├── desi.md
├── new.md
└── videshi.md
/desi.md:
--------------------------------------------------------------------------------
1 | # 🤖 Complete AI & GenAI Engineering Roadmap 2025 (India Edition)
2 |
3 | 
4 |
5 | > "India is becoming a global hub for AI innovation"
6 |
7 | ## 🎯 Career Paths in AI (2025) - Indian Market
8 | | Role | Average Salary (INR/Year) | Companies | Growth |
9 | |------|-------------------------|-----------|---------|
10 | | AI Engineer | 8-20 LPA | TCS, Infosys, Amazon | High |
11 | | GenAI Specialist | 12-30 LPA | Microsoft, Google, Startups | Very High |
12 | | AI Research Scientist | 15-35 LPA | IIIT, IIT, Research Labs | High |
13 | | MLOps Engineer | 10-25 LPA | Flipkart, Swiggy, Ola | High |
14 |
15 | ## 🎓 Top Indian AI Education Hubs
16 | 1. IIT Madras - [Online BSc in Programming & Data Science](https://study.iitm.ac.in/ds/)
17 | 2. IIIT Hyderabad - [Machine Learning Laboratory](https://mllab.iiit.ac.in/)
18 | 3. IISc Bangalore - [AI & ML Programs](https://iisc.ac.in/)
19 | 4. IIT Delhi - [AI Research](http://ai.iitd.ac.in/)
20 |
21 | ## 📚 Prerequisites
22 | - Python programming (NPTEL/Coding Ninjas)
23 | - Mathematics (12th grade level)
24 | - English communication
25 | - Problem-solving skills
26 |
27 | ## 📺 Top Indian YouTube Channels for AI
28 |
29 | ### 🎯 Programming & AI Fundamentals
30 | | Channel | Focus | Language |
31 | |---------|-------|----------|
32 | | [Krish Naik](https://www.youtube.com/user/krishnaik06) | ML/DL/MLOps | English/Hindi |
33 | | [codebasics](https://www.youtube.com/c/codebasics) | Python/DS/ML | Hindi/English |
34 | | [Telusko](https://www.youtube.com/user/javaboynavin) | Python/Programming | English |
35 | | [CodeWithHarry](https://www.youtube.com/c/CodeWithHarry) | Programming Basics | Hindi |
36 |
37 | ### 🎯 Advanced AI & Interview Prep
38 | | Channel | Focus | Language |
39 | |---------|-------|----------|
40 | | [AIEngineering](https://www.youtube.com/c/AIEngineeringLife) | ML/DL Projects | English |
41 | | [Dhaval Patel](https://www.youtube.com/c/DhavalPatel) | ML/Interview Prep | English/Hindi |
42 | | [iNeuron Intelligence](https://www.youtube.com/c/iNeuroniNtelligence) | AI/ML Courses | English/Hindi |
43 |
44 | ## 📅 Learning Schedule (Indian Context)
45 |
46 | ### 🌟 TRACK 1: FOUNDATION (8 WEEKS)
47 |
48 | #### Week 1-2: Python & Mathematics
49 | | Day | Topics | Indian Resources | Projects |
50 | |-----|---------|-----------------|-----------|
51 | | 1-3 | • Python Basics
• Data Types
• Functions | 🎥 [CodeWithHarry Python (Hindi)](https://youtu.be/gfDE2a7MKjA)
📘 [NPTEL Python Course](https://nptel.ac.in/courses/106/106/106106182/)
🎥 [Telusko Python](https://youtube.com/playlist?list=PLsyeobzWxl7poL9JTVyndKe62ieoN-MZ3) | Simple calculator |
52 | | 4-7 | • NumPy
• Pandas
• Matplotlib | 🎥 [codebasics NumPy (Hindi)](https://youtu.be/Lb6ju7jXj4U)
🎥 [Krish Naik Pandas](https://youtu.be/RhEjmHeDNoA) | Data analysis |
53 | | 8-10 | • Linear Algebra
• Matrices | 🎥 [3Blue1Brown (with Hindi subtitles)](https://youtu.be/fNk_zzaMoSs)
📘 [NCERT Class 12 Maths](http://ncert.nic.in/) | Matrix calculator |
54 | | 11-14 | • Statistics
• Probability | 🎥 [Khan Academy India](https://www.khanacademy.org/in)
📘 [Great Learning Stats](https://www.mygreatlearning.com/academy) | Statistical tool |
55 |
56 | ### 🌟 TRACK 2: MACHINE LEARNING (10 WEEKS)
57 |
58 | #### Week 3-4: ML Fundamentals
59 | | Day | Topics | Indian Resources | Projects |
60 | |-----|---------|-----------------|-----------|
61 | | 15-17 | • ML Introduction
• Supervised Learning | 🎥 [Krish Naik ML Playlist](https://youtube.com/playlist?list=PLZoTAELRMXVPBTrWtJkn3wWQxZkmTXGwe)
📘 [Analytics Vidhya ML Guide](https://www.analyticsvidhya.com/machine-learning/) | House Price Predictor |
62 | | 18-21 | • Linear Regression
• Logistic Regression | 🎥 [codebasics ML (Hindi)](https://youtube.com/playlist?list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw)
📘 [Great Learning Blog](https://www.mygreatlearning.com/blog/) | Bangalore House Price Prediction |
63 | | 22-28 | • Decision Trees
• Random Forests | 🎥 [iNeuron ML (Hindi/English)](https://www.youtube.com/c/iNeuroniNtelligence)
📘 [Scaler Topics](https://www.scaler.com/topics/) | IPL Score Predictor |
64 |
65 | ### 🌟 TRACK 3: DEEP LEARNING (12 WEEKS)
66 |
67 | #### Week 5-8: Neural Networks & Computer Vision
68 | | Day | Topics | Indian Resources | Projects |
69 | |-----|---------|-----------------|-----------|
70 | | 29-35 | • Neural Networks
• PyTorch/TensorFlow | 🎥 [AIEngineering PyTorch](https://youtube.com/playlist?list=PLZoTAELRMXVNxYFq_9MuiUdn2YnlFqmMK)
📘 [IIIT-H Deep Learning](https://www.iiit.ac.in/) | Indian Currency Detector |
71 | | 36-42 | • CNN
• Transfer Learning | 🎥 [Campus X CNN Series](https://www.youtube.com/c/CampusX-official)
📘 [IIT-M DL Course](https://www.cse.iitm.ac.in/) | Indian Food Classifier |
72 | | 43-49 | • Object Detection
• Face Recognition | 🎥 [The AI Guy](https://www.youtube.com/c/TheAIGuy)
📘 [LearnOpenCV Blog](https://learnopencv.com/) | Vehicle Number Plate Detection |
73 |
74 | ### 🌟 TRACK 4: GENAI & LLMs (10 WEEKS)
75 |
76 | #### Indian Companies Working on GenAI
77 | | Company | Location | Focus Area | Tech Stack |
78 | |---------|----------|------------|------------|
79 | | Sarvam AI | Bangalore | Indic LLMs | PyTorch, Transformers |
80 | | Bhashini | Delhi | Language Translation | Custom Models |
81 | | Vernacular.ai | Bangalore | Voice AI | Speech Recognition |
82 | | Krutrim AI | Mumbai | Multilingual AI | Custom Architecture |
83 |
84 | #### Week 9-12: LLM Development
85 | | Day | Topics | Indian Resources | Projects |
86 | |-----|---------|-----------------|-----------|
87 | | 50-56 | • Transformer Architecture
• BERT/GPT | 🎥 [Vaibhav Balloli](https://www.youtube.com/c/VaibhavBalloli)
📘 [Hugging Face India](https://discuss.huggingface.co/c/local-communities/india/) | Hindi Text Summarizer |
88 | | 57-63 | • Fine-tuning
• Prompt Engineering | 🎥 [Machine Learning Street Talk India](https://www.youtube.com/c/MachineLearningStreetTalk)
📘 [OpenInApp Docs](https://docs.openinapp.com/) | Indic Language Chatbot |
89 | | 64-70 | • RAG
• Vector Databases | 🎥 [Coding Ninjas GenAI](https://www.codingninjas.com/)
📘 [LangChain India Guide](https://python.langchain.com/) | Legal Document Assistant |
90 |
91 | ## 🎯 Indian Industry-Specific Projects
92 |
93 | ### Banking & Finance
94 | 1. UPI Fraud Detection System
95 | 2. Credit Score Predictor
96 | 3. Stock Market Analysis for NSE/BSE
97 | 4. Insurance Claim Processor
98 |
99 | ### E-commerce & Retail
100 | 1. Flipkart Review Analyzer
101 | 2. Product Recommendation System
102 | 3. Inventory Demand Predictor
103 | 4. Visual Search for Indian Products
104 |
105 | ### Healthcare
106 | 1. Disease Prediction from Symptoms
107 | 2. Medical Report Analyzer
108 | 3. AYUSH Medicine Classifier
109 | 4. Healthcare Chatbot (Multi-lingual)
110 |
111 | ### Government & Public Sector
112 | 1. Crop Yield Prediction
113 | 2. Air Quality Analysis
114 | 3. Traffic Management System
115 | 4. Document Digitization (Multiple Indian Languages)
116 |
117 | ## 📝 Interview Preparation (Indian Companies)
118 |
119 | ### Service-Based Companies (TCS, Infosys, Wipro)
120 | | Round | Focus | Preparation Resources |
121 | |-------|-------|----------------------|
122 | | Aptitude | Quantitative, Logical | 🎯 [IndiaBix](https://www.indiabix.com/)
📘 [PrepInsta](https://prepinsta.com/) |
123 | | Technical | DS, Algo, ML Basics | 🎯 [InterviewBit India](https://www.interviewbit.com/)
📘 [GeeksforGeeks](https://www.geeksforgeeks.org/) |
124 | | ML/AI | Basic ML Concepts | 🎯 [Analytics Vidhya Interview Series](https://www.analyticsvidhya.com/blog/category/interview-questions/)
📘 [ML Interview Guide](https://github.com/youssefHosni/Data-Science-Interview-Questions) |
125 | | HR | Communication, Culture | 🎯 [Glassdoor India Reviews](https://www.glassdoor.co.in/) |
126 |
127 | ### Product Companies (Amazon, Microsoft, Google India)
128 | | Round | Focus | Preparation Resources |
129 | |-------|-------|----------------------|
130 | | Online Assessment | DSA, ML Problems | 🎯 [LeetCode India](https://leetcode.com/discuss/interview-question?currentPage=1&orderBy=hot&query=india) |
131 | | Technical (1-2) | ML Theory, System Design | 🎯 [Striver's SDE Sheet](https://takeuforward.org/interviews/strivers-sde-sheet-top-coding-interview-problems/) |
132 | | ML/AI Design | End-to-End ML System | 🎯 [Grokking ML Interview](https://www.educative.io/courses/grokking-the-machine-learning-interview) |
133 | | Behavioral | Leadership Principles | 🎯 [InterviewBit HR Questions](https://www.interviewbit.com/hr-interview-questions/) |
134 |
135 | ### Indian Startups
136 | | Round | Focus | Preparation Resources |
137 | |-------|-------|----------------------|
138 | | Take-home Assignment | Practical Implementation | 🎯 [Kaggle India](https://www.kaggle.com/india) |
139 | | Technical Discussion | Problem Solving | 🎯 [MLOps Community India](https://mlops.community/) |
140 | | Culture Fit | Startup Mindset | 🎯 [YourStory Startup Jobs](https://yourstory.com/jobs) |
141 |
142 | ## 🎓 Indian AI Certifications & Their Value
143 |
144 | ### Government & Academic Certifications
145 | | Certification | Institution | Cost (INR) | Value |
146 | |--------------|-------------|-------------|--------|
147 | | PG Diploma in AI | IIT Madras | ₹2.3 Lakhs | Very High |
148 | | AI/ML Certification | IIIT Hyderabad | ₹2.5 Lakhs | Very High |
149 | | Advanced ML Program | IISc Bangalore | ₹3 Lakhs | Excellent |
150 | | NPTEL AI/ML | IITs | ₹1000 | Good |
151 |
152 | ### Industry Certifications (Indian Pricing)
153 | | Certification | Provider | Cost (INR) | Value |
154 | |--------------|----------|-------------|--------|
155 | | AI Engineering | Simplilearn | ₹80,000 | Good |
156 | | ML Specialization | upGrad | ₹1.5 Lakhs | Good |
157 | | Deep Learning | Great Learning | ₹70,000 | Good |
158 | | AI/ML Bootcamp | Scaler | ₹2.5 Lakhs | Very Good |
159 |
160 | ### Free Certifications (with Indian Recognition)
161 | 1. Google Cloud AI (Free with ₹1000 exam fee)
162 | 2. Microsoft AI Fundamentals (Free learning, exam cost: ₹4000)
163 | 3. IBM AI Engineering (Free on Coursera)
164 | 4. Intel AI Academy Certification (Free)
165 |
166 | ### Indian Learning Platforms & Costs
167 |
168 | #### Free Resources
169 | 1. NPTEL Courses (Free with certification at ₹1000)
170 | 2. Swayam Portal
171 | 3. Government AI Portal ([ai.gov.in](https://ai.gov.in))
172 | 4. IIT-M Online Degree (₹15,000-25,000 per semester)
173 |
174 | #### Paid Resources (Indian Pricing)
175 | | Platform | Course | Cost (INR) | Duration |
176 | |----------|--------|------------|-----------|
177 | | Coding Ninjas | AI & ML | ₹15,000-20,000 | 6 months |
178 | | Scaler Academy | AI/ML Program | ₹2-3 Lakhs | 12 months |
179 | | upGrad | ML & AI | ₹2.5-4 Lakhs | 12-18 months |
180 | | Great Learning | AI/ML PG | ₹2-3 Lakhs | 12 months |
181 |
182 | ### Indian AI Communities
183 | 1. [TFUG India](https://www.tensorflow.org/community/groups)
184 | 2. [PyTorch India](https://www.facebook.com/groups/pytorch.india/)
185 | 3. [AI India Discord](https://discord.gg/india-ai)
186 | 4. [DataHack by Analytics Vidhya](https://datahack.analyticsvidhya.com/)
187 |
188 | ## 🚀 Indian AI Startup Ecosystem
189 |
190 | ### Major AI Hubs in India
191 | | City | Notable Startups | Focus Areas |
192 | |------|-----------------|-------------|
193 | | Bangalore | Artivatic, Mad Street Den | FinTech, Retail AI |
194 | | Mumbai | Tata Neu, Haptik | Conversational AI |
195 | | Delhi NCR | Staqu, Parallel Dots | Computer Vision |
196 | | Hyderabad | TechEagle, Darwinbox | HR Tech, Drones |
197 | | Pune | Mindtree AI, Zensar | Enterprise AI |
198 |
199 | ### AI Startup Incubators
200 | 1. T-Hub (Hyderabad)
201 | 2. NASSCOM CoE (Multiple Cities)
202 | 3. IIT Madras Research Park
203 | 4. Venture Studio (Bangalore)
204 |
205 | ### Funding Resources
206 | 1. [100X.VC](https://www.100x.vc/)
207 | 2. Sequoia Surge
208 | 3. Axilor Ventures
209 | 4. Indian Angel Network
210 |
211 | ## 💼 Job Search Strategies (Indian Market)
212 |
213 | ### Online Job Portals
214 | | Portal | Best For | Tips |
215 | |--------|----------|------|
216 | | Naukri.com | IT/ML Jobs | Create AI-specific resume |
217 | | LinkedIn India | Network Building | Join AI India groups |
218 | | AngelList India | Startup Jobs | Follow AI startups |
219 | | Indeed India | MNC Jobs | Set job alerts |
220 |
221 | ### Networking Platforms
222 | 1. [LinkedIn AI Groups India](https://www.linkedin.com/groups/)
223 | 2. [Discord AI India](https://discord.gg/aiindia)
224 | 3. [Reddit India AI](https://www.reddit.com/r/IndianAI/)
225 | 4. [Kaggle India Community](https://www.kaggle.com/india)
226 |
227 | ### AI Conferences & Events (India)
228 | | Event | Location | Focus | Networking Value |
229 | |-------|----------|-------|------------------|
230 | | MLDS | Multiple Cities | ML/DS | Very High |
231 | | Cypher | Bangalore | Analytics/AI | High |
232 | | RAISE | New Delhi | AI Summit | Very High |
233 | | PyConf India | Multiple Cities | Python/AI | High |
234 |
235 | ## 💰 Salary Negotiations (Indian Context)
236 |
237 | ### Salary Components
238 | 1. Base Pay
239 | 2. Stocks (ESOPs)
240 | 3. Variable Pay
241 | 4. Benefits
242 |
243 | ### Salary Ranges by Experience (2025)
244 | | Experience | Base Pay (LPA) | Total CTC (LPA) |
245 | |------------|---------------|------------------|
246 | | Fresher | 5-8 | 6-10 |
247 | | 1-3 years | 8-15 | 10-20 |
248 | | 3-5 years | 15-25 | 20-35 |
249 | | 5+ years | 25-40 | 35-60+ |
250 |
251 | ### Negotiation Tips
252 | 1. Research on Glassdoor India
253 | 2. Use competing offers
254 | 3. Consider ESOPs in startups
255 | 4. Factor in city cost of living
256 |
257 | ## 🌐 Remote Work Opportunities
258 |
259 | ### Indian Companies Offering Remote AI Roles
260 | 1. Fractal Analytics
261 | 2. Tiger Analytics
262 | 3. Sigmoid
263 | 4. ThoughtWorks India
264 |
265 | ### International Remote Opportunities
266 | | Type | Platforms | Salary Range (Monthly) |
267 | |------|-----------|----------------------|
268 | | Freelance | Upwork, Toptal | $1000-5000 |
269 | | Full-time Remote | AngelList, WeWorkRemotely | $2000-8000 |
270 | | Contract | Turing, Andela | $1500-7000 |
271 |
272 | ## 📚 Higher Education Pathways
273 |
274 | ### Masters Programs in India
275 | | University | Program | Duration | Fee (INR) |
276 | |------------|---------|----------|------------|
277 | | IIT Bombay | M.Tech (AI) | 2 years | 2-3 Lakhs |
278 | | IIIT Bangalore | M.Tech (ML) | 2 years | 3-4 Lakhs |
279 | | IISc | M.Tech (AI) | 2 years | 2-3 Lakhs |
280 | | IIT Delhi | M.Tech (AI) | 2 years | 2-3 Lakhs |
281 |
282 | ### Online Degree Options
283 | 1. IIT Madras BS in Data Science
284 | 2. BITS Pilani Work Integrated Learning Programs
285 | 3. IIIT Bangalore Online M.Tech
286 |
287 | ### Research Opportunities
288 | 1. Research Internship at IITs/IISc
289 | 2. Microsoft Research India
290 | 3. Google AI Research India
291 | 4. IBM Research India
292 |
293 | ## 📱 Essential Apps & Tools for Indian AI Engineers
294 |
295 | ### Learning Apps
296 | 1. GeeksforGeeks
297 | 2. InterviewBit
298 | 3. Coursera
299 | 4. Unacademy
300 |
301 | ### Development Tools
302 | 1. Google Colab (Free GPU)
303 | 2. Kaggle Notebooks
304 | 3. GitHub Student Pack
305 | 4. Azure for Students
306 |
307 | ### Interview Prep Apps
308 | 1. LeetCode
309 | 2. HackerRank
310 | 3. CodeChef
311 | 4. PrepInsta
312 |
313 | ## 🎯 First 90 Days Plan in AI Job
314 |
315 | ### Month 1
316 | 1. Understanding company tech stack
317 | 2. Learning internal tools
318 | 3. Basic project contributions
319 | 4. Team collaboration
320 |
321 | ### Month 2
322 | 1. Independent feature development
323 | 2. Code review participation
324 | 3. Documentation
325 | 4. Small project ownership
326 |
327 | ### Month 3
328 | 1. End-to-end project handling
329 | 2. Team presentations
330 | 3. Mentoring juniors
331 | 4. Process improvements
332 |
333 | ## 💡 Tips for Indian AI Engineers
334 |
335 | 1. Build strong mathematics foundation
336 | 2. Focus on practical implementations
337 | 3. Contribute to open source
338 | 4. Network actively
339 | 5. Keep updating skills
340 | 6. Document your projects
341 | 7. Build online presence
342 | 8. Learn cloud platforms
343 | 9. Practice communication
344 | 10. Stay updated with AI news
345 |
--------------------------------------------------------------------------------
/new.md:
--------------------------------------------------------------------------------
1 | # AI Development Roadmap 2025
2 | ## For Web Developers Transitioning to AI
3 |
4 | ### Prerequisites
5 | - Strong JavaScript/TypeScript knowledge
6 | - Experience with React and Next.js
7 | - Understanding of web development principles
8 | - Git version control
9 | - Basic command line proficiency
10 |
11 | ### Phase 1: Python Foundations (4-6 weeks)
12 | #### Week 1-2: Python Basics
13 | - **Core Python Concepts**
14 | - Variables, data types, and operators
15 | - Control structures and functions
16 | - Object-oriented programming
17 | - List comprehensions and generators
18 |
19 | **Resources:**
20 | - [Python Official Tutorial](https://docs.python.org/3/tutorial/)
21 | - [Real Python - Python Basics](https://realpython.com/learning-paths/python3-introduction/)
22 | - Course: [Python for JavaScript Developers](https://www.udemy.com/course/python-for-javascript-developers/)
23 |
24 | **Practice Projects:**
25 | 1. Convert a JavaScript utility library to Python
26 | 2. Build a CLI tool for file management
27 | 3. Create a simple API with FastAPI
28 |
29 | #### Week 3-4: Data Science Libraries
30 | - **NumPy Fundamentals**
31 | - Arrays and array operations
32 | - Broadcasting
33 | - Linear algebra operations
34 |
35 | - **Pandas Basics**
36 | - DataFrames and Series
37 | - Data cleaning and manipulation
38 | - Data analysis and visualization
39 |
40 | **Resources:**
41 | - [NumPy User Guide](https://numpy.org/doc/stable/user/index.html)
42 | - [Pandas Documentation](https://pandas.pydata.org/docs/)
43 | - Course: [Data Analysis with Python](https://www.coursera.org/learn/data-analysis-with-python)
44 |
45 | **Practice Projects:**
46 | 1. Data cleaning and analysis pipeline
47 | 2. CSV to JSON converter with data validation
48 | 3. Simple dashboard with Plotly
49 |
50 | ### Phase 2: AI/ML Foundations (8-10 weeks)
51 | #### Week 1-3: Machine Learning Basics
52 | - **Core ML Concepts**
53 | - Supervised vs unsupervised learning
54 | - Classification and regression
55 | - Model evaluation metrics
56 | - Feature engineering
57 |
58 | **Resources:**
59 | - [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)
60 | - [Fast.ai Practical Deep Learning](https://course.fast.ai/)
61 | - Book: "Hands-On Machine Learning with Scikit-Learn and TensorFlow"
62 |
63 | #### Week 4-6: Deep Learning Fundamentals
64 | - **Neural Networks**
65 | - Architecture and components
66 | - Forward and backward propagation
67 | - Activation functions
68 | - Loss functions and optimization
69 |
70 | **Resources:**
71 | - [Deep Learning Specialization](https://www.deeplearning.ai/)
72 | - [PyTorch Tutorials](https://pytorch.org/tutorials/)
73 | - [TensorFlow Guide](https://www.tensorflow.org/guide)
74 |
75 | #### Week 7-10: Natural Language Processing
76 | - **NLP Concepts**
77 | - Text preprocessing
78 | - Tokenization
79 | - Embeddings
80 | - Transformer architecture
81 |
82 | **Resources:**
83 | - [HuggingFace Course](https://huggingface.co/course)
84 | - [Spacy Course](https://course.spacy.io/)
85 | - [Stanford NLP Course](https://web.stanford.edu/class/cs224n/)
86 |
87 | ### Phase 3: LLM Integration (8-10 weeks)
88 | #### Week 1-3: LLM Fundamentals
89 | - **Core Concepts**
90 | - Prompt engineering
91 | - Context windows
92 | - Temperature and sampling
93 | - Token optimization
94 |
95 | **Resources:**
96 | - [OpenAI Documentation](https://platform.openai.com/docs)
97 | - [Anthropic Claude Documentation](https://docs.anthropic.com/)
98 | - [Prompt Engineering Guide](https://www.promptingguide.ai/)
99 |
100 | #### Week 4-6: Vector Databases
101 | - **Concepts and Implementation**
102 | - Embeddings generation
103 | - Vector similarity search
104 | - Database options and tradeoffs
105 |
106 | **Resources:**
107 | - [Pinecone Learning Center](https://www.pinecone.io/learn/)
108 | - [Weaviate Documentation](https://weaviate.io/developers/weaviate)
109 | - [Milvus Bootcamp](https://milvus.io/bootcamp)
110 |
111 | #### Week 7-10: RAG Applications
112 | - **Building RAG Systems**
113 | - Document processing
114 | - Chunking strategies
115 | - Query processing
116 | - Response generation
117 |
118 | **Resources:**
119 | - [LangChain Documentation](https://python.langchain.com/docs/get_started)
120 | - [LlamaIndex Guide](https://docs.llamaindex.ai/)
121 | - [Chroma Documentation](https://docs.trychroma.com/)
122 |
123 | ### Phase 4: Full-Stack AI Development (12 weeks)
124 | #### Week 1-4: Frontend Integration
125 | - **AI-Powered Components**
126 | - Streaming responses
127 | - Progressive loading
128 | - Error handling
129 | - Rate limiting
130 |
131 | **Resources:**
132 | - [Vercel AI SDK](https://sdk.vercel.ai/docs)
133 | - [React Server Components](https://react.dev/blog/2023/03/22/react-labs-what-we-have-been-working-on-march-2023#react-server-components)
134 | - [Next.js AI Documentation](https://nextjs.org/docs/app/building-your-application/ai)
135 |
136 | #### Week 5-8: Backend Integration
137 | - **AI Service Architecture**
138 | - API design
139 | - Caching strategies
140 | - Load balancing
141 | - Cost optimization
142 |
143 | **Resources:**
144 | - [FastAPI Documentation](https://fastapi.tiangolo.com/)
145 | - [Redis AI Documentation](https://redis.io/docs/stack/ai/)
146 | - [MongoDB Vector Search](https://www.mongodb.com/docs/atlas/vector-search/)
147 |
148 | #### Week 9-12: Production Deployment
149 | - **MLOps Basics**
150 | - Model versioning
151 | - Monitoring
152 | - A/B testing
153 | - Performance optimization
154 |
155 | **Resources:**
156 | - [AWS SageMaker Documentation](https://docs.aws.amazon.com/sagemaker/)
157 | - [Google Vertex AI Guide](https://cloud.google.com/vertex-ai/docs)
158 | - [Azure ML Documentation](https://learn.microsoft.com/en-us/azure/machine-learning/)
159 |
160 | ### Capstone Projects
161 | 1. **AI-Powered Content Management System**
162 | - Content generation
163 | - Auto-tagging
164 | - SEO optimization
165 | - Image generation
166 |
167 | 2. **Intelligent Document Processing System**
168 | - PDF parsing
169 | - Information extraction
170 | - Summary generation
171 | - Question answering
172 |
173 | 3. **Code Analysis Assistant**
174 | - Code review automation
175 | - Bug detection
176 | - Refactoring suggestions
177 | - Documentation generation
178 |
179 | ### Continuing Education
180 | - Join AI research paper reading groups
181 | - Participate in Kaggle competitions
182 | - Contribute to open-source AI projects
183 | - Attend AI conferences and meetups
184 |
185 | ### Career Development
186 | - Build a portfolio of AI projects
187 | - Write technical blogs about your learning journey
188 | - Network with AI developers and researchers
189 | - Join AI-focused Discord and Slack communities
190 |
191 | ### Recommended Books
192 | 1. "Deep Learning with Python" by François Chollet
193 | 2. "Building Machine Learning Powered Applications" by Emmanuel Ameisen
194 | 3. "Designing Machine Learning Systems" by Chip Huyen
195 | 4. "Natural Language Processing with Transformers" by Lewis Tunstall et al.
196 | 5. "Production Machine Learning Systems" by Emmanuel Ameisen
197 |
198 | ### Online Communities
199 | - [Hugging Face Forums](https://discuss.huggingface.co/)
200 | - [Fast.ai Forums](https://forums.fast.ai/)
201 | - [AI Stack Exchange](https://ai.stackexchange.com/)
202 | - [r/MachineLearning](https://www.reddit.com/r/MachineLearning/)
203 | - [PyTorch Discussion Forums](https://discuss.pytorch.org/)
204 |
205 | ### Time Commitment
206 | - Full-time: 6-8 months
207 | - Part-time: 12-15 months
208 | - Casual learning: 18-24 months
209 |
210 | Remember to:
211 | - Build projects continuously
212 | - Document your learning
213 | - Network with others
214 | - Stay updated with AI news
215 | - Practice regularly
216 | - Focus on practical applications
217 |
--------------------------------------------------------------------------------
/videshi.md:
--------------------------------------------------------------------------------
1 | # 🤖 Complete AI & GenAI Engineering Roadmap 2025
2 |
3 | 
4 |
5 | > "The best way to predict the future is to create it with AI"
6 |
7 | ## 🎯 Career Paths in AI (2025)
8 | | Role | Average Salary | Focus Areas | Growth Potential |
9 | |------|----------------|-------------|------------------|
10 | | AI Engineer | $120k-200k | ML/DL, MLOps | High |
11 | | GenAI Specialist | $150k-250k | LLMs, Transformers | Very High |
12 | | AI Research Scientist | $130k-220k | Advanced AI, Papers | High |
13 | | MLOps Engineer | $115k-180k | Deployment, Scaling | High |
14 |
15 | ## 📚 Prerequisites
16 | - Basic Python programming
17 | - High school mathematics
18 | - Analytical thinking
19 | - Problem-solving skills
20 |
21 | ## 🎓 Learning Tracks
22 |
23 | ### Track 1️⃣: Foundation (8 weeks)
24 | ### Track 2️⃣: Machine Learning (10 weeks)
25 | ### Track 3️⃣: Deep Learning (12 weeks)
26 | ### Track 4️⃣: GenAI & LLMs (10 weeks)
27 | ### Track 5️⃣: MLOps & Deployment (8 weeks)
28 |
29 | ## 📅 Detailed Learning Schedule
30 |
31 | ### 🌟 TRACK 1: FOUNDATION (8 WEEKS)
32 |
33 | #### Week 1-2: Python & Mathematics
34 | | Day | Topics | Resources | Projects |
35 | |-----|---------|-----------|-----------|
36 | | 1-3 | • Python Basics
• Data Types
• Functions | 🎥 [Python for AI - freeCodeCamp](https://youtu.be/WGJJIrtnfpk)
📘 [Python Documentation](https://docs.python.org/3/)
🎥 [Tech With Tim - Python](https://www.youtube.com/c/TechWithTim) | Build a data processing utility |
37 | | 4-7 | • NumPy
• Pandas
• Matplotlib | 🎥 [Keith Galli - Pandas](https://youtu.be/vmEHCJofslg)
🎥 [Corey Schafer - Python](https://www.youtube.com/c/Coreyms) | Data analysis dashboard |
38 | | 8-10 | • Linear Algebra
• Matrices
• Vectors | 🎥 [3Blue1Brown - Linear Algebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
📘 [Khan Academy - Linear Algebra](https://www.khanacademy.org/math/linear-algebra) | Matrix operations library |
39 | | 11-14 | • Statistics
• Probability
• Calculus | 🎥 [StatQuest with Josh Starmer](https://www.youtube.com/c/joshstarmer)
📘 [Mathematics for ML](https://mml-book.github.io/) | Statistical analysis tool |
40 |
41 | #### Week 3-4: Data Science Fundamentals
42 | | Day | Topics | Resources | Projects |
43 | |-----|---------|-----------|-----------|
44 | | 15-17 | • Data Cleaning
• EDA
• Visualization | 🎥 [Ken Jee - Data Science](https://www.youtube.com/c/KenJee1)
📘 [Kaggle Learn](https://www.kaggle.com/learn) | EDA on real dataset |
45 | | 18-21 | • Feature Engineering
• Data Preprocessing | 🎥 [Krish Naik](https://www.youtube.com/user/krishnaik06)
📘 [Feature Engineering Book](https://www.oreilly.com/library/view/feature-engineering-for/9781491953235/) | Feature engineering pipeline |
46 | | 22-28 | • SQL
• Database Basics
• Data Integration | 🎥 [SQL Tutorial - freeCodeCamp](https://youtu.be/HXV3zeQKqGY)
📘 [Mode SQL Tutorial](https://mode.com/sql-tutorial/) | Database integration project |
47 |
48 | ### 🌟 TRACK 2: MACHINE LEARNING (10 WEEKS)
49 |
50 | #### Week 5-6: ML Fundamentals
51 | | Day | Topics | Resources | Projects |
52 | |-----|---------|-----------|-----------|
53 | | 29-31 | • ML Introduction
• Supervised Learning | 🎥 [Andrew Ng's ML Course](https://www.coursera.org/learn/machine-learning)
🎥 [Sentdex ML](https://www.youtube.com/c/sentdex) | Basic ML model |
54 | | 32-35 | • Linear Regression
• Logistic Regression | 🎥 [StatQuest ML](https://www.youtube.com/playlist?list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF)
📘 [Scikit-learn Docs](https://scikit-learn.org/) | Prediction models |
55 | | 36-42 | • Decision Trees
• Random Forests | 🎥 [Abhishek Thakur](https://www.youtube.com/c/AbhishekThakurAbhi)
📘 [ML Mastery](https://machinelearningmastery.com/) | Ensemble models |
56 |
57 | #### Week 7-8: Advanced ML
58 | | Day | Topics | Resources | Projects |
59 | |-----|---------|-----------|-----------|
60 | | 43-46 | • SVM
• KNN
• Naive Bayes | 🎥 [ritvikmath](https://www.youtube.com/c/ritvikmath)
📘 [ML From Scratch](https://github.com/eriklindernoren/ML-From-Scratch) | Classification system |
61 | | 47-49 | • Clustering
• Dimensionality Reduction | 🎥 [Two Minute Papers](https://www.youtube.com/c/K%C3%A1rolyZsolnai)
📘 [Hands-on ML Book](https://github.com/ageron/handson-ml2) | Clustering project |
62 | | 50-56 | • Model Evaluation
• Cross-validation | 🎥 [Python Engineer](https://www.youtube.com/c/PythonEngineer)
📘 [Evaluation Metrics](https://neptune.ai/blog/evaluation-metrics-binary-classification) | Model evaluation suite |
63 |
64 | ### 🌟 TRACK 3: DEEP LEARNING (12 WEEKS)
65 |
66 | #### Week 9-10: Neural Networks Fundamentals
67 | | Day | Topics | Resources | Projects |
68 | |-----|---------|-----------|-----------|
69 | | 57-60 | • Neural Network Basics
• Perceptrons
• Activation Functions | 🎥 [3Blue1Brown - Neural Networks](https://youtu.be/aircAruvnKk)
📘 [Deep Learning Book](https://www.deeplearningbook.org/) | Build NN from scratch |
70 | | 61-63 | • Backpropagation
• Gradient Descent
• Optimizers | 🎥 [Stanford CS231n](https://youtube.com/playlist?list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk)
📘 [PyTorch Tutorials](https://pytorch.org/tutorials/) | Optimizer implementation |
71 | | 64-70 | • Loss Functions
• Regularization
• Dropout | 🎥 [Weights & Biases](https://www.youtube.com/c/WeightsBiases)
📘 [TensorFlow Guide](https://www.tensorflow.org/guide) | Training pipeline |
72 |
73 | #### Week 11-14: Advanced Deep Learning
74 | | Day | Topics | Resources | Projects |
75 | |-----|---------|-----------|-----------|
76 | | 71-77 | • CNN Architecture
• Image Processing
• Computer Vision | 🎥 [Computerphile](https://www.youtube.com/user/computerphile)
📘 [Fast.ai Course](https://course.fast.ai/) | Image classification |
77 | | 78-84 | • RNN & LSTM
• Sequential Data
• Time Series | 🎥 [DeepLearning.AI](https://www.youtube.com/c/Deeplearningai)
📘 [Sequence Models](https://www.coursera.org/learn/nlp-sequence-models) | Time series predictor |
78 | | 85-91 | • GANs
• Autoencoders
• Transfer Learning | 🎥 [Lex Fridman](https://www.youtube.com/c/lexfridman)
📘 [GAN Lab](https://poloclub.github.io/ganlab/) | Image generation |
79 |
80 | ### 🌟 TRACK 4: GENAI & LLMs (10 WEEKS)
81 |
82 | #### Week 15-17: Transformer Architecture
83 | | Day | Topics | Resources | Projects |
84 | |-----|---------|-----------|-----------|
85 | | 92-98 | • Attention Mechanism
• Self-Attention
• Multi-Head Attention | 🎥 [Jay Alammar](https://jalammar.github.io/)
📘 [Attention Paper](https://arxiv.org/abs/1706.03762) | Attention visualizer |
86 | | 99-105 | • BERT
• GPT Architecture
• T5 Models | 🎥 [Andrej Karpathy](https://www.youtube.com/c/AndrejKarpathy)
📘 [Hugging Face Course](https://huggingface.co/course) | Fine-tune BERT |
87 |
88 | #### Week 18-20: LLM Development
89 | | Day | Topics | Resources | Projects |
90 | |-----|---------|-----------|-----------|
91 | | 106-112 | • Prompt Engineering
• Few-shot Learning
• Chain-of-Thought | 🎥 [AI Coffee Break](https://www.youtube.com/c/AICoffeeBreak)
📘 [LangChain Docs](https://python.langchain.com/en/latest/) | Custom chatbot |
92 | | 113-119 | • RAG
• Fine-tuning LLMs
• PEFT Methods | 🎥 [Assembly AI](https://www.youtube.com/c/AssemblyAI)
📘 [LlamaIndex Docs](https://gpt-index.readthedocs.io/) | RAG application |
93 |
94 | #### Week 21-24: Advanced GenAI
95 | | Day | Topics | Resources | Projects |
96 | |-----|---------|-----------|-----------|
97 | | 120-126 | • Multi-modal Models
• DALL-E
• Stable Diffusion | 🎥 [Machine Learning Street Talk](https://www.youtube.com/c/MachineLearningStreetTalk)
📘 [Diffusers Library](https://huggingface.co/docs/diffusers/) | Image generator |
98 | | 127-133 | • Vector Databases
• Semantic Search
• Embeddings | 🎥 [DataEngineering](https://www.youtube.com/c/DataEngineeringCourse)
📘 [Pinecone Docs](https://docs.pinecone.io/) | Search engine |
99 |
100 | ### 🌟 TRACK 5: MLOPS & DEPLOYMENT (8 WEEKS)
101 |
102 | #### Week 25-28: MLOps Fundamentals
103 | | Day | Topics | Resources | Projects |
104 | |-----|---------|-----------|-----------|
105 | | 134-140 | • Docker
• Kubernetes
• CI/CD | 🎥 [TechWorld with Nana](https://www.youtube.com/c/TechWorldwithNana)
📘 [MLOps Zoomcamp](https://github.com/DataTalksClub/mlops-zoomcamp) | Containerized ML |
106 | | 141-147 | • Model Versioning
• Experiment Tracking
• ML Pipeline | 🎥 [Weights & Biases](https://www.youtube.com/c/WeightsBiases)
📘 [MLflow Docs](https://mlflow.org/docs/latest/index.html) | ML pipeline |
107 |
108 | #### Week 29-32: Production Deployment
109 | | Day | Topics | Resources | Projects |
110 | |-----|---------|-----------|-----------|
111 | | 148-154 | • AWS SageMaker
• Azure ML
• Google AI Platform | 🎥 [AWS Training](https://www.youtube.com/c/AmazonWebServices)
📘 [Cloud Certifications](https://aws.amazon.com/certification/) | Cloud deployment |
112 | | 155-161 | • Model Monitoring
• A/B Testing
• Model Governance | 🎥 [Full Stack Deep Learning](https://fullstackdeeplearning.com/)
📘 [ML System Design](https://github.com/chiphuyen/machine-learning-systems-design) | Monitoring system |
113 |
114 | ## 📺 Top YouTube Channels for AI Learning
115 |
116 | ### 🎥 General AI & ML
117 | | Channel | Focus Area | Best For |
118 | |---------|------------|----------|
119 | | [3Blue1Brown](https://www.youtube.com/c/3blue1brown) | Math & Concepts | Visual learners |
120 | | [Sentdex](https://www.youtube.com/c/sentdex) | Practical AI | Hands-on coding |
121 | | [Two Minute Papers](https://www.youtube.com/c/K%C3%A1rolyZsolnai) | AI Research | Latest developments |
122 | | [Yannic Kilcher](https://www.youtube.com/c/YannicKilcher) | Paper Reviews | Research understanding |
123 | | [Weights & Biases](https://www.youtube.com/c/WeightsBiases) | MLOps & DL | Production AI |
124 |
125 | ### 🎥 GenAI Specific
126 | | Channel | Focus Area | Best For |
127 | |---------|------------|----------|
128 | | [AI Coffee Break](https://www.youtube.com/c/AICoffeeBreak) | LLMs & Transformers | Latest GenAI trends |
129 | | [Assembly AI](https://www.youtube.com/c/AssemblyAI) | NLP & Speech | Practical implementations |
130 | | [Prompt Engineering](https://www.youtube.com/c/PromptEngineering) | Prompt Design | LLM applications |
131 | | [GenAI Crash Course](https://www.youtube.com/watch?v=nJ25yl34Uqw) | Crash Course | freeCodeCamp |
132 |
133 | ## 📚 Certifications Roadmap
134 |
135 | ### Entry Level
136 | 1. [AWS Machine Learning Specialty](https://aws.amazon.com/certification/certified-machine-learning-specialty/)
137 | 2. [TensorFlow Developer Certificate](https://www.tensorflow.org/certificate)
138 | 3. [Azure AI Fundamentals](https://learn.microsoft.com/en-us/certifications/azure-ai-fundamentals/)
139 |
140 | ### Advanced Level
141 | 1. [Deep Learning Specialization](https://www.coursera.org/specializations/deep-learning)
142 | 2. [MLOps Engineering Certificate](https://www.coursera.org/professional-certificates/mlops-machine-learning-engineering)
143 | 3. [Google Cloud Professional ML Engineer](https://cloud.google.com/certification/machine-learning-engineer)
144 |
145 | ## 🎯 Project Portfolio Building
146 |
147 | ### Beginner Projects
148 | 1. Image Classification using CNNs
149 | 2. Sentiment Analysis using BERT
150 | 3. Time Series Prediction
151 | 4. Recommendation System
152 |
153 | ### Intermediate Projects
154 | 1. Custom Object Detection
155 | 2. Language Translation Model
156 | 3. Music Generation using RNNs
157 | 4. Face Recognition System
158 |
159 | ### Advanced Projects
160 | 1. Custom LLM Development
161 | 2. Multi-modal AI System
162 | 3. Autonomous Agent
163 | 4. Enterprise MLOps Pipeline
164 |
165 | ## 📝 Interview Preparation
166 |
167 | ### Technical Topics
168 | 1. Machine Learning
169 | - Algorithm selection
170 | - Model evaluation
171 | - Feature engineering
172 |
173 | 2. Deep Learning
174 | - Architecture design
175 | - Training optimization
176 | - Transfer learning
177 |
178 | 3. GenAI
179 | - Transformer architecture
180 | - Prompt engineering
181 | - RAG implementation
182 |
183 | 4. MLOps
184 | - Deployment strategies
185 | - Monitoring systems
186 | - Scaling solutions
187 |
188 | ### System Design
189 | 1. Large Scale ML Systems
190 | 2. Real-time Inference
191 | 3. Distributed Training
192 | 4. Data Pipeline Design
193 |
194 | ### Behavioral Questions
195 | 1. Project Leadership
196 | 2. Problem-solving
197 | 3. Team Collaboration
198 | 4. Technical Communication
199 |
200 | ## 🌟 Additional Resources
201 |
202 | ### Books
203 | 1. "Deep Learning" by Ian Goodfellow
204 | 2. "Designing Machine Learning Systems" by Chip Huyen
205 | 3. "Building Machine Learning Powered Applications" by Emmanuel Ameisen
206 |
207 | ### Newsletters
208 | 1. [Import AI](https://jack-clark.net/)
209 | 2. [The Batch](https://www.deeplearning.ai/the-batch/)
210 | 3. [ML News](https://www.linkedin.com/newsletters/ml-news-6824927594418544640/)
211 |
212 | ### Communities
213 | 1. [Hugging Face Discord](https://huggingface.co/join/discord)
214 | 2. [PyTorch Forums](https://discuss.pytorch.org/)
215 | 3. [Reddit r/MachineLearning](https://www.reddit.com/r/MachineLearning/)
216 |
217 | ## 🎉 Career Growth Path
218 |
219 | ### Entry Level (0-2 years)
220 | - Junior AI Engineer
221 | - ML Engineer I
222 | - Research Assistant
223 |
224 | ### Mid Level (2-5 years)
225 | - Senior AI Engineer
226 | - ML Platform Engineer
227 | - AI Research Scientist
228 |
229 | ### Senior Level (5+ years)
230 | - Lead AI Engineer
231 | - AI Architect
232 | - Principal Scientist
233 | - AI Research Director
234 |
235 | ## 💡 Final Tips
236 | 1. Build in public
237 | 2. Contribute to open source
238 | 3. Write technical blogs
239 | 4. Network with AI community
240 | 5. Stay updated with research
241 | 6. Focus on practical implementation
242 | 7. Document your learning journey
243 |
--------------------------------------------------------------------------------