├── LICENSE
├── README.md
├── cnocr
└── 1.2.0
│ └── densenet-lite-gru
│ ├── cnocr-v1.2.0-densenet-lite-gru-0039.params
│ ├── cnocr-v1.2.0-densenet-lite-gru-symbol.json
│ └── label_cn.txt
├── export.py
├── globalvar.py
└── subtitle.py
/LICENSE:
--------------------------------------------------------------------------------
1 | Mozilla Public License Version 2.0
2 | ==================================
3 |
4 | 1. Definitions
5 | --------------
6 |
7 | 1.1. "Contributor"
8 | means each individual or legal entity that creates, contributes to
9 | the creation of, or owns Covered Software.
10 |
11 | 1.2. "Contributor Version"
12 | means the combination of the Contributions of others (if any) used
13 | by a Contributor and that particular Contributor's Contribution.
14 |
15 | 1.3. "Contribution"
16 | means Covered Software of a particular Contributor.
17 |
18 | 1.4. "Covered Software"
19 | means Source Code Form to which the initial Contributor has attached
20 | the notice in Exhibit A, the Executable Form of such Source Code
21 | Form, and Modifications of such Source Code Form, in each case
22 | including portions thereof.
23 |
24 | 1.5. "Incompatible With Secondary Licenses"
25 | means
26 |
27 | (a) that the initial Contributor has attached the notice described
28 | in Exhibit B to the Covered Software; or
29 |
30 | (b) that the Covered Software was made available under the terms of
31 | version 1.1 or earlier of the License, but not also under the
32 | terms of a Secondary License.
33 |
34 | 1.6. "Executable Form"
35 | means any form of the work other than Source Code Form.
36 |
37 | 1.7. "Larger Work"
38 | means a work that combines Covered Software with other material, in
39 | a separate file or files, that is not Covered Software.
40 |
41 | 1.8. "License"
42 | means this document.
43 |
44 | 1.9. "Licensable"
45 | means having the right to grant, to the maximum extent possible,
46 | whether at the time of the initial grant or subsequently, any and
47 | all of the rights conveyed by this License.
48 |
49 | 1.10. "Modifications"
50 | means any of the following:
51 |
52 | (a) any file in Source Code Form that results from an addition to,
53 | deletion from, or modification of the contents of Covered
54 | Software; or
55 |
56 | (b) any new file in Source Code Form that contains any Covered
57 | Software.
58 |
59 | 1.11. "Patent Claims" of a Contributor
60 | means any patent claim(s), including without limitation, method,
61 | process, and apparatus claims, in any patent Licensable by such
62 | Contributor that would be infringed, but for the grant of the
63 | License, by the making, using, selling, offering for sale, having
64 | made, import, or transfer of either its Contributions or its
65 | Contributor Version.
66 |
67 | 1.12. "Secondary License"
68 | means either the GNU General Public License, Version 2.0, the GNU
69 | Lesser General Public License, Version 2.1, the GNU Affero General
70 | Public License, Version 3.0, or any later versions of those
71 | licenses.
72 |
73 | 1.13. "Source Code Form"
74 | means the form of the work preferred for making modifications.
75 |
76 | 1.14. "You" (or "Your")
77 | means an individual or a legal entity exercising rights under this
78 | License. For legal entities, "You" includes any entity that
79 | controls, is controlled by, or is under common control with You. For
80 | purposes of this definition, "control" means (a) the power, direct
81 | or indirect, to cause the direction or management of such entity,
82 | whether by contract or otherwise, or (b) ownership of more than
83 | fifty percent (50%) of the outstanding shares or beneficial
84 | ownership of such entity.
85 |
86 | 2. License Grants and Conditions
87 | --------------------------------
88 |
89 | 2.1. Grants
90 |
91 | Each Contributor hereby grants You a world-wide, royalty-free,
92 | non-exclusive license:
93 |
94 | (a) under intellectual property rights (other than patent or trademark)
95 | Licensable by such Contributor to use, reproduce, make available,
96 | modify, display, perform, distribute, and otherwise exploit its
97 | Contributions, either on an unmodified basis, with Modifications, or
98 | as part of a Larger Work; and
99 |
100 | (b) under Patent Claims of such Contributor to make, use, sell, offer
101 | for sale, have made, import, and otherwise transfer either its
102 | Contributions or its Contributor Version.
103 |
104 | 2.2. Effective Date
105 |
106 | The licenses granted in Section 2.1 with respect to any Contribution
107 | become effective for each Contribution on the date the Contributor first
108 | distributes such Contribution.
109 |
110 | 2.3. Limitations on Grant Scope
111 |
112 | The licenses granted in this Section 2 are the only rights granted under
113 | this License. No additional rights or licenses will be implied from the
114 | distribution or licensing of Covered Software under this License.
115 | Notwithstanding Section 2.1(b) above, no patent license is granted by a
116 | Contributor:
117 |
118 | (a) for any code that a Contributor has removed from Covered Software;
119 | or
120 |
121 | (b) for infringements caused by: (i) Your and any other third party's
122 | modifications of Covered Software, or (ii) the combination of its
123 | Contributions with other software (except as part of its Contributor
124 | Version); or
125 |
126 | (c) under Patent Claims infringed by Covered Software in the absence of
127 | its Contributions.
128 |
129 | This License does not grant any rights in the trademarks, service marks,
130 | or logos of any Contributor (except as may be necessary to comply with
131 | the notice requirements in Section 3.4).
132 |
133 | 2.4. Subsequent Licenses
134 |
135 | No Contributor makes additional grants as a result of Your choice to
136 | distribute the Covered Software under a subsequent version of this
137 | License (see Section 10.2) or under the terms of a Secondary License (if
138 | permitted under the terms of Section 3.3).
139 |
140 | 2.5. Representation
141 |
142 | Each Contributor represents that the Contributor believes its
143 | Contributions are its original creation(s) or it has sufficient rights
144 | to grant the rights to its Contributions conveyed by this License.
145 |
146 | 2.6. Fair Use
147 |
148 | This License is not intended to limit any rights You have under
149 | applicable copyright doctrines of fair use, fair dealing, or other
150 | equivalents.
151 |
152 | 2.7. Conditions
153 |
154 | Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
155 | in Section 2.1.
156 |
157 | 3. Responsibilities
158 | -------------------
159 |
160 | 3.1. Distribution of Source Form
161 |
162 | All distribution of Covered Software in Source Code Form, including any
163 | Modifications that You create or to which You contribute, must be under
164 | the terms of this License. You must inform recipients that the Source
165 | Code Form of the Covered Software is governed by the terms of this
166 | License, and how they can obtain a copy of this License. You may not
167 | attempt to alter or restrict the recipients' rights in the Source Code
168 | Form.
169 |
170 | 3.2. Distribution of Executable Form
171 |
172 | If You distribute Covered Software in Executable Form then:
173 |
174 | (a) such Covered Software must also be made available in Source Code
175 | Form, as described in Section 3.1, and You must inform recipients of
176 | the Executable Form how they can obtain a copy of such Source Code
177 | Form by reasonable means in a timely manner, at a charge no more
178 | than the cost of distribution to the recipient; and
179 |
180 | (b) You may distribute such Executable Form under the terms of this
181 | License, or sublicense it under different terms, provided that the
182 | license for the Executable Form does not attempt to limit or alter
183 | the recipients' rights in the Source Code Form under this License.
184 |
185 | 3.3. Distribution of a Larger Work
186 |
187 | You may create and distribute a Larger Work under terms of Your choice,
188 | provided that You also comply with the requirements of this License for
189 | the Covered Software. If the Larger Work is a combination of Covered
190 | Software with a work governed by one or more Secondary Licenses, and the
191 | Covered Software is not Incompatible With Secondary Licenses, this
192 | License permits You to additionally distribute such Covered Software
193 | under the terms of such Secondary License(s), so that the recipient of
194 | the Larger Work may, at their option, further distribute the Covered
195 | Software under the terms of either this License or such Secondary
196 | License(s).
197 |
198 | 3.4. Notices
199 |
200 | You may not remove or alter the substance of any license notices
201 | (including copyright notices, patent notices, disclaimers of warranty,
202 | or limitations of liability) contained within the Source Code Form of
203 | the Covered Software, except that You may alter any license notices to
204 | the extent required to remedy known factual inaccuracies.
205 |
206 | 3.5. Application of Additional Terms
207 |
208 | You may choose to offer, and to charge a fee for, warranty, support,
209 | indemnity or liability obligations to one or more recipients of Covered
210 | Software. However, You may do so only on Your own behalf, and not on
211 | behalf of any Contributor. You must make it absolutely clear that any
212 | such warranty, support, indemnity, or liability obligation is offered by
213 | You alone, and You hereby agree to indemnify every Contributor for any
214 | liability incurred by such Contributor as a result of warranty, support,
215 | indemnity or liability terms You offer. You may include additional
216 | disclaimers of warranty and limitations of liability specific to any
217 | jurisdiction.
218 |
219 | 4. Inability to Comply Due to Statute or Regulation
220 | ---------------------------------------------------
221 |
222 | If it is impossible for You to comply with any of the terms of this
223 | License with respect to some or all of the Covered Software due to
224 | statute, judicial order, or regulation then You must: (a) comply with
225 | the terms of this License to the maximum extent possible; and (b)
226 | describe the limitations and the code they affect. Such description must
227 | be placed in a text file included with all distributions of the Covered
228 | Software under this License. Except to the extent prohibited by statute
229 | or regulation, such description must be sufficiently detailed for a
230 | recipient of ordinary skill to be able to understand it.
231 |
232 | 5. Termination
233 | --------------
234 |
235 | 5.1. The rights granted under this License will terminate automatically
236 | if You fail to comply with any of its terms. However, if You become
237 | compliant, then the rights granted under this License from a particular
238 | Contributor are reinstated (a) provisionally, unless and until such
239 | Contributor explicitly and finally terminates Your grants, and (b) on an
240 | ongoing basis, if such Contributor fails to notify You of the
241 | non-compliance by some reasonable means prior to 60 days after You have
242 | come back into compliance. Moreover, Your grants from a particular
243 | Contributor are reinstated on an ongoing basis if such Contributor
244 | notifies You of the non-compliance by some reasonable means, this is the
245 | first time You have received notice of non-compliance with this License
246 | from such Contributor, and You become compliant prior to 30 days after
247 | Your receipt of the notice.
248 |
249 | 5.2. If You initiate litigation against any entity by asserting a patent
250 | infringement claim (excluding declaratory judgment actions,
251 | counter-claims, and cross-claims) alleging that a Contributor Version
252 | directly or indirectly infringes any patent, then the rights granted to
253 | You by any and all Contributors for the Covered Software under Section
254 | 2.1 of this License shall terminate.
255 |
256 | 5.3. In the event of termination under Sections 5.1 or 5.2 above, all
257 | end user license agreements (excluding distributors and resellers) which
258 | have been validly granted by You or Your distributors under this License
259 | prior to termination shall survive termination.
260 |
261 | ************************************************************************
262 | * *
263 | * 6. Disclaimer of Warranty *
264 | * ------------------------- *
265 | * *
266 | * Covered Software is provided under this License on an "as is" *
267 | * basis, without warranty of any kind, either expressed, implied, or *
268 | * statutory, including, without limitation, warranties that the *
269 | * Covered Software is free of defects, merchantable, fit for a *
270 | * particular purpose or non-infringing. The entire risk as to the *
271 | * quality and performance of the Covered Software is with You. *
272 | * Should any Covered Software prove defective in any respect, You *
273 | * (not any Contributor) assume the cost of any necessary servicing, *
274 | * repair, or correction. This disclaimer of warranty constitutes an *
275 | * essential part of this License. No use of any Covered Software is *
276 | * authorized under this License except under this disclaimer. *
277 | * *
278 | ************************************************************************
279 |
280 | ************************************************************************
281 | * *
282 | * 7. Limitation of Liability *
283 | * -------------------------- *
284 | * *
285 | * Under no circumstances and under no legal theory, whether tort *
286 | * (including negligence), contract, or otherwise, shall any *
287 | * Contributor, or anyone who distributes Covered Software as *
288 | * permitted above, be liable to You for any direct, indirect, *
289 | * special, incidental, or consequential damages of any character *
290 | * including, without limitation, damages for lost profits, loss of *
291 | * goodwill, work stoppage, computer failure or malfunction, or any *
292 | * and all other commercial damages or losses, even if such party *
293 | * shall have been informed of the possibility of such damages. This *
294 | * limitation of liability shall not apply to liability for death or *
295 | * personal injury resulting from such party's negligence to the *
296 | * extent applicable law prohibits such limitation. Some *
297 | * jurisdictions do not allow the exclusion or limitation of *
298 | * incidental or consequential damages, so this exclusion and *
299 | * limitation may not apply to You. *
300 | * *
301 | ************************************************************************
302 |
303 | 8. Litigation
304 | -------------
305 |
306 | Any litigation relating to this License may be brought only in the
307 | courts of a jurisdiction where the defendant maintains its principal
308 | place of business and such litigation shall be governed by laws of that
309 | jurisdiction, without reference to its conflict-of-law provisions.
310 | Nothing in this Section shall prevent a party's ability to bring
311 | cross-claims or counter-claims.
312 |
313 | 9. Miscellaneous
314 | ----------------
315 |
316 | This License represents the complete agreement concerning the subject
317 | matter hereof. If any provision of this License is held to be
318 | unenforceable, such provision shall be reformed only to the extent
319 | necessary to make it enforceable. Any law or regulation which provides
320 | that the language of a contract shall be construed against the drafter
321 | shall not be used to construe this License against a Contributor.
322 |
323 | 10. Versions of the License
324 | ---------------------------
325 |
326 | 10.1. New Versions
327 |
328 | Mozilla Foundation is the license steward. Except as provided in Section
329 | 10.3, no one other than the license steward has the right to modify or
330 | publish new versions of this License. Each version will be given a
331 | distinguishing version number.
332 |
333 | 10.2. Effect of New Versions
334 |
335 | You may distribute the Covered Software under the terms of the version
336 | of the License under which You originally received the Covered Software,
337 | or under the terms of any subsequent version published by the license
338 | steward.
339 |
340 | 10.3. Modified Versions
341 |
342 | If you create software not governed by this License, and you want to
343 | create a new license for such software, you may create and use a
344 | modified version of this License if you rename the license and remove
345 | any references to the name of the license steward (except to note that
346 | such modified license differs from this License).
347 |
348 | 10.4. Distributing Source Code Form that is Incompatible With Secondary
349 | Licenses
350 |
351 | If You choose to distribute Source Code Form that is Incompatible With
352 | Secondary Licenses under the terms of this version of the License, the
353 | notice described in Exhibit B of this License must be attached.
354 |
355 | Exhibit A - Source Code Form License Notice
356 | -------------------------------------------
357 |
358 | This Source Code Form is subject to the terms of the Mozilla Public
359 | License, v. 2.0. If a copy of the MPL was not distributed with this
360 | file, You can obtain one at http://mozilla.org/MPL/2.0/.
361 |
362 | If it is not possible or desirable to put the notice in a particular
363 | file, then You may include the notice in a location (such as a LICENSE
364 | file in a relevant directory) where a recipient would be likely to look
365 | for such a notice.
366 |
367 | You may add additional accurate notices of copyright ownership.
368 |
369 | Exhibit B - "Incompatible With Secondary Licenses" Notice
370 | ---------------------------------------------------------
371 |
372 | This Source Code Form is "Incompatible With Secondary Licenses", as
373 | defined by the Mozilla Public License, v. 2.0.
374 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # srt-recognizer
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 | srt-recognizer是一个基于cnOCR的硬字幕提取软件,可以将硬字幕导出为纯文本文件和srt文件。
15 |
16 | ## 项目优点
17 |
18 | 1. 本地识别:不需要申请额外的API,也不需要安装其它的软件
19 | 2. 大小适中:相比其他项目,模型加上软件大小约为130M
20 | 3. 准确度较好:cnOCR的识别率能够达到95%左右
21 |
22 | ## 获取方式
23 |
24 | 1. 可执行文件:[Windows下载链接](https://github.com/qyxtim/srt-recognizer/releases/download/1.0/subtitle.exe)
25 |
26 | 2. 手动配置:如果你是Mac无法使用exe文件或者是想自己配置的话,可以采用如下的配置方法。
27 |
28 | 1. 安装python
29 | 2. 安装cnocr库: `pip install cnocr `
30 | 3. 安装cv2: `pip install opencv-contrib-python`
31 | 1. 关于MacBook m1如何安装opencv的问题,可以参考[这篇文章](https://www.cnblogs.com/Coder-Photographer/p/14320872.html)
32 | 4. **如果是macbook m1用户不建议使用,因为cnocr的依赖库存在问题。**
33 |
34 | ## 使用教程
35 |
36 | 1. 是否需要多行识别?
37 |
38 | 如果需要识别带有多行的字幕,建议开启这个功能。如果不需要,可以关闭。关闭之后可以提升识别速度。
39 |
40 | 2. 是否需要导出为srt
41 |
42 | 如果需要导出为srt字幕文件,选择这项功能。如果不需要,软件将默认到处字母内容为txt文件
43 |
44 | 3. 输入文件地址
45 |
46 | 输入文件地址即可,需要加入后缀名
47 |
48 | 4. 选择字幕区域:在ocr字幕内容之前,软件会打开一个窗口让您选择字幕的区域,为此软件提供了两种框选方式。
49 | 1. 矩形选择
50 | 1. 矩形选择需要左键点击字幕的左上角,右键点击字幕的右下角
51 | 2. 因为不好确定最长的字幕的左上角和右下角位置,使用这项功能有一定几率会导致后面的字幕无法准确识别
52 | 2. 非矩形选择
53 | 1. 左键点击字幕的最上方,右键点击字幕的最下方
54 | 2. 该功能可以准确框选字幕,但有可能会导致识别的字幕带有一些干扰信息。
55 | 3. 推荐使用非矩形选择!
56 | 3. 如果弹出窗口没有字幕,可以按空格跳转到下一帧。选择完成之后按空格键退出选择窗口。
57 |
--------------------------------------------------------------------------------
/cnocr/1.2.0/densenet-lite-gru/cnocr-v1.2.0-densenet-lite-gru-0039.params:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/yuxqiu/srt-recognizer/b0c134d1acbc659fbef402e8519e713d3794e709/cnocr/1.2.0/densenet-lite-gru/cnocr-v1.2.0-densenet-lite-gru-0039.params
--------------------------------------------------------------------------------
/cnocr/1.2.0/densenet-lite-gru/cnocr-v1.2.0-densenet-lite-gru-symbol.json:
--------------------------------------------------------------------------------
1 | {
2 | "nodes": [
3 | {
4 | "op": "null",
5 | "name": "data",
6 | "inputs": []
7 | },
8 | {
9 | "op": "null",
10 | "name": "densenet0_stage0_conv0_weight",
11 | "attrs": {
12 | "__dtype__": "0",
13 | "__lr_mult__": "1.0",
14 | "__shape__": "(32, 0, 3, 3)",
15 | "__storage_type__": "0",
16 | "__wd_mult__": "1.0"
17 | },
18 | "inputs": []
19 | },
20 | {
21 | "op": "Convolution",
22 | "name": "densenet0_stage0_conv0_fwd",
23 | "attrs": {
24 | "dilate": "(1, 1)",
25 | "kernel": "(3, 3)",
26 | "layout": "NCHW",
27 | "no_bias": "True",
28 | "num_filter": "32",
29 | "num_group": "1",
30 | "pad": "(1, 1)",
31 | "stride": "(1, 1)"
32 | },
33 | "inputs": [[0, 0, 0], [1, 0, 0]]
34 | },
35 | {
36 | "op": "null",
37 | "name": "densenet0_stage0_batchnorm0_gamma",
38 | "attrs": {
39 | "__dtype__": "0",
40 | "__init__": "ones",
41 | "__lr_mult__": "1.0",
42 | "__shape__": "(0,)",
43 | "__storage_type__": "0",
44 | "__wd_mult__": "1.0"
45 | },
46 | "inputs": []
47 | },
48 | {
49 | "op": "null",
50 | "name": "densenet0_stage0_batchnorm0_beta",
51 | "attrs": {
52 | "__dtype__": "0",
53 | "__init__": "zeros",
54 | "__lr_mult__": "1.0",
55 | "__shape__": "(0,)",
56 | "__storage_type__": "0",
57 | "__wd_mult__": "1.0"
58 | },
59 | "inputs": []
60 | },
61 | {
62 | "op": "null",
63 | "name": "densenet0_stage0_batchnorm0_running_mean",
64 | "attrs": {
65 | "__dtype__": "0",
66 | "__init__": "zeros",
67 | "__lr_mult__": "1.0",
68 | "__shape__": "(0,)",
69 | "__storage_type__": "0",
70 | "__wd_mult__": "1.0"
71 | },
72 | "inputs": []
73 | },
74 | {
75 | "op": "null",
76 | "name": "densenet0_stage0_batchnorm0_running_var",
77 | "attrs": {
78 | "__dtype__": "0",
79 | "__init__": "ones",
80 | "__lr_mult__": "1.0",
81 | "__shape__": "(0,)",
82 | "__storage_type__": "0",
83 | "__wd_mult__": "1.0"
84 | },
85 | "inputs": []
86 | },
87 | {
88 | "op": "BatchNorm",
89 | "name": "densenet0_stage0_batchnorm0_fwd",
90 | "attrs": {
91 | "axis": "1",
92 | "eps": "1e-05",
93 | "fix_gamma": "False",
94 | "momentum": "0.9",
95 | "use_global_stats": "False"
96 | },
97 | "inputs": [[2, 0, 0], [3, 0, 0], [4, 0, 0], [5, 0, 1], [6, 0, 1]]
98 | },
99 | {
100 | "op": "Activation",
101 | "name": "densenet0_stage0_relu0_fwd",
102 | "attrs": {"act_type": "relu"},
103 | "inputs": [[7, 0, 0]]
104 | },
105 | {
106 | "op": "null",
107 | "name": "densenet0_stage0_conv1_weight",
108 | "attrs": {
109 | "__dtype__": "0",
110 | "__lr_mult__": "1.0",
111 | "__shape__": "(64, 0, 3, 3)",
112 | "__storage_type__": "0",
113 | "__wd_mult__": "1.0"
114 | },
115 | "inputs": []
116 | },
117 | {
118 | "op": "Convolution",
119 | "name": "densenet0_stage0_conv1_fwd",
120 | "attrs": {
121 | "dilate": "(1, 1)",
122 | "kernel": "(3, 3)",
123 | "layout": "NCHW",
124 | "no_bias": "True",
125 | "num_filter": "64",
126 | "num_group": "1",
127 | "pad": "(1, 1)",
128 | "stride": "(1, 1)"
129 | },
130 | "inputs": [[8, 0, 0], [9, 0, 0]]
131 | },
132 | {
133 | "op": "Concat",
134 | "name": "densenet0_concat0",
135 | "attrs": {
136 | "dim": "1",
137 | "num_args": "2"
138 | },
139 | "inputs": [[0, 0, 0], [10, 0, 0]]
140 | },
141 | {
142 | "op": "null",
143 | "name": "densenet0_batchnorm0_gamma",
144 | "attrs": {
145 | "__dtype__": "0",
146 | "__init__": "ones",
147 | "__lr_mult__": "1.0",
148 | "__shape__": "(0,)",
149 | "__storage_type__": "0",
150 | "__wd_mult__": "1.0"
151 | },
152 | "inputs": []
153 | },
154 | {
155 | "op": "null",
156 | "name": "densenet0_batchnorm0_beta",
157 | "attrs": {
158 | "__dtype__": "0",
159 | "__init__": "zeros",
160 | "__lr_mult__": "1.0",
161 | "__shape__": "(0,)",
162 | "__storage_type__": "0",
163 | "__wd_mult__": "1.0"
164 | },
165 | "inputs": []
166 | },
167 | {
168 | "op": "null",
169 | "name": "densenet0_batchnorm0_running_mean",
170 | "attrs": {
171 | "__dtype__": "0",
172 | "__init__": "zeros",
173 | "__lr_mult__": "1.0",
174 | "__shape__": "(0,)",
175 | "__storage_type__": "0",
176 | "__wd_mult__": "1.0"
177 | },
178 | "inputs": []
179 | },
180 | {
181 | "op": "null",
182 | "name": "densenet0_batchnorm0_running_var",
183 | "attrs": {
184 | "__dtype__": "0",
185 | "__init__": "ones",
186 | "__lr_mult__": "1.0",
187 | "__shape__": "(0,)",
188 | "__storage_type__": "0",
189 | "__wd_mult__": "1.0"
190 | },
191 | "inputs": []
192 | },
193 | {
194 | "op": "BatchNorm",
195 | "name": "densenet0_batchnorm0_fwd",
196 | "attrs": {
197 | "axis": "1",
198 | "eps": "1e-05",
199 | "fix_gamma": "False",
200 | "momentum": "0.9",
201 | "use_global_stats": "False"
202 | },
203 | "inputs": [[11, 0, 0], [12, 0, 0], [13, 0, 0], [14, 0, 1], [15, 0, 1]]
204 | },
205 | {
206 | "op": "Activation",
207 | "name": "densenet0_relu0_fwd",
208 | "attrs": {"act_type": "relu"},
209 | "inputs": [[16, 0, 0]]
210 | },
211 | {
212 | "op": "null",
213 | "name": "densenet0_conv0_weight",
214 | "attrs": {
215 | "__dtype__": "0",
216 | "__lr_mult__": "1.0",
217 | "__shape__": "(64, 0, 1, 1)",
218 | "__storage_type__": "0",
219 | "__wd_mult__": "1.0"
220 | },
221 | "inputs": []
222 | },
223 | {
224 | "op": "Convolution",
225 | "name": "densenet0_conv0_fwd",
226 | "attrs": {
227 | "dilate": "(1, 1)",
228 | "kernel": "(1, 1)",
229 | "layout": "NCHW",
230 | "no_bias": "True",
231 | "num_filter": "64",
232 | "num_group": "1",
233 | "pad": "(0, 0)",
234 | "stride": "(1, 1)"
235 | },
236 | "inputs": [[17, 0, 0], [18, 0, 0]]
237 | },
238 | {
239 | "op": "Pooling",
240 | "name": "densenet0_pool0_fwd",
241 | "attrs": {
242 | "global_pool": "False",
243 | "kernel": "(2, 2)",
244 | "layout": "NCHW",
245 | "pad": "(0, 0)",
246 | "pool_type": "max",
247 | "pooling_convention": "valid",
248 | "stride": "(2, 2)"
249 | },
250 | "inputs": [[19, 0, 0]]
251 | },
252 | {
253 | "op": "null",
254 | "name": "densenet0_stage1_batchnorm0_gamma",
255 | "attrs": {
256 | "__dtype__": "0",
257 | "__init__": "ones",
258 | "__lr_mult__": "1.0",
259 | "__shape__": "(0,)",
260 | "__storage_type__": "0",
261 | "__wd_mult__": "1.0"
262 | },
263 | "inputs": []
264 | },
265 | {
266 | "op": "null",
267 | "name": "densenet0_stage1_batchnorm0_beta",
268 | "attrs": {
269 | "__dtype__": "0",
270 | "__init__": "zeros",
271 | "__lr_mult__": "1.0",
272 | "__shape__": "(0,)",
273 | "__storage_type__": "0",
274 | "__wd_mult__": "1.0"
275 | },
276 | "inputs": []
277 | },
278 | {
279 | "op": "null",
280 | "name": "densenet0_stage1_batchnorm0_running_mean",
281 | "attrs": {
282 | "__dtype__": "0",
283 | "__init__": "zeros",
284 | "__lr_mult__": "1.0",
285 | "__shape__": "(0,)",
286 | "__storage_type__": "0",
287 | "__wd_mult__": "1.0"
288 | },
289 | "inputs": []
290 | },
291 | {
292 | "op": "null",
293 | "name": "densenet0_stage1_batchnorm0_running_var",
294 | "attrs": {
295 | "__dtype__": "0",
296 | "__init__": "ones",
297 | "__lr_mult__": "1.0",
298 | "__shape__": "(0,)",
299 | "__storage_type__": "0",
300 | "__wd_mult__": "1.0"
301 | },
302 | "inputs": []
303 | },
304 | {
305 | "op": "BatchNorm",
306 | "name": "densenet0_stage1_batchnorm0_fwd",
307 | "attrs": {
308 | "axis": "1",
309 | "eps": "1e-05",
310 | "fix_gamma": "False",
311 | "momentum": "0.9",
312 | "use_global_stats": "False"
313 | },
314 | "inputs": [[20, 0, 0], [21, 0, 0], [22, 0, 0], [23, 0, 1], [24, 0, 1]]
315 | },
316 | {
317 | "op": "Activation",
318 | "name": "densenet0_stage1_relu0_fwd",
319 | "attrs": {"act_type": "relu"},
320 | "inputs": [[25, 0, 0]]
321 | },
322 | {
323 | "op": "null",
324 | "name": "densenet0_stage1_conv0_weight",
325 | "attrs": {
326 | "__dtype__": "0",
327 | "__lr_mult__": "1.0",
328 | "__shape__": "(64, 0, 1, 1)",
329 | "__storage_type__": "0",
330 | "__wd_mult__": "1.0"
331 | },
332 | "inputs": []
333 | },
334 | {
335 | "op": "Convolution",
336 | "name": "densenet0_stage1_conv0_fwd",
337 | "attrs": {
338 | "dilate": "(1, 1)",
339 | "kernel": "(1, 1)",
340 | "layout": "NCHW",
341 | "no_bias": "True",
342 | "num_filter": "64",
343 | "num_group": "1",
344 | "pad": "(0, 0)",
345 | "stride": "(1, 1)"
346 | },
347 | "inputs": [[26, 0, 0], [27, 0, 0]]
348 | },
349 | {
350 | "op": "null",
351 | "name": "densenet0_stage1_batchnorm1_gamma",
352 | "attrs": {
353 | "__dtype__": "0",
354 | "__init__": "ones",
355 | "__lr_mult__": "1.0",
356 | "__shape__": "(0,)",
357 | "__storage_type__": "0",
358 | "__wd_mult__": "1.0"
359 | },
360 | "inputs": []
361 | },
362 | {
363 | "op": "null",
364 | "name": "densenet0_stage1_batchnorm1_beta",
365 | "attrs": {
366 | "__dtype__": "0",
367 | "__init__": "zeros",
368 | "__lr_mult__": "1.0",
369 | "__shape__": "(0,)",
370 | "__storage_type__": "0",
371 | "__wd_mult__": "1.0"
372 | },
373 | "inputs": []
374 | },
375 | {
376 | "op": "null",
377 | "name": "densenet0_stage1_batchnorm1_running_mean",
378 | "attrs": {
379 | "__dtype__": "0",
380 | "__init__": "zeros",
381 | "__lr_mult__": "1.0",
382 | "__shape__": "(0,)",
383 | "__storage_type__": "0",
384 | "__wd_mult__": "1.0"
385 | },
386 | "inputs": []
387 | },
388 | {
389 | "op": "null",
390 | "name": "densenet0_stage1_batchnorm1_running_var",
391 | "attrs": {
392 | "__dtype__": "0",
393 | "__init__": "ones",
394 | "__lr_mult__": "1.0",
395 | "__shape__": "(0,)",
396 | "__storage_type__": "0",
397 | "__wd_mult__": "1.0"
398 | },
399 | "inputs": []
400 | },
401 | {
402 | "op": "BatchNorm",
403 | "name": "densenet0_stage1_batchnorm1_fwd",
404 | "attrs": {
405 | "axis": "1",
406 | "eps": "1e-05",
407 | "fix_gamma": "False",
408 | "momentum": "0.9",
409 | "use_global_stats": "False"
410 | },
411 | "inputs": [[28, 0, 0], [29, 0, 0], [30, 0, 0], [31, 0, 1], [32, 0, 1]]
412 | },
413 | {
414 | "op": "Activation",
415 | "name": "densenet0_stage1_relu1_fwd",
416 | "attrs": {"act_type": "relu"},
417 | "inputs": [[33, 0, 0]]
418 | },
419 | {
420 | "op": "null",
421 | "name": "densenet0_stage1_conv1_weight",
422 | "attrs": {
423 | "__dtype__": "0",
424 | "__lr_mult__": "1.0",
425 | "__shape__": "(32, 0, 3, 3)",
426 | "__storage_type__": "0",
427 | "__wd_mult__": "1.0"
428 | },
429 | "inputs": []
430 | },
431 | {
432 | "op": "Convolution",
433 | "name": "densenet0_stage1_conv1_fwd",
434 | "attrs": {
435 | "dilate": "(1, 1)",
436 | "kernel": "(3, 3)",
437 | "layout": "NCHW",
438 | "no_bias": "True",
439 | "num_filter": "32",
440 | "num_group": "1",
441 | "pad": "(1, 1)",
442 | "stride": "(1, 1)"
443 | },
444 | "inputs": [[34, 0, 0], [35, 0, 0]]
445 | },
446 | {
447 | "op": "Concat",
448 | "name": "densenet0_stage1_concat0",
449 | "attrs": {
450 | "dim": "1",
451 | "num_args": "2"
452 | },
453 | "inputs": [[20, 0, 0], [36, 0, 0]]
454 | },
455 | {
456 | "op": "null",
457 | "name": "densenet0_stage1_batchnorm2_gamma",
458 | "attrs": {
459 | "__dtype__": "0",
460 | "__init__": "ones",
461 | "__lr_mult__": "1.0",
462 | "__shape__": "(0,)",
463 | "__storage_type__": "0",
464 | "__wd_mult__": "1.0"
465 | },
466 | "inputs": []
467 | },
468 | {
469 | "op": "null",
470 | "name": "densenet0_stage1_batchnorm2_beta",
471 | "attrs": {
472 | "__dtype__": "0",
473 | "__init__": "zeros",
474 | "__lr_mult__": "1.0",
475 | "__shape__": "(0,)",
476 | "__storage_type__": "0",
477 | "__wd_mult__": "1.0"
478 | },
479 | "inputs": []
480 | },
481 | {
482 | "op": "null",
483 | "name": "densenet0_stage1_batchnorm2_running_mean",
484 | "attrs": {
485 | "__dtype__": "0",
486 | "__init__": "zeros",
487 | "__lr_mult__": "1.0",
488 | "__shape__": "(0,)",
489 | "__storage_type__": "0",
490 | "__wd_mult__": "1.0"
491 | },
492 | "inputs": []
493 | },
494 | {
495 | "op": "null",
496 | "name": "densenet0_stage1_batchnorm2_running_var",
497 | "attrs": {
498 | "__dtype__": "0",
499 | "__init__": "ones",
500 | "__lr_mult__": "1.0",
501 | "__shape__": "(0,)",
502 | "__storage_type__": "0",
503 | "__wd_mult__": "1.0"
504 | },
505 | "inputs": []
506 | },
507 | {
508 | "op": "BatchNorm",
509 | "name": "densenet0_stage1_batchnorm2_fwd",
510 | "attrs": {
511 | "axis": "1",
512 | "eps": "1e-05",
513 | "fix_gamma": "False",
514 | "momentum": "0.9",
515 | "use_global_stats": "False"
516 | },
517 | "inputs": [[37, 0, 0], [38, 0, 0], [39, 0, 0], [40, 0, 1], [41, 0, 1]]
518 | },
519 | {
520 | "op": "Activation",
521 | "name": "densenet0_stage1_relu2_fwd",
522 | "attrs": {"act_type": "relu"},
523 | "inputs": [[42, 0, 0]]
524 | },
525 | {
526 | "op": "null",
527 | "name": "densenet0_stage1_conv2_weight",
528 | "attrs": {
529 | "__dtype__": "0",
530 | "__lr_mult__": "1.0",
531 | "__shape__": "(64, 0, 1, 1)",
532 | "__storage_type__": "0",
533 | "__wd_mult__": "1.0"
534 | },
535 | "inputs": []
536 | },
537 | {
538 | "op": "Convolution",
539 | "name": "densenet0_stage1_conv2_fwd",
540 | "attrs": {
541 | "dilate": "(1, 1)",
542 | "kernel": "(1, 1)",
543 | "layout": "NCHW",
544 | "no_bias": "True",
545 | "num_filter": "64",
546 | "num_group": "1",
547 | "pad": "(0, 0)",
548 | "stride": "(1, 1)"
549 | },
550 | "inputs": [[43, 0, 0], [44, 0, 0]]
551 | },
552 | {
553 | "op": "null",
554 | "name": "densenet0_stage1_batchnorm3_gamma",
555 | "attrs": {
556 | "__dtype__": "0",
557 | "__init__": "ones",
558 | "__lr_mult__": "1.0",
559 | "__shape__": "(0,)",
560 | "__storage_type__": "0",
561 | "__wd_mult__": "1.0"
562 | },
563 | "inputs": []
564 | },
565 | {
566 | "op": "null",
567 | "name": "densenet0_stage1_batchnorm3_beta",
568 | "attrs": {
569 | "__dtype__": "0",
570 | "__init__": "zeros",
571 | "__lr_mult__": "1.0",
572 | "__shape__": "(0,)",
573 | "__storage_type__": "0",
574 | "__wd_mult__": "1.0"
575 | },
576 | "inputs": []
577 | },
578 | {
579 | "op": "null",
580 | "name": "densenet0_stage1_batchnorm3_running_mean",
581 | "attrs": {
582 | "__dtype__": "0",
583 | "__init__": "zeros",
584 | "__lr_mult__": "1.0",
585 | "__shape__": "(0,)",
586 | "__storage_type__": "0",
587 | "__wd_mult__": "1.0"
588 | },
589 | "inputs": []
590 | },
591 | {
592 | "op": "null",
593 | "name": "densenet0_stage1_batchnorm3_running_var",
594 | "attrs": {
595 | "__dtype__": "0",
596 | "__init__": "ones",
597 | "__lr_mult__": "1.0",
598 | "__shape__": "(0,)",
599 | "__storage_type__": "0",
600 | "__wd_mult__": "1.0"
601 | },
602 | "inputs": []
603 | },
604 | {
605 | "op": "BatchNorm",
606 | "name": "densenet0_stage1_batchnorm3_fwd",
607 | "attrs": {
608 | "axis": "1",
609 | "eps": "1e-05",
610 | "fix_gamma": "False",
611 | "momentum": "0.9",
612 | "use_global_stats": "False"
613 | },
614 | "inputs": [[45, 0, 0], [46, 0, 0], [47, 0, 0], [48, 0, 1], [49, 0, 1]]
615 | },
616 | {
617 | "op": "Activation",
618 | "name": "densenet0_stage1_relu3_fwd",
619 | "attrs": {"act_type": "relu"},
620 | "inputs": [[50, 0, 0]]
621 | },
622 | {
623 | "op": "null",
624 | "name": "densenet0_stage1_conv3_weight",
625 | "attrs": {
626 | "__dtype__": "0",
627 | "__lr_mult__": "1.0",
628 | "__shape__": "(32, 0, 3, 3)",
629 | "__storage_type__": "0",
630 | "__wd_mult__": "1.0"
631 | },
632 | "inputs": []
633 | },
634 | {
635 | "op": "Convolution",
636 | "name": "densenet0_stage1_conv3_fwd",
637 | "attrs": {
638 | "dilate": "(1, 1)",
639 | "kernel": "(3, 3)",
640 | "layout": "NCHW",
641 | "no_bias": "True",
642 | "num_filter": "32",
643 | "num_group": "1",
644 | "pad": "(1, 1)",
645 | "stride": "(1, 1)"
646 | },
647 | "inputs": [[51, 0, 0], [52, 0, 0]]
648 | },
649 | {
650 | "op": "Concat",
651 | "name": "densenet0_stage1_concat1",
652 | "attrs": {
653 | "dim": "1",
654 | "num_args": "2"
655 | },
656 | "inputs": [[37, 0, 0], [53, 0, 0]]
657 | },
658 | {
659 | "op": "null",
660 | "name": "densenet0_batchnorm1_gamma",
661 | "attrs": {
662 | "__dtype__": "0",
663 | "__init__": "ones",
664 | "__lr_mult__": "1.0",
665 | "__shape__": "(0,)",
666 | "__storage_type__": "0",
667 | "__wd_mult__": "1.0"
668 | },
669 | "inputs": []
670 | },
671 | {
672 | "op": "null",
673 | "name": "densenet0_batchnorm1_beta",
674 | "attrs": {
675 | "__dtype__": "0",
676 | "__init__": "zeros",
677 | "__lr_mult__": "1.0",
678 | "__shape__": "(0,)",
679 | "__storage_type__": "0",
680 | "__wd_mult__": "1.0"
681 | },
682 | "inputs": []
683 | },
684 | {
685 | "op": "null",
686 | "name": "densenet0_batchnorm1_running_mean",
687 | "attrs": {
688 | "__dtype__": "0",
689 | "__init__": "zeros",
690 | "__lr_mult__": "1.0",
691 | "__shape__": "(0,)",
692 | "__storage_type__": "0",
693 | "__wd_mult__": "1.0"
694 | },
695 | "inputs": []
696 | },
697 | {
698 | "op": "null",
699 | "name": "densenet0_batchnorm1_running_var",
700 | "attrs": {
701 | "__dtype__": "0",
702 | "__init__": "ones",
703 | "__lr_mult__": "1.0",
704 | "__shape__": "(0,)",
705 | "__storage_type__": "0",
706 | "__wd_mult__": "1.0"
707 | },
708 | "inputs": []
709 | },
710 | {
711 | "op": "BatchNorm",
712 | "name": "densenet0_batchnorm1_fwd",
713 | "attrs": {
714 | "axis": "1",
715 | "eps": "1e-05",
716 | "fix_gamma": "False",
717 | "momentum": "0.9",
718 | "use_global_stats": "False"
719 | },
720 | "inputs": [[54, 0, 0], [55, 0, 0], [56, 0, 0], [57, 0, 1], [58, 0, 1]]
721 | },
722 | {
723 | "op": "Activation",
724 | "name": "densenet0_relu1_fwd",
725 | "attrs": {"act_type": "relu"},
726 | "inputs": [[59, 0, 0]]
727 | },
728 | {
729 | "op": "null",
730 | "name": "densenet0_conv1_weight",
731 | "attrs": {
732 | "__dtype__": "0",
733 | "__lr_mult__": "1.0",
734 | "__shape__": "(128, 0, 1, 1)",
735 | "__storage_type__": "0",
736 | "__wd_mult__": "1.0"
737 | },
738 | "inputs": []
739 | },
740 | {
741 | "op": "Convolution",
742 | "name": "densenet0_conv1_fwd",
743 | "attrs": {
744 | "dilate": "(1, 1)",
745 | "kernel": "(1, 1)",
746 | "layout": "NCHW",
747 | "no_bias": "True",
748 | "num_filter": "128",
749 | "num_group": "1",
750 | "pad": "(0, 0)",
751 | "stride": "(1, 1)"
752 | },
753 | "inputs": [[60, 0, 0], [61, 0, 0]]
754 | },
755 | {
756 | "op": "Pooling",
757 | "name": "densenet0_pool1_fwd",
758 | "attrs": {
759 | "global_pool": "False",
760 | "kernel": "(2, 2)",
761 | "layout": "NCHW",
762 | "pad": "(0, 0)",
763 | "pool_type": "max",
764 | "pooling_convention": "valid",
765 | "stride": "(2, 2)"
766 | },
767 | "inputs": [[62, 0, 0]]
768 | },
769 | {
770 | "op": "null",
771 | "name": "densenet0_stage2_batchnorm0_gamma",
772 | "attrs": {
773 | "__dtype__": "0",
774 | "__init__": "ones",
775 | "__lr_mult__": "1.0",
776 | "__shape__": "(0,)",
777 | "__storage_type__": "0",
778 | "__wd_mult__": "1.0"
779 | },
780 | "inputs": []
781 | },
782 | {
783 | "op": "null",
784 | "name": "densenet0_stage2_batchnorm0_beta",
785 | "attrs": {
786 | "__dtype__": "0",
787 | "__init__": "zeros",
788 | "__lr_mult__": "1.0",
789 | "__shape__": "(0,)",
790 | "__storage_type__": "0",
791 | "__wd_mult__": "1.0"
792 | },
793 | "inputs": []
794 | },
795 | {
796 | "op": "null",
797 | "name": "densenet0_stage2_batchnorm0_running_mean",
798 | "attrs": {
799 | "__dtype__": "0",
800 | "__init__": "zeros",
801 | "__lr_mult__": "1.0",
802 | "__shape__": "(0,)",
803 | "__storage_type__": "0",
804 | "__wd_mult__": "1.0"
805 | },
806 | "inputs": []
807 | },
808 | {
809 | "op": "null",
810 | "name": "densenet0_stage2_batchnorm0_running_var",
811 | "attrs": {
812 | "__dtype__": "0",
813 | "__init__": "ones",
814 | "__lr_mult__": "1.0",
815 | "__shape__": "(0,)",
816 | "__storage_type__": "0",
817 | "__wd_mult__": "1.0"
818 | },
819 | "inputs": []
820 | },
821 | {
822 | "op": "BatchNorm",
823 | "name": "densenet0_stage2_batchnorm0_fwd",
824 | "attrs": {
825 | "axis": "1",
826 | "eps": "1e-05",
827 | "fix_gamma": "False",
828 | "momentum": "0.9",
829 | "use_global_stats": "False"
830 | },
831 | "inputs": [[63, 0, 0], [64, 0, 0], [65, 0, 0], [66, 0, 1], [67, 0, 1]]
832 | },
833 | {
834 | "op": "Activation",
835 | "name": "densenet0_stage2_relu0_fwd",
836 | "attrs": {"act_type": "relu"},
837 | "inputs": [[68, 0, 0]]
838 | },
839 | {
840 | "op": "null",
841 | "name": "densenet0_stage2_conv0_weight",
842 | "attrs": {
843 | "__dtype__": "0",
844 | "__lr_mult__": "1.0",
845 | "__shape__": "(128, 0, 1, 1)",
846 | "__storage_type__": "0",
847 | "__wd_mult__": "1.0"
848 | },
849 | "inputs": []
850 | },
851 | {
852 | "op": "Convolution",
853 | "name": "densenet0_stage2_conv0_fwd",
854 | "attrs": {
855 | "dilate": "(1, 1)",
856 | "kernel": "(1, 1)",
857 | "layout": "NCHW",
858 | "no_bias": "True",
859 | "num_filter": "128",
860 | "num_group": "1",
861 | "pad": "(0, 0)",
862 | "stride": "(1, 1)"
863 | },
864 | "inputs": [[69, 0, 0], [70, 0, 0]]
865 | },
866 | {
867 | "op": "null",
868 | "name": "densenet0_stage2_batchnorm1_gamma",
869 | "attrs": {
870 | "__dtype__": "0",
871 | "__init__": "ones",
872 | "__lr_mult__": "1.0",
873 | "__shape__": "(0,)",
874 | "__storage_type__": "0",
875 | "__wd_mult__": "1.0"
876 | },
877 | "inputs": []
878 | },
879 | {
880 | "op": "null",
881 | "name": "densenet0_stage2_batchnorm1_beta",
882 | "attrs": {
883 | "__dtype__": "0",
884 | "__init__": "zeros",
885 | "__lr_mult__": "1.0",
886 | "__shape__": "(0,)",
887 | "__storage_type__": "0",
888 | "__wd_mult__": "1.0"
889 | },
890 | "inputs": []
891 | },
892 | {
893 | "op": "null",
894 | "name": "densenet0_stage2_batchnorm1_running_mean",
895 | "attrs": {
896 | "__dtype__": "0",
897 | "__init__": "zeros",
898 | "__lr_mult__": "1.0",
899 | "__shape__": "(0,)",
900 | "__storage_type__": "0",
901 | "__wd_mult__": "1.0"
902 | },
903 | "inputs": []
904 | },
905 | {
906 | "op": "null",
907 | "name": "densenet0_stage2_batchnorm1_running_var",
908 | "attrs": {
909 | "__dtype__": "0",
910 | "__init__": "ones",
911 | "__lr_mult__": "1.0",
912 | "__shape__": "(0,)",
913 | "__storage_type__": "0",
914 | "__wd_mult__": "1.0"
915 | },
916 | "inputs": []
917 | },
918 | {
919 | "op": "BatchNorm",
920 | "name": "densenet0_stage2_batchnorm1_fwd",
921 | "attrs": {
922 | "axis": "1",
923 | "eps": "1e-05",
924 | "fix_gamma": "False",
925 | "momentum": "0.9",
926 | "use_global_stats": "False"
927 | },
928 | "inputs": [[71, 0, 0], [72, 0, 0], [73, 0, 0], [74, 0, 1], [75, 0, 1]]
929 | },
930 | {
931 | "op": "Activation",
932 | "name": "densenet0_stage2_relu1_fwd",
933 | "attrs": {"act_type": "relu"},
934 | "inputs": [[76, 0, 0]]
935 | },
936 | {
937 | "op": "null",
938 | "name": "densenet0_stage2_conv1_weight",
939 | "attrs": {
940 | "__dtype__": "0",
941 | "__lr_mult__": "1.0",
942 | "__shape__": "(64, 0, 3, 3)",
943 | "__storage_type__": "0",
944 | "__wd_mult__": "1.0"
945 | },
946 | "inputs": []
947 | },
948 | {
949 | "op": "Convolution",
950 | "name": "densenet0_stage2_conv1_fwd",
951 | "attrs": {
952 | "dilate": "(1, 1)",
953 | "kernel": "(3, 3)",
954 | "layout": "NCHW",
955 | "no_bias": "True",
956 | "num_filter": "64",
957 | "num_group": "1",
958 | "pad": "(1, 1)",
959 | "stride": "(1, 1)"
960 | },
961 | "inputs": [[77, 0, 0], [78, 0, 0]]
962 | },
963 | {
964 | "op": "Concat",
965 | "name": "densenet0_stage2_concat0",
966 | "attrs": {
967 | "dim": "1",
968 | "num_args": "2"
969 | },
970 | "inputs": [[63, 0, 0], [79, 0, 0]]
971 | },
972 | {
973 | "op": "null",
974 | "name": "densenet0_stage2_batchnorm2_gamma",
975 | "attrs": {
976 | "__dtype__": "0",
977 | "__init__": "ones",
978 | "__lr_mult__": "1.0",
979 | "__shape__": "(0,)",
980 | "__storage_type__": "0",
981 | "__wd_mult__": "1.0"
982 | },
983 | "inputs": []
984 | },
985 | {
986 | "op": "null",
987 | "name": "densenet0_stage2_batchnorm2_beta",
988 | "attrs": {
989 | "__dtype__": "0",
990 | "__init__": "zeros",
991 | "__lr_mult__": "1.0",
992 | "__shape__": "(0,)",
993 | "__storage_type__": "0",
994 | "__wd_mult__": "1.0"
995 | },
996 | "inputs": []
997 | },
998 | {
999 | "op": "null",
1000 | "name": "densenet0_stage2_batchnorm2_running_mean",
1001 | "attrs": {
1002 | "__dtype__": "0",
1003 | "__init__": "zeros",
1004 | "__lr_mult__": "1.0",
1005 | "__shape__": "(0,)",
1006 | "__storage_type__": "0",
1007 | "__wd_mult__": "1.0"
1008 | },
1009 | "inputs": []
1010 | },
1011 | {
1012 | "op": "null",
1013 | "name": "densenet0_stage2_batchnorm2_running_var",
1014 | "attrs": {
1015 | "__dtype__": "0",
1016 | "__init__": "ones",
1017 | "__lr_mult__": "1.0",
1018 | "__shape__": "(0,)",
1019 | "__storage_type__": "0",
1020 | "__wd_mult__": "1.0"
1021 | },
1022 | "inputs": []
1023 | },
1024 | {
1025 | "op": "BatchNorm",
1026 | "name": "densenet0_stage2_batchnorm2_fwd",
1027 | "attrs": {
1028 | "axis": "1",
1029 | "eps": "1e-05",
1030 | "fix_gamma": "False",
1031 | "momentum": "0.9",
1032 | "use_global_stats": "False"
1033 | },
1034 | "inputs": [[80, 0, 0], [81, 0, 0], [82, 0, 0], [83, 0, 1], [84, 0, 1]]
1035 | },
1036 | {
1037 | "op": "Activation",
1038 | "name": "densenet0_stage2_relu2_fwd",
1039 | "attrs": {"act_type": "relu"},
1040 | "inputs": [[85, 0, 0]]
1041 | },
1042 | {
1043 | "op": "null",
1044 | "name": "densenet0_stage2_conv2_weight",
1045 | "attrs": {
1046 | "__dtype__": "0",
1047 | "__lr_mult__": "1.0",
1048 | "__shape__": "(128, 0, 1, 1)",
1049 | "__storage_type__": "0",
1050 | "__wd_mult__": "1.0"
1051 | },
1052 | "inputs": []
1053 | },
1054 | {
1055 | "op": "Convolution",
1056 | "name": "densenet0_stage2_conv2_fwd",
1057 | "attrs": {
1058 | "dilate": "(1, 1)",
1059 | "kernel": "(1, 1)",
1060 | "layout": "NCHW",
1061 | "no_bias": "True",
1062 | "num_filter": "128",
1063 | "num_group": "1",
1064 | "pad": "(0, 0)",
1065 | "stride": "(1, 1)"
1066 | },
1067 | "inputs": [[86, 0, 0], [87, 0, 0]]
1068 | },
1069 | {
1070 | "op": "null",
1071 | "name": "densenet0_stage2_batchnorm3_gamma",
1072 | "attrs": {
1073 | "__dtype__": "0",
1074 | "__init__": "ones",
1075 | "__lr_mult__": "1.0",
1076 | "__shape__": "(0,)",
1077 | "__storage_type__": "0",
1078 | "__wd_mult__": "1.0"
1079 | },
1080 | "inputs": []
1081 | },
1082 | {
1083 | "op": "null",
1084 | "name": "densenet0_stage2_batchnorm3_beta",
1085 | "attrs": {
1086 | "__dtype__": "0",
1087 | "__init__": "zeros",
1088 | "__lr_mult__": "1.0",
1089 | "__shape__": "(0,)",
1090 | "__storage_type__": "0",
1091 | "__wd_mult__": "1.0"
1092 | },
1093 | "inputs": []
1094 | },
1095 | {
1096 | "op": "null",
1097 | "name": "densenet0_stage2_batchnorm3_running_mean",
1098 | "attrs": {
1099 | "__dtype__": "0",
1100 | "__init__": "zeros",
1101 | "__lr_mult__": "1.0",
1102 | "__shape__": "(0,)",
1103 | "__storage_type__": "0",
1104 | "__wd_mult__": "1.0"
1105 | },
1106 | "inputs": []
1107 | },
1108 | {
1109 | "op": "null",
1110 | "name": "densenet0_stage2_batchnorm3_running_var",
1111 | "attrs": {
1112 | "__dtype__": "0",
1113 | "__init__": "ones",
1114 | "__lr_mult__": "1.0",
1115 | "__shape__": "(0,)",
1116 | "__storage_type__": "0",
1117 | "__wd_mult__": "1.0"
1118 | },
1119 | "inputs": []
1120 | },
1121 | {
1122 | "op": "BatchNorm",
1123 | "name": "densenet0_stage2_batchnorm3_fwd",
1124 | "attrs": {
1125 | "axis": "1",
1126 | "eps": "1e-05",
1127 | "fix_gamma": "False",
1128 | "momentum": "0.9",
1129 | "use_global_stats": "False"
1130 | },
1131 | "inputs": [[88, 0, 0], [89, 0, 0], [90, 0, 0], [91, 0, 1], [92, 0, 1]]
1132 | },
1133 | {
1134 | "op": "Activation",
1135 | "name": "densenet0_stage2_relu3_fwd",
1136 | "attrs": {"act_type": "relu"},
1137 | "inputs": [[93, 0, 0]]
1138 | },
1139 | {
1140 | "op": "null",
1141 | "name": "densenet0_stage2_conv3_weight",
1142 | "attrs": {
1143 | "__dtype__": "0",
1144 | "__lr_mult__": "1.0",
1145 | "__shape__": "(64, 0, 3, 3)",
1146 | "__storage_type__": "0",
1147 | "__wd_mult__": "1.0"
1148 | },
1149 | "inputs": []
1150 | },
1151 | {
1152 | "op": "Convolution",
1153 | "name": "densenet0_stage2_conv3_fwd",
1154 | "attrs": {
1155 | "dilate": "(1, 1)",
1156 | "kernel": "(3, 3)",
1157 | "layout": "NCHW",
1158 | "no_bias": "True",
1159 | "num_filter": "64",
1160 | "num_group": "1",
1161 | "pad": "(1, 1)",
1162 | "stride": "(1, 1)"
1163 | },
1164 | "inputs": [[94, 0, 0], [95, 0, 0]]
1165 | },
1166 | {
1167 | "op": "Concat",
1168 | "name": "densenet0_stage2_concat1",
1169 | "attrs": {
1170 | "dim": "1",
1171 | "num_args": "2"
1172 | },
1173 | "inputs": [[80, 0, 0], [96, 0, 0]]
1174 | },
1175 | {
1176 | "op": "null",
1177 | "name": "densenet0_last_trans_batchnorm0_gamma",
1178 | "attrs": {
1179 | "__dtype__": "0",
1180 | "__init__": "ones",
1181 | "__lr_mult__": "1.0",
1182 | "__shape__": "(0,)",
1183 | "__storage_type__": "0",
1184 | "__wd_mult__": "1.0"
1185 | },
1186 | "inputs": []
1187 | },
1188 | {
1189 | "op": "null",
1190 | "name": "densenet0_last_trans_batchnorm0_beta",
1191 | "attrs": {
1192 | "__dtype__": "0",
1193 | "__init__": "zeros",
1194 | "__lr_mult__": "1.0",
1195 | "__shape__": "(0,)",
1196 | "__storage_type__": "0",
1197 | "__wd_mult__": "1.0"
1198 | },
1199 | "inputs": []
1200 | },
1201 | {
1202 | "op": "null",
1203 | "name": "densenet0_last_trans_batchnorm0_running_mean",
1204 | "attrs": {
1205 | "__dtype__": "0",
1206 | "__init__": "zeros",
1207 | "__lr_mult__": "1.0",
1208 | "__shape__": "(0,)",
1209 | "__storage_type__": "0",
1210 | "__wd_mult__": "1.0"
1211 | },
1212 | "inputs": []
1213 | },
1214 | {
1215 | "op": "null",
1216 | "name": "densenet0_last_trans_batchnorm0_running_var",
1217 | "attrs": {
1218 | "__dtype__": "0",
1219 | "__init__": "ones",
1220 | "__lr_mult__": "1.0",
1221 | "__shape__": "(0,)",
1222 | "__storage_type__": "0",
1223 | "__wd_mult__": "1.0"
1224 | },
1225 | "inputs": []
1226 | },
1227 | {
1228 | "op": "BatchNorm",
1229 | "name": "densenet0_last_trans_batchnorm0_fwd",
1230 | "attrs": {
1231 | "axis": "1",
1232 | "eps": "1e-05",
1233 | "fix_gamma": "False",
1234 | "momentum": "0.9",
1235 | "use_global_stats": "False"
1236 | },
1237 | "inputs": [[97, 0, 0], [98, 0, 0], [99, 0, 0], [100, 0, 1], [101, 0, 1]]
1238 | },
1239 | {
1240 | "op": "Activation",
1241 | "name": "densenet0_last_trans_relu0_fwd",
1242 | "attrs": {"act_type": "relu"},
1243 | "inputs": [[102, 0, 0]]
1244 | },
1245 | {
1246 | "op": "null",
1247 | "name": "densenet0_last_trans_conv0_weight",
1248 | "attrs": {
1249 | "__dtype__": "0",
1250 | "__lr_mult__": "1.0",
1251 | "__shape__": "(256, 0, 1, 1)",
1252 | "__storage_type__": "0",
1253 | "__wd_mult__": "1.0"
1254 | },
1255 | "inputs": []
1256 | },
1257 | {
1258 | "op": "Convolution",
1259 | "name": "densenet0_last_trans_conv0_fwd",
1260 | "attrs": {
1261 | "dilate": "(1, 1)",
1262 | "kernel": "(1, 1)",
1263 | "layout": "NCHW",
1264 | "no_bias": "True",
1265 | "num_filter": "256",
1266 | "num_group": "1",
1267 | "pad": "(0, 0)",
1268 | "stride": "(1, 1)"
1269 | },
1270 | "inputs": [[103, 0, 0], [104, 0, 0]]
1271 | },
1272 | {
1273 | "op": "Activation",
1274 | "name": "densenet0_last_trans_relu1_fwd",
1275 | "attrs": {"act_type": "relu"},
1276 | "inputs": [[105, 0, 0]]
1277 | },
1278 | {
1279 | "op": "null",
1280 | "name": "densenet0_last_trans_conv1_weight",
1281 | "attrs": {
1282 | "__dtype__": "0",
1283 | "__lr_mult__": "1.0",
1284 | "__shape__": "(256, 0, 2, 3)",
1285 | "__storage_type__": "0",
1286 | "__wd_mult__": "1.0"
1287 | },
1288 | "inputs": []
1289 | },
1290 | {
1291 | "op": "Convolution",
1292 | "name": "densenet0_last_trans_conv1_fwd",
1293 | "attrs": {
1294 | "dilate": "(1, 1)",
1295 | "kernel": "(2, 3)",
1296 | "layout": "NCHW",
1297 | "no_bias": "True",
1298 | "num_filter": "256",
1299 | "num_group": "256",
1300 | "pad": "(0, 1)",
1301 | "stride": "(2, 1)"
1302 | },
1303 | "inputs": [[106, 0, 0], [107, 0, 0]]
1304 | },
1305 | {
1306 | "op": "null",
1307 | "name": "densenet0_stage3_batchnorm0_gamma",
1308 | "attrs": {
1309 | "__dtype__": "0",
1310 | "__init__": "ones",
1311 | "__lr_mult__": "1.0",
1312 | "__shape__": "(0,)",
1313 | "__storage_type__": "0",
1314 | "__wd_mult__": "1.0"
1315 | },
1316 | "inputs": []
1317 | },
1318 | {
1319 | "op": "null",
1320 | "name": "densenet0_stage3_batchnorm0_beta",
1321 | "attrs": {
1322 | "__dtype__": "0",
1323 | "__init__": "zeros",
1324 | "__lr_mult__": "1.0",
1325 | "__shape__": "(0,)",
1326 | "__storage_type__": "0",
1327 | "__wd_mult__": "1.0"
1328 | },
1329 | "inputs": []
1330 | },
1331 | {
1332 | "op": "null",
1333 | "name": "densenet0_stage3_batchnorm0_running_mean",
1334 | "attrs": {
1335 | "__dtype__": "0",
1336 | "__init__": "zeros",
1337 | "__lr_mult__": "1.0",
1338 | "__shape__": "(0,)",
1339 | "__storage_type__": "0",
1340 | "__wd_mult__": "1.0"
1341 | },
1342 | "inputs": []
1343 | },
1344 | {
1345 | "op": "null",
1346 | "name": "densenet0_stage3_batchnorm0_running_var",
1347 | "attrs": {
1348 | "__dtype__": "0",
1349 | "__init__": "ones",
1350 | "__lr_mult__": "1.0",
1351 | "__shape__": "(0,)",
1352 | "__storage_type__": "0",
1353 | "__wd_mult__": "1.0"
1354 | },
1355 | "inputs": []
1356 | },
1357 | {
1358 | "op": "BatchNorm",
1359 | "name": "densenet0_stage3_batchnorm0_fwd",
1360 | "attrs": {
1361 | "axis": "1",
1362 | "eps": "1e-05",
1363 | "fix_gamma": "False",
1364 | "momentum": "0.9",
1365 | "use_global_stats": "False"
1366 | },
1367 | "inputs": [[108, 0, 0], [109, 0, 0], [110, 0, 0], [111, 0, 1], [112, 0, 1]]
1368 | },
1369 | {
1370 | "op": "Activation",
1371 | "name": "densenet0_stage3_relu0_fwd",
1372 | "attrs": {"act_type": "relu"},
1373 | "inputs": [[113, 0, 0]]
1374 | },
1375 | {
1376 | "op": "Pooling",
1377 | "name": "densenet0_stage3_pool0_fwd",
1378 | "attrs": {
1379 | "global_pool": "False",
1380 | "kernel": "(2, 1)",
1381 | "layout": "NCHW",
1382 | "pad": "(0, 0)",
1383 | "pool_type": "max",
1384 | "pooling_convention": "valid",
1385 | "stride": "(2, 1)"
1386 | },
1387 | "inputs": [[114, 0, 0]]
1388 | },
1389 | {
1390 | "op": "Reshape",
1391 | "name": "densenet0_reshape0",
1392 | "attrs": {"shape": "(0, -3, 0)"},
1393 | "inputs": [[115, 0, 0]]
1394 | },
1395 | {
1396 | "op": "expand_dims",
1397 | "name": "densenet0_expand_dims0",
1398 | "attrs": {"axis": "2"},
1399 | "inputs": [[116, 0, 0]]
1400 | },
1401 | {
1402 | "op": "Dropout",
1403 | "name": "dropout0_fwd",
1404 | "attrs": {
1405 | "axes": "()",
1406 | "cudnn_off": "False",
1407 | "p": "0.1"
1408 | },
1409 | "inputs": [[117, 0, 0]]
1410 | },
1411 | {
1412 | "op": "squeeze",
1413 | "name": "crnn0_squeeze0",
1414 | "attrs": {"axis": "2"},
1415 | "inputs": [[118, 0, 0]]
1416 | },
1417 | {
1418 | "op": "transpose",
1419 | "name": "crnn0_transpose0",
1420 | "attrs": {"axes": "(2, 0, 1)"},
1421 | "inputs": [[119, 0, 0]]
1422 | },
1423 | {
1424 | "op": "null",
1425 | "name": "gru0_l0_i2h_weight",
1426 | "attrs": {
1427 | "__dtype__": "0",
1428 | "__lr_mult__": "1.0",
1429 | "__shape__": "(384, 0)",
1430 | "__storage_type__": "0",
1431 | "__wd_mult__": "1.0"
1432 | },
1433 | "inputs": []
1434 | },
1435 | {
1436 | "op": "Reshape",
1437 | "name": "gru0_reshape0",
1438 | "attrs": {"shape": "-1"},
1439 | "inputs": [[121, 0, 0]]
1440 | },
1441 | {
1442 | "op": "null",
1443 | "name": "gru0_l0_h2h_weight",
1444 | "attrs": {
1445 | "__dtype__": "0",
1446 | "__lr_mult__": "1.0",
1447 | "__shape__": "(384, 128)",
1448 | "__storage_type__": "0",
1449 | "__wd_mult__": "1.0"
1450 | },
1451 | "inputs": []
1452 | },
1453 | {
1454 | "op": "Reshape",
1455 | "name": "gru0_reshape1",
1456 | "attrs": {"shape": "-1"},
1457 | "inputs": [[123, 0, 0]]
1458 | },
1459 | {
1460 | "op": "null",
1461 | "name": "gru0_r0_i2h_weight",
1462 | "attrs": {
1463 | "__dtype__": "0",
1464 | "__lr_mult__": "1.0",
1465 | "__shape__": "(384, 0)",
1466 | "__storage_type__": "0",
1467 | "__wd_mult__": "1.0"
1468 | },
1469 | "inputs": []
1470 | },
1471 | {
1472 | "op": "Reshape",
1473 | "name": "gru0_reshape2",
1474 | "attrs": {"shape": "-1"},
1475 | "inputs": [[125, 0, 0]]
1476 | },
1477 | {
1478 | "op": "null",
1479 | "name": "gru0_r0_h2h_weight",
1480 | "attrs": {
1481 | "__dtype__": "0",
1482 | "__lr_mult__": "1.0",
1483 | "__shape__": "(384, 128)",
1484 | "__storage_type__": "0",
1485 | "__wd_mult__": "1.0"
1486 | },
1487 | "inputs": []
1488 | },
1489 | {
1490 | "op": "Reshape",
1491 | "name": "gru0_reshape3",
1492 | "attrs": {"shape": "-1"},
1493 | "inputs": [[127, 0, 0]]
1494 | },
1495 | {
1496 | "op": "null",
1497 | "name": "gru0_l0_i2h_bias",
1498 | "attrs": {
1499 | "__dtype__": "0",
1500 | "__init__": "zeros",
1501 | "__lr_mult__": "1.0",
1502 | "__shape__": "(384,)",
1503 | "__storage_type__": "0",
1504 | "__wd_mult__": "1.0"
1505 | },
1506 | "inputs": []
1507 | },
1508 | {
1509 | "op": "Reshape",
1510 | "name": "gru0_reshape4",
1511 | "attrs": {"shape": "-1"},
1512 | "inputs": [[129, 0, 0]]
1513 | },
1514 | {
1515 | "op": "null",
1516 | "name": "gru0_l0_h2h_bias",
1517 | "attrs": {
1518 | "__dtype__": "0",
1519 | "__init__": "zeros",
1520 | "__lr_mult__": "1.0",
1521 | "__shape__": "(384,)",
1522 | "__storage_type__": "0",
1523 | "__wd_mult__": "1.0"
1524 | },
1525 | "inputs": []
1526 | },
1527 | {
1528 | "op": "Reshape",
1529 | "name": "gru0_reshape5",
1530 | "attrs": {"shape": "-1"},
1531 | "inputs": [[131, 0, 0]]
1532 | },
1533 | {
1534 | "op": "null",
1535 | "name": "gru0_r0_i2h_bias",
1536 | "attrs": {
1537 | "__dtype__": "0",
1538 | "__init__": "zeros",
1539 | "__lr_mult__": "1.0",
1540 | "__shape__": "(384,)",
1541 | "__storage_type__": "0",
1542 | "__wd_mult__": "1.0"
1543 | },
1544 | "inputs": []
1545 | },
1546 | {
1547 | "op": "Reshape",
1548 | "name": "gru0_reshape6",
1549 | "attrs": {"shape": "-1"},
1550 | "inputs": [[133, 0, 0]]
1551 | },
1552 | {
1553 | "op": "null",
1554 | "name": "gru0_r0_h2h_bias",
1555 | "attrs": {
1556 | "__dtype__": "0",
1557 | "__init__": "zeros",
1558 | "__lr_mult__": "1.0",
1559 | "__shape__": "(384,)",
1560 | "__storage_type__": "0",
1561 | "__wd_mult__": "1.0"
1562 | },
1563 | "inputs": []
1564 | },
1565 | {
1566 | "op": "Reshape",
1567 | "name": "gru0_reshape7",
1568 | "attrs": {"shape": "-1"},
1569 | "inputs": [[135, 0, 0]]
1570 | },
1571 | {
1572 | "op": "_rnn_param_concat",
1573 | "name": "gru0__rnn_param_concat0",
1574 | "attrs": {
1575 | "dim": "0",
1576 | "num_args": "8"
1577 | },
1578 | "inputs": [[122, 0, 0], [124, 0, 0], [126, 0, 0], [128, 0, 0], [130, 0, 0], [132, 0, 0], [134, 0, 0], [136, 0, 0]]
1579 | },
1580 | {
1581 | "op": "_zeros",
1582 | "name": "crnn0_gru0_h0_0",
1583 | "attrs": {
1584 | "__layout__": "LNC",
1585 | "dtype": "float32",
1586 | "shape": "(2, 0, 128)"
1587 | },
1588 | "inputs": []
1589 | },
1590 | {
1591 | "op": "RNN",
1592 | "name": "gru0_rnn0",
1593 | "attrs": {
1594 | "bidirectional": "True",
1595 | "lstm_state_clip_max": "None",
1596 | "lstm_state_clip_min": "None",
1597 | "lstm_state_clip_nan": "False",
1598 | "mode": "gru",
1599 | "num_layers": "1",
1600 | "p": "0",
1601 | "projection_size": "None",
1602 | "state_outputs": "True",
1603 | "state_size": "128",
1604 | "use_sequence_length": "False"
1605 | },
1606 | "inputs": [[120, 0, 0], [137, 0, 0], [138, 0, 0]]
1607 | },
1608 | {
1609 | "op": "Reshape",
1610 | "name": "reshape0",
1611 | "attrs": {"shape": "(-3, -2)"},
1612 | "inputs": [[139, 0, 0]]
1613 | },
1614 | {
1615 | "op": "null",
1616 | "name": "pred_fc_weight",
1617 | "attrs": {"num_hidden": "6426"},
1618 | "inputs": []
1619 | },
1620 | {
1621 | "op": "null",
1622 | "name": "pred_fc_bias",
1623 | "attrs": {"num_hidden": "6426"},
1624 | "inputs": []
1625 | },
1626 | {
1627 | "op": "FullyConnected",
1628 | "name": "pred_fc",
1629 | "attrs": {"num_hidden": "6426"},
1630 | "inputs": [[140, 0, 0], [141, 0, 0], [142, 0, 0]]
1631 | },
1632 | {
1633 | "op": "SoftmaxActivation",
1634 | "name": "softmaxactivation0",
1635 | "inputs": [[143, 0, 0]]
1636 | },
1637 | {
1638 | "op": "MakeLoss",
1639 | "name": "makeloss1",
1640 | "inputs": [[144, 0, 0]]
1641 | },
1642 | {
1643 | "op": "BlockGrad",
1644 | "name": "blockgrad0",
1645 | "inputs": [[145, 0, 0]]
1646 | },
1647 | {
1648 | "op": "Reshape",
1649 | "name": "reshape1",
1650 | "attrs": {"shape": "(-4, 70, -1, 0)"},
1651 | "inputs": [[143, 0, 0]]
1652 | },
1653 | {
1654 | "op": "null",
1655 | "name": "label",
1656 | "inputs": []
1657 | },
1658 | {
1659 | "op": "CTCLoss",
1660 | "name": "ctc_loss0",
1661 | "inputs": [[147, 0, 0], [148, 0, 0]]
1662 | },
1663 | {
1664 | "op": "MakeLoss",
1665 | "name": "makeloss0",
1666 | "inputs": [[149, 0, 0]]
1667 | }
1668 | ],
1669 | "arg_nodes": [
1670 | 0,
1671 | 1,
1672 | 3,
1673 | 4,
1674 | 5,
1675 | 6,
1676 | 9,
1677 | 12,
1678 | 13,
1679 | 14,
1680 | 15,
1681 | 18,
1682 | 21,
1683 | 22,
1684 | 23,
1685 | 24,
1686 | 27,
1687 | 29,
1688 | 30,
1689 | 31,
1690 | 32,
1691 | 35,
1692 | 38,
1693 | 39,
1694 | 40,
1695 | 41,
1696 | 44,
1697 | 46,
1698 | 47,
1699 | 48,
1700 | 49,
1701 | 52,
1702 | 55,
1703 | 56,
1704 | 57,
1705 | 58,
1706 | 61,
1707 | 64,
1708 | 65,
1709 | 66,
1710 | 67,
1711 | 70,
1712 | 72,
1713 | 73,
1714 | 74,
1715 | 75,
1716 | 78,
1717 | 81,
1718 | 82,
1719 | 83,
1720 | 84,
1721 | 87,
1722 | 89,
1723 | 90,
1724 | 91,
1725 | 92,
1726 | 95,
1727 | 98,
1728 | 99,
1729 | 100,
1730 | 101,
1731 | 104,
1732 | 107,
1733 | 109,
1734 | 110,
1735 | 111,
1736 | 112,
1737 | 121,
1738 | 123,
1739 | 125,
1740 | 127,
1741 | 129,
1742 | 131,
1743 | 133,
1744 | 135,
1745 | 141,
1746 | 142,
1747 | 148
1748 | ],
1749 | "node_row_ptr": [
1750 | 0,
1751 | 1,
1752 | 2,
1753 | 3,
1754 | 4,
1755 | 5,
1756 | 6,
1757 | 7,
1758 | 10,
1759 | 11,
1760 | 12,
1761 | 13,
1762 | 14,
1763 | 15,
1764 | 16,
1765 | 17,
1766 | 18,
1767 | 21,
1768 | 22,
1769 | 23,
1770 | 24,
1771 | 25,
1772 | 26,
1773 | 27,
1774 | 28,
1775 | 29,
1776 | 32,
1777 | 33,
1778 | 34,
1779 | 35,
1780 | 36,
1781 | 37,
1782 | 38,
1783 | 39,
1784 | 42,
1785 | 43,
1786 | 44,
1787 | 45,
1788 | 46,
1789 | 47,
1790 | 48,
1791 | 49,
1792 | 50,
1793 | 53,
1794 | 54,
1795 | 55,
1796 | 56,
1797 | 57,
1798 | 58,
1799 | 59,
1800 | 60,
1801 | 63,
1802 | 64,
1803 | 65,
1804 | 66,
1805 | 67,
1806 | 68,
1807 | 69,
1808 | 70,
1809 | 71,
1810 | 74,
1811 | 75,
1812 | 76,
1813 | 77,
1814 | 78,
1815 | 79,
1816 | 80,
1817 | 81,
1818 | 82,
1819 | 85,
1820 | 86,
1821 | 87,
1822 | 88,
1823 | 89,
1824 | 90,
1825 | 91,
1826 | 92,
1827 | 95,
1828 | 96,
1829 | 97,
1830 | 98,
1831 | 99,
1832 | 100,
1833 | 101,
1834 | 102,
1835 | 103,
1836 | 106,
1837 | 107,
1838 | 108,
1839 | 109,
1840 | 110,
1841 | 111,
1842 | 112,
1843 | 113,
1844 | 116,
1845 | 117,
1846 | 118,
1847 | 119,
1848 | 120,
1849 | 121,
1850 | 122,
1851 | 123,
1852 | 124,
1853 | 127,
1854 | 128,
1855 | 129,
1856 | 130,
1857 | 131,
1858 | 132,
1859 | 133,
1860 | 134,
1861 | 135,
1862 | 136,
1863 | 137,
1864 | 140,
1865 | 141,
1866 | 142,
1867 | 143,
1868 | 144,
1869 | 146,
1870 | 147,
1871 | 148,
1872 | 149,
1873 | 150,
1874 | 151,
1875 | 152,
1876 | 153,
1877 | 154,
1878 | 155,
1879 | 156,
1880 | 157,
1881 | 158,
1882 | 159,
1883 | 160,
1884 | 161,
1885 | 162,
1886 | 163,
1887 | 164,
1888 | 165,
1889 | 166,
1890 | 168,
1891 | 169,
1892 | 170,
1893 | 171,
1894 | 172,
1895 | 173,
1896 | 174,
1897 | 175,
1898 | 176,
1899 | 177,
1900 | 179,
1901 | 180
1902 | ],
1903 | "heads": [[146, 0, 0], [150, 0, 0]],
1904 | "attrs": {"mxnet_version": ["int", 10600]}
1905 | }
--------------------------------------------------------------------------------
/cnocr/1.2.0/densenet-lite-gru/label_cn.txt:
--------------------------------------------------------------------------------
1 | ,
2 | 的
3 | 。
4 | 一
5 | 是
6 | 0
7 | 不
8 | 在
9 | 有
10 | 、
11 | 人
12 | “
13 | ”
14 | 了
15 | 中
16 | 国
17 | 大
18 | 为
19 | 1
20 | :
21 | 上
22 | 2
23 | 这
24 | 个
25 | 以
26 | 年
27 | 生
28 | 和
29 | 我
30 | 时
31 | 之
32 | 也
33 | 来
34 | 到
35 | 要
36 | 会
37 | 学
38 | 对
39 | 业
40 | 出
41 | 行
42 | 公
43 | 能
44 | 他
45 | 于
46 | 5
47 | e
48 | 3
49 | 而
50 | 发
51 | 地
52 | 可
53 | 作
54 | 就
55 | 自
56 | 们
57 | 后
58 | 成
59 | 家
60 | 日
61 | 者
62 | 分
63 | 多
64 | 下
65 | 其
66 | 用
67 | 方
68 | 本
69 | 得
70 | 子
71 | .
72 | 高
73 | 4
74 | 过
75 | 经
76 | 6
77 | 现
78 | 说
79 | 与
80 | 前
81 | o
82 | 理
83 | 工
84 | 所
85 | 力
86 | t
87 | 如
88 | 将
89 | 军
90 | 部
91 | ,
92 | 事
93 | 进
94 | 9
95 | 司
96 | 场
97 | 同
98 | 机
99 | 主
100 | 都
101 | 实
102 | 天
103 | 面
104 | 市
105 | 8
106 | i
107 | a
108 | 新
109 | 动
110 | 开
111 | n
112 | 关
113 | 定
114 | 还
115 | 长
116 | 此
117 | 月
118 | 7
119 | 道
120 | 美
121 | 心
122 | 法
123 | 最
124 | 文
125 | 等
126 | 当
127 | 第
128 | 好
129 | 然
130 | 体
131 | 全
132 | 比
133 | 股
134 | 通
135 | 性
136 | 重
137 | 三
138 | 外
139 | s
140 | 但
141 | 战
142 | ;
143 | 相
144 | 从
145 | 你
146 | r
147 | 内
148 | 无
149 | 考
150 | 因
151 | 小
152 | 资
153 | 种
154 | 合
155 | 情
156 | 去
157 | 里
158 | 化
159 | 次
160 | 入
161 | 加
162 | 间
163 | 些
164 | 度
165 | ?
166 | 员
167 | 意
168 | 没
169 | 产
170 | 正
171 | 表
172 | 很
173 | 队
174 | 报
175 | 已
176 | 名
177 | 海
178 | 点
179 | 目
180 | 着
181 | 应
182 | 解
183 | 那
184 | 看
185 | 数
186 | 东
187 | 位
188 | 题
189 | 利
190 | 起
191 | 二
192 | 民
193 | 提
194 | 及
195 | 明
196 | 教
197 | 问
198 | )
199 | 制
200 | 期
201 | (
202 | 元
203 | 游
204 | 女
205 | -
206 | 并
207 | 曰
208 | 十
209 | 果
210 | )
211 | 么
212 | 注
213 | 两
214 | 专
215 | 样
216 | 信
217 | 王
218 | 平
219 | 己
220 | 金
221 | 务
222 | 使
223 | 电
224 | 网
225 | 代
226 | 手
227 | 知
228 | 计
229 | 至
230 | 常
231 | (
232 | 只
233 | 展
234 | 品
235 | 更
236 | 系
237 | 科
238 | 门
239 | 特
240 | 想
241 | 西
242 | l
243 | 水
244 | 做
245 | 被
246 | 北
247 | 由
248 | c
249 | 》
250 | 万
251 | 老
252 | 向
253 | 《
254 | 记
255 | 政
256 | 今
257 | 据
258 | 量
259 | 保
260 | 建
261 | 物
262 | 区
263 | 管
264 | 见
265 | 安
266 | 集
267 | 或
268 | 认
269 | 程
270 | h
271 | 总
272 | —
273 | 少
274 | 身
275 | 先
276 | 师
277 | 球
278 | 价
279 | 空
280 | 旅
281 | 又
282 | 求
283 | 校
284 | 强
285 | 各
286 | 非
287 | 立
288 | 受
289 | 术
290 | 基
291 | 活
292 | 反
293 | !
294 | 世
295 | 何
296 | 职
297 | 导
298 | 任
299 | 取
300 | 式
301 | [
302 | ]
303 | 试
304 | 才
305 | 结
306 | 费
307 | 把
308 | 收
309 | 联
310 | 直
311 | 规
312 | 持
313 | 赛
314 | 社
315 | 四
316 | 山
317 | 统
318 | 投
319 | 南
320 | 原
321 | 该
322 | 院
323 | 交
324 | 达
325 | 接
326 | 头
327 | 打
328 | 设
329 | 每
330 | 别
331 | 示
332 | 则
333 | 调
334 | 处
335 | 义
336 | 权
337 | 台
338 | 感
339 | 斯
340 | 证
341 | 言
342 | 五
343 | 议
344 | d
345 | 给
346 | 决
347 | 论
348 | 她
349 | 告
350 | 广
351 | 企
352 | 格
353 | 增
354 | 让
355 | 指
356 | 研
357 | 商
358 | 客
359 | 太
360 | 息
361 | 近
362 | 城
363 | 变
364 | 技
365 | 医
366 | 件
367 | 几
368 | 书
369 | 选
370 | 周
371 | 备
372 | m
373 | 流
374 | 士
375 | 京
376 | 传
377 | u
378 | 放
379 | 病
380 | 华
381 | 单
382 | 话
383 | 招
384 | 路
385 | 界
386 | 药
387 | 回
388 | 再
389 | %
390 | 服
391 | 什
392 | 改
393 | 育
394 | 口
395 | 张
396 | 需
397 | 治
398 | 德
399 | 复
400 | 准
401 | 马
402 | 习
403 | 真
404 | 语
405 | 难
406 | 始
407 | "
408 | 际
409 | 观
410 | 完
411 | 标
412 | 共
413 | 项
414 | 容
415 | 级
416 | 即
417 | 必
418 | 类
419 | 领
420 | A
421 | C
422 | 未
423 | w
424 | 型
425 | 案
426 | 线
427 | 运
428 | 历
429 | 首
430 | 风
431 | 视
432 | 色
433 | 尔
434 | 整
435 | 质
436 | 参
437 | 较
438 | 云
439 | 具
440 | 布
441 | 组
442 | 办
443 | 气
444 | 造
445 | 争
446 | 往
447 | 形
448 | 份
449 | 防
450 | p
451 | 它
452 | 车
453 | 深
454 | 神
455 | 称
456 | g
457 | 况
458 | 推
459 | 越
460 | 英
461 | 易
462 | 且
463 | 营
464 | 条
465 | 消
466 | 命
467 | 团
468 | 确
469 | S
470 | 划
471 | 精
472 | 足
473 | 儿
474 | 局
475 | 飞
476 | 究
477 | 功
478 | 索
479 | 走
480 | 望
481 | 却
482 | 查
483 | 武
484 | 思
485 | 兵
486 | 识
487 | 克
488 | 故
489 | 步
490 | 影
491 | 带
492 | 乐
493 | 白
494 | 源
495 | 史
496 | 航
497 | 志
498 | 州
499 | 限
500 | 清
501 | 光
502 | 装
503 | 节
504 | 号
505 | 转
506 | 图
507 | 根
508 | 省
509 | 许
510 | 引
511 | 势
512 | 失
513 | 候
514 | 济
515 | 显
516 | 百
517 | 击
518 | f
519 | 器
520 | 象
521 | 效
522 | 仅
523 | 爱
524 | 官
525 | 包
526 | 供
527 | 低
528 | 演
529 | 连
530 | 夫
531 | 快
532 | 续
533 | 支
534 | 验
535 | 阳
536 | 男
537 | 觉
538 | 花
539 | 死
540 | 字
541 | 创
542 | 素
543 | 半
544 | 预
545 | 音
546 | 户
547 | 约
548 | 率
549 | 声
550 | 请
551 | 票
552 | …
553 | 便
554 | 构
555 | T
556 | 存
557 | 食
558 | y
559 | 段
560 | 远
561 | 责
562 | M
563 | 拉
564 | 房
565 | 随
566 | 断
567 | 极
568 | 销
569 | 林
570 | 亚
571 | 隐
572 | 超
573 | 获
574 | 升
575 | B
576 | 采
577 | I
578 | 算
579 | 益
580 | 优
581 | 愿
582 | 找
583 | 按
584 | 维
585 | 态
586 | 满
587 | 尽
588 | 令
589 | 汉
590 | 委
591 | 八
592 | 终
593 | 训
594 | 值
595 | 负
596 | 境
597 | 练
598 | 母
599 | 热
600 | 适
601 | 江
602 | 住
603 | 列
604 | 举
605 | 景
606 | 置
607 | 黄
608 | 听
609 | 除
610 | 读
611 | 众
612 | 响
613 | 友
614 | 助
615 | 弹
616 | 干
617 | 孩
618 | 边
619 | 李
620 | 六
621 | 甚
622 | 罗
623 | 致
624 | 施
625 | 模
626 | 料
627 | 火
628 | 像
629 | 古
630 | 眼
631 | 搜
632 | 离
633 | D
634 | 闻
635 | 府
636 | 章
637 | 早
638 | 照
639 | 速
640 | 录
641 | 页
642 | 卫
643 | 青
644 | 例
645 | 石
646 | 父
647 | 状
648 | 农
649 | 排
650 | 降
651 | 千
652 | P
653 | 择
654 | 评
655 | 疗
656 | 班
657 | 购
658 | 属
659 | 革
660 | 够
661 | 环
662 | 占
663 | 养
664 | 曾
665 | 米
666 | 略
667 | 站
668 | 胜
669 | ①
670 | 核
671 | 否
672 | 独
673 | 护
674 | 钱
675 | /
676 | 红
677 | 范
678 | 另
679 | 须
680 | 余
681 | 居
682 | 虽
683 | 毕
684 | 攻
685 | 族
686 | 吃
687 | 喜
688 | 陈
689 | G
690 | 轻
691 | 亲
692 | 积
693 | 星
694 | 假
695 | b
696 | 县
697 | 写
698 | 刘
699 | 财
700 | 亿
701 | 某
702 | 括
703 | 律
704 | 酒
705 | 策
706 | 初
707 | 批
708 | 普
709 | 片
710 | 协
711 | 售
712 | 乃
713 | 落
714 | 留
715 | 岁
716 | 突
717 | 双
718 | 绝
719 | 险
720 | 季
721 | 谓
722 | 严
723 | 村
724 | E
725 | 兴
726 | 围
727 | 依
728 | 念
729 | 苏
730 | 底
731 | 压
732 | 破
733 | 河
734 | 怎
735 | 细
736 | 富
737 | 切
738 | 乎
739 | 待
740 | 室
741 | 血
742 | 帝
743 | 君
744 | 均
745 | 络
746 | 牌
747 | 陆
748 | 印
749 | 层
750 | 斗
751 | 简
752 | 讲
753 | 买
754 | 谈
755 | 纪
756 | 板
757 | 希
758 | 聘
759 | 充
760 | 归
761 | 左
762 | 测
763 | 止
764 | 笑
765 | 差
766 | 控
767 | 担
768 | 杀
769 | 般
770 | 朝
771 | 监
772 | 承
773 | 播
774 | k
775 | 亦
776 | 临
777 | 银
778 | 尼
779 | 介
780 | v
781 | 博
782 | 软
783 | 欢
784 | 害
785 | 七
786 | 良
787 | 善
788 | ’
789 | 移
790 | 土
791 | 课
792 | 免
793 | 射
794 | 审
795 | 健
796 | 角
797 | 伊
798 | 欲
799 | 似
800 | 配
801 | 既
802 | 拿
803 | 刚
804 | 绩
805 | 密
806 | 织
807 | 九
808 | 编
809 | 狐
810 | 右
811 | 龙
812 | 异
813 | 若
814 | 登
815 | 检
816 | 继
817 | 析
818 | 款
819 | 纳
820 | 威
821 | 微
822 | 域
823 | 齐
824 | 久
825 | 宣
826 | 阿
827 | 俄
828 | 店
829 | 康
830 | 执
831 | 露
832 | 香
833 | 额
834 | 紧
835 | 培
836 | 激
837 | 卡
838 | 短
839 | 群
840 | ②
841 | 春
842 | 仍
843 | 伤
844 | 韩
845 | 楚
846 | 缺
847 | 洲
848 | 版
849 | 答
850 | O
851 | 修
852 | 媒
853 | 秦
854 | ‘
855 | 错
856 | 欧
857 | 园
858 | 减
859 | 急
860 | 叫
861 | 诉
862 | 述
863 | 钟
864 | 遇
865 | 港
866 | 补
867 | N
868 | ·
869 | 送
870 | 托
871 | 夜
872 | 兰
873 | 诸
874 | 呢
875 | 席
876 | 尚
877 | 福
878 | 奖
879 | 党
880 | 坐
881 | 巴
882 | 毛
883 | 察
884 | 奇
885 | 孙
886 | 竞
887 | 宁
888 | 申
889 | L
890 | 疑
891 | 黑
892 | 劳
893 | 脑
894 | R
895 | 舰
896 | 晚
897 | 盘
898 | 征
899 | 波
900 | 背
901 | 访
902 | 互
903 | 败
904 | 苦
905 | 阶
906 | 味
907 | 跟
908 | 沙
909 | 湾
910 | 岛
911 | 挥
912 | 礼
913 | F
914 | 词
915 | 宝
916 | 券
917 | 虑
918 | 徐
919 | 患
920 | 贵
921 | 换
922 | 矣
923 | 戏
924 | 艺
925 | 侯
926 | 顾
927 | 副
928 | 妇
929 | 董
930 | 坚
931 | 含
932 | 授
933 | 皇
934 | 付
935 | 坛
936 | 皆
937 | 抗
938 | 藏
939 | 潜
940 | 封
941 | 础
942 | 材
943 | 停
944 | 判
945 | 吸
946 | 轮
947 | 守
948 | 涨
949 | 派
950 | 彩
951 | 哪
952 | 笔
953 | .
954 | ﹑
955 | 氏
956 | 尤
957 | 逐
958 | 冲
959 | 询
960 | 铁
961 | W
962 | 衣
963 | 绍
964 | 赵
965 | 弟
966 | 洋
967 | 午
968 | 奥
969 | 昨
970 | 雷
971 | 耳
972 | 谢
973 | 乡
974 | 追
975 | 皮
976 | 句
977 | 刻
978 | 油
979 | 误
980 | 宫
981 | 巨
982 | 架
983 | 湖
984 | 固
985 | 痛
986 | 楼
987 | 杯
988 | 套
989 | 恐
990 | 敢
991 | H
992 | 遂
993 | 透
994 | 薪
995 | 婚
996 | 困
997 | 秀
998 | 帮
999 | 融
1000 | 鲁
1001 | 遗
1002 | 烈
1003 | 吗
1004 | 吴
1005 | 竟
1006 | ③
1007 | 惊
1008 | 幅
1009 | 温
1010 | 臣
1011 | 鲜
1012 | 画
1013 | 拥
1014 | 罪
1015 | 呼
1016 | 警
1017 | 卷
1018 | 松
1019 | 甲
1020 | 牛
1021 | 诺
1022 | 庭
1023 | 休
1024 | 圣
1025 | 馆
1026 | _
1027 | 退
1028 | 莫
1029 | 讯
1030 | 渐
1031 | 熟
1032 | 肯
1033 | V
1034 | 冠
1035 | 谁
1036 | 乱
1037 | 朗
1038 | 怪
1039 | 夏
1040 | 危
1041 | 码
1042 | 跳
1043 | 卖
1044 | 签
1045 | 块
1046 | 盖
1047 | 束
1048 | 毒
1049 | 杨
1050 | 饮
1051 | 届
1052 | 序
1053 | 灵
1054 | 怀
1055 | 障
1056 | 永
1057 | 顺
1058 | 载
1059 | 倒
1060 | 姓
1061 | 丽
1062 | 靠
1063 | 概
1064 | 输
1065 | 货
1066 | 症
1067 | 避
1068 | 寻
1069 | 丰
1070 | 操
1071 | 针
1072 | 穿
1073 | 延
1074 | 敌
1075 | 悉
1076 | 召
1077 | 田
1078 | 稳
1079 | 典
1080 | 吧
1081 | 犯
1082 | 饭
1083 | 握
1084 | 染
1085 | 怕
1086 | 端
1087 | 央
1088 | 阴
1089 | 胡
1090 | 座
1091 | 著
1092 | 损
1093 | 借
1094 | 朋
1095 | 救
1096 | 库
1097 | 餐
1098 | 堂
1099 | 庆
1100 | 忽
1101 | 润
1102 | 迎
1103 | 亡
1104 | 肉
1105 | 静
1106 | 阅
1107 | 盛
1108 | 综
1109 | 木
1110 | 疾
1111 | 恶
1112 | 享
1113 | 妻
1114 | 厂
1115 | 杂
1116 | 刺
1117 | 秘
1118 | 僧
1119 | 幸
1120 | 扩
1121 | 裁
1122 | 佳
1123 | 趣
1124 | 智
1125 | 促
1126 | 弃
1127 | 伯
1128 | 吉
1129 | 宜
1130 | 剧
1131 | 野
1132 | 附
1133 | 距
1134 | 唐
1135 | 释
1136 | 草
1137 | 币
1138 | 骨
1139 | 弱
1140 | 俱
1141 | 顿
1142 | 散
1143 | 讨
1144 | 睡
1145 | 探
1146 | 郑
1147 | 频
1148 | 船
1149 | 虚
1150 | 途
1151 | 旧
1152 | 树
1153 | 掌
1154 | 遍
1155 | 予
1156 | 梦
1157 | 圳
1158 | 森
1159 | 泰
1160 | 慢
1161 | 牙
1162 | 盟
1163 | 挑
1164 | 键
1165 | 阵
1166 | 暴
1167 | 脱
1168 | 汇
1169 | 歌
1170 | 禁
1171 | 浪
1172 | 冷
1173 | 艇
1174 | 雅
1175 | 迷
1176 | 拜
1177 | 旦
1178 | 私
1179 | 您
1180 | ④
1181 | 启
1182 | 纷
1183 | 哈
1184 | 订
1185 | 折
1186 | 累
1187 | 玉
1188 | 脚
1189 | 亮
1190 | 晋
1191 | 祖
1192 | 菜
1193 | 鱼
1194 | 醒
1195 | 谋
1196 | 姐
1197 | 填
1198 | 纸
1199 | 泽
1200 | 戒
1201 | 床
1202 | 努
1203 | 液
1204 | 咨
1205 | 塞
1206 | 遭
1207 | 玩
1208 | 津
1209 | 伦
1210 | 夺
1211 | 辑
1212 | 癌
1213 | x
1214 | 丹
1215 | 荣
1216 | 仪
1217 | 献
1218 | 符
1219 | 翻
1220 | 估
1221 | 乘
1222 | 诚
1223 | K
1224 | 川
1225 | 惠
1226 | 涉
1227 | 街
1228 | 诗
1229 | 曲
1230 | 孔
1231 | 娘
1232 | 怒
1233 | 扬
1234 | 闲
1235 | 蒙
1236 | 尊
1237 | 坦
1238 | =
1239 | 衡
1240 | 迪
1241 | 镇
1242 | 沉
1243 | 署
1244 | 妖
1245 | 脸
1246 | 净
1247 | 哥
1248 | 顶
1249 | 掉
1250 | 厚
1251 | 魏
1252 | 旗
1253 | 兄
1254 | 荐
1255 | 童
1256 | 剂
1257 | 乏
1258 | 倍
1259 | 萨
1260 | 偏
1261 | 洗
1262 | 惯
1263 | 灭
1264 | 径
1265 | 犹
1266 | 趋
1267 | 拍
1268 | 档
1269 | 罚
1270 | 纯
1271 | 洛
1272 | 毫
1273 | 梁
1274 | 雨
1275 | 瑞
1276 | 宗
1277 | 鼓
1278 | 辞
1279 | 洞
1280 | 秋
1281 | 郎
1282 | 舍
1283 | 蓝
1284 | 措
1285 | 篮
1286 | 贷
1287 | 佛
1288 | 坏
1289 | 俗
1290 | 殊
1291 | 炮
1292 | 厅
1293 | 筑
1294 | 姆
1295 | 译
1296 | 摄
1297 | 卒
1298 | 谷
1299 | 妈
1300 | 聚
1301 | 违
1302 | 忘
1303 | 鬼
1304 | 触
1305 | 丁
1306 | 羽
1307 | 贫
1308 | 刑
1309 | 岗
1310 | 庄
1311 | 伟
1312 | 兼
1313 | 乳
1314 | 叶
1315 | 凡
1316 | 龄
1317 | 宽
1318 | 峰
1319 | 宋
1320 | 硬
1321 | 岸
1322 | 迅
1323 | 喝
1324 | 拟
1325 | 雄
1326 | 役
1327 | 零
1328 | 舞
1329 | 暗
1330 | 潮
1331 | 绿
1332 | 倾
1333 | 详
1334 | 税
1335 | 酸
1336 | 徒
1337 | 伴
1338 | 诊
1339 | 跑
1340 | 吾
1341 | 燕
1342 | 澳
1343 | 啊
1344 | 塔
1345 | 宿
1346 | 恩
1347 | 忙
1348 | 督
1349 | 末
1350 | ⑤
1351 | +
1352 | 伐
1353 | 篇
1354 | 敏
1355 | 贸
1356 | 巧
1357 | 截
1358 | 沟
1359 | 肝
1360 | 迹
1361 | 烟
1362 | 勇
1363 | 乌
1364 | 赞
1365 | 锋
1366 | 返
1367 | 迫
1368 | 凭
1369 | 虎
1370 | 朱
1371 | 拔
1372 | 援
1373 | 搞
1374 | 爆
1375 | 勤
1376 | 抢
1377 | 敬
1378 | 赶
1379 | 抱
1380 | 仁
1381 | 秒
1382 | 缓
1383 | 御
1384 | 唯
1385 | 缩
1386 | 尝
1387 | 贴
1388 | 奔
1389 | 跨
1390 | 炎
1391 | 汤
1392 | 侵
1393 | 骑
1394 | 励
1395 | 戴
1396 | 肤
1397 | 枪
1398 | 植
1399 | 瘤
1400 | 埃
1401 | 汽
1402 | 羊
1403 | 宾
1404 | 替
1405 | 幕
1406 | 贝
1407 | 刀
1408 | 映
1409 | 彻
1410 | 驻
1411 | 披
1412 | 抓
1413 | 奉
1414 | 抵
1415 | 肿
1416 | 麻
1417 | U
1418 | 炸
1419 | 繁
1420 | 赢
1421 | 茶
1422 | 伏
1423 | 梅
1424 | 狂
1425 | 忧
1426 | 豪
1427 | 暂
1428 | 贾
1429 | 洁
1430 | 绪
1431 | 刊
1432 | 忆
1433 | 桥
1434 | 晓
1435 | 册
1436 | 漫
1437 | 圆
1438 | 默
1439 | 妾
1440 | 侧
1441 | 址
1442 | 横
1443 | □
1444 | 偶
1445 | 狗
1446 | 陵
1447 | '
1448 | 伙
1449 | 杜
1450 | 忍
1451 | 薄
1452 | 雪
1453 | 陷
1454 | 仙
1455 | 恋
1456 | 焦
1457 | 焉
1458 | 烦
1459 | 甘
1460 | 腺
1461 | 颇
1462 | 赏
1463 | 肠
1464 | 废
1465 | 墙
1466 | 债
1467 | 艾
1468 | 杰
1469 | 残
1470 | 冒
1471 | 屋
1472 | 堡
1473 | 曹
1474 | 储
1475 | 莱
1476 | 挂
1477 | 纵
1478 | 孝
1479 | 珍
1480 | 麦
1481 | 逃
1482 | 奋
1483 | J
1484 | 览
1485 | 镜
1486 | 缘
1487 | 昭
1488 | 摆
1489 | 跌
1490 | 胁
1491 | 昌
1492 | 耶
1493 | 腹
1494 | 偿
1495 | 蛋
1496 | 盈
1497 | 瓦
1498 | 摩
1499 | 沈
1500 | 惟
1501 | 迁
1502 | 冰
1503 | 辛
1504 | 震
1505 | 旁
1506 | 泉
1507 | 圈
1508 | 巡
1509 | 罢
1510 | 泛
1511 | 穷
1512 | 伸
1513 | 曼
1514 | 滋
1515 | 丈
1516 | 颜
1517 | 勒
1518 | 悲
1519 | 肥
1520 | 郭
1521 | 混
1522 | 灯
1523 | 租
1524 | ⑥
1525 | 鸡
1526 | 阻
1527 | 邑
1528 | 伍
1529 | 践
1530 | 驾
1531 | 魔
1532 | X
1533 | 拒
1534 | 懂
1535 | 糖
1536 | 脏
1537 | 沿
1538 | 翁
1539 | 胆
1540 | 惧
1541 | 聊
1542 | 携
1543 | 晨
1544 | 滑
1545 | 菌
1546 | 辅
1547 | 贤
1548 | 鉴
1549 | 丝
1550 | 尾
1551 | 赴
1552 | 吨
1553 | 宇
1554 | 眠
1555 | 脂
1556 | 籍
1557 | 彼
1558 | 污
1559 | 貌
1560 | 弄
1561 | 郡
1562 | 【
1563 | 奶
1564 | 菲
1565 | 烧
1566 | 垂
1567 | 壮
1568 | 浮
1569 | 弗
1570 | 赖
1571 | 】
1572 | 珠
1573 | 迟
1574 | 渠
1575 | 寿
1576 | 隆
1577 | 剑
1578 | 胞
1579 | 跃
1580 | 稍
1581 | 愈
1582 | 荷
1583 | 壁
1584 | 卿
1585 | 邦
1586 | 忠
1587 | 摇
1588 | 悟
1589 | 锦
1590 | 扰
1591 | 袭
1592 | 盾
1593 | 艘
1594 | 浓
1595 | 筹
1596 | 盗
1597 | 哭
1598 | 淡
1599 | 孕
1600 | 扣
1601 | 呈
1602 | 怨
1603 | 琳
1604 | 孤
1605 | 奴
1606 | 驱
1607 | 振
1608 | 闭
1609 | ~
1610 | 隔
1611 | 寒
1612 | 汝
1613 | 贯
1614 | 恢
1615 | 饰
1616 | 荡
1617 | 姑
1618 | 械
1619 | *
1620 | 猛
1621 | 亏
1622 | 锁
1623 | 硕
1624 | 舒
1625 | 嘉
1626 | 宏
1627 | 劲
1628 | 帅
1629 | 誉
1630 | 番
1631 | 惜
1632 | 胸
1633 | 抽
1634 | 脉
1635 | 孟
1636 | 遣
1637 | 碍
1638 | 辆
1639 | 玄
1640 | 陶
1641 | 丧
1642 | 矿
1643 | 链
1644 | 矛
1645 | 鸟
1646 | 夷
1647 | 嘴
1648 | 坡
1649 | 吕
1650 | 侦
1651 | 鸣
1652 | 妹
1653 | 邓
1654 | 钢
1655 | 妙
1656 | z
1657 | 欣
1658 | 骗
1659 | 浙
1660 | 辽
1661 | 奏
1662 | 唱
1663 | 腐
1664 | 仆
1665 | 祝
1666 | 冬
1667 | 韦
1668 | 邮
1669 | 酬
1670 | 尺
1671 | 涯
1672 | 毁
1673 | 粉
1674 | 井
1675 | 腰
1676 | 肌
1677 | 搭
1678 | 恨
1679 | 乙
1680 | 勿
1681 | 婆
1682 | ★
1683 | 闹
1684 | 猎
1685 | 厉
1686 | 哀
1687 | 递
1688 | 廉
1689 | 卧
1690 | 豆
1691 | 揭
1692 | 瓶
1693 | ⑦
1694 | 蒋
1695 | 忌
1696 | 贡
1697 | 邀
1698 | 覆
1699 | 墓
1700 | 捷
1701 | Q
1702 | 骂
1703 | 芳
1704 | 耗
1705 | 奈
1706 | 腾
1707 | 抑
1708 | 牵
1709 | 履
1710 | 绕
1711 | 睛
1712 | 炼
1713 | 描
1714 | 辉
1715 | 肃
1716 | 循
1717 | 仿
1718 | 葬
1719 | 漏
1720 | 恰
1721 | 殿
1722 | 遥
1723 | 尿
1724 | 凯
1725 | 仲
1726 | 婢
1727 | 胃
1728 | 翼
1729 | 卢
1730 | 慎
1731 | 厦
1732 | 颈
1733 | 哉
1734 | 疲
1735 | 惑
1736 | 汗
1737 | 衰
1738 | 剩
1739 | 昆
1740 | 耐
1741 | 疫
1742 | 霸
1743 | 赚
1744 | 彭
1745 | 狼
1746 | 洪
1747 | 枚
1748 | 媪
1749 | 纲
1750 | 窗
1751 | 偷
1752 | 鼻
1753 | 池
1754 | 磨
1755 | 尘
1756 | 账
1757 | 拼
1758 | 榜
1759 | 拨
1760 | 扫
1761 | 妆
1762 | 槽
1763 | 蔡
1764 | 扎
1765 | 叔
1766 | 辈
1767 | ―
1768 | 泡
1769 | 伪
1770 | 邻
1771 | 锡
1772 | 仰
1773 | 寸
1774 | 盐
1775 | 叹
1776 | 囊
1777 | 幼
1778 | 拓
1779 | 郁
1780 | 桌
1781 | 舟
1782 | 丘
1783 | 棋
1784 | 裂
1785 | 扶
1786 | 逼
1787 | 熊
1788 | 轰
1789 | 允
1790 | 箱
1791 | 挺
1792 | 赤
1793 | 晶
1794 | ●
1795 | 祭
1796 | 寄
1797 | 爷
1798 | 呆
1799 | 胶
1800 | 佩
1801 | 泪
1802 | 沃
1803 | 婴
1804 | 娱
1805 | 霍
1806 | 肾
1807 | 诱
1808 | 扁
1809 | 辩
1810 | 粗
1811 | 夕
1812 | 灾
1813 | 哲
1814 | 涂
1815 | 艰
1816 | 猪
1817 | Y
1818 | 铜
1819 | 踏
1820 | 赫
1821 | 吹
1822 | 屈
1823 | 谐
1824 | 仔
1825 | 沪
1826 | 殷
1827 | 辄
1828 | 渡
1829 | 屏
1830 | 悦
1831 | 漂
1832 | 祸
1833 | 赔
1834 | 涛
1835 | 谨
1836 | 赐
1837 | 劝
1838 | 泌
1839 | 凤
1840 | 庙
1841 | 墨
1842 | 寺
1843 | 淘
1844 | 勃
1845 | 崇
1846 | 灰
1847 | 虫
1848 | 逆
1849 | 闪
1850 | 竹
1851 | 疼
1852 | 旨
1853 | 旋
1854 | 蒂
1855 | ⑧
1856 | 悬
1857 | 紫
1858 | 慕
1859 | 贪
1860 | 慧
1861 | 腿
1862 | 赌
1863 | 捉
1864 | 疏
1865 | 卜
1866 | 漠
1867 | 堪
1868 | 廷
1869 | 氧
1870 | 牢
1871 | 吏
1872 | 帕
1873 | 棒
1874 | 纽
1875 | 荒
1876 | 屡
1877 | 戈
1878 | 氛
1879 | 黎
1880 | 桃
1881 | 幽
1882 | 尖
1883 | 猫
1884 | 捕
1885 | 嫁
1886 | 窃
1887 | 燃
1888 | 禽
1889 | 稿
1890 | 掩
1891 | 踪
1892 | 姻
1893 | 陪
1894 | 凉
1895 | 阔
1896 | 碰
1897 | 幻
1898 | 迈
1899 | 铺
1900 | 堆
1901 | 柔
1902 | 姿
1903 | 膜
1904 | 爸
1905 | 斤
1906 | 轨
1907 | 疆
1908 | 丢
1909 | 仓
1910 | 岂
1911 | 柳
1912 | 敦
1913 | 祥
1914 | 栏
1915 | 邪
1916 | 魂
1917 | 箭
1918 | 煤
1919 | 惨
1920 | 聪
1921 | 艳
1922 | 儒
1923 | &
1924 | 仇
1925 | 徽
1926 | 厌
1927 | 潘
1928 | 袖
1929 | 宅
1930 | 恒
1931 | 逻
1932 | 肺
1933 | 昂
1934 | 炒
1935 | 醉
1936 | 掘
1937 | 宪
1938 | 摸
1939 | 愤
1940 | 畅
1941 | 汪
1942 | 贺
1943 | 肪
1944 | 撑
1945 | 桂
1946 | 耀
1947 | 柏
1948 | 韂
1949 | 扑
1950 | 淮
1951 | j
1952 | 凌
1953 | 遵
1954 | 钻
1955 | 摘
1956 | 碎
1957 | 抛
1958 | 匹
1959 | 腔
1960 | 纠
1961 | 吐
1962 | 滚
1963 | 凝
1964 | 插
1965 | 鹰
1966 | 郊
1967 | 琴
1968 | 悄
1969 | 撤
1970 | 驶
1971 | 粮
1972 | 辱
1973 | 斩
1974 | 暖
1975 | 杭
1976 | 齿
1977 | 欺
1978 | 殖
1979 | 撞
1980 | 颁
1981 | 匈
1982 | 翔
1983 | 挤
1984 | 乔
1985 | 抚
1986 | 泥
1987 | 饱
1988 | 劣
1989 | 鞋
1990 | 肩
1991 | 雇
1992 | 驰
1993 | 莲
1994 | 岩
1995 | 酷
1996 | 玛
1997 | 赠
1998 | 斋
1999 | 辨
2000 | 泄
2001 | 姬
2002 | 拖
2003 | 湿
2004 | 滨
2005 | 鹏
2006 | 兽
2007 | 锐
2008 | 捧
2009 | 尸
2010 | 宰
2011 | 舆
2012 | 宠
2013 | 胎
2014 | 凶
2015 | 割
2016 | 虹
2017 | 俊
2018 | 糊
2019 | 兹
2020 | 瓜
2021 | 悔
2022 | 慰
2023 | 浦
2024 | 锻
2025 | 削
2026 | 唤
2027 | 戚
2028 | 撒
2029 | 冯
2030 | 丑
2031 | 亭
2032 | 寝
2033 | 嫌
2034 | 袁
2035 | ⑨
2036 | 尉
2037 | 芬
2038 | 挖
2039 | 弥
2040 | 喊
2041 | 纤
2042 | 辟
2043 | 菩
2044 | 埋
2045 | 呀
2046 | 昏
2047 | 傅
2048 | 桑
2049 | 稀
2050 | 帐
2051 | 添
2052 | 塑
2053 | 赋
2054 | 扮
2055 | 芯
2056 | 喷
2057 | 夸
2058 | 抬
2059 | 旺
2060 | 襄
2061 | 岭
2062 | 颗
2063 | 柱
2064 | 欠
2065 | 逢
2066 | 鼎
2067 | 苗
2068 | 庸
2069 | 甜
2070 | 贼
2071 | 烂
2072 | 怜
2073 | 盲
2074 | 浅
2075 | 霞
2076 | 畏
2077 | 诛
2078 | 倡
2079 | 磁
2080 | 茨
2081 | 毅
2082 | 鲍
2083 | 骇
2084 | 峡
2085 | 妨
2086 | 雕
2087 | 袋
2088 | 裕
2089 | 哩
2090 | 怖
2091 | 阁
2092 | 函
2093 | 浩
2094 | 侍
2095 | 拳
2096 | 寡
2097 | 鸿
2098 | 眉
2099 | 穆
2100 | 狱
2101 | 牧
2102 | 拦
2103 | 雾
2104 | 猜
2105 | 顷
2106 | 昔
2107 | 慈
2108 | 朴
2109 | 疯
2110 | 苍
2111 | ■
2112 | 渴
2113 | 慌
2114 | 绳
2115 | 闷
2116 | 陕
2117 | 宴
2118 | 辖
2119 | 「
2120 | 」
2121 | 舜
2122 | 讼
2123 | 柯
2124 | 丞
2125 | 姚
2126 | 崩
2127 | 绘
2128 | 枝
2129 | 牲
2130 | 涌
2131 | 虔
2132 | 姜
2133 | 擦
2134 | 桓
2135 | 逊
2136 | 汰
2137 | 斥
2138 | ﹒
2139 | 颖
2140 | 悠
2141 | 恼
2142 | 灌
2143 | q
2144 | 梯
2145 | 捐
2146 | ∶
2147 | 挣
2148 | 衷
2149 | 啡
2150 | 娜
2151 | 旬
2152 | 呵
2153 | 刷
2154 | 帽
2155 | 岳
2156 | 豫
2157 | 咖
2158 | 飘
2159 | 臂
2160 | 寂
2161 | 粒
2162 | 募
2163 | 嘱
2164 | 蔬
2165 | 苹
2166 | 泣
2167 | 吊
2168 | 淳
2169 | 诞
2170 | 诈
2171 | 咸
2172 | 猴
2173 | ~
2174 | 奸
2175 | 淫
2176 | 佐
2177 | 晰
2178 | 崔
2179 | 雍
2180 | 葛
2181 | 鼠
2182 | 爵
2183 | 奢
2184 | 仗
2185 | 涵
2186 | 淋
2187 | 挽
2188 | 敲
2189 | 沛
2190 | 蛇
2191 | 锅
2192 | 庞
2193 | 朵
2194 | 押
2195 | 鹿
2196 | 滩
2197 | 祠
2198 | 枕
2199 | 扭
2200 | 厘
2201 | 魅
2202 | ⑩
2203 | 湘
2204 | 柴
2205 | 炉
2206 | 荆
2207 | 卓
2208 | 碗
2209 | 夹
2210 | 脆
2211 | 颠
2212 | 窥
2213 | 逾
2214 | 诘
2215 | 贿
2216 | 虞
2217 | 茫
2218 | 榻
2219 | 碑
2220 | 傲
2221 | 骄
2222 | 卑
2223 | ×
2224 | Z
2225 | 蓄
2226 | 煮
2227 | 劫
2228 | 卵
2229 | 碳
2230 | 痕
2231 | 攀
2232 | 搬
2233 | 拆
2234 | 谊
2235 | 禹
2236 | 窦
2237 | 绣
2238 | 叉
2239 | 爽
2240 | 肆
2241 | 羞
2242 | 爬
2243 | 泊
2244 | 腊
2245 | 愚
2246 | 牺
2247 | 胖
2248 | 弘
2249 | 秩
2250 | 娶
2251 | 妃
2252 | 柜
2253 | 觽
2254 | 躲
2255 | 葡
2256 | 浴
2257 | 兆
2258 | 滴
2259 | 衔
2260 | 燥
2261 | 斑
2262 | 挡
2263 | 笼
2264 | 徙
2265 | 憾
2266 | 垄
2267 | 肖
2268 | 溪
2269 | 叙
2270 | 茅
2271 | 膏
2272 | 甫
2273 | 缴
2274 | 姊
2275 | 逸
2276 | 淀
2277 | 擅
2278 | 催
2279 | 丛
2280 | 舌
2281 | 竭
2282 | 禅
2283 | 隶
2284 | 歧
2285 | 妥
2286 | 煌
2287 | 玻
2288 | 刃
2289 | ☆
2290 | 肚
2291 | 惩
2292 | 赂
2293 | 耻
2294 | 詹
2295 | 璃
2296 | 舱
2297 | 溃
2298 | 斜
2299 | 祀
2300 | 翰
2301 | 汁
2302 | 妄
2303 | 枭
2304 | 萄
2305 | 契
2306 | 骤
2307 | 醇
2308 | 泼
2309 | 咽
2310 | 拾
2311 | 廊
2312 | 犬
2313 | 筋
2314 | 扯
2315 | 狠
2316 | 挫
2317 | 钛
2318 | 扇
2319 | 蓬
2320 | 吞
2321 | 帆
2322 | 戎
2323 | 稽
2324 | 娃
2325 | 蜜
2326 | 庐
2327 | 盆
2328 | 胀
2329 | 乞
2330 | 堕
2331 | 趁
2332 | 吓
2333 | 框
2334 | 顽
2335 | 硅
2336 | 宛
2337 | 瘦
2338 | 剥
2339 | 睹
2340 | 烛
2341 | 晏
2342 | 巾
2343 | 狮
2344 | 辰
2345 | 茂
2346 | ○
2347 | 裙
2348 | 匆
2349 | 霉
2350 | 杖
2351 | 杆
2352 | 糟
2353 | 畜
2354 | 躁
2355 | 愁
2356 | 缠
2357 | 糕
2358 | 峻
2359 | 贱
2360 | 辣
2361 | 歼
2362 | 慨
2363 | 亨
2364 | 芝
2365 | 惕
2366 | 娇
2367 | ⑾
2368 | 渔
2369 | 冥
2370 | 咱
2371 | 栖
2372 | 浑
2373 | 禄
2374 | 帖
2375 | 巫
2376 | 喻
2377 | 毋
2378 | 泳
2379 | 饿
2380 | 尹
2381 | 穴
2382 | 沫
2383 | 串
2384 | 邹
2385 | 厕
2386 | 蒸
2387 | +
2388 | 滞
2389 | 铃
2390 | 寓
2391 | 萧
2392 | 弯
2393 | 窝
2394 | 杏
2395 | 冻
2396 | 愉
2397 | 逝
2398 | 诣
2399 | 溢
2400 | 嘛
2401 | 兮
2402 | 暮
2403 | 豹
2404 | 骚
2405 | 跪
2406 | 懒
2407 | 缝
2408 | 盒
2409 | 亩
2410 | 寇
2411 | 弊
2412 | 巢
2413 | 咬
2414 | 粹
2415 | 冤
2416 | 陌
2417 | 涕
2418 | 翠
2419 | 勾
2420 | 拘
2421 | 侨
2422 | 肢
2423 | 裸
2424 | 恭
2425 | 叛
2426 | 纹
2427 | 摊
2428 | #
2429 | 兑
2430 | 萝
2431 | 饥
2432 | >
2433 | 浸
2434 | 叟
2435 | 滥
2436 | 灿
2437 | 衍
2438 | 喘
2439 | 吁
2440 | 晒
2441 | 谱
2442 | 堵
2443 | 暑
2444 | 撰
2445 | 棉
2446 | 蔽
2447 | 屠
2448 | 讳
2449 | 庶
2450 | 巩
2451 | 钩
2452 | 丸
2453 | 诏
2454 | 朔
2455 | 瞬
2456 | 抹
2457 | 矢
2458 | 浆
2459 | 蜀
2460 | 洒
2461 | 耕
2462 | 虏
2463 | 诵
2464 | 陛
2465 | 绵
2466 | 尴
2467 | 坤
2468 | ─
2469 | 尬
2470 | 搏
2471 | 钙
2472 | 饼
2473 | 枯
2474 | 灼
2475 | 饶
2476 | 杉
2477 | 盼
2478 | 蒲
2479 | 尧
2480 | 俘
2481 | 伞
2482 | 庚
2483 | 摧
2484 | 遮
2485 | 痴
2486 | 罕
2487 | 桶
2488 | 巷
2489 | 乖
2490 | {
2491 | 啦
2492 | 纺
2493 | 闯
2494 | →
2495 | 敛
2496 | 弓
2497 | 喉
2498 | 酿
2499 | 彪
2500 | 垃
2501 | 歇
2502 | 圾
2503 | 倦
2504 | 狭
2505 | 晕
2506 | 裤
2507 | 蜂
2508 | }
2509 | 垣
2510 | 莉
2511 | 谍
2512 | 俩
2513 | 妪
2514 | ⑿
2515 | 钓
2516 | 逛
2517 | 椅
2518 | 砖
2519 | 烤
2520 | 熬
2521 | 悼
2522 | 倘
2523 | 鸭
2524 | 馈
2525 | 惹
2526 | 旭
2527 | 薛
2528 | 诀
2529 | 渗
2530 | 痒
2531 | 蛮
2532 | 罩
2533 | 渊
2534 | 踢
2535 | 崖
2536 | 粟
2537 | 唇
2538 | 辐
2539 | 愧
2540 | 玲
2541 | 遏
2542 | 昼
2543 | 芦
2544 | 纣
2545 | 琼
2546 | 椎
2547 | 咳
2548 | 熙
2549 | 钉
2550 | 剖
2551 | 歉
2552 | 坠
2553 | 誓
2554 | 啤
2555 | 碧
2556 | 郅
2557 | 吻
2558 | 莎
2559 | 屯
2560 | 吟
2561 | 臭
2562 | 谦
2563 | 刮
2564 | 掠
2565 | 垫
2566 | 宙
2567 | 冀
2568 | 栗
2569 | 壳
2570 | 崛
2571 | 瑟
2572 | 哄
2573 | 谏
2574 | 丙
2575 | 叩
2576 | 缪
2577 | 雌
2578 | 叠
2579 | 奠
2580 | 髃
2581 | 碘
2582 | 暨
2583 | 劭
2584 | 霜
2585 | 妓
2586 | 厨
2587 | 脾
2588 | 俯
2589 | 槛
2590 | 芒
2591 | 沸
2592 | 盯
2593 | 坊
2594 | 咒
2595 | 觅
2596 | 剪
2597 | 遽
2598 | 贩
2599 | 寨
2600 | 铸
2601 | 炭
2602 | 绑
2603 | 蹈
2604 | 抄
2605 | 阎
2606 | 窄
2607 | 冈
2608 | 侈
2609 | 匿
2610 | 斌
2611 | 沾
2612 | 壤
2613 | 哨
2614 | 僵
2615 | 坎
2616 | 舅
2617 | 洽
2618 | 勉
2619 | 侣
2620 | 屿
2621 | 啼
2622 | 侠
2623 | 枢
2624 | 膝
2625 | 谒
2626 | 砍
2627 | 厢
2628 | 昧
2629 | 嫂
2630 | 羡
2631 | 铭
2632 | 碱
2633 | 棺
2634 | 漆
2635 | 睐
2636 | 缚
2637 | 谭
2638 | 溶
2639 | 烹
2640 | 雀
2641 | 擎
2642 | 棍
2643 | 瞄
2644 | 裹
2645 | 曝
2646 | 傻
2647 | 旱
2648 | 坑
2649 | 驴
2650 | 弦
2651 | 贬
2652 | 龟
2653 | 塘
2654 | 贞
2655 | 氨
2656 | 盎
2657 | 掷
2658 | 胺
2659 | 焚
2660 | 黏
2661 | 乒
2662 | 耍
2663 | 讶
2664 | 纱
2665 | 蠢
2666 | 掀
2667 | 藤
2668 | 蕴
2669 | 邯
2670 | 瘾
2671 | 婿
2672 | 卸
2673 | 斧
2674 | 鄙
2675 | 冕
2676 | 苑
2677 | 耿
2678 | 腻
2679 | 躺
2680 | 矩
2681 | 蝶
2682 | 浏
2683 | 壶
2684 | 凸
2685 | 臧
2686 | 墅
2687 | 粘
2688 | ⒀
2689 | 魄
2690 | 杞
2691 | 焰
2692 | 靶
2693 | 邵
2694 | 倚
2695 | 帘
2696 | 鞭
2697 | 僚
2698 | 酶
2699 | 靡
2700 | 虐
2701 | 阐
2702 | 韵
2703 | 迄
2704 | 樊
2705 | 畔
2706 | 钯
2707 | 菊
2708 | 亥
2709 | 嵌
2710 | 狄
2711 | 拱
2712 | 伺
2713 | 潭
2714 | 缆
2715 | 慑
2716 | 厮
2717 | 晃
2718 | 媚
2719 | 吵
2720 | 骃
2721 | 稷
2722 | 涅
2723 | 阪
2724 | 挨
2725 | 珊
2726 | 殆
2727 | 璞
2728 | 婉
2729 | 翟
2730 | 栋
2731 | 醋
2732 | 鹤
2733 | 椒
2734 | 囚
2735 | 瞒
2736 | 竖
2737 | 肴
2738 | 仕
2739 | 钦
2740 | 妒
2741 | 晴
2742 | 裔
2743 | 筛
2744 | 泻
2745 | 阙
2746 | 垒
2747 | 孰
2748 | 抖
2749 | 衬
2750 | 炫
2751 | 兢
2752 | 屑
2753 | 赦
2754 | 宵
2755 | 沮
2756 | 谎
2757 | 苟
2758 | 碌
2759 | 屁
2760 | 腕
2761 | 沦
2762 | 懈
2763 | 扉
2764 | 揖
2765 | 摔
2766 | 塌
2767 | 廖
2768 | 铝
2769 | 嘲
2770 | 胥
2771 | 曳
2772 | 敖
2773 | 傍
2774 | 筒
2775 | 朕
2776 | 扳
2777 | 鑫
2778 | 硝
2779 | 暇
2780 | @
2781 | 冶
2782 | 靖
2783 | 袍
2784 | 凑
2785 | 悍
2786 | 兔
2787 | 邢
2788 | 熏
2789 | 株
2790 | 哮
2791 | 鹅
2792 | 乾
2793 | 鄂
2794 | 矶
2795 | 逵
2796 | 坟
2797 | 佣
2798 | 髓
2799 | 隙
2800 | 惭
2801 | 轴
2802 | 掏
2803 | 苛
2804 | 偃
2805 | 榴
2806 | ⒁
2807 | 赎
2808 | 谅
2809 | 裴
2810 | 缅
2811 | 皂
2812 | 淑
2813 | 噪
2814 | 阀
2815 | 咎
2816 | 揽
2817 | 绮
2818 | 瞻
2819 | 谜
2820 | 拐
2821 | 渭
2822 | 啥
2823 | 彦
2824 | 遁
2825 | 琐
2826 | 喧
2827 | 藉
2828 | 嫩
2829 | 寞
2830 | 梳
2831 | 溜
2832 | 粥
2833 | 恤
2834 | 迭
2835 | 瀑
2836 | 蓉
2837 | 寥
2838 | 彬
2839 | 俺
2840 | 忿
2841 | 螺
2842 | 膀
2843 | 惫
2844 | 扔
2845 | 匪
2846 | 毙
2847 | 怠
2848 | 彰
2849 | 啸
2850 | 荻
2851 | 逮
2852 | 删
2853 | 脊
2854 | 轩
2855 | 躬
2856 | 澡
2857 | 衫
2858 | 娥
2859 | 捆
2860 | 牡
2861 | 茎
2862 | 秉
2863 | 俭
2864 | 闺
2865 | 溺
2866 | 萍
2867 | 陋
2868 | 驳
2869 | 撼
2870 | 沽
2871 | 僮
2872 | 厥
2873 | 沧
2874 | 轿
2875 | 棘
2876 | 怡
2877 | 梭
2878 | 嗣
2879 | 凄
2880 | ℃
2881 | 铅
2882 | 绛
2883 | 祈
2884 | 斐
2885 | 箍
2886 | 爪
2887 | 琦
2888 | 惶
2889 | 刹
2890 | 嗜
2891 | 窜
2892 | 匠
2893 | 锤
2894 | 筵
2895 | 瑶
2896 | 幌
2897 | 捞
2898 | 敷
2899 | 酌
2900 | 阜
2901 | 哗
2902 | 聂
2903 | 絮
2904 | 阱
2905 | 膨
2906 | 坪
2907 | 歪
2908 | 旷
2909 | 翅
2910 | 揣
2911 | 樱
2912 | 甸
2913 | 颐
2914 | 兜
2915 | 頉
2916 | 伽
2917 | 绸
2918 | 拂
2919 | 狎
2920 | 颂
2921 | 谬
2922 | 昊
2923 | 皋
2924 | 嚷
2925 | 徊
2926 | ⒂
2927 | 曙
2928 | 麟
2929 | 嚣
2930 | 哑
2931 | 灞
2932 | 钧
2933 | 挪
2934 | 奎
2935 | 肇
2936 | 磊
2937 | 蕉
2938 | 荧
2939 | 嗽
2940 | 瓒
2941 | 苯
2942 | 躯
2943 | 绎
2944 | 鸦
2945 | 茵
2946 | 澜
2947 | 搅
2948 | 渺
2949 | 恕
2950 | 矫
2951 | 讽
2952 | 匀
2953 | 畴
2954 | 坞
2955 | 谥
2956 | 趟
2957 | 蔓
2958 | 帛
2959 | 寅
2960 | 呜
2961 | 枣
2962 | 萌
2963 | 磷
2964 | 涤
2965 | 蚀
2966 | 疮
2967 | 浊
2968 | 煎
2969 | 叮
2970 | 倩
2971 | 拯
2972 | 瑰
2973 | 涩
2974 | 绅
2975 | 枉
2976 | 朽
2977 | 哺
2978 | 邱
2979 | 凿
2980 | 莽
2981 | 隋
2982 | 炳
2983 | 睁
2984 | 澄
2985 | 厄
2986 | 惰
2987 | 粤
2988 | 黯
2989 | 纬
2990 | 哦
2991 | 徘
2992 | 炜
2993 | 擒
2994 | 捏
2995 | 帷
2996 | 攒
2997 | 湛
2998 | 夙
2999 | 滤
3000 | 浐
3001 | 霄
3002 | 豁
3003 | 甄
3004 | 剔
3005 | 丫
3006 | 愕
3007 | 袜
3008 | 呕
3009 | |
3010 | 蹲
3011 | 皱
3012 | 勘
3013 | 辜
3014 | 唬
3015 | 葱
3016 | 甩
3017 | 诡
3018 | 猿
3019 | 稻
3020 | 宦
3021 | 姨
3022 | 橡
3023 | 涧
3024 | 亢
3025 | 芽
3026 | 濒
3027 | 蹄
3028 | 窍
3029 | 譬
3030 | 驿
3031 | 拢
3032 | 叱
3033 | 喂
3034 | 怯
3035 | 坝
3036 | 椰
3037 | 孽
3038 | 阖
3039 | 瞩
3040 | 萎
3041 | 镑
3042 | 簿
3043 | 婷
3044 | 咐
3045 | 郸
3046 | 瑜
3047 | 瑚
3048 | 矮
3049 | 祷
3050 | 窟
3051 | 藩
3052 | 牟
3053 | 疡
3054 | 仑
3055 | 谣
3056 | 侄
3057 | 沐
3058 | 孜
3059 | 劈
3060 | 枸
3061 | 妮
3062 | 蔚
3063 | 勋
3064 | 玫
3065 | 虾
3066 | 谴
3067 | 莹
3068 | 紊
3069 | 瓷
3070 | 魁
3071 | 淄
3072 | 扛
3073 | 曩
3074 | 柄
3075 | 滔
3076 | 缀
3077 | 闽
3078 | 莞
3079 | 恳
3080 | 磅
3081 | 耸
3082 | 灶
3083 | 埠
3084 | 嚼
3085 | 汲
3086 | 恍
3087 | 逗
3088 | 畸
3089 | 翩
3090 | 甥
3091 | 蚁
3092 | 耽
3093 | 稚
3094 | 戟
3095 | 戊
3096 | 侃
3097 | 帜
3098 | 璧
3099 | 碟
3100 | 敞
3101 | 晖
3102 | 匙
3103 | 烫
3104 | 眷
3105 | 娟
3106 | 卦
3107 | 寐
3108 | 苌
3109 | 馨
3110 | 锣
3111 | 谛
3112 | 桐
3113 | 钥
3114 | 琅
3115 | 赁
3116 | 蜡
3117 | 颤
3118 | 陇
3119 | 僻
3120 | 埔
3121 | 腥
3122 | 皎
3123 | 酝
3124 | 媳
3125 | ⒃
3126 | 翘
3127 | 缔
3128 | 葫
3129 | 吼
3130 | 侮
3131 | 淹
3132 | 瘫
3133 | 窘
3134 | 啖
3135 | 犀
3136 | 弒
3137 | 蕾
3138 | 偕
3139 | 笃
3140 | 栽
3141 | 唾
3142 | 陀
3143 | 汾
3144 | 俨
3145 | 呐
3146 | 膳
3147 | 锌
3148 | 瞧
3149 | 骏
3150 | 笨
3151 | 琢
3152 | 踩
3153 | 濮
3154 | 黛
3155 | 墟
3156 | 蒿
3157 | 歹
3158 | 绰
3159 | 捍
3160 | 诫
3161 | 漓
3162 | 篷
3163 | 咄
3164 | 诬
3165 | 乓
3166 | 梨
3167 | 奕
3168 | 睿
3169 | 嫡
3170 | 幢
3171 | 砸
3172 | 俞
3173 | 亟
3174 | 捣
3175 | 溯
3176 | 饵
3177 | 嘘
3178 | 砂
3179 | 凰
3180 | 丕
3181 | 荥
3182 | 赀
3183 | 薇
3184 | 滕
3185 | 袱
3186 | 辍
3187 | 疹
3188 | 泗
3189 | 韧
3190 | 撕
3191 | 磕
3192 | 梗
3193 | 挚
3194 | 挠
3195 | 嫉
3196 | 奚
3197 | 弩
3198 | 蝉
3199 | 罐
3200 | 敝
3201 | 鞍
3202 | 晦
3203 | 酣
3204 | 搁
3205 | 柿
3206 | 菠
3207 | 卞
3208 | 煞
3209 | 堤
3210 | 蟹
3211 | 骼
3212 | 晤
3213 | 娡
3214 | 潇
3215 | 胰
3216 | 酱
3217 | 郦
3218 | 脖
3219 | 檐
3220 | 桩
3221 | 踵
3222 | 禾
3223 | 狩
3224 | 盏
3225 | 弈
3226 | 牒
3227 | 拙
3228 | 喇
3229 | 舶
3230 | 炊
3231 | 喀
3232 | 黔
3233 | 挟
3234 | 钞
3235 | 缕
3236 | 俏
3237 | 娄
3238 | 粪
3239 | 颅
3240 | 锏
3241 | 凹
3242 | 饲
3243 | 肘
3244 | 赟
3245 | 吝
3246 | 襟
3247 | 琪
3248 | 谕
3249 | 飙
3250 | 秽
3251 | 颊
3252 | 渝
3253 | 卯
3254 | 捡
3255 | 氢
3256 | 桀
3257 | 裳
3258 | 滇
3259 | 浇
3260 | 礁
3261 | ◎
3262 | 蚊
3263 | 芙
3264 | 荀
3265 | 吩
3266 | 凳
3267 | 峨
3268 | 巍
3269 | 雉
3270 | 郢
3271 | 铲
3272 | 倪
3273 | 杳
3274 | 汹
3275 | 豚
3276 | 乍
3277 | 蛙
3278 | 驼
3279 | 嗅
3280 | 讫
3281 | 痰
3282 | 棵
3283 | 睫
3284 | 绒
3285 | 捻
3286 | 罔
3287 | 杠
3288 | 氟
3289 | 堰
3290 | 羁
3291 | 穰
3292 | 钠
3293 | 骸
3294 | 睾
3295 | 鳞
3296 | 邸
3297 | 於
3298 | 谧
3299 | 睢
3300 | 泾
3301 | 芹
3302 | 钾
3303 | 颓
3304 | Ⅱ
3305 | 笋
3306 | 橘
3307 | 卉
3308 | 岐
3309 | 懿
3310 | 巅
3311 | 垮
3312 | 嵩
3313 | 柰
3314 | 鲨
3315 | 涡
3316 | 弧
3317 | ◆
3318 | 钝
3319 | 啃
3320 | 熹
3321 | 芭
3322 | 隅
3323 | 拌
3324 | 锥
3325 | 抒
3326 | 焕
3327 | 漳
3328 | 鸽
3329 | 烘
3330 | 瞪
3331 | ⒄
3332 | 箕
3333 | 驯
3334 | 恃
3335 | 靴
3336 | 刁
3337 | 聋
3338 | 剿
3339 | 筝
3340 | 绞
3341 | 鞅
3342 | 夯
3343 | 抉
3344 | 嘻
3345 | 弛
3346 | 垢
3347 | 衾
3348 | 丐
3349 | 斟
3350 | 恙
3351 | 雁
3352 | 匮
3353 | 娼
3354 | 鞠
3355 | 扼
3356 | 镶
3357 | 樵
3358 | 菇
3359 | 兖
3360 | 夭
3361 | 戌
3362 | 褚
3363 | 渲
3364 | 硫
3365 | 挞
3366 | 衙
3367 | 闫
3368 | 绾
3369 | 衅
3370 | 掣
3371 | 磋
3372 | 袒
3373 | 龚
3374 | 叨
3375 | 揉
3376 | 贻
3377 | 瑛
3378 | 俾
3379 | 薯
3380 | 憎
3381 | 傣
3382 | 炬
3383 | 荤
3384 | 烁
3385 | 沂
3386 | 粑
3387 | 蚌
3388 | 渣
3389 | 茄
3390 | 荼
3391 | 愍
3392 | 蒜
3393 | 菱
3394 | 狡
3395 | 蠡
3396 | 戍
3397 | 畤
3398 | 闵
3399 | 颍
3400 | 酋
3401 | 芮
3402 | 渎
3403 | 霆
3404 | 哼
3405 | 韬
3406 | 荫
3407 | 辙
3408 | 榄
3409 | 骆
3410 | 锂
3411 | 肛
3412 | 菑
3413 | 揪
3414 | 皖
3415 | 秃
3416 | 拽
3417 | 诟
3418 | 槐
3419 | 髦
3420 | 脓
3421 | 殡
3422 | 闾
3423 | 怅
3424 | 雯
3425 | \
3426 | 戮
3427 | 澎
3428 | 悖
3429 | 嗓
3430 | 贮
3431 | 炙
3432 | 跋
3433 | 玮
3434 | 霖
3435 | 皓
3436 | 煽
3437 | 娠
3438 | 肋
3439 | 闸
3440 | 眩
3441 | 慷
3442 | 迂
3443 | 酉
3444 | 赘
3445 | 蝇
3446 | 羌
3447 | 蔑
3448 | 氯
3449 | 蚕
3450 | 汀
3451 | 憋
3452 | 臾
3453 | 汕
3454 | 缸
3455 | 棚
3456 | 唉
3457 | 棕
3458 | 裟
3459 | 蚡
3460 | 驮
3461 | 簇
3462 | 橙
3463 | 〉
3464 | 蹇
3465 | 庇
3466 | 佼
3467 | 禧
3468 | 崎
3469 | 痘
3470 | 芜
3471 | 姥
3472 | 绷
3473 | 惮
3474 | 雏
3475 | ⒅
3476 | 恬
3477 | 庵
3478 | 瞎
3479 | 臀
3480 | 胚
3481 | 嘶
3482 | 铀
3483 | 靳
3484 | 呻
3485 | 膺
3486 | 醛
3487 | 憧
3488 | 嫦
3489 | 橄
3490 | 褐
3491 | 讷
3492 | 趾
3493 | 讹
3494 | 鹊
3495 | 谯
3496 | 喋
3497 | 篡
3498 | 郝
3499 | 嗟
3500 | 琉
3501 | 逞
3502 | 袈
3503 | 鲧
3504 | 虢
3505 | 穗
3506 | 踰
3507 | 栓
3508 | 钊
3509 | 鬻
3510 | 羹
3511 | 掖
3512 | 笞
3513 | 恺
3514 | 掬
3515 | 憨
3516 | 狸
3517 | 瑕
3518 | 匡
3519 | 〈
3520 | 痪
3521 | 冢
3522 | 梧
3523 | 眺
3524 | 佑
3525 | 愣
3526 | 撇
3527 | 阏
3528 | 疚
3529 | 攘
3530 | 昕
3531 | 瓣
3532 | 烯
3533 | 谗
3534 | 隘
3535 | 酰
3536 | 绊
3537 | 鳌
3538 | 俟
3539 | 嫔
3540 | 崭
3541 | 妊
3542 | 雒
3543 | 荔
3544 | 毯
3545 | 纶
3546 | 祟
3547 | 爹
3548 | 辗
3549 | 竿
3550 | 裘
3551 | 犁
3552 | 柬
3553 | 恣
3554 | 阑
3555 | 榆
3556 | 翦
3557 | 佟
3558 | 钜
3559 | 札
3560 | 隧
3561 | ⒆
3562 | 腌
3563 | 砌
3564 | 酥
3565 | 辕
3566 | 铬
3567 | 痔
3568 | 讥
3569 | 毓
3570 | 橐
3571 | 跻
3572 | 酮
3573 | 殉
3574 | 哙
3575 | 亵
3576 | 锯
3577 | 糜
3578 | 壬
3579 | 瞭
3580 | 恻
3581 | 轲
3582 | 糙
3583 | 涿
3584 | 绚
3585 | 荟
3586 | 梢
3587 | 赣
3588 | 沼
3589 | 腑
3590 | 朦
3591 | 徇
3592 | 咋
3593 | 膊
3594 | 陡
3595 | 骋
3596 | 伶
3597 | 涓
3598 | 芷
3599 | 弋
3600 | 枫
3601 | 觑
3602 | 髻
3603 | 巳
3604 | 匣
3605 | 蠕
3606 | 恪
3607 | 槟
3608 | 栎
3609 | 噩
3610 | 葵
3611 | 殃
3612 | 淤
3613 | 诠
3614 | 昵
3615 | 眸
3616 | 馁
3617 | 奄
3618 | 绽
3619 | 闱
3620 | 蛛
3621 | 矜
3622 | 馔
3623 | 遐
3624 | 骡
3625 | 罹
3626 | 遑
3627 | 隍
3628 | 拭
3629 | 祁
3630 | ︰
3631 | 霁
3632 | 釜
3633 | 钵
3634 | 栾
3635 | 睦
3636 | 蚤
3637 | 咏
3638 | 憬
3639 | 韶
3640 | 圭
3641 | 觇
3642 | 芸
3643 | 氓
3644 | 伎
3645 | 氮
3646 | 靓
3647 | 淆
3648 | 绢
3649 | 眈
3650 | 掐
3651 | 簪
3652 | 搀
3653 | 玺
3654 | 镐
3655 | 竺
3656 | 峪
3657 | 冉
3658 | 拴
3659 | 忡
3660 | 卤
3661 | 撮
3662 | 胧
3663 | 邛
3664 | 彝
3665 | 楠
3666 | 缭
3667 | 棠
3668 | 腮
3669 | 祛
3670 | 棱
3671 | 睨
3672 | 嫖
3673 | 圉
3674 | 杵
3675 | 萃
3676 | 沁
3677 | 嬉
3678 | 擂
3679 | 澈
3680 | 麽
3681 | 轸
3682 | 彘
3683 | 褥
3684 | 廓
3685 | 狙
3686 | 笛
3687 | 彗
3688 | 啬
3689 | 盂
3690 | 贲
3691 | 忏
3692 | 驺
3693 | 悚
3694 | 豨
3695 | 旌
3696 | 娩
3697 | 扃
3698 | 蹦
3699 | 扈
3700 | 凛
3701 | 驹
3702 | 剃
3703 | 孺
3704 | 〕
3705 | 吆
3706 | 驷
3707 | 迸
3708 | 毗
3709 | 〔
3710 | 熔
3711 | 逍
3712 | 癸
3713 | 稼
3714 | 溥
3715 | 嫣
3716 | 瓮
3717 | 胱
3718 | 痊
3719 | 逡
3720 | 疟
3721 | 苻
3722 | 曪
3723 | 拣
3724 | 戛
3725 | 臻
3726 | 缉
3727 | 懊
3728 | 竣
3729 | 囤
3730 | 侑
3731 | 肽
3732 | 缮
3733 | 绥
3734 | 踝
3735 | 壑
3736 | 娴
3737 | 猝
3738 | 焻
3739 | 禀
3740 | 漱
3741 | 碁
3742 | 蹬
3743 | 祗
3744 | 濡
3745 | 挝
3746 | 亳
3747 | 萦
3748 | 癖
3749 | 彀
3750 | 毡
3751 | 锈
3752 | 憩
3753 | 筷
3754 | 莒
3755 | 噬
3756 | 珀
3757 | 砝
3758 | 鬓
3759 | 瑾
3760 | 澧
3761 | 栈
3762 | 恚
3763 | 搓
3764 | 褒
3765 | 疤
3766 | 沌
3767 | 絷
3768 | 镖
3769 | 塾
3770 | 钗
3771 | 骊
3772 | 拷
3773 | 铂
3774 | 郄
3775 | 窒
3776 | 驸
3777 | 裨
3778 | 矗
3779 | 烙
3780 | 惬
3781 | 炖
3782 | 赍
3783 | 迥
3784 | 蹴
3785 | 炽
3786 | 诧
3787 | 闰
3788 | 糯
3789 | 捅
3790 | 茜
3791 | 漯
3792 | ﹐
3793 | 峭
3794 | 哇
3795 | 鹑
3796 | 疵
3797 | 梓
3798 | 骠
3799 | 咫
3800 | 鹦
3801 | 檀
3802 | 痹
3803 | 侥
3804 | 蘑
3805 | 衢
3806 | 灸
3807 | 琵
3808 | 琶
3809 | 懦
3810 | 邺
3811 | 扪
3812 | 痿
3813 | 苔
3814 | 拇
3815 | 腋
3816 | 薨
3817 | 馅
3818 | 雠
3819 | 敕
3820 | 捂
3821 | 鴈
3822 | 栅
3823 | 瓯
3824 | 嘿
3825 | 溉
3826 | 胳
3827 | 拎
3828 | 巿
3829 | 赃
3830 | 咕
3831 | 诃
3832 | 谤
3833 | 舁
3834 | 禺
3835 | 榨
3836 | –
3837 | 拈
3838 | 瘙
3839 | 眯
3840 | 篱
3841 | 鬟
3842 | 咯
3843 | 抨
3844 | 桨
3845 | 岱
3846 | 赡
3847 | 蹶
3848 | 惚
3849 | 嗔
3850 | 喏
3851 | 聆
3852 | 曜
3853 | 窑
3854 | 瘢
3855 | 柠
3856 | 蕃
3857 | 寤
3858 | 攫
3859 | 饷
3860 | 佬
3861 | 臼
3862 | 皈
3863 | 蟒
3864 | 啜
3865 | 蔗
3866 | 汶
3867 | 酪
3868 | 豕
3869 | 窖
3870 | 膛
3871 | 檬
3872 | 戾
3873 | 蟠
3874 | 黍
3875 | 鲸
3876 | 漾
3877 | 猾
3878 | 驭
3879 | 踊
3880 | 稠
3881 | 脯
3882 | 潍
3883 | 倭
3884 | 谑
3885 | 猖
3886 | 聒
3887 | 骞
3888 | 熄
3889 | 渍
3890 | 瞳
3891 | 蒯
3892 | 陉
3893 | 褪
3894 | 筐
3895 | 彤
3896 | 蝴
3897 | 廪
3898 | 嬴
3899 | 沱
3900 | 闼
3901 | 橱
3902 | 蜚
3903 | 蹭
3904 | 鄢
3905 | 臆
3906 | 邳
3907 | 盔
3908 | 眶
3909 | 沓
3910 | 飨
3911 | 覃
3912 | 彷
3913 | 淌
3914 | 岚
3915 | 霹
3916 | 辔
3917 | 袂
3918 | 嗤
3919 | 榔
3920 | 鸾
3921 | 綦
3922 | 莘
3923 | 媲
3924 | 翊
3925 | 雳
3926 | 箸
3927 | 蚩
3928 | 茸
3929 | 嗦
3930 | 楷
3931 | 韭
3932 | 簸
3933 | 帚
3934 | 坍
3935 | 後
3936 | 璋
3937 | 剽
3938 | 渤
3939 | 骥
3940 | 犊
3941 | 迩
3942 | 悯
3943 | 饪
3944 | 搂
3945 | 鹉
3946 | 岑
3947 | 觞
3948 | 棣
3949 | 蕊
3950 | 诳
3951 | 黥
3952 | 藻
3953 | 郜
3954 | 舵
3955 | 毂
3956 | 茗
3957 | 忱
3958 | 铿
3959 | 谙
3960 | 怆
3961 | 钳
3962 | 佗
3963 | 瀚
3964 | 亘
3965 | 铎
3966 | 咀
3967 | 濯
3968 | 鼾
3969 | 酵
3970 | 酯
3971 | 麾
3972 | Ⅰ
3973 | 笙
3974 | ü
3975 | 缨
3976 | 翳
3977 | 龈
3978 | 忒
3979 | 煦
3980 | 顼
3981 | 俎
3982 | 圃
3983 | 刍
3984 | 喙
3985 | 羲
3986 | 陨
3987 | 嘤
3988 | 梏
3989 | 颛
3990 | 蜒
3991 | 啮
3992 | 镁
3993 | 辇
3994 | 葆
3995 | 蔺
3996 | 筮
3997 | 溅
3998 | 佚
3999 | 匾
4000 | 暄
4001 | 谀
4002 | 媵
4003 | 纫
4004 | 砀
4005 | 悸
4006 | 啪
4007 | 迢
4008 | 瞽
4009 | 莓
4010 | 瞰
4011 | 俸
4012 | 珑
4013 | 骜
4014 | 穹
4015 | 麓
4016 | 潢
4017 | 妞
4018 | 铢
4019 | 忻
4020 | 铤
4021 | 劾
4022 | 樟
4023 | 俐
4024 | 缗
4025 | 煲
4026 | 粱
4027 | 虱
4028 | 淇
4029 | 徼
4030 | 脐
4031 | 鼋
4032 | 嘈
4033 | 悴
4034 | 捶
4035 | 嚏
4036 | 挛
4037 | 谚
4038 | 螃
4039 | 殴
4040 | 瘟
4041 | 掺
4042 | 〇
4043 | 酚
4044 | 梵
4045 | 栩
4046 | 褂
4047 | 摹
4048 | 蜿
4049 | 钮
4050 | 箧
4051 | 胫
4052 | 馒
4053 | 焱
4054 | 嘟
4055 | 芋
4056 | 踌
4057 | 圜
4058 | 衿
4059 | 峙
4060 | 宓
4061 | 腆
4062 | 佞
4063 | 砺
4064 | 婪
4065 | 瀛
4066 | 苷
4067 | 昱
4068 | 贰
4069 | 秤
4070 | 扒
4071 | 龁
4072 | 躇
4073 | 翡
4074 | 宥
4075 | 弼
4076 | 醮
4077 | 缤
4078 | 瘗
4079 | 鳖
4080 | 擞
4081 | 眨
4082 | 礶
4083 | 锢
4084 | 辫
4085 | 儋
4086 | 纭
4087 | 洼
4088 | 漕
4089 | 飓
4090 | 纂
4091 | 繇
4092 | 舷
4093 | 勺
4094 | 诲
4095 | 捺
4096 | 瞑
4097 | 啻
4098 | 蹙
4099 | 佯
4100 | 茹
4101 | 怏
4102 | 蛟
4103 | 鹭
4104 | 烬
4105 |
4106 | 兀
4107 | 檄
4108 | 浒
4109 | 胤
4110 | 踞
4111 | 僖
4112 | 卬
4113 | 爇
4114 | 璀
4115 | 暧
4116 | 髡
4117 | 蚂
4118 | 饽
4119 | 镰
4120 | 陂
4121 | 瞌
4122 | 诽
4123 | 钺
4124 | 沥
4125 | 镍
4126 | 耘
4127 | 燎
4128 | 祚
4129 | 儣
4130 | 莺
4131 | 屎
4132 | 辘
4133 | 鸥
4134 | 驩
4135 | 氐
4136 | 匕
4137 | 銮
4138 | ━
4139 | 苴
4140 | 憔
4141 | 渥
4142 | 袅
4143 | 瞿
4144 | 瓢
4145 | 痣
4146 | 蘸
4147 | 蹑
4148 | 玷
4149 | 惺
4150 | 轧
4151 | 喃
4152 | 潺
4153 | 唏
4154 | 逅
4155 | 懵
4156 | 帏
4157 | 唠
4158 | 徨
4159 | 咤
4160 | 抠
4161 | 蛊
4162 | 苇
4163 | 铮
4164 | 疙
4165 | 闳
4166 | 砥
4167 | 羸
4168 | 遨
4169 | 哎
4170 | 捽
4171 | 钏
4172 | 壹
4173 | 昇
4174 | 擢
4175 | 贽
4176 | 汴
4177 | 砰
4178 | 牝
4179 | 蔼
4180 | 熠
4181 | 粽
4182 | 绌
4183 | 杼
4184 | 麒
4185 | 叭
4186 | 颔
4187 | 锭
4188 | 妍
4189 | 姒
4190 | 邂
4191 | 濞
4192 | 轶
4193 | 搔
4194 | 蹊
4195 | 阂
4196 | 垦
4197 | 猕
4198 | 伫
4199 | 瘩
4200 | 璐
4201 | 黠
4202 | 婺
4203 | 噫
4204 | 潞
4205 | 呱
4206 | 幡
4207 | 汞
4208 | 缯
4209 | 骁
4210 | 墩
4211 | 赧
4212 | 瞥
4213 | 媛
4214 | 瞠
4215 | 羔
4216 | 轼
4217 | Ⅲ
4218 | 拗
4219 | 鹞
4220 | 搴
4221 | 诮
4222 | 趴
4223 | 凋
4224 | 撩
4225 | 芥
4226 | 缎
4227 | 摒
4228 | 泮
4229 | 惘
4230 | 骛
4231 | 瘳
4232 | 姝
4233 | β
4234 | 渚
4235 | 吠
4236 | 稣
4237 | 獘
4238 | 篃
4239 | 罄
4240 | 吒
4241 | 茧
4242 | 黜
4243 | 缢
4244 | 獗
4245 | 诅
4246 | 絜
4247 | 蜕
4248 | 屹
4249 | 哽
4250 | 缄
4251 | 俑
4252 | 坷
4253 | 杓
4254 | 剁
4255 | 锺
4256 | 鹜
4257 | 谩
4258 | 岔
4259 | 籽
4260 | 磬
4261 | 溍
4262 | 邃
4263 | 钨
4264 | 甬
4265 | 笥
4266 | 蝠
4267 | 龋
4268 | 鸱
4269 | 孚
4270 | 馍
4271 | 溴
4272 | 妫
4273 | 偎
4274 | 烽
4275 | 椽
4276 | 阮
4277 | 酗
4278 | 惋
4279 | 牍
4280 | 觥
4281 | 瞅
4282 | 涣
4283 | 狈
4284 | 锰
4285 | 椟
4286 | 饺
4287 | 溲
4288 | 谪
4289 | 掇
4290 | 蓟
4291 | 倔
4292 | 鞫
4293 | 猢
4294 | 笄
4295 | 翕
4296 | 嗥
4297 | 卺
4298 | 寰
4299 | 狞
4300 | 洮
4301 | 炕
4302 | 夡
4303 | 瘠
4304 | 磺
4305 | 肱
4306 | 奭
4307 | 耆
4308 | 棂
4309 | 娅
4310 | 咚
4311 | 豌
4312 | 樗
4313 | 诩
4314 | 斡
4315 | 榈
4316 | 琛
4317 | 狲
4318 | 蕲
4319 | 捎
4320 | 戳
4321 | 炯
4322 | 峦
4323 | 嘎
4324 | 睬
4325 | 怙
4326 | 疱
4327 | 霎
4328 | 哂
4329 | 鱿
4330 | 涸
4331 | 咦
4332 | 痉
4333 | $
4334 | 抟
4335 | 庖
4336 | 沅
4337 | 瑙
4338 | 珏
4339 | 祜
4340 | 楞
4341 | 漉
4342 | 鸠
4343 | 镂
4344 | 诰
4345 | 谄
4346 | 蜗
4347 | 嗒
4348 | 珂
4349 | 祯
4350 | 鸳
4351 | 殒
4352 | 潼
4353 | 柩
4354 | 萤
4355 | 柑
4356 | 轵
4357 | 缰
4358 | 淼
4359 | 冗
4360 | 蕙
4361 | 鳄
4362 | 嘀
4363 | 彊
4364 | 峥
4365 | 雹
4366 | 藜
4367 | 笠
4368 | 岖
4369 | 傥
4370 | 潦
4371 | 苞
4372 | 蛰
4373 | 嬖
4374 | 僦
4375 | 碣
4376 | 裰
4377 | 疸
4378 | 湮
4379 | 昴
4380 | 榷
4381 | 涎
4382 | 攸
4383 | 砾
4384 | 跖
4385 | 恂
4386 | 舄
4387 | 麝
4388 | 貂
4389 | 孢
4390 | 捋
4391 | 笈
4392 | 璨
4393 | 粕
4394 | 浚
4395 | 鹃
4396 | 歆
4397 | 漪
4398 | 岷
4399 | 咧
4400 | 殁
4401 | 篆
4402 | 湃
4403 | 侏
4404 | 傈
4405 | 殇
4406 | 霭
4407 | 嚎
4408 | 拊
4409 | 崂
4410 | 鬲
4411 | 碉
4412 | 菁
4413 | 庾
4414 | 拚
4415 | 旃
4416 | 幺
4417 | 皿
4418 | 焊
4419 | 噢
4420 | 祺
4421 | 锚
4422 | 痤
4423 | 翎
4424 | 醺
4425 | 噶
4426 | 傀
4427 | 俛
4428 | 秧
4429 | 谆
4430 | 僳
4431 | 菽
4432 | 绯
4433 | 瘥
4434 | 盥
4435 | 蹋
4436 | 髯
4437 | 岌
4438 | 痧
4439 | 偌
4440 | 禳
4441 | 簧
4442 | 跤
4443 | 伉
4444 | 腼
4445 | 爰
4446 | 箫
4447 | 曦
4448 | 蜘
4449 | 霓
4450 | 愆
4451 | 姗
4452 | 陬
4453 | 楂
4454 | 嵘
4455 | 蜓
4456 | 浼
4457 | 癫
4458 | 瓠
4459 | 跷
4460 | 绐
4461 | 枷
4462 | 墀
4463 | 馕
4464 | 盹
4465 | 聩
4466 | 镯
4467 | 砚
4468 | 晁
4469 | 僊
4470 | °
4471 | 坂
4472 | 煜
4473 | 俚
4474 | 眛
4475 | 焘
4476 | 阍
4477 | 袄
4478 | 夔
4479 | 馋
4480 | 泸
4481 | 庠
4482 | 毐
4483 | 飚
4484 | 刭
4485 | 琏
4486 | 羿
4487 | 斓
4488 | 稔
4489 | 阉
4490 | 喾
4491 | 恸
4492 | 耦
4493 | 咪
4494 | 蝎
4495 | 唿
4496 | 桔
4497 | 缑
4498 | 诋
4499 | 訾
4500 | 迨
4501 | 鹄
4502 | 蟾
4503 | 鬣
4504 | 廿
4505 | 莅
4506 | 荞
4507 | 槌
4508 | 媾
4509 | 愦
4510 | 郏
4511 | 淖
4512 | 嗪
4513 | 镀
4514 | 畦
4515 | 颦
4516 | 浃
4517 | 牖
4518 | 襁
4519 | 怂
4520 | 唆
4521 | 嚭
4522 | 涟
4523 | 拮
4524 | 腓
4525 | 缥
4526 | 郫
4527 | 遴
4528 | 邾
4529 | 悒
4530 | 嗝
4531 | 殽
4532 | 跛
4533 | 掂
4534 | 撬
4535 | 鄣
4536 | 鄱
4537 | 斫
4538 | 窿
4539 | 兕
4540 | 壕
4541 | 疽
4542 | 铙
4543 | 吱
4544 | 厩
4545 | 甭
4546 | 镪
4547 | 篝
4548 | 踣
4549 | 眦
4550 | 啧
4551 | 糠
4552 | 鲤
4553 | 粲
4554 | 噱
4555 | 椭
4556 | 哟
4557 | 潸
4558 | 铆
4559 | 姣
4560 | 馥
4561 | 胙
4562 | 迦
4563 | 偻
4564 | 嗯
4565 | 陟
4566 | 爲
4567 | 桧
4568 | 鸯
4569 | 恿
4570 | 晌
4571 | 臱
4572 | 骈
4573 | 喽
4574 | 淅
4575 | 澹
4576 | 叽
4577 | 桢
4578 | 刨
4579 | 忑
4580 | 忐
4581 | 猩
4582 | 蝙
4583 | 旄
4584 | 晾
4585 | 吭
4586 | 荏
4587 | 觐
4588 | 胄
4589 | 榛
4590 | 豢
4591 | 堑
4592 | 帔
4593 | 咙
4594 | 柚
4595 | 僭
4596 | 锵
4597 | √
4598 | 肮
4599 | 囿
4600 | 忤
4601 | 惴
4602 | 燮
4603 | 棹
4604 | 摈
4605 | 缈
4606 | 幛
4607 | 墉
4608 | 诎
4609 | 仞
4610 | 剌
4611 | 氇
4612 | 泯
4613 | 茱
4614 | 獾
4615 | 豺
4616 | 蜃
4617 | 殂
4618 | 窈
4619 | 倨
4620 | 褓
4621 | 詈
4622 | 砷
4623 | 邕
4624 | 薰
4625 | 頫
4626 | 焖
4627 | 痫
4628 | 痢
4629 | 掾
4630 | 獐
4631 | 簌
4632 | 雎
4633 | é
4634 | 帧
4635 | 鸩
4636 | 匝
4637 | 桅
4638 | 椁
4639 | 绫
4640 | 桡
4641 | 氆
4642 | 哌
4643 | 咛
4644 | 鞘
4645 | 辎
4646 | 缙
4647 | 玑
4648 | 佤
4649 | 垓
4650 | 槿
4651 | 蛤
4652 | 烨
4653 | 泓
4654 | 罴
4655 | 鄜
4656 | 褶
4657 | 瘀
4658 | 颌
4659 | 蹂
4660 | 弑
4661 | 珪
4662 | 曷
4663 | 膑
4664 | 惦
4665 | 咆
4666 | 梆
4667 | 蛾
4668 | 牂
4669 | 髅
4670 | 捱
4671 | 拧
4672 | 婧
4673 | 踱
4674 | 怵
4675 | 侗
4676 | 屉
4677 | 讪
4678 | 衲
4679 | 麋
4680 | 宕
4681 | 畿
4682 | 唧
4683 | 怛
4684 | 豉
4685 | 籁
4686 | 觌
4687 | 舂
4688 | 蓦
4689 | 廨
4690 | 胪
4691 | 怍
4692 | 鄄
4693 | 绶
4694 | 飕
4695 | 蜻
4696 | 欷
4697 | 邬
4698 | 杲
4699 | 汧
4700 | 唑
4701 | 冽
4702 | 邰
4703 | 鼍
4704 | 魇
4705 | 铐
4706 | 哝
4707 | 泱
4708 | 扞
4709 | 飒
4710 | 醴
4711 | 陲
4712 | 喟
4713 | 筠
4714 | 殓
4715 | 瘸
4716 | 倏
4717 | 嗳
4718 | 啕
4719 | 睑
4720 | 翌
4721 | à
4722 | 幄
4723 | 娓
4724 | 蓺
4725 | 妩
4726 | 奁
4727 | 璜
4728 | 桦
4729 | 朐
4730 | 榕
4731 | 礴
4732 | 儡
4733 | 婕
4734 | 觎
4735 | 觊
4736 | 绦
4737 | 猥
4738 | 涮
4739 | 倬
4740 | 袤
4741 | 啄
4742 | 掳
4743 | 椿
4744 | 俪
4745 | 噜
4746 | 摞
4747 | ※
4748 | 鄗
4749 | 漩
4750 | 悝
4751 | 淞
4752 | 袴
4753 | 僇
4754 | 酹
4755 | 搒
4756 | 跽
4757 | 鳍
4758 | 疣
4759 | 姁
4760 | 猗
4761 | 舛
4762 | 鞮
4763 | 砭
4764 | 郯
4765 | 徕
4766 | 纥
4767 | 梃
4768 | 卮
4769 | 肣
4770 | 湎
4771 | 怦
4772 | 揄
4773 | 迕
4774 | 芍
4775 | 珥
4776 | 羚
4777 | 喔
4778 | 缁
4779 | 涝
4780 | 栉
4781 | 犷
4782 | 汜
4783 | 悻
4784 | 呛
4785 | 赭
4786 | 淬
4787 | 泫
4788 | 炀
4789 | 箴
4790 | 镌
4791 | 髫
4792 | 拄
4793 | 怔
4794 | 炷
4795 | 桎
4796 | 巽
4797 | 汭
4798 | 鹫
4799 | 挈
4800 | 蝄
4801 | 噙
4802 | 锄
4803 | 邴
4804 | 歔
4805 | 瘪
4806 | 腴
4807 | 呗
4808 | 慵
4809 | 撺
4810 | 欤
4811 | 阡
4812 | 傩
4813 | 苫
4814 | 掰
4815 | 盅
4816 | 冑
4817 | 躏
4818 | 茉
4819 | 霾
4820 | 耄
4821 | 楹
4822 | 蹻
4823 | 苋
4824 | 鲠
4825 | 哆
4826 | 傒
4827 | 榭
4828 | 牦
4829 | 婶
4830 | 仃
4831 | 囱
4832 | 皙
4833 | 醦
4834 | 隰
4835 | 掼
4836 | 琖
4837 | 駆
4838 | 暲
4839 | 砒
4840 | 舀
4841 | 鹗
4842 | 犒
4843 | 斛
4844 | 甑
4845 | 楫
4846 | 嫪
4847 | 胭
4848 | 瘁
4849 | 铛
4850 | 藕
4851 | 簋
4852 | 腭
4853 | 睽
4854 | 阕
4855 | 裀
4856 | 砧
4857 | 蓼
4858 | 贳
4859 | 劬
4860 | 搽
4861 | 龏
4862 | 荃
4863 | 奘
4864 | 祎
4865 | 泵
4866 | 攥
4867 | 翱
4868 | 晟
4869 | 酎
4870 | 睇
4871 | 逋
4872 | 箔
4873 | 羟
4874 | 诙
4875 | 饬
4876 | 跆
4877 | 眇
4878 | 佻
4879 | 铠
4880 | 娑
4881 | 郧
4882 | 葭
4883 | 蝗
4884 | 郓
4885 | 幞
4886 | 鉏
4887 | 碾
4888 | 硒
4889 | 釉
4890 | 磔
4891 | 殄
4892 | 藐
4893 | 莠
4894 | 颧
4895 | 熨
4896 | 獠
4897 | 浞
4898 | 笺
4899 | 癣
4900 | 茬
4901 | 衽
4902 | 喳
4903 | 裾
4904 | 倜
4905 | 鸢
4906 | 蠹
4907 | 廛
4908 | 惆
4909 | 芈
4910 | 燔
4911 | 伛
4912 | 妗
4913 | 佃
4914 | 缜
4915 | 咣
4916 | 龛
4917 | 挎
4918 | 徵
4919 | 粼
4920 | 锉
4921 | 啾
4922 | 隼
4923 | 猬
4924 | 镳
4925 | 璇
4926 | 胯
4927 | 饕
4928 | 揩
4929 | 縠
4930 | 虮
4931 | 苓
4932 | 噎
4933 | 祓
4934 | 筰
4935 | 奂
4936 | 搪
4937 | 喁
4938 | 俦
4939 | 隗
4940 | 馏
4941 | 圩
4942 | 褫
4943 | 僰
4944 | 吮
4945 | 哧
4946 | 湫
4947 | 旻
4948 | 筏
4949 | 搢
4950 | 佶
4951 | 茕
4952 | 铣
4953 | 娆
4954 | 揍
4955 | 嗷
4956 | 柈
4957 | 蕨
4958 | 绖
4959 | 旎
4960 | 汨
4961 | 畑
4962 | 鳏
4963 | 厝
4964 | 溷
4965 | 楯
4966 | 卅
4967 | 祇
4968 | ′
4969 | 怼
4970 | 焯
4971 | ±
4972 | 柘
4973 | 骷
4974 | 澍
4975 | ▲
4976 | `
4977 | 珞
4978 | 褊
4979 | ╱
4980 | 痂
4981 | 罘
4982 | 殚
4983 | 垠
4984 | 缧
4985 | 瑁
4986 | 齮
4987 | 蓐
4988 | 怿
4989 | 蹿
4990 | 豳
4991 | 犴
4992 | 孵
4993 | 筱
4994 | 蜷
4995 | 窋
4996 | 泞
4997 | 肄
4998 | 祐
4999 | 窕
5000 | 酆
5001 | 谶
5002 | 阗
5003 | 讙
5004 | 镝
5005 | 匍
5006 | 腱
5007 | ^
5008 | 镬
5009 | 仡
5010 | 樾
5011 | 驽
5012 | 峒
5013 | 蟆
5014 | 葳
5015 | 徉
5016 | 昙
5017 | 罡
5018 | 耜
5019 | 嗨
5020 | 氲
5021 | 骅
5022 | 襦
5023 | 浔
5024 | 纮
5025 | 洱
5026 | 氦
5027 | 舐
5028 | 黙
5029 | 臊
5030 | 縯
5031 | 汛
5032 | 蹀
5033 | 溟
5034 | 枥
5035 | 祉
5036 | 铄
5037 | 豸
5038 | 揶
5039 | 馀
5040 | 闇
5041 | 呷
5042 | 仄
5043 | 焒
5044 | 嗡
5045 | 崆
5046 | 匳
5047 | 皑
5048 | 匐
5049 | ÷
5050 | 诿
5051 | 髭
5052 | 鲰
5053 | 鲲
5054 | 筴
5055 | 侬
5056 | 鹳
5057 | 滂
5058 | △
5059 | 橹
5060 | 邈
5061 | 弭
5062 | 弁
5063 | 樽
5064 | 揆
5065 | 幔
5066 | 纨
5067 | 踉
5068 | 帼
5069 | 跸
5070 | 搠
5071 | 缞
5072 | 氤
5073 | 旒
5074 | 旖
5075 | 屣
5076 | 孱
5077 | 槁
5078 | 铉
5079 | 榼
5080 | 沣
5081 | 娣
5082 | 娈
5083 | 夤
5084 | 壅
5085 | 枇
5086 | 讴
5087 | 埶
5088 | 阆
5089 | 杷
5090 | 浣
5091 | 狰
5092 | 愠
5093 | 蚓
5094 | 咿
5095 | 藿
5096 | 欻
5097 | 萸
5098 | 刽
5099 | 稞
5100 | 刎
5101 | 骖
5102 | 冁
5103 | 骰
5104 | 嵯
5105 | 濂
5106 | 跚
5107 | 湄
5108 | 釂
5109 | 麤
5110 | 珰
5111 | 舔
5112 | 谮
5113 | 坨
5114 | 嗲
5115 | 埒
5116 | 锲
5117 | 鲇
5118 | 煨
5119 | 耎
5120 | 绻
5121 | 楣
5122 | 噉
5123 | 谟
5124 | 嗖
5125 | 裆
5126 | 晗
5127 | 囹
5128 | 黝
5129 | 讣
5130 | 薏
5131 | ⑴
5132 | 貉
5133 | 椹
5134 | 蟜
5135 | 犍
5136 | 蜇
5137 | 秏
5138 | 呶
5139 | 箩
5140 | 悞
5141 | 妤
5142 | 搐
5143 | 芪
5144 | 呦
5145 | 恽
5146 | 赊
5147 | 侩
5148 | 绁
5149 | 猱
5150 | 遒
5151 | 镵
5152 | 鸮
5153 | 趺
5154 | 簏
5155 | 迤
5156 | 坼
5157 | 痼
5158 | 棰
5159 | 凫
5160 | 诂
5161 | 骀
5162 | 瘴
5163 | 螨
5164 | 阚
5165 | 臃
5166 | 葩
5167 | 篓
5168 | 谲
5169 | 悌
5170 | 嬗
5171 | 颉
5172 | 赉
5173 | 珈
5174 | 汩
5175 | 薮
5176 | 亶
5177 | 鬃
5178 | 蒽
5179 | 黾
5180 | 噤
5181 | 螫
5182 | 嶲
5183 | 湍
5184 | 畲
5185 | 徜
5186 | 衮
5187 | 茀
5188 | 蓍
5189 | ┐
5190 | 遛
5191 | 磐
5192 | 篁
5193 | 遘
5194 | 乩
5195 | 蹒
5196 | ≥
5197 | 鸵
5198 | 褴
5199 | 苒
5200 | 郈
5201 | 踽
5202 | 叵
5203 | 咻
5204 | 伋
5205 | 襆
5206 | 歙
5207 | 伧
5208 | 醳
5209 | 鄠
5210 | 茴
5211 | 赳
5212 | 矾
5213 | 圄
5214 | 楮
5215 | 坯
5216 | 蕤
5217 | 迓
5218 | 锱
5219 | 腉
5220 | 滦
5221 | 饯
5222 | 诤
5223 | 懋
5224 | 呤
5225 | 纡
5226 | 隽
5227 | 妲
5228 | 蜴
5229 | ┌
5230 | 疋
5231 | 噻
5232 | 愀
5233 | 龊
5234 | 琨
5235 | 镭
5236 | 藓
5237 | 镣
5238 | 滈
5239 | 蓓
5240 | 杪
5241 | 糗
5242 | 菅
5243 | 椀
5244 | 懑
5245 | 苎
5246 | 劓
5247 | 囫
5248 | α
5249 | 啰
5250 | 钼
5251 | 烷
5252 | 兒
5253 | 脔
5254 | 郴
5255 | 忖
5256 | 芎
5257 | 啶
5258 | 巉
5259 | 钒
5260 | 缒
5261 | 蝼
5262 | 龌
5263 | 沔
5264 | 醢
5265 | 晔
5266 | 孳
5267 | 忝
5268 | 嗫
5269 | 橇
5270 | 勖
5271 | 宸
5272 | 佰
5273 | 蜈
5274 | 酞
5275 | 蔷
5276 | 糅
5277 | 噭
5278 | 猊
5279 | 儇
5280 | 觳
5281 | 缟
5282 | 郐
5283 | 眙
5284 | 赅
5285 | 剜
5286 | 徭
5287 | 蛭
5288 | 愎
5289 | 唔
5290 | 瘘
5291 | 魋
5292 | 镉
5293 | 殛
5294 | 茏
5295 | 邋
5296 | 垛
5297 | 垩
5298 | 焙
5299 | 篾
5300 | 羯
5301 | 浍
5302 | 鏖
5303 | 嚓
5304 | 躞
5305 | 堃
5306 | 烩
5307 | 莴
5308 | ¥
5309 | 绠
5310 | 纔
5311 | 衩
5312 | 糁
5313 | ≤
5314 | 町
5315 | 粝
5316 | 玳
5317 | 穑
5318 | 葺
5319 | 钲
5320 | 徂
5321 | ﹖
5322 | 棓
5323 | 泷
5324 | 涪
5325 | 囵
5326 | 怫
5327 | 屦
5328 | 歘
5329 | 鐘
5330 | 『
5331 | 裱
5332 | 缱
5333 | 圹
5334 | 罂
5335 | 荦
5336 | 腈
5337 | 愬
5338 | 坭
5339 | 嗛
5340 | 铩
5341 | 馐
5342 | 媸
5343 | 遢
5344 | て
5345 | 渑
5346 | 曛
5347 | 粳
5348 | 蹰
5349 | 舫
5350 | 勐
5351 | 窭
5352 | 濠
5353 | 亹
5354 | 跄
5355 | 琥
5356 | 戢
5357 | 駹
5358 | 燧
5359 | 嫜
5360 | 峄
5361 | 竽
5362 | 膈
5363 | 荚
5364 | 姞
5365 | 赇
5366 | 樭
5367 | 澙
5368 | 笮
5369 | 嶙
5370 | 氰
5371 | 孀
5372 | 崧
5373 | 郾
5374 | 蜥
5375 | 阊
5376 | 篙
5377 | 狻
5378 | 靛
5379 | 虬
5380 | 赝
5381 | 篑
5382 | 榇
5383 | 鞑
5384 | 侪
5385 | 盍
5386 | 疝
5387 | 矽
5388 | 堙
5389 | 毶
5390 | 泠
5391 | 瞟
5392 | 癀
5393 | 镞
5394 | 酤
5395 | 涔
5396 | 譄
5397 | 唁
5398 | 薜
5399 | 郿
5400 | ⑵
5401 | 爻
5402 | 盱
5403 | 膻
5404 | 菡
5405 | ⒉
5406 | 绨
5407 | 埽
5408 | О
5409 | 鳜
5410 | 醚
5411 | 阃
5412 | 遶
5413 | 岿
5414 | 張
5415 | 椐
5416 | 酺
5417 | 蔟
5418 | 螂
5419 | 辂
5420 | 窠
5421 | 淙
5422 | 鷪
5423 | 貋
5424 | 刳
5425 | 骶
5426 | 恫
5427 | 挹
5428 | 婀
5429 | 铳
5430 | 蒍
5431 | 孥
5432 | 蚣
5433 | 唳
5434 | 纻
5435 | Ⅳ
5436 | 甾
5437 | 旘
5438 | 膘
5439 | <
5440 | 脍
5441 | 耨
5442 | 翮
5443 | 赈
5444 | 浜
5445 | 洹
5446 | 蛎
5447 | 魉
5448 | 纰
5449 | 岫
5450 | 坌
5451 | 捭
5452 | 睒
5453 | 轺
5454 | 锗
5455 | 稗
5456 | 崚
5457 | 仫
5458 | 珩
5459 | 庑
5460 | 邽
5461 | 麃
5462 | 』
5463 | 縻
5464 |
5465 | 嗑
5466 | 瞋
5467 | 螭
5468 | 绔
5469 | 喱
5470 | ‰
5471 | 痞
5472 | 咔
5473 | 埤
5474 | 疥
5475 | 猷
5476 | 洺
5477 | 啁
5478 | 讦
5479 | 礻
5480 | 餮
5481 | 泅
5482 | 蛹
5483 | 癞
5484 | 妁
5485 | 桞
5486 | 匏
5487 | 琮
5488 | 铨
5489 | 杌
5490 | 孑
5491 | 菟
5492 | 骐
5493 | 钡
5494 | 钚
5495 | 莆
5496 | 荪
5497 | 魑
5498 | 峇
5499 | 斄
5500 | 缶
5501 | 茭
5502 | 煅
5503 | 酩
5504 | 酢
5505 | 湟
5506 | 潏
5507 | 嘌
5508 | 韪
5509 | 苣
5510 | 蛆
5511 | 侔
5512 | 帑
5513 | 鸨
5514 | 愫
5515 | 芫
5516 | 郪
5517 | 踔
5518 | 骧
5519 | 茁
5520 | 溧
5521 | 皁
5522 | 蜔
5523 | 魍
5524 | 瀹
5525 | 楔
5526 | 祧
5527 | 粜
5528 | 晡
5529 | 蹩
5530 | 畎
5531 | 啱
5532 | 窳
5533 | 瞾
5534 | 甙
5535 |
5536 |
5537 | 绺
5538 | 貔
5539 |
5540 | 痈
5541 | 舡
5542 | 葴
5543 | 耋
5544 | 囔
5545 | П
5546 | 蚯
5547 | 笆
5548 | 鲐
5549 | 踧
5550 | 遫
5551 | 踟
5552 | Р
5553 | 溊
5554 | 咂
5555 | 锹
5556 | 笫
5557 | 癔
5558 | 觜
5559 | 涒
5560 | 碓
5561 | 蛲
5562 | 跺
5563 | 枞
5564 | 茔
5565 | ⒈
5566 | 谸
5567 | 抿
5568 | 擘
5569 | 跬
5570 | 愛
5571 | 浿
5572 | ∩
5573 | 黟
5574 | 枰
5575 | な
5576 | 轘
5577 | 荠
5578 | 郇
5579 | 姮
5580 | 锑
5581 | 妳
5582 | 饴
5583 | 绡
5584 | 奡
5585 | 夥
5586 | 钤
5587 | 俅
5588 | 酊
5589 | 潴
5590 | 绀
5591 | 髋
5592 | 獬
5593 | 儆
5594 | 産
5595 | 乂
5596 | 餍
5597 | 颡
5598 | 胾
5599 | 碛
5600 | 貊
5601 | 魭
5602 | 钿
5603 | 鸬
5604 | 喑
5605 | 哏
5606 | 牯
5607 | 蜍
5608 | 摁
5609 | 嶓
5610 | 俳
5611 | 蟭
5612 | 躅
5613 | 羖
5614 | 鳃
5615 | 孛
5616 | 羑
5617 | 濑
5618 | 雩
5619 | 焜
5620 | 鸷
5621 | 箦
5622 | 茯
5623 | 醪
5624 | 鹂
5625 | 铚
5626 | 缳
5627 | 螳
5628 | 酇
5629 | 蛔
5630 | 罃
5631 | 珐
5632 | 苕
5633 | 罅
5634 | 蛀
5635 | 庳
5636 | 褛
5637 | 罥
5638 | 艮
5639 | 娲
5640 | 蒺
5641 | 娉
5642 | 撵
5643 | 禨
5644 | 蓖
5645 | 姹
5646 | 戕
5647 | 庥
5648 | 岬
5649 | 痍
5650 | 烜
5651 | 窴
5652 | 邠
5653 | 蹉
5654 | 诨
5655 | 狁
5656 | 顒
5657 | 莨
5658 | 阈
5659 | 嘹
5660 | 戆
5661 | 窎
5662 | 儙
5663 | 螾
5664 | 纾
5665 | 嵋
5666 | 镕
5667 | 跣
5668 | 繻
5669 | 枳
5670 | 菏
5671 | 赜
5672 | 槃
5673 | 趄
5674 | 煊
5675 | 嬛
5676 | 抡
5677 | 睚
5678 | 跹
5679 | 壖
5680 | 戗
5681 | ⑶
5682 | 榫
5683 | 沬
5684 | 崴
5685 | 颚
5686 | 畼
5687 | 嫚
5688 | 嚋
5689 | 珮
5690 | ◇
5691 | 娀
5692 | 枋
5693 | 獭
5694 | 畀
5695 | 谇
5696 | 欃
5697 | 瓴
5698 | 龂
5699 | 鲋
5700 | 鹆
5701 | 鳝
5702 | 郕
5703 | 疴
5704 | 偈
5705 | 诒
5706 | 讧
5707 | 惇
5708 | 跂
5709 | 扢
5710 | 爨
5711 | 赪
5712 | 苡
5713 | 鈇
5714 | 晞
5715 | 亓
5716 | 釐
5717 | 槊
5718 | 寘
5719 | 暾
5720 | 莩
5721 | 徳
5722 | 钹
5723 | 冏
5724 | 書
5725 | 麂
5726 | 撂
5727 | 犨
5728 | 滁
5729 | 孪
5730 | 刓
5731 | 逶
5732 | 澝
5733 | 嬃
5734 | 黡
5735 | 沕
5736 | 恝
5737 | 洟
5738 | 秸
5739 | 逑
5740 | 滓
5741 | 緃
5742 | 媢
5743 | 叼
5744 | 霣
5745 | ⒊
5746 | 慝
5747 | 厍
5748 | 炟
5749 | 皤
5750 | 囐
5751 |
5752 | 硼
5753 | 楸
5754 | 瞀
5755 | 烝
5756 | 炔
5757 | 瓻
5758 | 耙
5759 | 腩
5760 | 醵
5761 | 锽
5762 | 殪
5763 | 樯
5764 | 芡
5765 | ∈
5766 | ↓
5767 | 缵
5768 | 伻
5769 | 玊
5770 | 桠
5771 | 觚
5772 | 踯
5773 | 噔
5774 | 碴
5775 | 砣
5776 | 忪
5777 | 藁
5778 | 镒
5779 | 佝
5780 | 峤
5781 | 峣
5782 | 搤
5783 | 汐
5784 | 嗾
5785 | 鞚
5786 | 巂
5787 | 楗
5788 | 呓
5789 | 狒
5790 | 開
5791 | 坻
5792 | 蘧
5793 | 趵
5794 | 榱
5795 | 锷
5796 | 锾
5797 | 隳
5798 | 饟
5799 | 饦
5800 | 馎
5801 | 驵
5802 | 骘
5803 | 髀
5804 | 髑
5805 | 鮼
5806 | 鲑
5807 | 鲔
5808 | 鹘
5809 | 鹚
5810 | ﹔
5811 | │
5812 | 刈
5813 | 刖
5814 | 剎
5815 | 啐
5816 | 嘭
5817 | 噌
5818 | 噗
5819 | 嚬
5820 | 嚰
5821 | 圯
5822 | 坳
5823 | 嫄
5824 | 寖
5825 | 尻
5826 | 峋
5827 | 崃
5828 | 嶂
5829 | 嶶
5830 | 帇
5831 | 幤
5832 | 悫
5833 | 慙
5834 | 扌
5835 | 揜
5836 | 撝
5837 | 旳
5838 | 昀
5839 | 昃
5840 | 暹
5841 | 玕
5842 | 琰
5843 | 璆
5844 | 玃
5845 | 疃
5846 | 猃
5847 | 皴
5848 | 狃
5849 | 祊
5850 | 燹
5851 | 燠
5852 | 熛
5853 | 窣
5854 | 窬
5855 | 糌
5856 | 糍
5857 | 紬
5858 | 濩
5859 | 飧
5860 | 肸
5861 | 脲
5862 | 臬
5863 | 芘
5864 | 荜
5865 | 蔫
5866 | 襜
5867 | 觖
5868 | 豭
5869 | 贇
5870 | 氩
5871 | 氖
5872 | 趸
5873 | 檠
5874 | 檇
5875 | 邘
5876 | 鄏
5877 | 酡
5878 | 鑙
5879 | 钴
5880 | 铵
5881 | 氅
5882 | 莜
5883 | 柢
5884 | 悭
5885 | 鄳
5886 | 蒗
5887 | 虺
5888 | 沇
5889 | 薤
5890 | 踹
5891 | 墠
5892 | 唶
5893 | 骍
5894 | 镊
5895 | 镛
5896 | 帨
5897 | 逖
5898 | 氡
5899 | 鹣
5900 | 恹
5901 | 臛
5902 | 呃
5903 | 幂
5904 | 鹖
5905 | 間
5906 | 磛
5907 | 弢
5908 | 蛐
5909 | 懜
5910 | 凇
5911 | 闟
5912 | 璟
5913 | 遹
5914 | 肓
5915 | 剐
5916 | 垝
5917 | 杅
5918 | 笤
5919 | 佈
5920 | 撷
5921 | 佘
5922 | 嚅
5923 | 蝮
5924 | 谳
5925 | 蚝
5926 | 栀
5927 | 眢
5928 | ∵
5929 | 蓿
5930 | 枵
5931 | 橪
5932 | 騳
5933 | ≠
5934 | 蟋
5935 | 嗌
5936 | 玦
5937 | 嗄
5938 | 劙
5939 | 騠
5940 | 鞣
5941 | 唢
5942 | 茆
5943 | 蚰
5944 | 喹
5945 | 趱
5946 | 珅
5947 | 喆
5948 | 谔
5949 | 苄
5950 | 靥
5951 | 鲛
5952 | 洫
5953 | 颀
5954 | 趹
5955 | 蛩
5956 | 馓
5957 | 轫
5958 | 叡
5959 | 蒉
5960 | 睪
5961 | 漦
5962 | 胝
5963 | 瘐
5964 | 逦
5965 | 嶷
5966 | 傕
5967 | 斲
5968 | 嵬
5969 | 缇
5970 | 洙
5971 | 瘵
5972 | 縢
5973 | 渖
5974 | 價
5975 | 灊
5976 | 訇
5977 | 醍
5978 | 膦
5979 | 癜
5980 | 歃
5981 | 钎
5982 | 讵
5983 | 钰
5984 | 嫱
5985 | 婊
5986 | 狝
5987 | 榧
5988 | 脁
5989 | 柞
5990 | 玟
5991 | 迳
5992 | 仝
5993 | 鸪
5994 | 椋
5995 | 嵊
5996 | 祢
5997 | 螟
5998 | 淦
5999 | 穸
6000 | 舸
6001 | 铡
6002 | 肼
6003 | 鲷
6004 | 琊
6005 | 岘
6006 | 霰
6007 | 菖
6008 | 邗
6009 | 萱
6010 | 骺
6011 | 洵
6012 | 獒
6013 | 砻
6014 | 涠
6015 | 炅
6016 | 樨
6017 | 戬
6018 | 铑
6019 | 桉
6020 | 鳐
6021 | 朊
6022 | 浠
6023 | 圻
6024 | 楝
6025 | 茼
6026 | 荬
6027 | 铱
6028 | 箬
6029 | 鳟
6030 | 铧
6031 | 涞
6032 | 椤
6033 | 捌
6034 | 鲶
6035 | 泺
6036 | 锛
6037 | !
6038 | 钇
6039 | 椴
6040 | 踮
6041 | 崤
6042 | 洄
6043 | 郛
6044 | 溆
6045 | ¢
6046 | 柒
6047 | 锝
6048 | 楦
6049 | 玖
6050 | 铋
6051 | 髌
6052 | 韫
6053 | 璺
6054 | 酐
6055 | 碲
6056 | 鲟
6057 | 呋
6058 | 鹧
6059 | 婵
6060 | 淝
6061 | 耒
6062 | 〓
6063 | 铰
6064 | 馊
6065 | 缂
6066 | 溏
6067 | 颞
6068 | 耱
6069 | 邡
6070 | 萋
6071 | 崮
6072 | 吲
6073 | 氵
6074 | 嗬
6075 | 旮
6076 | 镓
6077 | 浈
6078 | 瑷
6079 | 肟
6080 | 仟
6081 | 宀
6082 | 瀵
6083 | 囡
6084 | 绱
6085 | 瘿
6086 | 蠖
6087 | 镗
6088 | 鲵
6089 | 锶
6090 | 绉
6091 | 嘞
6092 | 鲂
6093 | 铌
6094 | 铟
6095 | 胍
6096 | 疳
6097 | 氘
6098 | 墒
6099 | 叁
6100 | 螯
6101 | 髁
6102 | 狍
6103 | 葑
6104 | 槎
6105 | 鳗
6106 | 麸
6107 | 耧
6108 | 唰
6109 | 灬
6110 | 乜
6111 | 啵
6112 | 钽
6113 | 谡
6114 | 垸
6115 | 锴
6116 | 眭
6117 | 濉
6118 | 钬
6119 | 箐
6120 | 丿
6121 | 荽
6122 | 丶
6123 | 桷
6124 | 垅
6125 | 缦
6126 | 哞
6127 | 昝
6128 | 氽
6129 | 瑗
6130 | 烊
6131 | 犟
6132 | 莳
6133 | 绂
6134 | 锆
6135 | 溱
6136 | 埂
6137 | 萘
6138 | 鳕
6139 | 珉
6140 | 绋
6141 | 秣
6142 | 〒
6143 | 逯
6144 | 缍
6145 | 镱
6146 | 鄯
6147 | 晷
6148 | 庹
6149 | 甯
6150 | 茌
6151 | 珲
6152 | 旯
6153 | 霏
6154 | 埭
6155 | 峁
6156 | 岢
6157 | 刿
6158 | 掸
6159 | 馄
6160 | 蝌
6161 | 堇
6162 | 桁
6163 | 嗉
6164 | 杩
6165 | 妯
6166 | 阄
6167 | 镧
6168 | 窨
6169 | 脒
6170 | 馗
6171 | 嵇
6172 | 瓤
6173 | 〃
6174 | 岙
6175 | ?
6176 | 埚
6177 | 砦
6178 | 辋
6179 | 倌
6180 | 锕
6181 | 笏
6182 | 杈
6183 | 蟀
6184 | 鲢
6185 | 尕
6186 | 铈
6187 | 〖
6188 | 蚬
6189 | 挲
6190 | 疖
6191 | 铕
6192 | 苘
6193 | 秕
6194 | 璩
6195 | 塍
6196 | 鲈
6197 | 镦
6198 | 谌
6199 | 菀
6200 | 哒
6201 | 冼
6202 | 崽
6203 | 钕
6204 | 灏
6205 | 磴
6206 | 榉
6207 | 掴
6208 | 嫒
6209 | 唛
6210 | 轭
6211 | 姘
6212 | 寮
6213 | 篪
6214 | 赓
6215 | 娌
6216 | 蚜
6217 | 蚴
6218 | 吖
6219 | 屐
6220 | 々
6221 | £
6222 | 瓿
6223 | 铍
6224 | 缬
6225 | 鲆
6226 | 鲫
6227 | 扦
6228 | 萼
6229 | 碚
6230 | 蜊
6231 | 噼
6232 | 蟑
6233 | 颢
6234 | 胴
6235 | 羰
6236 | 唷
6237 | 籼
6238 | 萁
6239 | 蕹
6240 | 吡
6241 | 芾
6242 | 蒡
6243 | 蚪
6244 | 哓
6245 | 蹼
6246 | 埕
6247 | 鲽
6248 | 蔻
6249 | 擀
6250 | 〗
6251 | 硖
6252 | 秭
6253 | 悱
6254 | 氙
6255 | 辊
6256 | §
6257 | 哚
6258 | 鄞
6259 | 硷
6260 | 璁
6261 | 谘
6262 | 垌
6263 | 鼬
6264 | 跎
6265 | 毽
6266 | 蛴
6267 | 沤
6268 | 瀣
6269 | 缃
6270 | 蛏
6271 | 逄
6272 | 笕
6273 | 蜱
6274 | 仨
6275 | 沭
6276 | 苁
6277 | 蘖
6278 | 檩
6279 | 琚
6280 | 滢
6281 | 呸
6282 | 饨
6283 | 耷
6284 | 氚
6285 | 纛
6286 | 鲳
6287 | 滟
6288 | 巯
6289 | 薹
6290 | 诶
6291 | 褰
6292 | 锔
6293 | 蚶
6294 | 钣
6295 | 泔
6296 | 菪
6297 | 醐
6298 | 塬
6299 | 垭
6300 | 嘧
6301 | 荸
6302 | 畈
6303 | 鲅
6304 | 锟
6305 | 邝
6306 | 皲
6307 | 卟
6308 | 畹
6309 | 莼
6310 | 亍
6311 | 汊
6312 | 渌
6313 | 螈
6314 | 琬
6315 | 铒
6316 | 脘
6317 | 蝈
6318 | 橼
6319 | 醌
6320 | 喵
6321 | 蝾
6322 | 煸
6323 | 痱
6324 | 绲
6325 | 亻
6326 | 熵
6327 | 〆
6328 | 叻
6329 | 鎏
6330 | 鳅
6331 | 郗
6332 | 啉
6333 | 谰
6334 | 烃
6335 | 聿
6336 | 蛳
6337 | 昶
6338 | 缫
6339 | 荭
6340 | 囟
6341 | 蠓
6342 | 蒌
6343 | 苜
6344 | 稹
6345 | 炝
6346 | 艄
6347 | 掊
6348 | 髂
6349 | 撅
6350 | 宄
6351 | 勰
6352 | 蓑
6353 | 鹌
6354 | 謇
6355 | 莪
6356 | 蝽
6357 | 芗
6358 | 萜
6359 | 蔸
6360 | 痨
6361 | 胛
6362 | 绗
6363 | 剡
6364 | 羧
6365 | 芩
6366 | 檗
6367 | 蕈
6368 | 澶
6369 | 砜
6370 | 嬷
6371 | 铖
6372 | 蚱
6373 | 沏
6374 | 貅
6375 | 芊
6376 | 囗
6377 | 砼
6378 | 撸
6379 | 艹
6380 | 豇
6381 | ˉ
6382 | 璎
6383 | 鳙
6384 | 虻
6385 | 蓥
6386 | 荨
6387 | 咩
6388 | 珙
6389 | 坩
6390 | 胗
6391 | 砬
6392 | 秆
6393 | 垡
6394 | 鳎
6395 | 铊
6396 | 蚧
6397 | 矸
6398 | 逭
6399 | 蘼
6400 | 硪
6401 | 胬
6402 | 孓
6403 | 碇
6404 | 哔
6405 | 艿
6406 | 堀
6407 | 槲
6408 | 潋
6409 | 屌
6410 | ←
6411 | 脒
6412 | 蚺
6413 | 鳢
6414 | 鲱
6415 | 靼
6416 | 嵴
6417 | 硐
6418 | 钌
6419 | 钪
6420 | :
6421 | ;
6422 | 丨
6423 | ‖
6424 | ˇ
6425 |
--------------------------------------------------------------------------------
/export.py:
--------------------------------------------------------------------------------
1 | # This function receives a list that contains all the results and exports the results as Srt
2 | def exportAsSrt(ocrResults):
3 | output = ""
4 | k = 1
5 | for i in range(0, len(ocrResults)):
6 | if(ocrResults[i].string == ""):
7 | continue
8 | output = output + str(k) + "\n"
9 | output = output + ocrResults[i].time + "\n"
10 | output = output + ocrResults[i].string + "\n"
11 | output += "\n"
12 | k += 1
13 |
14 | fh = open('subtitle.srt', 'w', encoding='utf-8')
15 | fh.write(output)
16 | fh.close()
17 |
18 | # This function receives a list that contains all the results and exports the results as string
19 | def exportAsString(ocrResults):
20 | output = ""
21 | for i in range(0, len(ocrResults)):
22 | if(ocrResults[i].string == ""):
23 | continue
24 | output = output + ocrResults[i].string + "\n"
25 |
26 | fh = open('subtitle.txt', 'w', encoding='utf-8')
27 | fh.write(output)
28 | fh.close()
29 |
--------------------------------------------------------------------------------
/globalvar.py:
--------------------------------------------------------------------------------
1 | from cnocr import CnOcr
2 |
3 | #Global Variable
4 | coor_y_top,coor_y_bottom, coor_x_left, coor_x_right = -1, -1, -1, -1 # Initialize coordinate value of selected area
5 | left, right = False, False #
6 | rectangleSelect = False # Indicate whether to use rectangle select
7 | isSingleLine = True # Single line ocr or Multi-line
8 | isSrt = False # whether or not export as srt
9 | ocrResults = [] # Store the final result
10 | totalRead = 0 # Store total frame read before starting ocr
11 | sentenceBefore = "" # Store the sentence read before
12 | ocr = CnOcr(model_name = 'densenet-lite-gru', root = 'cnocr') # Initialize ocr module
13 | timeBefore = "" # Store the time
14 |
--------------------------------------------------------------------------------
/subtitle.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import export
3 | from globalvar import *
4 | from difflib import SequenceMatcher
5 |
6 | # Define a class to store recognized text and time range of the text
7 | class ocrResult:
8 | def __init__(self, string, time):
9 | self.string = string
10 | self.time = time
11 |
12 | # This function uses cv2 to save image for ocr module
13 | def save_image(image,addr):
14 | address = addr + '.jpg'
15 | cv2.imwrite(address,image)
16 |
17 | # This fucntion binarizes selected area
18 | def binarize(frame):
19 | gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
20 | #ret, gray = cv2.threshold(gray,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)
21 | if(coor_x_left == -1):
22 | gray = gray[coor_y_top:coor_y_bottom, 0:width]
23 | else:
24 | gray = gray[coor_y_top:coor_y_bottom, coor_x_left:coor_x_right]
25 |
26 | return gray
27 |
28 | # This function is tied with select function to get mouse action. It sets coordinate values of selected area.
29 | def OnMouseAction(event,x,y,flags,param):
30 | global coor_y_top, coor_y_bottom, coor_x_left, coor_x_right, left, right
31 |
32 | if event == cv2.EVENT_LBUTTONDOWN:
33 | print("左键点击")
34 | print("%s" %x,y)
35 | coor_y_top = y * 2
36 | if(rectangleSelect):
37 | coor_x_left = x * 2
38 | left = True
39 | elif event==cv2.EVENT_RBUTTONDOWN :
40 | print("右键点击")
41 | print("%s" %x,y)
42 | coor_y_bottom = y * 2
43 | if (rectangleSelect):
44 | coor_x_right = x * 2
45 | right = True
46 |
47 | # This function creates a new window to ask user to select the area that subtitle appears
48 | def select(camera):
49 | global totalRead, rectangleSelect, left, right
50 |
51 | print("使用说明:\n如果不使用矩形选择请使用左键点击字幕的最上方,右键点击字幕的最下方。可以尽可能选择大一些,这样可以保证字幕不丢失。\n如果使用矩形选择,根据估计左键点击最长的字幕的左上方,右键点击最长的字幕的右下方。\n")
52 | rectangleSelect = True if int(input("是否需要开启矩形选择,是输入1,不是输入0. 开启矩形选择可以提升识别准确性,但如果没有选择准确会丢失字幕\n")) == 1 else False
53 | print("\n请在弹出框内选择字幕区域!选择完成后按空格退出。如果弹出窗口内没有字幕,可以按空格键跳转到下一帧!\n")
54 |
55 | while(not left or not right):
56 | totalRead += 1
57 | success, img = camera.read()
58 | cv2.namedWindow('Image')
59 | resize_img = cv2.resize(img,(0,0),fx = 0.5,fy = 0.5)
60 | cv2.setMouseCallback('Image',OnMouseAction)
61 | while(1):
62 | cv2.imshow('Image',resize_img)
63 | k=cv2.waitKey(1)
64 | if k==ord(' '):
65 | break
66 |
67 | grayFirstFrame = binarize(img)
68 | save_image(grayFirstFrame, "image")
69 | ocrImage("image.jpg")
70 |
71 | cv2.destroyAllWindows()
72 |
73 | # This function returns time in the format of hh:mm:ss,ms
74 | def returnTime(seconds):
75 | ms = float(format(seconds % 1, '.3f')) * 1000
76 | minute = seconds / 60
77 | hour = minute / 60
78 | minute %= 60
79 | seconds %= 60
80 |
81 | return ("%02d:%02d:%02d,%03d" % (hour, minute, seconds, ms))
82 |
83 | '''
84 | This function returns the similarity value between two string.
85 | Similarity value is greater than 0, lesser than 1.
86 | If two strings are similar, it is closer to 1.
87 | '''
88 | def similarity(a, b):
89 | return SequenceMatcher(None, a, b).ratio()
90 |
91 | # This function uses cnocr library to extract texts from selected area
92 | def ocrImage(imagePath):
93 | global sentenceBefore, isSingleLine
94 | sentence = ""
95 |
96 | if(isSingleLine):
97 | res = ocr.ocr_for_single_line(imagePath)
98 | for i in range(len(res)):
99 | sentence += res[i]
100 | else:
101 | res = ocr.ocr(imagePath)
102 | for i in range(len(res)):
103 | for k in range(len(res[i])):
104 | sentence += res[i][k]
105 |
106 | similarValue = similarity(sentence, sentenceBefore)
107 |
108 | if(similarValue < 0.5):
109 | tmp = sentenceBefore
110 | sentenceBefore = sentence
111 | return tmp
112 |
113 | return
114 |
115 | '''
116 | This function call binarize and ocr function to extract texts from selected area.
117 | Then it appends the recognized texts and time into a list.
118 | '''
119 | def extract(frame, i):
120 | global fps, timeBefore
121 |
122 | gray = binarize(frame)
123 | save_image(gray,'image')
124 |
125 | print('save image:',i)
126 | tmp = ocrImage("image.jpg")
127 |
128 | if(tmp != None):
129 | tmpOcrResult = ocrResult(tmp, "")
130 | if(isSrt):
131 | seconds = (totalRead + i - 1) / fps
132 | time = returnTime(seconds)
133 | newseconds = (totalRead + i) / fps
134 | newTime = returnTime(newseconds)
135 | tmpOcrResult.time = timeBefore + " --> " + time
136 | timeBefore = newTime
137 |
138 | ocrResults.append(tmpOcrResult)
139 |
140 | print("完成度:", (totalRead + i) / FrameNumber * 100, "%")
141 |
142 | # Initialize globar variale
143 | isSingleLine = False if int(input("是否需要识别多行的字幕,是输入1,不是输入0. 如果需要识别多行的字幕会减慢识别速度。\n")) == 1 else True
144 | isSrt = True if int(input("是否需要导出为srt,是输入1,不是输入0. 如果需要识别多行的字幕会减慢识别速度。\n")) == 1 else False
145 | filename = input("请输入文件地址: 文件名+后缀名\n")
146 | print("\n")
147 |
148 | # Open video
149 | camera = cv2.VideoCapture(filename)
150 | # Check whether the video is opened
151 | if (camera.isOpened()):
152 | fps = camera.get(cv2.CAP_PROP_FPS)# Get fps
153 | FrameNumber = camera.get(7) # Get total frames
154 |
155 | width = int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)) # Get width
156 | height = int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Get height
157 |
158 | select(camera)
159 |
160 | #Initialize timeBefore
161 | seconds = totalRead / fps
162 | initialTime = returnTime(seconds)
163 | timeBefore = initialTime
164 |
165 | # Starting to extract texts from selected area
166 | success, frame = camera.read()
167 | i = 0
168 | while success:
169 | i = i + 1
170 |
171 | if(isSrt):
172 | extract(frame, i)
173 | elif (i % int(fps // 2) == 1):
174 | extract(frame, i)
175 | success, frame = camera.read()
176 |
177 | seconds = (totalRead + i) / fps
178 | time = returnTime(seconds)
179 | finalResult = ocrResult(sentenceBefore, timeBefore + " --> " + time)
180 | ocrResults.append(finalResult)
181 |
182 | if(isSrt):
183 | export.exportAsSrt(ocrResults)
184 | else:
185 | export.exportAsString(ocrResults)
186 |
187 | else:
188 | print('视频打开失败!')
--------------------------------------------------------------------------------