab_nrj = zeros(maxit+1,1);
36 | cpt = 1;
37 | end
38 | if(nargout>2)
39 | tab_rmse = zeros(maxit+1,1);
40 | cpt_rmse = 1;
41 | end
42 | nu2 = nu*nu;
43 |
44 | % Initialization
45 | z = zinit;
46 | App_mat = spdiags(1./(sqrt(1+p(imask).^2./nu2).*sqrt(1+(Dup*z(imask)./mu).^2+(Dvp*z(imask)./mu).^2)),0,npix,npix);
47 | Apm_mat = spdiags(1./(sqrt(1+p(imask).^2./nu2).*sqrt(1+(Dup*z(imask)./mu).^2+(Dvm*z(imask)./mu).^2)),0,npix,npix);
48 | Amp_mat = spdiags(1./(sqrt(1+p(imask).^2./nu2).*sqrt(1+(Dum*z(imask)./mu).^2+(Dvp*z(imask)./mu).^2)),0,npix,npix);
49 | Amm_mat = spdiags(1./(sqrt(1+p(imask).^2./nu2).*sqrt(1+(Dum*z(imask)./mu).^2+(Dvm*z(imask)./mu).^2)),0,npix,npix);
50 | Bpp_mat = spdiags(1./(sqrt(1+q(imask).^2./nu2).*sqrt(1+(Dup*z(imask)./mu).^2+(Dvp*z(imask)./mu).^2)),0,npix,npix);
51 | Bpm_mat = spdiags(1./(sqrt(1+q(imask).^2./nu2).*sqrt(1+(Dup*z(imask)./mu).^2+(Dvm*z(imask)./mu).^2)),0,npix,npix);
52 | Bmp_mat = spdiags(1./(sqrt(1+q(imask).^2./nu2).*sqrt(1+(Dum*z(imask)./mu).^2+(Dvp*z(imask)./mu).^2)),0,npix,npix);
53 | Bmm_mat = spdiags(1./(sqrt(1+q(imask).^2./nu2).*sqrt(1+(Dum*z(imask)./mu).^2+(Dvm*z(imask)./mu).^2)),0,npix,npix);
54 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+norm(App_mat*(Dup*z(imask)-p(imask)))+norm(Bpp_mat*(Dvp*z(imask)-q(imask)))+norm(Apm_mat*(Dup*z(imask)-p(imask)))+norm(Bpm_mat*(Dvm*z(imask)-q(imask)))+norm(Amp_mat*(Dum*z(imask)-p(imask)))+norm(Bmp_mat*(Dvp*z(imask)-q(imask)))+norm(Amm_mat*(Dum*z(imask)-p(imask)))+norm(Bmm_mat*(Dvm*z(imask)-q(imask)));
55 | if(nargout>1)
56 | tab_nrj(cpt) = energie;
57 | cpt = cpt+1;
58 | end
59 | if(nargout>2)
60 | lambda = -mean(z(imask)-gt(imask));
61 | zrmse = z+lambda;
62 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
63 | cpt_rmse = cpt_rmse+1;
64 | end
65 |
66 | % Alternating optimisation loops
67 | for k = 1:maxit
68 |
69 | % z update
70 | A = Lambda_two+(Dup'*(App_mat.^2)*Dup)+(Dvp'*(Bpp_mat.^2)*Dvp)+(Dup'*(Apm_mat.^2)*Dup)+(Dvm'*(Bpm_mat.^2)*Dvm)+(Dum'*(Amp_mat.^2)*Dum)+(Dvp'*(Bmp_mat.^2)*Dvp)+(Dum'*(Amm_mat.^2)*Dum)+(Dvm'*(Bmm_mat.^2)*Dvm);
71 | b = Lambda_two*z0(imask)+(Dup'*(App_mat.^2)*p(imask))+(Dvp'*(Bpp_mat.^2)*q(imask))+(Dup'*(Apm_mat.^2)*p(imask))+(Dvm'*(Bpm_mat.^2)*q(imask))+(Dum'*(Amp_mat.^2)*p(imask))+(Dvp'*(Bmp_mat.^2)*q(imask))+(Dum'*(Amm_mat.^2)*p(imask))+(Dvm'*(Bmm_mat.^2)*q(imask));
72 | %~ precond = cmg_sdd(A);
73 | %~ [z(imask)] = pcg(A,b,1e-4,100,precond,[],z(imask));
74 | [z(imask)] = A\b;
75 |
76 | % w update
77 | App_mat = spdiags(1./(sqrt(1+p(imask).^2./nu2).*sqrt(1./mu+(Dup*z(imask)./mu).^2+(Dvp*z(imask)./mu).^2)),0,npix,npix);
78 | Apm_mat = spdiags(1./(sqrt(1+p(imask).^2./nu2).*sqrt(1./mu+(Dup*z(imask)./mu).^2+(Dvm*z(imask)./mu).^2)),0,npix,npix);
79 | Amp_mat = spdiags(1./(sqrt(1+p(imask).^2./nu2).*sqrt(1./mu+(Dum*z(imask)./mu).^2+(Dvp*z(imask)./mu).^2)),0,npix,npix);
80 | Amm_mat = spdiags(1./(sqrt(1+p(imask).^2./nu2).*sqrt(1./mu+(Dum*z(imask)./mu).^2+(Dvm*z(imask)./mu).^2)),0,npix,npix);
81 | Bpp_mat = spdiags(1./(sqrt(1+q(imask).^2./nu2).*sqrt(1./mu+(Dup*z(imask)./mu).^2+(Dvp*z(imask)./mu).^2)),0,npix,npix);
82 | Bpm_mat = spdiags(1./(sqrt(1+q(imask).^2./nu2).*sqrt(1./mu+(Dup*z(imask)./mu).^2+(Dvm*z(imask)./mu).^2)),0,npix,npix);
83 | Bmp_mat = spdiags(1./(sqrt(1+q(imask).^2./nu2).*sqrt(1./mu+(Dum*z(imask)./mu).^2+(Dvp*z(imask)./mu).^2)),0,npix,npix);
84 | Bmm_mat = spdiags(1./(sqrt(1+q(imask).^2./nu2).*sqrt(1./mu+(Dum*z(imask)./mu).^2+(Dvm*z(imask)./mu).^2)),0,npix,npix);
85 |
86 | % Check CV
87 | energie_old = energie;
88 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+norm(App_mat*(Dup*z(imask)-p(imask)))+norm(Bpp_mat*(Dvp*z(imask)-q(imask)))+norm(Apm_mat*(Dup*z(imask)-p(imask)))+norm(Bpm_mat*(Dvm*z(imask)-q(imask)))+norm(Amp_mat*(Dum*z(imask)-p(imask)))+norm(Bmp_mat*(Dvp*z(imask)-q(imask)))+norm(Amm_mat*(Dum*z(imask)-p(imask)))+norm(Bmm_mat*(Dvm*z(imask)-q(imask)));
89 | if(nargout>1)
90 | tab_nrj(cpt) = energie;
91 | cpt = cpt+1;
92 | end
93 | if(nargout>2)
94 | lambda = -mean(z(imask)-gt(imask));
95 | zrmse = z+lambda;
96 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
97 | cpt_rmse = cpt_rmse+1;
98 | end
99 |
100 | %~ figure(1)
101 | %~ surfl(z,[-135 30]);
102 | %~ view(-35,20)
103 | %~ axis ij;
104 | %~ axis equal;
105 | %~ axis([1 320 1 320 -20 70]);
106 | %~ shading flat;
107 | %~ colormap gray;
108 | %~
109 | %~ grid off
110 | %~ drawnow
111 | %~
112 | %~ figure(2)
113 | %~ wupdisp = NaN*ones(nrows,ncols);
114 | %~ wupdisp(imask) = spdiags(App_mat,0);
115 | %~ imagesc(wupdisp);
116 | %~ colormap gray
117 | %~ colorbar
118 |
119 | if(nargout>1)
120 | figure(3)
121 | plot(tab_nrj(1:cpt-1))
122 | drawnow
123 | end
124 | if(nargout>2)
125 | figure(4)
126 | plot(tab_rmse(1:cpt_rmse-1))
127 | drawnow
128 | end
129 |
130 | relative_residual = abs(energie-energie_old)./abs(energie_old);
131 | disp(sprintf('it %d - EAT = %.4f - res : %.6f',k,energie,relative_residual));
132 | if(relative_residual < tol & k > 5)
133 | break;
134 | end
135 | end
136 | if(k==maxit)
137 | disp('max number of iterations reached');
138 | end
139 |
140 | % Put NaNs outside the mask
141 | z(mask==0) = NaN;
142 | wup(mask==0) = NaN;
143 | wum(mask==0) = NaN;
144 | wvp(mask==0) = NaN;
145 | wvm(mask==0) = NaN;
146 |
147 | if(nargout>1)
148 | tab_nrj = tab_nrj(1:k+1);
149 | end
150 | if(nargout>2)
151 | tab_rmse = tab_rmse(1:k+1);
152 | end
153 | end
154 |
--------------------------------------------------------------------------------
/Toolbox/horn_brooks.m:
--------------------------------------------------------------------------------
1 | function [u,ma,tab_rmse] = horn_brooks(p,q,omega,it_max,tol,trace,u0,ground_truth)
2 | %hb integrates the gradient field [p,q] by minimizing the
3 | %functional F=\iint_{\Omega} \| \nabla U(x,y) - [p,q](x,y) \|^2 dx dy
4 | %using the improved Horn and Brooks scheme
5 | %
6 | % U = hb(P,Q) uses default values
7 | % [U,ma,tab_rmse] = hb(P,Q,[],[],[],[],GT) also provides the computed masks and the evolution of RMSE between U and GT (ground truth)
8 | % U = hb(P,Q,OMEGA) uses the integration domain OMEGA (default : ones(size(p)))
9 | % U = hb(P,Q,OMEGA) uses the value gamma=ALPHA (default : 1)
10 | % U = hb(P,Q,OMEGA,IT_MAX) performs IT_MAX iterations (default : 100*size(p,1))
11 | % U = hb(P,Q,OMEGA,IT_MAX,TRACE) : if trace=1, it shows the recovered surface every 100 iterations (default : 0)
12 | % U = hb(P,Q,OMEGA,IT_MAX,TRACE,U0) : starts with surface U=U0 (default : zeros(size(p)))
13 | % U = hb(P,Q,OMEGA,IT_MAX,TRACE,U0,GT) : if a ground-truth is provided, the RMSE can be computed and displayed if TRACE=1
14 | if (~exist('ground_truth','var')|isempty(ground_truth))
15 | save_rmse=0;
16 | else
17 | save_rmse=1;
18 | end
19 |
20 | if (~exist('tol','var')|isempty(tol)) tol=1e-3; end;
21 | if (~exist('u0','var')|isempty(u0)) u0=zeros(size(p)); end;
22 | if (~exist('trace','var')|isempty(trace)) trace=0; end;
23 | if (~exist('it_max','var')|isempty(it_max)) it_max=100*size(p,1); end;
24 | if (~exist('omega','var')|isempty(omega)) omega=ones(size(p)); end;
25 |
26 |
27 |
28 |
29 | [nrows,ncols]=size(omega);
30 | imask = find(omega>0);
31 | npix=length(imask);
32 | u=u0;
33 | u(omega==0)=NaN;
34 | tab_rmse=[];
35 |
36 | % Calcul des masques :
37 | % ma1 : voisins de dessous et de droite dans omega
38 | % ma2 : ma0 \ ma1
39 | % ma3 : points de ma1 avec voisins de dessus et de gauche dans ma1
40 | % ma4 : dans ma1, mais pas celui de gauche
41 | % ma5 : gauche dans ma1, mais pas celui de dessus
42 | % ma6 : ni voisin de gauche, ni voisin de dessus dans ma1
43 | % ma7 : ma2 avec voisins de dessus et de gauche dans ma1
44 | % ma8 : dans ma1, mais pas celui de gauche
45 | % ma9 : gauche dans ma1, mais pas celui de dessus
46 | % ma10: ni voisin de gauche, ni voisin de dessus dans ma1
47 | ma=zeros(nrows,ncols,9);
48 | ma(1:end-1,1:end-1,1)=omega(1:end-1,1:end-1).*omega(2:end,1:end-1).*omega(1:end-1,2:end);
49 | ma(:,:,2)=omega.*(~ma(:,:,1));
50 | ma(2:end,2:end,3)=ma(2:end,2:end,1).*ma(1:end-1,2:end,1).*ma(2:end,1:end-1,1);
51 | ma(2:end,2:end,4)=ma(2:end,2:end,1).*ma(1:end-1,2:end,1).*(~ma(2:end,1:end-1,1));
52 | ma(2:end,1,4)=ma(2:end,1,1).*ma(1:end-1,1,1);
53 | ma(2:end,2:end,5)=ma(2:end,2:end,1).*(~ma(1:end-1,2:end,1)).*(ma(2:end,1:end-1,1));
54 | ma(1,2:end,5)=ma(1,2:end,1).*ma(1,1:end-1,1);
55 | ma(2:end,2:end,6)=ma(2:end,2:end,1).*(~ma(1:end-1,2:end,1)).*(~ma(2:end,1:end-1,1));
56 | ma(2:end,1,6)=ma(2:end,1,1).*(~ma(1:end-1,1,1)); % Added
57 | ma(1,2:end,6)=ma(1,2:end,1).*(~ma(1,1:end-1,1)); % Added
58 | ma(1,1,6)=ma(1,1,1);
59 | ma(2:end,2:end,7)=ma(2:end,2:end,2).*(ma(1:end-1,2:end,1)).*(ma(2:end,1:end-1,1));
60 | ma(2:end,2:end,8)=ma(2:end,2:end,2).*(ma(1:end-1,2:end,1)).*(~ma(2:end,1:end-1,1));
61 | ma(2:end,1,8)=ma(2:end,1,2).*ma(1:end-1,1,1);
62 | ma(2:end,2:end,9)=ma(2:end,2:end,2).*(~ma(1:end-1,2:end,1)).*(ma(2:end,1:end-1,1));
63 | ma(1,2:end,9)=ma(1,2:end,2).*ma(1,1:end-1,1);
64 |
65 | ind3=find(ma(:,:,3)>0);
66 | ind4=find(ma(:,:,4)>0);
67 | ind5=find(ma(:,:,5)>0);
68 | ind6=find(ma(:,:,6)>0);
69 | ind7=find(ma(:,:,7)>0);
70 | ind8=find(ma(:,:,8)>0);
71 | ind9=find(ma(:,:,9)>0);
72 |
73 | p_haut=[zeros(1,ncols);p(1:end-1,:)];
74 | p_bas =[p(2:end,:);zeros(1,ncols)];
75 | q_gauche=[zeros(nrows,1),q(:,1:end-1)];
76 | q_droite=[q(:,2:end),zeros(nrows,1)];
77 | pq3=0.125*(p_haut(ind3)-p_bas(ind3)+q_gauche(ind3)-q_droite(ind3));
78 | pq4=(p_haut(ind4)-p_bas(ind4)-q(ind4)-q_droite(ind4))/6;
79 | pq5=(-p(ind5)-p_bas(ind5)+q_gauche(ind5)-q_droite(ind5))/6;
80 | pq6=0.25*(-p(ind6)-p_bas(ind6)-q(ind6)-q_droite(ind6));
81 | pq7=0.25*(p_haut(ind7)+p(ind7)+q_gauche(ind7)+q(ind7));
82 | pq8=0.5*(p_haut(ind8)+p(ind8));
83 | pq9=0.5*(q_gauche(ind9)+q(ind9));
84 |
85 | if(trace)
86 | h=figure();
87 | h2=figure();
88 | end
89 |
90 | for it=1:it_max
91 |
92 | u_prec = u;
93 |
94 | u_haut=[zeros(1,ncols);u(1:end-1,:)];
95 | u_bas =[u(2:end,:);zeros(1,ncols)];
96 | u_gauche=[zeros(nrows,1),u(:,1:end-1)];
97 | u_droite=[u(:,2:end),zeros(nrows,1)];
98 | u_bd=u_bas+u_droite;
99 | u_hg=u_haut+u_gauche;
100 | u3=0.25*(u_bd(ind3)+u_hg(ind3));
101 | u4=(u_bd(ind4)+u_haut(ind4))/3;
102 | u5=(u_bd(ind5)+u_gauche(ind5))/3;
103 | u6=0.5*u_bd(ind6);
104 | u7=0.5*u_hg(ind7);
105 | u8=u_haut(ind8);
106 | u9=u_gauche(ind9);
107 |
108 | u(ind3)=u3+pq3;
109 | u(ind4)=u4+pq4;
110 | u(ind5)=u5+pq5;
111 | u(ind6)=u6+pq6;
112 | u(ind7)=u7+pq7;
113 | u(ind8)=u8+pq8;
114 | u(ind9)=u9+pq9;
115 |
116 | % Cas particuliers
117 | u(end,end)=0.5*(u(end-1,end)+u(end,end-1));
118 |
119 | rel_res = norm(u_prec(imask)-u(imask))/norm(u_prec(imask));
120 | if( rel_res < tol )
121 | disp('Convergence reached')
122 | break;
123 | end
124 |
125 | if(save_rmse)
126 | moyenne_ecarts=mean(u(omega>0)-ground_truth(omega>0));
127 | u=u-moyenne_ecarts;
128 | rmse=sqrt(sum((u(omega>0)-ground_truth(omega>0)).^2)/npix);
129 | tab_rmse=[tab_rmse,rmse];
130 | end
131 |
132 | if(trace)
133 | % Affichage de la surface
134 | if(mod(it,100)==1)
135 | disp(sprintf('it %d - rel. res : %.9f',it,rel_res));
136 | figure(h)
137 | surfl((u),[0 90])
138 | axis ij
139 | view(-45,15)
140 | axis equal
141 | shading flat
142 | colormap gray
143 |
144 | if(save_rmse)
145 | figure(h2)
146 | plot((1:it)/size(p,1),tab_rmse)
147 | xlabel('$k/n$','Interpreter','Latex','FontSize',28)
148 | ylabel('RMSE','Interpreter','Latex','FontSize',28)
149 | set(gca,'FontSize',18)
150 | end
151 |
152 | end
153 | end
154 | end
155 |
156 |
157 |
158 | end
159 |
--------------------------------------------------------------------------------
/Toolbox/make_gradient.m:
--------------------------------------------------------------------------------
1 | function [Dup,Dum,Dvp,Dvm,imask,imaskup,imaskum,imaskvp,imaskvm,Sup,Sum,Svp,Svm] = make_gradient(mask)
2 |
3 | [nrows,ncols] = size(mask);
4 | Omega_padded = padarray(mask,[1 1],0);
5 |
6 | % Pixels who have bottom neighbor in mask
7 | Omega(:,:,1) = mask.*Omega_padded(3:end,2:end-1);
8 | % Pixels who have top neighbor in mask
9 | Omega(:,:,2) = mask.*Omega_padded(1:end-2,2:end-1);
10 | % Pixels who have right neighbor in mask
11 | Omega(:,:,3) = mask.*Omega_padded(2:end-1,3:end);
12 | % Pixels who have left neighbor in mask
13 | Omega(:,:,4) = mask.*Omega_padded(2:end-1,1:end-2);
14 |
15 |
16 | imask = find(mask>0);
17 | index_matrix = zeros(nrows,ncols);
18 | index_matrix(imask) = 1:length(imask);
19 |
20 | % Dv matrix
21 | % When there is a neighbor on the right : forward differences
22 | idx_c = find(Omega(:,:,3)>0);
23 | [xc,yc] = ind2sub(size(mask),idx_c);
24 | indices_centre = index_matrix(idx_c);
25 | indices_right = index_matrix(sub2ind(size(mask),xc,yc+1));
26 | indices_right = indices_right(:);
27 | II = indices_centre;
28 | JJ = indices_right;
29 | KK = ones(length(indices_centre),1);
30 | II = [II;indices_centre];
31 | JJ = [JJ;indices_centre];
32 | KK = [KK;-ones(length(indices_centre),1)];
33 |
34 | Dvp = sparse(II,JJ,KK,length(imask),length(imask));
35 | Svp = speye(length(imask));
36 | Svp = Svp(index_matrix(idx_c),:);
37 | imaskvp = index_matrix(idx_c);
38 |
39 | % When there is a neighbor on the left : backward differences
40 | idx_c = find(Omega(:,:,4)>0);
41 | [xc,yc] = ind2sub(size(mask),idx_c);
42 | indices_centre = index_matrix(idx_c);
43 | indices_right = index_matrix(sub2ind(size(mask),xc,yc-1));
44 | indices_right = indices_right(:);
45 | II = [indices_centre];
46 | JJ = [indices_right];
47 | KK = [-ones(length(indices_centre),1)];
48 | II = [II;indices_centre];
49 | JJ = [JJ;indices_centre];
50 | KK = [KK;ones(length(indices_centre),1)];
51 |
52 | Dvm = sparse(II,JJ,KK,length(imask),length(imask));
53 | Svm = speye(length(imask));
54 | Svm = Svm(index_matrix(idx_c),:);
55 | imaskvm = index_matrix(idx_c);
56 |
57 |
58 | % Du matrix
59 | % When there is a neighbor on the bottom : forward differences
60 | idx_c = find(Omega(:,:,1)>0);
61 | [xc,yc] = ind2sub(size(mask),idx_c);
62 | indices_centre = index_matrix(idx_c);
63 | indices_right = index_matrix(sub2ind(size(mask),xc+1,yc));
64 | indices_right = indices_right(:);
65 | II = indices_centre;
66 | JJ = indices_right;
67 | KK = ones(length(indices_centre),1);
68 | II = [II;indices_centre];
69 | JJ = [JJ;indices_centre];
70 | KK = [KK;-ones(length(indices_centre),1)];
71 |
72 | Dup = sparse(II,JJ,KK,length(imask),length(imask));
73 | Sup = speye(length(imask));
74 | Sup = Sup(index_matrix(idx_c),:);
75 | imaskup = index_matrix(idx_c);
76 |
77 | % When there is a neighbor on the top : backward differences
78 | idx_c = find(Omega(:,:,2)>0);
79 | [xc,yc] = ind2sub(size(mask),idx_c);
80 | indices_centre = index_matrix(idx_c);
81 | indices_right = index_matrix(sub2ind(size(mask),xc-1,yc));
82 | indices_right = indices_right(:);
83 | II = [indices_centre];
84 | JJ = [indices_right];
85 | KK = [-ones(length(indices_centre),1)];
86 | II = [II;indices_centre];
87 | JJ = [JJ;indices_centre];
88 | KK = [KK;ones(length(indices_centre),1)];
89 |
90 | Dum = sparse(II,JJ,KK,length(imask),length(imask));
91 | Sum = speye(length(imask));
92 | Sum = Sum(index_matrix(idx_c),:);
93 | imaskum = index_matrix(idx_c);
94 |
95 | end
96 |
--------------------------------------------------------------------------------
/Toolbox/mumford_shah_integration.m:
--------------------------------------------------------------------------------
1 | function [z,wup,wum,wvp,wvm,tab_nrj,tab_rmse] = mumford_shah_integration(p,q,mask,lambda,z0,mu,epsilon,maxit,tol,zinit,gt)
2 |
3 | % Check arguments
4 | if(nargin < 2)
5 | disp('Error: Not enough arguments');
6 | return;
7 | end
8 |
9 | [nrows,ncols] = size(p);
10 |
11 | % Set default values for missing arguments
12 | if (~exist('mask','var')|isempty(mask)) mask=ones(nrows,ncols); end;
13 | if (~exist('lambda','var')|isempty(lambda)) lambda = 1e-9*mask; end;
14 | if (~exist('z0','var')|isempty(z0)) z0 = zeros(nrows,ncols); end;
15 | if (~exist('mu','var')|isempty(mu)) mu = 1e-3; end;
16 | if (~exist('epsilon','var')|isempty(epsilon)) epsilon = 1e-3; end;
17 | if (~exist('maxit','var')|isempty(maxit)) maxit = 100; end;
18 | if (~exist('tol','var')|isempty(tol)) tol = 1e-4; end;
19 | if (~exist('zinit','var')|isempty(zinit)) zinit = z0; end;
20 | if (~exist('gt','var')|isempty(gt)) gt = z0; end;
21 |
22 |
23 | % If lambda is a scalar, make it a matrix
24 | if(size(lambda,1)==1)
25 | lambda = lambda*mask;
26 | end
27 |
28 | % Make finite differences operators
29 | [Dup,Dum,Dvp,Dvm,imask,imaskup,imaskum,imaskvp,imaskvm] = make_gradient(mask);
30 | npix = length(imask);
31 |
32 | % Some stuff used later
33 | L = 0.5*(Dup'*Dup+Dum'*Dum+Dvp'*Dvp+Dvm'*Dvm); % Laplacian
34 | Lambda_two = spdiags(lambda(imask),0,npix,npix); % Regularization
35 | DuptDup = Dup'*Dup;
36 | DumtDum = Dum'*Dum;
37 | DvptDvp = Dvp'*Dvp;
38 | DvmtDvm = Dvm'*Dvm;
39 | bw = 0.5*((1/(4*epsilon))*ones(npix,1));
40 | if(nargout>5)
41 | tab_nrj = zeros(maxit+1,1);
42 | cpt = 1;
43 | end
44 | if(nargout>6)
45 | tab_rmse = zeros(maxit+1,1);
46 | cpt_rmse = 1;
47 | end
48 |
49 |
50 | % Initialization
51 | z = zinit;
52 |
53 | wup = zeros(npix,1);wup(imaskup) = 1;
54 | wum = zeros(npix,1);wum(imaskum) = 1;
55 | wvp = zeros(npix,1);wvp(imaskvp) = 1;
56 | wvm = zeros(npix,1);wvm(imaskvm) = 1;
57 | Wup2_mat = spdiags(wup.^2,0,npix,npix);
58 | Wum2_mat = spdiags(wum.^2,0,npix,npix);
59 | Wvp2_mat = spdiags(wvp.^2,0,npix,npix);
60 | Wvm2_mat = spdiags(wvm.^2,0,npix,npix);
61 | Eup2_mat = spdiags((Dup*z(imask)-p(imask)).^2,0,npix,npix);
62 | Eum2_mat = spdiags((Dum*z(imask)-p(imask)).^2,0,npix,npix);
63 | Evp2_mat = spdiags((Dvp*z(imask)-q(imask)).^2,0,npix,npix);
64 | Evm2_mat = spdiags((Dvm*z(imask)-q(imask)).^2,0,npix,npix);
65 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+0.5*((norm(wup-1))/(4*epsilon)+(norm(wum-1))/(4*epsilon)+(norm(wvp-1))/(4*epsilon)+(norm(wvm-1))/(4*epsilon)+epsilon*norm(Dup*wup)+epsilon*norm(Dum*wum)+epsilon*norm(Dvp*wvp)+epsilon*norm(Dvm*wvp)+mu*norm(sqrt(Eup2_mat)*wup)+mu*norm(sqrt(Eum2_mat)*wum)+mu*norm(sqrt(Evp2_mat)*wvp)+mu*norm(sqrt(Evm2_mat)*wvm));
66 | if(nargout>5)
67 | tab_nrj(cpt) = energie;
68 | cpt = cpt+1;
69 | end
70 | if(nargout>6)
71 | lambda = -mean(z(imask)-gt(imask));
72 | zrmse = z+lambda;
73 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
74 | cpt_rmse = cpt_rmse+1;
75 | end
76 |
77 | % Alternating optimisation loops
78 | for k = 1:maxit
79 |
80 |
81 | % w update
82 | Eup2_mat = spdiags((Dup*z(imask)-p(imask)).^2,0,npix,npix);
83 | Eum2_mat = spdiags((Dum*z(imask)-p(imask)).^2,0,npix,npix);
84 | Evp2_mat = spdiags((Dvp*z(imask)-q(imask)).^2,0,npix,npix);
85 | Evm2_mat = spdiags((Dvm*z(imask)-q(imask)).^2,0,npix,npix);
86 | Aup = 0.5*(mu*Eup2_mat+epsilon*DuptDup+(1/(4*epsilon))*speye(npix));
87 | Avp = 0.5*(mu*Evp2_mat+epsilon*DvptDvp+(1/(4*epsilon))*speye(npix));
88 | Aum = 0.5*(mu*Eum2_mat+epsilon*DumtDum+(1/(4*epsilon))*speye(npix));
89 | Avm = 0.5*(mu*Evm2_mat+epsilon*DvmtDvm+(1/(4*epsilon))*speye(npix));
90 | [wup,fl] = pcg(Aup,bw,1e-4,100,[],[],wup);
91 | [wum,fl] = pcg(Aum,bw,1e-4,100,[],[],wum);
92 | [wvp,fl] = pcg(Avp,bw,1e-4,100,[],[],wvp);
93 | [wvm,fl] = pcg(Avm,bw,1e-4,100,[],[],wvm);
94 | Wup2_mat = spdiags(wup.^2,0,npix,npix);
95 | Wum2_mat = spdiags(wum.^2,0,npix,npix);
96 | Wvp2_mat = spdiags(wvp.^2,0,npix,npix);
97 | Wvm2_mat = spdiags(wvm.^2,0,npix,npix);
98 |
99 | % z update
100 |
101 | A = 0.5*mu*(Dup'*Wup2_mat*Dup+Dum'*Wum2_mat*Dum+Dvp'*Wvp2_mat*Dvp+Dvm'*Wvm2_mat*Dvm)+Lambda_two; % Matrix of the system
102 | b = 0.5*mu*(Dup'*Wup2_mat+Dum'*Wum2_mat)*p(imask)+0.5*mu*(Dvp'*Wvp2_mat+Dvm'*Wvm2_mat)*q(imask)+Lambda_two*z0(imask);
103 | [z(imask),fl] = pcg(A,b,1e-4,100,[],[],z(imask));
104 |
105 |
106 |
107 | % Check CV
108 | energie_old = energie;
109 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+0.5*((norm(wup-1))/(4*epsilon)+(norm(wum-1))/(4*epsilon)+(norm(wvp-1))/(4*epsilon)+(norm(wvm-1))/(4*epsilon)+epsilon*norm(Dup*wup)+epsilon*norm(Dum*wum)+epsilon*norm(Dvp*wvp)+epsilon*norm(Dvm*wvp)+mu*norm(sqrt(Eup2_mat)*wup)+mu*norm(sqrt(Eum2_mat)*wum)+mu*norm(sqrt(Evp2_mat)*wvp)+mu*norm(sqrt(Evm2_mat)*wvm));
110 | if(nargout>5)
111 | tab_nrj(cpt) = energie;
112 | cpt = cpt+1;
113 | end
114 | if(nargout>6)
115 | lambda = -mean(z(imask)-gt(imask));
116 | zrmse = z+lambda;
117 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
118 | cpt_rmse = cpt_rmse+1;
119 | end
120 |
121 | if(nargout>5)
122 | if(mod(k,20)==1)
123 | figure(3)
124 | plot(tab_nrj(1:cpt-1))
125 | %~ drawnow
126 | end
127 | end
128 | if(nargout>6)
129 | if(mod(k,20)==1)
130 | figure(4)
131 | plot(tab_rmse(1:cpt_rmse-1))
132 | %~ drawnow
133 | end
134 | end
135 | %~ if(mod(k,5)==1)
136 | %~ figure(1)
137 | %~ surfl(z,[-135 30]);
138 | %~ view(-35,20)
139 | %~ shading flat;
140 | %~ colormap gray;
141 | %~ grid off
142 | %~ axis ij;
143 | %~ axis equal;
144 | %~ axis([1 size(p,1) 1 size(p,2) min(z(:)) max(z(:))]);
145 | %~ drawnow
146 | %~ end
147 |
148 | relative_residual = abs(energie-energie_old)./abs(energie_old);
149 | disp(sprintf('it %d - EAT = %.4f - res : %.6f',k,energie,relative_residual))
150 | if(relative_residual < tol & k>5)
151 | break;
152 | end
153 | end
154 | if(k==maxit)
155 | disp('max number of iterations reached');
156 | end
157 |
158 | % Put NaNs outside the mask
159 | z(mask==0) = NaN;
160 | wup(mask==0) = NaN;
161 | wum(mask==0) = NaN;
162 | wvp(mask==0) = NaN;
163 | wvm(mask==0) = NaN;
164 |
165 | if(nargout>5)
166 | tab_nrj = tab_nrj(1:k+1);
167 | end
168 | if(nargout>6)
169 | tab_rmse = tab_rmse(1:k+1);
170 | end
171 | end
172 |
--------------------------------------------------------------------------------
/Toolbox/phi1_integration.m:
--------------------------------------------------------------------------------
1 | function [z,tab_nrj,tab_rmse] = phi1_integration(p,q,mask,lambda,z0,beta,gamma,maxit,tol,zinit,gt)
2 |
3 | % Check arguments
4 | if(nargin < 2)
5 | disp('Error: Not enough arguments');
6 | return;
7 | end
8 |
9 | [nrows,ncols] = size(p);
10 |
11 | % Set default values for missing arguments
12 | if (~exist('mask','var')|isempty(mask)) mask=ones(nrows,ncols); end;
13 | if (~exist('lambda','var')|isempty(lambda)) lambda = 1e-9*mask; end;
14 | if (~exist('z0','var')|isempty(z0)) z0 = zeros(nrows,ncols); end;
15 | if (~exist('beta','var')|isempty(beta)) beta = 0.99; end;
16 | if (~exist('gamma','var')|isempty(gamma)) gamma = 0.01; end;
17 | if (~exist('maxit','var')|isempty(maxit)) maxit = 100; end;
18 | if (~exist('tol','var')|isempty(tol)) tol = 1e-4; end;
19 | if (~exist('zinit','var')|isempty(zinit)) zinit = z0; end;
20 | if (~exist('gt','var')|isempty(gt)) gt = z0; end;
21 |
22 |
23 | max_backtracking = 100;
24 | Linit = 0.5;
25 | L = Linit;
26 | c = 1e-2;
27 | eta = 1.2;
28 |
29 | % If lambda is a scalar, make it a matrix
30 | if(size(lambda,1)==1)
31 | lambda = lambda*mask;
32 | end
33 |
34 | % Make finite differences operators
35 | [Dup,Dum,Dvp,Dvm,imask,imaskup,imaskum,imaskvp,imaskvm] = make_gradient(mask);
36 | npix = length(imask);
37 |
38 | % Some stuff used later
39 | II = transpose(1:2*npix);
40 | JJ = repmat(1:npix,[2 1]);
41 | JJ = JJ(:); % 1 1 2 2 3 3 4 4....
42 | Dt = sparse([],[],[],npix,2*npix,6*npix);
43 | Dt(:,1:2:end-1) = Dup';
44 | Dt(:,2:2:end) = Dvp';
45 | Dt2 = sparse([],[],[],npix,2*npix,6*npix);
46 | Dt2(:,1:2:end-1) = Dup';
47 | Dt2(:,2:2:end) = Dvm';
48 | Dt3 = sparse([],[],[],npix,2*npix,6*npix);
49 | Dt3(:,1:2:end-1) = Dum';
50 | Dt3(:,2:2:end) = Dvp';
51 | Dt4 = sparse([],[],[],npix,2*npix,6*npix);
52 | Dt4(:,1:2:end-1) = Dum';
53 | Dt4(:,2:2:end) = Dvm';
54 | Dz_minus_g = zeros(2,npix);
55 | Dz_minus_g2 = zeros(2,npix);
56 | Dz_minus_g3 = zeros(2,npix);
57 | Dz_minus_g4 = zeros(2,npix);
58 |
59 | Lambda_two = spdiags(lambda(imask),0,npix,npix); % Regularization
60 |
61 | if(nargout>1)
62 | tab_nrj = zeros(maxit+1,1);
63 | cpt = 1;
64 | end
65 | if(nargout>2)
66 | tab_rmse = zeros(maxit+1,1);
67 | cpt_rmse = 1;
68 | end
69 |
70 | % Initialization
71 | z = zinit;
72 | zprevious = z;
73 |
74 |
75 | % Compute gradient of f at current estimate
76 | % Residual
77 | Dz_minus_g(1,:) = Dup*z(imask)-p(imask);
78 | Dz_minus_g(2,:) = Dvp*z(imask)-q(imask);
79 | Dz_minus_g2(1,:) = Dup*z(imask)-p(imask);
80 | Dz_minus_g2(2,:) = Dvm*z(imask)-q(imask);
81 | Dz_minus_g3(1,:) = Dum*z(imask)-p(imask);
82 | Dz_minus_g3(2,:) = Dvp*z(imask)-q(imask);
83 | Dz_minus_g4(1,:) = Dum*z(imask)-p(imask);
84 | Dz_minus_g4(2,:) = Dvm*z(imask)-q(imask);
85 | % Normalized residual
86 | norme_Dz_minus_g = gamma^2+(Dz_minus_g(1,:).^2+Dz_minus_g(2,:).^2);
87 | norme_Dz_minus_g2 = gamma^2+(Dz_minus_g2(1,:).^2+Dz_minus_g2(2,:).^2);
88 | norme_Dz_minus_g3 = gamma^2+(Dz_minus_g3(1,:).^2+Dz_minus_g3(2,:).^2);
89 | norme_Dz_minus_g4 = gamma^2+(Dz_minus_g4(1,:).^2+Dz_minus_g4(2,:).^2);
90 |
91 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+0.25*(sum(log(norme_Dz_minus_g))+sum(log(norme_Dz_minus_g2))+sum(log(norme_Dz_minus_g3))+sum(log(norme_Dz_minus_g4)));
92 |
93 | if(nargout>1)
94 | tab_nrj(cpt) = energie;
95 | cpt = cpt+1;
96 | end
97 | if(nargout>2)
98 | lambda_rmse = -mean(z(imask)-gt(imask));
99 | zrmse = z+lambda_rmse;
100 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
101 | cpt_rmse = cpt_rmse+1;
102 | end
103 |
104 | % Current energy
105 | f_curr = 0.25*(sum(log(norme_Dz_minus_g))+sum(log(norme_Dz_minus_g2))+sum(log(norme_Dz_minus_g3))+sum(log(norme_Dz_minus_g4)));
106 |
107 | % Alternating optimisation loops
108 | for k = 1:maxit
109 |
110 | Lcurr = L;
111 |
112 | % Current gradient
113 | Dz_minus_g = bsxfun(@rdivide,Dz_minus_g,norme_Dz_minus_g);
114 | Dz_minus_g2 = bsxfun(@rdivide,Dz_minus_g2,norme_Dz_minus_g2);
115 | Dz_minus_g3 = bsxfun(@rdivide,Dz_minus_g3,norme_Dz_minus_g3);
116 | Dz_minus_g4 = bsxfun(@rdivide,Dz_minus_g4,norme_Dz_minus_g4);
117 | % Make it a matrix
118 | Dz_minus_g_mat = sparse(II,JJ,Dz_minus_g(:));
119 | Dz_minus_g_mat2 = sparse(II,JJ,Dz_minus_g2(:));
120 | Dz_minus_g_mat3 = sparse(II,JJ,Dz_minus_g3(:));
121 | Dz_minus_g_mat4 = sparse(II,JJ,Dz_minus_g4(:));
122 | % Get all terms inside the sum
123 | grad_f_curr = sum(Dt*Dz_minus_g_mat+Dt2*Dz_minus_g_mat2+Dt3*Dz_minus_g_mat3+Dt4*Dz_minus_g_mat4,2);
124 |
125 | % Lazy backtracking to set stepsize
126 | lc = 0; % lc = 1 if Lipschitz constant L is big enough
127 | while(lc < max_backtracking)
128 | alpha = 1.99*(1-beta)/L; % Descent stepsize
129 |
130 | % Forward update, given the gradient
131 | zbar = z(imask) - alpha*grad_f_curr+beta*(z(imask)-zprevious(imask));
132 | % Backward update (prox. update)
133 | znext = (zbar + 2*alpha*(lambda(imask)).*z0(imask))./(1+2*alpha*(lambda(imask)));
134 |
135 | z_dist = znext-z(imask); % Evaluate the difference between current and next estimate
136 |
137 | % Next energy
138 | Dz_minus_g(1,:) = Dup*znext(imask)-p(imask);
139 | Dz_minus_g(2,:) = Dvp*znext(imask)-q(imask);
140 | Dz_minus_g2(1,:) = Dup*znext(imask)-p(imask);
141 | Dz_minus_g2(2,:) = Dvm*znext(imask)-q(imask);
142 | Dz_minus_g3(1,:) = Dum*znext(imask)-p(imask);
143 | Dz_minus_g3(2,:) = Dvp*znext(imask)-q(imask);
144 | Dz_minus_g4(1,:) = Dum*znext(imask)-p(imask);
145 | Dz_minus_g4(2,:) = Dvm*znext(imask)-q(imask);
146 | norme_Dz_minus_g = gamma^2+(Dz_minus_g(1,:).^2+Dz_minus_g(2,:).^2);
147 | norme_Dz_minus_g2 = gamma^2+(Dz_minus_g2(1,:).^2+Dz_minus_g2(2,:).^2);
148 | norme_Dz_minus_g3 = gamma^2+(Dz_minus_g3(1,:).^2+Dz_minus_g3(2,:).^2);
149 | norme_Dz_minus_g4 = gamma^2+(Dz_minus_g4(1,:).^2+Dz_minus_g4(2,:).^2);
150 |
151 | f_next = 0.25*(sum(log(norme_Dz_minus_g))+sum(log(norme_Dz_minus_g2))+sum(log(norme_Dz_minus_g3))+sum(log(norme_Dz_minus_g4)));
152 |
153 | % Lipschitz test
154 | if(f_next <= f_curr+grad_f_curr'*z_dist+0.5*L*z_dist'*z_dist)
155 | L = L/1.05;
156 | break; % if Lipschitz => stepsize is small enough
157 | else
158 | lc = lc+1; % if not Lipschitz => try smaller stepsize
159 | L = eta*L;
160 | end
161 | end
162 |
163 | % Update auxiliary variables
164 | zprevious = z;
165 | z(imask) = znext;
166 | f_curr = f_next;
167 |
168 | % Current residual
169 | Dz_minus_g(1,:) = Dup*z(imask)-p(imask);
170 | Dz_minus_g(2,:) = Dvp*z(imask)-q(imask);
171 | Dz_minus_g2(1,:) = Dup*z(imask)-p(imask);
172 | Dz_minus_g2(2,:) = Dvm*z(imask)-q(imask);
173 | Dz_minus_g3(1,:) = Dum*z(imask)-p(imask);
174 | Dz_minus_g3(2,:) = Dvp*z(imask)-q(imask);
175 | Dz_minus_g4(1,:) = Dum*z(imask)-p(imask);
176 | Dz_minus_g4(2,:) = Dvm*z(imask)-q(imask);
177 | % Normalized residual
178 | norme_Dz_minus_g = gamma^2+(Dz_minus_g(1,:).^2+Dz_minus_g(2,:).^2);
179 | norme_Dz_minus_g2 = gamma^2+(Dz_minus_g2(1,:).^2+Dz_minus_g2(2,:).^2);
180 | norme_Dz_minus_g3 = gamma^2+(Dz_minus_g3(1,:).^2+Dz_minus_g3(2,:).^2);
181 | norme_Dz_minus_g4 = gamma^2+(Dz_minus_g4(1,:).^2+Dz_minus_g4(2,:).^2);
182 |
183 | %~
184 | %~ % After a few iterations, decrease the Lipschitz constant for speedup
185 | %~ if(mod(k,50) == 1)
186 | %~
187 | %~ % Current gradient
188 | %~ Dz_minus_g = bsxfun(@rdivide,Dz_minus_g,norme_Dz_minus_g);
189 | %~ Dz_minus_g2 = bsxfun(@rdivide,Dz_minus_g2,norme_Dz_minus_g2);
190 | %~ Dz_minus_g3 = bsxfun(@rdivide,Dz_minus_g3,norme_Dz_minus_g3);
191 | %~ Dz_minus_g4 = bsxfun(@rdivide,Dz_minus_g4,norme_Dz_minus_g4);
192 | %~ % Make it a matrix
193 | %~ Dz_minus_g_mat = sparse(II,JJ,Dz_minus_g(:));
194 | %~ Dz_minus_g_mat2 = sparse(II,JJ,Dz_minus_g2(:));
195 | %~ Dz_minus_g_mat3 = sparse(II,JJ,Dz_minus_g3(:));
196 | %~ Dz_minus_g_mat4 = sparse(II,JJ,Dz_minus_g4(:));
197 | %~ % Get all terms inside the sum
198 | %~ grad_f_curr = sum(Dt*Dz_minus_g_mat+Dt2*Dz_minus_g_mat2+Dt3*Dz_minus_g_mat3+Dt4*Dz_minus_g_mat4,2);
199 | %~
200 | %~ % Lazy backtracking to set stepsize
201 | %~ lc = 0; % lc = 1 if Lipschitz constant L is big enough
202 | %~ while(lc < max_backtracking)
203 | %~ alpha = 2*(1-beta)/(c+L); % Descent stepsize
204 | %~
205 | %~ % Forward update, given the gradient
206 | %~ zbar = z(imask) - alpha*grad_f_curr+beta*(z(imask)-zprevious(imask));
207 | %~ % Backward update (prox. update)
208 | %~ znext = (zbar + 2*alpha*(lambda(imask)).*z0(imask))./(1+2*alpha*(lambda(imask)));
209 | %~
210 | %~ z_dist = znext-z(imask); % Evaluate the difference between current and next estimate
211 | %~
212 | %~ % Next energy
213 | %~ Dz_minus_g(1,:) = Dup*znext(imask)-p(imask);
214 | %~ Dz_minus_g(2,:) = Dvp*znext(imask)-q(imask);
215 | %~ Dz_minus_g2(1,:) = Dup*znext(imask)-p(imask);
216 | %~ Dz_minus_g2(2,:) = Dvm*znext(imask)-q(imask);
217 | %~ Dz_minus_g3(1,:) = Dum*znext(imask)-p(imask);
218 | %~ Dz_minus_g3(2,:) = Dvp*znext(imask)-q(imask);
219 | %~ Dz_minus_g4(1,:) = Dum*znext(imask)-p(imask);
220 | %~ Dz_minus_g4(2,:) = Dvm*znext(imask)-q(imask);
221 | %~ norme_Dz_minus_g = gamma^2+(Dz_minus_g(1,:).^2+Dz_minus_g(2,:).^2);
222 | %~ norme_Dz_minus_g2 = gamma^2+(Dz_minus_g2(1,:).^2+Dz_minus_g2(2,:).^2);
223 | %~ norme_Dz_minus_g3 = gamma^2+(Dz_minus_g3(1,:).^2+Dz_minus_g3(2,:).^2);
224 | %~ norme_Dz_minus_g4 = gamma^2+(Dz_minus_g4(1,:).^2+Dz_minus_g4(2,:).^2);
225 | %~
226 | %~ f_next = 0.5*(sum(log(norme_Dz_minus_g))+sum(log(norme_Dz_minus_g2))+sum(log(norme_Dz_minus_g3))+sum(log(norme_Dz_minus_g4)));
227 | %~
228 | %~ % Lipschitz test
229 | %~ if(f_next <= f_curr+grad_f_curr'*z_dist+0.5*L*z_dist'*z_dist)
230 | %~ L = L/eta;
231 | %~ lc = lc+1; % if not Lipschitz => try smaller stepsize
232 | %~ else
233 | %~ lc = max_backtracking; % if Lipschitz => stepsize is small enough
234 | %~ end
235 | %~ end
236 | %~ end
237 |
238 |
239 | % Check CV
240 | energie_old = energie;
241 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+0.25*(sum(log(norme_Dz_minus_g))+sum(log(norme_Dz_minus_g2))+sum(log(norme_Dz_minus_g3))+sum(log(norme_Dz_minus_g4)));
242 |
243 | if(nargout>1)
244 | tab_nrj(cpt) = energie;
245 | cpt = cpt+1;
246 | end
247 | if(nargout>2)
248 | lambda_rmse = -mean(z(imask)-gt(imask));
249 | zrmse = z+lambda_rmse;
250 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
251 | cpt_rmse = cpt_rmse+1;
252 | end
253 |
254 |
255 | if(nargout>1)
256 | if(mod(k,100)==1)
257 | figure(3)
258 | plot(tab_nrj(1:cpt-1))
259 | %~ drawnow
260 | end
261 | end
262 | if(nargout>2)
263 | if(mod(k,100)==1)
264 | figure(4)
265 | plot(tab_rmse(1:cpt_rmse-1))
266 | %~ drawnow
267 | end
268 | end
269 | %~ if(mod(k,50)==1)
270 | %~ figure(473)
271 | %~ surfl(z,[-135 30]);
272 | %~ view(-35,20)
273 | %~ shading flat;
274 | %~ colormap gray;
275 | %~ grid off
276 | %~ axis ij;
277 | %~ axis equal;
278 | %~ axis([1 size(p,1) 1 size(p,2) min(z(:)) max(z(:))]);
279 | %~ drawnow
280 | %~ end
281 |
282 | relative_residual = abs(energie-energie_old)./abs(energie_old);
283 | disp(sprintf('it %d - EAT = %.4f - res : %.6f',k,energie,relative_residual));
284 | if(relative_residual < tol & (energie 500)
285 | break;
286 | end
287 | end
288 | if(k == maxit)
289 | disp('Max number of iterations reached');
290 | end
291 |
292 | %~ close(473)
293 |
294 | % Put NaNs outside the mask
295 | z(mask==0) = NaN;
296 |
297 | if(nargout>1)
298 | tab_nrj = tab_nrj(1:k+1);
299 | end
300 | if(nargout>2)
301 | tab_rmse = tab_rmse(1:k+1);
302 | end
303 | end
304 |
--------------------------------------------------------------------------------
/Toolbox/phi2_integration.m:
--------------------------------------------------------------------------------
1 | function [z,tab_nrj,tab_rmse] = phi2_integration(p,q,mask,lambda,z0,beta,gamma,maxit,tol,zinit,gt)
2 |
3 | % Check arguments
4 | if(nargin < 2)
5 | disp('Error: Not enough arguments');
6 | return;
7 | end
8 |
9 | [nrows,ncols] = size(p);
10 |
11 | % Set default values for missing arguments
12 | if (~exist('mask','var')|isempty(mask)) mask=ones(nrows,ncols); end;
13 | if (~exist('lambda','var')|isempty(lambda)) lambda = 1e-9*mask; end;
14 | if (~exist('z0','var')|isempty(z0)) z0 = zeros(nrows,ncols); end;
15 | if (~exist('beta','var')|isempty(beta)) beta = 0.99; end;
16 | if (~exist('gamma','var')|isempty(gamma)) gamma = 0.01; end;
17 | if (~exist('maxit','var')|isempty(maxit)) maxit = 100; end;
18 | if (~exist('tol','var')|isempty(tol)) tol = 1e-4; end;
19 | if (~exist('zinit','var')|isempty(zinit)) zinit = z0; end;
20 | if (~exist('gt','var')|isempty(gt)) gt = z0; end;
21 |
22 |
23 | max_backtracking = 100;
24 | Linit = 0.5;
25 | L = Linit;
26 | c = 1e-2;
27 | eta = 1.2;
28 |
29 | % If lambda is a scalar, make it a matrix
30 | if(size(lambda,1)==1)
31 | lambda = lambda*mask;
32 | end
33 |
34 | % Make finite differences operators
35 | [Dup,Dum,Dvp,Dvm,imask,imaskup,imaskum,imaskvp,imaskvm] = make_gradient(mask);
36 | npix = length(imask);
37 |
38 | % Some stuff used later
39 | II = transpose(1:2*npix);
40 | JJ = repmat(1:npix,[2 1]);
41 | JJ = JJ(:); % 1 1 2 2 3 3 4 4....
42 | Dt = sparse([],[],[],npix,2*npix,6*npix);
43 | Dt(:,1:2:end-1) = Dup';
44 | Dt(:,2:2:end) = Dvp';
45 | Dt2 = sparse([],[],[],npix,2*npix,6*npix);
46 | Dt2(:,1:2:end-1) = Dup';
47 | Dt2(:,2:2:end) = Dvm';
48 | Dt3 = sparse([],[],[],npix,2*npix,6*npix);
49 | Dt3(:,1:2:end-1) = Dum';
50 | Dt3(:,2:2:end) = Dvp';
51 | Dt4 = sparse([],[],[],npix,2*npix,6*npix);
52 | Dt4(:,1:2:end-1) = Dum';
53 | Dt4(:,2:2:end) = Dvm';
54 | Dz_minus_g = zeros(2,npix);
55 | Dz_minus_g2 = zeros(2,npix);
56 | Dz_minus_g3 = zeros(2,npix);
57 | Dz_minus_g4 = zeros(2,npix);
58 |
59 | Lambda_two = spdiags(lambda(imask),0,npix,npix); % Regularization
60 |
61 | if(nargout>1)
62 | tab_nrj = zeros(maxit+1,1);
63 | cpt = 1;
64 | end
65 | if(nargout>2)
66 | tab_rmse = zeros(maxit+1,1);
67 | cpt_rmse = 1;
68 | end
69 |
70 | % Initialization
71 | z = zinit;
72 | zprevious = z;
73 |
74 |
75 | % Compute gradient of f at current estimate
76 | % Residual
77 | Dz_minus_g(1,:) = Dup*z(imask)-p(imask);
78 | Dz_minus_g(2,:) = Dvp*z(imask)-q(imask);
79 | Dz_minus_g2(1,:) = Dup*z(imask)-p(imask);
80 | Dz_minus_g2(2,:) = Dvm*z(imask)-q(imask);
81 | Dz_minus_g3(1,:) = Dum*z(imask)-p(imask);
82 | Dz_minus_g3(2,:) = Dvp*z(imask)-q(imask);
83 | Dz_minus_g4(1,:) = Dum*z(imask)-p(imask);
84 | Dz_minus_g4(2,:) = Dvm*z(imask)-q(imask);
85 | % Normalized residual
86 | norme_Dz_minus_g = gamma^2+(Dz_minus_g(1,:).^2+Dz_minus_g(2,:).^2);
87 | norme_Dz_minus_g2 = gamma^2+(Dz_minus_g2(1,:).^2+Dz_minus_g2(2,:).^2);
88 | norme_Dz_minus_g3 = gamma^2+(Dz_minus_g3(1,:).^2+Dz_minus_g3(2,:).^2);
89 | norme_Dz_minus_g4 = gamma^2+(Dz_minus_g4(1,:).^2+Dz_minus_g4(2,:).^2);
90 |
91 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+0.25*sum((norme_Dz_minus_g-gamma^2)./(norme_Dz_minus_g).^2)+0.25*sum((norme_Dz_minus_g2-gamma^2)./(norme_Dz_minus_g2).^2)+0.25*sum((norme_Dz_minus_g3-gamma^2)./(norme_Dz_minus_g3).^2)+0.25*sum((norme_Dz_minus_g4-gamma^2)./(norme_Dz_minus_g4).^2);
92 |
93 | if(nargout>1)
94 | tab_nrj(cpt) = energie;
95 | cpt = cpt+1;
96 | end
97 | if(nargout>2)
98 | lambda_rmse = -mean(z(imask)-gt(imask));
99 | zrmse = z+lambda_rmse;
100 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
101 | cpt_rmse = cpt_rmse+1;
102 | end
103 |
104 | % Current energy
105 | f_curr = 0.25*sum((norme_Dz_minus_g-gamma^2)./(norme_Dz_minus_g).^2)+0.25*sum((norme_Dz_minus_g2-gamma^2)./(norme_Dz_minus_g2).^2)+0.25*sum((norme_Dz_minus_g3-gamma^2)./(norme_Dz_minus_g3).^2)+0.25*sum((norme_Dz_minus_g4-gamma^2)./(norme_Dz_minus_g4).^2);
106 |
107 | % Alternating optimisation loops
108 | for k = 1:maxit
109 |
110 | Lcurr = L;
111 |
112 | % Current gradient
113 | Dz_minus_g = bsxfun(@rdivide,Dz_minus_g,norme_Dz_minus_g.^2);
114 | Dz_minus_g2 = bsxfun(@rdivide,Dz_minus_g2,norme_Dz_minus_g2.^2);
115 | Dz_minus_g3 = bsxfun(@rdivide,Dz_minus_g3,norme_Dz_minus_g3.^2);
116 | Dz_minus_g4 = bsxfun(@rdivide,Dz_minus_g4,norme_Dz_minus_g4.^2);
117 | % Make it a matrix
118 | Dz_minus_g_mat = sparse(II,JJ,Dz_minus_g(:));
119 | Dz_minus_g_mat2 = sparse(II,JJ,Dz_minus_g2(:));
120 | Dz_minus_g_mat3 = sparse(II,JJ,Dz_minus_g3(:));
121 | Dz_minus_g_mat4 = sparse(II,JJ,Dz_minus_g4(:));
122 | % Get all terms inside the sum
123 | grad_f_curr = 0.5*sum(gamma^2*Dt*Dz_minus_g_mat+gamma^2*Dt2*Dz_minus_g_mat2+gamma^2*Dt3*Dz_minus_g_mat3+gamma^2*Dt4*Dz_minus_g_mat4,2);
124 |
125 | % Lazy backtracking to set stepsize
126 | lc = 0; % lc = 1 if Lipschitz constant L is big enough
127 | while(lc < max_backtracking)
128 | alpha = 1.99*(1-beta)/L; % Descent stepsize
129 |
130 | % Forward update, given the gradient
131 | zbar = z(imask) - alpha*grad_f_curr+beta*(z(imask)-zprevious(imask));
132 | % Backward update (prox. update)
133 | znext = (zbar + 2*alpha*(lambda(imask)).*z0(imask))./(1+2*alpha*(lambda(imask)));
134 |
135 | z_dist = znext-z(imask); % Evaluate the difference between current and next estimate
136 |
137 | % Next energy
138 | Dz_minus_g(1,:) = Dup*znext(imask)-p(imask);
139 | Dz_minus_g(2,:) = Dvp*znext(imask)-q(imask);
140 | Dz_minus_g2(1,:) = Dup*znext(imask)-p(imask);
141 | Dz_minus_g2(2,:) = Dvm*znext(imask)-q(imask);
142 | Dz_minus_g3(1,:) = Dum*znext(imask)-p(imask);
143 | Dz_minus_g3(2,:) = Dvp*znext(imask)-q(imask);
144 | Dz_minus_g4(1,:) = Dum*znext(imask)-p(imask);
145 | Dz_minus_g4(2,:) = Dvm*znext(imask)-q(imask);
146 | norme_Dz_minus_g = gamma^2+(Dz_minus_g(1,:).^2+Dz_minus_g(2,:).^2);
147 | norme_Dz_minus_g2 = gamma^2+(Dz_minus_g2(1,:).^2+Dz_minus_g2(2,:).^2);
148 | norme_Dz_minus_g3 = gamma^2+(Dz_minus_g3(1,:).^2+Dz_minus_g3(2,:).^2);
149 | norme_Dz_minus_g4 = gamma^2+(Dz_minus_g4(1,:).^2+Dz_minus_g4(2,:).^2);
150 |
151 | f_next = 0.25*sum((norme_Dz_minus_g-gamma^2)./(norme_Dz_minus_g).^2)+0.25*sum((norme_Dz_minus_g2-gamma^2)./(norme_Dz_minus_g2).^2)+0.25*sum((norme_Dz_minus_g3-gamma^2)./(norme_Dz_minus_g3).^2)+0.25*sum((norme_Dz_minus_g4-gamma^2)./(norme_Dz_minus_g4).^2);
152 |
153 |
154 | % Lipschitz test
155 | if(f_next <= f_curr+grad_f_curr'*z_dist+0.5*L*z_dist'*z_dist)
156 | L = L/1.05;
157 | lc = max_backtracking; % if Lipschitz => stepsize is small enough
158 | else
159 | lc = lc+1; % if not Lipschitz => try smaller stepsize
160 | L = eta*L;
161 | end
162 | end
163 |
164 | % Update auxiliary variables
165 | zprevious = z;
166 | z(imask) = znext;
167 | f_curr = f_next;
168 |
169 | % Current residual
170 | Dz_minus_g(1,:) = Dup*z(imask)-p(imask);
171 | Dz_minus_g(2,:) = Dvp*z(imask)-q(imask);
172 | Dz_minus_g2(1,:) = Dup*z(imask)-p(imask);
173 | Dz_minus_g2(2,:) = Dvm*z(imask)-q(imask);
174 | Dz_minus_g3(1,:) = Dum*z(imask)-p(imask);
175 | Dz_minus_g3(2,:) = Dvp*z(imask)-q(imask);
176 | Dz_minus_g4(1,:) = Dum*z(imask)-p(imask);
177 | Dz_minus_g4(2,:) = Dvm*z(imask)-q(imask);
178 | % Normalized residual
179 | norme_Dz_minus_g = gamma^2+(Dz_minus_g(1,:).^2+Dz_minus_g(2,:).^2);
180 | norme_Dz_minus_g2 = gamma^2+(Dz_minus_g2(1,:).^2+Dz_minus_g2(2,:).^2);
181 | norme_Dz_minus_g3 = gamma^2+(Dz_minus_g3(1,:).^2+Dz_minus_g3(2,:).^2);
182 | norme_Dz_minus_g4 = gamma^2+(Dz_minus_g4(1,:).^2+Dz_minus_g4(2,:).^2);
183 |
184 |
185 | % Check CV
186 | energie_old = energie;
187 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+0.25*sum((norme_Dz_minus_g-gamma^2)./(norme_Dz_minus_g).^2)+0.25*sum((norme_Dz_minus_g2-gamma^2)./(norme_Dz_minus_g2).^2)+0.25*sum((norme_Dz_minus_g3-gamma^2)./(norme_Dz_minus_g3).^2)+0.25*sum((norme_Dz_minus_g4-gamma^2)./(norme_Dz_minus_g4).^2);
188 |
189 | if(nargout>1)
190 | tab_nrj(cpt) = energie;
191 | cpt = cpt+1;
192 | end
193 | if(nargout>2)
194 | lambda_rmse = -mean(z(imask)-gt(imask));
195 | zrmse = z+lambda_rmse;
196 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
197 | cpt_rmse = cpt_rmse+1;
198 | end
199 |
200 |
201 | %~ if(mod(k,100)==1)
202 | %~ figure(1)
203 | %~ surfl(z,[-135 30]);
204 | %~ view(-35,20)
205 | %~ shading flat;
206 | %~ colormap gray;
207 | %~ grid off
208 | %~ axis ij;
209 | %~ axis equal;
210 | %~ axis([1 size(p,1) 1 size(p,2) min(z(:)) max(z(:))]);
211 | %~ drawnow
212 | %~ end
213 |
214 | if(nargout>1)
215 | if(mod(k,100)==1)
216 | figure(3)
217 | plot(tab_nrj(1:cpt-1))
218 | drawnow
219 | end
220 | end
221 | if(nargout>2)
222 | if(mod(k,100)==1)
223 | figure(4)
224 | plot(tab_rmse(1:cpt_rmse-1))
225 | drawnow
226 | end
227 | end
228 |
229 | relative_residual = abs(energie-energie_old)./abs(energie_old);
230 | disp(sprintf('it %d - EAT = %.4f - res : %.6f ',k,energie,relative_residual));
231 | if(relative_residual < tol & (energie500)
232 | break;
233 | end
234 | end
235 | if(k == maxit)
236 | disp('Max number of iterations reached');
237 | end
238 |
239 |
240 | % Put NaNs outside the mask
241 | z(mask==0) = NaN;
242 |
243 | if(nargout>1)
244 | tab_nrj = tab_nrj(1:k+1);
245 | end
246 | if(nargout>2)
247 | tab_rmse = tab_rmse(1:k+1);
248 | end
249 | end
250 |
--------------------------------------------------------------------------------
/Toolbox/smooth_integration.m:
--------------------------------------------------------------------------------
1 | function z = smooth_integration(p,q,mask,lambda,z0,solver,precond)
2 |
3 | % Check arguments
4 | if(nargin < 2)
5 | disp('Error: Not enough arguments');
6 | return;
7 | end
8 |
9 | [nrows,ncols] = size(p);
10 |
11 | % Set default values for missing arguments
12 | if (~exist('mask','var')|isempty(mask)) mask=ones(nrows,ncols); end;
13 | if (~exist('lambda','var')|isempty(lambda)) lambda = 1e-9*mask; end;
14 | if (~exist('z0','var')|isempty(z0)) z0 = zeros(nrows,ncols); end;
15 | if (~exist('solver','var')|isempty(solver)) solver = 'pcg'; end;
16 | if (~exist('precond','var')|isempty(precond)) precond = 'ichol'; end;
17 |
18 | % If lambda is a scalar, make it a matrix
19 | if(size(lambda,1)==1)
20 | lambda = lambda*mask;
21 | end
22 |
23 | % Make finite differences operators
24 | [Dup,Dum,Dvp,Dvm,imask] = make_gradient(mask);
25 |
26 | % Matrix of the system
27 | L = 0.5*(Dup'*Dup+Dum'*Dum+Dvp'*Dvp+Dvm'*Dvm);
28 | Lambda_two = spdiags(lambda(imask),0,length(imask),length(imask));
29 | A = L + Lambda_two;
30 |
31 | % Second membre
32 | Du = 0.5*(Dup'+Dum');
33 | Dv = 0.5*(Dvp'+Dvm');
34 | b = Du*p(imask)+Dv*q(imask)+Lambda_two*z0(imask);
35 |
36 | % Preconditioning
37 | if(strcmp(precond,'none'))
38 | precondL = [];
39 | precondR = [];
40 | elseif(strcmp(precond,'CMG'))
41 | precondL = cmg_sdd(A);
42 | precondR = [];
43 | elseif(strcmp(precond,'ichol')) % Modified incomplete cholesky advised in [Bahr et al., CVM 2017]
44 | precondL = ichol(A,struct('type','ict','droptol',1e-03,'michol','on'));
45 | precondR = precondL';
46 | end
47 |
48 | % Resolution
49 | z = z0;
50 | if(strcmp(solver,'direct')) % Calls cholesky
51 | z(imask) = A\b;
52 | elseif(strcmp(solver,'pcg')) % Calls CG
53 | z(imask) = pcg(A,b,1e-4,1000,precondL,precondR,z(imask));
54 | end
55 |
56 | % Put NaNs outside the mask
57 | z(mask==0) = NaN;
58 | end
59 |
--------------------------------------------------------------------------------
/Toolbox/tv_integration.m:
--------------------------------------------------------------------------------
1 | function [z,tab_nrj,tab_rmse] = tv_integration(p,q,mask,lambda,z0,alpha,maxit,tol,zinit,gt)
2 |
3 | % Check arguments
4 | if(nargin < 2)
5 | disp('Error: Not enough arguments');
6 | return;
7 | end
8 |
9 | [nrows,ncols] = size(p);
10 |
11 | % Set default values for missing arguments
12 | if (~exist('mask','var')|isempty(mask)) mask=ones(nrows,ncols); end;
13 | if (~exist('lambda','var')|isempty(lambda)) lambda = 1e-9*mask; end;
14 | if (~exist('z0','var')|isempty(z0)) z0 = zeros(nrows,ncols); end;
15 | if (~exist('alpha','var')|isempty(alpha)) alpha = 0.01; end;
16 | if (~exist('maxit','var')|isempty(maxit)) maxit = 100; end;
17 | if (~exist('tol','var')|isempty(tol)) tol = 1e-4; end;
18 | if (~exist('zinit','var')|isempty(zinit)) zinit = z0; end;
19 | if (~exist('gt','var')|isempty(gt)) gt = z0; end;
20 |
21 |
22 | % If lambda is a scalar, make it a matrix
23 | if(size(lambda,1)==1)
24 | lambda = lambda*mask;
25 | end
26 |
27 | % Make finite differences operators
28 | [Dup,Dum,Dvp,Dvm,imask,imaskup,imaskum,imaskvp,imaskvm] = make_gradient(mask);
29 | npix = length(imask);
30 |
31 | % Some stuff used later
32 | Lambda_two = spdiags(lambda(imask),0,npix,npix); % Regularization
33 | A = Lambda_two+0.125*alpha*((Dup'*Dup+Dvp'*Dvp)+(Dup'*Dup+Dvm'*Dvm)+(Dum'*Dum+Dvp'*Dvp)+(Dum'*Dum+Dvm'*Dvm));
34 |
35 | if(nargout>1)
36 | tab_nrj = zeros(maxit+1,1);
37 | cpt = 1;
38 | end
39 | if(nargout>2)
40 | tab_rmse = zeros(maxit+1,1);
41 | cpt_rmse = 1;
42 | end
43 |
44 | % Initialization
45 | z = zinit;
46 |
47 | rpp1 = zeros(npix,1);
48 | rpm1 = zeros(npix,1);
49 | rmp1 = zeros(npix,1);
50 | rmm1 = zeros(npix,1);
51 | rpp2 = zeros(npix,1);
52 | rpm2 = zeros(npix,1);
53 | rmp2 = zeros(npix,1);
54 | rmm2 = zeros(npix,1);
55 | bpp1 = zeros(npix,1);
56 | bpm1 = zeros(npix,1);
57 | bmp1 = zeros(npix,1);
58 | bmm1 = zeros(npix,1);
59 | bpp2 = zeros(npix,1);
60 | bpm2 = zeros(npix,1);
61 | bmp2 = zeros(npix,1);
62 | bmm2 = zeros(npix,1);
63 |
64 | % r update
65 | spp1 = Dup*z(imask)-p(imask)+bpp1;
66 | spm1 = Dup*z(imask)-p(imask)+bpm1;
67 | smp1 = Dum*z(imask)-p(imask)+bmp1;
68 | smm1 = Dum*z(imask)-p(imask)+bmm1;
69 | spp2 = Dvp*z(imask)-q(imask)+bpp2;
70 | spm2 = Dvm*z(imask)-q(imask)+bpm2;
71 | smp2 = Dvp*z(imask)-q(imask)+bmp2;
72 | smm2 = Dvm*z(imask)-q(imask)+bmm2;
73 | rpp1 = max(sqrt(spp1.^2+spp2.^2)-4/alpha,0).*spp1./sqrt(spp1.^2+spp2.^2);
74 | rpm1 = max(sqrt(spm1.^2+spm2.^2)-4/alpha,0).*spm1./sqrt(spm1.^2+spm2.^2);
75 | rmp1 = max(sqrt(smp1.^2+smp2.^2)-4/alpha,0).*smp1./sqrt(smp1.^2+smp2.^2);
76 | rmm1 = max(sqrt(smm1.^2+smm2.^2)-4/alpha,0).*smm1./sqrt(smm1.^2+smm2.^2);
77 | rpp2 = max(sqrt(spp1.^2+spp2.^2)-4/alpha,0).*spp2./sqrt(spp1.^2+spp2.^2);
78 | rpm2 = max(sqrt(spm1.^2+spm2.^2)-4/alpha,0).*spm2./sqrt(spm1.^2+spm2.^2);
79 | rmp2 = max(sqrt(smp1.^2+smp2.^2)-4/alpha,0).*smp2./sqrt(smp1.^2+smp2.^2);
80 | rmm2 = max(sqrt(smm1.^2+smm2.^2)-4/alpha,0).*smm2./sqrt(smm1.^2+smm2.^2);
81 |
82 | % b update
83 | bpp1 = bpp1+Dup*z(imask)-p(imask)-rpp1;
84 | bpm1 = bpm1+Dup*z(imask)-p(imask)-rpm1;
85 | bmp1 = bmp1+Dum*z(imask)-p(imask)-rmp1;
86 | bmm1 = bmm1+Dum*z(imask)-p(imask)-rmm1;
87 | bpp2 = bpp2+Dvp*z(imask)-q(imask)-rpp2;
88 | bpm2 = bpm2+Dvm*z(imask)-q(imask)-rpm2;
89 | bmp2 = bmp2+Dvp*z(imask)-q(imask)-rmp2;
90 | bmm2 = bmm2+Dvm*z(imask)-q(imask)-rmm2;
91 |
92 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+sum(sqrt((Dup*z(imask)-p(imask)).^2)+(Dvp*z(imask)-q(imask)).^2)+sum(sqrt((Dup*z(imask)-p(imask)).^2)+(Dvm*z(imask)-q(imask)).^2)+sum(sqrt((Dum*z(imask)-p(imask)).^2)+(Dvp*z(imask)-q(imask)).^2)+sum(sqrt((Dum*z(imask)-p(imask)).^2)+(Dvm*z(imask)-q(imask)).^2);
93 |
94 | if(nargout>1)
95 | tab_nrj(cpt) = energie;
96 | cpt = cpt+1;
97 | end
98 | if(nargout>2)
99 | lambda = -mean(z(imask)-gt(imask));
100 | zrmse = z+lambda;
101 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
102 | cpt_rmse = cpt_rmse+1;
103 | end
104 |
105 | % Alternating optimisation loops
106 | for k = 1:maxit
107 |
108 | % z update
109 | ppp = p(imask)+rpp1-bpp1;
110 | ppm = p(imask)+rpm1-bpm1;
111 | pmp = p(imask)+rmp1-bmp1;
112 | pmm = p(imask)+rmm1-bmm1;
113 | qpp = q(imask)+rpp2-bpp2;
114 | qpm = q(imask)+rpm2-bpm2;
115 | qmp = q(imask)+rmp2-bmp2;
116 | qmm = q(imask)+rmm2-bmm2;
117 | b = Lambda_two*z0(imask)+0.125*alpha*((Dup'*ppp+Dvp'*qpp)+(Dup'*ppm+Dvm'*qpm)+(Dum'*pmp+Dvp'*qmp)+(Dum'*pmm+Dvm'*qmm));
118 | [z(imask),fl] = pcg(A,b,1e-9,10,[],[],z(imask));
119 |
120 | % r update
121 | spp1 = Dup*z(imask)-p(imask)+bpp1;
122 | spm1 = Dup*z(imask)-p(imask)+bpm1;
123 | smp1 = Dum*z(imask)-p(imask)+bmp1;
124 | smm1 = Dum*z(imask)-p(imask)+bmm1;
125 | spp2 = Dvp*z(imask)-q(imask)+bpp2;
126 | spm2 = Dvm*z(imask)-q(imask)+bpm2;
127 | smp2 = Dvp*z(imask)-q(imask)+bmp2;
128 | smm2 = Dvm*z(imask)-q(imask)+bmm2;
129 | rpp1 = max(sqrt(spp1.^2+spp2.^2)-4/alpha,0).*spp1./sqrt(spp1.^2+spp2.^2);
130 | rpm1 = max(sqrt(spm1.^2+spm2.^2)-4/alpha,0).*spm1./sqrt(spm1.^2+spm2.^2);
131 | rmp1 = max(sqrt(smp1.^2+smp2.^2)-4/alpha,0).*smp1./sqrt(smp1.^2+smp2.^2);
132 | rmm1 = max(sqrt(smm1.^2+smm2.^2)-4/alpha,0).*smm1./sqrt(smm1.^2+smm2.^2);
133 | rpp2 = max(sqrt(spp1.^2+spp2.^2)-4/alpha,0).*spp2./sqrt(spp1.^2+spp2.^2);
134 | rpm2 = max(sqrt(spm1.^2+spm2.^2)-4/alpha,0).*spm2./sqrt(spm1.^2+spm2.^2);
135 | rmp2 = max(sqrt(smp1.^2+smp2.^2)-4/alpha,0).*smp2./sqrt(smp1.^2+smp2.^2);
136 | rmm2 = max(sqrt(smm1.^2+smm2.^2)-4/alpha,0).*smm2./sqrt(smm1.^2+smm2.^2);
137 |
138 | % b update
139 | bpp1 = bpp1+Dup*z(imask)-p(imask)-rpp1;
140 | bpm1 = bpm1+Dup*z(imask)-p(imask)-rpm1;
141 | bmp1 = bmp1+Dum*z(imask)-p(imask)-rmp1;
142 | bmm1 = bmm1+Dum*z(imask)-p(imask)-rmm1;
143 | bpp2 = bpp2+Dvp*z(imask)-q(imask)-rpp2;
144 | bpm2 = bpm2+Dvm*z(imask)-q(imask)-rpm2;
145 | bmp2 = bmp2+Dvp*z(imask)-q(imask)-rmp2;
146 | bmm2 = bmm2+Dvm*z(imask)-q(imask)-rmm2;
147 |
148 |
149 | % Check CV
150 | energie_old = energie;
151 | energie = norm(Lambda_two*(z(imask)-z0(imask)))+0.25*(sum(sqrt((Dup*z(imask)-p(imask)).^2)+(Dvp*z(imask)-q(imask)).^2)+sum(sqrt((Dup*z(imask)-p(imask)).^2)+(Dvm*z(imask)-q(imask)).^2)+sum(sqrt((Dum*z(imask)-p(imask)).^2)+(Dvp*z(imask)-q(imask)).^2)+sum(sqrt((Dum*z(imask)-p(imask)).^2)+(Dvm*z(imask)-q(imask)).^2));
152 |
153 | if(nargout>1)
154 | tab_nrj(cpt) = energie;
155 | cpt = cpt+1;
156 | end
157 | if(nargout>2)
158 | lambda = -mean(z(imask)-gt(imask));
159 | zrmse = z+lambda;
160 | tab_rmse(cpt_rmse) = sqrt(mean((zrmse(imask)-gt(imask)).^2));
161 | cpt_rmse = cpt_rmse+1;
162 | end
163 | %~
164 | %~ figure(1)
165 | %~ surfl(z,[-135 30]);
166 | %~ view(-35,20)
167 | %~ axis ij;
168 | %~ axis equal;
169 | %~ axis([1 320 1 320 -20 70]);
170 | %~ shading flat;
171 | %~ colormap gray;
172 | %~
173 | %~ grid off
174 | %~ drawnow
175 | %~
176 | %~ figure(2)
177 | %~ wupdisp = NaN*ones(nrows,ncols);
178 | %~ wupdisp(imask) = bpp1;
179 | %~ imagesc(wupdisp);
180 | %~ colormap gray
181 | %~ colorbar
182 | %~
183 | %~ if(nargout>1)
184 | %~ figure(3)
185 | %~ plot(tab_nrj(1:cpt-1))
186 | %~ drawnow
187 | %~ end
188 | %~ if(nargout>2)
189 | %~ figure(4)
190 | %~ plot(tab_rmse(1:cpt_rmse-1))
191 | %~ drawnow
192 | %~ end
193 |
194 | relative_residual = abs(energie-energie_old)./abs(energie_old);
195 | disp(sprintf('it %d - EAT = %.4f - res : %.6f',k,energie,relative_residual));
196 | if(relative_residual < tol & k>20)
197 | break;
198 | end
199 | end
200 |
201 | if(k==maxit)
202 | disp('Maximum number of iterations reached');
203 | end
204 |
205 | % Put NaNs outside the mask
206 | z(mask==0) = NaN;
207 | wup(mask==0) = NaN;
208 | wum(mask==0) = NaN;
209 | wvp(mask==0) = NaN;
210 | wvm(mask==0) = NaN;
211 |
212 | if(nargout>1)
213 | tab_nrj = tab_nrj(1:k+1);
214 | end
215 | if(nargout>2)
216 | tab_rmse = tab_rmse(1:k+1);
217 | end
218 | end
219 |
--------------------------------------------------------------------------------
/demo_1_survey.m:
--------------------------------------------------------------------------------
1 | clear
2 | close all
3 |
4 | addpath('Toolbox/');
5 |
6 | % Tested methods
7 | test_FFT = 1; % FFT integrator (periodic BC)
8 | test_DST = 1; % DST integrator (Dirichlet BC)
9 | test_DCT = 1; % DCT integrator (natural BC)
10 | test_HB = 1; % Modified Horn and Brook's scheme
11 |
12 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13 | % Load a dataset containing:
14 | % -- p (nrows x ncols) : gradient in the u- (bottom) direction
15 | % -- q (nrows x ncols) : gradient in the v- (right) direction
16 | % -- u (nrows x ncols) : ground truth depth map
17 | % -- mask (nrows x ncols) : mask of the pixels on the vase (binary)
18 | load Datasets/vase
19 |
20 | % To emphasize the problem of boundaries, we crop the domain t
21 | p = p(83:310,90:180);
22 | q = q(83:310,90:180);
23 | u = u(83:310,90:180);
24 | mask = mask(83:310,90:180);
25 | %~ p = p(83:260,150:220);
26 | %~ q = q(83:260,150:220);
27 | %~ u = u(83:260,150:220);
28 | %~ mask = mask(83:260,150:220);
29 | indices_mask = find(mask>0);
30 |
31 | % Add zero-mean, Gaussian noise
32 | std_noise = 0.005*max(sqrt(p(indices_mask).^2+q(indices_mask).^2));
33 | p(indices_mask) = p(indices_mask)+std_noise*randn(size((indices_mask)));
34 | q(indices_mask) = q(indices_mask)+std_noise*randn(size((indices_mask)));
35 |
36 | if(test_FFT)
37 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 | % FFT Integration
39 | disp('Doing FFT integration');
40 |
41 |
42 | t_1 = tic;
43 | z_1 = FFT_Poisson(p,q);
44 | t_1 = toc(t_1);
45 |
46 | % Find the integration constant which minimizes RMSE
47 | lambda_1 = -mean(z_1(indices_mask)-u(indices_mask));
48 | z_1 = z_1+lambda_1;
49 | % Calculate RMSE
50 | RMSE_1 = sqrt(mean((z_1(indices_mask)-u(indices_mask)).^2));
51 | % Display evaluation results in terminal
52 | disp('=============================');
53 | disp('FFT integration:');
54 | disp(sprintf('CPU: %.4f',t_1));
55 | disp(sprintf('RMSE: %.2f',RMSE_1));
56 | disp(' ');
57 | end
58 |
59 | if(test_DST)
60 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61 | % DST Integration
62 | disp('Doing DST integration');
63 |
64 | u_b = zeros(size(p)); % Homogeneous Dirichlet BC
65 | % u_b(1,:) = 100; % For a more funny boundary, uncomment this ;)
66 | t_2 = tic;
67 | z_2 = DST_Poisson(p,q,u_b);
68 | t_2 = toc(t_2);
69 |
70 | % Find the integration constant which minimizes RMSE
71 | lambda_2 = -mean(z_2(indices_mask)-u(indices_mask));
72 | z_2 = z_2+lambda_2;
73 | % Calculate RMSE
74 | RMSE_2 = sqrt(mean((z_2(indices_mask)-u(indices_mask)).^2));
75 | % Display evaluation results in terminal
76 | disp('=============================');
77 | disp('DST integration:');
78 | disp(sprintf('CPU: %.4f',t_2));
79 | disp(sprintf('RMSE: %.2f',RMSE_2));
80 | disp(' ');
81 | end
82 |
83 | if(test_DCT)
84 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85 | % DCT Integration
86 | disp('Doing DCT integration');
87 |
88 | t_3 = tic;
89 | z_3 = DCT_Poisson(p,q); % Natural Neumann BC
90 | t_3 = toc(t_3);
91 |
92 | % Find the integration constant which minimizes RMSE
93 | lambda_3 = -mean(z_3(indices_mask)-u(indices_mask));
94 | z_3 = z_3+lambda_3;
95 | % Calculate RMSE
96 | RMSE_3 = sqrt(mean((z_3(indices_mask)-u(indices_mask)).^2));
97 | % Display evaluation results in terminal
98 | disp('=============================');
99 | disp('DCT integration:');
100 | disp(sprintf('CPU: %.4f',t_3));
101 | disp(sprintf('RMSE: %.2f',RMSE_3));
102 | disp(' ');
103 | end
104 |
105 | if(test_HB)
106 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 | % Anisotropic diffusion ontegration
108 | disp('Doing Horn Brooks integration');
109 |
110 | zinit = z_1; % least-squares initialization
111 | maxit = 50000; % Stopping criterion
112 | tol = 1e-6; % Stopping criterion
113 | trace = 0; % To display or not the current estimate
114 |
115 | t_4 = tic;
116 | z_4 = horn_brooks(p,q,mask,maxit,tol,trace);
117 | t_4 = toc(t_4);
118 |
119 | % Find the integration constant which minimizes RMSE
120 | lambda_4 = -mean(z_4(indices_mask)-u(indices_mask));
121 | z_4 = z_4+lambda_4;
122 | % Calculate RMSE
123 | RMSE_4 = sqrt(mean((z_4(indices_mask)-u(indices_mask)).^2));
124 | % Display evaluation results in terminal
125 | disp('=============================');
126 | disp('Horn-Brook integration:');
127 | disp(sprintf('CPU: %.4f',t_4));
128 | disp(sprintf('RMSE: %.2f',RMSE_4));
129 | disp(' ');
130 | end
131 |
132 |
133 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
134 | % Summarize results
135 | disp(' ');
136 | disp(' ');
137 | disp(' ');
138 | disp('=============================');
139 | disp('=============================');
140 | disp('Summary of the evaluation:');
141 | disp('=============================');
142 | disp('=============================');
143 |
144 | if(test_FFT)
145 | disp('=============================');
146 | disp('FFT integration:');
147 | disp(sprintf('CPU: %.4f',t_1));
148 | disp(sprintf('RMSE: %.2f',RMSE_1));
149 | disp(' ');
150 | end
151 | if(test_DST)
152 | % Display evaluation results in terminal
153 | disp('=============================');
154 | disp('DST integration:');
155 | disp(sprintf('CPU: %.4f',t_2));
156 | disp(sprintf('RMSE: %.2f',RMSE_2));
157 | disp(' ');
158 | end
159 | if(test_DCT)
160 | % Display evaluation results in terminal
161 | disp('=============================');
162 | disp('DCT integration:');
163 | disp(sprintf('CPU: %.4f',t_3));
164 | disp(sprintf('RMSE: %.2f',RMSE_3));
165 | disp(' ');
166 | end
167 | if(test_HB)
168 | % Display evaluation results in terminal
169 | disp('=============================');
170 | disp('Horn Brooks integration:');
171 | disp(sprintf('CPU: %.4f',t_4));
172 | disp(sprintf('RMSE: %.2f',RMSE_4));
173 | disp(' ');
174 | end
175 |
176 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
177 | % Display a few things
178 |
179 | figure('units','normalized','outerposition',[0 0 1 1])
180 |
181 | % Input data: p, q and mask
182 | subplot(4,4,1)
183 | imagesc(p);
184 | axis image
185 | axis off
186 | title('$$p$$','Interpreter','Latex','Fontsize',14)
187 | subplot(4,4,2)
188 | imagesc(q);
189 | axis image
190 | axis off
191 | title('$$q$$','Interpreter','Latex','Fontsize',14)
192 | subplot(4,4,3)
193 | imagesc(mask);
194 | axis image
195 | axis off
196 | colormap gray
197 | title('$$\Omega$$','Interpreter','Latex','Fontsize',14)
198 | subplot(4,4,4)
199 | surfl(u,[-135 30]);
200 | view(-60,20)
201 | axis ij;
202 | shading flat;
203 | colormap gray;
204 | axis equal;
205 | grid off
206 | axis([1 size(p,2) 1 size(p,1) min(u(:)) max(u(:))]);
207 | axis off
208 | title('Ground truth depth','Interpreter','Latex','Fontsize',14)
209 |
210 |
211 | if(test_FFT)
212 | subplot(4,4,5)
213 | surfl(z_1,[-135 30]);
214 | view(-60,20)
215 | axis ij;
216 | shading flat;
217 | colormap gray;
218 | axis equal;
219 | grid off
220 | axis([1 size(p,2) 1 size(p,1) min(u(:)) max(u(:))]);
221 | axis off
222 | title('FFT integration','Interpreter','Latex','Fontsize',14)
223 |
224 | error_map_1 = abs(u-z_1);
225 | error_map_1(mask==0) = NaN;
226 |
227 | subplot(4,4,6)
228 | imagesc(error_map_1,[0 10]);
229 | axis image
230 | axis off
231 | colormap gray
232 | title('Absolute error (FFT integration)','Interpreter','Latex','Fontsize',14)
233 | end
234 |
235 | if(test_DST)
236 | subplot(4,4,7)
237 | surfl(z_2,[-135 30]);
238 | view(-60,20)
239 | axis ij;
240 | shading flat;
241 | colormap gray;
242 | axis equal;
243 | grid off
244 | axis([1 size(p,2) 1 size(p,1) min(u(:)) max(u(:))]);
245 | axis off
246 | title('DST integration','Interpreter','Latex','Fontsize',14)
247 |
248 | error_map_2 = abs(u-z_2);
249 | error_map_2(mask==0) = NaN;
250 |
251 | subplot(4,4,8)
252 | imagesc(error_map_2,[0 10]);
253 | axis image
254 | axis off
255 | colormap gray
256 | title('Absolute error (DST integration)','Interpreter','Latex','Fontsize',14)
257 | end
258 |
259 |
260 | if(test_DCT)
261 | subplot(4,4,9)
262 | surfl(z_3,[-135 30]);
263 | view(-60,20)
264 | axis ij;
265 | shading flat;
266 | colormap gray;
267 | axis equal;
268 | grid off
269 | axis([1 size(p,2) 1 size(p,1) min(u(:)) max(u(:))]);
270 | axis off
271 | title('DCT integration','Interpreter','Latex','Fontsize',14)
272 |
273 | error_map_3 = abs(u-z_3);
274 | error_map_3(mask==0) = NaN;
275 |
276 | subplot(4,4,10)
277 | imagesc(error_map_3,[0 10]);
278 | axis image
279 | axis off
280 | colormap gray
281 | title('Absolute error (DCT integration)','Interpreter','Latex','Fontsize',14)
282 | end
283 |
284 | if(test_HB)
285 | subplot(4,4,11)
286 | surfl(z_4,[-135 30]);
287 | view(-60,20)
288 | axis ij;
289 | shading flat;
290 | colormap gray;
291 | axis equal;
292 | grid off
293 | axis off
294 | axis([1 size(p,2) 1 size(p,1) min(u(:)) max(u(:))]);
295 | title('Horn Brooks integration','Interpreter','Latex','Fontsize',14)
296 |
297 | error_map_4 = abs(u-z_4);
298 | error_map_4(mask==0) = NaN;
299 |
300 | subplot(4,4,12)
301 | imagesc(error_map_4,[0 10]);
302 | axis image
303 | axis off
304 | colormap gray
305 | title('Absolute error (Horn Brooks integration)','Interpreter','Latex','Fontsize',14)
306 | end
307 |
308 |
--------------------------------------------------------------------------------
/demo_2_quadratic.m:
--------------------------------------------------------------------------------
1 | clear
2 | close all
3 |
4 | addpath('Toolbox/');
5 |
6 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 | % Load a dataset containing:
8 | % -- p (nrows x ncols) : gradient in the u- (bottom) direction
9 | % -- q (nrows x ncols) : gradient in the v- (right) direction
10 | % -- u (nrows x ncols) : ground truth depth map
11 | % -- mask (nrows x ncols) : mask of the pixels on the vase (binary)
12 | load Datasets/vase
13 | indices_mask = find(mask>0); % Indices of the pixel inside the mask
14 |
15 | % Add zero-mean, Gaussian noise inside the mask
16 | std_noise = 0.02*max(sqrt(p(indices_mask).^2+q(indices_mask).^2));
17 | p = p+std_noise*randn(size(p));
18 | q = q+std_noise*randn(size(q));
19 |
20 | % Fill the gradient with 0 to test rectangular integration
21 | p(mask==0) = 0;
22 | q(mask==0) = 0;
23 | % Remove the ground truth depth values outside the mask
24 | u(mask==0) = NaN;
25 |
26 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 | % Set optimization parameters
28 | lambda = 1e-6*ones(size(p)); % Uniform field of weights (nrows x ncols)
29 | z0 = zeros(size(p)); % Null depth prior (nrows x ncols)
30 | solver = 'pcg'; % Solver ('pcg' means conjugate gradient, 'direct' means backslash i.e. sparse Cholesky)
31 | precond = 'CMG'; % Preconditioner ('none' means no preconditioning, 'ichol' means incomplete Cholesky, 'CMG' means conjugate combinatorial multigrid -- the latter is fastest, but it need being installed, see README)
32 |
33 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 | % Integrate without mask (full rectangular domain)
35 | Omega_1 = ones(size(p));
36 | t_1 = tic;
37 | z_1 = smooth_integration(p,q,Omega_1,lambda,z0,solver,precond);
38 | t_1 = toc(t_1);
39 |
40 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 | % Integrate with mask (reduced non-rectangular domain)
42 | Omega_2 = mask;
43 | t_2 = tic;
44 | z_2 = smooth_integration(p,q,Omega_2,lambda,z0,solver,precond);
45 | t_2 = toc(t_2);
46 |
47 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 | % Evaluate both integration methods over the mask
49 |
50 | % Find the constant of integration which minimizes RMSE wrt ground truth
51 | lambda_1 = -mean(z_1(indices_mask)-u(indices_mask));
52 | z_1 = z_1+lambda_1;
53 |
54 | lambda_2 = -mean(z_2(indices_mask)-u(indices_mask));
55 | z_2 = z_2+lambda_2;
56 |
57 | % Calculate RMSEs
58 | RMSE_1 = sqrt(mean((z_1(indices_mask)-u(indices_mask)).^2));
59 | RMSE_2 = sqrt(mean((z_2(indices_mask)-u(indices_mask)).^2));
60 |
61 | % Display evaluation results in terminal
62 | disp('=============================');
63 | disp('Integration without mask:');
64 | disp(sprintf('CPU: %.4f',t_1));
65 | disp(sprintf('RMSE over mask: %.2f',RMSE_1));
66 | disp('');
67 | disp('================================');
68 | disp('Integration with mask:');
69 | disp(sprintf('CPU: %.4f',t_2));
70 | disp(sprintf('RMSE over mask: %.2f',RMSE_2));
71 | disp('');
72 |
73 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74 | % Display a few things
75 |
76 | figure('units','normalized','outerposition',[0 0 1 1])
77 |
78 | % Input data: p, q and mask
79 | subplot(3,3,1)
80 | imagesc(p);
81 | axis image
82 | axis off
83 | title('$$p$$','Interpreter','Latex','Fontsize',14)
84 | subplot(3,3,2)
85 | imagesc(q);
86 | axis image
87 | axis off
88 | title('$$q$$','Interpreter','Latex','Fontsize',14)
89 | subplot(3,3,3)
90 | imagesc(mask);
91 | axis image
92 | axis off
93 | colormap gray
94 | title('$$\Omega$$','Interpreter','Latex','Fontsize',14)
95 |
96 | subplot(3,3,4)
97 | surfl(u,[-135 30]);
98 | view(-35,20)
99 | axis ij;
100 | shading flat;
101 | colormap gray;
102 | axis equal;
103 | grid off
104 | axis off
105 | title('Ground truth depth','Interpreter','Latex','Fontsize',14)
106 |
107 |
108 | subplot(3,3,5)
109 | surfl(z_1,[-135 30]);
110 | view(-35,20)
111 | axis ij;
112 | shading flat;
113 | colormap gray;
114 | axis equal;
115 | grid off
116 | axis off
117 | title('Reconstruction without mask','Interpreter','Latex','Fontsize',14)
118 |
119 | subplot(3,3,6)
120 | surfl(z_2,[-135 30]);
121 | view(-35,20)
122 | axis ij;
123 | shading flat;
124 | colormap gray;
125 | axis equal;
126 | grid off
127 | axis off
128 | title('Reconstruction with mask','Interpreter','Latex','Fontsize',14)
129 |
130 | error_map_1 = abs(u-z_1);
131 | error_map_1(mask==0) = NaN;
132 |
133 | error_map_2 = abs(u-z_2);
134 | error_map_2(mask==0) = NaN;
135 |
136 | subplot(3,3,8)
137 | imagesc(error_map_1,[0 5]);
138 | axis image
139 | axis off
140 | colormap gray
141 | title('Absolute error without mask','Interpreter','Latex','Fontsize',14)
142 |
143 | subplot(3,3,9)
144 | imagesc(error_map_2,[0 5]);
145 | axis image
146 | axis off
147 | colormap gray
148 | title('Absolute error with mask','Interpreter','Latex','Fontsize',14)
149 |
--------------------------------------------------------------------------------
/demo_3_discontinuities.m:
--------------------------------------------------------------------------------
1 | clear
2 | close all
3 |
4 | addpath('Toolbox/');
5 |
6 | % Tested methods
7 | test_TV = 1; % Total variation
8 | test_NC = 1; % Non-convex
9 | test_AD = 1; % Anisotropic diffusion
10 | test_MS = 1; % Mumford-Shah
11 |
12 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13 | % Load a dataset containing:
14 | % -- p (nrows x ncols) : gradient in the u- (bottom) direction
15 | % -- q (nrows x ncols) : gradient in the v- (right) direction
16 | % -- u (nrows x ncols) : ground truth depth map
17 | % -- mask (nrows x ncols) : mask of the pixels on the vase (binary)
18 | load Datasets/vase
19 |
20 | % In this test we assume no mask is given, so discontinuities around the border should be recovered automatically
21 | mask = ones(size(p));
22 | indices_mask = find(mask>0);
23 |
24 | % Add zero-mean, Gaussian noise
25 | std_noise = 0.005*max(sqrt(p(indices_mask).^2+q(indices_mask).^2));
26 | p = p+std_noise*randn(size(p));
27 | q = q+std_noise*randn(size(q));
28 |
29 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 | % Quadratic Integration
31 | disp('Doing quadratic integration');
32 |
33 | lambda = 1e-6*ones(size(p)); % Uniform field of weights (nrows x ncols)
34 | z0 = zeros(size(p)); % Null depth prior (nrows x ncols)
35 | solver = 'pcg'; % Solver ('pcg' means conjugate gradient, 'direct' means backslash i.e. sparse Cholesky)
36 | precond = 'CMG'; % Preconditioner for smooth integration ('none' means no preconditioning, 'ichol' means incomplete Cholesky, 'CMG' means conjugate combinatorial multigrid -- the latter is fastest, but it need being installed, see README)
37 |
38 | t_1 = tic;
39 | z_1 = smooth_integration(p,q,mask,lambda,z0,solver,precond);
40 | t_1 = toc(t_1);
41 |
42 | % Find the integration constant which minimizes RMSE
43 | lambda_1 = -mean(z_1(indices_mask)-u(indices_mask));
44 | z_1 = z_1+lambda_1;
45 | % Calculate RMSE
46 | RMSE_1 = sqrt(mean((z_1(indices_mask)-u(indices_mask)).^2));
47 | % Display evaluation results in terminal
48 | disp('=============================');
49 | disp('Quadratic integration:');
50 | disp(sprintf('CPU: %.4f',t_1));
51 | disp(sprintf('RMSE: %.2f',RMSE_1));
52 | disp(' ');
53 |
54 | if(test_TV)
55 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 | % TV Integration
57 | disp('Doing TV integration');
58 |
59 | zinit = z_1; % least-squares initialization
60 | alpha = 0.1; % Descent stepsize (influences speed)
61 | tol = 1e-5; % Stopping criterion
62 | maxit = 1000; % Stopping criterion
63 |
64 | t_2 = tic;
65 | z_2 = tv_integration(p,q,mask,lambda,z0,alpha,maxit,tol,zinit);
66 | t_2 = toc(t_2);
67 |
68 | % Find the integration constant which minimizes RMSE
69 | lambda_2 = -mean(z_2(indices_mask)-u(indices_mask));
70 | z_2 = z_2+lambda_2;
71 | % Calculate RMSE
72 | RMSE_2 = sqrt(mean((z_2(indices_mask)-u(indices_mask)).^2));
73 | % Display evaluation results in terminal
74 | disp('=============================');
75 | disp('TV integration:');
76 | disp(sprintf('CPU: %.4f',t_2));
77 | disp(sprintf('RMSE: %.2f',RMSE_2));
78 | disp(' ');
79 | end
80 |
81 | if(test_NC)
82 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83 | % Nonconvex Integration
84 | disp('Doing nonconvex integration');
85 |
86 | zinit = z_1; % least-squares initialization
87 | gamma = 0.5; % Nonconvex estimator parameter (to be tuned: e.g. 0.5 for phi1, 1 for phi2 in our tests)
88 | beta = 0.8; % Lischitz reduction constant (must be in (0,1), see iPiano paper, 0.8 seems to always work)
89 | maxit = 1000; % Stopping criterion
90 | tol = 1e-5; % Stopping criterion
91 |
92 | t_3 = tic;
93 | z_3 = phi1_integration(p,q,mask,lambda,z0,beta,gamma,maxit,tol,zinit,u); % Phi_1 estimator
94 | % z_3 = phi2_integration(p,q,mask,lambda,z0,beta,gamma,maxit,tol,zinit,u);% Phi_2 estimator
95 | t_3 = toc(t_3);
96 |
97 | % Find the integration constant which minimizes RMSE
98 | lambda_3 = -mean(z_3(indices_mask)-u(indices_mask));
99 | z_3 = z_3+lambda_3;
100 | % Calculate RMSE
101 | RMSE_3 = sqrt(mean((z_3(indices_mask)-u(indices_mask)).^2));
102 | % Display evaluation results in terminal
103 | disp('=============================');
104 | disp('Nonconvex integration:');
105 | disp(sprintf('CPU: %.4f',t_3));
106 | disp(sprintf('RMSE: %.2f',RMSE_3));
107 | disp(' ');
108 | end
109 |
110 | if(test_AD)
111 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112 | % Anisotropic diffusion ontegration
113 | disp('Doing anis diff integration');
114 |
115 | zinit = z_1; % least-squares initialization
116 | mu = 0.2; % anis diff (to be tuned)
117 | nu = 10; % anis diff param (10 should work)
118 | maxit = 20; % Stopping criterion
119 | tol = 1e-5; % Stopping criterion
120 |
121 | t_4 = tic;
122 | z_4 = anisotropic_diffusion_integration(p,q,mask,lambda,z0,mu,nu,maxit,tol,zinit);
123 | t_4 = toc(t_4);
124 |
125 | % Find the integration constant which minimizes RMSE
126 | lambda_4 = -mean(z_4(indices_mask)-u(indices_mask));
127 | z_4 = z_4+lambda_4;
128 | % Calculate RMSE
129 | RMSE_4 = sqrt(mean((z_4(indices_mask)-u(indices_mask)).^2));
130 | % Display evaluation results in terminal
131 | disp('=============================');
132 | disp('Anis diff integration:');
133 | disp(sprintf('CPU: %.4f',t_4));
134 | disp(sprintf('RMSE: %.2f',RMSE_4));
135 | disp(' ');
136 | end
137 |
138 | if(test_MS)
139 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
140 | % Mumford-Shah ontegration
141 | disp('Doing Mumford-Shah integration');
142 |
143 | zinit = z_1; % least-squares initialization
144 | mu = 45; % Regularization weight for discontinuity set
145 | epsilon = 0.01; % Should be close to 0
146 | tol = 1e-5; % Stopping criterion
147 | maxit = 1000; % Stopping criterion
148 |
149 | t_5 = tic;
150 | z_5 = mumford_shah_integration(p,q,mask,lambda,z0,mu,epsilon,maxit,tol,zinit);
151 | t_5 = toc(t_5);
152 |
153 | % Find the integration constant which minimizes RMSE
154 | lambda_5 = -mean(z_5(indices_mask)-u(indices_mask));
155 | z_5 = z_5+lambda_5;
156 | % Calculate RMSE
157 | RMSE_5 = sqrt(mean((z_5(indices_mask)-u(indices_mask)).^2));
158 | % Display evaluation results in terminal
159 | disp('=============================');
160 | disp('Mumford-Shah integration:');
161 | disp(sprintf('CPU: %.4f',t_5));
162 | disp(sprintf('RMSE: %.2f',RMSE_5));
163 | disp(' ');
164 | end
165 |
166 |
167 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
168 | % Summarize results
169 | disp(' ');
170 | disp(' ');
171 | disp(' ');
172 | disp('=============================');
173 | disp('=============================');
174 | disp('Summary of the evaluation:');
175 | disp('=============================');
176 | disp('=============================');
177 | disp('Quadratic integration:');
178 | disp(sprintf('CPU: %.4f',t_1));
179 | disp(sprintf('RMSE: %.2f',RMSE_1));
180 | disp(' ');
181 | if(test_TV)
182 | % Display evaluation results in terminal
183 | disp('=============================');
184 | disp('TV integration:');
185 | disp(sprintf('CPU: %.4f',t_2));
186 | disp(sprintf('RMSE: %.2f',RMSE_2));
187 | disp(' ');
188 | end
189 | if(test_NC)
190 | % Display evaluation results in terminal
191 | disp('=============================');
192 | disp('Nonconvex integration:');
193 | disp(sprintf('CPU: %.4f',t_3));
194 | disp(sprintf('RMSE: %.2f',RMSE_3));
195 | disp(' ');
196 | end
197 | if(test_AD)
198 | % Display evaluation results in terminal
199 | disp('=============================');
200 | disp('Anis diff integration:');
201 | disp(sprintf('CPU: %.4f',t_4));
202 | disp(sprintf('RMSE: %.2f',RMSE_4));
203 | disp(' ');
204 | end
205 | if(test_MS)
206 | % Display evaluation results in terminal
207 | disp('=============================');
208 | disp('Mumford-Shah integration:');
209 | disp(sprintf('CPU: %.4f',t_5));
210 | disp(sprintf('RMSE: %.2f',RMSE_5));
211 | disp(' ');
212 | end
213 |
214 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
215 | % Display a few things
216 |
217 | figure('units','normalized','outerposition',[0 0 1 1])
218 |
219 | % Input data: p, q and mask
220 | subplot(4,4,1)
221 | imagesc(p);
222 | axis image
223 | axis off
224 | title('$$p$$','Interpreter','Latex','Fontsize',14)
225 | subplot(4,4,2)
226 | imagesc(q);
227 | axis image
228 | axis off
229 | title('$$q$$','Interpreter','Latex','Fontsize',14)
230 | subplot(4,4,3)
231 | imagesc(mask);
232 | axis image
233 | axis off
234 | colormap gray
235 | title('$$\Omega$$','Interpreter','Latex','Fontsize',14)
236 | subplot(4,4,4)
237 | surfl(u,[-135 30]);
238 | view(-35,20)
239 | axis ij;
240 | shading flat;
241 | colormap gray;
242 | axis equal;
243 | grid off
244 | axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
245 | axis off
246 | title('Ground truth depth','Interpreter','Latex','Fontsize',14)
247 |
248 |
249 | subplot(4,4,5)
250 | surfl(z_1,[-135 30]);
251 | view(-35,20)
252 | axis ij;
253 | shading flat;
254 | colormap gray;
255 | axis equal;
256 | grid off
257 | axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
258 | axis off
259 | title('Quadratic integration','Interpreter','Latex','Fontsize',14)
260 |
261 | error_map_1 = abs(u-z_1);
262 | error_map_1(mask==0) = NaN;
263 |
264 | subplot(4,4,6)
265 | imagesc(error_map_1,[0 10]);
266 | axis image
267 | axis off
268 | colormap gray
269 | title('Absolute error (quadratic integration)','Interpreter','Latex','Fontsize',14)
270 |
271 | if(test_TV)
272 | subplot(4,4,7)
273 | surfl(z_2,[-135 30]);
274 | view(-35,20)
275 | axis ij;
276 | shading flat;
277 | colormap gray;
278 | axis equal;
279 | grid off
280 | axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
281 | axis off
282 | title('TV integration','Interpreter','Latex','Fontsize',14)
283 |
284 | error_map_2 = abs(u-z_2);
285 | error_map_2(mask==0) = NaN;
286 |
287 | subplot(4,4,8)
288 | imagesc(error_map_2,[0 10]);
289 | axis image
290 | axis off
291 | colormap gray
292 | title('Absolute error (TV integration)','Interpreter','Latex','Fontsize',14)
293 | end
294 |
295 |
296 | if(test_NC)
297 | subplot(4,4,9)
298 | surfl(z_3,[-135 30]);
299 | view(-35,20)
300 | axis ij;
301 | shading flat;
302 | colormap gray;
303 | axis equal;
304 | grid off
305 | axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
306 | axis off
307 | title('Nonconvex integration','Interpreter','Latex','Fontsize',14)
308 |
309 | error_map_3 = abs(u-z_3);
310 | error_map_3(mask==0) = NaN;
311 |
312 | subplot(4,4,10)
313 | imagesc(error_map_3,[0 10]);
314 | axis image
315 | axis off
316 | colormap gray
317 | title('Absolute error (nonconvex integration)','Interpreter','Latex','Fontsize',14)
318 | end
319 |
320 | if(test_AD)
321 | subplot(4,4,11)
322 | surfl(z_4,[-135 30]);
323 | view(-35,20)
324 | axis ij;
325 | shading flat;
326 | colormap gray;
327 | axis equal;
328 | grid off
329 | axis off
330 | axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
331 | title('Anis diff integration','Interpreter','Latex','Fontsize',14)
332 |
333 | error_map_4 = abs(u-z_4);
334 | error_map_4(mask==0) = NaN;
335 |
336 | subplot(4,4,12)
337 | imagesc(error_map_4,[0 10]);
338 | axis image
339 | axis off
340 | colormap gray
341 | title('Absolute error (anis diff integration)','Interpreter','Latex','Fontsize',14)
342 | end
343 |
344 |
345 | if(test_MS)
346 | subplot(4,4,13)
347 | surfl(z_5,[-135 30]);
348 | view(-35,20)
349 | axis ij;
350 | shading flat;
351 | colormap gray;
352 | axis equal;
353 | grid off
354 | axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
355 | axis off
356 | title('Mumford-Shah integration','Interpreter','Latex','Fontsize',14)
357 |
358 | error_map_5 = abs(u-z_5);
359 | error_map_5(mask==0) = NaN;
360 |
361 | subplot(4,4,14)
362 | imagesc(error_map_5,[0 10]);
363 | axis image
364 | axis off
365 | colormap gray
366 | title('Absolute error (Mumford-Shah integration)','Interpreter','Latex','Fontsize',14)
367 | end
368 |
--------------------------------------------------------------------------------