The response has been limited to 50k tokens of the smallest files in the repo. You can remove this limitation by removing the max tokens filter.
├── LICENSE
├── README.rst
├── README_CN.rst
├── download.py
├── resource_urls
    └── papers.txt
└── url_checker.py


/LICENSE:
--------------------------------------------------------------------------------
  1 |                     GNU AFFERO GENERAL PUBLIC LICENSE
  2 |                        Version 3, 19 November 2007
  3 | 
  4 |  Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
  5 |  Everyone is permitted to copy and distribute verbatim copies
  6 |  of this license document, but changing it is not allowed.
  7 | 
  8 |                             Preamble
  9 | 
 10 |   The GNU Affero General Public License is a free, copyleft license for
 11 | software and other kinds of works, specifically designed to ensure
 12 | cooperation with the community in the case of network server software.
 13 | 
 14 |   The licenses for most software and other practical works are designed
 15 | to take away your freedom to share and change the works.  By contrast,
 16 | our General Public Licenses are intended to guarantee your freedom to
 17 | share and change all versions of a program--to make sure it remains free
 18 | software for all its users.
 19 | 
 20 |   When we speak of free software, we are referring to freedom, not
 21 | price.  Our General Public Licenses are designed to make sure that you
 22 | have the freedom to distribute copies of free software (and charge for
 23 | them if you wish), that you receive source code or can get it if you
 24 | want it, that you can change the software or use pieces of it in new
 25 | free programs, and that you know you can do these things.
 26 | 
 27 |   Developers that use our General Public Licenses protect your rights
 28 | with two steps: (1) assert copyright on the software, and (2) offer
 29 | you this License which gives you legal permission to copy, distribute
 30 | and/or modify the software.
 31 | 
 32 |   A secondary benefit of defending all users' freedom is that
 33 | improvements made in alternate versions of the program, if they
 34 | receive widespread use, become available for other developers to
 35 | incorporate.  Many developers of free software are heartened and
 36 | encouraged by the resulting cooperation.  However, in the case of
 37 | software used on network servers, this result may fail to come about.
 38 | The GNU General Public License permits making a modified version and
 39 | letting the public access it on a server without ever releasing its
 40 | source code to the public.
 41 | 
 42 |   The GNU Affero General Public License is designed specifically to
 43 | ensure that, in such cases, the modified source code becomes available
 44 | to the community.  It requires the operator of a network server to
 45 | provide the source code of the modified version running there to the
 46 | users of that server.  Therefore, public use of a modified version, on
 47 | a publicly accessible server, gives the public access to the source
 48 | code of the modified version.
 49 | 
 50 |   An older license, called the Affero General Public License and
 51 | published by Affero, was designed to accomplish similar goals.  This is
 52 | a different license, not a version of the Affero GPL, but Affero has
 53 | released a new version of the Affero GPL which permits relicensing under
 54 | this license.
 55 | 
 56 |   The precise terms and conditions for copying, distribution and
 57 | modification follow.
 58 | 
 59 |                        TERMS AND CONDITIONS
 60 | 
 61 |   0. Definitions.
 62 | 
 63 |   "This License" refers to version 3 of the GNU Affero General Public License.
 64 | 
 65 |   "Copyright" also means copyright-like laws that apply to other kinds of
 66 | works, such as semiconductor masks.
 67 | 
 68 |   "The Program" refers to any copyrightable work licensed under this
 69 | License.  Each licensee is addressed as "you".  "Licensees" and
 70 | "recipients" may be individuals or organizations.
 71 | 
 72 |   To "modify" a work means to copy from or adapt all or part of the work
 73 | in a fashion requiring copyright permission, other than the making of an
 74 | exact copy.  The resulting work is called a "modified version" of the
 75 | earlier work or a work "based on" the earlier work.
 76 | 
 77 |   A "covered work" means either the unmodified Program or a work based
 78 | on the Program.
 79 | 
 80 |   To "propagate" a work means to do anything with it that, without
 81 | permission, would make you directly or secondarily liable for
 82 | infringement under applicable copyright law, except executing it on a
 83 | computer or modifying a private copy.  Propagation includes copying,
 84 | distribution (with or without modification), making available to the
 85 | public, and in some countries other activities as well.
 86 | 
 87 |   To "convey" a work means any kind of propagation that enables other
 88 | parties to make or receive copies.  Mere interaction with a user through
 89 | a computer network, with no transfer of a copy, is not conveying.
 90 | 
 91 |   An interactive user interface displays "Appropriate Legal Notices"
 92 | to the extent that it includes a convenient and prominently visible
 93 | feature that (1) displays an appropriate copyright notice, and (2)
 94 | tells the user that there is no warranty for the work (except to the
 95 | extent that warranties are provided), that licensees may convey the
 96 | work under this License, and how to view a copy of this License.  If
 97 | the interface presents a list of user commands or options, such as a
 98 | menu, a prominent item in the list meets this criterion.
 99 | 
100 |   1. Source Code.
101 | 
102 |   The "source code" for a work means the preferred form of the work
103 | for making modifications to it.  "Object code" means any non-source
104 | form of a work.
105 | 
106 |   A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 | 
111 |   The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form.  A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 | 
122 |   The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities.  However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work.  For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 | 
135 |   The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 | 
139 |   The Corresponding Source for a work in source code form is that
140 | same work.
141 | 
142 |   2. Basic Permissions.
143 | 
144 |   All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met.  This License explicitly affirms your unlimited
147 | permission to run the unmodified Program.  The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work.  This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 | 
152 |   You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force.  You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright.  Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 | 
163 |   Conveying under any other circumstances is permitted solely under
164 | the conditions stated below.  Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 | 
167 |   3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 | 
169 |   No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 | 
175 |   When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 | 
183 |   4. Conveying Verbatim Copies.
184 | 
185 |   You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 | 
193 |   You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 | 
196 |   5. Conveying Modified Source Versions.
197 | 
198 |   You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 | 
202 |     a) The work must carry prominent notices stating that you modified
203 |     it, and giving a relevant date.
204 | 
205 |     b) The work must carry prominent notices stating that it is
206 |     released under this License and any conditions added under section
207 |     7.  This requirement modifies the requirement in section 4 to
208 |     "keep intact all notices".
209 | 
210 |     c) You must license the entire work, as a whole, under this
211 |     License to anyone who comes into possession of a copy.  This
212 |     License will therefore apply, along with any applicable section 7
213 |     additional terms, to the whole of the work, and all its parts,
214 |     regardless of how they are packaged.  This License gives no
215 |     permission to license the work in any other way, but it does not
216 |     invalidate such permission if you have separately received it.
217 | 
218 |     d) If the work has interactive user interfaces, each must display
219 |     Appropriate Legal Notices; however, if the Program has interactive
220 |     interfaces that do not display Appropriate Legal Notices, your
221 |     work need not make them do so.
222 | 
223 |   A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit.  Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 | 
233 |   6. Conveying Non-Source Forms.
234 | 
235 |   You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 | 
240 |     a) Convey the object code in, or embodied in, a physical product
241 |     (including a physical distribution medium), accompanied by the
242 |     Corresponding Source fixed on a durable physical medium
243 |     customarily used for software interchange.
244 | 
245 |     b) Convey the object code in, or embodied in, a physical product
246 |     (including a physical distribution medium), accompanied by a
247 |     written offer, valid for at least three years and valid for as
248 |     long as you offer spare parts or customer support for that product
249 |     model, to give anyone who possesses the object code either (1) a
250 |     copy of the Corresponding Source for all the software in the
251 |     product that is covered by this License, on a durable physical
252 |     medium customarily used for software interchange, for a price no
253 |     more than your reasonable cost of physically performing this
254 |     conveying of source, or (2) access to copy the
255 |     Corresponding Source from a network server at no charge.
256 | 
257 |     c) Convey individual copies of the object code with a copy of the
258 |     written offer to provide the Corresponding Source.  This
259 |     alternative is allowed only occasionally and noncommercially, and
260 |     only if you received the object code with such an offer, in accord
261 |     with subsection 6b.
262 | 
263 |     d) Convey the object code by offering access from a designated
264 |     place (gratis or for a charge), and offer equivalent access to the
265 |     Corresponding Source in the same way through the same place at no
266 |     further charge.  You need not require recipients to copy the
267 |     Corresponding Source along with the object code.  If the place to
268 |     copy the object code is a network server, the Corresponding Source
269 |     may be on a different server (operated by you or a third party)
270 |     that supports equivalent copying facilities, provided you maintain
271 |     clear directions next to the object code saying where to find the
272 |     Corresponding Source.  Regardless of what server hosts the
273 |     Corresponding Source, you remain obligated to ensure that it is
274 |     available for as long as needed to satisfy these requirements.
275 | 
276 |     e) Convey the object code using peer-to-peer transmission, provided
277 |     you inform other peers where the object code and Corresponding
278 |     Source of the work are being offered to the general public at no
279 |     charge under subsection 6d.
280 | 
281 |   A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 | 
285 |   A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling.  In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage.  For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product.  A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 | 
298 |   "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source.  The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 | 
306 |   If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information.  But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 | 
317 |   The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed.  Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 | 
325 |   Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 | 
331 |   7. Additional Terms.
332 | 
333 |   "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law.  If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 | 
342 |   When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it.  (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.)  You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 | 
349 |   Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 | 
353 |     a) Disclaiming warranty or limiting liability differently from the
354 |     terms of sections 15 and 16 of this License; or
355 | 
356 |     b) Requiring preservation of specified reasonable legal notices or
357 |     author attributions in that material or in the Appropriate Legal
358 |     Notices displayed by works containing it; or
359 | 
360 |     c) Prohibiting misrepresentation of the origin of that material, or
361 |     requiring that modified versions of such material be marked in
362 |     reasonable ways as different from the original version; or
363 | 
364 |     d) Limiting the use for publicity purposes of names of licensors or
365 |     authors of the material; or
366 | 
367 |     e) Declining to grant rights under trademark law for use of some
368 |     trade names, trademarks, or service marks; or
369 | 
370 |     f) Requiring indemnification of licensors and authors of that
371 |     material by anyone who conveys the material (or modified versions of
372 |     it) with contractual assumptions of liability to the recipient, for
373 |     any liability that these contractual assumptions directly impose on
374 |     those licensors and authors.
375 | 
376 |   All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10.  If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term.  If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 | 
386 |   If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 | 
391 |   Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 | 
395 |   8. Termination.
396 | 
397 |   You may not propagate or modify a covered work except as expressly
398 | provided under this License.  Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 | 
403 |   However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 | 
410 |   Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 | 
417 |   Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License.  If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 | 
423 |   9. Acceptance Not Required for Having Copies.
424 | 
425 |   You are not required to accept this License in order to receive or
426 | run a copy of the Program.  Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance.  However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work.  These actions infringe copyright if you do
431 | not accept this License.  Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 | 
434 |   10. Automatic Licensing of Downstream Recipients.
435 | 
436 |   Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License.  You are not responsible
439 | for enforcing compliance by third parties with this License.
440 | 
441 |   An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations.  If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 | 
451 |   You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License.  For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 | 
459 |   11. Patents.
460 | 
461 |   A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based.  The
463 | work thus licensed is called the contributor's "contributor version".
464 | 
465 |   A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version.  For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 | 
475 |   Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 | 
480 |   In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement).  To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 | 
487 |   If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients.  "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 | 
501 |   If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 | 
509 |   A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License.  You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 | 
524 |   Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 | 
528 |   12. No Surrender of Others' Freedom.
529 | 
530 |   If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License.  If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all.  For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 | 
540 |   13. Remote Network Interaction; Use with the GNU General Public License.
541 | 
542 |   Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software.  This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 | 
553 |   Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work.  The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 | 
561 |   14. Revised Versions of this License.
562 | 
563 |   The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time.  Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 | 
568 |   Each version is given a distinguishing version number.  If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation.  If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 | 
577 |   If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 | 
582 |   Later license versions may give you additional or different
583 | permissions.  However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 | 
587 |   15. Disclaimer of Warranty.
588 | 
589 |   THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 | 
598 |   16. Limitation of Liability.
599 | 
600 |   IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 | 
610 |   17. Interpretation of Sections 15 and 16.
611 | 
612 |   If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 | 
619 |                      END OF TERMS AND CONDITIONS
620 | 
621 |             How to Apply These Terms to Your New Programs
622 | 
623 |   If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 | 
627 |   To do so, attach the following notices to the program.  It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 | 
632 |     <one line to give the program's name and a brief idea of what it does.>
633 |     Copyright (C) <year>  <name of author>
634 | 
635 |     This program is free software: you can redistribute it and/or modify
636 |     it under the terms of the GNU Affero General Public License as published
637 |     by the Free Software Foundation, either version 3 of the License, or
638 |     (at your option) any later version.
639 | 
640 |     This program is distributed in the hope that it will be useful,
641 |     but WITHOUT ANY WARRANTY; without even the implied warranty of
642 |     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
643 |     GNU Affero General Public License for more details.
644 | 
645 |     You should have received a copy of the GNU Affero General Public License
646 |     along with this program.  If not, see <http://www.gnu.org/licenses/>.
647 | 
648 | Also add information on how to contact you by electronic and paper mail.
649 | 
650 |   If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source.  For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code.  There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 | 
658 |   You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | <http://www.gnu.org/licenses/>.
662 | 


--------------------------------------------------------------------------------
/README.rst:
--------------------------------------------------------------------------------
  1 | Anomaly Detection Learning Resources
  2 | ====================================
  3 | 
  4 | .. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg
  5 |    :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers
  6 |    :alt: GitHub stars
  7 | 
  8 | 
  9 | .. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue
 10 |    :target: https://github.com/yzhao062/anomaly-detection-resources/network
 11 |    :alt: GitHub forks
 12 | 
 13 | 
 14 | .. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue
 15 |    :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE
 16 |    :alt: License
 17 | 
 18 | 
 19 | .. image:: https://awesome.re/badge-flat2.svg
 20 |    :target: https://awesome.re/badge-flat2.svg
 21 |    :alt: Awesome
 22 | 
 23 | 
 24 | .. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink
 25 |    :target: https://github.com/Minqi824/ADBench
 26 |    :alt: Benchmark
 27 | 
 28 | 
 29 | ----
 30 | 
 31 | `Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>`_
 32 | (also known as *Anomaly Detection*) is an exciting yet challenging field,
 33 | which aims to identify outlying objects that are deviant from the general data distribution.
 34 | Outlier detection has been proven critical in many fields, such as credit card
 35 | fraud analytics, network intrusion detection, and mechanical unit defect detection.
 36 | 
 37 | **This repository collects**:
 38 | 
 39 | 
 40 | #. Books & Academic Papers 
 41 | #. Online Courses and Videos
 42 | #. Outlier Datasets
 43 | #. Open-source and Commercial Libraries/Toolkits
 44 | #. Key Conferences & Journals
 45 | 
 46 | 
 47 | **More items will be added to the repository**.
 48 | Please feel free to suggest other key resources by opening an issue report,
 49 | submitting a pull request, or dropping me an email @ (yzhao010@usc.edu).
 50 | Enjoy reading!
 51 | 
 52 | BTW, you may find my `[GitHub] <https://github.com/yzhao062>`_ and
 53 | `[outlier detection papers] <https://scholar.google.com/citations?user=zoGDYsoAAAAJ&hl=en>`_ useful,
 54 | especially `PyOD library <https://github.com/yzhao062/pyod>`_, `ADBench benchmark <https://github.com/Minqi824/ADBench>`_,
 55 | and `AD-LLM: benchmarking LLMs for AD <https://github.com/USC-FORTIS/AD-LLM>`_.
 56 | 
 57 | ----
 58 | 
 59 | Table of Contents
 60 | -----------------
 61 | 
 62 | 
 63 | * `1. Books & Tutorials & Benchmarks <#1-books--tutorials--benchmarks>`_
 64 | 
 65 |   * `1.1. Books <#11-books>`_
 66 |   * `1.2. Tutorials <#12-tutorials>`_
 67 |   * `1.3. Benchmarks <#13-benchmarks>`_
 68 | 
 69 | * `2. Courses/Seminars/Videos <#2-coursesseminarsvideos>`_
 70 | * `3. Toolbox & Datasets <#3-toolbox--datasets>`_
 71 | 
 72 |   * `3.1. Multivariate data outlier detection <#31-multivariate-data>`_
 73 |   * `3.2. Time series outlier detection <#32-time-series-outlier-detection>`_
 74 |   * `3.3. Graph Outlier Detection <#33-graph-outlier-detection>`_
 75 |   * `3.4. Real-time Elasticsearch <#34-real-time-elasticsearch>`_
 76 |   * `3.5. Datasets <#35-datasets>`_
 77 | 
 78 | * `4. Papers <#4-papers>`_
 79 | 
 80 |   * `4.1. Overview & Survey Papers <#41-overview--survey-papers>`_
 81 |   * `4.2. Key Algorithms <#42-key-algorithms>`_
 82 |   * `4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>`_
 83 |   * `4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>`_
 84 |   * `4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>`_
 85 |   * `4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>`_
 86 |   * `4.7. Outlier Ensembles <#47-outlier-ensembles>`_
 87 |   * `4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>`_
 88 |   * `4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>`_
 89 |   * `4.10. Interpretability <#410-interpretability>`_
 90 |   * `4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>`_
 91 |   * `4.12. Active Anomaly Detection <#412-active-anomaly-detection>`_
 92 |   * `4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>`_
 93 |   * `4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>`_
 94 |   * `4.15. Outlier Detection Applications <#415-outlier-detection-applications>`_
 95 |   * `4.16. Automated Outlier Detection <#416-automated-outlier-detection>`_
 96 |   * `4.17. Machine Learning Systems for Outlier Detection <#417-machine-learning-systems-for-outlier-detection>`_
 97 |   * `4.18. Fairness and Bias in Outlier Detection <#418-fairness-and-bias-in-outlier-detection>`_
 98 |   * `4.19. Isolation-based Methods <#419-isolation-based-methods>`_
 99 |   * `4.20. Weakly-supervised Methods <#420-weakly-supervised-methods>`_
100 |   * `4.21. Emerging and Interesting Topics <#420-emerging-and-interesting-topics>`_
101 | 
102 | * `5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>`_
103 | 
104 |   * `5.1. Conferences & Workshops <#51-conferences--workshops>`_
105 |   * `5.2. Journals <#52-journals>`_
106 | 
107 | 
108 | ----
109 | 
110 | 
111 | 1. Books & Tutorials & Benchmarks
112 | ---------------------------------
113 | 
114 | 1.1. Books
115 | ^^^^^^^^^^
116 | 
117 | `Outlier Analysis <https://link.springer.com/book/10.1007/978-3-319-47578-3>`_ 
118 | by Charu Aggarwal: Classical text book covering most of the outlier analysis techniques. 
119 | A **must-read** for people in the field of outlier detection. `[Preview.pdf] <http://charuaggarwal.net/outlierbook.pdf>`_
120 | 
121 | `Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>`_ 
122 | by Charu Aggarwal and Saket Sathe: Great intro book for ensemble learning in outlier analysis.
123 | 
124 | `Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>`_ 
125 | by Jiawei Han and Micheline Kamber and Jian Pei: Chapter 12 discusses outlier detection with many key points. `[Google Search] <https://www.google.ca/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>`_
126 | 
127 | 1.2. Tutorials
128 | ^^^^^^^^^^^^^^
129 | 
130 | ===================================================== ============================================  =====  ============================  ==========================================================================================================================================================================
131 | Tutorial Title                                        Venue                                         Year   Ref                           Materials
132 | ===================================================== ============================================  =====  ============================  ==========================================================================================================================================================================
133 | Data mining for anomaly detection                     PKDD                                          2008   [#Lazarevic2008Data]_         `[Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>`_
134 | Outlier detection techniques                          ACM SIGKDD                                    2010   [#Kriegel2010Outlier]_        `[PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>`_
135 | Which Outlier Detector Should I use?                  ICDM                                          2018   [#Ting2018Which]_             `[PDF] <https://ieeexplore.ieee.org/document/8594824>`_
136 | Deep Learning for Anomaly Detection                   KDD                                           2020   [#Wang2020Deep]_              `[HTML] <https://sites.google.com/view/kdd2020deepeye/home>`_, `[Video] <https://www.youtube.com/watch?v=Fn0qDbKL3UI&list=PLn0nrSd4xjja7AD3aY9Jxmr820gx59EQC&index=66>`_
137 | Deep Learning for Anomaly Detection                   WSDM                                          2021   [#Pang2021Deep]_              `[HTML] <https://sites.google.com/site/gspangsite/wsdm21_tutorial>`_
138 | Toward Explainable Deep Anomaly Detection             KDD                                           2021   [#Pang2021Toward]_            `[HTML] <https://sites.google.com/site/gspangsite/kdd21_tutorial>`_
139 | Recent Advances in Anomaly Detection                  CVPR                                          2023   [#Pang2023recent]_            `[HTML] <https://sites.google.com/view/cvpr2023-tutorial-on-ad/>`_, `[Video] <https://www.youtube.com/watch?v=dXxrzWeybBo&feature=youtu.be>`_
140 | Trustworthy Anomaly Detection                         SDM                                           2024   [#Yuan2024Trustworthy]_       `[HTML] <https://yuan.shuhan.org/talks/SDM24/>`_
141 | ===================================================== ============================================  =====  ============================  ==========================================================================================================================================================================
142 | 
143 | 
144 | 1.3. Benchmarks
145 | ^^^^^^^^^^^^^^^
146 | 
147 | **News**: We have two new works on NLP-based and LLM-based anomaly detection:
148 | 
149 | - NLP-ADBench: NLP Anomaly Detection Benchmark
150 | - AD-LLM: Benchmarking Large Language Models for Anomaly Detection
151 | 
152 | =============  =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
153 | Data Types     Paper Title                                                                                        Venue                         Year   Ref                           Materials
154 | =============  =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
155 | Time-series    Revisiting Time Series Outlier Detection: Definitions and Benchmarks                               NeurIPS                       2021   [#Lai2021Revisiting]_         `[PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>`_, `[Code] <https://github.com/datamllab/tods/tree/benchmark>`_
156 | Graph          Benchmarking Node Outlier Detection on Graphs                                                      NeurIPS                       2022   [#Liu2022Benchmarking]_       `[PDF] <https://arxiv.org/abs/2206.10071>`_, `[Code] <https://github.com/pygod-team/pygod/tree/main/benchmark>`_
157 | Graph          GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection                           NeurIPS                       2023   [#Tang2023GADBench]_          `[PDF] <https://arxiv.org/abs/2306.12251>`_, `[Code] <https://github.com/squareRoot3/GADBench>`_
158 | Tabular        ADBench: Anomaly Detection Benchmark                                                               NeurIPS                       2022   [#Han2022Adbench]_            `[PDF] <https://arxiv.org/abs/2206.09426>`_, `[Code] <https://github.com/Minqi824/ADBench>`_
159 | Tabular        ADGym: Design Choices for Deep Anomaly Detection                                                   NeurIPS                       2023   [#Jiang2023adgym]_            `[PDF] <https://arxiv.org/abs/2309.15376>`_, `[Code] <https://github.com/Minqi824/ADGym>`_
160 | NLP            NLP-ADBench: NLP Anomaly Detection Benchmark                                                       Preprint                      2024   [#Li2024NLPADBench]_          `[PDF] <https://arxiv.org/abs/2412.04784>`_, `[Code] <https://github.com/USC-FORTIS/NLP-ADBench>`_
161 | NLP            AD-LLM: Benchmarking Large Language Models for Anomaly Detection                                   Preprint                      2024   [#Yang2024ADLLM]_             `[PDF] <https://arxiv.org/abs/2412.11142>`_, `[Code] <https://github.com/USC-FORTIS/AD-LLM>`_
162 | =============  =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
163 | 
164 | 
165 | ----
166 | 
167 | 2. Courses/Seminars/Videos
168 | --------------------------
169 | 
170 | **Coursera Introduction to Anomaly Detection (by IBM)**\ :
171 | `[See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>`_
172 | 
173 | **Get started with the Anomaly Detection API (by IBM)**\ :
174 | `[See Website] <https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/>`_
175 | 
176 | **Practical Anomaly Detection by appliedAI Institute**\:
177 | `[See Website] <https://transferlab.ai/trainings/practical-anomaly-detection/>`_, `[See Video] <https://www.youtube.com/watch?v=sEoMIDARpJ0&list=PLz6xKPm1Bnd6cDDgct3MDhNWJuPXzsmyW>`_, `[See GitHub] <https://github.com/aai-institute/tfl-training-practical-anomaly-detection>`_
178 | 
179 | **Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic**\ :
180 | `[See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>`_
181 | 
182 | **Coursera Machine Learning by Andrew Ng also partly covers the topic**\ :
183 | 
184 | 
185 | * `Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>`_
186 | * `Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>`_
187 | 
188 | **Udemy Outlier Detection Algorithms in Data Mining and Data Science**\ :
189 | `[See Video] <https://www.udemy.com/outlier-detection-techniques/>`_
190 | 
191 | **Stanford Data Mining for Cyber Security** also covers part of anomaly detection techniques\ :
192 | `[See Video] <http://web.stanford.edu/class/cs259d/>`_
193 | 
194 | ----
195 | 
196 | 3. Toolbox & Datasets
197 | ---------------------
198 | 
199 | [**Python**] `OpenAD <https://github.com/USC-FORTIS/OpenAD>`_: OpenAD is a multi-agent framework designed to automate anomaly detection across diverse data modalities, including tabular, graph, time series, and more. It integrates modular agents, model selection strategies, and configurable pipelines to support extensible and interpretable detection workflows. The framework is under active development and aims to support both academic research and practical deployment.
200 | 
201 | 3.1. Multivariate Data
202 | ^^^^^^^^^^^^^^^^^^^^^^
203 | 
204 | [**Python**] `Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>`_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.
205 | 
206 | [**Python**, **GPU**] `TOD: Tensor-based Outlier Detection (PyTOD) <https://github.com/yzhao062/pytod>`_: A general GPU-accelerated framework for outlier detection.
207 | 
208 | [**Python**] `Python Streaming Anomaly Detection (PySAD) <https://github.com/selimfirat/pysad>`_\ : PySAD is a streaming anomaly detection framework in Python, which provides a complete set of tools for anomaly detection experiments. It currently contains more than 15 online anomaly detection algorithms and 2 different methods to integrate PyOD detectors to the streaming setting.
209 | 
210 | [**Python**] `Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>`_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.
211 | 
212 | [**Python**] `Scalable Unsupervised Outlier Detection (SUOD) <https://github.com/yzhao062/suod>`_\ : SUOD (Scalable Unsupervised Outlier Detection) is an acceleration framework for large-scale unsupervised outlier detector training and prediction, on top of PyOD.
213 | 
214 | [**Julia**] `OutlierDetection.jl <https://github.com/OutlierDetectionJL/OutlierDetection.jl>`_\ : OutlierDetection.jl is a Julia toolkit for detecting outlying objects, also known as anomalies.
215 | 
216 | [**Java**] `ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>`_\ :
217 | ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection. 
218 | 
219 | [**Java**] `RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>`_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.
220 | 
221 | [**R**] `CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>`_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.
222 | 
223 | [**R**] `outliers package <https://cran.r-project.org/web/packages/outliers/index.html>`_\ : A collection of some tests commonly used for identifying outliers in R.
224 | 
225 | [**Matlab**] `Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>`_\ : A collection of popular outlier detection algorithms in Matlab.
226 | 
227 | 
228 | 3.2. Time Series Outlier Detection
229 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
230 | 
231 | [**Python**] `TODS <https://github.com/datamllab/tods>`_\ : TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.
232 | 
233 | [**Python**] `skyline <https://github.com/earthgecko/skyline>`_\ : Skyline is a near real time anomaly detection system.
234 | 
235 | [**Python**] `banpei <https://github.com/tsurubee/banpei>`_\ : Banpei is a Python package of the anomaly detection.
236 | 
237 | [**Python**] `telemanom <https://github.com/khundman/telemanom>`_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.
238 | 
239 | [**Python**] `DeepADoTS <https://github.com/KDD-OpenSource/DeepADoTS>`_\ : A benchmarking pipeline for anomaly detection on time series data for multiple state-of-the-art deep learning methods.
240 | 
241 | [**Python**] `NAB: The Numenta Anomaly Benchmark <https://github.com/numenta/NAB>`_\ : NAB is a novel benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications.
242 | 
243 | [**Python**] `CueObserve <https://github.com/cuebook/CueObserve>`_\ : Anomaly detection on SQL data warehouses and databases.
244 | 
245 | [**Python**] `Chaos Genius <https://github.com/chaos-genius/chaos_genius>`_\ : ML powered analytics engine for outlier/anomaly detection and root cause analysis.
246 | 
247 | [**R**] `CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>`_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.
248 | 
249 | [**R**] `AnomalyDetection <https://github.com/twitter/AnomalyDetection>`_\ : AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the presence of seasonality and an underlying trend.
250 | 
251 | [**R**] `anomalize <https://cran.r-project.org/web/packages/anomalize/>`_\ : The 'anomalize' package enables a "tidy" workflow for detecting anomalies in data.
252 | 
253 | 
254 | 3.3. Graph Outlier Detection
255 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
256 | 
257 | [**Python**] `Python Graph Outlier Detection (PyGOD) <https://github.com/pygod-team/pygod/>`_\ : PyGOD is a Python library for graph outlier detection (anomaly detection). It includes more than 10 latest graph-based detection algorithms
258 | 
259 | 
260 | 3.4. Real-time Elasticsearch
261 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
262 | 
263 | [**Open Distro**] `Real Time Anomaly Detection in Open Distro for Elasticsearch by Amazon <https://github.com/aws/random-cut-forest-by-aws>`_\ : A machine learning-based anomaly detection plugins for Open Distro for Elasticsearch. See `Real Time Anomaly Detection in Open Distro for Elasticsearch <https://opendistro.github.io/for-elasticsearch/blog/odfe-updates/2019/11/real-time-anomaly-detection-in-open-distro-for-elasticsearch/>`_.
264 | 
265 | [**Python**] `datastream.io <https://github.com/MentatInnovations/datastream.io>`_\ : An open-source framework for real-time anomaly detection using Python, Elasticsearch and Kibana.
266 | 
267 | 
268 | 3.5. Datasets
269 | ^^^^^^^^^^^^^
270 | 
271 | **NLP-ADBench**: NLP Anomaly Detection Benchmark and Datasets: https://github.com/USC-FORTIS/NLP-ADBench
272 | 
273 | **ELKI Outlier Datasets**\ : https://elki-project.github.io/datasets/outlier
274 | 
275 | **Outlier Detection DataSets (ODDS)**\ : http://odds.cs.stonybrook.edu/#table1
276 | 
277 | **Unsupervised Anomaly Detection Dataverse**\ : https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OPQMVF
278 | 
279 | **Anomaly Detection Meta-Analysis Benchmarks**\ : https://ir.library.oregonstate.edu/concern/datasets/47429f155
280 | 
281 | **Skoltech Anomaly Benchmark (SKAB)**\ : https://github.com/waico/skab
282 | 
283 | 
284 | ----
285 | 
286 | 
287 | 4. Papers
288 | ---------
289 | 
290 | 4.1. Overview & Survey Papers
291 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
292 | 
293 | Papers are sorted by the publication year.
294 | 
295 | ======================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
296 | Paper Title                                                                                                             Venue                         Year   Ref                           Materials
297 | ======================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
298 | A survey of outlier detection methodologies                                                                             ARTIF INTELL REV              2004   [#Hodge2004A]_                `[PDF] <https://www-users.cs.york.ac.uk/vicky/myPapers/Hodge+Austin_OutlierDetection_AIRE381.pdf>`_
299 | Anomaly detection: A survey                                                                                             CSUR                          2009   [#Chandola2009Anomaly]_       `[PDF] <https://www.vs.inf.ethz.ch/edu/HS2011/CPS/papers/chandola09_anomaly-detection-survey.pdf>`_
300 | A meta-analysis of the anomaly detection problem                                                                        Preprint                      2015   [#Emmott2015A]_               `[PDF] <https://arxiv.org/pdf/1503.01158.pdf>`_
301 | On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study                         DMKD                          2016   [#Campos2016On]_              `[HTML] <https://link.springer.com/article/10.1007/s10618-015-0444-8>`_, `[SLIDES] <https://imada.sdu.dk/~zimek/InvitedTalks/TUVienna-2016-05-18-outlier-evaluation.pdf>`_
302 | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data                             PLOS ONE                      2016   [#Goldstein2016A]_            `[PDF] <http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152173&type=printable>`_
303 | A comparative evaluation of outlier detection algorithms: Experiments and analyses                                      Pattern Recognition           2018   [#Domingues2018A]_            `[PDF] <https://www.researchgate.net/publication/320025854_A_comparative_evaluation_of_outlier_detection_algorithms_Experiments_and_analyses>`_
304 | Research Issues in Outlier Detection                                                                                    Book Chapter                  2019   [#Suri2019Research]_          `[HTML] <https://link.springer.com/chapter/10.1007/978-3-030-05127-3_3>`_
305 | Quantitative comparison of unsupervised anomaly detection algorithms for intrusion detection                            SAC                           2019   [#Falcao2019Quantitative]_    `[HTML] <https://dl.acm.org/citation.cfm?id=3297314>`_
306 | Progress in Outlier Detection Techniques: A Survey                                                                      IEEE Access                   2019   [#Wang2019Progress]_          `[PDF] <https://ieeexplore.ieee.org/iel7/6287639/8600701/08786096.pdf>`_
307 | Deep learning for anomaly detection: A survey                                                                           Preprint                      2019   [#Chalapathy2019Deep]_        `[PDF] <https://arxiv.org/pdf/1901.03407.pdf>`_
308 | Anomalous Instance Detection in Deep Learning: A Survey                                                                 Tech Report                   2020   [#Bulusu2020Deep]_            `[PDF] <https://arxiv.org/pdf/2003.06979.pdf>`_
309 | Anomaly detection in univariate time-series: A survey on the state-of-the-art                                           Preprint                      2020   [#Braei2020Anomaly]_          `[PDF] <https://arxiv.org/pdf/2004.00433.pdf>`_
310 | Deep Learning for Anomaly Detection: A Review                                                                           CSUR                          2021   [#Pang2020Deep]_              `[PDF] <https://arxiv.org/pdf/2007.02500.pdf>`_
311 | A Comprehensive Survey on Graph Anomaly Detection with Deep Learning                                                    TKDE                          2021   [#Ma2021A]_                   `[PDF] <https://arxiv.org/pdf/2106.07178.pdf>`_
312 | Revisiting Time Series Outlier Detection: Definitions and Benchmarks                                                    NeurIPS                       2021   [#Lai2021Revisiting]_         `[PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>`_, `[Code] <https://github.com/datamllab/tods/tree/benchmark>`_
313 | A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges      Preprint                      2021   [#Salehi2021A]_               `[PDF] <https://arxiv.org/pdf/2110.14051.pdf>`_
314 | Self-Supervised Anomaly Detection: A Survey and Outlook                                                                 Preprint                      2022   [#Hojjati2022Self]_           `[PDF] <https://arxiv.org/pdf/2205.05173.pdf>`_
315 | Weakly supervised anomaly detection: A survey                                                                           Preprint                      2023   [#Jiang2023weakly]_           `[PDF] <https://arxiv.org/abs/2302.04549>`_, `[PDF] <https://github.com/yzhao062/wsad>`_
316 | AD-LLM: Benchmarking Large Language Models for Anomaly Detection                                                        Preprint                      2024   [#Yang2024ADLLM]_             `[PDF] <https://arxiv.org/abs/2412.11142>`_, `[Code] <https://github.com/USC-FORTIS/AD-LLM>`_
317 | Large Language Models for Anomaly and Out-of-Distribution Detection: A Survey                                           Preprint                      2024   [#Xu2024LLMsurvey]_           `[PDF] <https://arxiv.org/abs/2409.01980>`_
318 | ======================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
319 | 
320 | 4.2. Key Algorithms
321 | ^^^^^^^^^^^^^^^^^^^
322 | 
323 | All these algorithms are available in `Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>`_.
324 | 
325 | ====================  =================================================================================================  =================================  =====  ===========================  ==============================================================================================================================================================================================
326 | Abbreviation          Paper Title                                                                                        Venue                              Year   Ref                          Materials
327 | ====================  =================================================================================================  =================================  =====  ===========================  ==============================================================================================================================================================================================
328 | kNN                   Efficient algorithms for mining outliers from large data sets                                      ACM SIGMOD Record                  2000   [#Ramaswamy2000Efficient]_   `[PDF] <https://webdocs.cs.ualberta.ca/~zaiane/pub/check/ramaswamy.pdf>`_
329 | KNN                   Fast outlier detection in high dimensional spaces                                                  PKDD                               2002   [#Angiulli2002Fast]_         `[PDF] <https://www.researchgate.net/profile/Clara_Pizzuti/publication/220699183_Fast_Outlier_Detection_in_High_Dimensional_Spaces/links/542ea6a60cf27e39fa9635c6.pdf>`_
330 | LOF                   LOF: identifying density-based local outliers                                                      ACM SIGMOD Record                  2000   [#Breunig2000LOF]_           `[PDF] <http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf>`_
331 | IForest               Isolation forest                                                                                   ICDM                               2008   [#Liu2008Isolation]_         `[PDF] <https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf>`_
332 | OCSVM                 Estimating the support of a high-dimensional distribution                                          Neural Computation                 2001   [#Scholkopf2001Estimating]_  `[PDF] <http://users.cecs.anu.edu.au/~williams/papers/P132.pdf>`_
333 | AutoEncoder Ensemble  Outlier detection with autoencoder ensembles                                                       SDM                                2017   [#Chen2017Outlier]_          `[PDF] <http://saketsathe.net/downloads/autoencode.pdf>`_
334 | COPOD                 COPOD: Copula-Based Outlier Detection                                                              ICDM                               2020   [#Li2020COPOD]_              `[PDF] <https://arxiv.org/abs/2009.09463>`_
335 | ECOD                  Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions                   TKDE                               2022   [#Li2021ECOD]_               `[PDF] <https://arxiv.org/abs/2201.00382>`_
336 | ====================  =================================================================================================  =================================  =====  ===========================  ==============================================================================================================================================================================================
337 | 
338 | 4.3. Graph & Network Outlier Detection
339 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
340 | 
341 | =================================================================================================  =============================  =====  ============================  ==========================================================================================================================================================================
342 | Paper Title                                                                                        Venue                          Year   Ref                           Materials
343 | =================================================================================================  =============================  =====  ============================  ==========================================================================================================================================================================
344 | Graph based anomaly detection and description: a survey                                            DMKD                           2015   [#Akoglu2015Graph]_           `[PDF] <https://arxiv.org/pdf/1404.4679.pdf>`_
345 | Anomaly detection in dynamic networks: a survey                                                    WIREs Computational Statistic  2015   [#Ranshous2015Anomaly]_       `[PDF] <https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.1347>`_
346 | Outlier detection in graphs: On the impact of multiple graph models                                ComSIS                         2019   [#Campos2019Outlier]_         `[PDF] <http://www.comsis.org/pdf.php?id=wims-8671>`_
347 | A Comprehensive Survey on Graph Anomaly Detection with Deep Learning                               TKDE                           2021   [#Ma2021A]_                   `[PDF] <https://arxiv.org/pdf/2106.07178.pdf>`_
348 | =================================================================================================  =============================  =====  ============================  ==========================================================================================================================================================================
349 | 
350 | 
351 | 4.4. Time Series Outlier Detection
352 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
353 | 
354 | =====================================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
355 | Paper Title                                                                                                                            Venue                         Year   Ref                           Materials
356 | =====================================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
357 | Outlier detection for temporal data: A survey                                                                                          TKDE                          2014   [#Gupta2014Outlier]_          `[PDF] <https://www.microsoft.com/en-us/research/wp-content/uploads/2014/01/gupta14_tkde.pdf>`_
358 | Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding                                                      KDD                           2018   [#Hundman2018Detecting]_      `[PDF] <https://arxiv.org/pdf/1802.04431.pdf>`_, `[Code] <https://github.com/khundman/telemanom>`_
359 | Time-Series Anomaly Detection Service at Microsoft                                                                                     KDD                           2019   [#Ren2019Time]_               `[PDF] <https://arxiv.org/pdf/1906.03821.pdf>`_
360 | Revisiting Time Series Outlier Detection: Definitions and Benchmarks                                                                   NeurIPS                       2021   [#Lai2021Revisiting]_         `[PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>`_, `[Code] <https://github.com/datamllab/tods/tree/benchmark>`_
361 | Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series                                                        ICLR                          2022   [#Dai2022Graph]_              `[PDF] <https://openreview.net/pdf?id=45L_dgP48Vd>`_, `[Code] <https://github.com/EnyanDai/GANF>`_
362 | Drift doesn't matter: dynamic decomposition with diffusion reconstruction for unstable multivariate time series anomaly detection      NeurIPS                       2023   [#Wang2023Drift]_             `[PDF] <https://openreview.net/pdf?id=aW5bSuduF1>`_, `[Code] <https://github.com/ForestsKing/D3R>`_
363 | =====================================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
364 | 
365 | 
366 | 4.5. Feature Selection in Outlier Detection
367 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
368 | 
369 | ================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
370 | Paper Title                                                                                                       Venue                         Year   Ref                           Materials
371 | ================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
372 | Unsupervised feature selection for outlier detection by modelling hierarchical value-feature couplings            ICDM                          2016   [#Pang2016Unsupervised]_      `[PDF] <https://opus.lib.uts.edu.au/bitstream/10453/107356/4/DSFS_ICDM2016.pdf>`_
373 | Learning homophily couplings from non-iid data for joint feature selection and noise-resilient outlier detection  IJCAI                         2017   [#Pang2017Learning]_          `[PDF] <https://www.ijcai.org/proceedings/2017/0360.pdf>`_
374 | ================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
375 | 
376 | 
377 | 4.6. High-dimensional & Subspace Outliers
378 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
379 | 
380 | ==================================================================================================  ============================  =====  ============================  =======================================================================================================================================================================================================
381 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
382 | ==================================================================================================  ============================  =====  ============================  =======================================================================================================================================================================================================
383 | A survey on unsupervised outlier detection in high-dimensional numerical data                       Stat Anal Data Min            2012   [#Zimek2012A]_                `[HTML] <https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11161>`_
384 | Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection  SIGKDD                        2018   [#Pang2018Learning]_          `[PDF] <https://arxiv.org/pdf/1806.04808.pdf>`_
385 | Reverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection                          TKDE                          2015   [#Radovanovic2015Reverse]_    `[PDF] <https://ieeexplore.ieee.org/document/6948273>`_, `[SLIDES] <https://pdfs.semanticscholar.org/c8aa/832362422418287ff56793c780b425afa93f.pdf>`_
386 | Outlier detection for high-dimensional data                                                         Biometrika                    2015   [#Ro2015Outlier]_             `[PDF] <http://web.hku.hk/~gyin/materials/2015RoZouWangYinBiometrika.pdf>`_
387 | ==================================================================================================  ============================  =====  ============================  =======================================================================================================================================================================================================
388 | 
389 | 
390 | 4.7. Outlier Ensembles
391 | ^^^^^^^^^^^^^^^^^^^^^^
392 | 
393 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
394 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
395 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
396 | Outlier ensembles: position paper                                                                  SIGKDD Explorations           2013   [#Aggarwal2013Outlier]_       `[PDF] <https://pdfs.semanticscholar.org/841e/ce7c3812bbf799c99c84c064bbcf77916ba9.pdf>`_
397 | Ensembles for unsupervised outlier detection: challenges and research questions a position paper   SIGKDD Explorations           2014   [#Zimek2014Ensembles]_        `[PDF] <http://www.kdd.org/exploration_files/V15-01-02-Zimek.pdf>`_
398 | An Unsupervised Boosting Strategy for Outlier Detection Ensembles                                  PAKDD                         2018   [#Campos2018An]_              `[HTML] <https://link.springer.com/chapter/10.1007/978-3-319-93034-3_45>`_
399 | LSCP: Locally selective combination in parallel outlier ensembles                                  SDM                           2019   [#Zhao2019LSCP]_              `[PDF] <https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.66>`_
400 | Adaptive Model Pooling for Online Deep Anomaly Detection from a Complex Evolving Data Stream       KDD                           2022   [#Yoon2022ARCUS]_             `[PDF] <https://dl.acm.org/doi/pdf/10.1145/3534678.3539348>`_, `[Github] <https://github.com/kaist-dmlab/ARCUS>`_, `[Slide] <https://drive.google.com/file/d/1JhrnEj1vScqGy69cfNUpfTjQYZh-vj_D/view>`_
401 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
402 | 
403 | 4.8. Outlier Detection in Evolving Data
404 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
405 | 
406 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
407 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
408 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
409 | A Survey on Anomaly detection in Evolving Data: [with Application to Forest Fire Risk Prediction]   SIGKDD Explorations           2018   [#Salehi2018A]_               `[PDF] <http://www.kdd.org/exploration_files/20-1-Article2.pdf>`_
410 | Unsupervised real-time anomaly detection for streaming data                                         Neurocomputing                2017   [#Ahmad2017Unsupervised]_     `[PDF] <https://www.researchgate.net/publication/317325599_Unsupervised_real-time_anomaly_detection_for_streaming_data>`_
411 | Outlier Detection in Feature-Evolving Data Streams                                                  SIGKDD                        2018   [#Manzoor2018Outlier]_        `[PDF] <https://www.andrew.cmu.edu/user/lakoglu/pubs/18-kdd-xstream.pdf>`_, `[Github] <https://cmuxstream.github.io/>`_
412 | Evaluating Real-Time Anomaly Detection Algorithms--The Numenta Anomaly Benchmark                    ICMLA                         2015   [#Lavin2015Evaluating]_       `[PDF] <https://arxiv.org/pdf/1510.03336.pdf>`_, `[Github] <https://github.com/numenta/NAB>`_
413 | MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams                                     AAAI                          2020   [#Bhatia2020MIDAS]_           `[PDF] <https://www.comp.nus.edu.sg/~sbhatia/assets/pdf/midas.pdf>`_, `[Github] <https://github.com/bhatiasiddharth/MIDAS>`_
414 | NETS: Extremely Fast Outlier Detection from a Data Stream via Set-Based Processing                  VLDB                          2019   [#Yoon2019NETS]_              `[PDF] <http://www.vldb.org/pvldb/vol12/p1303-yoon.pdf>`_, `[Github] <https://github.com/kaist-dmlab/NETS>`_, `[Slide] <https://drive.google.com/file/d/1wqKJZhEE4nTWe0zODu21ejgPDsDA_xaF/view?usp=sharing>`_
415 | Ultrafast Local Outlier Detection from a Data Stream with Stationary Region Skipping                KDD                           2020   [#Yoon2020STARE]_             `[PDF] <https://dl.acm.org/doi/pdf/10.1145/3394486.3403171>`_, `[Github] <https://github.com/kaist-dmlab/STARE>`_, `[Slide] <https://drive.google.com/file/d/11y7Gs703SKJBkPZ4nKKgua__dHXXMbkV/view?usp=sharing>`_
416 | Multiple Dynamic Outlier-Detection from a Data Stream by Exploiting Duality of Data and Queries     SIGMOD                        2021   [#Yoon2021MDUAL]_             `[PDF] <https://dl.acm.org/doi/pdf/10.1145/3448016.3452810>`_, `[Github] <https://github.com/kaist-dmlab/MDUAL>`_, `[Slide] <https://drive.google.com/file/d/1wmkkKCAcF9Dk8Wg49WnJF4U--lbtWy9J/view>`_
417 | Adaptive Model Pooling for Online Deep Anomaly Detection from a Complex Evolving Data Stream        KDD                           2022   [#Yoon2022ARCUS]_             `[PDF] <https://dl.acm.org/doi/pdf/10.1145/3534678.3539348>`_, `[Github] <https://github.com/kaist-dmlab/ARCUS>`_, `[Slide] <https://drive.google.com/file/d/1JhrnEj1vScqGy69cfNUpfTjQYZh-vj_D/view>`_
418 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
419 | 
420 | 
421 | 4.9. Representation Learning in Outlier Detection
422 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
423 | 
424 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
425 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
426 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
427 | Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection  SIGKDD                        2018   [#Pang2018Learning]_          `[PDF] <https://arxiv.org/pdf/1806.04808.pdf>`_
428 | Learning representations for outlier detection on a budget                                          Preprint                      2015   [#Micenkova2015Learning]_     `[PDF] <https://arxiv.org/pdf/1507.08104.pdf>`_
429 | XGBOD: improving supervised outlier detection with unsupervised representation learning             IJCNN                         2018   [#Zhao2018Xgbod]_             `[PDF] <https://arxiv.org/abs/1912.00290>`_
430 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
431 | 
432 | 
433 | 4.10. Interpretability
434 | ^^^^^^^^^^^^^^^^^^^^^^
435 | 
436 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
437 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
438 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
439 | Explaining Anomalies in Groups with Characterizing Subspace Rules                                  DMKD                          2018   [#Macha2018Explaining]_       `[PDF] <https://www.andrew.cmu.edu/user/lakoglu/pubs/18-pkdd-journal-xpacs.pdf>`_
440 | Beyond Outlier Detection: LookOut for Pictorial Explanation                                        ECML-PKDD                     2018   [#Gupta2018Beyond]_           `[PDF] <https://www.andrew.cmu.edu/user/lakoglu/pubs/18-pkdd-lookout.pdf>`_
441 | Contextual outlier interpretation                                                                  IJCAI                         2018   [#Liu2018Contextual]_         `[PDF] <https://arxiv.org/pdf/1711.10589.pdf>`_
442 | Mining multidimensional contextual outliers from categorical relational data                       IDA                           2015   [#Tang2015Mining]_            `[PDF] <http://www.cs.sfu.ca/~jpei/publications/Contextual%20outliers.pdf>`_
443 | Discriminative features for identifying and interpreting outliers                                  ICDE                          2014   [#Dang2014Discriminative]_    `[PDF] <https://ieeexplore.ieee.org/abstract/document/6816642>`_
444 | Sequential Feature Explanations for Anomaly Detection                                              TKDD                          2019   [#Siddiqui2019Sequential]_    `[HTML] <https://dl.acm.org/citation.cfm?id=3230666>`_
445 | A Survey on Explainable Anomaly Detection                                                          TKDD                          2023   [#Li2023XAD]_                 `[HTML] <https://dl.acm.org/doi/10.1145/3609333>`_
446 | Explainable Contextual Anomaly Detection Using Quantile Regression Forests                         DMKD                          2023   [#Li2023QCAD]_                `[HTML] <https://link.springer.com/article/10.1007/s10618-023-00967-z>`_
447 | Beyond Outlier Detection: Outlier Interpretation by Attention-Guided Triplet Deviation Network     WWW                           2021   [#Xu2021Beyond]_              `[PDF] <https://jiansonglei.github.io/files/21WWW.pdf>`_
448 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
449 | 
450 | 
451 | 4.11. Outlier Detection with Neural Networks
452 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
453 | 
454 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
455 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
456 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
457 | Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding                   KDD                           2018   [#Hundman2018Detecting]_      `[PDF] <https://arxiv.org/pdf/1802.04431.pdf>`_, `[Code] <https://github.com/khundman/telemanom>`_
458 | MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks   ICANN                         2019   [#Li2019MAD]_                 `[PDF] <https://arxiv.org/pdf/1901.04997.pdf>`_, `[Code] <https://github.com/LiDan456/MAD-GANs>`_
459 | Generative Adversarial Active Learning for Unsupervised Outlier Detection                           TKDE                          2019   [#Liu2019Generative]_         `[PDF] <https://arxiv.org/pdf/1809.10816.pdf>`_, `[Code] <https://github.com/leibinghe/GAAL-based-outlier-detection>`_
460 | Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection                         ICLR                          2018   [#Zong2018Deep]_              `[PDF] <http://www.cs.ucsb.edu/~bzong/doc/iclr18-dagmm.pdf>`_, `[Code] <https://github.com/danieltan07/dagmm>`_
461 | Deep Anomaly Detection with Outlier Exposure                                                        ICLR                          2019   [#Hendrycks2019Deep]_         `[PDF] <https://arxiv.org/pdf/1812.04606.pdf>`_, `[Code] <https://github.com/hendrycks/outlier-exposure>`_
462 | Unsupervised Anomaly Detection With LSTM Neural Networks                                            TNNLS                         2019   [#Ergen2019Unsupervised]_     `[PDF] <https://arxiv.org/pdf/1710.09207.pdf>`_, `[IEEE] <https://ieeexplore.ieee.org/document/8836638>`_,
463 | Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network   NeurIPS                       2019   [#Wang2019Effective]_         `[PDF] <https://papers.nips.cc/paper/8830-effective-end-to-end-unsupervised-outlier-detection-via-inlier-priority-of-discriminative-network.pdf>`_ `[Code] <https://github.com/demonzyj56/E3Outlier>`_
464 | Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning  ICML                          2023   [#Xu2023Fascinating]_         `[PDF] <https://arxiv.org/abs/2305.16114>`_, `[Code] <https://github.com/xuhongzuo/scale-learning>`_ 
465 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
466 | 
467 | 
468 | 4.12. Active Anomaly Detection
469 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
470 | 
471 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
472 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
473 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
474 | Active learning for anomaly and rare-category detection                                             NeurIPS                       2005   [#Pelleg2005Active]_          `[PDF] <http://papers.nips.cc/paper/2554-active-learning-for-anomaly-and-rare-category-detection.pdf>`_
475 | Outlier detection by active learning                                                                SIGKDD                        2006   [#Abe2006Outlier]_            `[PDF] <https://www.researchgate.net/profile/Naoki_Abe2/publication/221653343_Outlier_detection_by_active_learning/links/5441464a0cf2e6f0c0f60abb.pdf>`_
476 | Active Anomaly Detection via Ensembles: Insights, Algorithms, and Interpretability                  Preprint                      2019   [#Das2019Active]_             `[PDF] <https://arxiv.org/pdf/1901.08930.pdf>`_
477 | Meta-AAD: Active Anomaly Detection with Deep Reinforcement Learning                                 ICDM                          2020   [#Zha2020Meta]_               `[PDF] <https://arxiv.org/pdf/2009.07415.pdf>`_
478 | A3: Activation Anomaly Analysis                                                                     ECML-PKDD                     2020   [#Sperl2021A3]_               `[PDF] <https://arxiv.org/pdf/2003.01801>`_, `[Code] <https://github.com/Fraunhofer-AISEC/A3>`_
479 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
480 | 
481 | 
482 | 4.13. Interactive Outlier Detection
483 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
484 | 
485 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
486 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
487 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
488 | Learning On-the-Job to Re-rank Anomalies from Top-1 Feedback                                       SDM                           2019   [#Lamba2019Learning]_         `[PDF] <https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.69>`_
489 | Interactive anomaly detection on attributed networks                                               WSDM                          2019   [#Ding2019Interactive]_       `[PDF] <http://www.public.asu.edu/~jundongl/paper/WSDM19_GraphUCB.pdf>`_
490 | eX2: a framework for interactive anomaly detection                                                 IUI Workshop                  2019   [#Arnaldo2019ex2]_            `[PDF] <http://ceur-ws.org/Vol-2327/IUI19WS-ESIDA-2.pdf>`_
491 | Tripartite Active Learning for Interactive Anomaly Discovery                                       IEEE Access                   2019   [#Zhu2019Tripartite]_         `[PDF] <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8707963>`_
492 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
493 | 
494 | 
495 | 4.14. Outlier Detection in Other fields
496 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
497 | 
498 | ============== =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
499 | Field          Paper Title                                                                                        Venue                         Year   Ref                           Materials
500 | ============== =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
501 | **Text**       Outlier detection for text data                                                                    SDM                           2017   [#Kannan2017Outlier]_         `[PDF] <https://epubs.siam.org/doi/pdf/10.1137/1.9781611974973.55>`_
502 | ============== =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
503 | 
504 | 
505 | 4.15. Outlier Detection Applications
506 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
507 | 
508 | ========================    =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
509 | Field                       Paper Title                                                                                        Venue                         Year   Ref                           Materials
510 | ========================    =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
511 | **Security**                A survey of distance and similarity measures used within network intrusion anomaly detection       IEEE Commun. Surv. Tutor.     2015   [#WellerFahy2015A]_           `[PDF] <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6853338>`_
512 | **Security**                Anomaly-based network intrusion detection: Techniques, systems and challenges                      Computers & Security          2009   [#GarciaTeodoro2009Anomaly]_  `[PDF] <https://www2.cs.uh.edu/~acl/cs6397/Doc/2009-Elsevier-Anomaly-based%20network%20intrusion%20detection.pdf>`_
513 | **Finance**                 A survey of anomaly detection techniques in financial domain                                       Future Gener Comput Syst      2016   [#Ahmed2016A]_                `[PDF] <https://www.sciencedirect.com/science/article/abs/pii/S0167739X15000023>`_
514 | **Traffic**                 Outlier Detection in Urban Traffic Data                                                            WIMS                          2018   [#Djenouri2018Outlier]_       `[PDF] <http://dss.sdu.dk/assets/fpd-lof/outlier-detection-urban.pdf>`_
515 | **Social Media**            A survey on social media anomaly detection                                                         SIGKDD Explorations           2016   [#Yu2016A]_                   `[PDF] <https://arxiv.org/pdf/1601.01102.pdf>`_
516 | **Social Media**            GLAD: group anomaly detection in social media analysis                                             TKDD                          2015   [#Yu2015Glad]_                `[PDF] <https://arxiv.org/pdf/1410.1940.pdf>`_
517 | **Machine Failure**         Detecting the Onset of Machine Failure Using Anomaly Detection Methods                             DAWAK                         2019   [#Riazi2019Detecting]_        `[PDF] <https://webdocs.cs.ualberta.ca/~zaiane/postscript/DAWAK19.pdf>`_
518 | **Video Surveillance**      AnomalyNet: An anomaly detection network for video surveillance                                    TIFS                          2019   [#Zhou2019AnomalyNet]_        `[IEEE] <https://ieeexplore.ieee.org/document/8649753>`_, `Code <https://github.com/joeyzhouty/AnomalyNet>`_
519 | ========================    =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
520 | 
521 | 
522 | 4.16. Automated Outlier Detection
523 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
524 | 
525 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
526 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
527 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
528 | AutoML: state of the art with a focus on anomaly detection, challenges, and research directions    Int J Data Sci Anal           2022   [#Bahri2022automl]_           `[PDF] <https://www.researchgate.net/publication/358364044_AutoML_state_of_the_art_with_a_focus_on_anomaly_detection_challenges_and_research_directions>`_
529 | AutoOD: Automated Outlier Detection via Curiosity-guided Search and Self-imitation Learning        ICDE                          2020   [#Li2020AutoOD]_              `[PDF] <https://arxiv.org/pdf/2006.11321.pdf>`_
530 | Automatic Unsupervised Outlier Model Selection                                                     NeurIPS                       2021   [#Zhao2020Automating]_        `[PDF] <https://openreview.net/forum?id=KCd-3Pz8VjM>`_, `[Code] <https://github.com/yzhao062/MetaOD>`_
531 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
532 | 
533 | 
534 | 4.17. Machine Learning Systems for Outlier Detection
535 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
536 | 
537 | This section summarizes a list of systems for outlier detection, which may
538 | overlap with the section of tools and libraries.
539 | 
540 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
541 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
542 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
543 | PyOD: A Python Toolbox for Scalable Outlier Detection                                              JMLR                          2019   [#Zhao2019PYOD]_              `[PDF] <https://www.jmlr.org/papers/volume20/19-011/19-011.pdf>`_, `[Code] <https://github.com/yzhao062/pyod>`_
544 | SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier Detection                        MLSys                         2021   [#Zhao2021SUOD]_              `[PDF] <https://arxiv.org/pdf/2003.05731.pdf>`_, `[Code] <https://github.com/yzhao062/suod>`_
545 | TOD: Tensor-based Outlier Detection                                                                Preprint                      2021   [#Zhao2021TOD]_               `[PDF] <https://arxiv.org/pdf/2110.14007.pdf>`_, `[Code] <https://github.com/yzhao062/pytod>`_
546 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
547 | 
548 | 
549 | 
550 | 4.18. Fairness and Bias in Outlier Detection
551 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
552 | 
553 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
554 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
555 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
556 | A Framework for Determining the Fairness of Outlier Detection                                      ECAI                          2020   [#Davidson2020A]_             `[PDF] <https://web.cs.ucdavis.edu/~davidson/Publications/TR.pdf>`_
557 | FAIROD: Fairness-aware Outlier Detection                                                           AIES                          2021   [#Shekhar2021FAIROD]_         `[PDF] <https://arxiv.org/pdf/2012.03063.pdf>`_
558 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
559 | 
560 | 
561 | 
562 | 4.19. Isolation-Based Methods
563 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
564 | 
565 | =================================================================================================  ============================  =====  =============================  ==============================================================================================================================================================================================
566 | Paper Title                                                                                        Venue                         Year   Ref                            Materials
567 | =================================================================================================  ============================  =====  =============================  ==============================================================================================================================================================================================
568 | Isolation forest                                                                                   ICDM                          2008   [#Liu2008Isolation]_           `[PDF] <https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf>`_
569 | Isolation‐based anomaly detection using nearest‐neighbor ensembles                                  Computational Intelligence    2018   [#Bandaragoda2018Isolation]_   `[PDF] <https://www.researchgate.net/publication/322359651_Isolation-based_anomaly_detection_using_nearest-neighbor_ensembles_iNNE>`_, `[Code] <https://github.com/zhuye88/iNNE>`_
570 | Extended Isolation Forest                                                                          TKDE                          2019   [#Hariri2019Extended]_         `[PDF] <https://arxiv.org/pdf/1811.02141.pdf>`_, `[Code] <https://github.com/sahandha/eif>`_
571 | Isolation Distributional Kernel: A New Tool for Kernel based Anomaly Detection                     KDD                           2020   [#Ting2020Isolation]_          `[PDF] <https://arxiv.org/pdf/2009.12196.pdf>`_, `[Code] <https://github.com/IsolationKernel/Codes/tree/main/IDK>`_
572 | Deep Isolation Forest for Anomaly Detection                                                        TKDE                          2023   [#Xu2023Deep]_                 `[PDF] <https://arxiv.org/abs/2206.06602>`_, `[Code] <https://github.com/xuhongzuo/deep-iforest>`_
573 | =================================================================================================  ============================  =====  =============================  ==============================================================================================================================================================================================
574 | 
575 | 
576 | 4.20. Weakly-Supervised Methods
577 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
578 | 
579 | =================================================================================================  ============================  =====  =============================  ==============================================================================================================================================================================================
580 | Paper Title                                                                                        Venue                         Year   Ref                            Materials
581 | =================================================================================================  ============================  =====  =============================  ==============================================================================================================================================================================================
582 | XGBOD: improving supervised outlier detection with unsupervised representation learning            IJCNN                         2018   [#Zhao2018Xgbod]_              `[PDF] <https://arxiv.org/abs/1912.00290>`_
583 | Feature Encoding With Autoencoders for Weakly Supervised Anomaly Detection                         TNNLS                         2021   [#Zhou2021Feature]_            `[PDF] <https://arxiv.org/pdf/2105.10500.pdf>`_, `[Code] <https://github.com/yj-zhou/Feature_Encoding_with_AutoEncoders_for_Weakly-supervised_Anomaly_Detection>`_
584 | =================================================================================================  ============================  =====  =============================  ==============================================================================================================================================================================================
585 | 
586 | 
587 | 
588 | 4.21. Emerging and Interesting Topics
589 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
590 | 
591 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
592 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
593 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
594 | Clustering with Outlier Removal                                                                    TKDE                          2019   [#Liu2018Clustering]_         `[PDF] <https://arxiv.org/pdf/1801.01899.pdf>`_
595 | Real-World Anomaly Detection by using Digital Twin Systems and Weakly-Supervised Learning          IEEE Trans. Ind. Informat.    2020   [#Castellani2020Siamese]_     `[PDF] <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9179030>`_
596 | SSD: A Unified Framework for Self-Supervised Outlier Detection                                     ICLR                          2021   [#Sehwag2021SSD]_             `[PDF] <https://openreview.net/pdf?id=v5gjXpmR8J>`_, `[Code] <https://github.com/inspire-group/SSD>`_
597 | AD-LLM: Benchmarking Large Language Models for Anomaly Detection                                   Preprint                      2024   [#Yang2024ADLLM]_             `[PDF] <https://arxiv.org/abs/2412.11142>`_, `[Code] <https://github.com/USC-FORTIS/AD-LLM>`_
598 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
599 | 
600 | 
601 | ----
602 | 
603 | 5. Key Conferences/Workshops/Journals
604 | -------------------------------------
605 | 
606 | 5.1. Conferences & Workshops
607 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
608 | 
609 | Key data mining conference **deadlines**, **historical acceptance rates**, and more
610 | can be found `data-mining-conferences <https://github.com/yzhao062/data-mining-conferences>`_.
611 | 
612 | 
613 | `ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) <http://www.kdd.org/conferences>`_. **Note**: SIGKDD usually has an Outlier Detection Workshop (ODD), see `ODD 2021 <https://oddworkshop.github.io/>`_.
614 | 
615 | `ACM International Conference on Management of Data (SIGMOD) <https://sigmod.org/>`_
616 | 
617 | `The Web Conference (WWW) <https://www2018.thewebconf.org/>`_
618 | 
619 | `IEEE International Conference on Data Mining (ICDM) <https://icdm2024.org//>`_
620 | 
621 | `SIAM International Conference on Data Mining (SDM) <https://www.siam.org/Conferences/CM/Main/sdm19>`_
622 | 
623 | `IEEE International Conference on Data Engineering (ICDE) <https://icde2018.org/>`_
624 | 
625 | `ACM InternationalConference on Information and Knowledge Management (CIKM) <http://www.cikmconference.org/>`_
626 | 
627 | `ACM International Conference on Web Search and Data Mining (WSDM) <http://www.wsdm-conference.org/2018/>`_
628 | 
629 | `The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD) <http://www.ecmlpkdd2018.org/>`_
630 | 
631 | `The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) <http://pakdd2019.medmeeting.org>`_
632 | 
633 | 5.2. Journals
634 | ^^^^^^^^^^^^^
635 | 
636 | `ACM Transactions on Knowledge Discovery from Data (TKDD) <https://tkdd.acm.org/>`_
637 | 
638 | `IEEE Transactions on Knowledge and Data Engineering (TKDE) <https://www.computer.org/web/tkde>`_
639 | 
640 | `ACM SIGKDD Explorations Newsletter <http://www.kdd.org/explorations>`_
641 | 
642 | `Data Mining and Knowledge Discovery <https://link.springer.com/journal/10618>`_
643 | 
644 | `Knowledge and Information Systems (KAIS) <https://link.springer.com/journal/10115>`_
645 | 
646 | ----
647 | 
648 | References
649 | ----------
650 | 
651 | .. [#Abe2006Outlier] Abe, N., Zadrozny, B. and Langford, J., 2006, August. Outlier detection by active learning. In *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 504-509, ACM.
652 | 
653 | .. [#Aggarwal2013Outlier] Aggarwal, C.C., 2013. Outlier ensembles: position paper. *ACM SIGKDD Explorations Newsletter*\ , 14(2), pp.49-58.
654 | 
655 | .. [#Ahmed2016A] Ahmed, M., Mahmood, A.N. and Islam, M.R., 2016. A survey of anomaly detection techniques in financial domain. *Future Generation Computer Systems*\ , 55, pp.278-288.
656 | 
657 | .. [#Ahmad2017Unsupervised] Ahmad, S., Lavin, A., Purdy, S. and Agha, Z., 2017. Unsupervised real-time anomaly detection for streaming data. *Neurocomputing*, 262, pp.134-147.
658 | 
659 | .. [#Akoglu2015Graph] Akoglu, L., Tong, H. and Koutra, D., 2015. Graph based anomaly detection and description: a survey. *Data Mining and Knowledge Discovery*\ , 29(3), pp.626-688.
660 | 
661 | .. [#Angiulli2002Fast] Angiulli, F. and Pizzuti, C., 2002, August. Fast outlier detection in high dimensional spaces. In *European Conference on Principles of Data Mining and Knowledge Discovery*, pp. 15-27.
662 | 
663 | .. [#Arnaldo2019ex2] Arnaldo, I., Veeramachaneni, K. and Lam, M., 2019. ex2: a framework for interactive anomaly detection. In *ACM IUI Workshop on Exploratory Search and Interactive Data Analytics (ESIDA)*.
664 | 
665 | .. [#Bahri2022automl] Bahri, M., Salutari, F., Putina, A. et al. AutoML: state of the art with a focus on anomaly detection, challenges, and research directions. *International Journal of Data Science and Analytics*  (2022).
666 | 
667 | .. [#Bandaragoda2018Isolation] Bandaragoda, Tharindu R., Kai Ming Ting, David Albrecht, Fei Tony Liu, Ye Zhu, and Jonathan R. Wells. "Isolation‐based anomaly detection using nearest‐neighbor ensembles." *Computational Intelligence* 34, no. 4 (2018): 968-998.
668 | 
669 | .. [#Bhatia2020MIDAS] Bhatia, S., Hooi, B., Yoon, M., Shin, K. and Faloutsos. C., 2020. MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams. In *AAAI Conference on Artificial Intelligence (AAAI)*.
670 | 
671 | .. [#Braei2020Anomaly] Braei, M. and Wagner, S., 2020. Anomaly detection in univariate time-series: A survey on the state-of-the-art. arXiv preprint arXiv:2004.00433.
672 | 
673 | .. [#Breunig2000LOF] Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 2000, May. LOF: identifying density-based local outliers. *ACM SIGMOD Record*\ , 29(2), pp. 93-104.
674 | 
675 | .. [#Bulusu2020Deep] Bulusu, S., Kailkhura, B., Li, B., Varshney, P. and Song, D., 2020. Anomalous instance detection in deep learning: A survey (No. LLNL-CONF-808677). Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).
676 | 
677 | .. [#Campos2016On] Campos, G.O., Zimek, A., Sander, J., Campello, R.J., Micenková, B., Schubert, E., Assent, I. and Houle, M.E., 2016. On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. *Data Mining and Knowledge Discovery*\ , 30(4), pp.891-927.
678 | 
679 | .. [#Campos2018An] Campos, G.O., Zimek, A. and Meira, W., 2018, June. An Unsupervised Boosting Strategy for Outlier Detection Ensembles. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 564-576)*. Springer, Cham.
680 | 
681 | .. [#Campos2019Outlier] Campos, G.O., Moreira, E., Meira Jr, W. and Zimek, A., 2019. Outlier Detection in Graphs: A Study on the Impact of Multiple Graph Models. *Computer Science & Information Systems*, 16(2).
682 | 
683 | .. [#Castellani2020Siamese] Castellani, A., Schmitt, S., Squartini, S., 2020. Real-World Anomaly Detection by using Digital Twin Systems and Weakly-Supervised Learning. In *IEEE Transactions on Industrial Informatics*.
684 | 
685 | .. [#Chalapathy2019Deep] Chalapathy, R. and Chawla, S., 2019. Deep learning for anomaly detection: A survey. arXiv preprint arXiv:1901.03407.
686 | 
687 | .. [#Chandola2009Anomaly] Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly detection: A survey. *ACM computing surveys* , 41(3), p.15.
688 | 
689 | .. [#Chawla2011Anomaly] Chawla, S. and Chandola, V., 2011, Anomaly Detection: A Tutorial. *Tutorial at ICDM 2011*.
690 | 
691 | .. [#Chen2017Outlier] Chen, J., Sathe, S., Aggarwal, C. and Turaga, D., 2017, June. Outlier detection with autoencoder ensembles. *SIAM International Conference on Data Mining*, pp. 90-98. Society for Industrial and Applied Mathematics.
692 | 
693 | .. [#Dai2022Graph] Dai, E. and Chen, J., 2022. Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series. International Conference on Learning Representations (ICLR).
694 | 
695 | .. [#Dang2014Discriminative] Dang, X.H., Assent, I., Ng, R.T., Zimek, A. and Schubert, E., 2014, March. Discriminative features for identifying and interpreting outliers. In *International Conference on Data Engineering (ICDE)*. IEEE.
696 | 
697 | .. [#Das2019Active] Das, S., Islam, M.R., Jayakodi, N.K. and Doppa, J.R., 2019. Active Anomaly Detection via Ensembles: Insights, Algorithms, and Interpretability. arXiv preprint arXiv:1901.08930.
698 | 
699 | .. [#Davidson2020A] Davidson, I. and Ravi, S.S., 2020. A framework for determining the fairness of outlier detection. In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI2020) (Vol. 2029).
700 | 
701 | .. [#Ding2019Interactive] Ding, K., Li, J. and Liu, H., 2019, January. Interactive anomaly detection on attributed networks. In *Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining*, pp. 357-365. ACM.
702 | 
703 | .. [#Djenouri2018Outlier] Djenouri, Y. and Zimek, A., 2018, June. Outlier detection in urban traffic data. In *Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics*. ACM.
704 | 
705 | .. [#Domingues2018A] Domingues, R., Filippone, M., Michiardi, P. and Zouaoui, J., 2018. A comparative evaluation of outlier detection algorithms: Experiments and analyses. *Pattern Recognition*, 74, pp.406-421.
706 | 
707 | .. [#Emmott2015A] Emmott, A., Das, S., Dietterich, T., Fern, A. and Wong, W.K., 2015. A meta-analysis of the anomaly detection problem. arXiv preprint arXiv:1503.01158.
708 | 
709 | .. [#Ergen2019Unsupervised] Ergen, T. and Kozat, S.S., 2019. Unsupervised Anomaly Detection With LSTM Neural Networks. *IEEE transactions on neural networks and learning systems*.
710 | 
711 | .. [#Falcao2019Quantitative] Falcão, F., Zoppi, T., Silva, C.B.V., Santos, A., Fonseca, B., Ceccarelli, A. and Bondavalli, A., 2019, April. Quantitative comparison of unsupervised anomaly detection algorithms for intrusion detection. In *Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing*, (pp. 318-327). ACM.
712 | 
713 | .. [#GarciaTeodoro2009Anomaly] Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G. and Vázquez, E., 2009. Anomaly-based network intrusion detection: Techniques, systems and challenges. *Computers & Security*\ , 28(1-2), pp.18-28.
714 | 
715 | .. [#Goldstein2016A] Goldstein, M. and Uchida, S., 2016. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. *PloS one*\ , 11(4), p.e0152173.
716 | 
717 | .. [#Gupta2014Outlier] Gupta, M., Gao, J., Aggarwal, C.C. and Han, J., 2014. Outlier detection for temporal data: A survey. *IEEE Transactions on Knowledge and Data Engineering*\ , 26(9), pp.2250-2267.
718 | 
719 | .. [#Hariri2019Extended] Hariri, S., Kind, M.C. and Brunner, R.J., 2019. Extended Isolation Forest. *IEEE Transactions on Knowledge and Data Engineering*.
720 | 
721 | .. [#Hendrycks2019Deep] Hendrycks, D., Mazeika, M. and Dietterich, T.G., 2019. Deep Anomaly Detection with Outlier Exposure. International Conference on Learning Representations (ICLR).
722 | 
723 | .. [#Hodge2004A] Hodge, V. and Austin, J., 2004. A survey of outlier detection methodologies. *Artificial intelligence review*\ , 22(2), pp.85-126.
724 | 
725 | .. [#Hojjati2022Self] Hojjati, H., Ho, T.K.K. and Armanfard, N., 2022. Self-Supervised Anomaly Detection: A Survey and Outlook. arXiv preprint arXiv:2205.05173.
726 | 
727 | .. [#Hundman2018Detecting] Hundman, K., Constantinou, V., Laporte, C., Colwell, I. and Soderstrom, T., 2018, July. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, (pp. 387-395). ACM.
728 | 
729 | .. [#Kannan2017Outlier] Kannan, R., Woo, H., Aggarwal, C.C. and Park, H., 2017, June. Outlier detection for text data. In *Proceedings of the 2017 SIAM International Conference on Data Mining*, pp. 489-497. Society for Industrial and Applied Mathematics. 
730 | 
731 | .. [#Kriegel2010Outlier] Kriegel, H.P., Kröger, P. and Zimek, A., 2010. Outlier detection techniques. *Tutorial at ACM SIGKDD 2010*.
732 | 
733 | .. [#Jiang2023adgym] Jiang, M., Hou, C., Zheng, A., Han, S., Huang, H., Wen, Q., Hu, X. and Zhao, Y., 2023. ADGym: Design Choices for Deep Anomaly Detection. *NeurIPS*, Datasets and Benchmarks Track.
734 | 
735 | .. [#Jiang2023weakly] Jiang, M., Hou, C., Zheng, A., Hu, X., Han, S., Huang, H., He, X., Yu, P.S. and Zhao, Y., 2023. Weakly supervised anomaly detection: A survey. arXiv preprint arXiv:2302.04549.
736 | 
737 | .. [#Lai2021Revisiting] Lai, K.H., Zha, D., Xu, J., Zhao, Y., Wang, G. and Hu, X., 2021. Revisiting Time Series Outlier Detection: Definitions and Benchmarks. *NeurIPS*, Datasets and Benchmarks Track.
738 | 
739 | .. [#Lamba2019Learning] Lamba, H. and Akoglu, L., 2019, May. Learning On-the-Job to Re-rank Anomalies from Top-1 Feedback. In *Proceedings of the 2019 SIAM International Conference on Data Mining (SDM)*, pp. 612-620. Society for Industrial and Applied Mathematics.
740 | 
741 | .. [#Lavin2015Evaluating] Lavin, A. and Ahmad, S., 2015, December. Evaluating Real-Time Anomaly Detection Algorithms--The Numenta Anomaly Benchmark. In *2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)* (pp. 38-44). IEEE.
742 | 
743 | .. [#Lazarevic2008Data] Lazarevic, A., Banerjee, A., Chandola, V., Kumar, V. and Srivastava, J., 2008, September. Data mining for anomaly detection. *Tutorial at ECML PKDD 2008*.
744 | 
745 | .. [#Li2019MAD] Li, D., Chen, D., Jin, B., Shi, L., Goh, J. and Ng, S.K., 2019, September. MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks. In *International Conference on Artificial Neural Networks* (pp. 703-716). Springer, Cham.
746 | 
747 | .. [#Li2020COPOD] Li, Z., Zhao, Y., Botta, N., Ionescu, C. and Hu, X. COPOD: Copula-Based Outlier Detection. *IEEE International Conference on Data Mining (ICDM)*, 2020.
748 | 
749 | .. [#Li2021ECOD] Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C. and Chen, H. G. ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 2022.
750 | 
751 | .. [#Li2023XAD] Li, Z., Zhu, Y. and Van Leeuwen, M., 2023. A survey on explainable anomaly detection. *ACM Transactions on Knowledge Discovery from Data*, 18(1), pp.1-54.
752 | 
753 | .. [#Li2023QCAD] Li, Z. and Van Leeuwen, M., 2023. Explainable contextual anomaly detection using quantile regression forests. *Data Mining and Knowledge Discovery*, 37(6), pp.2517-2563.
754 | 
755 | .. [#Li2024NLPADBench] Li, Y., Li, J., Xiao, Z., Yang, T., Nian, Y., Hu, X. and Zhao, Y. "NLP-ADBench: NLP Anomaly Detection Benchmark," arXiv preprint arXiv:2412.04784.
756 | 
757 | .. [#Yang2024ADLLM] Yang, T., Nian, Y., Li, S., Xu, R., Li, Y., Li, J., Xiao, Z., Hu, X., Rossi, R., Ding, K., Hu, X. and Zhao, Y.  "AD-LLM: Benchmarking Large Language Models for Anomaly Detection," arXiv preprint arXiv:2412.11142.
758 | 
759 | .. [#Liu2008Isolation] Liu, F.T., Ting, K.M. and Zhou, Z.H., 2008, December. Isolation forest. In *International Conference on Data Mining*\ , pp. 413-422. IEEE.
760 | 
761 | .. [#Liu2018Clustering] Liu, H., Li, J., Wu, Y. and Fu, Y., 2019. Clustering with outlier removal. *IEEE transactions on knowledge and data engineering*.
762 | 
763 | .. [#Liu2018Contextual] Liu, N., Shin, D. and Hu, X., 2017. Contextual outlier interpretation. In *International Joint Conference on Artificial Intelligence (IJCAI-18)*, pp.2461-2467.
764 | 
765 | .. [#Liu2019Generative] Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M. and He, X., 2019. Generative Adversarial Active Learning for Unsupervised Outlier Detection. *IEEE transactions on knowledge and data engineering*.
766 | 
767 | .. [#Li2020AutoOD] Li, Y., Chen, Z., Zha, D., Zhou, K., Jin, H., Chen, H. and Hu, X., 2020. AutoOD: Automated Outlier Detection via Curiosity-guided Search and Self-imitation Learning. *ICDE*.
768 | 
769 | .. [#Liu2022Benchmarking] Liu, K., Dou, Y., Zhao, Y., Ding, X., Hu, X., Zhang, R., Ding, K., Chen, C., Peng, H., Shu, K., Sun, L., Li, J., Chen, G.H., Jia, Z., and Yu, P.S. 2022. Benchmarking Node Outlier Detection on Graphs. arXiv preprint arXiv:2206.10071.
770 | 
771 | .. [#Ma2021A] Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q.Z., Xiong, H. and Akoglu, L., 2021. A comprehensive survey on graph anomaly detection with deep learning. *IEEE Transactions on Knowledge and Data Engineering*.
772 | 
773 | .. [#Macha2018Explaining] Macha, M. and Akoglu, L., 2018. Explaining anomalies in groups with characterizing subspace rules. Data Mining and Knowledge Discovery, 32(5), pp.1444-1480.
774 | 
775 | .. [#Manzoor2018Outlier] Manzoor, E., Lamba, H. and Akoglu, L. Outlier Detection in Feature-Evolving Data Streams. In *24th ACM SIGKDD International Conference on Knowledge Discovery and Data mining (KDD)*. 2018.
776 | 
777 | .. [#Mendiratta2017Anomaly] Mendiratta, B.V., 2017. Anomaly Detection in Networks. *Tutorial at ACM SIGKDD 2017*.
778 | 
779 | .. [#Micenkova2015Learning] Micenková, B., McWilliams, B. and Assent, I., 2015. Learning representations for outlier detection on a budget. arXiv preprint arXiv:1507.08104.
780 | 
781 | .. [#Gupta2018Beyond] Gupta, N., Eswaran, D., Shah, N., Akoglu, L. and Faloutsos, C., Beyond Outlier Detection: LookOut for Pictorial Explanation. *ECML PKDD 2018*.
782 | 
783 | .. [#Han2022Adbench] Han, S., Hu, X., Huang, H., Jiang, M. and Zhao, Y., 2022. ADBench: Anomaly Detection Benchmark. arXiv preprint arXiv:2206.09426.
784 | 
785 | .. [#Pang2016Unsupervised] Pang, G., Cao, L., Chen, L. and Liu, H., 2016, December. Unsupervised feature selection for outlier detection by modelling hierarchical value-feature couplings. In Data Mining (ICDM), 2016 IEEE 16th International Conference on (pp. 410-419). IEEE.
786 | 
787 | .. [#Pang2017Learning] Pang, G., Cao, L., Chen, L. and Liu, H., 2017, August. Learning homophily couplings from non-iid data for joint feature selection and noise-resilient outlier detection. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 2585-2591). AAAI Press.
788 | 
789 | .. [#Pang2018Learning] Pang, G., Cao, L., Chen, L. and Liu, H., 2018. Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection. In *24th ACM SIGKDD International Conference on Knowledge Discovery and Data mining (KDD)*. 2018.
790 | 
791 | .. [#Pang2020Deep] Pang, G., Shen, C., Cao, L. and Hengel, A.V.D., 2021. Deep Learning for Anomaly Detection: A Review. ACM Computing Surveys (CSUR), 54(2), pp.1-38.
792 | 
793 | .. [#Pang2021Deep] Pang, G., Cao, L. and Aggarwal, C., 2021. Deep Learning for Anomaly Detection. *Tutorial at WSDM 2021*.
794 | 
795 | .. [#Pang2021Toward] Pang, G. and Aggarwal, C., 2021, August. Toward explainable deep anomaly detection. In *KDD* (pp. 4056-4057).
796 | 
797 | .. [#Pang2023recent] Guansong Pang, Joey Tianyi Zhou, Radu Tudor Ionescu, Yu Tian, and Kihyuk Sohn. "Recent Advances in Anomaly Detection". In: *CVPR'23*. Vancouver, Canada.
798 | 
799 | .. [#Pelleg2005Active] Pelleg, D. and Moore, A.W., 2005. Active learning for anomaly and rare-category detection. In *Advances in neural information processing systems*\, pp. 1073-1080.
800 | 
801 | .. [#Radovanovic2015Reverse] Radovanović, M., Nanopoulos, A. and Ivanović, M., 2015. Reverse nearest neighbors in unsupervised distance-based outlier detection. *IEEE transactions on knowledge and data engineering*, 27(5), pp.1369-1382.
802 | 
803 | .. [#Ramaswamy2000Efficient] Ramaswamy, S., Rastogi, R. and Shim, K., 2000, May. Efficient algorithms for mining outliers from large data sets. *ACM SIGMOD Record*\ , 29(2), pp. 427-438.
804 | 
805 | .. [#Ranshous2015Anomaly] Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C. and Samatova, N.F., 2015. Anomaly detection in dynamic networks: a survey. Wiley Interdisciplinary Reviews: Computational Statistics, 7(3), pp.223-247.
806 | 
807 | .. [#Ren2019Time] Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X., Xing, T., Yang, M., Tong, J. and Zhang, Q., 2019. Time-Series Anomaly Detection Service at Microsoft. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM.
808 | 
809 | .. [#Riazi2019Detecting] Riazi, M., Zaiane, O., Takeuchi, T., Maltais, A., Günther, J. and Lipsett, M., Detecting the Onset of Machine Failure Using Anomaly Detection Methods.
810 | 
811 | .. [#Ro2015Outlier] Ro, K., Zou, C., Wang, Z. and Yin, G., 2015. Outlier detection for high-dimensional data. *Biometrika*, 102(3), pp.589-599.
812 | 
813 | .. [#Salehi2018A] Salehi, Mahsa & Rashidi, Lida. (2018). A Survey on Anomaly detection in Evolving Data: [with Application to Forest Fire Risk Prediction]. *ACM SIGKDD Explorations Newsletter*. 20. 13-23.
814 | 
815 | .. [#Salehi2021A] Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M.H., Sabokrou, M., 2021. A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges. arXiv preprint arXiv:2110.14051.
816 | 
817 | .. [#Scholkopf2001Estimating] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C., 2001. Estimating the support of a high-dimensional distribution. *Neural Computation*, 13(7), pp.1443-1471.
818 | 
819 | .. [#Sehwag2021SSD] Sehwag, V., Chiang, M., Mittal, P., 2021. SSD: A Unified Framework for Self-Supervised Outlier Detection. *International Conference on Learning Representations (ICLR)*.
820 | 
821 | .. [#Shekhar2021FAIROD] Shekhar, S., Shah, N. and Akoglu, L., 2021. FAIROD: Fairness-aware Outlier Detection. AAAI/ACM Conference on AI, Ethics, and Society (AIES).
822 | 
823 | .. [#Siddiqui2019Sequential] Siddiqui, M.A., Fern, A., Dietterich, T.G. and Wong, W.K., 2019. Sequential Feature Explanations for Anomaly Detection. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 13(1), p.1.
824 | 
825 | .. [#Sperl2021A3] Sperl, P., Schulze, J.-P., and Böttinger, K., 2021. Activation Anomaly Analysis. *European Conference on Machine Learning and Data Mining (ECML-PKDD) 2020*.
826 | 
827 | .. [#Suri2019Research] Suri, N.R. and Athithan, G., 2019. Research Issues in Outlier Detection. In *Outlier Detection: Techniques and Applications*, pp. 29-51. Springer, Cham.
828 | 
829 | .. [#Tang2015Mining] Tang, G., Pei, J., Bailey, J. and Dong, G., 2015. Mining multidimensional contextual outliers from categorical relational data. *Intelligent Data Analysis*, 19(5), pp.1171-1192.
830 | 
831 | .. [#Tang2023GADBench] Tang, J., Hua, F., Gao, Z., Zhao, P. and Li, J., 2023. GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection. *NeurIPS*, Datasets and Benchmarks Track.
832 | 
833 | .. [#Ting2018Which] Ting, KM., Aryal, S. and Washio, T., 2018, Which Anomaly Detector should I use? *Tutorial at ICDM 2018*.
834 | 
835 | .. [#Ting2020Isolation] Ting, Kai Ming, Bi-Cun Xu, Takashi Washio, and Zhi-Hua Zhou. "Isolation Distributional Kernel: A New Tool for Kernel based Anomaly Detection." In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 198-206. 2020.
836 | 
837 | .. [#Wang2019Effective] Wang, S., Zeng, Y., Liu, X., Zhu, E., Yin, J., Xu, C. and Kloft, M., 2019. Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network. In *33rd Conference on Neural Information Processing Systems*.
838 | 
839 | .. [#Wang2019Progress] Wang, H., Bah, M.J. and Hammad, M., 2019. Progress in Outlier Detection Techniques: A Survey. *IEEE Access*, 7, pp.107964-108000.
840 | 
841 | .. [#Wang2020Deep] Wang, R., Nie, K., Chang, Y. J., Gong, X., Wang, T., Yang, Y., Long, B.,  2020. Deep Learning for Anomaly Detection. *Tutorial at KDD 2020*.
842 | 
843 | .. [#WellerFahy2015A] Weller-Fahy, D.J., Borghetti, B.J. and Sodemann, A.A., 2015. A survey of distance and similarity measures used within network intrusion anomaly detection. *IEEE Communications Surveys & Tutorials*\ , 17(1), pp.70-91.
844 | 
845 | .. [#Xu2021Beyond] Xu, H., Wang, Y., Jian, S., Huang, Z., Wang, Y., Liu, N. and Li, F., 2021, April. Beyond Outlier Detection: Outlier Interpretation by Attention-Guided Triplet Deviation Network. In *Proceedings of the Web Conference* 2021 (pp. 1328-1339).
846 | 
847 | .. [#Xu2023Deep] Xu, H., Pang, G., Wang, Y., Wang, Y., 2023. Deep Isolation Forest for Anomaly Detection. *IEEE Transactions on Knowledge and Data Engineering*. 
848 | 
849 | .. [#Xu2023Fascinating] Xu, H., Wang, Y., Wei, J., Jian, S., Li, Y., Liu, N., 2023. Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning. *International Conference on Machine Learning (ICML)*.
850 | 
851 | .. [#Xu2024LLMsurvey] Xu, R. and Ding, K., 2024. Large language models for anomaly and out-of-distribution detection: A survey. arXiv preprint arXiv:2409.01980.
852 | 
853 | .. [#Yoon2019NETS] Yoon, S., Lee, J. G., & Lee, B. S., 2019. NETS: extremely fast outlier detection from a data stream via set-based processing. Proceedings of the VLDB Endowment, 12(11), 1303-1315.
854 | 
855 | .. [#Yoon2020STARE] Yoon, S., Lee, J. G., & Lee, B. S., 2020. Ultrafast local outlier detection from a data stream with stationary region skipping. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1181-1191)
856 | 
857 | .. [#Yoon2021MDUAL] Yoon, S., Shin, Y., Lee, J. G., & Lee, B. S. (2021, June). Multiple dynamic outlier-detection from a data stream by exploiting duality of data and queries. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD).
858 | 
859 | .. [#Yoon2022ARCUS] Yoon, S., Lee, Y., Lee, J.G. and Lee, B.S., 2022, August. Adaptive Model Pooling for Online Deep Anomaly Detection from a Complex Evolving Data Stream. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2347-2357).
860 | 
861 | .. [#Yu2015Glad] Yu, R., He, X. and Liu, Y., 2015. GLAD: group anomaly detection in social media analysis. *ACM Transactions on Knowledge Discovery from Data (TKDD)*\ , 10(2), p.18.
862 | 
863 | .. [#Yu2016A] Yu, R., Qiu, H., Wen, Z., Lin, C. and Liu, Y., 2016. A survey on social media anomaly detection. *ACM SIGKDD Explorations Newsletter*\ , 18(1), pp.1-14.
864 | 
865 | .. [#Yuan2024Trustworthy] Yuan, S., Xu, D. and Wu, X., 2024  Trustworthy Anomaly Detection. *Tutorial at SDM 2024*.
866 | 
867 | .. [#Zha2020Meta] Zha, D., Lai, K.H., Wan, M. and Hu, X., 2020. Meta-AAD: Active Anomaly Detection with Deep Reinforcement Learning. *ICDM*.
868 | 
869 | .. [#Zhao2018Xgbod] Zhao, Y. and Hryniewicki, M.K., 2018, July. XGBOD: improving supervised outlier detection with unsupervised representation learning. In *2018 International Joint Conference on Neural Networks (IJCNN)*. IEEE.
870 | 
871 | .. [#Zhao2019LSCP] Zhao, Y., Nasrullah, Z., Hryniewicki, M.K. and Li, Z., 2019, May. LSCP: Locally selective combination in parallel outlier ensembles. In *Proceedings of the 2019 SIAM International Conference on Data Mining (SDM)*, pp. 585-593. Society for Industrial and Applied Mathematics.
872 | 
873 | .. [#Zhao2019PYOD] Zhao, Y., Nasrullah, Z. and Li, Z., PyOD: A Python Toolbox for Scalable Outlier Detection. *Journal of Machine Learning Research*, 20, pp.1-7.
874 | 
875 | .. [#Zhao2020Automating] Zhao, Y., Rossi, R.A. and Akoglu, L., 2021. Automatic Unsupervised Outlier Model Selection. *Advances in Neural Information Processing Systems*.
876 | 
877 | .. [#Zhao2021SUOD] Zhao, Y., Hu, X., Cheng, C., Wang, C., Wan, C., Wang, W., Yang, J., Bai, H., Li, Z., Xiao, C. and Wang, Y., 2021. SUOD: Accelerating Large-scale Unsupervised Heterogeneous Outlier Detection. *Proceedings of Machine Learning and Systems (MLSys)*.
878 | 
879 | .. [#Zhao2021TOD] Zhao, Y., Chen, G.H. and Jia, Z., 2021. TOD: Tensor-based Outlier Detection. arXiv preprint arXiv:2110.14007.
880 | 
881 | .. [#Zhou2019AnomalyNet] Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y. and Goh, R.S.M., 2019. AnomalyNet: An anomaly detection network for video surveillance. *IEEE Transactions on Information Forensics and Security*.
882 | 
883 | .. [#Zhou2021Feature] Zhou, Y., Song, X., Zhang, Y., Liu, F., Zhu, C., & Liu, L. (2021). Feature encoding with autoencoders for weakly supervised anomaly detection. IEEE Transactions on Neural Networks and Learning Systems, 33(6), 2454-2465.
884 | 
885 | .. [#Zhu2019Tripartite] Zhu, Y. and Yang, K., 2019. Tripartite Active Learning for Interactive Anomaly Discovery. *IEEE Access*.
886 | 
887 | .. [#Zimek2012A] Zimek, A., Schubert, E. and Kriegel, H.P., 2012. A survey on unsupervised outlier detection in high‐dimensional numerical data. *Statistical Analysis and Data Mining: The ASA Data Science Journal*\ , 5(5), pp.363-387.
888 | 
889 | .. [#Zimek2014Ensembles] Zimek, A., Campello, R.J. and Sander, J., 2014. Ensembles for unsupervised outlier detection: challenges and research questions a position paper. *ACM Sigkdd Explorations Newsletter*\ , 15(1), pp.11-22.
890 | 
891 | .. [#Zong2018Deep] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D. and Chen, H., 2018. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. International Conference on Learning Representations (ICLR).
892 | 
893 | .. [#Wang2023Drift] Wang, C., Zhuang, Z., Qi, Q., Wang, J., Wang, X., Sun, H., & Liao, J. (2023). Drift doesn't matter: dynamic decomposition with diffusion reconstruction for unstable multivariate time series anomaly detection. Advances in Neural Information Processing Systems, 36.


--------------------------------------------------------------------------------
/README_CN.rst:
--------------------------------------------------------------------------------
  1 | 异常检测学习资源(Anomaly Detection Learning Resources)
  2 | ====================================================
  3 | 
  4 | .. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg
  5 |    :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers
  6 |    :alt: GitHub stars
  7 | 
  8 | 
  9 | .. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue
 10 |    :target: https://github.com/yzhao062/anomaly-detection-resources/network
 11 |    :alt: GitHub forks
 12 | 
 13 | 
 14 | .. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue
 15 |    :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE
 16 |    :alt: License
 17 | 
 18 | 
 19 | .. image:: https://img.shields.io/badge/link-996.icu-red.svg
 20 |    :target: https://github.com/996icu/996.ICU
 21 |    :alt: 996.ICU
 22 | 
 23 | 
 24 | ----
 25 | 
 26 | `异常检测 (anomaly detection) <https://zh.wikipedia.org/wiki/%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B>`_
 27 | (又名 Outlier Detection) 是一个重要但非常有挑战性的领域。异常检测的目标主要是找到数据中
 28 | 偏离于主要分布的案例--它在很多领域都有重要意义,包括「信用卡诈骗检测」、「网络入侵检测」、
 29 | 「机械故障检测」等。
 30 | 
 31 | 这个仓库中收藏了关于异常检测的:
 32 | 
 33 | 
 34 | #. 专业书籍与学术论文
 35 | #. 在线课程与视频
 36 | #. 异常检测数据集
 37 | #. 开源与商业工具库
 38 | #. 重要的会议与期刊
 39 | 
 40 | 
 41 | **更多内容会被陆续添加到当前仓库中来**。
 42 | 请建议/推荐相关资源,你可以选择提交issue report、pull request或者给我发邮件 (zhaoy@cmu.edu)。
 43 | Enjoy reading!
 44 | 
 45 | ----
 46 | 
 47 | 目录
 48 | -----------------
 49 | 
 50 | 
 51 | * `1. 书籍 & 教程 <#1-书籍--教程>`_
 52 | 
 53 |   * `1.1. 书籍 <#11-书籍>`_
 54 |   * `1.2. 教程 <#12-教程>`_
 55 | 
 56 | * `2. Courses/Seminars/Videos <#2-coursesseminarsvideos>`_
 57 | * `3. Toolbox & Datasets <#3-toolbox--datasets>`_
 58 | 
 59 |   * `3.1. Multivariate data outlier detection <#31-multivariate-data>`_
 60 |   * `3.2. Time series outlier detection <#32-time-series-outlier-detection>`_
 61 |   * `3.3. Datasets <#33-datasets>`_
 62 | 
 63 | * `4. Papers <#4-papers>`_
 64 | 
 65 |   * `4.1. Overview & Survey Papers <#41-overview--survey-papers>`_
 66 |   * `4.2. Key Algorithms <#42-key-algorithms>`_
 67 |   * `4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>`_
 68 |   * `4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>`_
 69 |   * `4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>`_
 70 |   * `4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>`_
 71 |   * `4.7. Outlier Ensembles <#47-outlier-ensembles>`_
 72 |   * `4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>`_
 73 |   * `4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>`_
 74 |   * `4.10. Interpretability <#410-interpretability>`_
 75 |   * `4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>`_
 76 |   * `4.12. Active Anomaly Detection <#412-active-anomaly-detection>`_
 77 |   * `4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>`_
 78 |   * `4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>`_
 79 |   * `4.15. Outlier Detection Applications <#415-outlier-detection-applications>`_
 80 | 
 81 | * `5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>`_
 82 | 
 83 |   * `5.1. Conferences & Workshops <#51-conferences--workshops>`_
 84 |   * `5.2. Journals <#52-journals>`_
 85 | 
 86 | 
 87 | ----
 88 | 
 89 | 1. 书籍 & 教程
 90 | -------------
 91 | 
 92 | 1.1. 书籍
 93 | ^^^^^^^^
 94 | 
 95 | `Outlier Analysis <https://www.springer.com/gp/book/9781461463955>`_
 96 | 作者: Charu Aggarwal: 经典异常检测教科书,内容涵盖了大部分相关算法与应用。异常检测领域人士必读。
 97 | `[预览.pdf] <http://charuaggarwal.net/outlierbook.pdf>`_
 98 | 
 99 | `Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>`_
100 | 作者: Charu Aggarwal and Saket Sathe: 非常权威的集成异常检测教科书。
101 | 
102 | `Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>`_
103 | 作者: 韩家炜 (Jiawei Han) and Micheline Kamber and Jian Pei (裴健): 该书第十二章讨论了异常检测技术。 `[Google Search] <https://www.google.com/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>`_
104 | 
105 | 1.2. 教程
106 | ^^^^^^^^
107 | 
108 | ===================================================== ============================================  =====  ============================  ==========================================================================================================================================================================
109 | Tutorial Title                                        Venue                                         Year   Ref                           Materials
110 | ===================================================== ============================================  =====  ============================  ==========================================================================================================================================================================
111 | Outlier detection techniques                          ACM SIGKDD                                    2010   [#Kriegel2010Outlier]_        `[PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>`_
112 | Anomaly Detection: A Tutorial                         ICDM                                          2011   [#Chawla2011Anomaly]_         `[PDF] <http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf>`_
113 | Data mining for anomaly detection                     PKDD                                          2008   [#Lazarevic2008Data]_         `[Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>`_
114 | ===================================================== ============================================  =====  ============================  ==========================================================================================================================================================================
115 | 
116 | ----
117 | 
118 | 2. Courses/Seminars/Videos
119 | --------------------------
120 | 
121 | **Coursera Introduction to Anomaly Detection (by IBM)**\ :
122 | `[See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>`_
123 | 
124 | **Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic**\ :
125 | `[See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>`_
126 | 
127 | **Coursera Machine Learning by Andrew Ng also partly covers the topic**\ :
128 | 
129 | 
130 | * `Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>`_
131 | * `Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>`_
132 | 
133 | **Udemy Outlier Detection Algorithms in Data Mining and Data Science**\ :
134 | `[See Video] <https://www.udemy.com/outlier-detection-techniques/>`_
135 | 
136 | **Stanford Data Mining for Cyber Security** also covers part of anomaly detection techniques\ :
137 | `[See Video] <http://web.stanford.edu/class/cs259d/>`_
138 | 
139 | ----
140 | 
141 | 3. Toolbox & Datasets
142 | ---------------------
143 | 
144 | 3.1. Multivariate Data
145 | ^^^^^^^^^^^^^^^^^^^^^^
146 | 
147 | [**Python**] `Python Outlier Detection (PyOD) <https://github.com/yzhao062/Pyod>`_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.
148 | 
149 | [**Python**] `Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>`_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.
150 | 
151 | [**Java**] `ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>`_\ :
152 | ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection.
153 | 
154 | [**Java**] `RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>`_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.
155 | 
156 | [**R**] `outliers package <https://cran.r-project.org/web/packages/outliers/index.html>`_\ : A collection of some tests commonly used for identifying outliers in R.
157 | 
158 | [**Matlab**] `Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>`_\ : A collection of popular outlier detection algorithms in Matlab.
159 | 
160 | 
161 | 3.2. Time series outlier detection
162 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
163 | 
164 | 
165 | [**Python**] `datastream.io <https://github.com/MentatInnovations/datastream.io>`_\ : An open-source framework for real-time anomaly detection using Python, Elasticsearch and Kibana.
166 | 
167 | [**Python**] `skyline <https://github.com/earthgecko/skyline>`_\ : Skyline is a near real time anomaly detection system.
168 | 
169 | [**Python**] `banpei <https://github.com/tsurubee/banpei>`_\ : Banpei is a Python package of the anomaly detection.
170 | 
171 | [**Python**] `telemanom <https://github.com/khundman/telemanom>`_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.
172 | 
173 | [**Python**] `DeepADoTS <https://github.com/KDD-OpenSource/DeepADoTS>`_\ : A benchmarking pipeline for anomaly detection on time series data for multiple state-of-the-art deep learning methods.
174 | 
175 | [**R**] `AnomalyDetection <https://github.com/twitter/AnomalyDetection>`_\ : AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the presence of seasonality and an underlying trend.
176 | 
177 | 
178 | 3.3. Datasets
179 | ^^^^^^^^^^^^^
180 | 
181 | **ELKI Outlier Datasets**\ : https://elki-project.github.io/datasets/outlier
182 | 
183 | **Outlier Detection DataSets (ODDS)**\ : http://odds.cs.stonybrook.edu/#table1
184 | 
185 | **Unsupervised Anomaly Detection Dataverse**\ : https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OPQMVF
186 | 
187 | **Anomaly Detection Meta-Analysis Benchmarks**\ : https://ir.library.oregonstate.edu/concern/datasets/47429f155
188 | 
189 | ----
190 | 
191 | 4. Papers
192 | ---------
193 | 
194 | 4.1. Overview & Survey Papers
195 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
196 | 
197 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
198 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
199 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
200 | A survey of outlier detection methodologies                                                        ARTIF INTELL REV              2004   [#Hodge2004A]_                `[PDF] <https://www-users.cs.york.ac.uk/vicky/myPapers/Hodge+Austin_OutlierDetection_AIRE381.pdf>`_
201 | Anomaly detection: A survey                                                                        CSUR                          2009   [#Chandola2009Anomaly]_       `[PDF] <https://www.vs.inf.ethz.ch/edu/HS2011/CPS/papers/chandola09_anomaly-detection-survey.pdf>`_
202 | A meta-analysis of the anomaly detection problem                                                   Preprint                      2015   [#Emmott2015A]_               `[PDF] <https://arxiv.org/pdf/1503.01158.pdf>`_
203 | On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study    DMKD                          2016   [#Campos2016On]_              `[HTML] <https://link.springer.com/article/10.1007/s10618-015-0444-8>`_, `[SLIDES] <https://imada.sdu.dk/~zimek/InvitedTalks/TUVienna-2016-05-18-outlier-evaluation.pdf>`_
204 | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data        PLOS ONE                      2016   [#Goldstein2016A]_            `[PDF] <http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152173&type=printable>`_
205 | A comparative evaluation of outlier detection algorithms: Experiments and analyses                 Pattern Recognition           2018   [#Domingues2018A]_            `[PDF] <https://www.researchgate.net/publication/320025854_A_comparative_evaluation_of_outlier_detection_algorithms_Experiments_and_analyses>`_
206 | Research Issues in Outlier Detection                                                               Book Chapter                  2019   [#Suri2019Research]_          `[HTML] <https://link.springer.com/chapter/10.1007/978-3-030-05127-3_3>`_
207 | Quantitative comparison of unsupervised anomaly detection algorithms for intrusion detection       SAC                           2019   [#Falcao2019Quantitative]_    `[HTML] <https://dl.acm.org/citation.cfm?id=3297314>`_
208 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
209 | 
210 | 4.2. Key Algorithms
211 | ^^^^^^^^^^^^^^^^^^^
212 | 
213 | ====================  =================================================================================================  =================================  =====  ===========================  ==============================================================================================================================================================================================
214 | Abbreviation          Paper Title                                                                                        Venue                              Year   Ref                          Materials
215 | ====================  =================================================================================================  =================================  =====  ===========================  ==============================================================================================================================================================================================
216 | kNN                   Efficient algorithms for mining outliers from large data sets                                      ACM SIGMOD Record                  2000   [#Ramaswamy2000Efficient]_   `[PDF] <https://webdocs.cs.ualberta.ca/~zaiane/pub/check/ramaswamy.pdf>`_
217 | KNN                   Fast outlier detection in high dimensional spaces                                                  PKDD                               2002   [#Angiulli2002Fast]_         `[PDF] <https://www.researchgate.net/profile/Clara_Pizzuti/publication/220699183_Fast_Outlier_Detection_in_High_Dimensional_Spaces/links/542ea6a60cf27e39fa9635c6.pdf>`_
218 | LOF                   LOF: identifying density-based local outliers                                                      ACM SIGMOD Record                  2000   [#Breunig2000LOF]_           `[PDF] <http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf>`_
219 | IForest               Isolation forest                                                                                   ICDM                               2008   [#Liu2008Isolation]_         `[PDF] <https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf>`_
220 | OCSVM                 Estimating the support of a high-dimensional distribution                                          Neural Computation                 2001   [#Scholkopf2001Estimating]_  `[PDF] <http://users.cecs.anu.edu.au/~williams/papers/P132.pdf>`_
221 | AutoEncoder Ensemble  Outlier detection with autoencoder ensembles                                                       SDM                                2017   [#Chen2017Outlier]_          `[PDF] <http://saketsathe.net/downloads/autoencode.pdf>`_
222 | ====================  =================================================================================================  =================================  =====  ===========================  ==============================================================================================================================================================================================
223 | 
224 | 4.3. Graph & Network Outlier Detection
225 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
226 | 
227 | =================================================================================================  =============================  =====  ============================  ==========================================================================================================================================================================
228 | Paper Title                                                                                        Venue                          Year   Ref                           Materials
229 | =================================================================================================  =============================  =====  ============================  ==========================================================================================================================================================================
230 | Graph based anomaly detection and description: a survey                                            DMKD                           2015   [#Akoglu2015Graph]_           `[PDF] <https://arxiv.org/pdf/1404.4679.pdf>`_
231 | Anomaly detection in dynamic networks: a survey                                                    WIREs Computational Statistic  2015   [#Ranshous2015Anomaly]_       `[PDF] <https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.1347>`_
232 | =================================================================================================  =============================  =====  ============================  ==========================================================================================================================================================================
233 | 
234 | 
235 | 4.4. Time Series Outlier Detection
236 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
237 | 
238 | =====================================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
239 | Paper Title                                                                                                                            Venue                         Year   Ref                           Materials
240 | =====================================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
241 | Outlier detection for temporal data: A survey                                                                                          TKDE                          2014   [#Gupta2014Outlier]_          `[PDF] <https://www.microsoft.com/en-us/research/wp-content/uploads/2014/01/gupta14_tkde.pdf>`_
242 | Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding                                                      KDD                           2018   [#Hundman2018Detecting]_      `[PDF] <https://arxiv.org/pdf/1802.04431.pdf>`_, `[Code] <https://github.com/khundman/telemanom>`_
243 | Time-Series Anomaly Detection Service at Microsoft                                                                                     KDD                           2019   [#Ren2019Time]_               `[PDF] <https://arxiv.org/pdf/1906.03821.pdf>`_
244 | Revisiting Time Series Outlier Detection: Definitions and Benchmarks                                                                   NeurIPS                       2021   [#Lai2021Revisiting]_         `[PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>`_, `[Code] <https://github.com/datamllab/tods/tree/benchmark>`_
245 | Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series                                                        ICLR                          2022   [#Dai2022Graph]_              `[PDF] <https://openreview.net/pdf?id=45L_dgP48Vd>`_, `[Code] <https://github.com/EnyanDai/GANF>`_
246 | Drift doesn't matter: dynamic decomposition with diffusion reconstruction for unstable multivariate time series anomaly detection      NeurIPS                       2023   [#Wang2023Drift]_             `[PDF] <https://openreview.net/pdf?id=aW5bSuduF1>`_, `[Code] <https://github.com/ForestsKing/D3R>`_
247 | =====================================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
248 | 
249 | 
250 | 4.5. Feature Selection in Outlier Detection
251 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
252 | 
253 | ================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
254 | Paper Title                                                                                                       Venue                         Year   Ref                           Materials
255 | ================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
256 | Unsupervised feature selection for outlier detection by modelling hierarchical value-feature couplings            ICDM                          2016   [#Pang2016Unsupervised]_      `[PDF] <https://opus.lib.uts.edu.au/bitstream/10453/107356/4/DSFS_ICDM2016.pdf>`_
257 | Learning homophily couplings from non-iid data for joint feature selection and noise-resilient outlier detection  IJCAI                         2017   [#Pang2017Learning]_          `[PDF] <https://www.ijcai.org/proceedings/2017/0360.pdf>`_
258 | ================================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
259 | 
260 | 
261 | 4.6. High-dimensional & Subspace Outliers
262 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
263 | 
264 | ==================================================================================================  ============================  =====  ============================  =======================================================================================================================================================================================================
265 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
266 | ==================================================================================================  ============================  =====  ============================  =======================================================================================================================================================================================================
267 | A survey on unsupervised outlier detection in high-dimensional numerical data                        Stat Anal Data Min            2012   [#Zimek2012A]_                `[HTML] <https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11161>`_
268 | Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection  SIGKDD                        2018   [#Pang2018Learning]_          `[PDF] <https://arxiv.org/pdf/1806.04808.pdf>`_
269 | Reverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection                          TKDE                          2015   [#Radovanovic2015Reverse]_    `[PDF] <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.9559&rep=rep1&type=pdf>`_, `[SLIDES] <https://pdfs.semanticscholar.org/c8aa/832362422418287ff56793c780b425afa93f.pdf>`_
270 | Outlier detection for high-dimensional data                                                         Biometrika                    2015   [#Ro2015Outlier]_             `[PDF] <http://web.hku.hk/~gyin/materials/2015RoZouWangYinBiometrika.pdf>`_
271 | ==================================================================================================  ============================  =====  ============================  =======================================================================================================================================================================================================
272 | 
273 | 
274 | 4.7. Outlier Ensembles
275 | ^^^^^^^^^^^^^^^^^^^^^^
276 | 
277 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
278 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
279 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
280 | Outlier ensembles: position paper                                                                  SIGKDD Explorations           2013   [#Aggarwal2013Outlier]_       `[PDF] <https://pdfs.semanticscholar.org/841e/ce7c3812bbf799c99c84c064bbcf77916ba9.pdf>`_
281 | Ensembles for unsupervised outlier detection: challenges and research questions a position paper   SIGKDD Explorations           2014   [#Zimek2014Ensembles]_        `[PDF] <http://www.kdd.org/exploration_files/V15-01-02-Zimek.pdf>`_
282 | An Unsupervised Boosting Strategy for Outlier Detection Ensembles                                  PAKDD                         2018   [#Campos2018An]_              `[HTML] <https://link.springer.com/chapter/10.1007/978-3-319-93034-3_45>`_
283 | LSCP: Locally selective combination in parallel outlier ensembles                                  SDM                           2019   [#Zhao2019LSCP]_              `[PDF] <https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.66>`_
284 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
285 | 
286 | 4.8. Outlier Detection in Evolving Data
287 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
288 | 
289 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
290 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
291 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
292 | A Survey on Anomaly detection in Evolving Data: [with Application to Forest Fire Risk Prediction]   SIGKDD Explorations           2018   [#Salehi2018A]_               `[PDF] <http://www.kdd.org/exploration_files/20-1-Article2.pdf>`_
293 | Unsupervised real-time anomaly detection for streaming data                                         Neurocomputing                2017   [#Ahmad2017Unsupervised]_     `[PDF] <https://www.researchgate.net/publication/317325599_Unsupervised_real-time_anomaly_detection_for_streaming_data>`_
294 | Outlier Detection in Feature-Evolving Data Streams                                                  SIGKDD                        2018   [#Manzoor2018Outlier]_        `[PDF] <https://www.andrew.cmu.edu/user/lakoglu/pubs/18-kdd-xstream.pdf>`_, `[Github] <https://cmuxstream.github.io/>`_
295 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
296 | 
297 | 
298 | 4.9. Representation Learning in Outlier Detection
299 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
300 | 
301 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
302 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
303 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
304 | Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection  SIGKDD                        2018   [#Pang2018Learning]_          `[PDF] <https://arxiv.org/pdf/1806.04808.pdf>`_
305 | Learning representations for outlier detection on a budget                                          Preprint                      2015   [#Micenkova2015Learning]_     `[PDF] <https://arxiv.org/pdf/1507.08104.pdf>`_
306 | XGBOD: improving supervised outlier detection with unsupervised representation learning             IJCNN                         2018   [#Zhao2018Xgbod]_             `[PDF] <https://www.yuezhao.me/s/edited_XGBOD.pdf>`_
307 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
308 | 
309 | 
310 | 4.10. Interpretability
311 | ^^^^^^^^^^^^^^^^^^^^^^
312 | 
313 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
314 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
315 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
316 | Explaining Anomalies in Groups with Characterizing Subspace Rules                                  DMKD                          2018   [#Macha2018Explaining]_       `[PDF] <https://www.andrew.cmu.edu/user/lakoglu/pubs/18-pkdd-journal-xpacs.pdf>`_
317 | Beyond Outlier Detection: LookOut for Pictorial Explanation                                        ECML-PKDD                     2018   [#Gupta2018Beyond]_           `[PDF] <https://www.andrew.cmu.edu/user/lakoglu/pubs/18-pkdd-lookout.pdf>`_
318 | Contextual outlier interpretation                                                                  IJCAI                         2018   [#Liu2018Contextual]_         `[PDF] <https://arxiv.org/pdf/1711.10589.pdf>`_
319 | Mining multidimensional contextual outliers from categorical relational data                       IDA                           2015   [#Tang2015Mining]_            `[PDF] <http://www.cs.sfu.ca/~jpei/publications/Contextual%20outliers.pdf>`_
320 | Discriminative features for identifying and interpreting outliers                                  ICDE                          2014   [#Dang2014Discriminative]_    `[PDF] <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.706.5744&rep=rep1&type=pdf>`_
321 | Sequential Feature Explanations for Anomaly Detection                                              TKDD                          2019   [#Siddiqui2019Sequential]_    `[HTML] <https://dl.acm.org/citation.cfm?id=3230666>`_
322 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
323 | 
324 | 
325 | 4.11. Outlier Detection with Neural Networks
326 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
327 | 
328 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
329 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
330 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
331 | Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding                  KDD                           2018   [#Hundman2018Detecting]_      `[PDF] <https://arxiv.org/pdf/1802.04431.pdf>`_, `[Code] <https://github.com/khundman/telemanom>`_
332 | MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks  Preprint                      2019   [#Li2019MAD]_                 `[PDF] <https://arxiv.org/pdf/1901.04997.pdf>`_, `[Code] <https://github.com/LiDan456/MAD-GANs>`_
333 | Generative Adversarial Active Learning for Unsupervised Outlier Detection                          TKDE                          2019   [#Liu2019Generative]_         `[PDF] <https://arxiv.org/pdf/1809.10816.pdf>`_, `[Code] <https://github.com/leibinghe/GAAL-based-outlier-detection>`_
334 | Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection                        ICLR                          2018   [#Zong2018Deep]_              `[PDF] <http://www.cs.ucsb.edu/~bzong/doc/iclr18-dagmm.pdf>`_, `[Code] <https://github.com/danieltan07/dagmm>`_
335 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
336 | 
337 | 
338 | 4.12. Active Anomaly Detection
339 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
340 | 
341 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
342 | Paper Title                                                                                         Venue                         Year   Ref                           Materials
343 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
344 | Active learning for anomaly and rare-category detection                                             NeurIPS                       2005   [#Pelleg2005Active]_          `[PDF] <http://papers.nips.cc/paper/2554-active-learning-for-anomaly-and-rare-category-detection.pdf>`_
345 | Outlier detection by active learning                                                                SIGKDD                        2006   [#Abe2006Outlier]_            `[PDF] <https://www.researchgate.net/profile/Naoki_Abe2/publication/221653343_Outlier_detection_by_active_learning/links/5441464a0cf2e6f0c0f60abb.pdf>`_
346 | Active Anomaly Detection via Ensembles: Insights, Algorithms, and Interpretability                  Preprint                      2019   [#Das2019Active]_             `[PDF] <https://arxiv.org/pdf/1901.08930.pdf>`_
347 | ==================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
348 | 
349 | 
350 | 4.13. Interactive Outlier Detection
351 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
352 | 
353 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
354 | Paper Title                                                                                        Venue                         Year   Ref                           Materials
355 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
356 | Learning On-the-Job to Re-rank Anomalies from Top-1 Feedback                                       SDM                           2019   [#Lamba2019Learning]_         `[PDF] <https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.69>`_
357 | Interactive anomaly detection on attributed networks                                               WSDM                          2019   [#Ding2019Interactive]_       `[PDF] <http://www.public.asu.edu/~jundongl/paper/WSDM19_GraphUCB.pdf>`_
358 | eX2: a framework for interactive anomaly detection                                                 IUI Workshop                  2019   [#Arnaldo2019ex2]_            `[PDF] <http://ceur-ws.org/Vol-2327/IUI19WS-ESIDA-2.pdf>`_
359 | Tripartite Active Learning for Interactive Anomaly Discovery                                       IEEE Access                   2019   [#Zhu2019Tripartite]_         `[PDF] <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8707963>`_
360 | =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
361 | 
362 | 
363 | 4.14. Outlier Detection in Other fields
364 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
365 | 
366 | ============== =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
367 | Field          Paper Title                                                                                        Venue                         Year   Ref                           Materials
368 | ============== =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
369 | **Text**       Outlier detection for text data                                                                    SDM                           2017   [#Kannan2017Outlier]_         `[PDF] <https://epubs.siam.org/doi/pdf/10.1137/1.9781611974973.55>`_
370 | ============== =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
371 | 
372 | 
373 | 4.15. Outlier Detection Applications
374 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
375 | 
376 | ===================    =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
377 | Field                  Paper Title                                                                                        Venue                         Year   Ref                           Materials
378 | ===================    =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
379 | **Security**           A survey of distance and similarity measures used within network intrusion anomaly detection       IEEE Commun. Surv. Tutor.     2015   [#WellerFahy2015A]_           `[PDF] <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6853338>`_
380 | **Security**           Anomaly-based network intrusion detection: Techniques, systems and challenges                      Computers & Security          2009   [#GarciaTeodoro2009Anomaly]_  `[PDF] <http://dtstc.ugr.es/~jedv/descargas/2009_CoSe09-Anomaly-based-network-intrusion-detection-Techniques,-systems-and-challenges.pdf>`_
381 | **Finance**            A survey of anomaly detection techniques in financial domain                                       Future Gener Comput Syst      2016   [#Ahmed2016A]_                `[PDF] <http://isiarticles.com/bundles/Article/pre/pdf/76882.pdf>`_
382 | **Traffic**            Outlier Detection in Urban Traffic Data                                                            WIMS                          2018   [#Djenouri2018Outlier]_       `[PDF] <http://dss.sdu.dk/assets/fpd-lof/outlier-detection-urban.pdf>`_
383 | **Social Media**       A survey on social media anomaly detection                                                         SIGKDD Explorations           2016   [#Yu2016A]_                   `[PDF] <https://arxiv.org/pdf/1601.01102.pdf>`_
384 | **Social Media**       GLAD: group anomaly detection in social media analysis                                             TKDD                          2015   [#Yu2015Glad]_                `[PDF] <https://arxiv.org/pdf/1410.1940.pdf>`_
385 | **Machine Failure**    Detecting the Onset of Machine Failure Using Anomaly Detection Methods                             DAWAK                         2019   [#Riazi2019Detecting]_        `[PDF] <https://webdocs.cs.ualberta.ca/~zaiane/postscript/DAWAK19.pdf>`_
386 | ===================    =================================================================================================  ============================  =====  ============================  ==========================================================================================================================================================================
387 | 
388 | 
389 | ----
390 | 
391 | 5. Key Conferences/Workshops/Journals
392 | -------------------------------------
393 | 
394 | 5.1. Conferences & Workshops
395 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
396 | 
397 | Key data mining conference **deadlines**, **historical acceptance rates**, and more
398 | can be found `data-mining-conferences <https://github.com/yzhao062/data-mining-conferences>`_.
399 | 
400 | 
401 | `ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) <http://www.kdd.org/conferences>`_. **Note**: SIGKDD usually has an Outlier Detection Workshop (ODD), see `ODD 2018 <https://www.andrew.cmu.edu/user/lakoglu/odd/index.html>`_.
402 | 
403 | `ACM International Conference on Management of Data (SIGMOD) <https://sigmod.org/>`_
404 | 
405 | `The Web Conference (WWW) <https://www2018.thewebconf.org/>`_
406 | 
407 | `IEEE International Conference on Data Mining (ICDM) <http://icdm2018.org/>`_
408 | 
409 | `SIAM International Conference on Data Mining (SDM) <https://www.siam.org/Conferences/CM/Main/sdm19>`_
410 | 
411 | `IEEE International Conference on Data Engineering (ICDE) <https://icde2018.org/>`_
412 | 
413 | `ACM InternationalConference on Information and Knowledge Management (CIKM) <http://www.cikmconference.org/>`_
414 | 
415 | `ACM International Conference on Web Search and Data Mining (WSDM) <http://www.wsdm-conference.org/2018/>`_
416 | 
417 | `The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD) <http://www.ecmlpkdd2018.org/>`_
418 | 
419 | `The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) <http://pakdd2019.medmeeting.org>`_
420 | 
421 | 5.2. Journals
422 | ^^^^^^^^^^^^^
423 | 
424 | `ACM Transactions on Knowledge Discovery from Data (TKDD) <https://tkdd.acm.org/>`_
425 | 
426 | `IEEE Transactions on Knowledge and Data Engineering (TKDE) <https://www.computer.org/web/tkde>`_
427 | 
428 | `ACM SIGKDD Explorations Newsletter <http://www.kdd.org/explorations>`_
429 | 
430 | `Data Mining and Knowledge Discovery <https://link.springer.com/journal/10618>`_
431 | 
432 | `Knowledge and Information Systems (KAIS) <https://link.springer.com/journal/10115>`_
433 | 
434 | ----
435 | 
436 | References
437 | ----------
438 | 
439 | .. [#Abe2006Outlier] Abe, N., Zadrozny, B. and Langford, J., 2006, August. Outlier detection by active learning. In *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 504-509, ACM.
440 | 
441 | .. [#Aggarwal2013Outlier] Aggarwal, C.C., 2013. Outlier ensembles: position paper. *ACM SIGKDD Explorations Newsletter*\ , 14(2), pp.49-58.
442 | 
443 | .. [#Ahmed2016A] Ahmed, M., Mahmood, A.N. and Islam, M.R., 2016. A survey of anomaly detection techniques in financial domain. *Future Generation Computer Systems*\ , 55, pp.278-288.
444 | 
445 | .. [#Ahmad2017Unsupervised] Ahmad, S., Lavin, A., Purdy, S. and Agha, Z., 2017. Unsupervised real-time anomaly detection for streaming data. *Neurocomputing*, 262, pp.134-147.
446 | 
447 | .. [#Akoglu2015Graph] Akoglu, L., Tong, H. and Koutra, D., 2015. Graph based anomaly detection and description: a survey. *Data Mining and Knowledge Discovery*\ , 29(3), pp.626-688.
448 | 
449 | .. [#Angiulli2002Fast] Angiulli, F. and Pizzuti, C., 2002, August. Fast outlier detection in high dimensional spaces. In *European Conference on Principles of Data Mining and Knowledge Discovery*, pp. 15-27.
450 | 
451 | .. [#Arnaldo2019ex2] Arnaldo, I., Veeramachaneni, K. and Lam, M., 2019. ex2: a framework for interactive anomaly detection. In *ACM IUI Workshop on Exploratory Search and Interactive Data Analytics (ESIDA)*.
452 | 
453 | .. [#Breunig2000LOF] Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 2000, May. LOF: identifying density-based local outliers. *ACM SIGMOD Record*\ , 29(2), pp. 93-104.
454 | 
455 | .. [#Campos2016On] Campos, G.O., Zimek, A., Sander, J., Campello, R.J., Micenková, B., Schubert, E., Assent, I. and Houle, M.E., 2016. On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. *Data Mining and Knowledge Discovery*\ , 30(4), pp.891-927.
456 | 
457 | .. [#Campos2018An] Campos, G.O., Zimek, A. and Meira, W., 2018, June. An Unsupervised Boosting Strategy for Outlier Detection Ensembles. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 564-576)*. Springer, Cham.
458 | 
459 | .. [#Chandola2009Anomaly] Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly detection: A survey. *ACM computing surveys* , 41(3), p.15.
460 | 
461 | .. [#Chawla2011Anomaly] Chawla, S. and Chandola, V., 2011, Anomaly Detection: A Tutorial. *Tutorial at ICDM 2011*.
462 | 
463 | .. [#Chen2017Outlier] Chen, J., Sathe, S., Aggarwal, C. and Turaga, D., 2017, June. Outlier detection with autoencoder ensembles. *SIAM International Conference on Data Mining*, pp. 90-98. Society for Industrial and Applied Mathematics.
464 | 
465 | .. [#Dang2014Discriminative] Dang, X.H., Assent, I., Ng, R.T., Zimek, A. and Schubert, E., 2014, March. Discriminative features for identifying and interpreting outliers. In *International Conference on Data Engineering (ICDE)*. IEEE.
466 | 
467 | .. [#Das2019Active] Das, S., Islam, M.R., Jayakodi, N.K. and Doppa, J.R., 2019. Active Anomaly Detection via Ensembles: Insights, Algorithms, and Interpretability. arXiv preprint arXiv:1901.08930.
468 | 
469 | .. [#Ding2019Interactive] Ding, K., Li, J. and Liu, H., 2019, January. Interactive anomaly detection on attributed networks. In *Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining*, pp. 357-365. ACM.
470 | 
471 | .. [#Djenouri2018Outlier] Djenouri, Y. and Zimek, A., 2018, June. Outlier detection in urban traffic data. In *Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics*. ACM.
472 | 
473 | .. [#Domingues2018A] Domingues, R., Filippone, M., Michiardi, P. and Zouaoui, J., 2018. A comparative evaluation of outlier detection algorithms: Experiments and analyses. *Pattern Recognition*, 74, pp.406-421.
474 | 
475 | .. [#Emmott2015A] Emmott, A., Das, S., Dietterich, T., Fern, A. and Wong, W.K., 2015. A meta-analysis of the anomaly detection problem. arXiv preprint arXiv:1503.01158.
476 | 
477 | .. [#Falcao2019Quantitative] Falcão, F., Zoppi, T., Silva, C.B.V., Santos, A., Fonseca, B., Ceccarelli, A. and Bondavalli, A., 2019, April. Quantitative comparison of unsupervised anomaly detection algorithms for intrusion detection. In *Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing*, (pp. 318-327). ACM.
478 | 
479 | .. [#GarciaTeodoro2009Anomaly] Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G. and Vázquez, E., 2009. Anomaly-based network intrusion detection: Techniques, systems and challenges. *Computers & Security*\ , 28(1-2), pp.18-28.
480 | 
481 | .. [#Goldstein2016A] Goldstein, M. and Uchida, S., 2016. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. *PloS one*\ , 11(4), p.e0152173.
482 | 
483 | .. [#Gupta2014Outlier] Gupta, M., Gao, J., Aggarwal, C.C. and Han, J., 2014. Outlier detection for temporal data: A survey. *IEEE Transactions on Knowledge and Data Engineering*\ , 26(9), pp.2250-2267.
484 | 
485 | .. [#Hodge2004A] Hodge, V. and Austin, J., 2004. A survey of outlier detection methodologies. *Artificial intelligence review*\ , 22(2), pp.85-126.
486 | 
487 | .. [#Hundman2018Detecting] Hundman, K., Constantinou, V., Laporte, C., Colwell, I. and Soderstrom, T., 2018, July. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, (pp. 387-395). ACM.
488 | 
489 | .. [#Kannan2017Outlier] Kannan, R., Woo, H., Aggarwal, C.C. and Park, H., 2017, June. Outlier detection for text data. In *Proceedings of the 2017 SIAM International Conference on Data Mining*, pp. 489-497. Society for Industrial and Applied Mathematics.
490 | 
491 | .. [#Kriegel2010Outlier] Kriegel, H.P., Kröger, P. and Zimek, A., 2010. Outlier detection techniques. *Tutorial at ACM SIGKDD 2010*.
492 | 
493 | .. [#Lazarevic2008Data] Lazarevic, A., Banerjee, A., Chandola, V., Kumar, V. and Srivastava, J., 2008, September. Data mining for anomaly detection. *Tutorial at ECML PKDD 2008*.
494 | 
495 | .. [#Lamba2019Learning] Lamba, H. and Akoglu, L., 2019, May. Learning On-the-Job to Re-rank Anomalies from Top-1 Feedback. In *Proceedings of the 2019 SIAM International Conference on Data Mining (SDM)*, pp. 612-620. Society for Industrial and Applied Mathematics.
496 | 
497 | .. [#Li2019MAD] Li, D., Chen, D., Shi, L., Jin, B., Goh, J. and Ng, S.K., 2019. MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks. arXiv preprint arXiv:1901.04997.
498 | 
499 | .. [#Liu2008Isolation] Liu, F.T., Ting, K.M. and Zhou, Z.H., 2008, December. Isolation forest. In *International Conference on Data Mining*\ , pp. 413-422. IEEE.
500 | 
501 | .. [#Liu2018Contextual] Liu, N., Shin, D. and Hu, X., 2017. Contextual outlier interpretation. In *International Joint Conference on Artificial Intelligence (IJCAI-18)*, pp.2461-2467.
502 | 
503 | .. [#Liu2019Generative] Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M. and He, X., 2019. Generative Adversarial Active Learning for Unsupervised Outlier Detection. *IEEE transactions on knowledge and data engineering*.
504 | 
505 | .. [#Macha2018Explaining] Macha, M. and Akoglu, L., 2018. Explaining anomalies in groups with characterizing subspace rules. Data Mining and Knowledge Discovery, 32(5), pp.1444-1480.
506 | 
507 | .. [#Manzoor2018Outlier] Manzoor, E., Lamba, H. and Akoglu, L. Outlier Detection in Feature-Evolving Data Streams. In *24th ACM SIGKDD International Conference on Knowledge Discovery and Data mining (KDD)*. 2018.
508 | 
509 | .. [#Micenkova2015Learning] Micenková, B., McWilliams, B. and Assent, I., 2015. Learning representations for outlier detection on a budget. arXiv preprint arXiv:1507.08104.
510 | 
511 | .. [#Gupta2018Beyond] Gupta, N., Eswaran, D., Shah, N., Akoglu, L. and Faloutsos, C., Beyond Outlier Detection: LookOut for Pictorial Explanation. *ECML PKDD 2018*.
512 | 
513 | .. [#Pang2016Unsupervised] Pang, G., Cao, L., Chen, L. and Liu, H., 2016, December. Unsupervised feature selection for outlier detection by modelling hierarchical value-feature couplings. In Data Mining (ICDM), 2016 IEEE 16th International Conference on (pp. 410-419). IEEE.
514 | 
515 | .. [#Pang2017Learning] Pang, G., Cao, L., Chen, L. and Liu, H., 2017, August. Learning homophily couplings from non-iid data for joint feature selection and noise-resilient outlier detection. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 2585-2591). AAAI Press.
516 | 
517 | .. [#Pang2018Learning] Pang, G., Cao, L., Chen, L. and Liu, H., 2018. Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection. In *24th ACM SIGKDD International Conference on Knowledge Discovery and Data mining (KDD)*. 2018.
518 | 
519 | .. [#Pelleg2005Active] Pelleg, D. and Moore, A.W., 2005. Active learning for anomaly and rare-category detection. In *Advances in neural information processing systems*\, pp. 1073-1080.
520 | 
521 | .. [#Radovanovic2015Reverse] Radovanović, M., Nanopoulos, A. and Ivanović, M., 2015. Reverse nearest neighbors in unsupervised distance-based outlier detection. *IEEE transactions on knowledge and data engineering*, 27(5), pp.1369-1382.
522 | 
523 | .. [#Ramaswamy2000Efficient] Ramaswamy, S., Rastogi, R. and Shim, K., 2000, May. Efficient algorithms for mining outliers from large data sets. *ACM SIGMOD Record*\ , 29(2), pp. 427-438.
524 | 
525 | .. [#Ranshous2015Anomaly] Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C. and Samatova, N.F., 2015. Anomaly detection in dynamic networks: a survey. Wiley Interdisciplinary Reviews: Computational Statistics, 7(3), pp.223-247.
526 | 
527 | .. [#Riazi2019Detecting] Riazi, M., Zaiane, O., Takeuchi, T., Maltais, A., Günther, J. and Lipsett, M., Detecting the Onset of Machine Failure Using Anomaly Detection Methods.
528 | 
529 | .. [#Ro2015Outlier] Ro, K., Zou, C., Wang, Z. and Yin, G., 2015. Outlier detection for high-dimensional data. *Biometrika*, 102(3), pp.589-599.
530 | 
531 | .. [#Salehi2018A] Salehi, Mahsa & Rashidi, Lida. (2018). A Survey on Anomaly detection in Evolving Data: [with Application to Forest Fire Risk Prediction]. *ACM SIGKDD Explorations Newsletter*. 20. 13-23.
532 | 
533 | .. [#Scholkopf2001Estimating] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C., 2001. Estimating the support of a high-dimensional distribution. *Neural Computation*, 13(7), pp.1443-1471.
534 | 
535 | .. [#Siddiqui2019Sequential] Siddiqui, M.A., Fern, A., Dietterich, T.G. and Wong, W.K., 2019. Sequential Feature Explanations for Anomaly Detection. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 13(1), p.1.
536 | 
537 | .. [#Suri2019Research] Suri, N.R. and Athithan, G., 2019. Research Issues in Outlier Detection. In *Outlier Detection: Techniques and Applications*, pp. 29-51. Springer, Cham.
538 | 
539 | .. [#Tang2015Mining] Tang, G., Pei, J., Bailey, J. and Dong, G., 2015. Mining multidimensional contextual outliers from categorical relational data. *Intelligent Data Analysis*, 19(5), pp.1171-1192.
540 | 
541 | .. [#WellerFahy2015A] Weller-Fahy, D.J., Borghetti, B.J. and Sodemann, A.A., 2015. A survey of distance and similarity measures used within network intrusion anomaly detection. *IEEE Communications Surveys & Tutorials*\ , 17(1), pp.70-91.
542 | 
543 | .. [#Yu2015Glad] Yu, R., He, X. and Liu, Y., 2015. GLAD: group anomaly detection in social media analysis. *ACM Transactions on Knowledge Discovery from Data (TKDD)*\ , 10(2), p.18.
544 | 
545 | .. [#Yu2016A] Yu, R., Qiu, H., Wen, Z., Lin, C. and Liu, Y., 2016. A survey on social media anomaly detection. *ACM SIGKDD Explorations Newsletter*\ , 18(1), pp.1-14.
546 | 
547 | .. [#Zhao2018Xgbod] Zhao, Y. and Hryniewicki, M.K., 2018, July. XGBOD: improving supervised outlier detection with unsupervised representation learning. In *2018 International Joint Conference on Neural Networks (IJCNN)*. IEEE.
548 | 
549 | .. [#Zhao2019LSCP] Zhao, Y., Nasrullah, Z., Hryniewicki, M.K. and Li, Z., 2019, May. LSCP: Locally selective combination in parallel outlier ensembles. In *Proceedings of the 2019 SIAM International Conference on Data Mining (SDM)*, pp. 585-593. Society for Industrial and Applied Mathematics.
550 | 
551 | .. [#Zhu2019Tripartite] Zhu, Y. and Yang, K., 2019. Tripartite Active Learning for Interactive Anomaly Discovery. *IEEE Access*.
552 | 
553 | .. [#Zimek2012A] Zimek, A., Schubert, E. and Kriegel, H.P., 2012. A survey on unsupervised outlier detection in high‐dimensional numerical data. *Statistical Analysis and Data Mining: The ASA Data Science Journal*\ , 5(5), pp.363-387.
554 | 
555 | .. [#Zimek2014Ensembles] Zimek, A., Campello, R.J. and Sander, J., 2014. Ensembles for unsupervised outlier detection: challenges and research questions a position paper. *ACM Sigkdd Explorations Newsletter*\ , 15(1), pp.11-22.
556 | 
557 | .. [#Zong2018Deep] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D. and Chen, H., 2018. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. International Conference on Learning Representations (ICLR).
558 | 
559 | .. [#Wang2023Drift] Wang, C., Zhuang, Z., Qi, Q., Wang, J., Wang, X., Sun, H., & Liao, J. (2023). Drift doesn't matter: dynamic decomposition with diffusion reconstruction for unstable multivariate time series anomaly detection. Advances in Neural Information Processing Systems, 36.


--------------------------------------------------------------------------------
/download.py:
--------------------------------------------------------------------------------
 1 | #!/usr/bin/python
 2 | 
 3 | """
 4 |     This script will download all papers/books and rename to proper name
 5 |     if there is no copyright issue.
 6 | 
 7 |     TODO: download resources by item number
 8 |     TODO: add exception handler for downloader
 9 | """
10 | import re
11 | import pathlib
12 | import urllib.request
13 | 
14 | # initialize the log directory if it does not exist
15 | pathlib.Path('resources').mkdir(parents=True, exist_ok=True)
16 | 
17 | f = open('resource_urls\\papers.txt', 'r')
18 | for line in f:
19 |     # print(line)
20 |     line_splits = line.split(' | ')
21 | 
22 |     # remove all special char in file name
23 |     file_name = re.sub(r'[\\/*?:"<>|]', "", line_splits[0])
24 |     # strip filename length in case it is too long
25 |     if len(file_name) > 255:
26 |         file_name = file_name[:255]
27 |     url = line_splits[1]
28 | 
29 |     print('Downloading', file_name, 'from', url)
30 |     urllib.request.urlretrieve(url, "resources\\" + file_name + '.pdf')
31 | 
32 | f.close()
33 | 


--------------------------------------------------------------------------------
/resource_urls/papers.txt:
--------------------------------------------------------------------------------
1 | Anomaly detection: A survey | https://www.vs.inf.ethz.ch/edu/HS2011/CPS/papers/chandola09_anomaly-detection-survey.pdf
2 | A survey of outlier detection methodologies | https://www-users.cs.york.ac.uk/vicky/myPapers/Hodge+Austin_OutlierDetection_AIRE381.pdf
3 | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data | http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152173&type=printable
4 | Outlier detection for temporal data: A survey | https://pdfs.semanticscholar.org/18d1/714870fb989f32b4311892e8765f00f7098f.pdf
5 | Ensembles for unsupervised outlier detection: challenges and research questions a position paper | http://www.kdd.org/exploration_files/V15-01-02-Zimek.pdf
6 | Outlier ensembles: position paper | https://pdfs.semanticscholar.org/841e/ce7c3812bbf799c99c84c064bbcf77916ba9.pdf


--------------------------------------------------------------------------------
/url_checker.py:
--------------------------------------------------------------------------------
 1 | #!/usr/bin/env python3
 2 | 
 3 | """
 4 | Script: check_urls_in_readme.py
 5 | 
 6 | Place this script in the same folder as README.rst. When you run it,
 7 | it will search for all HTTP/HTTPS links in README.rst and attempt
 8 | to connect via a HEAD request. Any inaccessible links will be flagged.
 9 | 
10 | Usage:
11 |     python check_urls_in_readme.py
12 | """
13 | 
14 | import re
15 | import requests
16 | 
17 | # Characters we often see trailing links in reStructuredText
18 | # e.g.,  https://arxiv.org/abs/2309.15376>`_ or  ) or .
19 | # We iterate from the end of the string and remove them until
20 | # the last character is no longer in this set.
21 | TRAILING_PUNCT = set('`">),._')
22 | 
23 | def clean_url(url: str) -> str:
24 |     """
25 |     Iteratively strip from the right any of the punctuation
26 |     chars in TRAILING_PUNCT, often appearing in RST link syntax.
27 |     """
28 |     while url and url[-1] in TRAILING_PUNCT:
29 |         url = url[:-1]
30 |     return url
31 | 
32 | def main():
33 |     filename = 'README.rst'  # Adjust if your RST file has another name
34 | 
35 |     # Read the RST file
36 |     try:
37 |         with open(filename, 'r', encoding='utf-8') as f:
38 |             content = f.read()
39 |     except FileNotFoundError:
40 |         print(f"Error: Could not find {filename}. Please place this script in "
41 |               f"the same directory as {filename}.")
42 |         return
43 | 
44 |     # Regex to match http:// or https:// until whitespace or newline
45 |     url_pattern = re.compile(r'http[s]?://\S+')
46 |     raw_urls = url_pattern.findall(content)
47 | 
48 |     # Clean up trailing punctuation for each raw URL
49 |     urls = set(clean_url(u) for u in raw_urls)
50 | 
51 |     if not urls:
52 |         print("No URLs found in the file.")
53 |         return
54 | 
55 |     # Check each URL
56 |     for url in sorted(urls):
57 |         try:
58 |             response = requests.head(url, allow_redirects=True, timeout=5)
59 |             if response.status_code < 400:
60 |                 print(f"[OK]    {url}")
61 |             else:
62 |                 print(f"[FAIL]  {url} (Status code: {response.status_code})")
63 |         except requests.RequestException as e:
64 |             print(f"[FAIL]  {url} (Exception: {e})")
65 | 
66 | if __name__ == "__main__":
67 |     main()
68 | 


--------------------------------------------------------------------------------