├── .github └── FUNDING.yml ├── Google机器学习速成课程.md ├── Google机器学习速成课程 ├── 18世纪文学例子.png ├── 18世纪文学例子1.png ├── 18世纪文学例子2.png ├── 18世纪文学例子3.png ├── EmbeddingExample3-1.svg ├── FloatingPointFeatures.svg ├── GradientDescentDiagram.svg ├── HighLambda.svg ├── InputRepresentationWithValues.png ├── LearningRateJustRight.svg ├── LearningRateTooLarge.svg ├── LearningRateTooSmall.svg ├── LossSideBySide.png ├── LowLambda.svg ├── MlSystem.svg ├── OneHotEncoding.svg ├── OneVsAll.svg ├── RawDataToFeatureVector.svg ├── RegularizationTwoLossFunctions.svg ├── ScalingBinningPart1.svg ├── ScalingBinningPart2.svg ├── ScalingClipping.svg ├── ScalingLogNormalization.svg ├── ScalingNoticingOutliers.svg ├── SoftmaxLayer.svg ├── Thumbs.db ├── WorkflowWithValidationSet.svg ├── dnn-to-geometric-view.svg ├── linear-relationships.svg ├── 习题_AUC 和预测结果的尺度.png ├── 习题_AUC和预测结果的尺度.png ├── 习题_L2正则化.png ├── 习题_准确率.png ├── 习题_反馈环.png ├── 习题_召回率.png ├── 习题_在线推理.png ├── 习题_在线训练.png ├── 习题_均方误差.png ├── 习题_批量大小.png ├── 习题_特征和标签.png ├── 习题_特征组合.png ├── 习题_监督式学习.png ├── 习题_离线推理.png ├── 习题_离线训练.png ├── 习题_精确率.png ├── 习题_精确率和召回率.png ├── 习题_验证集.png ├── 分类_ROC曲线.png ├── 分类_ROC曲线下面积.png ├── 分类_准确率.png ├── 分类_召回率.png ├── 分类_狼来了混淆矩阵.png ├── 分类_精确率.png ├── 分类_精确率和召回率的关系1.png ├── 分类_精确率和召回率的关系2.png ├── 分类_精确率和召回率的关系3.png ├── 分类_预测偏差.png ├── 分类_预测偏差曲线.png ├── 多类别分类神经网络_Softmax.png ├── 对非线性规律进行编码.png ├── 嵌入_协同过滤的目的_1.png ├── 嵌入_协同过滤的目的_2.png ├── 梯度下降法_1.png ├── 梯度下降法_偏导数.png ├── 梯度下降法_梯度.png ├── 梯度下降法_梯度举例.png ├── 正则化_L2正则化.png ├── 正则化_L2正则化和相关特征.png ├── 癌症预测例子.png ├── 目录.png ├── 神经网络剖析_1.png ├── 神经网络剖析_2.png ├── 神经网络剖析_3.png ├── 神经网络剖析_4.png ├── 神经网络剖析_5.png ├── 线性回归_2.png ├── 线性回归_3.png ├── 训练与损失_1.png ├── 逻辑回归_S形函数.png ├── 逻辑回归_对数几率.png └── 逻辑回归_推断计算例子.png ├── Google机器学习速成课程Code ├── feature_crosses.ipynb ├── feature_sets.ipynb ├── first_steps_with_tensor_flow.ipynb ├── improving_neural_net_performance.ipynb ├── intro_to_neural_nets.ipynb ├── intro_to_pandas.ipynb ├── intro_to_sparse_data_and_embeddings.ipynb ├── logistic_regression.ipynb ├── multi_class_classification_of_handwritten_digits.ipynb ├── synthetic_features_and_outliers.ipynb └── validation.ipynb ├── PDF ├── Google机器学习速成课程.pdf ├── 机器学习中的常识性问题_望江人工智库.pdf ├── 机器学习术语表GoogleDevelopers.pdf ├── 机器学习知识点彩图版.pdf └── 机器学习规则GoogleDevelopers.pdf ├── README.md └── 图片 ├── Thumbs.db ├── 二分类评价指标表格.png ├── 机器学习彩图版-偏差和方差的权衡.png └── 混淆矩阵和12率公式.png /.github/FUNDING.yml: -------------------------------------------------------------------------------- 1 | # These are supported funding model platforms 2 | 3 | github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2] 4 | patreon: # Replace with a single Patreon username 5 | open_collective: # Replace with a single Open Collective username 6 | ko_fi: # Replace with a single Ko-fi username 7 | tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel 8 | community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry 9 | liberapay: # Replace with a single Liberapay username 10 | issuehunt: # Replace with a single IssueHunt username 11 | otechie: # Replace with a single Otechie username 12 | custom: ['https://yuanxiaosc.github.io/images/wechatpay.jpg', 'https://yuanxiaosc.github.io/images/alipay.jpg'] 13 | -------------------------------------------------------------------------------- /Google机器学习速成课程/18世纪文学例子.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/18世纪文学例子.png -------------------------------------------------------------------------------- /Google机器学习速成课程/18世纪文学例子1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/18世纪文学例子1.png -------------------------------------------------------------------------------- /Google机器学习速成课程/18世纪文学例子2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/18世纪文学例子2.png -------------------------------------------------------------------------------- /Google机器学习速成课程/18世纪文学例子3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/18世纪文学例子3.png -------------------------------------------------------------------------------- /Google机器学习速成课程/FloatingPointFeatures.svg: -------------------------------------------------------------------------------- 1 | 2 | 将原始整数 (6) 映射到浮点特征 (6.0)。image/svg+xml0 : { house_info : { num_rooms: 6 num_bedrooms: 3 street_name: "Shorebird Way" num_basement_rooms: -1 ... }} 93 | num_rooms_feature = [ 6.0 ] 99 | 特征工程 115 | 原始数据 133 | 特征 149 | 可以直接复制实值特征 161 | -------------------------------------------------------------------------------- /Google机器学习速成课程/GradientDescentDiagram.svg: -------------------------------------------------------------------------------- 1 | 2 | 14 | 从特征和标签到模型和预测的循环。 15 | 17 | 25 | 计算参数更新 32 | 计算损失 39 | 模型(预测函数) 46 | 特征 55 | 标签 62 | 推理:执行预测 69 | 70 | -------------------------------------------------------------------------------- /Google机器学习速成课程/HighLambda.svg: -------------------------------------------------------------------------------- 1 | 2 | 14 | 模型权重的平均值为 0 且权重呈正态分布的直方图。 15 | 17 | 19 | 20 | 22 | image/svg+xml 23 | 25 | 26 | 27 | 28 | 29 | 32 | 41 | 模型权重分布 51 | 权重值 61 | 72 | 权重频率 83 | 84 | 85 | -------------------------------------------------------------------------------- /Google机器学习速成课程/InputRepresentationWithValues.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/InputRepresentationWithValues.png -------------------------------------------------------------------------------- /Google机器学习速成课程/LearningRateJustRight.svg: -------------------------------------------------------------------------------- 1 | 2 | image/svg+xml相同的 U 形曲线。点的轨迹大约需要 8 步达到最低点。起点 94 | 权重值 ( 231 | wi 242 | ) 251 | 损失 264 | 我们将高效地 281 | 到达最低点。 290 | -------------------------------------------------------------------------------- /Google机器学习速成课程/LearningRateTooLarge.svg: -------------------------------------------------------------------------------- 1 | 2 | image/svg+xml相同的 U 形曲线。这条曲线包含的点非常少。点的轨迹会跳过 U 形底部,然后再次跳回。权重值 ( 90 | wi 101 | ) 110 | 损失 123 | 越过了最低点! 196 | 起点 213 | -------------------------------------------------------------------------------- /Google机器学习速成课程/LearningRateTooSmall.svg: -------------------------------------------------------------------------------- 1 | 2 | image/svg+xml相同的 U 形曲线。很多点都相互非常接近,它们的轨迹朝着 U 形底部缓慢前进。权重值 ( 90 | wi 101 | ) 110 | 损失 123 | 低学习速率会花 156 | 费很长的时间 165 | 起点 206 | -------------------------------------------------------------------------------- /Google机器学习速成课程/LossSideBySide.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/LossSideBySide.png -------------------------------------------------------------------------------- /Google机器学习速成课程/LowLambda.svg: -------------------------------------------------------------------------------- 1 | 2 | 3 | 7 | 11 | 模型权重的平均值为 0 且权重分布方式介于均匀分布和正态分布之间的直方图。 12 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 模型权重分布 66 | 权重值 67 | 权重频率 68 | 69 | -------------------------------------------------------------------------------- /Google机器学习速成课程/MlSystem.svg: -------------------------------------------------------------------------------- 1 | 2 | 19 | 包含以下组件的机器学习系统示意图:数据收集、特征提取、进程管理工具、数据验证、配置、机器资源管理、监控、服务基础架构和机器学习代码。与示意图中的其他九个组件相比,机器学习代码只是很小的一个组成部分。 21 | 23 | 24 | 26 | image/svg+xml 27 | 29 | 30 | 31 | 32 | 33 | 35 | 37 | 38 | 62 | 64 | 69 | 70 | 75 | 77 | 82 | 87 | 数据收集 97 | 102 | 107 | 数据验证 117 | 122 | 127 | 机器资源管理 137 | 142 | 服务基础架构 152 | 157 | 162 | 监控 172 | 177 | 182 | 配置 192 | 197 | 202 | 分析工具 212 | 217 | 222 | 进程管理工具 232 | 237 | 242 | 特征提取 252 | 253 | 258 | 机器学习代码 268 | 269 | -------------------------------------------------------------------------------- /Google机器学习速成课程/OneHotEncoding.svg: -------------------------------------------------------------------------------- 1 | 2 | 通过独热编码映射字符串值。image/svg+xml特征工程 51 | 0 : { house_info : { num_rooms: 6 num_bedrooms: 3 street_name: "Shorebird Way" num_basement_rooms: -1 ... }} 126 | street_name 特征 = [0, 0, ..., 0, 1, 0, ..., 0] 152 | V: 唯一街道名称的数量 179 | 独热编码 196 | 原始数据 214 | 特征 230 | 可以使用独热编码处理字符串特征 236 | 其中 1 表示“Shorebird Way”, 247 | 0 表示所有其他街道。 258 | 259 | -------------------------------------------------------------------------------- /Google机器学习速成课程/RawDataToFeatureVector.svg: -------------------------------------------------------------------------------- 1 | 2 | 原始数据通过名为特征工程的程序映射到特征矢量。image/svg+xml0 : { house_info : { num_rooms: 6 num_bedrooms: 3 street_name: "Shorebird Way" num_basement_rooms: -1 ... }} 86 | [ 6.0, 1.0, 0.0, 0.0, 0.0, 9.321, -2.20, 1.01, 0.0, ...,] 165 | 原始数据并非以特征矢 175 | 量的形式呈现 185 | 特征工程 195 | 从原始数据创建特征的过程 205 | 即为特征工程 215 | 原始数据 232 | 特征矢量 248 | -------------------------------------------------------------------------------- /Google机器学习速成课程/RegularizationTwoLossFunctions.svg: -------------------------------------------------------------------------------- 1 | 2 | 3 | 7 | 19 | 训练集的损失函数逐渐下降。相比之下,验证集的损失函数先下降,然后开始上升。 20 | 21 | 24 | 27 | 28 | 29 | 30 | 31 | 32 | 损失 33 | 训练集 34 | 测试集 35 | 训练迭代 36 | 37 | -------------------------------------------------------------------------------- /Google机器学习速成课程/ScalingBinningPart2.svg: -------------------------------------------------------------------------------- 1 | 2 | 3 | 5 | 每个纬度的房屋数曲线图。曲线图分为 6 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 195 | 196 | 197 | 198 | 199 | 200 | 纬度 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 227 | 229 | LatitudeBin1 = 32 < 纬度 <= 33 230 | 232 | 234 | LatitudeBin7 = 37 < 纬度 <= 38 235 | 236 | -------------------------------------------------------------------------------- /Google机器学习速成课程/SoftmaxLayer.svg: -------------------------------------------------------------------------------- 1 | 2 | 3 | 5 | 一个深度神经网络,具有一个输入层、两个普通的隐藏层,然后是 Softmax 层,最后是一个输出层(与 Softmax 层拥有一样的节点数)。 6 | 21 | 23 | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 117 | 119 | 121 | 123 | 125 | 127 | 129 | 131 | 133 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 苹果:是/否? 186 | 187 | 188 | 189 | 190 | 熊:是/否? 191 | 糖果:是/否? 192 | 狗:是/否? 193 | 蛋:是/否? 194 | 196 | Softmax 197 | 隐藏 198 | 隐藏 199 | 分对数 200 | 202 | 204 | 206 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | -------------------------------------------------------------------------------- /Google机器学习速成课程/Thumbs.db: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/Thumbs.db -------------------------------------------------------------------------------- /Google机器学习速成课程/WorkflowWithValidationSet.svg: -------------------------------------------------------------------------------- 1 | 2 | 15 | 与图 2 类似的工作流程,不同之处在于该工作流程使用验证集而不是测试集来评估模型。然后,在训练集和验证集大致达成一致后,使用测试集确认模型效果。 16 | 18 | 19 | 21 | image/svg+xml 22 | 24 | 25 | 26 | 27 | 28 | 30 | 32 | 36 | 37 | 40 | 45 | 51 | 60 | 65 | 70 | 76 | 84 | 92 | 98 | 106 | 114 | 120 | 124 | 130 | 138 | 146 | 152 | 160 | 166 | 170 | 176 | 184 | 192 | 198 | 206 | 212 | 216 | 222 | 230 | 238 | 使用训练集训练模型 248 | 使用验证集评估模型 258 | 根据在验证集上获得的效果调整模型 272 | 282 | 选择在验证集上获得最佳效果的模型 296 | 使用测试集确认模型的效果 310 | 311 | 312 | -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_AUC 和预测结果的尺度.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_AUC 和预测结果的尺度.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_AUC和预测结果的尺度.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_AUC和预测结果的尺度.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_L2正则化.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_L2正则化.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_准确率.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_准确率.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_反馈环.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_反馈环.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_召回率.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_召回率.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_在线推理.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_在线推理.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_在线训练.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_在线训练.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_均方误差.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_均方误差.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_批量大小.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_批量大小.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_特征和标签.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_特征和标签.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_特征组合.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_特征组合.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_监督式学习.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_监督式学习.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_离线推理.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_离线推理.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_离线训练.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_离线训练.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_精确率.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_精确率.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_精确率和召回率.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_精确率和召回率.png -------------------------------------------------------------------------------- /Google机器学习速成课程/习题_验证集.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/习题_验证集.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_ROC曲线.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_ROC曲线.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_ROC曲线下面积.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_ROC曲线下面积.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_准确率.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_准确率.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_召回率.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_召回率.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_狼来了混淆矩阵.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_狼来了混淆矩阵.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_精确率.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_精确率.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_精确率和召回率的关系1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_精确率和召回率的关系1.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_精确率和召回率的关系2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_精确率和召回率的关系2.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_精确率和召回率的关系3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_精确率和召回率的关系3.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_预测偏差.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_预测偏差.png -------------------------------------------------------------------------------- /Google机器学习速成课程/分类_预测偏差曲线.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/分类_预测偏差曲线.png -------------------------------------------------------------------------------- /Google机器学习速成课程/多类别分类神经网络_Softmax.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/多类别分类神经网络_Softmax.png -------------------------------------------------------------------------------- /Google机器学习速成课程/对非线性规律进行编码.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/对非线性规律进行编码.png -------------------------------------------------------------------------------- /Google机器学习速成课程/嵌入_协同过滤的目的_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/嵌入_协同过滤的目的_1.png -------------------------------------------------------------------------------- /Google机器学习速成课程/嵌入_协同过滤的目的_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/嵌入_协同过滤的目的_2.png -------------------------------------------------------------------------------- /Google机器学习速成课程/梯度下降法_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/梯度下降法_1.png -------------------------------------------------------------------------------- /Google机器学习速成课程/梯度下降法_偏导数.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/梯度下降法_偏导数.png -------------------------------------------------------------------------------- /Google机器学习速成课程/梯度下降法_梯度.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/梯度下降法_梯度.png -------------------------------------------------------------------------------- /Google机器学习速成课程/梯度下降法_梯度举例.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/梯度下降法_梯度举例.png -------------------------------------------------------------------------------- /Google机器学习速成课程/正则化_L2正则化.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/正则化_L2正则化.png -------------------------------------------------------------------------------- /Google机器学习速成课程/正则化_L2正则化和相关特征.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/正则化_L2正则化和相关特征.png -------------------------------------------------------------------------------- /Google机器学习速成课程/癌症预测例子.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/癌症预测例子.png -------------------------------------------------------------------------------- /Google机器学习速成课程/目录.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/目录.png -------------------------------------------------------------------------------- /Google机器学习速成课程/神经网络剖析_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/神经网络剖析_1.png -------------------------------------------------------------------------------- /Google机器学习速成课程/神经网络剖析_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/神经网络剖析_2.png -------------------------------------------------------------------------------- /Google机器学习速成课程/神经网络剖析_3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/神经网络剖析_3.png -------------------------------------------------------------------------------- /Google机器学习速成课程/神经网络剖析_4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/神经网络剖析_4.png -------------------------------------------------------------------------------- /Google机器学习速成课程/神经网络剖析_5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/神经网络剖析_5.png -------------------------------------------------------------------------------- /Google机器学习速成课程/线性回归_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/线性回归_2.png -------------------------------------------------------------------------------- /Google机器学习速成课程/线性回归_3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/线性回归_3.png -------------------------------------------------------------------------------- /Google机器学习速成课程/训练与损失_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/训练与损失_1.png -------------------------------------------------------------------------------- /Google机器学习速成课程/逻辑回归_S形函数.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/逻辑回归_S形函数.png -------------------------------------------------------------------------------- /Google机器学习速成课程/逻辑回归_对数几率.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/逻辑回归_对数几率.png -------------------------------------------------------------------------------- /Google机器学习速成课程/逻辑回归_推断计算例子.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/Google机器学习速成课程/逻辑回归_推断计算例子.png -------------------------------------------------------------------------------- /PDF/Google机器学习速成课程.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/PDF/Google机器学习速成课程.pdf -------------------------------------------------------------------------------- /PDF/机器学习中的常识性问题_望江人工智库.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/PDF/机器学习中的常识性问题_望江人工智库.pdf -------------------------------------------------------------------------------- /PDF/机器学习术语表GoogleDevelopers.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/PDF/机器学习术语表GoogleDevelopers.pdf -------------------------------------------------------------------------------- /PDF/机器学习知识点彩图版.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/PDF/机器学习知识点彩图版.pdf -------------------------------------------------------------------------------- /PDF/机器学习规则GoogleDevelopers.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/PDF/机器学习规则GoogleDevelopers.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Machine-Learning-Book 2 | [Machine-Learning-Book(机器学习宝典)](https://github.com/yuanxiaosc/Machine-Learning-Book)涵盖了从机器学习从入门到精通所需的所有必备知识。 3 | 4 | 1. 其中《[机器学习知识点彩图版.pdf](https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/master/PDF/机器学习知识点彩图版.pdf)》以生动形象的图片描述机器学习中的知识点。 5 | 2. 其中《[Google机器学习速成课程.pdf](https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/master/PDF/Google机器学习速成课程.pdf)》以加利福尼亚房价预测为线索,讲解了机器学习概念、特征工程以及机器学习在现实世界的应用。该课程有对应知识点的习题和解答,你可以随时检测自己的学习效果。 6 | 3. 其中《[机器学习中的常识性问题 (最新网页版)](https://yuanxiaosc.github.io/2019/08/16/机器学习中的常识性问题/)》 , 该文系统性总结了机器学习基础知识。比如你了解机器学习中常见的二分类问题评价指标:混淆矩阵、准确率、精确率、召回率、敏感性、特异性、AUC、ROC以及它们之间的关系吗?(答案见文末) 7 | 8 | ![](图片/机器学习彩图版-偏差和方差的权衡.png) 9 |
机器学习彩图版-偏差和方差的权衡
10 | 11 | ## 机器学习宝典内容汇总 12 | 百度网盘打包下载本资源: 13 | + 链接:https://pan.baidu.com/s/1OLscfquhYKOuN7X-QVqQNA 14 | + 提取码:6g4l 15 | 16 | |标签|名称|说明| 17 | |-|-|-| 18 | |养兴趣|[机器学习知识点彩图版.pdf](https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/master/PDF/机器学习知识点彩图版.pdf)|以生动形象的图片描述机器学习中的知识点。| 19 | |练招式|完整版[Google机器学习速成课程.md](Google机器学习速成课程.md) or [Google机器学习速成课程.pdf](PDF/Google机器学习速成课程.pdf) and [谷歌机器学习速成课程-配套TensorFlow代码](Google机器学习速成课程Code)|本文讲解了机器学习概念、特征工程以及机器学习在现实世界的应用。解决了:加利福利亚房价预测问题(回归问题)+分类问题+手写字体识别问题| 20 | |口诀|[机器学习术语表(PDF)](https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/master/PDF/机器学习术语表GoogleDevelopers.pdf) or [机器学习术语表(网页版)]( https://developers.google.com/machine-learning/glossary/ ) |本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。| 21 | |心得|[机器学习规则(PDF)](https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/master/PDF/机器学习规则GoogleDevelopers.pdf) or [机器学习规则(网页版)]( https://developers.google.com/machine-learning/guides/rules-of-ml/ ) |本文档旨在帮助已掌握机器学习基础知识的人员从 Google 机器学习的最佳实践(经验)中受益。| 22 | |练内功|[机器学习中的常识性问题(PDF)](PDF/机器学习中的常识性问题_望江人工智库.pdf) or [机器学习中的常识性问题 (最新网页版)](https://yuanxiaosc.github.io/2019/08/16/机器学习中的常识性问题/)| 系统性深入学习机器学习。机器学习中的常识性问题定义:作为一名合格的机器学习从业人员必须理解的机器学习领域的常识性问题。| 23 | 24 | ## 开始学习 练招式 25 | 26 | 点击开始学习完整版 [Google机器学习速成课程.md](Google机器学习速成课程.md),也可以下载完整版[Google机器学习速成课程.pdf](https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/master/PDF/Google机器学习速成课程.pdf)。 27 | 28 | 29 | ## 学习进阶 练内功 30 | 机器学习中的常识性问题定义:作为一名合格的机器学习从业人员必须理解的机器学习领域的常识性问题。 31 | 32 | 点击开始学习 [机器学习中的常识性问题](https://yuanxiaosc.github.io/2019/08/16/机器学习中的常识性问题/) 33 | 34 | 机器学习中常见的二分类问题评价指标:混淆矩阵、准确率、精确率、召回率、敏感性、特异性、AUC、ROC以及它们之间的关系吗? 35 | 36 | 答案: 37 | 38 | ![](图片/混淆矩阵和12率公式.png) 39 | ![](图片/二分类评价指标表格.png) 40 | -------------------------------------------------------------------------------- /图片/Thumbs.db: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/图片/Thumbs.db -------------------------------------------------------------------------------- /图片/二分类评价指标表格.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/图片/二分类评价指标表格.png -------------------------------------------------------------------------------- /图片/机器学习彩图版-偏差和方差的权衡.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/图片/机器学习彩图版-偏差和方差的权衡.png -------------------------------------------------------------------------------- /图片/混淆矩阵和12率公式.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/yuanxiaosc/Machine-Learning-Book/118f8e6d4b83958f41c9c86c23014f2655a01ac2/图片/混淆矩阵和12率公式.png --------------------------------------------------------------------------------