├── .DS_Store ├── Codes ├── .DS_Store ├── Fan2018TSP │ ├── .DS_Store │ ├── Codes for DFRC Waveform Design │ │ ├── .DS_Store │ │ ├── Constant Modulus │ │ │ ├── QCQP_LB1.zip │ │ │ ├── QPSK_mapper.m │ │ │ ├── CE_similarity_ComRad.zip │ │ │ ├── ComRad_Constant_Modulus.zip │ │ │ ├── objval_func.m │ │ │ ├── PSLRindB.m │ │ │ ├── pc_freqwin.m │ │ │ ├── chirp_generator.m │ │ │ ├── normalize_UB.m │ │ │ ├── QCQP_UB.m │ │ │ ├── QCQP_LB1.m │ │ │ ├── QCQP_LB2.m │ │ │ ├── CE_similarity_ComRad_benchmark.m │ │ │ ├── CE_similarity_bb_BRS.m │ │ │ ├── CE_similarity_bb_final_minModulus.m │ │ │ ├── CE_similarity_bb_ARS.m │ │ │ ├── CE_similarity_ComRad.m │ │ │ └── CE_similarity_sumrate.m │ │ └── Waveform Design With Given Radar Beampatterns │ │ │ ├── QPSK_mapper.m │ │ │ ├── Arbitrary_Com_Rad.m │ │ │ ├── PD_Orthogonal.m │ │ │ ├── Orthogonal_Com_Rad.m │ │ │ ├── waveform_design_multibm_covmat.m │ │ │ ├── QPSK_demod.m │ │ │ ├── tradeoff_comrad.m │ │ │ ├── LineSearchGoldenSection.m │ │ │ ├── tradeoff_comrad_per_ant.m │ │ │ ├── waveform_mainbm_covmat.m │ │ │ ├── sumrate_PD_tradeoff.m │ │ │ ├── multi_opt_comparison_sumrate.m │ │ │ └── multi_opt_comparison_SER.m │ └── README.md ├── README.md ├── Fan2018TWC by Nate Raymondi │ ├── README.md │ ├── SeparatedDeployment_BPmatching.m │ └── SeparatedDeployment_SidelobeMin.m └── Fan2020TCOM by Nate Raymondi │ ├── README.md │ └── Fan_DFRC.m ├── LICENSE └── README.md /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/.DS_Store -------------------------------------------------------------------------------- /Codes/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/Codes/.DS_Store -------------------------------------------------------------------------------- /Codes/Fan2018TSP/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/Codes/Fan2018TSP/.DS_Store -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/Codes/Fan2018TSP/Codes for DFRC Waveform Design/.DS_Store -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/QCQP_LB1.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/QCQP_LB1.zip -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/QPSK_mapper.m: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/QPSK_mapper.m -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/CE_similarity_ComRad.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/CE_similarity_ComRad.zip -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/ComRad_Constant_Modulus.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/ComRad_Constant_Modulus.zip -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/objval_func.m: -------------------------------------------------------------------------------- 1 | function [ objval ] = objval_func(x,H_wave,y_wave) 2 | %UNTITLED9 Summary of this function goes here 3 | % Detailed explanation goes here 4 | objval = norm(H_wave.'*x-y_wave,2)^2; 5 | end 6 | 7 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/QPSK_mapper.m: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanhao-cui/Must-Reading-on-ISAC/HEAD/Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/QPSK_mapper.m -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/PSLRindB.m: -------------------------------------------------------------------------------- 1 | function [ PSLR ] = PSLRindB( x0 ) 2 | %UNTITLED7 Summary of this function goes here 3 | % Detailed explanation goes here 4 | f = pc_freqwin( x0 ); 5 | pks = findpeaks(f); 6 | pks = sort(pks); 7 | PSLR = pks(length(pks))-pks(length(pks)-1); 8 | end 9 | 10 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/pc_freqwin.m: -------------------------------------------------------------------------------- 1 | function [ f ] = pc_freqwin( x0 ) 2 | %UNTITLED6 Summary of this function goes here 3 | % Detailed explanation goes here 4 | w = taylorwin(length(x0)).'; 5 | s = x0.*w; 6 | f1 = abs(fftshift((ifft(fft(s).*conj(fft(s)))))); 7 | f = 20*log10(f1/max(f1)); 8 | end 9 | 10 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/Arbitrary_Com_Rad.m: -------------------------------------------------------------------------------- 1 | function [ X ] = Arbitrary_Com_Rad( H,Y,power,F ) 2 | %UNTITLED5 Summary of this function goes here 3 | % Detailed explanation goes here 4 | [N,K] = size(H); 5 | [~,L] = size(Y); 6 | H_wave = H.'*F; 7 | [U,S,V] = svd(sqrt(L*power)*H_wave'*Y); 8 | X = sqrt(L)*F*U*eye(N,L)*V'; 9 | end -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/PD_Orthogonal.m: -------------------------------------------------------------------------------- 1 | function [ PD ] = PD_Orthogonal( X,a,SNR ) 2 | %UNTITLED2 Summary of this function goes here 3 | % Detailed explanation goes here 4 | [N,L] = size(X); 5 | Rs = X*X'/L; 6 | rou = SNR*abs(a'*Rs.'*a)^2; 7 | Pfa = 1e-7; 8 | ita = chi2inv(1-Pfa,2); 9 | PD = 1-ncx2cdf(ita,2,rou); 10 | end 11 | 12 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/chirp_generator.m: -------------------------------------------------------------------------------- 1 | function [ X0 ] = chirp_generator( N,fc,Tp,B ) 2 | %UNTITLED5 Summary of this function goes here 3 | % Detailed explanation goes here 4 | u = B/Tp; 5 | fs = 4*B; 6 | sp_num = fs*Tp; 7 | t = linspace(0,Tp,sp_num); 8 | for ii = 1:N 9 | X0(ii,:) = exp(j*2*pi*10*ii*fc*(t-1)).*exp(j*pi*u*(t-1).^2); 10 | end 11 | end 12 | 13 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/Orthogonal_Com_Rad.m: -------------------------------------------------------------------------------- 1 | function [ X ] = Orthogonal_Com_Rad( H,Y,power ) 2 | %UNTITLED5 Summary of this function goes here 3 | % Detailed explanation goes here 4 | [N,K] = size(H); 5 | [~,L] = size(Y); 6 | u = sqrt(power/N); 7 | [U,S,V] = svd(sqrt(L/N)*power*conj(H)*Y); 8 | X = u*sqrt(L)*U*eye(N,L)*V'; 9 | end 10 | 11 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/waveform_design_multibm_covmat.m: -------------------------------------------------------------------------------- 1 | function [ R ] = waveform_design_multibm_covmat( Pd_theta,N,L,a,theta,power) 2 | %UNTITLED2 Summary of this function goes here 3 | % Detailed explanation goes here 4 | cvx_solver sedumi 5 | cvx_begin quiet 6 | variable bt 7 | variable R(N,N) hermitian semidefinite 8 | expression u(length(theta)) 9 | for i=1:length(theta) 10 | u(i)=(bt*Pd_theta(i)-a(:,i)'*R*a(:,i)); 11 | end 12 | minimize norm(u,2) 13 | subject to 14 | % diag(R)==ones(N,1)*power/N; 15 | trace(R)==power; 16 | cvx_end 17 | end 18 | 19 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/QPSK_demod.m: -------------------------------------------------------------------------------- 1 | function [ symbol_demod ] = QPSK_demod_mat(y) 2 | %UNTITLED2 Summary of this function goes here 3 | % Detailed explanation goes here 4 | [M,N]=size(y); 5 | for ii = 1:M 6 | for jj = 1:N 7 | if real(y(ii,jj))>0 8 | if imag(y(ii,jj))>0 9 | symbol_demod(ii,jj)=(1+j)/sqrt(2); 10 | else 11 | symbol_demod(ii,jj)=(1-j)/sqrt(2); 12 | end 13 | else 14 | if imag(y(ii,jj))>0 15 | symbol_demod(ii,jj)=(-1+j)/sqrt(2); 16 | else 17 | symbol_demod(ii,jj)=(-1-j)/sqrt(2); 18 | end 19 | end 20 | end 21 | end 22 | 23 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/tradeoff_comrad.m: -------------------------------------------------------------------------------- 1 | function [X] = tradeoff_comrad( rou,H,Y,power,X_arbi ) 2 | %UNTITLED4 Summary of this function goes here 3 | % Detailed explanation goes here 4 | [N,~] = size(H); 5 | [~,L] = size(Y); 6 | p1 = sqrt(rou); 7 | p2 = sqrt(1-rou); 8 | A = [p1*H,p2*eye(N)].'; 9 | B = [p1*sqrt(power)*Y;p2*X_arbi]; 10 | Q = A'*A; 11 | G = A'*B; 12 | %G_inv = inv(G*G'); 13 | e = eig(Q); 14 | [V,~] = eig(Q); 15 | l_min = min(e); 16 | for i = 1:N 17 | tr_fe(i) = real(trace (G*G'*V(:,i)*V(:,i)')); 18 | end 19 | func = @(xx)sum(tr_fe'./(e+xx*ones(N,1)))+xx*power*L; 20 | LB = -l_min; 21 | UB = 1; 22 | EPSILON = 10^-4; 23 | l = LineSearchGoldenSection(func,LB,UB,EPSILON); 24 | X = pinv(Q+l*eye(N))*G; 25 | end 26 | 27 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/normalize_UB.m: -------------------------------------------------------------------------------- 1 | function [x_nml_wave,UB] = normalize_UB( H_wave,y_wave,x,N,l,u) 2 | %UNTITLED9 Summary of this function goes here 3 | % Detailed explanation goes here 4 | x_cplx = x(1:N)+j*x(N+1:2*N); 5 | x_temp = x_cplx./abs(x_cplx); 6 | for ii = 1:N 7 | delta = u(ii)-l(ii); 8 | if delta <=pi 9 | x_nml(ii,1) = x_temp(ii); 10 | else 11 | if ((angle(x_temp(ii))<=u(ii))&&(angle(x_temp(ii))>=l(ii))) 12 | x_nml(ii,1) = x_temp(ii); 13 | else 14 | d_l = abs(x_cplx(ii)-exp(j*l(ii))); 15 | d_u = abs(x_cplx(ii)-exp(j*u(ii))); 16 | if d_l <= d_u 17 | x_nml(ii,1) = exp(j*l(ii)); 18 | else 19 | x_nml(ii,1) = exp(j*u(ii)); 20 | end 21 | end 22 | end 23 | end 24 | x_nml_wave = [real(x_nml);imag(x_nml)]; 25 | UB = objval_func(x_nml_wave,H_wave,y_wave); 26 | end 27 | 28 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/LineSearchGoldenSection.m: -------------------------------------------------------------------------------- 1 | function [t] = LineSearchGoldenSection(func,LB,UB,EPSILON) 2 | % 3 | % Golden Section search for an approximate minimum of unimodal 4 | % function f(t) using only function evaluations 5 | % 6 | % length of location interval is reduced by 0.318 each iteration 7 | % 8 | 9 | narginchk(3,4); 10 | if nargin == 3 11 | EPSILON = max(abs(UB) + abs(LB),2)*0.5e-4; 12 | end 13 | GR = (sqrt(5)-1)/2; % 0.618 14 | 15 | l = UB - (UB-LB)*GR; 16 | r = LB + (UB-LB)*GR; 17 | fl = func(l); 18 | fr = func(r); 19 | while UB - LB >= EPSILON 20 | if fl < fr 21 | UB = r; 22 | r = l; 23 | fr = fl; 24 | l = UB - (UB-LB)*GR; 25 | fl = func(l); 26 | else 27 | LB = l; 28 | l = r; 29 | fl = fr; 30 | r = LB + (UB-LB)*GR; 31 | fr = func(r); 32 | end 33 | end 34 | 35 | t = (UB+LB)/2; 36 | 37 | end -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/tradeoff_comrad_per_ant.m: -------------------------------------------------------------------------------- 1 | function [X_trdoff] = tradeoff_comrad_per_ant(rou,H,Y,power,X_arbi) 2 | [N,K] = size(H); 3 | [~,L] = size(Y); 4 | p1 = sqrt(rou); 5 | p2 = sqrt(1-rou); 6 | A = sqrt((L*power)/N)*[p1*H,p2*eye(N)].'; 7 | A = A'; 8 | B = [p1*sqrt(power)*Y;p2*X_arbi]; 9 | B = B'; 10 | 11 | 12 | % Create the problem structure. 13 | M = obliquecomplexfactory(L,N); 14 | problem.M = M; 15 | 16 | % Define the problem cost function and its gradient. 17 | 18 | problem.cost = @cost; 19 | function f=cost(X) 20 | f = norm(X*A-B,'fro')^2; 21 | end 22 | problem.grad = @(X) problem.M.egrad2rgrad(X,egrad(X)); 23 | function g = egrad(X) 24 | g = 2*(X*A-B)*A'; 25 | end 26 | % figure; 27 | % checkgradient(problem); 28 | % Execute the optimization 29 | X_temp = conjugategradient(problem); 30 | X_trdoff = sqrt((L*power)/N)*X_temp'; 31 | end -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/waveform_mainbm_covmat.m: -------------------------------------------------------------------------------- 1 | function [ R ] = waveform_mainbm_covmat( N,a,theta_target,theta,power ) 2 | %UNTITLED4 Summary of this function goes here 3 | % Detailed explanation goes here 4 | delta=theta(2)-theta(1); 5 | l=ceil((theta_target+pi/2*ones(1,5))/delta+ones(1,5)); 6 | cvx_solver sedumi 7 | cvx_begin quiet 8 | variable t 9 | variable R(N,N) hermitian semidefinite 10 | minimize -t 11 | subject to 12 | for i=1:l(1)-1 13 | real(a(:,l(3))'*R*a(:,l(3))-a(:,i)'*R*a(:,i))>=t; 14 | end 15 | for ii=l(5)+1:length(theta) 16 | real(a(:,l(3))'*R*a(:,l(3))-a(:,ii)'*R*a(:,ii))>=t; 17 | end 18 | for i=l(3):l(5)-1 19 | real(a(:,i)'*R*a(:,i)-a(:,i+1)'*R*a(:,i+1))>=0.001*i; 20 | end 21 | for i=l(1):l(3)-1 22 | real(a(:,i+1)'*R*a(:,i+1)-a(:,i)'*R*a(:,i))>=0.001*i; 23 | end 24 | a(:,l(2))'*R*a(:,l(2)) == 0.5*a(:,l(3))'*R*a(:,l(3)); 25 | a(:,l(4))'*R*a(:,l(4)) == 0.5*a(:,l(3))'*R*a(:,l(3)); 26 | diag(R) == ones(N,1)*power/N; 27 | % trace(R)==power; 28 | cvx_end 29 | end 30 | 31 | -------------------------------------------------------------------------------- /Codes/README.md: -------------------------------------------------------------------------------- 1 | # Codes for some papers on ISAC (2021/8/1) 2 | 3 | - Many thanks to every contrbutors of those codes on ISAC papers. You can be free to share those codes and create a `pull request` to contribute your own codes for corresponding ISAC papers. 4 | - **Please cite related papers if those codes are helpful to you.** 5 | - Let us build a mysterious and wonderful ISAC world together. :-) 6 | 7 | # Contributors 8 | - Fan Liu (SUSTech) 9 | - Nate Raymondi (Rice University) 10 | 11 | # Paper list 12 | 1. **Toward Dual-functional Radar-Communication Systems: Optimal Waveform Design, IEEE TSP, 2018. (ranked 8th most popular article in IEEE TSP) [[PDF]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=838666)** 13 | 14 | *F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo and A. Petropulu* 15 | 16 | 2. **MU-MIMO Communications With MIMO Radar: From Co-Existence to Joint Transmission, IEEE TWC, 2018.[[PDF]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8288677)** 17 | 18 | *F. Liu, C. Masouros, A. Li, H. Sun and L. Hanzo* 19 | 20 | 3. **Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead, IEEE TCOM, 2020. [[PDF]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8999605)** 21 | 22 | *F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths and L. Hanzo* 23 | 24 | # Software platform 25 | - MATLAB 2016/2018/2020 26 | - To run those codes, please download and install [CVX](http://cvxr.com/cvx/) & [Manopt](https://www.manopt.org/) 27 | 28 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/QCQP_UB.m: -------------------------------------------------------------------------------- 1 | function [ x, obj_val ] = QCQP_UB( H_wave,y_wave,N,l,u,x1) 2 | %UNTITLED9 Summary of this function goes here 3 | % Detailed explanation goes here 4 | Q = 2*H_wave*H_wave.'; 5 | f = -2*H_wave*y_wave; 6 | c = y_wave.'*y_wave; 7 | A = zeros(N,2*N); 8 | for ii = 1:N 9 | A(ii,ii) = cos((l(ii)+u(ii))/2); 10 | A(ii,ii+N) = sin((l(ii)+u(ii))/2); %Linear Constraint 11 | end 12 | 13 | 14 | function [y,grady] = quadobj(x,Q,f,c) %Objective Function 15 | y = 1/2*x.'*Q*x+f.'*x+c; 16 | if nargout>1 17 | grady = Q*x + f; 18 | end 19 | end 20 | 21 | function [y_con,yeq,grady,gradyeq] = quadconstr(x) %Nonlinear Constraint 22 | for nn = 1:N 23 | yeq(nn) = x(nn)^2+x(nn+N)^2 - 1; 24 | end 25 | y_con = []; 26 | if nargout>2 27 | gradyeq = zeros(length(x),N); 28 | for nn = 1:N 29 | gradyeq(nn,nn) = 2*x(nn); 30 | gradyeq(nn+N,nn) = 2*x(nn+N); 31 | end 32 | end 33 | grady = []; 34 | end 35 | 36 | Acon = -A; 37 | 38 | for ii = 1:N 39 | b(ii) = -cos((u(ii)-l(ii))/2); 40 | end 41 | 42 | 43 | 44 | % options = optimoptions(@fmincon,'Algorithm','sqp',... 45 | % 'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true,... 46 | % 'Display','off','OptimalityTolerance',1e-6,'MaxIterations',400); 47 | 48 | options = optimoptions('fmincon','Algorithm','sqp', 'GradObj','on'); 49 | 50 | 51 | fun = @(x)quadobj(x,Q,f,c); 52 | nonlconstr = @(x)quadconstr(x); 53 | % x1 = ones(2*N,1); 54 | x = fmincon(fun,x1,Acon,b,[],[],[],[],nonlconstr,options); 55 | obj_val = objval_func(x,H_wave,y_wave); 56 | end 57 | 58 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/QCQP_LB1.m: -------------------------------------------------------------------------------- 1 | function [ x, obj_val] = QCQP_LB1( H_wave,y_wave,N,l,u) 2 | %UNTITLED9 Summary of this function goes here 3 | % Detailed explanation goes here 4 | Q = 2*H_wave*H_wave.'; 5 | f = -2*H_wave*y_wave; 6 | c = y_wave.'*y_wave; 7 | A = zeros(N,2*N); 8 | for ii = 1:N 9 | A(ii,ii) = cos((l(ii)+u(ii))/2); 10 | A(ii,ii+N) = sin((l(ii)+u(ii))/2); %Linear Constraint 11 | end 12 | 13 | 14 | function [y,grady] = quadobj(x,Q,f,c) %Objective Function 15 | y = 1/2*x.'*Q*x+f.'*x+c; 16 | if nargout>1 17 | grady = Q*x + f; 18 | end 19 | end 20 | 21 | function [y_con,yeq,grady,gradyeq] = quadconstr(x) %Nonlinear Constraint 22 | for nn = 1:N 23 | y_con(nn) = x(nn)^2+x(nn+N)^2 - 1; 24 | end 25 | yeq = []; 26 | if nargout>2 27 | gradyeq = zeros(length(x),N); 28 | for nn = 1:N 29 | grady(nn,nn) = 2*x(nn); 30 | grady(nn+N,nn) = 2*x(nn+N); 31 | end 32 | end 33 | gradyeq = []; 34 | end 35 | 36 | Acon = -A; 37 | 38 | for ii = 1:N 39 | b(ii) = -cos((u(ii)-l(ii))/2); 40 | end 41 | 42 | 43 | % options = optimoptions(@fmincon,'Algorithm','sqp',... 44 | % 'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true,... 45 | % 'Display','off','OptimalityTolerance',1e-6,'MaxIterations',400); 46 | 47 | 48 | options = optimoptions('fmincon','Algorithm','sqp', 'GradObj','on'); 49 | 50 | fun = @(x)quadobj(x,Q,f,c); 51 | nonlconstr = @(x)quadconstr(x); 52 | x1 = ones(2*N,1); 53 | x = fmincon(fun,x1,Acon,b,[],[],[],[],nonlconstr,options); 54 | obj_val = objval_func(x,H_wave,y_wave); 55 | end 56 | 57 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/QCQP_LB2.m: -------------------------------------------------------------------------------- 1 | function [ x, obj_val,exitflag ] = QCQP_LB2( H_wave,y_wave,N,l,u,obj_prev) 2 | %UNTITLED9 Summary of this function goes here 3 | % Detailed explanation goes here 4 | Q = 2*H_wave*H_wave.'; 5 | f = -2*H_wave*y_wave; 6 | c = y_wave.'*y_wave; 7 | A = zeros(N,2*N); 8 | for ii = 1:N 9 | A(ii,ii) = cos((l(ii)+u(ii))/2); 10 | A(ii,ii+N) = sin((l(ii)+u(ii))/2); %Linear Constraint 11 | end 12 | 13 | 14 | function [y,grady] = quadobj(x,Q,f,c) %Objective Function 15 | y = 1/2*x.'*Q*x+f.'*x+c; 16 | if nargout>1 17 | grady = Q*x + f; 18 | end 19 | end 20 | 21 | function [y_con,yeq,grady,gradyeq] = quadconstr(x) %Nonlinear Constraint 22 | for nn = 1:N 23 | y_con(nn) = x(nn)^2+x(nn+N)^2 - 1; 24 | end 25 | y_con(N+1) = 1/2*x.'*Q*x+f.'*x+c-obj_prev; 26 | yeq = []; 27 | if nargout>2 28 | gradyeq = zeros(length(x),N+1); 29 | for nn = 1:N 30 | grady(nn,nn) = 2*x(nn); 31 | grady(nn+N,nn) = 2*x(nn+N); 32 | end 33 | grady(:,N+1) = Q*x + f; 34 | end 35 | gradyeq = []; 36 | end 37 | 38 | Acon = -A; 39 | 40 | for ii = 1:N 41 | b(ii) = -cos((u(ii)-l(ii))/2); 42 | end 43 | 44 | 45 | % options = optimoptions(@fmincon,'Algorithm','sqp',... 46 | % 'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true,... 47 | % 'Display','off','OptimalityTolerance',1e-6,'MaxIterations',400); 48 | 49 | options = optimoptions('fmincon','Algorithm','sqp', 'GradObj','on'); 50 | 51 | fun = @(x)quadobj(x,Q,f,c); 52 | nonlconstr = @(x)quadconstr(x); 53 | x1 = ones(2*N,1); 54 | [x,ignore,exitflag] = fmincon(fun,x1,Acon,b,[],[],[],[],nonlconstr,options); 55 | obj_val = objval_func(x,H_wave,y_wave); 56 | end 57 | 58 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/README.md: -------------------------------------------------------------------------------- 1 | # Paper 2 | > F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo and A. Petropulu, "Toward Dual-functional Radar-Communication Systems: Optimal Waveform Design," in IEEE Transactions on Signal Processing, vol. 66, no. 16, pp. 4264-4279, Aug. 2018. (ranked 8th most popular article in IEEE TSP, Feb 2021) 3 | 4 | - All codes are contributed by Fan Liu, SUSTech 5 | - [Click here to preview this paper in IEEE](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8386661) 6 | 7 | 8 | # Abstract 9 | We focus on a dual-functional multi-input-multioutput (MIMO) radar-communication (RadCom) system, where a single transmitter with multiple antennas communicates with downlink cellular users and detects radar targets simultaneously. Several design criteria are considered forminimizing the downlink multiuser interference. First, we consider both omnidirectional and directional beampattern design problems, where the closedform globally optimal solutions are obtained. Based on the derived waveforms, we further consider weighted optimizations targeting a flexible tradeoff between radar and communications performance and introduce low-complexity algorithms. Moreover, to address the more practical constant modulus waveform design problem, we propose a branch-and-bound algorithm that obtains a globally optimal solution, and derive its worst-case complexity as function of the maximum iteration number. Finally, we assess the effectiveness of the proposed waveform design approaches via numerical results. 10 | 11 | # About this code 12 | ### Software platform 13 | - MATLAB 2016/2018/2020 14 | - To run those codes, please download and install [CVX](http://cvxr.com/cvx/) & [Manopt](https://www.manopt.org/) 15 | ### Content 16 | - The folder `Waveform Design With Given Radar Beampatterns` is provided to produuct Fig.3-Fig.7 17 | - The folder `Constant modulus` is provided to product Fig.8-Fig.10 18 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/CE_similarity_ComRad_benchmark.m: -------------------------------------------------------------------------------- 1 | function [x_cplx,opt_val] = CE_similarity_ComRad_benchmark( H,y,power,ee,x0,cle ) 2 | % Branch and Bound Method for ComRad CEP 3 | % Detailed explanation goes here 4 | N = length(x0); 5 | amp = sqrt(power/N); % Amplitude of the Transmit Signal 6 | y_wave = sqrt(power*cle)*[real(y);imag(y)]; % Equivalent Real Desired Symbol 7 | H_wave = amp*[real(H),imag(H);-imag(H),real(H)]; % Equivalent Real Channel 8 | x0_wave = [real(x0);imag(x0)]; 9 | delta = acos(1-ee^2/2); 10 | for ii = 1:N 11 | l(ii,1) = angle(x0(ii))-delta; 12 | u(ii,1) = angle(x0(ii))+delta; %Initialized Upper and Lower Bound 13 | end 14 | l0 = l; 15 | u0 = u; 16 | 17 | A = zeros(N,2*N); 18 | for ii = 1:N 19 | A(ii,ii) = cos((l(ii)+u(ii))/2)/cos(delta); 20 | A(ii,ii+N) = sin((l(ii)+u(ii))/2)/cos(delta); 21 | end 22 | 23 | max_iternum = 200; %Maximum Iteration Number 24 | epsl = 1e-3; %Tolerence 25 | epsl1 = 1e-6; 26 | %-------------Parameter Initialization 27 | [x,obj_val] = QCQP_LB1( H_wave,y_wave,N,l,u); %Initialized LB and x 28 | iter = 1; 29 | 30 | while iter<=max_iternum 31 | tr = (l+u)/2; 32 | x_cplx = x(1:N)+j*x(N+1:2*N); 33 | obj_prev = obj_val; 34 | obj(iter) = obj_val; 35 | for ii = 1:N 36 | theta = angle(x_cplx(ii)); 37 | if theta>=tr(ii) 38 | l(ii) = tr(ii); 39 | else 40 | u(ii) = tr(ii); 41 | end 42 | end 43 | [x,obj_val,exitflag] = QCQP_LB2( H_wave,y_wave,N,l,u,obj_prev); 44 | iter = iter+1; 45 | if exitflag == -2 46 | x_opt = [real(x_cplx);imag(x_cplx)]; 47 | break; 48 | elseif (abs(obj_prev/obj_val-1)<=epsl)||(abs(obj_prev-obj_val)<=epsl1) 49 | x_opt = x; 50 | break; 51 | end 52 | end 53 | 54 | x_opt1 = normalize_UB( H_wave,y_wave,x_opt,N,l,u); 55 | x_cplx = x_opt1(1:N)+j*x_opt1(N+1:2*N); 56 | opt_val = objval_func(x_opt1,H_wave,y_wave); 57 | 58 | 59 | 60 | end 61 | 62 | -------------------------------------------------------------------------------- /Codes/Fan2018TWC by Nate Raymondi/README.md: -------------------------------------------------------------------------------- 1 | # Paper 2 | > F. Liu, C. Masouros, A. Li, H. Sun and L. Hanzo, "MU-MIMO Communications With MIMO Radar: From Co-Existence to Joint Transmission," in IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2755-2770, April 2018. 3 | 4 | - All codes are contributed by Nate Raymondi (Graduate Student, Rice University), 8/13/2020 5 | - [Click here to preview this paper in IEEE](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8288677) 6 | 7 | 8 | # Abstract 9 | Beamforming techniques are proposed for a joint multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single device acts as radar and a communication base station (BS) by simultaneously communicating with downlink users and detecting radar targets. Two operational options are considered, where we first split the antennas into two groups, one for radar and the other for communication. Under this deployment, the radar signal is designed to fall into the nullspace of the downlink channel. The communication beamformer is optimized such that the beampattern obtained matches the radar s beampattern while satisfying the communication performance requirements. To reduce the optimizations constraints, we consider a second operational option, where all the antennas transmit a joint waveform that is shared by both radar and communications. In this case, we formulate an appropriate probing beampattern, while guaranteeing the performance of the downlink communications. By incorporating the SINR constraints into objective functions as penalty terms, we further simplify the original beamforming designs to weighted optimizations, and solve them by efficient manifold algorithms. Numerical results show that the shared deployment outperforms the separated case significantly, and the proposed weighted optimizations achieve a similar performance to the original optimizations, despite their significantly lower computational complexity. 10 | 11 | # About this code 12 | ### Software platform 13 | - MATLAB 2014/2016/2018/2020 14 | - To run those codes, please download and install [CVX](http://cvxr.com/cvx/) 15 | 16 | ### Content 17 | - To product Fig.3-Fig.4 in this paper 18 | 19 | ### Usage 20 | 1. Due to the version of your MATLAB, variable name "sigma" is the name of an existing MATLAB function or directory. You need choose a different name (sigma_temp for example) 21 | 2. Run `SeparatedDeployment_BPmatching.m` 22 | 3. Run `SeparatedDeployment_SidelobeMin.m` 23 | -------------------------------------------------------------------------------- /Codes/Fan2020TCOM by Nate Raymondi/README.md: -------------------------------------------------------------------------------- 1 | # Paper 2 | > F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths and L. Hanzo, "Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead," in IEEE Transactions on Communications, vol. 68, no. 6, pp. 3834-3862, June 2020. 3 | 4 | - All codes are contributed by Nate Raymondi (Graduate Student, Rice University), 1/23/2020 5 | - [Click here to preview this paper in IEEE](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8999605) 6 | 7 | 8 | # Abstract 9 | Sharing of the frequency bands between radar and communication systems has attracted substantial attention, as it can avoid under-utilization of otherwise permanently allocated spectral resources, thus improving efficiency. Further, there is increasing demand for radar and communication systems that share the hardware platform as well as the frequency band, as this not only decongests the spectrum, but also benefits both sensing and signaling operations via the full cooperation between both functionalities. Nevertheless, the success of spectrum and hardware sharing between radar and communication systems critically depends on high-quality joint radar and communication designs. In the first part of this paper, we overview the research progress in the areas of radar-communication coexistence and dual-functional radar-communication (DFRC) systems, with particular emphasis on application scenarios and technical approaches. In the second part, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna user equipment (UE) over a mmWave channel, and at the same time it actively detects targets. The targets also play the role of scatterers for the communication signal. In that framework, we propose a novel scheme for joint target search and communication channel estimation, which relies on omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design a HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the resulting interference to the UE signals, even when the radar and communication signals share the same signal-to-noise ratio (SNR). The feasibility and efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, the paper concludes with an overview of the open problems in the research field of communication and radar spectrum sharing (CRSS). 10 | 11 | # About this code 12 | ### Software platform 13 | - MATLAB 2014/2016/2018/2020 14 | - To run those codes, please download and install [CVX](http://cvxr.com/cvx/) 15 | 16 | ### Content 17 | - To product BS ZF Transmit Beampattern & BS DFRC Transmit Beampatternin in this paper 18 | 19 | ### Usage 20 | - Run `Fan_DFRC.m` 21 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Waveform Design With Given Radar Beampatterns/sumrate_PD_tradeoff.m: -------------------------------------------------------------------------------- 1 | %%Producing Fig. 5 2 | clc; 3 | clear all; 4 | close all; 5 | warning off; 6 | N = 16; 7 | % K = 4; 8 | L = 20; 9 | power = 10^(0/10); 10 | amp = sqrt(power); 11 | N_montecarlo = 100; 12 | SNRdB = 10; 13 | %%-------------Radar Parameters------------------- 14 | delta=pi/180; 15 | theta=-pi/2:delta:pi/2; 16 | theta_target=[-pi*10/180,-pi*5/180,0,pi*5/180,pi*10/180]; 17 | target_DoA=[-pi/3,0,pi/3]; 18 | beam_width=9; 19 | l=ceil((target_DoA+pi/2*ones(1,length(target_DoA)))/(delta)+ones(1,length(target_DoA))); 20 | Pd_theta=zeros(length(theta),1); 21 | for ii=1:length(target_DoA) 22 | Pd_theta(l(ii)-(beam_width-1)/2:l(ii)+(beam_width-1)/2,1)=ones(beam_width,1); 23 | end 24 | c=3e8; 25 | fc=3.2e9; 26 | lamda=c/fc; 27 | spacing=lamda/2; 28 | for tt=1:N 29 | for jj=1:length(theta) 30 | a(tt,jj)=exp(j*pi*(tt-ceil((N)/2))*sin(theta(jj))); 31 | end 32 | end 33 | SNRr = 10^(-6/10); 34 | uu = 36; 35 | 36 | % H = (randn(N,K)+j*randn(N,K))/sqrt(2); 37 | % N_pbits = 2*K*L; 38 | % msg_bits = randint(1,N_pbits); 39 | % Y = reshape(QPSK_mapper(msg_bits),[K,L]); 40 | % X1 = sqrt(N)*Orthogonal_Com_Rad( H,Y,power ); 41 | % RMSE = CRB_Orthogonal( X1,a(:,uu),theta(uu),SNR ); 42 | 43 | Nii = 20; 44 | N0 = power/(10^(SNRdB/10)); 45 | Nkk = 3; 46 | for kk = 1:Nkk 47 | K= 4+(kk-1)*2; 48 | for nn = 1:N_montecarlo 49 | H = (randn(N,K)+j*randn(N,K))/sqrt(2); 50 | N_pbits = 2*K*L; 51 | msg_bits = randi([0,1],1,N_pbits); 52 | Y = reshape(QPSK_mapper(msg_bits),[K,L]); 53 | X1 = Orthogonal_Com_Rad( H,Y,power ); 54 | % RMSE1 = CRB_Orthogonal( X1,a(:,uu),theta(uu),SNRr ); 55 | % H_pinv = pinv(H.'); 56 | % tt = trace(H_pinv*Y*Y'*H_pinv'); 57 | % X3 = sqrt(N*power/tt)*H_pinv*Y; 58 | for ii = 1:Nii-1 59 | rou = ii/Nii; 60 | X2 = sqrt(N)*tradeoff_comrad(rou,H,Y,power,X1); 61 | % for mm = 1:L 62 | % MUI1(:,mm) = abs(H.'*X1(:,mm)/sqrt(N)-amp*Y(:,mm)).^2; 63 | % MUI2(:,mm) = abs(H.'*X2(:,mm)/sqrt(N)-amp*Y(:,mm)).^2; 64 | % MUI3(:,mm) = abs(H.'*X3(:,mm)/sqrt(N)-amp*Y(:,mm)).^2; 65 | % end 66 | % MUI1 = abs(H.'*X1/sqrt(N)-amp*Y).^2; 67 | MUI2 = abs(H.'*X2/sqrt(N)-amp*Y).^2; 68 | % MUI3 = abs(H.'*X3/sqrt(N)-amp*Y).^2; 69 | % EMUI1 = mean(MUI1,2); 70 | EMUI2 = mean(MUI2,2); 71 | % EMUI3 = mean(MUI3,2); 72 | % sumrate1(ii,kk,nn) = sum(log2(1+power./(EMUI1+N0*ones(K,1)))); 73 | sumrate2(ii,kk,nn) = sum(log2(1+power./(EMUI2+N0*ones(K,1))))/K; 74 | % sumrate3(ii,kk,nn) = sum(log2(1+power./(EMUI3+N0*ones(K,1)))); 75 | % RMSE1(ii,kk,nn) = CRB_Orthogonal( X1,a(:,uu),theta(uu),SNRr ); 76 | PD2(ii,kk,nn) = PD_Orthogonal( X2,a(:,uu),SNRr ); 77 | % RMSE3(ii,kk,nn) = CRB_Orthogonal( X3,a(:,uu),theta(uu),SNRr ); 78 | clc 79 | disp(['Progress - ',num2str((kk-1)*N_montecarlo*Nii+(nn-1)*Nii+ii),'/',num2str(Nii*N_montecarlo*Nkk)]); 80 | end 81 | end 82 | end 83 | %% 84 | figure(1); 85 | % plot(mean(sumrate2,2),mean(RMSE1,2),'x-','LineWidth',1.5,'MarkerSize',8);hold on; 86 | for kk = 1:Nkk 87 | plot(mean(sumrate2(:,kk,:),3),mean(PD2(:,kk,:),3),'-','LineWidth',1.5,'MarkerSize',8);hold on; 88 | end 89 | % plot(mean(sumrate2,2),mean(RMSE3,2),'^-','LineWidth',1.5,'MarkerSize',8);hold on; 90 | grid on; 91 | legend('K = 4','K = 6','K = 8'); 92 | xlabel('Average achievable rate (bps/Hz/user)'); 93 | ylabel('P_D'); 94 | 95 | 96 | 97 | -------------------------------------------------------------------------------- /Codes/Fan2018TSP/Codes for DFRC Waveform Design/Constant Modulus/CE_similarity_bb_BRS.m: -------------------------------------------------------------------------------- 1 | %% Producing Fig. 8 BRS 2 | clc; 3 | clear all; 4 | close all; 5 | warning off; 6 | N = 16; % Antenna Number 7 | K = 4; % Users Number 8 | L = 20; % Length of Frame 9 | power = 10^(0/10); % Total Transmit Power 10 | amp = sqrt(power/N); % Amplitude of the Transmit Signal 11 | 12 | randn('state',2); 13 | H = (randn(N,K)+j*randn(N,K))/sqrt(2); % Channel 14 | N_pbits = 2*K; 15 | msg_bits = randi([0,1],1,N_pbits); 16 | % y = QPSK_mapper(msg_bits).'; % Desired Symbol 17 | y = QPSK_mapper([0,0,0,1,1,1,1,0]).'; 18 | y_wave = sqrt(power)*[real(y);imag(y)]; % Equivalent Real Desired Symbol 19 | 20 | for ii = 1:N 21 | for nn = 1:L 22 | X0(ii,nn) = exp(j*2*pi*ii*(nn-1)/L)*exp(j*pi*(nn-1)^2/L); % Reference Radar Signal (LFM) 23 | end 24 | end 25 | ee = 1; % Inf Norm Similarity 26 | H_wave = amp*[real(H),imag(H);-imag(H),real(H)]; % Equivalent Real Channel 27 | x0 = X0(:,4); %Reference Radar Signal Vector 28 | x0_wave = [real(x0);imag(x0)]; % Equivalent Real Radar Signal 29 | delta = acos(1-ee^2/2); 30 | for ii = 1:N 31 | l(ii,1) = angle(x0(ii))-delta; 32 | u(ii,1) = angle(x0(ii))+delta; %Initialized Upper and Lower Bound 33 | end 34 | A = zeros(N,2*N); 35 | for ii = 1:N 36 | A(ii,ii) = cos((l(ii)+u(ii))/2)/cos(delta); 37 | A(ii,ii+N) = sin((l(ii)+u(ii))/2)/cos(delta); 38 | end %Initialized Linear Constraints 39 | 40 | max_iternum = 1000; %Maximum Iteration Number 41 | epsl = 1e-4; %Tolerence 42 | epsl1 = 1e-6; 43 | %-------------Parameter Initialization 44 | [x,LB] = QCQP_LB1( H_wave,y_wave,N,l,u); %Initialized LB and x 45 | [x_nml1,UB1] = normalize_UB( H_wave,y_wave,x,N,l,u); %Initialized Normalization UB 46 | [x_nml2,UB2] = QCQP_UB( H_wave,y_wave,N,l,u,x_nml1); % fmincon UB 47 | [x_nml,UB] = QCQP_UB( H_wave,y_wave,N,l,u,x_nml2); % fmincon UB 48 | LB_start = LB; 49 | UB_start = UB; 50 | 51 | prob_list = zeros(max_iternum+100,4*N+1); 52 | prob_list(1,:)=[x',l',u',LB]; 53 | used = 1; 54 | lbest = LB; 55 | ubest = UB; 56 | x_opt = x_nml; 57 | 58 | lb_seq = lbest; 59 | ub_seq = ubest; 60 | 61 | if (ubest-lbest)/abs(ubest)= 0; 92 | for n = 1:N 93 | trace( conj(f(:,n)) * transpose(f(:,n)) * R1 ) == 0; 94 | end 95 | R1 == semidefinite(Nr); 96 | cvx_end 97 | % NOTE: I am fairly certain the expression of Eq.12 in the paper is 98 | % incorrect. The 'a' in the objective function should be 'a1' 99 | 100 | 101 | % substitute R1 into Eq.19 and solve 102 | % must be solved jointly since Wi depends on all other Wj 103 | cvx_begin quiet 104 | variable W1opt(Nc,Nc) hermitian 105 | variable W2opt(Nc,Nc) hermitian 106 | variable sigma_temp 107 | minimize( square_pos(norm( diag( a2'*(W1opt+W2opt)*a2 - sigma_temp*(a1'*R1*a1) ) ,2)) ); 108 | subject to 109 | % SINR constraints for each user 110 | %abs(trace( conj(g(:,1))*transpose(g(:,1))*W1 ))/abs(( trace( conj(g(:,2))*transpose(g(:,2))*W1 ) + ... 111 | %trace( conj(f(:,1))*transpose(f(:,1))*R1 ) + N0 )) >= Gamma(1); 112 | real(trace( conj(g(:,1))*transpose(g(:,1))*W1opt ) - Gamma(1)*( trace( conj(g(:,2))*transpose(g(:,2))*W1opt ) + ... 113 | trace( conj(f(:,1))*transpose(f(:,1))*R1 ) )) >= N0*Gamma(1); 114 | real(trace( conj(g(:,2))*transpose(g(:,2))*W2opt ) - Gamma(2)*( trace( conj(g(:,1))*transpose(g(:,1))*W2opt ) + ... 115 | trace( conj(f(:,2))*transpose(f(:,2))*R1 ) )) >= N0*Gamma(2); 116 | % Power constraint 117 | trace(W1opt + W2opt) <= Pc; 118 | sigma_temp >= 0; 119 | W1opt == semidefinite(Nc); 120 | W2opt == semidefinite(Nc); 121 | cvx_end 122 | % NOTE - we are solving the SDR for W1 and W2, so we will have to recover 123 | % w1 and w2 124 | 125 | 126 | % Do randomization to get our feasible beamforming vectors w1 and w2------- 127 | nRand = 10; 128 | w1 = zeros(Nc,nRand); w2 = zeros(Nc,nRand); 129 | W1cov = zeros(Nc,Nc,nRand); W2cov = zeros(Nc,Nc,nRand); 130 | clear u1F; clear u2F; 131 | 132 | % generate and scale to meet power constraints 133 | for L = 1:nRand 134 | % generate nRand 135 | w1(:,L) = mvnrnd(zeros(Nc,1),W1opt) + 1i*mvnrnd(zeros(Nc,1),W1opt); 136 | w2(:,L) = mvnrnd(zeros(Nc,1),W2opt) + 1i*mvnrnd(zeros(Nc,1),W2opt); 137 | 138 | % scale them so they all adhere to norm constraint 139 | w1(:,L) = sqrt(trace(W1opt))*w1(:,L)/sqrt(w1(:,L)'*w1(:,L)); 140 | w2(:,L) = sqrt(trace(W2opt))*w2(:,L)/sqrt(w2(:,L)'*w2(:,L)); 141 | 142 | W1cov(:,:,L) = w1(:,L)*w1(:,L)'; 143 | W2cov(:,:,L) = w2(:,L)*w2(:,L)'; 144 | end 145 | 146 | % check all pairs to see if user 1 SINR constraints are met 147 | index1 = 1; index2 = 1; 148 | for i = 1:nRand 149 | for j = 1:nRand 150 | if real(trace( conj(g(:,1))*transpose(g(:,1))*W1cov(:,:,i) ) - Gamma(1)*( trace( conj(g(:,2))*transpose(g(:,2))*W1cov(:,:,i) ) + ... 151 | trace( conj(f(:,1))*transpose(f(:,1))*R1 ) )) >= N0*Gamma(1) 152 | % save this pair as feasible for user 1 153 | u1F(:,1,index1) = w1(:,i); u1F(:,2,index1) = w2(:,j); 154 | index1 = index1 + 1; 155 | end 156 | end 157 | end 158 | 159 | % check all user 1 feasible pairs to see if they're user 2 feasible 160 | for i = 1:size(u1F,3) 161 | if real(trace( conj(g(:,2))*transpose(g(:,2))*(u1F(:,2,i)*u1F(:,2,i)') ) - Gamma(2)*( trace( conj(g(:,2))*transpose(g(:,2))*(u1F(:,1,i)*u1F(:,1,i)') ) + ... 162 | trace( conj(f(:,2))*transpose(f(:,2))*R1 ) )) >= N0*Gamma(2) 163 | % save this pair as feasible for user 2 164 | u2F(:,1,index2) = u1F(:,1,i); u2F(:,2,index2) = u1F(:,2,i); 165 | index2 = index2 + 1; 166 | end 167 | end 168 | 169 | % find how many feasible sets we have, choose the one with the smallest 170 | % objective function value 171 | numFeasible = size(u2F,3); % this number better be [0,nRand^N] lol. Yes there are repeats but who cares 172 | WcovSum = zeros(Nc,Nc,numFeasible); obj = zeros(1,numFeasible); 173 | for i = 1:size(u2F,3) 174 | WcovSum(:,:,i) = (u2F(:,1,i)*u2F(:,1,i)') + (u2F(:,2,i)*u2F(:,2,i)'); 175 | obj(i) = ( norm( diag( a2'*WcovSum(:,:,i)*a2 - sigma_temp*a1'*R1*a1 ) ) )^2; 176 | end 177 | [minVal,minIndex] = min(obj); 178 | w1 = u2F(:,1,minIndex); W1 = (w1*w1'); 179 | w2 = u2F(:,2,minIndex); W2 = (w2*w2'); 180 | Wsum = W1 + W2; 181 | 182 | 183 | % the overall transmitted covariance Eq.14 -------------------------------- 184 | C = blkdiag(R1,Wsum); % should be size (Nr+Nc) x (Nr+Nc) 185 | 186 | % overall transmitted beampattern gain Eq.15 187 | Pd = zeros(size(angleSpace)); BPrad = zeros(size(angleSpace)); BPcomm = zeros(size(angleSpace)); 188 | for i = 1:length(angleSpace) 189 | Pd(i) = abs( a(:,i)' * C * a(:,i) ); 190 | BPrad(i) = abs( a1(:,i)' * R1 * a1(:,i) ); 191 | BPcomm(i) = abs( a2(:,i)' * Wsum * a2(:,i) ); 192 | end 193 | 194 | 195 | % Plot Beampattern 196 | figure; plot(angleSpaceDeg,Pdesired); hold on 197 | plot(angleSpaceDeg, Pd, 'LineWidth', 2); hold on; 198 | plot(angleSpaceDeg, BPrad, 'LineWidth', 2); hold on; 199 | plot(angleSpaceDeg, BPcomm, 'LineWidth', 2); hold on; 200 | for n = 1:N 201 | line([commAngles(n) commAngles(n)], [0 10],'LineStyle', '--'); 202 | hold on 203 | end 204 | hold off; title('Beampattern 1'); 205 | legend('Desired','Sep1','Rad Only','Comm Only','Comm Angles'); grid on 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | -------------------------------------------------------------------------------- /Codes/Fan2018TWC by Nate Raymondi/SeparatedDeployment_SidelobeMin.m: -------------------------------------------------------------------------------- 1 | % Simulating the Separated Deployment beamformers presented in 2 | % "MU-MIMO Communications with MIMO Radar: From Co-existence to Joint 3 | % Transmission" - Liu et. al. 2018 4 | 5 | % Nate Raymondi, 8/13/2020 6 | 7 | % Set up the system ------------------------------------------------------- 8 | Nc = 16; % number of comms Tx antennas 9 | Nr = 16; % number of radar Tx antennas 10 | fc = 5e9; % assumed center freq 11 | c = 3e8; 12 | lamb = c/fc; 13 | spacing = lamb/2; 14 | radAntLoc = spacing*[0:Nr-1]; 15 | commAntLoc = spacing*[0:Nc-1]; 16 | Pc = 5; % comms power budget 17 | Pr = 5; % rad power budget 18 | N0 = 1; % noise variance 19 | 20 | 21 | % create ALL steering vectors --------------------------------------------- 22 | M = 181; % number of points on the angular grid 23 | angleSpace = linspace(-pi/2, pi/2, M); 24 | angleSpaceDeg = linspace(-90, 90, M); 25 | 26 | % rad --------------------------------------------------------------------- 27 | a1 = zeros(Nr, length(angleSpace)); % radar antenna steering vecs 28 | for j = 1:Nr 29 | a1(j,:) = exp((1i * 2 * pi * radAntLoc(j) / lamb) .* sin(angleSpace)); 30 | end 31 | 32 | % get the actual target steering vecs for convenience 33 | K = 2; % number of radar targets 34 | radAngles = [25 50]; 35 | aRad = zeros(Nr,K); R = zeros(Nr,Nr,K); alpha = zeros(1,K); 36 | for k = 1:K 37 | aRad(:,k) = a1(:,90+radAngles(k)); 38 | R(:,:,k) = aRad(:,k) * aRad(:,k)'; 39 | %alpha(k) = rand + 1i*rand; % target and channel coeffs if necessary 40 | end 41 | 42 | % comm -------------------------------------------------------------------- 43 | a2 = zeros(Nc, length(angleSpace)); % comm antenna steering vecs 44 | for j = 1:Nc 45 | a2(j,:) = exp((1i * 2 * pi * commAntLoc(j) / lamb) .* sin(angleSpace)); 46 | end 47 | 48 | % get the actual user steering vecs for convenience 49 | N = 2; % number of comms users 50 | commAngles = [90 -15]; 51 | Gamma = Pc*[0.5 0.2]; 52 | g = zeros(Nc,N); G = zeros(Nc,Nc,N); % channel from comms antennas to users 53 | f = zeros(Nr,N); F = zeros(Nr,Nr,N); % channel from rad antennas to users 54 | for n = 1:N 55 | g(:,n) = a2(:,90+commAngles(n)); 56 | G(:,:,n) = g(:,n) * g(:,n)'; 57 | 58 | f(:,n) = a1(:,90+commAngles(n)); 59 | F(:,:,n) = f(:,n) * f(:,n)'; 60 | end 61 | 62 | % introduce some further notation ----------------------------------------- 63 | a = [a1; a2]; % size Nr+Nc x M 64 | % NOTE: the way we have contructed our steering vectors and stacked them 65 | % into the matrices a, a1, a2 - these are equal to the A, A1, A2 from Eq.17 66 | 67 | 68 | 69 | % SECOND METHOD - SIDELOBE MINIMIZATION ----------------------------------- 70 | % first we specify the sidelobe region \Omega 71 | isSidelobeRegion = zeros(length(angleSpace),1); index = 1; 72 | beamwidth = 5; 73 | for i = -90:90 74 | if min(abs(i-radAngles(:))) >= beamwidth 75 | isSidelobeRegion(index) = 1; 76 | else 77 | isSidelobeRegion(index) = 0; 78 | end 79 | index = index+1; 80 | end 81 | %figure; plot(angleSpaceDeg,isSidelobeRegion); title('Check Target Directions') 82 | 83 | 84 | % solve the optimization in Eq.12 85 | index = 1; 86 | cvx_begin quiet 87 | variable R1(Nr,Nr) hermitian 88 | variable t 89 | minimize( -t ); 90 | subject to 91 | for i = -90:90 92 | if isSidelobeRegion(index) == 1 93 | (a1(:,90+radAngles(1))'*R1*a1(:,90+radAngles(1))) - (a1(:,index)'*R1*a1(:,index)) >= t; 94 | (a1(:,90+radAngles(2))'*R1*a1(:,90+radAngles(2))) - (a1(:,index)'*R1*a1(:,index)) >= t; 95 | end 96 | index = index+1; 97 | end 98 | (a1(:,90+radAngles(1)-beamwidth)'*R1*a1(:,90+radAngles(1)-beamwidth)) == ... 99 | (a1(:,90+radAngles(1))'*R1*a1(:,90+radAngles(1)))/2; 100 | (a1(:,90+radAngles(1)+beamwidth)'*R1*a1(:,90+radAngles(1)+beamwidth)) == ... 101 | (a1(:,90+radAngles(1))'*R1*a1(:,90+radAngles(1)))/2; 102 | (a1(:,90+radAngles(2)-beamwidth)'*R1*a1(:,90+radAngles(2)-beamwidth)) == ... 103 | (a1(:,90+radAngles(2))'*R1*a1(:,90+radAngles(2)))/2; 104 | (a1(:,90+radAngles(2)+beamwidth)'*R1*a1(:,90+radAngles(2)+beamwidth)) == ... 105 | (a1(:,90+radAngles(2))'*R1*a1(:,90+radAngles(2)))/2; 106 | diag(R1) == Pr*ones(Nr,1)/Nr; 107 | R1 == semidefinite(Nr); 108 | cvx_end 109 | 110 | 111 | % substitute R1 into Eq.19 and solve 112 | % must be solved jointly since Wi depends on all other Wj 113 | cvx_begin quiet 114 | variable W1opt(Nc,Nc) hermitian 115 | variable W2opt(Nc,Nc) hermitian 116 | variable sigma_temp 117 | minimize( square_pos(norm( diag( a2'*(W1opt+W2opt)*a2 - sigma_temp*(a1'*R1*a1) ) ,2)) ); 118 | subject to 119 | % SINR constraints for each user 120 | %abs(trace( conj(g(:,1))*transpose(g(:,1))*W1 ))/abs(( trace( conj(g(:,2))*transpose(g(:,2))*W1 ) + ... 121 | %trace( conj(f(:,1))*transpose(f(:,1))*R1 ) + N0 )) >= Gamma(1); 122 | real(trace( conj(g(:,1))*transpose(g(:,1))*W1opt ) - Gamma(1)*( trace( conj(g(:,2))*transpose(g(:,2))*W1opt ) + ... 123 | trace( conj(f(:,1))*transpose(f(:,1))*R1 ) )) >= N0*Gamma(1); 124 | real(trace( conj(g(:,2))*transpose(g(:,2))*W2opt ) - Gamma(2)*( trace( conj(g(:,1))*transpose(g(:,1))*W2opt ) + ... 125 | trace( conj(f(:,2))*transpose(f(:,2))*R1 ) )) >= N0*Gamma(2); 126 | % Power constraint 127 | trace(W1opt + W2opt) <= Pc; 128 | sigma_temp >= 0; 129 | W1opt == semidefinite(Nc); 130 | W2opt == semidefinite(Nc); 131 | cvx_end 132 | % NOTE - we are solving the SDR for W1 and W2, so we will have to recover 133 | % w1 and w2 134 | 135 | 136 | % Do randomization to get our feasible beamforming vectors w1 and w2------- 137 | nRand = 10; 138 | w1 = zeros(Nc,nRand); w2 = zeros(Nc,nRand); 139 | W1cov = zeros(Nc,Nc,nRand); W2cov = zeros(Nc,Nc,nRand); 140 | clear u1F; clear u2F; 141 | 142 | % generate and scale to meet power constraints 143 | for L = 1:nRand 144 | % generate nRand 145 | w1(:,L) = mvnrnd(zeros(Nc,1),W1opt) + 1i*mvnrnd(zeros(Nc,1),W1opt); 146 | w2(:,L) = mvnrnd(zeros(Nc,1),W2opt) + 1i*mvnrnd(zeros(Nc,1),W2opt); 147 | 148 | % scale them so they all adhere to norm constraint 149 | w1(:,L) = sqrt(trace(W1opt))*w1(:,L)/sqrt(w1(:,L)'*w1(:,L)); 150 | w2(:,L) = sqrt(trace(W2opt))*w2(:,L)/sqrt(w2(:,L)'*w2(:,L)); 151 | 152 | W1cov(:,:,L) = w1(:,L)*w1(:,L)'; 153 | W2cov(:,:,L) = w2(:,L)*w2(:,L)'; 154 | end 155 | 156 | % check all pairs to see if user 1 SINR constraints are met 157 | index1 = 1; index2 = 1; 158 | for i = 1:nRand 159 | for j = 1:nRand 160 | if real(trace( conj(g(:,1))*transpose(g(:,1))*W1cov(:,:,i) ) - Gamma(1)*( trace( conj(g(:,2))*transpose(g(:,2))*W1cov(:,:,i) ) + ... 161 | trace( conj(f(:,1))*transpose(f(:,1))*R1 ) )) >= N0*Gamma(1) 162 | % save this pair as feasible for user 1 163 | u1F(:,1,index1) = w1(:,i); u1F(:,2,index1) = w2(:,j); 164 | index1 = index1 + 1; 165 | end 166 | end 167 | end 168 | 169 | % check all user 1 feasible pairs to see if they're user 2 feasible 170 | for i = 1:size(u1F,3) 171 | if real(trace( conj(g(:,2))*transpose(g(:,2))*(u1F(:,2,i)*u1F(:,2,i)') ) - Gamma(2)*( trace( conj(g(:,2))*transpose(g(:,2))*(u1F(:,1,i)*u1F(:,1,i)') ) + ... 172 | trace( conj(f(:,2))*transpose(f(:,2))*R1 ) )) >= N0*Gamma(2) 173 | % save this pair as feasible for user 2 174 | u2F(:,1,index2) = u1F(:,1,i); u2F(:,2,index2) = u1F(:,2,i); 175 | index2 = index2 + 1; 176 | end 177 | end 178 | 179 | % find how many feasible sets we have, choose the one with the smallest 180 | % objective function value 181 | numFeasible = size(u2F,3); % this number better be [0,nRand^N] lol. Yes there are repeats but who cares 182 | WcovSum = zeros(Nc,Nc,numFeasible); obj = zeros(1,numFeasible); 183 | for i = 1:size(u2F,3) 184 | WcovSum(:,:,i) = (u2F(:,1,i)*u2F(:,1,i)') + (u2F(:,2,i)*u2F(:,2,i)'); 185 | obj(i) = ( norm( diag( a2'*WcovSum(:,:,i)*a2 - sigma_temp*a1'*R1*a1 ) ) )^2; 186 | end 187 | [minVal,minIndex] = min(obj); 188 | w1 = u2F(:,1,minIndex); W1 = (w1*w1'); 189 | w2 = u2F(:,2,minIndex); W2 = (w2*w2'); 190 | Wsum = W1 + W2; 191 | 192 | 193 | % the overall transmitted covariance Eq.14 -------------------------------- 194 | C = blkdiag(R1,Wsum); % should be size (Nr+Nc) x (Nr+Nc) 195 | 196 | % overall transmitted beampattern gain Eq.15 197 | Pd = zeros(size(angleSpace)); BPrad = zeros(size(angleSpace)); BPcomm = zeros(size(angleSpace)); 198 | for i = 1:length(angleSpace) 199 | Pd(i) = abs( a(:,i)' * C * a(:,i) ); 200 | BPrad(i) = abs( a1(:,i)' * R1 * a1(:,i) ); 201 | BPcomm(i) = abs( a2(:,i)' * Wsum * a2(:,i) ); 202 | end 203 | 204 | 205 | % Plot Beampattern 206 | figure; plot(angleSpaceDeg,Pdesired); hold on 207 | plot(angleSpaceDeg, Pd, 'LineWidth', 2); hold on; 208 | plot(angleSpaceDeg, BPrad, 'LineWidth', 2); hold on; 209 | plot(angleSpaceDeg, BPcomm, 'LineWidth', 2); hold on; 210 | for n = 1:N 211 | line([commAngles(n) commAngles(n)], [0 10],'LineStyle', '--'); 212 | hold on 213 | end 214 | hold off; title('Beampattern 1'); 215 | legend('Desired','Sep1','Rad Only','Comm Only','Comm Angles'); grid on -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Must-Reading Papers on Integrated Sensing and Communications (ISAC) 2 | Other Terms : Joint Radar Communications (JRC) / Joint Communication and Radar Sensing (JCAS) / Dual-Functional Radar Communications (DFRC) 3 | 4 | Definition: A design paradigm and corresponding enabling technologies, in which sensing and comms systems are integrated to efficiently utilize congested wireless/hardware resources, and even to pursue mutual benefits. 5 | 6 | *Aims: include reproducible codes, good papers and a research libary.* 7 | 8 | Contributed by Yuanhao Cui, BUPT, and Fan Liu, SUSTech 9 | 10 | Supported by IEEE ComSoc ISAC Emerging Technology Inititive (ETI) & IEEE SPS ISAC Technical Working Group (TWG) 11 | 12 | ## [Content](#content) 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |
1. Surveys and Tutorials
1.1 Basic Concept1.2 Signal Processing
1.3 Communication and Networking1.4 Mobile Computing
2. Fundamental Theory and Performance Analysis
3. Signal Processing - Communication Centric
3.1 Standardized Waveform3.2 Transceiver Design
3.3 Infrastracture Enhancement3.4 Resource and Interference Management
4. Signal Processing - Sensing Centric
4.1 Waveform Design4.2 Sensing Data Processing
5. Signal Processing - Joint Design
6. Networking
6.1 Radar Networking6.2 Sensor Networking
6.3 ISAC Networking
7. Specturm Sharing
8. Mobile Computing - WiFi Sensing
8.1 Human Activity Recognition8.2 Wireless Imaging
8.3 Control Flow
9. Applications and Demonstrations
9.1 Environmental Monitoring9.2 Multi-Functional Network
9.3 Health and Elderly Care9.4 Remote Sensing
9.5 Site-Specified Radio Map9.6 Simultaneous Localization and Mapping
9.7 Security and Privacy9.8 Demonstrations
73 | 74 | 75 | 76 | 77 | ## [1. Surveys and Tutorials](#1-surveys-and-tutorials) 78 | 79 | ### [1.1 Basic Concept](##11-basic-concept) 80 | 81 | 1. **Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond.** IEEE JSAC, 2022. [Journal](https://ieeexplore.ieee.org/document/9737357). 82 | 83 | *F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, S. Buzzi* 84 | 85 | 1. **Integrating Sensing and Communications for Ubiquitous IoT: Applications, Trends and Challenges.** IEEE Network, 2021. [Magazine](https://ieeexplore.ieee.org/document/9606831/). 86 | 87 | *Y. Cui, F. Liu, X. Jing, J. Mu* 88 | 89 | 1. **Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead.** IEEE TCOM, 2020. [Journal](https://ieeexplore.ieee.org/document/8999605). [Code](https://github.com/yuanhao-cui/Must-Reading-on-ISAC/blob/main/Codes/Fan2020TCOM/Fan_DFRC.m) 90 | 91 | *F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, L. Hanzo* 92 | 93 | 1. **Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing.** Proceedings of the IEEE, 2011. [Magazine](https://ieeexplore.ieee.org/document/5776640). 94 | 95 | *C. Sturm, W. Wiesbeck* 96 | 97 | 1. **Seventy Years of Radar and Communications: The road from separation to integration.** IEEE SPM, 2023.[Magazine](https://ieeexplore.ieee.org/document/10188491). 98 | 99 | *F. Liu, L. Zheng, Y. Cui, C. Masouros, A. P. Petropulu, H. Griffiths, Y. C. Eldar* 100 | 101 | 1. **Dual-Function Radar Communication Systems: A Solution to the Spectrum Congestion Problem.** IEEE SPM, 2019. [Magazine](https://ieeexplore.ieee.org/document/8828023). 102 | 103 | *A. Hassanien, M. G. Amin, E. Aboutanios, B. Himed* 104 | 105 | 1. **Radar-Communications Convergence: Coexistence, Cooperation, and Co-Design.** IEEE TCCN, 2017. [Journal](https://ieeexplore.ieee.org/document/7855671) 106 | 107 | *A. R. Chiriyath, B. Paul, D. W. Bliss* 108 | 109 | 110 | 111 | ### [1.2 Signal Processing](#1.2) 112 | 113 | 1. **An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing.** IEEE JSTSP, 2021. [Journal](https://ieeexplore.ieee.org/document/9540344/). 114 | 115 | *J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zhang, A. Petropulu* 116 | 117 | 1. **Toward Millimeter-Wave Joint Radar Communications: A Signal Processing Perspective.** IEEE SPM, 2019. [Magazine](https://ieeexplore.ieee.org/document/8828030). 118 | 119 | *K. V. Mishra, M. R. Bhavani Shankar, V. Koivunen, B. Ottersten, S. A. Vorobyov* 120 | 121 | 1. **Joint Radar-Communications Strategies for Autonomous Vehicles Combining Two Key Automotive Technologies.** IEEE SPM, 2020. [Magazine](https://ieeexplore.ieee.org/document/9127852). 122 | 123 | *D. Ma, N. Shlezinger, T. Huang, Y. Liu, Y. C. Eldar* 124 | 125 | 1. **Signaling Strategies for Dual-function Radar Communications: An Overview.** IEEE AESM, 2016. [Magazine](https://ieeexplore.ieee.org/document/7746569). 126 | 127 | *A. Hassanien, M. G. Amin, Y. D. Zhang, F. Ahmad* 128 | 129 | 1. **Radar and Communication Coexistence: An Overview: A Review of Recent Methods.** IEEE SPM, 2019. [Magazine](https://ieeexplore.ieee.org/document/8828016). 130 | 131 | *L. Zheng, M. Lops, Y. C. Eldar, X. Wang* 132 | 133 | 1. **MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges.** IEEE SPM, 2020. [Magazine](https://ieeexplore.ieee.org/document/9127853). 134 | 135 | *S. Sun, A. P. Petropulu, H. V. Poor* 136 | 137 | 1. **Survey of RF Communications and Sensing Convergence Research.** IEEE ACCESS, 2016. [Journal](https://ieeexplore.ieee.org/document/7782415). 138 | 139 | *B. Paul, A. R. Chiriyath, D. W. Bliss* 140 | 141 | 142 | 143 | ### [1.3 Communication and Networking](#1.3) 144 | 145 | 1. **Enabling Joint Communication and Radio Sensing in Mobile Networks--A Survey.** IEEE COMST, 2022. [Journal](https://ieeexplore.ieee.org/abstract/document/9585321). 146 | 147 | *J. Zhang, Md. Rahman, K. Wu, X. Huang, Y. Guo, S. Chen, J. Yuan* 148 | 149 | 1. **A Tutorial on Joint Radar and Communication Transmission for Vehicular Networks - Part I, II, and III.** IEEE COMML, 2020. [Letter](https://ieeexplore.ieee.org/document/9201513), [Letter](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9201355), [Letter](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9201311). 150 | 151 | *F. Liu, C. Masouros* 152 | 153 | 1. **Perceptive Mobile Network: Cellular Networks With Radio Vision via Joint Communication and Radar Sensing.** IEEE VTM, 2020. [Magazine](https://ieeexplore.ieee.org/document/9296833). 154 | 155 | *A. Zhang, M. L. Rahman, X. Huang, Y. J. Guo, S. Chen, R. W. Heath* 156 | 157 | 1. **Leveraging Sensing at the Infrastructure for mmWave Communication.** IEEE COMMAG, 2020. [Magazine](https://ieeexplore.ieee.org/document/9162000). 158 | 159 | *A. Ali, N. Gonzalez-Prelcic, R. W. Heath, A. Ghosh* 160 | 161 | 1. **Internet of Radars: Sensing versus Sending with Joint Radar-Communications.** IEEE COMMAG, 2020. [Magazine](https://ieeexplore.ieee.org/document/9214381). 162 | 163 | *O. B. Akan, M. Arik* 164 | 165 | 1. **Full Duplex Radio/ Radar Technology: The Enabler for Advanced Joint Communication and Sensing.** IEEE WCM, 2021. [Magazine](https://ieeexplore.ieee.org/abstract/document/9363029). 166 | 167 | *C. B. Barneto, S. D. Liyanaarachchi, M. Heino, T. Riihonen, M. Valkama* 168 | 169 | 1. **Communications and Sensing: An Opportunity for Automotive Systems.** IEEE SPM, 2020. [Magazine](https://ieeexplore.ieee.org/document/9129848) 170 | 171 | *R. W. Heath* 172 | 173 | 174 | 175 | ### [1.4 Mobile Computing](#1.4) 176 | 177 | 1. **WiFi Sensing with Channel State Information: A Survey.** ACM CSUR, 2019. [Journal](https://dl.acm.org/doi/abs/10.1145/3310194). 178 | 179 | *Y. Ma, G. Zhou, S. Wang* 180 | 181 | 1. **Wireless Sensing for Human Activity: A Survey.** IEEE COMST, 2019. [Journal](https://ieeexplore.ieee.org/document/8794643) 182 | 183 | *J. Liu, H. Liu, Y. Chen, Y. Wang, C. Wang* 184 | 185 | 1. **Future Millimeter-Wave Indoor Systems: A Blueprint for Joint Communication and Sensing.** IEEE Computer, 2019. [Magazine](https://ieeexplore.ieee.org/document/8747215) 186 | 187 | *M. Alloulah, H. Huang* 188 | 189 | 1. **Joint Design of Sensing and Communication Systems for Smart Homes.** IEEE Network, 2020. [Magazine](https://ieeexplore.ieee.org/document/9143269) 190 | 191 | *Q. Huang, H. Chen, Q. Zhang* 192 | 193 | 1. **Device-Free Wireless Sensing: Challenges, Opportunities, and Applications.** IEEE Network, 2018. [Magazine](https://ieeexplore.ieee.org/abstract/document/8284052) 194 | 195 | *J. Wang, Q. Gao, M. Pan, Y. Fang* 196 | 197 | 198 | 199 | ## [2. Fundamental Theory and Performance Analysis](#2) 200 | 201 | 1. **On the Fundamental Tradeoff of Integrated Sensing and Communications Under Gaussian Channels.*[Journal](https://ieeexplore.ieee.org/abstract/document/10147248)* 202 | 203 | *Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, G. Caire* 204 | 205 | 1. **Joint State Sensing and Communication: Optimal Tradeoff for a Memoryless Case.** IEEE ISIT, 2018. [Conference](https://ieeexplore.ieee.org/document/8437621) 206 | 207 | *M. Kobayashi, G. Caire, G. Kramer* 208 | 209 | 1. **Joint Sensing and Communication over Memoryless Broadcast Channels.** IEEE ISIT, 2020. [Conference](https://ieeexplore.ieee.org/abstract/document/9457571) 210 | 211 | *M.Ahmadipour, M.Wigger, M. Kobayashi* 212 | 213 | 1. **A Survey on Fundamental Limits of Integrated Sensing and Communication.** Arxiv, 2021. [Journal](https://arxiv.org/abs/2104.09954) 214 | 215 | *A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. T. K. Ping, J. Liu, Y. Shen, F. Colone, K. Chetty* 216 | 217 | 1. **Joint Transmission and State Estimation: A Constrained Channel Coding Approach.** IEEE TIT, 2011. [Journal](https://ieeexplore.ieee.org/document/6034756) 218 | 219 | *W. Zhang, S. Vedantam, U. Mitra* 220 | 221 | 1. **Inner Bounds on Performance of Radar and Communications Co-Existence.** IEEE TSP, 2016. [Journal](https://ieeexplore.ieee.org/document/7279172) 222 | 223 | *A. R. Chiriyath, B. Paul, G. M. Jacyna, D. W. Bliss* 224 | 225 | 1. **On the Capacity of the AWGN Channel With Additive Radar Interference.** IEEE TCOM, 2017. [Journal](https://ieeexplore.ieee.org/document/8070342) 226 | 227 | *S. Shahi, D. Tuninetti, N. Devroye* 228 | 229 | 1. **Performance Gains From Cooperative MIMO Radar and MIMO Communication Systems.** IEEE SPL, 2018. [Letter](https://ieeexplore.ieee.org/document/8531782) 230 | 231 | *Q. He, Z. Wang, J. Hu, R. S. Blum* 232 | 233 | 1. **A Perspective on Degrees of Freedom for Radar in Radar-Communication Interference Channel.** IEEE ACSSC, 2018. [Conference](https://ieeexplore.ieee.org/document/8645069) 234 | 235 | *Y. Cui, V. Koivunen, X. Jing* 236 | 237 | 1. **Performance Tradeoffs of Joint Radar-Communication Networks.** IEEE WCL, 2018. [Letter](https://ieeexplore.ieee.org/document/8436015) 238 | 239 | *P. Ren, A. Munari, M. Petrova* 240 | 241 | 1. **Analysis of An LTE Waveform for Radar Applications.** IEEE RADAR, 2014. [Conference](https://ieeexplore.ieee.org/document/6875584) 242 | 243 | *A. Evers, J. A. Jackson* 244 | 245 | 1. **Performance Tradeoff in a Unified Passive Radar and Communications System.** IEEE SPL, 2017. [Journal](https://ieeexplore.ieee.org/document/7962141) 246 | 247 | *B. K. Chalise, M. G. Amin, B. Himed* 248 | 249 | 1. **Massive MIMO Radar for Target Detection.** IEEE TSP, 2020. [Journal](https://ieeexplore.ieee.org/document/8962251) 250 | 251 | *S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco, B. Himed* 252 | 253 | 1. **The Shannon Channel Capacity of A Radar System.** IEEE ACSSC, 2003. [Conference](https://ieeexplore.ieee.org/document/1197159) 254 | 255 | *P. Bidigare* 256 | 257 | 258 | 259 | ## [3. Signal Processing - Communication Centric](#3) 260 | 261 | ### [3.1 Standardized Waveform](#3.1) 262 | 263 | 1. **IEEE 802.11ad-Based Radar: An Approach to Joint Vehicular Communication-Radar System.** IEEE TVT, 2017. [Journal](https://ieeexplore.ieee.org/document/8114253) 264 | 265 | *P. Kumari, J. Choi, N. González-Prelcic, R. W. Heath* 266 | 267 | 1. **Full-Duplex OFDM Radar With LTE and 5G NR Waveforms: Challenges, Solutions, and Measurements.** IEEE TMTT, 2019. [Journal](https://ieeexplore.ieee.org/document/8805161) 268 | 269 | *C. B. Barneto, T. Riihonen, M. Turunen, L. Anttiila, M. Fleischer, K. Stadius, J. Ryynanen, M, Valkama* 270 | 271 | 1. **Optimized Waveforms for 5G–6G Communication with Sensing: Theory, Simulations and Experiments.** IEEE TWC, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9468975) 272 | 273 | *S. D. Liyanaarachchi, T. Riihonen, C. B. Barneto, M. Valkama* 274 | 275 | 1. **LoRadar: Enabling Concurrent Radar Sensing and LoRa Communication.** IEEE TMC, 2020. [Journal](https://ieeexplore.ieee.org/document/9248648) 276 | 277 | *Q. Huang, Z. Luo, J. Zhang, W. Wang, Q. Zhang* 278 | 279 | 280 | 281 | 282 | ### [3.2 Transceiver Design](#3.2) 283 | 284 | 1. **Uplink Sensing in Perceptive Mobile Networks with Asynchronous Transceivers.** IEEE TSP, 2020. [Journal](https://ieeexplore.ieee.org/document/9349171) 285 | 286 | *Z. Ni, J. A. Zhang, X. Huang, K. Yang, J. Yuan* 287 | 288 | 1. **A mmWave Automotive Joint Radar-Communications System.** IEEE TAES, 2019. [Journal](https://ieeexplore.ieee.org/document/8638509) 289 | 290 | *S. H. Dokhanchi, B. S. Mysore, K. V. Mishra, B. Ottersten* 291 | 292 | 1. **Multifunctional Transceiver for Future Radar Sensing and Radio Communicating Data-Fusion Platform.** IEEE ACCESS, 2016. [Journal](https://ieeexplore.ieee.org/document/7409935) 293 | 294 | *J. Moghaddasi, K. Wu* 295 | 296 | 1. **Transmit Sequence Design for Dual-Function Radar-Communication System With One-Bit DACs.** IEEE TWC, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9399801) 297 | 298 | *Z. Cheng, S. Shi, Z. He, B. Liao* 299 | 300 | 1. **A Dual-Functional Massive MIMO OFDM Communication and Radar Transmitter Architecture.** IEEE TVT, 2020. [Journal](https://ieeexplore.ieee.org/document/9226446) 301 | 302 | *M. Temiz, E. Alsusa, M. W. Baidas* 303 | 304 | 1. **Hybrid Beamforming for Multi-carrier Dual-Function Radar-Communication System.** IEEE TCCN, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9366836) 305 | 306 | *Z. Cheng, Z. He, B. Liao* 307 | 308 | 1. **Multifunctional Transceiver for Future Intelligent Transportation Systems.** IEEE TMTT, 2011. [Journal](https://ieeexplore.ieee.org/document/5759762) 309 | 310 | *L. Han, K. Wu* 311 | 312 | 1. **RF Front-End Challenges for Joint Communication and Radar Sensing.** IEEE JC&S, 2021. [Conference](https://ieeexplore.ieee.org/document/9376387) 313 | 314 | *F. Bozorgi, P. Sen, A. N. Barreto, G. Fettweis* 315 | 316 | ### [3.3 Infrastracture Enhancement](#3.3) 317 | 318 | 1. **Leveraging Sensing at the Infrastructure for mmWave Communication.** IEEE COMMAG, 2020. [Magazine](https://ieeexplore.ieee.org/document/9162000) 319 | 320 | *A. Ali, N. Gonzalez-Prelcic, R. W. Heath, A. Ghosh* 321 | 322 | 2. **Framework for a Perceptive Mobile Network Using Joint Communication and Radar Sensing.** IEEE TAES, 2019. [Journal](https://ieeexplore.ieee.org/document/8827589) 323 | 324 | *M. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, R. W. Heath* 325 | 326 | 3. **Radar-assisted Predictive Beamforming for Vehicular Links: Communication Served by Sensing.** IEEE TWC, 2021. [Journal](https://ieeexplore.ieee.org/document/9171304) 327 | 328 | *F. Liu, W. Yuan, C. Masouros, J. Yuan* 329 | 330 | 4. **Bayesian Predictive Beamforming for Vehicular Networks: A Low-Overhead Joint Radar-Communication Approach.** IEEE TWC, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9246715) 331 | 332 | *W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, N. González-Prelcic* 333 | 334 | 5. **Passive Radar at the Roadside Unit to Configure Millimeter Wave Vehicle-to-Infrastructure Links.** IEEE TVT, 2020. [Journal](https://ieeexplore.ieee.org/abstract/document/9209195) 335 | 336 | *A. Ali, N. González-Prelcic, A. Ghosh* 337 | 338 | 6. **Toward Environment-Aware 6G Communications via Channel Knowledge Map.** IEEE WCM, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9373011) 339 | 340 | *Y. Zeng, X. Xu* 341 | 342 | 7. **Radar Aided Beam Alignment in MmWave V2I Communications Supporting Antenna Diversity.** IEEE ITA, 2017. [Conference](https://ieeexplore.ieee.org/document/7888145) 343 | 344 | *N. González-Prelcic, R. Méndez-Rial, R. W. Heath* 345 | 346 | 347 | 348 | ### [3.4 Resource and Interference Management](#3.4) 349 | 350 | 1. **MU-MIMO Communications With MIMO Radar: From Co-Existence to Joint Transmission.** IEEE TWC, 2018. [Journal](https://ieeexplore.ieee.org/document/8288677).[Code](https://github.com/yuanhao-cui/Must-Reading-on-ISAC/blob/main/Codes/Fan2018TWC/SeparatedDeployment_SidelobeMin.m) 351 | 352 | *F. Liu, C. Masouros, A. Li, H. Sun, L. Hanzo* 353 | 354 | 1. **Mutual Information based Radar Waveform Design for Joint Radar and Cellular Communication Systems.** IEEE ICASSP, 2016. [Conference](https://ieeexplore.ieee.org/document/7472362) 355 | 356 | *M. Bică, K. Huang, V. Koivunen, U. Mitra* 357 | 358 | 1. **Joint Subcarrier Assignment and Power Allocation Strategy for Integrated Radar and Communications System Based on Power Minimization.** IEEE Sensor Journal, 2019. [Journal](https://ieeexplore.ieee.org/document/8804235) 359 | 360 | *C. Shi, F. Wang, S. Salous, J. Zhou* 361 | 362 | 1. **Power Allocation and Co-Design of Multicarrier Communication and Radar Systems for Spectral Coexistence.** IEEE TSP, 2019. [Journal](https://ieeexplore.ieee.org/document/8728046) 363 | 364 | *F. Wang, H. Li, M. A. Govoni* 365 | 366 | 1. **Radar Waveform Optimization for Target Parameter Estimation in Cooperative Radar-Communications Systems.** IEEE TAES, 2018. [Journal](https://ieeexplore.ieee.org/document/8561147) 367 | 368 | *M. Bică, V. Koivunen* 369 | 370 | 1. **Multicarrier Radar-communications Waveform Design for RF Convergence and Coexistence.** IEEE ICASSP, 2019. [Conference](https://ieeexplore.ieee.org/document/8683655) 371 | 372 | *M. Bică, V. Koivunen* 373 | 374 | 1. **On Mutual Interference Cancellation in a MIMO OFDM Multiuser Radar-Communication Network.** IEEE TVT, 2017. [Journal](https://ieeexplore.ieee.org/document/8169087) 375 | 376 | *Y. L. Sit, B. Nuss, T. Zwick* 377 | 378 | 1. **Constrained Utility Maximization in Dual-Functional Radar-Communication Multi-UAV Networks.** IEEE TCOM, 2020. [Journal](https://ieeexplore.ieee.org/document/9293257) 379 | 380 | *X. Wang, Z. Fei, J. Andrew Zhang, J. Huang, J. Yuan* 381 | 382 | 1. **Distributed Dual-Function Radar-Communication MIMO System with Optimized Resource Allocation.** IEEE RadarConf, 2019. [Journal](https://ieeexplore.ieee.org/abstract/document/8835674) 383 | 384 | *A. Ahmed, Y. D. Zhang, B. Himed* 385 | 386 | 1. **Low Probability of Intercept-Based Optimal Power Allocation Scheme for an Integrated Multistatic Radar and Communication System.** IEEE Sensor Journal, 2019. [Journal](https://ieeexplore.ieee.org/document/8793158) 387 | 388 | *C. Shi, F. Wang, M. Sellathurai, J. Zhou, S. Salous* 389 | 390 | 1. **Resource Allocation for a Wireless Powered Integrated Radar and Communication System.** IEEE WCL, 2018. [Letter](https://ieeexplore.ieee.org/document/8454491) 391 | 392 | *Y. Zhou, H. Zhou, F. Zhou, Y. Wu, V. C. M. Leung* 393 | 394 | 1. **Bandwidth Sharing and Scheduling for Multimodal Radar with Communications and Tracking.** IEEE SAM, 2012. [Conference](https://ieeexplore.ieee.org/document/6250476) 395 | 396 | *S. S. Bhat, R. M. Narayanan, M. Rangaswamy* 397 | 398 | 399 | 400 | 401 | ## [4. Signal Processing - Sensing Centric](#4) 402 | 403 | ### [4.1 Waveform Design](#4.1) 404 | 405 | 1. **Dual-Function Radar-Communications: Information Embedding Using Sidelobe Control and Waveform Diversity.** IEEE TSP, 2015. [Journal](https://ieeexplore.ieee.org/document/7347464) 406 | 407 | *A. Hassanien, M. G. Amin, Y. D. Zhang, F. Ahmad* 408 | 409 | 1. **Simultaneous Radar and Communications Emissions from a Common Aperture, Part I,II.** IEEE RadarConf, 2017. [Conference](https://ieeexplore.ieee.org/document/7944478), [Conference](https://ieeexplore.ieee.org/abstract/document/7944480) 410 | 411 | *P. M. McCormick, S. D. Blunt, J. G. Metcalf* 412 | 413 | 1. **MAJoRCom: A Dual-Function Radar Communication System Using Index Modulation.** IEEE TSP, 2020. [Journal](https://ieeexplore.ieee.org/document/9093221) 414 | 415 | *T. Huang, N. Shlezinger, X. Xu, Y. Liu, Y. C. Eldar* 416 | 417 | 1. **Waveform Design and Accurate Channel Estimation for Frequency-Hopping MIMO Radar-Based Communications.** IEEE TCOM, 2020. [Journal](https://ieeexplore.ieee.org/document/9241739) 418 | 419 | *K. Wu, J. Andrew Zhang, X. Huang, Y. Jay Guo, R. W. Heath* 420 | 421 | 1. **Intrapulse Radar-Embedded Communications.** IEEE TAES, 2010. [Journal](https://ieeexplore.ieee.org/document/5545182) 422 | 423 | *S. D. Blunt, P. Yatham, J. Stiles* 424 | 425 | 1. **Intrapulse Radar-embedded Communications Via Multiobjective Optimization.** IEEE TAES, 2015. [Journal](https://ieeexplore.ieee.org/document/7376230) 426 | 427 | *D. Ciuonzo, A. De Maio, G. Foglia, M. Piezzo* 428 | 429 | 1. **A Novel Radar Waveform Compatible with Communication.** ICST ICCPS, 2011. [Conference](https://ieeexplore.ieee.org/document/6092272) 430 | 431 | *X. Chen, X. Wang, S. Xu, J. Zhang* 432 | 433 | 1. **Spatial Modulation for Joint Radar-Communications Systems: Design, Analysis, and Hardware Prototype.** IEEE TVT, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9345999) 434 | 435 | *D. Ma, N. Shlezinger, T. Huang, Y. Shavit, M. Namer, Y. Liu, Y. C. Eldar* 436 | 437 | 1. **Enabling Communication via Automotive Radars: An Adaptive Joint Waveform Design Approach.** IEEE INFOCOM, 2020. [Conference](https://ieeexplore.ieee.org/document/9155527) 438 | 439 | *C. D. Ozkaptan, E. Ekici, O. Altintas* 440 | 441 | 1. **Reliable Frequency-Hopping MIMO Radar-based Communications with Multi-Antenna Receiver.** IEEE TCOM, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9427572) 442 | 443 | *K. Wu, J. Andrew Zhang, X. Huang, Y. Jay Guo, J. Yuan* 444 | 445 | 1. **Fusion of radar sensing and wireless communications by embedding communication signals into the radar transmit waveform.** IET RSN, 2018. [Journal](https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-rsn.2017.0405) 446 | 447 | *Z. Geng, R. Xu, H. Deng, B. Himed* 448 | 449 | 1. **Opportunistic Sharing Between Rotating Radar and Cellular.** IEEE JSAC, 2012. [Journal](https://ieeexplore.ieee.org/document/6331681) 450 | 451 | *R. Saruthirathanaworakun, J. M. Peha, L. M. Correia* 452 | 453 | 1. **Communications-Inspired Sensing: a Case Study on Waveform Design.** IEEE TSP, 2009. [Journal](https://ieeexplore.ieee.org/document/5184909) 454 | 455 | *W. Zhang, L. Yang* 456 | 457 | 458 | 459 | ### [4.2 Sensing Data Processing](#4.2) 460 | 461 | 1. **Radar Signal Processing for Elderly Fall Detection: The Future for In-home Monitoring.** IEEE SPM, 2016. [Magazine](https://ieeexplore.ieee.org/document/7421368) 462 | 463 | *M. G. Amin, Y. D. Zhang, F. Ahmad, K. C. D. Ho* 464 | 465 | 1. **Signal Processing for Passive Radar Using OFDM Waveforms .** IEEE JSTSP, 2010. [Journal](https://ieeexplore.ieee.org/document/5393298) 466 | 467 | *C. R. Berger, B. Demissie, J. Heckenbach, P. Willett, S. Zhou* 468 | 469 | 1. **Radar Signal Processing for Sensing in Assisted Living: The Challenges Associated With Real-Time Implementation of Emerging Algorithms.** IEEE SPM, 2019. [Magazine](https://ieeexplore.ieee.org/document/8746868) 470 | 471 | *J.L. Kernec, F. Fioranelli, C. Ding, H. Zhao, L. Sun, H. Hong, J. Lorandel, O. Romain* 472 | 473 | 474 | 475 | ### [5. Signal Processing - Joint Design](#5) 476 | 477 | 1. **Toward Dual-functional Radar-Communication Systems: Optimal Waveform Design.** IEEE TSP, 2018. [Journal](https://ieeexplore.ieee.org/document/8386661).[Code](https://github.com/yuanhao-cui/Must-Reading-on-ISAC/tree/main/Codes/Fan2018TSP) 478 | 479 | *F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, A. Petropulu* 480 | 481 | 1. **On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication.** IEEE TWC, 2020. [Journal](https://ieeexplore.ieee.org/document/9109735) 482 | 483 | *L. Gaudio, M. Kobayashi, G. Caire, G. Colavolpe* 484 | 485 | 1. **Multibeam for Joint Communication and Radar Sensing Using Steerable Analog Antenna Arrays.** IEEE TVT, 2018. [Journal](https://ieeexplore.ieee.org/document/8550811) 486 | 487 | *J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, R. W. Heath* 488 | 489 | 1. **Joint Transmit Beamforming for Multiuser MIMO Communications and MIMO Radar.** IEEE TSP, 2020. [Journal](https://ieeexplore.ieee.org/document/9124713) 490 | 491 | *X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, Y. C.* 492 | 493 | 1. **Adaptive Virtual Waveform Design for Millimeter-Wave Joint Communication–Radar.** IEEE TSP, 2019. [Journal](https://ieeexplore.ieee.org/document/8917703) 494 | 495 | *P. Kumari, S. A. Vorobyov, R. W. Heath* 496 | 497 | 1. **Adaptive OFDM Integrated Radar and Communications Waveform Design Based on Information Theory.** IEEE COMML, 2017. [Letter](https://ieeexplore.ieee.org/abstract/document/7970102) 498 | 499 | *Y. Liu, G. Liao, J. Xu, Z. Yang, Y. Zhang* 500 | 501 | 1. **Spatio-Temporal Power Optimization for MIMO Joint Communication and Radio Sensing Systems with Training Overhead.** IEEE TVT, 2020. [Journal](https://ieeexplore.ieee.org/document/9303435) 502 | 503 | *X. Yuan, Z. Feng, A. Zhang, W. Ni, R. P. Liu, Z. Wei, C. Xu* 504 | 505 | 1. **On Unified Vehicular Communications and Radar Sensing in Millimeter-Wave and Low Terahertz Bands.** IEEE WCM, 2019. [Magazine](https://ieeexplore.ieee.org/document/8722599) 506 | 507 | *V. Petrov, G. Fodor, J. Kokkoniemi, D. Moltchanov, J. Lehtomaki, S. Andreev, Y. Koucheryavy, M. Juntti, M. Valkama* 508 | 509 | 1. **Dual-Use Signal Design for Radar and Communication via Ambiguity Function Sidelobe Control.** IEEE TVT, 2020. [Journal](https://ieeexplore.ieee.org/document/9119137) 510 | 511 | *J. Yang, G. Cui, X. Yu, L. Kong* 512 | 513 | 1. **Joint MIMO Communication and MIMO Radar Under Different Practical Waveform Constraints.** IEEE TVT, 2020. [Journal](https://ieeexplore.ieee.org/document/9256994) 514 | 515 | *X. He, L. Huang* 516 | 517 | 1. **Constrained Utility Maximization in Dual-Functional Radar-Communication Multi-UAV Networks.** IEEE TCOM, 2020. [Journal](https://ieeexplore.ieee.org/document/9293257) 518 | 519 | *X. Wang, Z. Fei, J. Andrew Zhang, J. Huang, J. Yuan* 520 | 521 | 1. **Joint Radar-Communication Waveform Designs Using Signals From Multiplexed Users.** IEEE TCOM, 2020. [Journal](https://ieeexplore.ieee.org/document/9091840) 522 | 523 | *N. Cao, Y. Chen, X. Gu, W. Feng* 524 | 525 | 1. **Low-Complexity Beamformer Design for Joint Radar and Communications Systems.** IEEE COMML, 2020. [Letter](https://ieeexplore.ieee.org/document/9201077) 526 | 527 | *F. Dong, W. Wang, Z. Hu, T. Hui* 528 | 529 | 1. **Joint Beamforming Design for Extended Target Estimation and Multiuser Communication.** IEEE RadarConf, 2020. [Conference](https://ieeexplore.ieee.org/document/9266710) 530 | 531 | *F. Liu, C. Masouros* 532 | 533 | 1. **iRDRC: An Intelligent Real-time Dual-functional Radar-Communication System for Automotive Vehicles.** IEEE WCL, 2020. [Letter](https://ieeexplore.ieee.org/document/9162145) 534 | 535 | *N. Q. Hieu, D. T. Hoang, N. C. Luong, D. Niyato* 536 | 537 | 1. **Joint Radar-Communication With Cyclic Prefixed Single Carrier Waveforms.** IEEE TVT, 2020. [Journal](https://ieeexplore.ieee.org/document/9005192) 538 | 539 | *Y. Zeng, Y. Ma, S. Sun* 540 | 541 | 1. **Constrained Waveform Design for Dual-Functional MIMO Radar-Communication System.** SP, 2020. [Journal](https://www.sciencedirect.com/science/article/abs/pii/S0165168420300736) 542 | 543 | *S. Shi ,Z. Wang ,Z. He, Z. Cheng* 544 | 545 | 1. **Integrated Radar and Communication Waveform Design Based on a Shared Array.** SP, 2020. [Journal](https://www.sciencedirect.com/science/article/abs/pii/S0165168420305004) 546 | 547 | *M. Jiang, G. Liao, Z. Yang, Y. Liu, Y. Chen* 548 | 549 | 1. **Co-design of Joint Radar and Communications Systems utilizing Frequency Hopping Code Diversity.** IEEE RadarConf, 2019. [Conference](https://ieeexplore.ieee.org/document/8835576) 550 | 551 | *X. Wang, J. Xu* 552 | 553 | 1. **Dual-Functional Radar Waveforms without Remodulation.** IEEE RADAR, 2019. [Conference](https://ieeexplore.ieee.org/document/8835809) 554 | 555 | *Y. Dong, G. A. Fabrizio, M. G. Amin* 556 | 557 |
558 | more 559 | 560 | 1. **Optimization and Quantization of Multibeam Beamforming Vector for Joint Communication and Radio Sensing.** IEEE TCOM, 2019. [Journal](https://ieeexplore.ieee.org/document/8738892) 561 | 562 | *Y. Luo, J. A. Zhang, X. Huang, W. Ni, J. Pan* 563 | 564 | 1. **Joint Radar-Communications Co-Use Waveform Design Using Optimized Phase Perturbation.** IEEE TAES, 2019. [Journal](https://ieeexplore.ieee.org/document/8688653) 565 | 566 | *S. Zhou, X. Liang, Y. Yu, H. Liu* 567 | 568 | 1. **Dual-Function Radar-Communication System Design Via Sidelobe Manipulation Based On FDA Butler Matrix.** IEEE AWPL, 2019. [Letter](https://ieeexplore.ieee.org/document/8618310) 569 | 570 | *S. Y. Nusenu, S. Huaizong, P. Ye, W. Xuehan, A. Basit* 571 | 572 | 1. **Multibeam for Joint Communication and Radar Sensing Using Steerable Analog Antenna Arrays.** IEEE TVT, 2018. [Journal](https://ieeexplore.ieee.org/document/8550811) 573 | 574 | *J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, R. W. Heath* 575 | 576 | 1. **Dual-Function MIMO Radar Communications System Design Via Sparse Array Optimization.** IEEE TAES, 2018. [Journal](https://ieeexplore.ieee.org/document/8438940) 577 | 578 | *X. Wang, A. Hassanien, M. G. Amin* 579 | 580 | 1. **Time-Modulated FD-MIMO Array for Integrated Radar and Communication Systems.** IEEE AWPL, 2018. [Letter](https://ieeexplore.ieee.org/document/8345628) 581 | 582 | *S. Y. Nusenu, W. Wang, A. Basit* 583 | 584 |
585 | 586 | 587 | ## [6. Networking](#6) 588 | 589 | ### [6.1 Radar Networking](#6.1) 590 | 591 | 1. **Evolution of Netted Radar Systems.** IEEE Access, 2020. [Journal](https://ieeexplore.ieee.org/abstract/document/9134443) 592 | 593 | *Z. Geng* 594 | 595 | 2. **Multistatic Radar Placement Optimization for Cooperative Radar-Communication Systems.** IEEE COMML, 2018. [Letter](https://ieeexplore.ieee.org/document/8360535) 596 | 597 | *M. Ben Kilani, G. Gagnon, F. Gagnon* 598 | 599 | 3. **Stochastic Geometry Methods for Modeling Automotive Radar Interference.** IEEE TITS, 2017. [Journal](https://ieeexplore.ieee.org/document/7819520) 600 | 601 | *A. Al-Hourani, R. J. Evans, S. Kandeepan, B. Moran, H. Eltom* 602 | 603 | 4. **IEEE 802.22 Passive Radars: Multistatic Detection and Velocity Profiler.** IEEE TAES, 2016. [Journal](https://ieeexplore.ieee.org/document/7812878) 604 | 605 | *P. Stinco, M. S. Greco, F. Gini, B. Himed* 606 | 607 | 5. **A Neighbor Discovery Algorithm in Network of Radar and Communication Integrated System.** IEEE CSE, 2015. [Conference](https://ieeexplore.ieee.org/document/7023734) 608 | 609 | *J. Li, L. Peng, Y. Ye, R. Xu, W. Zhao, C. Tian* 610 | 611 | 6. **Detection in Passive MIMO Radar Networks.** IEEE TSP, 2014. [Journal](https://ieeexplore.ieee.org/document/6803957) 612 | 613 | *D. E. Hack, L. K. Patton, B. Himed, M. A. Saville* 614 | 615 | 616 | 617 | ### [6.2 Sensor Networking](#6.2) 618 | 619 | 1. **Wireless sensor networks: a survey. Computer networks.** Computer Networks, 2002. [Journal](https://www.sciencedirect.com/science/article/abs/pii/S1389128601003024) 620 | 621 | *I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci* 622 | 623 | 1. **Fundamental Limits of Wideband Localization— Part I, II.** IEEE TIT, 2010. [Journal1](https://ieeexplore.ieee.org/document/5571900). [Journal2](https://ieeexplore.ieee.org/document/5571889) 624 | 625 | *Y. Shen, H. Wymeersch, M. Win* 626 | 627 | 628 | ### [6.3 ISAC Networking](#6.3) 629 | 630 | 1. **RadChat: Spectrum Sharing for Automotive Radar Interference Mitigation.** IEEE TITS, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/8943325) 631 | 632 | *C. Aydogdu, M. F. Keskin, N. Garcia, H. Wymeersch, D. W. Bliss* 633 | 634 | 1. **Sensing and Communication Co-Design for Status Update in Multiaccess Wireless Networks.** IEEE TMC, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9525223) 635 | 636 | *F. Peng, Z. Jiang, S. Zhou, Z. Niu, S. Zhang* 637 | 638 | 639 | ## [7. Specturm Sharing](#7) 640 | 641 | 1. **Optimum Co-Design for Spectrum Sharing between Matrix Completion Based MIMO Radars and a MIMO Communication System.** IEEE TSP, 2016. [Journal](https://ieeexplore.ieee.org/document/7470514) 642 | 643 | *B. Li, A. P. Petropulu, W. Trappe* 644 | 645 | 1. **Joint Design of Overlaid Communication Systems and Pulsed Radars.** IEEE TSP, 2017. [Journal](https://ieeexplore.ieee.org/document/8114253) 646 | 647 | *L. Zheng, M. Lops, X. Wang, E. Grossi* 648 | 649 | 1. **MIMO Radar and Cellular Coexistence: A Power-Efficient Approach Enabled by Interference Exploitation.** IEEE TSP, 2018. [Journal](https://ieeexplore.ieee.org/document/8355705) 650 | 651 | *F. Liu, C. Masouros, A. Li, T. Ratnarajah, J. Zhou* 652 | 653 | 1. **Cognitive Radar: A Way of the Future.** IEEE SPM, 2006. [Journal](https://ieeexplore.ieee.org/document/1593335) 654 | 655 | *S. Haykin* 656 | 657 | 1. **Radar Spectrum Engineering and Management: Technical and Regulatory Issues.** Proceedings of the IEEE, 2014. [Magazine](https://ieeexplore.ieee.org/document/6967722) 658 | 659 | *H. Griffiths, L. Cohen, S. Watts, E, Mokole, C. Baker, M. Wicks, S. Blunt.* 660 | 661 | 1. **Co-Design for Overlaid MIMO Radar and Downlink MISO Communication Systems via Cramér–Rao Bound Minimization.** IEEE TSP, 2019. [Journal](https://ieeexplore.ieee.org/document/8892631) 662 | 663 | *Z. Cheng, B. Liao, S. Shi, Z. He, J. Li* 664 | 665 | 1. **Joint Transmit Designs for Coexistence of MIMO Wireless Communications and Sparse Sensing Radars in Clutter.** IEEE TAES, 2017. [Journal](https://ieeexplore.ieee.org/document/7950274) 666 | 667 | *B. Li, A. P. Petropulu* 668 | 669 | 1. **Joint System Design for Coexistence of MIMO Radar and MIMO Communication.** IEEE TSP, 2018. [Journal](https://ieeexplore.ieee.org/document/8352726) 670 | 671 | *J. Qian, M. Lops, Le Zheng, X. Wang, Z. He* 672 | 673 | 1. **Opportunistic Sharing Between Rotating Radar and Cellular.** IEEE JSAC, 2012. [Journal](https://ieeexplore.ieee.org/document/6331681) 674 | 675 | *R. Saruthirathanaworakun, J. M. Peha, L. M. Correia* 676 | 677 | 1. **Mutual Information based Radar Waveform Design for Joint Radar and Cellular Communication Systems.** IEEE ICASSP, 2016. [Conference](https://ieeexplore.ieee.org/document/7472362) 678 | 679 | *M. Bica, K. Huang, V. Koivunen, U. Mitra* 680 | 681 | 1. **Spectral Coexistence of MIMO Radar and MIMO Cellular System.** IEEE TAES, 2017. [Journal](https://ieeexplore.ieee.org/document/7814210) 682 | 683 | *J. A. Mahal, A. Khawar, A. Abdelhadi, T. C. Clancy* 684 | 685 | 1. **Adaptive Interference Removal for Uncoordinated Radar/Communication Coexistence.** IEEE JSTSP, 2017. [Journal](https://ieeexplore.ieee.org/document/8233171) 686 | 687 | *L. Zheng, M. Lops, X. Wang* 688 | 689 | 1. **Joint Design of Surveillance Radar and MIMO Communication in Cluttered Environments.** IEEE TSP, 2020. [Journal](https://ieeexplore.ieee.org/document/9001239) 690 | 691 | *E. Grossi, M. Lops, L. Venturino* 692 | 693 | 1. **Interference Alignment Based Precoder-Decoder Design for Radar Communication Co-existence.** IEEE ACSSC, 2018. [Conference](https://ieeexplore.ieee.org/document/8335561) 694 | 695 | *Y. Cui, V. Koivunen, X. Jing* 696 | 697 | 1. **Information Theoretic Approach for Waveform Design in Coexisting MIMO Radar and MIMO Communications.** IEEE ICASSP, 2020. [Conference](https://ieeexplore.ieee.org/document/9053048) 698 | 699 | *M. Alaee-Kerharoodi, S. M. R. Bhavani, K. V. Mishra and B. Ottersten* 700 | 701 | 1. **Multi-constraint Spectral Co-design for Colocated MIMO Radar and MIMO Communications.** IEEE ICASSP, 2020. [Conference](https://ieeexplore.ieee.org/document/9054680) 702 | 703 | *S. H. Dokhanchi, M. R. Bhavani Shankar, K. V. Mishra, B. Ottersten* 704 | 705 | 1. **Communications and Radar Coexistence in the Massive MIMO Regime: Uplink Analysis.** IEEE TWC, 2019. [Journal](https://ieeexplore.ieee.org/document/8871348) 706 | 707 | *C. D’Andrea, S. Buzzi, M. Lops* 708 | 709 | 1. **Interference Removal for Radar/Communication Co-Existence: The Random Scattering Case.** IEEE TWC, 2019. [Journal](https://ieeexplore.ieee.org/document/8777296) 710 | 711 | *Y. Li, L. Zheng, M. Lops, X. Wang* 712 | 713 | 1. **Power Allocation and Co-Design of Multicarrier Communication and Radar Systems for Spectral Coexistence.** IEEE TSP, 2019. [Journal](https://ieeexplore.ieee.org/document/8728046) 714 | 715 | *F. Wang, H. Li, M. A. Govoni* 716 | 717 |
718 | more 719 | 720 | 1. **Integrated Waveform for a Joint Radar-Communication System With High-Speed Transmission.** IEEE WCL, 2019. [Letter](https://ieeexplore.ieee.org/document/8693859) 721 | 722 | *Q. Li, K. Dai, Y. Zhang, H. Zhang* 723 | 724 | 1. **Deep Learning Constellation Design for the AWGN Channel with Additive Radar Interference.** IEEE TCOM, 2018. [Journal](https://ieeexplore.ieee.org/document/8490882) 725 | 726 | *F. Alberge* 727 | 728 | 1. **Coexistence of MIMO Radar and FD MIMO Cellular Systems With QoS Considerations.** IEEE TWC, 2018. [Journal](https://ieeexplore.ieee.org/document/8447442) 729 | 730 | *S. Biswas, K. Singh, O. Taghizadeh, T. Ratnarajah* 731 | 732 | 1. **Opportunistic Radar in IEEE 802.11ad Networks.** IEEE TSP, 2018. [Journal](https://ieeexplore.ieee.org/document/8309274) 733 | 734 | *E. Grossi, M. Lops, L. Venturino, A. Zappone* 735 | 736 | 1. **Transmit Designs for Spectral Coexistence of MIMO Radar and MIMO Communication Systems.** IEEE TCSII, 2018. [Journal](https://ieeexplore.ieee.org/document/8331117) 737 | 738 | *J. Qian, Z. He, N. Huang, B. Li* 739 | 740 | 1. **Robust MIMO Beamforming for Cellular and Radar Coexistence.** IEEE WCL, 2017. [Letterl](https://ieeexplore.ieee.org/document/7898445) 741 | 742 | *F. Liu, C. Masouros, A. Li, T. Ratnarajah* 743 | 744 | 1. **Spectral Coexistence of MIMO Radar and MIMO Cellular System.** IEEE TAES, 2017. [Journal](https://ieeexplore.ieee.org/document/7814210) 745 | 746 | *J. A. Mahal, A. Khawar, A. Abdelhadi, T. C. Clancy* 747 | 748 | 1. **Spectrum Sharing between a Surveillance Radar and Secondary Wi-Fi Networks.** IEEE TAES, 2016. [Journal](https://ieeexplore.ieee.org/document/7511869) 749 | 750 | *F. Hessar, S. Roy* 751 | 752 | 1. **On the Co-Existence of TD-LTE and Radar Over 3.5 GHz Band: An Experimental Study.** IEEE WCL, 2016. [Letter](https://ieeexplore.ieee.org/document/7462190) 753 | 754 | *J. H. Reed et al.* 755 | 756 | 1. **Spectrum Sharing of Radar and Wi-Fi Networks: The Sensing/Throughput Tradeoff.** IEEE TCCN, 2015. [Journal](https://ieeexplore.ieee.org/document/7460082) 757 | 758 | *H. Safavi-Naeini, S. Roy, S. Ashrafi* 759 | 760 | 1. **MIMO OFDM Radar with Communication and Interference Cancellation Features.** IEEE RADAR, 2014. [Conference](https://ieeexplore.ieee.org/document/6875596) 761 | 762 | *Y. L. Sit, T. Zwick* 763 | 764 | 1. **Radar Waveform Design in a Spectrally Crowded Environment Via Nonconvex Quadratic Optimization.** IEEE TAES, 2014. [Journal](https://ieeexplore.ieee.org/document/6850145) 765 | 766 | *A. Aubry, A. De Maio, M. Piezzo, A. Farina* 767 | 768 | 1. **Interference Mitigation Processing for Spectrum-Sharing Between Radar and Wireless Communications Systems.** IEEE TAES, 2013. [Journal](https://ieeexplore.ieee.org/document/6933960) 769 | 770 | *H. Deng, B. Himed* 771 | 772 |
773 | 774 | 775 | 776 | ## [8. Mobile Computing - WiFi Sensing](#8) 777 | 778 | ### [8.1 Human Activity Recognition](#8.1) 779 | 780 | 1. **We Can Hear You with Wi-Fi!.** IEEE TMC, 2016. [Journal](https://ieeexplore.ieee.org/document/7384744) 781 | 782 | *G. Wang, Y. Zou, Z. Zhou, K. Wu, L. M. Ni* 783 | 784 | 2. **WiFall: Device-Free Fall Detection by Wireless Networks.** IEEE TMC, 2016. [Journal](https://ieeexplore.ieee.org/document/7458186) 785 | 786 | *Y. Wang, K. Wu, L. M. Ni* 787 | 788 | 3. **Recognizing Keystrokes Using WiFi Devices.** IEEE JSAC, 2017. [Journal](https://ieeexplore.ieee.org/document/7875144) 789 | 790 | *YK. Ali, A. X. Liu, W. Wang, M. Shahzad* 791 | 792 | 4. **Device-Free Human Activity Recognition Using Commercial WiFi Devices.** IEEE JSAC, 2017. [Journal](https://ieeexplore.ieee.org/document/7875144) 793 | 794 | *W. Wang, A. X. Liu, M. Shahzad, K. Ling, S. Lu* 795 | 796 | 5. **Toward Centimeter-Scale Human Activity Sensing with Wi-Fi Signals.** IEEE Computer, 2018. [Magazine](https://ieeexplore.ieee.org/document/7807197/) 797 | 798 | *D. Zhang, H. Wang, D. Wu* 799 | 800 | 6. **A Survey on Behavior Recognition Using WiFi Channel State Information.** IEEE COMMAG, 2017. [Journal](https://ieeexplore.ieee.org/document/8067693) 801 | 802 | *S. Yousefi, H. Narui, S. Dayal, S. Ermon, S. Valaee* 803 | 804 | 805 | ### [8.2 Wireless Imaging](#8.2) 806 | 807 | 1. **See through Walls with WiFi!.** MobiCom, 2013. [Conference](https://dl.acm.org/doi/pdf/10.1145/2486001.2486039) 808 | 809 | *A. Fadel, D. Katabi* 810 | 811 | 2. **Through-the-Wall Sensing of Personnel Using Passive Bistatic WiFi Radar at Standoff Distances.** IEEE TGRS, 2011. [Journal](https://ieeexplore.ieee.org/document/6020778) 812 | 813 | *K. Chetty, G. E. Smith, K. Woodbridge* 814 | 815 | 816 | 817 | ### [8.3. Control Flow](#8.4) 818 | 819 | 1. **Coordinated Cognitive Risk Control for Bridging Vehicular Radar and Communication Systems.** IEEE TITS, 2020. [Journal](https://ieeexplore.ieee.org/document/9292428) 820 | 821 | *S. Feng, S. Haykin* 822 | 823 | 824 | ## [9. Applications and Demonstrations](#9) 825 | 826 | ### [9.1 Environmental Monitoring](#9.1) 827 | 828 | 1. **Environmental Monitoring by Wireless Communication Networks.** Science, 2006. [Magazine](https://www.tau.ac.il/~pinhas/papers/2006/Messer_et_al_SCIENCE_2006.pdf) 829 | 830 | *H. Messer, A. Zinevich, P. Alpert* 831 | 832 | 2. **Country-wide rainfall maps from cellular communication networks.** PNAS, 2013. [Magazine](https://www.pnas.org/content/pnas/110/8/2741.full.pdf) 833 | 834 | *A. Overeem, H. Leijnse, R. Uijlenhoet* 835 | 836 | 3. **Rain Rate Estimation Using Measurements From Commercial Telecommunications Links.** IEEE TSP, 2009. [Journal](https://ieeexplore.ieee.org/abstract/document/4749357) 837 | 838 | *O. Goldshtein, H. Messer, A. Zinevich* 839 | 840 | 4. **Recurrent Neural Network for Rain Estimation Using Commercial Microwave Links.** IEEE TGRS, 2020. [Journal](https://ieeexplore.ieee.org/document/9153027?denied=) 841 | 842 | *H. V. Habi, H. Messer* 843 | 844 | 845 | ### [9.2 Multi-Functional Network](#9.2) 846 | 847 | 1. **Vehicular RF Convergence: Simultaneous Radar, Communications, and PNT for Urban Air Mobility and Automotive Applications.** IEEE RadarConf, 2020. [Conference](https://ieeexplore.ieee.org/abstract/document/9266507) 848 | 849 | *A. Herschfelt, A. Chiriyath, D. W. Bliss, C. D. Richmond, U. Mitra, S. D. Blunt* 850 | 851 | 2. **Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges.** IEEE ACESS, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9330512) 852 | 853 | *C. De Lima et al.* 854 | 855 | 3. **Integrated Sensing, Computation and Communication in B5G Cellular Internet of Things.** IEEE TWC, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9206051) 856 | 857 | *Q. Qi, X. Chen, C. Zhong, Z. Zhang* 858 | 859 | 4. **Overview of Naval Multifunction RF Systems.** IEEE EURAD, 2018. [Conference](https://ieeexplore.ieee.org/document/8546521) 860 | 861 | *P. W. Moo, D. J. DiFilippo* 862 | 863 | 5. **The Advanced Multifunction RF Concept.** IEEE TMTT, 2005. [Journal](https://ieeexplore.ieee.org/document/1406306) 864 | 865 | *G. C. Tavik et al.* 866 | 867 | 6. **Overview of Advanced Multifunction RF System (AMRFS).** IEEE PAST, 2002. [Conference](https://ieeexplore.ieee.org/document/858893) 868 | 869 | *P. K. Hughes, J. Y. Choe* 870 | 871 | 872 | ### [9.3 Health and Elderly Care](#8.3) 873 | 874 | 1. **Assessment of Medication Self-administration using Artificial Intelligence.** Nature Med, 2021. [Magazine](https://www.nature.com/articles/s41591-021-01273-1.pdf) 875 | 876 | *M. Zhao, K. Hoti, H. Wang, A. Raghu, D. Katabi* 877 | 878 | 2. **Vital-sign Monitoring and Spatial Tracking of Multiple People using a Contactless Radar-based Sensor.** Nature Electronics, 2019. [Magazine](https://www.nature.com/articles/s41928-019-0258-6) 879 | 880 | *M. Mercuri, I. R. Lorato, Y-H. Liu, F. Wieringa, C. V. Hoof, T. Torfs* 881 | 882 | 3. **Radar Signal Processing for Sensing in Assisted Living: The Challenges Associated With Real-Time Implementation of Emerging Algorithms.** IEEE SPM, 2019. [Magazine](https://ieeexplore.ieee.org/document/8746868) 883 | 884 | *J.L. Kernec, F. Fioranelli, C. Ding, H. Zhao, L. Sun, H. Hong, J. Lorandel, O. Romain* 885 | 886 | 4. **Exploiting WiFi Channel State Information for Residential Healthcare Informatics.** IEEE COMMAG, 2018. [Magazine](https://ieeexplore.ieee.org/document/8360863) 887 | 888 | *B. Tan, Q. Chen, K. Chetty, K. Woodbridge, W. Li, R. Piechocki* 889 | 890 | 5. **Radar Signal Processing for Elderly Fall Detection: The Future for In-home Monitoring.** IEEE SPM, 2016. [Magazine](https://ieeexplore.ieee.org/document/7421368) 891 | 892 | *M. G. Amin, Y. D. Zhang, F. Ahmad, K. C. D. Ho* 893 | 894 | 895 | ### [9.4 Remote Sensing](#9.3) 896 | 897 | 1. **Noncontact Vital Sign Detection With UAV-Borne Radars: An Overview of Recent Advances.** IEEE VTM, 2021. [Magazine](https://ieeexplore.ieee.org/abstract/document/9478877) 898 | 899 | *Y. Rong, R. Gutierrez, K. V. Mishra, D. W. Bliss* 900 | 901 | 2. **First Demonstration of Joint Wireless Communication and High-Resolution SAR Imaging Using Airborne MIMO Radar System.** IEEE TGRS, 2019. [Journal](https://ieeexplore.ieee.org/document/8718390) 902 | 903 | *J. Wang, X. Liang, L. Chen, L. Wang, K. Li* 904 | 905 | 906 | 907 | 908 | ### [9.5 Site-Specified Radio Map](#9.4) 909 | 910 | 1. **Toward Environment-Aware 6G Communications via Channel Knowledge Map.** IEEE WCM, 2021. [Magazine](https://ieeexplore.ieee.org/abstract/document/9373011) 911 | 912 | *Y. Zeng, X. Xu* 913 | 914 | 915 | 916 | ### [9.6 Simultaneous Localization and Mapping](#9.5) 917 | 918 | 1. **Millimeter-wave Mobile Sensing and Environment Mapping: Models, Algorithms and Validation.** Arxiv, 2021. [Journal](https://arxiv.org/pdf/2102.11593.pdf) 919 | 920 | *C. B. Barneto, E. R. Foi, M. F. Keskin, T. Riihonen, M. Turunen, J. Talvitie, H. Wymeersch, M. Valkama* 921 | 922 | 923 | 924 | ### [9.7 Security and Privacy](#9.6) 925 | 926 | 1. **Secure Radar-Communication Systems With Malicious Targets: Integrating Radar, Communications and Jamming Functionalities.** IEEE TWC, 2020. [Journal](https://ieeexplore.ieee.org/abstract/document/9199556) 927 | 928 | *N. Su, F. Liu, C. Masouros* 929 | 930 | 2. **Secrecy Rate Optimizations for MIMO Communication Radar.** IEEE TAES, 2018. [Journal](https://ieeexplore.ieee.org/document/8327462) 931 | 932 | *A. Deligiannis, A. Daniyan, S. Lambotharan, J. A. Chambers* 933 | 934 | 3. **Intrapulse Radar-Embedded Communications.** IEEE TAES, 2010. [Journal](https://ieeexplore.ieee.org/document/5545182) 935 | 936 | *S. D. Blunt, P. Yatham, J. Stiles* 937 | 938 | 4. **Intrapulse Radar-embedded Communications Via Multiobjective Optimization.** IEEE TAES, 2015. [Journal](https://ieeexplore.ieee.org/document/7376230) 939 | 940 | *D. Ciuonzo, A. De Maio, G. Foglia, M. Piezzo* 941 | 942 | 5. **On Radar Privacy in Shared Spectrum Scenarios.** IEEE ICASSP, 2019. [Conference](https://ieeexplore.ieee.org/document/8682745) 943 | 944 | *A. Dimas, M. A. Clark, B. Li, K. Psounis, A. P. Petropulu* 945 | 946 | 947 | ### [9.8 Demonstrations](#9.7) 948 | 949 | 1. **JCR70: A Low-Complexity Millimeter-Wave Proof-of-Concept Platform for A Fully-Digital MIMO Joint Communication-Radar.** IEEE OJVT, 2021. [Journal](https://ieeexplore.ieee.org/abstract/document/9392306) 950 | 951 | *P. Kumari, A. Mezghani, R. W. Heath Jr* 952 | 953 | 1. **Simultaneous Radar and Communications Emissions from a Common Aperture, Part I,II.** IEEE RadarConf, 2017. [Conference](https://ieeexplore.ieee.org/document/7944478), [Conference](https://ieeexplore.ieee.org/abstract/document/7944480) 954 | 955 | *P. M. McCormick, S. D. Blunt, J. G. Metcalf* 956 | 957 | 1. **First Demonstration of Joint Wireless Communication and High-Resolution SAR Imaging Using Airborne MIMO Radar System.** IEEE TGRS, 2019. [Journal](https://ieeexplore.ieee.org/document/8718390) 958 | 959 | *J. Wang, X. Liang, L. Chen, L. Wang, K. Li* 960 | 961 | 1. **Sensing and Communication Integrated System for Autonomous Driving Vehicles.** IEEE InfocomWorkshop, 2020. [Conference](https://ieeexplore.ieee.org/document/9162963) 962 | 963 | *Q. Zhang, H. Sun, Z. Wei, Z. Feng* 964 | 965 | 966 | --------------------------------------------------------------------------------