├── .circleci ├── config.yml ├── docker │ └── Dockerfile └── test.yml ├── .dev_scripts ├── batch_test_list.py ├── batch_train_list.txt ├── benchmark_evaluation.sh ├── benchmark_full_models.txt ├── benchmark_inference.py ├── benchmark_options.py ├── benchmark_train.sh ├── benchmark_train_models.txt ├── check_urls.py ├── gather_benchmark_evaluation_results.py ├── gather_benchmark_train_results.py ├── gather_models.py ├── generate_benchmark_evaluation_script.py ├── generate_benchmark_train_script.py ├── log_collector │ ├── example_config.py │ ├── log_collector.py │ ├── readme.md │ └── utils.py ├── update_model_index.py └── upload_modelzoo.py ├── .github ├── CODE_OF_CONDUCT.md ├── CONTRIBUTING.md ├── ISSUE_TEMPLATE │ ├── config.yml │ ├── error-report.md │ ├── feature_request.md │ ├── general_questions.md │ └── reimplementation_questions.md ├── pull_request_template.md └── workflows │ └── deploy.yml ├── .gitignore ├── .owners.yml ├── .pre-commit-config.yaml ├── CITATION.cff ├── LICENSE ├── MANIFEST.in ├── README.md ├── configs ├── _base_ │ ├── datasets │ │ ├── ade20k.py │ │ ├── ade20k_640x640.py │ │ ├── bdd100k.py │ │ ├── chase_db1.py │ │ ├── cityscapes.py │ │ ├── cityscapes_1024x1024.py │ │ ├── cityscapes_768x768.py │ │ ├── cityscapes_769x769.py │ │ ├── cityscapes_832x832.py │ │ ├── coco-stuff10k.py │ │ ├── coco-stuff164k.py │ │ ├── drive.py │ │ ├── hrf.py │ │ ├── hsi_drive.py │ │ ├── isaid.py │ │ ├── levir_256x256.py │ │ ├── loveda.py │ │ ├── mapillary_v1.py │ │ ├── mapillary_v1_65.py │ │ ├── mapillary_v2.py │ │ ├── nyu.py │ │ ├── nyu_512x512.py │ │ ├── pascal_context.py │ │ ├── pascal_context_59.py │ │ ├── pascal_voc12.py │ │ ├── pascal_voc12_aug.py │ │ ├── potsdam.py │ │ ├── refuge.py │ │ ├── stare.py │ │ ├── synapse.py │ │ └── vaihingen.py │ ├── default_runtime.py │ ├── models │ │ ├── ann_r50-d8.py │ │ ├── apcnet_r50-d8.py │ │ ├── bisenetv1_r18-d32.py │ │ ├── bisenetv2.py │ │ ├── ccnet_r50-d8.py │ │ ├── cgnet.py │ │ ├── danet_r50-d8.py │ │ ├── deeplabv3_r50-d8.py │ │ ├── deeplabv3_unet_s5-d16.py │ │ ├── deeplabv3plus_r50-d8.py │ │ ├── dmnet_r50-d8.py │ │ ├── dnl_r50-d8.py │ │ ├── dpt_vit-b16.py │ │ ├── emanet_r50-d8.py │ │ ├── encnet_r50-d8.py │ │ ├── erfnet_fcn.py │ │ ├── fast_scnn.py │ │ ├── fastfcn_r50-d32_jpu_psp.py │ │ ├── fcn_hr18.py │ │ ├── fcn_r50-d8.py │ │ ├── fcn_unet_s5-d16.py │ │ ├── fpn_poolformer_s12.py │ │ ├── fpn_r50.py │ │ ├── gcnet_r50-d8.py │ │ ├── icnet_r50-d8.py │ │ ├── isanet_r50-d8.py │ │ ├── lraspp_m-v3-d8.py │ │ ├── nonlocal_r50-d8.py │ │ ├── ocrnet_hr18.py │ │ ├── ocrnet_r50-d8.py │ │ ├── pointrend_r50.py │ │ ├── psanet_r50-d8.py │ │ ├── pspnet_r50-d8.py │ │ ├── pspnet_unet_s5-d16.py │ │ ├── samba_upernet.py │ │ ├── san_vit-b16.py │ │ ├── segformer_mit-b0.py │ │ ├── segmenter_vit-b16_mask.py │ │ ├── setr_mla.py │ │ ├── setr_naive.py │ │ ├── setr_pup.py │ │ ├── stdc.py │ │ ├── twins_pcpvt-s_fpn.py │ │ ├── twins_pcpvt-s_upernet.py │ │ ├── upernet_beit.py │ │ ├── upernet_convnext.py │ │ ├── upernet_mae.py │ │ ├── upernet_r50.py │ │ ├── upernet_swin.py │ │ ├── upernet_vit-b16_ln_mln.py │ │ └── vpd_sd.py │ └── schedules │ │ ├── schedule_160k.py │ │ ├── schedule_20k.py │ │ ├── schedule_240k.py │ │ ├── schedule_25k.py │ │ ├── schedule_320k.py │ │ ├── schedule_40k.py │ │ └── schedule_80k.py ├── ann │ ├── README.md │ ├── ann_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── ann_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── ann_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── ann_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── ann_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── ann_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── ann_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── ann_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── ann_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── ann_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── ann_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── ann_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── ann_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── ann_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── ann_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── ann_r50-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── apcnet │ ├── README.md │ ├── apcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── apcnet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── apcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── apcnet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── apcnet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── apcnet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── apcnet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── apcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── apcnet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── apcnet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── apcnet_r50-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── beit │ ├── README.md │ ├── beit-base_upernet_8xb2-160k_ade20k-640x640.py │ ├── beit-base_upernet_8xb2-160k_ade20k-640x640_ms.py │ ├── beit-large_upernet_8xb1-amp-160k_ade20k-640x640.py │ ├── beit-large_upernet_8xb1-amp-160k_ade20k-640x640_ms.py │ └── metafile.yaml ├── bisenetv1 │ ├── README.md │ ├── bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py │ ├── bisenetv1_r101-d32_4xb4-160k_coco-stuff164k-512x512.py │ ├── bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py │ ├── bisenetv1_r18-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py │ ├── bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024.py │ ├── bisenetv1_r18-d32_4xb4-160k_cityscapes-1024x1024.py │ ├── bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py │ ├── bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py │ ├── bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py │ ├── bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py │ ├── bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512.py │ └── metafile.yaml ├── bisenetv2 │ ├── README.md │ ├── bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py │ ├── bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py │ ├── bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py │ ├── bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024.py │ └── metafile.yaml ├── ccnet │ ├── README.md │ ├── ccnet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── ccnet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── ccnet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── ccnet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── ccnet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── ccnet_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── ccnet_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── ccnet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── ccnet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── ccnet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── ccnet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── ccnet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── ccnet_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── ccnet_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── ccnet_r50-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── cgnet │ ├── README.md │ ├── cgnet_fcn_4xb4-60k_cityscapes-680x680.py │ ├── cgnet_fcn_4xb8-60k_cityscapes-512x1024.py │ └── metafile.yaml ├── convnext │ ├── README.md │ ├── convnext-base_upernet_8xb2-amp-160k_ade20k-512x512.py │ ├── convnext-base_upernet_8xb2-amp-160k_ade20k-640x640.py │ ├── convnext-large_upernet_8xb2-amp-160k_ade20k-640x640.py │ ├── convnext-small_upernet_8xb2-amp-160k_ade20k-512x512.py │ ├── convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py │ ├── convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640.py │ └── metafile.yaml ├── danet │ ├── README.md │ ├── danet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── danet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── danet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── danet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── danet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── danet_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── danet_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── danet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── danet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── danet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── danet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── danet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── danet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── danet_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── danet_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── danet_r50-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── ddrnet │ ├── README.md │ ├── ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024.py │ ├── ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024.py │ └── metafile.yaml ├── deeplabv3 │ ├── README.md │ ├── deeplabv3_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py │ ├── deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py │ ├── deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py │ ├── deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py │ ├── deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py │ ├── deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py │ ├── deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py │ ├── deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py │ ├── deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py │ ├── deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py │ ├── deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py │ ├── deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py │ ├── deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py │ ├── deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py │ ├── deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py │ ├── deeplabv3_r50-d8_4xb4-40k_pascal-context-480x480.py │ ├── deeplabv3_r50-d8_4xb4-40k_pascal-context-59-480x480.py │ ├── deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py │ ├── deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py │ ├── deeplabv3_r50-d8_4xb4-80k_pascal-context-480x480.py │ ├── deeplabv3_r50-d8_4xb4-80k_pascal-context-59-480x480.py │ ├── deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py │ └── metafile.yaml ├── deeplabv3plus │ ├── README.md │ ├── deeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py │ ├── deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py │ ├── deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── deeplabv3plus_r101-d8_4xb4-40k_pascal-context-480x480.py │ ├── deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py │ ├── deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── deeplabv3plus_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py │ ├── deeplabv3plus_r101-d8_4xb4-80k_pascal-context-480x480.py │ ├── deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py │ ├── deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py │ ├── deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py │ ├── deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py │ ├── deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py │ ├── deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py │ ├── deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py │ ├── deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280.py │ ├── deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py │ ├── deeplabv3plus_r50-d8_4xb4-40k_pascal-context-59-480x480.py │ ├── deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py │ ├── deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py │ ├── deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py │ ├── deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py │ ├── deeplabv3plus_r50-d8_4xb4-80k_pascal-context-59-480x480.py │ ├── deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py │ ├── deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py │ ├── deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py │ └── metafile.yaml ├── dmnet │ ├── README.md │ ├── dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── dmnet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── dmnet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── dmnet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── dmnet_r50-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── dnlnet │ ├── README.md │ ├── dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── dnl_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── dnl_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── dnl_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── dnl_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── dnl_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── dnl_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── dnl_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── dnl_r50-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── dpt │ ├── README.md │ ├── dpt_vit-b16_8xb2-160k_ade20k-512x512.py │ └── metafile.yaml ├── dsdl │ ├── README.md │ ├── cityscapes.py │ └── voc.py ├── emanet │ ├── README.md │ ├── emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── emanet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── emanet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── emanet_r50-d8_4xb2-80k_cityscapes-769x769.py │ └── metafile.yaml ├── encnet │ ├── README.md │ ├── encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── encnet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── encnet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── encnet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── encnet_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── encnet_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── encnet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── encnet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── encnet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── encnet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── encnet_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── encnet_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── encnet_r50-d8_4xb4-80k_ade20k-512x512.py │ ├── encnet_r50s-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── erfnet │ ├── README.md │ ├── erfnet_fcn_4xb4-160k_cityscapes-512x1024.py │ └── metafile.yaml ├── fastfcn │ ├── README.md │ ├── fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py │ ├── fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512.py │ ├── fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512.py │ ├── fastfcn_r50-d32_jpu_aspp_4xb4-80k_cityscapes-512x1024.py │ ├── fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py │ ├── fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512.py │ ├── fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512.py │ ├── fastfcn_r50-d32_jpu_enc_4xb4-80k_cityscapes-512x1024.py │ ├── fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py │ ├── fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512.py │ ├── fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512.py │ ├── fastfcn_r50-d32_jpu_psp_4xb4-80k_cityscapes-512x1024.py │ └── metafile.yaml ├── fastscnn │ ├── README.md │ ├── fast_scnn_8xb4-160k_cityscapes-512x1024.py │ └── metafile.yaml ├── fcn │ ├── README.md │ ├── fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py │ ├── fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py │ ├── fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py │ ├── fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py │ ├── fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py │ ├── fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py │ ├── fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py │ ├── fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py │ ├── fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py │ ├── fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py │ ├── fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py │ ├── fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py │ ├── fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── fcn_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py │ ├── fcn_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── fcn_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── fcn_r101-d8_4xb4-40k_pascal-context-480x480.py │ ├── fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py │ ├── fcn_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── fcn_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── fcn_r101-d8_4xb4-80k_pascal-context-480x480.py │ ├── fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py │ ├── fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py │ ├── fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_r18-d8_4xb2-80k_cityscapes-769x769.py │ ├── fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py │ ├── fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── fcn_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── fcn_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── fcn_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── fcn_r50-d8_4xb4-40k_pascal-context-480x480.py │ ├── fcn_r50-d8_4xb4-40k_pascal-context-59-480x480.py │ ├── fcn_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── fcn_r50-d8_4xb4-80k_ade20k-512x512.py │ ├── fcn_r50-d8_4xb4-80k_pascal-context-480x480.py │ ├── fcn_r50-d8_4xb4-80k_pascal-context-59-480x480.py │ ├── fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py │ └── metafile.yaml ├── gcnet │ ├── README.md │ ├── gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── gcnet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── gcnet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── gcnet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── gcnet_r50-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── hrnet │ ├── README.md │ ├── fcn_hr18_4xb2-160k_cityscapes-512x1024.py │ ├── fcn_hr18_4xb2-40k_cityscapes-512x1024.py │ ├── fcn_hr18_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_hr18_4xb4-160k_ade20k-512x512.py │ ├── fcn_hr18_4xb4-20k_voc12aug-512x512.py │ ├── fcn_hr18_4xb4-40k_pascal-context-480x480.py │ ├── fcn_hr18_4xb4-40k_pascal-context-59-480x480.py │ ├── fcn_hr18_4xb4-40k_voc12aug-512x512.py │ ├── fcn_hr18_4xb4-80k_ade20k-512x512.py │ ├── fcn_hr18_4xb4-80k_isaid-896x896.py │ ├── fcn_hr18_4xb4-80k_loveda-512x512.py │ ├── fcn_hr18_4xb4-80k_pascal-context-480x480.py │ ├── fcn_hr18_4xb4-80k_pascal-context-59-480x480.py │ ├── fcn_hr18_4xb4-80k_potsdam-512x512.py │ ├── fcn_hr18_4xb4-80k_vaihingen-512x512.py │ ├── fcn_hr18s_4xb2-160k_cityscapes-512x1024.py │ ├── fcn_hr18s_4xb2-40k_cityscapes-512x1024.py │ ├── fcn_hr18s_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_hr18s_4xb4-160k_ade20k-512x512.py │ ├── fcn_hr18s_4xb4-20k_voc12aug-512x512.py │ ├── fcn_hr18s_4xb4-40k_pascal-context-480x480.py │ ├── fcn_hr18s_4xb4-40k_pascal-context-59-480x480.py │ ├── fcn_hr18s_4xb4-40k_voc12aug-512x512.py │ ├── fcn_hr18s_4xb4-80k_ade20k-512x512.py │ ├── fcn_hr18s_4xb4-80k_isaid-896x896.py │ ├── fcn_hr18s_4xb4-80k_loveda-512x512.py │ ├── fcn_hr18s_4xb4-80k_pascal-context-480x480.py │ ├── fcn_hr18s_4xb4-80k_pascal-context-59-480x480.py │ ├── fcn_hr18s_4xb4-80k_potsdam-512x512.py │ ├── fcn_hr18s_4xb4-80k_vaihingen-512x512.py │ ├── fcn_hr48_4xb2-160k_cityscapes-512x1024.py │ ├── fcn_hr48_4xb2-40k_cityscapes-512x1024.py │ ├── fcn_hr48_4xb2-80k_cityscapes-512x1024.py │ ├── fcn_hr48_4xb4-160k_ade20k-512x512.py │ ├── fcn_hr48_4xb4-20k_voc12aug-512x512.py │ ├── fcn_hr48_4xb4-40k_pascal-context-480x480.py │ ├── fcn_hr48_4xb4-40k_pascal-context-59-480x480.py │ ├── fcn_hr48_4xb4-40k_voc12aug-512x512.py │ ├── fcn_hr48_4xb4-80k_ade20k-512x512.py │ ├── fcn_hr48_4xb4-80k_isaid-896x896.py │ ├── fcn_hr48_4xb4-80k_loveda-512x512.py │ ├── fcn_hr48_4xb4-80k_pascal-context-480x480.py │ ├── fcn_hr48_4xb4-80k_pascal-context-59-480x480.py │ ├── fcn_hr48_4xb4-80k_potsdam-512x512.py │ ├── fcn_hr48_4xb4-80k_vaihingen-512x512.py │ └── metafile.yaml ├── icnet │ ├── README.md │ ├── icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py │ ├── icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py │ ├── icnet_r101-d8_4xb2-160k_cityscapes-832x832.py │ ├── icnet_r101-d8_4xb2-80k_cityscapes-832x832.py │ ├── icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py │ ├── icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py │ ├── icnet_r18-d8_4xb2-160k_cityscapes-832x832.py │ ├── icnet_r18-d8_4xb2-80k_cityscapes-832x832.py │ ├── icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py │ ├── icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py │ ├── icnet_r50-d8_4xb2-160k_cityscapes-832x832.py │ ├── icnet_r50-d8_4xb2-80k_cityscapes-832x832.py │ └── metafile.yaml ├── isanet │ ├── README.md │ ├── isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── isanet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── isanet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── isanet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── isanet_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── isanet_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── isanet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── isanet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── isanet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── isanet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── isanet_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── isanet_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── isanet_r50-d8_4xb4-80k_ade20k-512x512.py │ └── metafile.yaml ├── knet │ ├── README.md │ ├── knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py │ ├── knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py │ ├── knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py │ ├── knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py │ ├── knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py │ ├── knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py │ ├── knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py │ └── metafile.yaml ├── mae │ ├── README.md │ ├── mae-base_upernet_8xb2-amp-160k_ade20k-512x512-ms.py │ ├── mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py │ └── metafile.yaml ├── mask2former │ ├── README.md │ ├── mask2former_r101_8xb2-160k_ade20k-512x512.py │ ├── mask2former_r101_8xb2-90k_cityscapes-512x1024.py │ ├── mask2former_r50_8xb2-160k_ade20k-512x512.py │ ├── mask2former_r50_8xb2-90k_cityscapes-512x1024.py │ ├── mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py │ ├── mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py │ ├── mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py │ ├── mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py │ ├── mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py │ ├── mask2former_swin-s_8xb2-160k_ade20k-512x512.py │ ├── mask2former_swin-s_8xb2-90k_cityscapes-512x1024.py │ ├── mask2former_swin-t_8xb2-160k_ade20k-512x512.py │ ├── mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py │ └── metafile.yaml ├── maskformer │ ├── README.md │ ├── maskformer_r101-d32_8xb2-160k_ade20k-512x512.py │ ├── maskformer_r50-d32_8xb2-160k_ade20k-512x512.py │ ├── maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py │ ├── maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py │ └── metafile.yaml ├── mobilenet_v2 │ ├── README.md │ ├── metafile.yaml │ ├── mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py │ ├── mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512.py │ ├── mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py │ ├── mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py │ ├── mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py │ ├── mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512.py │ ├── mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py │ └── mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512.py ├── mobilenet_v3 │ ├── README.md │ ├── metafile.yaml │ ├── mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024.py │ ├── mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024.py │ ├── mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024.py │ └── mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024.py ├── nonlocal_net │ ├── README.md │ ├── metafile.yaml │ ├── nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py │ └── nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py ├── ocrnet │ ├── README.md │ ├── metafile.yaml │ ├── ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py │ ├── ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py │ ├── ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py │ ├── ocrnet_hr18_4xb4-160k_ade20k-512x512.py │ ├── ocrnet_hr18_4xb4-20k_voc12aug-512x512.py │ ├── ocrnet_hr18_4xb4-40k_voc12aug-512x512.py │ ├── ocrnet_hr18_4xb4-80k_ade20k-512x512.py │ ├── ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py │ ├── ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py │ ├── ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py │ ├── ocrnet_hr18s_4xb4-160k_ade20k-512x512.py │ ├── ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py │ ├── ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py │ ├── ocrnet_hr18s_4xb4-80k_ade20k-512x512.py │ ├── ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py │ ├── ocrnet_hr48_4xb2-40k_cityscapes-512x1024.py │ ├── ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py │ ├── ocrnet_hr48_4xb4-160k_ade20k-512x512.py │ ├── ocrnet_hr48_4xb4-20k_voc12aug-512x512.py │ ├── ocrnet_hr48_4xb4-40k_voc12aug-512x512.py │ ├── ocrnet_hr48_4xb4-80k_ade20k-512x512.py │ ├── ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py │ └── ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py ├── pidnet │ ├── README.md │ ├── metafile.yaml │ ├── pidnet-l_2xb6-120k_1024x1024-cityscapes.py │ ├── pidnet-m_2xb6-120k_1024x1024-cityscapes.py │ └── pidnet-s_2xb6-120k_1024x1024-cityscapes.py ├── point_rend │ ├── README.md │ ├── metafile.yaml │ ├── pointrend_r101_4xb2-80k_cityscapes-512x1024.py │ ├── pointrend_r101_4xb4-160k_ade20k-512x512.py │ ├── pointrend_r50_4xb2-80k_cityscapes-512x1024.py │ └── pointrend_r50_4xb4-160k_ade20k-512x512.py ├── poolformer │ ├── README.md │ ├── fpn_poolformer_m36_8xb4-40k_ade20k-512x512.py │ ├── fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py │ ├── fpn_poolformer_s12_8xb4-40k_ade20k-512x512.py │ ├── fpn_poolformer_s24_8xb4-40k_ade20k-512x512.py │ ├── fpn_poolformer_s36_8x4_512x512_40k_ade20k.py │ └── metafile.yaml ├── psanet │ ├── README.md │ ├── metafile.yaml │ ├── psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── psanet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── psanet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── psanet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── psanet_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── psanet_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── psanet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── psanet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── psanet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── psanet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── psanet_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── psanet_r50-d8_4xb4-40k_voc12aug-512x512.py │ └── psanet_r50-d8_4xb4-80k_ade20k-512x512.py ├── pspnet │ ├── README.md │ ├── metafile.yaml │ ├── pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py │ ├── pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py │ ├── pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py │ ├── pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py │ ├── pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py │ ├── pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py │ ├── pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py │ ├── pspnet_r101-d8_4xb4-160k_ade20k-512x512.py │ ├── pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py │ ├── pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py │ ├── pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py │ ├── pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py │ ├── pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py │ ├── pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py │ ├── pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py │ ├── pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py │ ├── pspnet_r101-d8_4xb4-80k_ade20k-512x512.py │ ├── pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py │ ├── pspnet_r101-d8_4xb4-80k_loveda-512x512.py │ ├── pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py │ ├── pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py │ ├── pspnet_r101-d8_4xb4-80k_potsdam-512x512.py │ ├── pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py │ ├── pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py │ ├── pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py │ ├── pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py │ ├── pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py │ ├── pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py │ ├── pspnet_r18-d8_4xb4-80k_isaid-896x896.py │ ├── pspnet_r18-d8_4xb4-80k_loveda-512x512.py │ ├── pspnet_r18-d8_4xb4-80k_potsdam-512x512.py │ ├── pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py │ ├── pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py │ ├── pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py │ ├── pspnet_r50-d32_4xb2-80k_cityscapes-512x1024.py │ ├── pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024.py │ ├── pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py │ ├── pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py │ ├── pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py │ ├── pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py │ ├── pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py │ ├── pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py │ ├── pspnet_r50-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py │ ├── pspnet_r50-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py │ ├── pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py │ ├── pspnet_r50-d8_4xb4-160k_ade20k-512x512.py │ ├── pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py │ ├── pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py │ ├── pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py │ ├── pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py │ ├── pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py │ ├── pspnet_r50-d8_4xb4-40k_pascal-context-480x480.py │ ├── pspnet_r50-d8_4xb4-40k_pascal-context-59-480x480.py │ ├── pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py │ ├── pspnet_r50-d8_4xb4-80k_ade20k-512x512.py │ ├── pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py │ ├── pspnet_r50-d8_4xb4-80k_isaid-896x896.py │ ├── pspnet_r50-d8_4xb4-80k_loveda-512x512.py │ ├── pspnet_r50-d8_4xb4-80k_pascal-context-480x480.py │ ├── pspnet_r50-d8_4xb4-80k_pascal-context-59-480x480.py │ ├── pspnet_r50-d8_4xb4-80k_potsdam-512x512.py │ ├── pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py │ ├── pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py │ ├── pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py │ └── pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py ├── resnest │ ├── README.md │ ├── metafile.yaml │ ├── resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py │ ├── resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py │ ├── resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py │ ├── resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py │ ├── resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py │ ├── resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py │ ├── resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py │ └── resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py ├── samba │ ├── samba_upernet-15k_loveda-512x512_6e4.py │ ├── samba_upernet-15k_potsdam-512x512_6e4.py │ └── samba_upernet-15k_vaihingen-512x512_6e4.py ├── san │ ├── README.md │ ├── metafile.yaml │ ├── san-vit-b16_coco-stuff164k-640x640.py │ ├── san-vit-b16_pascal_context-640x640.py │ ├── san-vit-b16_voc12aug-640x640.py │ ├── san-vit-l14_coco-stuff164k-640x640.py │ ├── san-vit-l14_pascal_context-640x640.py │ └── san-vit-l14_voc12aug-640x640.py ├── segformer │ ├── README.md │ ├── metafile.yaml │ ├── segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py │ ├── segformer_mit-b0_8xb2-160k_ade20k-512x512.py │ ├── segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py │ ├── segformer_mit-b1_8xb2-160k_ade20k-512x512.py │ ├── segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py │ ├── segformer_mit-b2_8xb2-160k_ade20k-512x512.py │ ├── segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py │ ├── segformer_mit-b3_8xb2-160k_ade20k-512x512.py │ ├── segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py │ ├── segformer_mit-b4_8xb2-160k_ade20k-512x512.py │ ├── segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py │ ├── segformer_mit-b5_8xb2-160k_ade20k-512x512.py │ └── segformer_mit-b5_8xb2-160k_ade20k-640x640.py ├── segmenter │ ├── README.md │ ├── metafile.yaml │ ├── segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py │ ├── segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py │ ├── segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py │ ├── segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py │ └── segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py ├── segnext │ ├── README.md │ ├── metafile.yaml │ ├── segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py │ ├── segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py │ ├── segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py │ └── segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py ├── sem_fpn │ ├── README.md │ ├── fpn_r101_4xb2-80k_cityscapes-512x1024.py │ ├── fpn_r101_4xb4-160k_ade20k-512x512.py │ ├── fpn_r50_4xb2-80k_cityscapes-512x1024.py │ ├── fpn_r50_4xb4-160k_ade20k-512x512.py │ └── metafile.yaml ├── setr │ ├── README.md │ ├── metafile.yaml │ ├── setr_vit-l-mla_8xb1-160k_ade20k-512x512.py │ ├── setr_vit-l_mla_8xb1-80k_cityscapes-768x768.py │ ├── setr_vit-l_mla_8xb2-160k_ade20k-512x512.py │ ├── setr_vit-l_naive_8xb1-80k_cityscapes-768x768.py │ ├── setr_vit-l_naive_8xb2-160k_ade20k-512x512.py │ ├── setr_vit-l_pup_8xb1-80k_cityscapes-768x768.py │ └── setr_vit-l_pup_8xb2-160k_ade20k-512x512.py ├── stdc │ ├── README.md │ ├── metafile.yaml │ ├── stdc1_4xb12-80k_cityscapes-512x1024.py │ ├── stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py │ ├── stdc2_4xb12-80k_cityscapes-512x1024.py │ └── stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py ├── swin │ ├── README.md │ ├── metafile.yaml │ ├── swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py │ ├── swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py │ ├── swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py │ ├── swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py │ ├── swin-large-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py │ ├── swin-large-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py │ ├── swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py │ ├── swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py │ └── swin-tiny-patch4-window7_upernet_1xb8-20k_levir-256x256.py ├── twins │ ├── README.md │ ├── metafile.yaml │ ├── twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py │ ├── twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512.py │ ├── twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py │ ├── twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py │ ├── twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py │ ├── twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py │ ├── twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py │ ├── twins_svt-b_uperhead_8xb2-160k_ade20k-512x512.py │ ├── twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py │ ├── twins_svt-l_uperhead_8xb2-160k_ade20k-512x512.py │ ├── twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py │ └── twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py ├── unet │ ├── README.md │ ├── metafile.yaml │ ├── unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py │ ├── unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py │ ├── unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py │ ├── unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py │ ├── unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py │ ├── unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py │ ├── unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py │ ├── unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py │ ├── unet-s5-d16_fcn_4xb4-160k_hsidrive-192x384.py │ ├── unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py │ ├── unet-s5-d16_fcn_4xb4-40k_drive-64x64.py │ ├── unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py │ ├── unet-s5-d16_fcn_4xb4-40k_stare-128x128.py │ ├── unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py │ ├── unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py │ ├── unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py │ ├── unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py │ ├── unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py │ ├── unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py │ ├── unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py │ ├── unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py │ ├── unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py │ ├── unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py │ ├── unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py │ ├── unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py │ └── unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py ├── upernet │ ├── README.md │ ├── metafile.yaml │ ├── upernet_r101_4xb2-40k_cityscapes-512x1024.py │ ├── upernet_r101_4xb2-40k_cityscapes-769x769.py │ ├── upernet_r101_4xb2-80k_cityscapes-512x1024.py │ ├── upernet_r101_4xb2-80k_cityscapes-769x769.py │ ├── upernet_r101_4xb4-160k_ade20k-512x512.py │ ├── upernet_r101_4xb4-20k_voc12aug-512x512.py │ ├── upernet_r101_4xb4-40k_voc12aug-512x512.py │ ├── upernet_r101_4xb4-80k_ade20k-512x512.py │ ├── upernet_r18_4xb2-40k_cityscapes-512x1024.py │ ├── upernet_r18_4xb2-80k_cityscapes-512x1024.py │ ├── upernet_r18_4xb4-160k_ade20k-512x512.py │ ├── upernet_r18_4xb4-20k_voc12aug-512x512.py │ ├── upernet_r18_4xb4-40k_voc12aug-512x512.py │ ├── upernet_r18_4xb4-80k_ade20k-512x512.py │ ├── upernet_r50_4xb2-40k_cityscapes-512x1024.py │ ├── upernet_r50_4xb2-40k_cityscapes-769x769.py │ ├── upernet_r50_4xb2-80k_cityscapes-512x1024.py │ ├── upernet_r50_4xb2-80k_cityscapes-769x769.py │ ├── upernet_r50_4xb4-160k_ade20k-512x512.py │ ├── upernet_r50_4xb4-20k_voc12aug-512x512.py │ ├── upernet_r50_4xb4-40k_voc12aug-512x512.py │ └── upernet_r50_4xb4-80k_ade20k-512x512.py ├── vit │ ├── README.md │ ├── metafile.yaml │ ├── vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py │ ├── vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py │ ├── vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py │ ├── vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py │ ├── vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py │ ├── vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py │ ├── vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py │ ├── vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py │ ├── vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py │ ├── vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py │ └── vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py └── vpd │ ├── README.md │ ├── metafile.yaml │ ├── vpd_sd_4xb8-25k_nyu-480x480.py │ └── vpd_sd_4xb8-25k_nyu-512x512.py ├── dataset-index.yml ├── demo ├── MMSegmentation_Tutorial.ipynb ├── classroom__rgb_00283.jpg ├── demo.png ├── image_demo.py ├── image_demo_with_inferencer.py ├── inference_demo.ipynb ├── rs_image_inference.py └── video_demo.py ├── docker ├── Dockerfile └── serve │ ├── Dockerfile │ ├── config.properties │ └── entrypoint.sh ├── docs ├── en │ ├── .readthedocs.yaml │ ├── Makefile │ ├── _static │ │ ├── css │ │ │ └── readthedocs.css │ │ └── images │ │ │ └── mmsegmentation.png │ ├── advanced_guides │ │ ├── add_datasets.md │ │ ├── add_metrics.md │ │ ├── add_models.md │ │ ├── add_transforms.md │ │ ├── customize_runtime.md │ │ ├── data_flow.md │ │ ├── datasets.md │ │ ├── engine.md │ │ ├── evaluation.md │ │ ├── index.rst │ │ ├── models.md │ │ ├── structures.md │ │ ├── training_tricks.md │ │ └── transforms.md │ ├── api.rst │ ├── conf.py │ ├── device │ │ └── npu.md │ ├── get_started.md │ ├── index.rst │ ├── make.bat │ ├── migration │ │ ├── index.rst │ │ ├── interface.md │ │ └── package.md │ ├── model_zoo.md │ ├── modelzoo_statistics.md │ ├── notes │ │ ├── changelog.md │ │ ├── changelog_v0.x.md │ │ └── faq.md │ ├── overview.md │ ├── stat.py │ ├── switch_language.md │ └── user_guides │ │ ├── 1_config.md │ │ ├── 2_dataset_prepare.md │ │ ├── 3_inference.md │ │ ├── 4_train_test.md │ │ ├── 5_deployment.md │ │ ├── index.rst │ │ ├── useful_tools.md │ │ ├── visualization.md │ │ └── visualization_feature_map.md └── zh_cn │ ├── .readthedocs.yaml │ ├── Makefile │ ├── _static │ ├── css │ │ └── readthedocs.css │ └── images │ │ └── mmsegmentation.png │ ├── advanced_guides │ ├── add_datasets.md │ ├── add_metrics.md │ ├── add_models.md │ ├── add_transforms.md │ ├── contribute_dataset.md │ ├── customize_runtime.md │ ├── data_flow.md │ ├── datasets.md │ ├── engine.md │ ├── evaluation.md │ ├── index.rst │ ├── models.md │ ├── structures.md │ ├── training_tricks.md │ └── transforms.md │ ├── api.rst │ ├── conf.py │ ├── device │ └── npu.md │ ├── get_started.md │ ├── imgs │ └── zhihu_qrcode.jpg │ ├── index.rst │ ├── make.bat │ ├── migration │ ├── index.rst │ ├── interface.md │ └── package.md │ ├── model_zoo.md │ ├── modelzoo_statistics.md │ ├── notes │ └── faq.md │ ├── overview.md │ ├── stat.py │ ├── switch_language.md │ └── user_guides │ ├── 1_config.md │ ├── 2_dataset_prepare.md │ ├── 3_inference.md │ ├── 4_train_test.md │ ├── 5_deployment.md │ ├── deploy_jetson.md │ ├── index.rst │ ├── useful_tools.md │ ├── visualization.md │ └── visualization_feature_map.md ├── mmseg ├── __init__.py ├── apis │ ├── __init__.py │ ├── inference.py │ ├── mmseg_inferencer.py │ ├── remote_sense_inferencer.py │ └── utils.py ├── configs │ └── _base_ │ │ ├── datasets │ │ ├── loveda.py │ │ └── potsdam.py │ │ ├── default_runtime.py │ │ └── schedules │ │ ├── schedule_160k.py │ │ ├── schedule_20k.py │ │ ├── schedule_240k.py │ │ ├── schedule_25k.py │ │ ├── schedule_320k.py │ │ ├── schedule_40k.py │ │ └── schedule_80k.py ├── datasets │ ├── __init__.py │ ├── ade.py │ ├── basesegdataset.py │ ├── bdd100k.py │ ├── chase_db1.py │ ├── cityscapes.py │ ├── coco_stuff.py │ ├── dark_zurich.py │ ├── dataset_wrappers.py │ ├── decathlon.py │ ├── drive.py │ ├── dsdl.py │ ├── hrf.py │ ├── hsi_drive.py │ ├── isaid.py │ ├── isprs.py │ ├── levir.py │ ├── lip.py │ ├── loveda.py │ ├── mapillary.py │ ├── night_driving.py │ ├── nyu.py │ ├── pascal_context.py │ ├── potsdam.py │ ├── refuge.py │ ├── stare.py │ ├── synapse.py │ ├── transforms │ │ ├── __init__.py │ │ ├── formatting.py │ │ ├── loading.py │ │ └── transforms.py │ └── voc.py ├── engine │ ├── __init__.py │ ├── hooks │ │ ├── __init__.py │ │ └── visualization_hook.py │ ├── optimizers │ │ ├── __init__.py │ │ ├── force_default_constructor.py │ │ └── layer_decay_optimizer_constructor.py │ └── schedulers │ │ ├── __init__.py │ │ └── poly_ratio_scheduler.py ├── evaluation │ ├── __init__.py │ └── metrics │ │ ├── __init__.py │ │ ├── citys_metric.py │ │ ├── depth_metric.py │ │ └── iou_metric.py ├── models │ ├── __init__.py │ ├── assigners │ │ ├── __init__.py │ │ ├── base_assigner.py │ │ ├── hungarian_assigner.py │ │ └── match_cost.py │ ├── backbones │ │ ├── Samba.py │ │ ├── __init__.py │ │ ├── beit.py │ │ ├── bisenetv1.py │ │ ├── bisenetv2.py │ │ ├── cgnet.py │ │ ├── ddrnet.py │ │ ├── erfnet.py │ │ ├── fast_scnn.py │ │ ├── hrnet.py │ │ ├── icnet.py │ │ ├── mae.py │ │ ├── mit.py │ │ ├── mobilenet_v2.py │ │ ├── mobilenet_v3.py │ │ ├── mscan.py │ │ ├── pidnet.py │ │ ├── resnest.py │ │ ├── resnet.py │ │ ├── resnext.py │ │ ├── stdc.py │ │ ├── swin.py │ │ ├── timm_backbone.py │ │ ├── twins.py │ │ ├── unet.py │ │ ├── vit.py │ │ └── vpd.py │ ├── builder.py │ ├── data_preprocessor.py │ ├── decode_heads │ │ ├── __init__.py │ │ ├── ann_head.py │ │ ├── apc_head.py │ │ ├── aspp_head.py │ │ ├── cascade_decode_head.py │ │ ├── cc_head.py │ │ ├── da_head.py │ │ ├── ddr_head.py │ │ ├── decode_head.py │ │ ├── dm_head.py │ │ ├── dnl_head.py │ │ ├── dpt_head.py │ │ ├── ema_head.py │ │ ├── enc_head.py │ │ ├── fcn_head.py │ │ ├── fpn_head.py │ │ ├── gc_head.py │ │ ├── ham_head.py │ │ ├── isa_head.py │ │ ├── knet_head.py │ │ ├── lraspp_head.py │ │ ├── mask2former_head.py │ │ ├── maskformer_head.py │ │ ├── nl_head.py │ │ ├── ocr_head.py │ │ ├── pid_head.py │ │ ├── point_head.py │ │ ├── psa_head.py │ │ ├── psp_head.py │ │ ├── san_head.py │ │ ├── segformer_head.py │ │ ├── segmenter_mask_head.py │ │ ├── sep_aspp_head.py │ │ ├── sep_fcn_head.py │ │ ├── setr_mla_head.py │ │ ├── setr_up_head.py │ │ ├── stdc_head.py │ │ ├── uper_head.py │ │ └── vpd_depth_head.py │ ├── losses │ │ ├── __init__.py │ │ ├── accuracy.py │ │ ├── boundary_loss.py │ │ ├── cross_entropy_loss.py │ │ ├── dice_loss.py │ │ ├── focal_loss.py │ │ ├── huasdorff_distance_loss.py │ │ ├── kldiv_loss.py │ │ ├── lovasz_loss.py │ │ ├── ohem_cross_entropy_loss.py │ │ ├── silog_loss.py │ │ ├── tversky_loss.py │ │ └── utils.py │ ├── necks │ │ ├── __init__.py │ │ ├── featurepyramid.py │ │ ├── fpn.py │ │ ├── ic_neck.py │ │ ├── jpu.py │ │ ├── mla_neck.py │ │ └── multilevel_neck.py │ ├── segmentors │ │ ├── __init__.py │ │ ├── base.py │ │ ├── cascade_encoder_decoder.py │ │ ├── depth_estimator.py │ │ ├── encoder_decoder.py │ │ ├── multimodal_encoder_decoder.py │ │ └── seg_tta.py │ ├── text_encoder │ │ ├── __init__.py │ │ └── clip_text_encoder.py │ └── utils │ │ ├── __init__.py │ │ ├── basic_block.py │ │ ├── embed.py │ │ ├── encoding.py │ │ ├── inverted_residual.py │ │ ├── make_divisible.py │ │ ├── point_sample.py │ │ ├── ppm.py │ │ ├── res_layer.py │ │ ├── san_layers.py │ │ ├── se_layer.py │ │ ├── self_attention_block.py │ │ ├── shape_convert.py │ │ ├── up_conv_block.py │ │ └── wrappers.py ├── registry │ ├── __init__.py │ └── registry.py ├── structures │ ├── __init__.py │ ├── sampler │ │ ├── __init__.py │ │ ├── base_pixel_sampler.py │ │ ├── builder.py │ │ └── ohem_pixel_sampler.py │ └── seg_data_sample.py ├── utils │ ├── __init__.py │ ├── bpe_simple_vocab_16e6.txt.gz │ ├── class_names.py │ ├── collect_env.py │ ├── get_templates.py │ ├── io.py │ ├── mask_classification.py │ ├── misc.py │ ├── set_env.py │ ├── tokenizer.py │ └── typing_utils.py ├── version.py └── visualization │ ├── __init__.py │ └── local_visualizer.py ├── model-index.yml ├── projects ├── Adabins │ ├── README.md │ ├── backbones │ │ ├── __init__.py │ │ └── adabins_backbone.py │ ├── configs │ │ ├── _base_ │ │ │ ├── datasets │ │ │ │ └── nyu.py │ │ │ ├── default_runtime.py │ │ │ └── models │ │ │ │ └── Adabins.py │ │ └── adabins │ │ │ ├── adabins_efficient_b5_4x16_25e_NYU_416x544.py │ │ │ └── adabins_efficient_b5_4x16_25e_kitti_352x704.py │ └── decode_head │ │ ├── __init__.py │ │ └── adabins_head.py ├── CAT-Seg │ ├── README.md │ ├── cat_seg │ │ ├── __init__.py │ │ ├── models │ │ │ ├── __init__.py │ │ │ ├── cat_aggregator.py │ │ │ ├── cat_head.py │ │ │ └── clip_ovseg.py │ │ └── utils │ │ │ ├── __init__.py │ │ │ ├── bpe_vocab │ │ │ └── bpe_simple_vocab_16e6.txt.gz │ │ │ ├── clip_model.py │ │ │ ├── clip_templates.py │ │ │ ├── clip_wrapper.py │ │ │ ├── self_attention_block.py │ │ │ └── tokenizer.py │ ├── configs │ │ ├── _base_ │ │ │ ├── datasets │ │ │ │ ├── ade20k_384x384.py │ │ │ │ ├── coco-stuff164k_384x384.py │ │ │ │ └── pascal_context_59_384x384.py │ │ │ ├── default_runtime.py │ │ │ └── schedules │ │ │ │ └── schedule_80k.py │ │ └── cat_seg │ │ │ ├── catseg_vitb-r101_4xb1-warmcoslr2e-4-adamw-80k_ade20k-384x384.py │ │ │ ├── catseg_vitb-r101_4xb1-warmcoslr2e-4-adamw-80k_pascal-context-59-384x384.py │ │ │ ├── catseg_vitb-r101_4xb2-warmcoslr2e-4-adamw-80k_coco-stuff164k-384x384.py │ │ │ ├── catseg_vitg-swin-b_4xb1-warmcoslr2e-4_adamw-80k_coco-stuff164k_384x384.py │ │ │ ├── catseg_vith-swin-b_4xb1-warmcoslr2e-4_adamw-80k_coco-stuff164k_384x384.py │ │ │ └── catseg_vitl-swin-b_4xb1-warmcoslr2e-4_adamw-80k_coco-stuff164k_384x384.py │ └── utils │ │ └── __init__.py ├── README.md ├── XDecoder │ └── README.md ├── bdd100k_dataset │ ├── README.md │ ├── configs │ │ ├── _base_ │ │ │ └── datasets │ │ │ │ └── bdd100k.py │ │ └── pspnet_r50-d8_4xb2-80k_bdd100k-512x1024.py │ ├── docs │ │ ├── en │ │ │ └── user_guides │ │ │ │ └── 2_dataset_prepare.md │ │ └── zh_cn │ │ │ └── user_guides │ │ │ └── 2_dataset_prepare.md │ └── mmseg │ │ └── datasets │ │ └── bdd100k.py ├── example_project │ ├── README.md │ ├── configs │ │ └── fcn_dummy-r50-d8_4xb2-40k_cityscapes-512x1024.py │ └── dummy │ │ ├── __init__.py │ │ └── dummy_resnet.py ├── faq.md ├── gid_dataset │ ├── configs │ │ ├── _base_ │ │ │ └── datasets │ │ │ │ └── gid.py │ │ └── deeplabv3plus_r101-d8_4xb2-240k_gid-256x256.py │ ├── mmseg │ │ └── datasets │ │ │ └── gid.py │ ├── tools │ │ └── dataset_converters │ │ │ ├── gid.py │ │ │ └── gid_select15imgFromAll.py │ └── user_guides │ │ └── 2_dataset_prepare.md ├── hsidrive20_dataset │ ├── README.md │ ├── configs │ │ ├── _base_ │ │ │ └── datasets │ │ │ │ └── hsi_drive.py │ │ └── unet-s5-d16_fcn_4xb4-160k_hsidrive-192x384.py │ ├── docs │ │ ├── en │ │ │ └── user_guides │ │ │ │ └── 2_dataset_prepare.md │ │ └── zh_cn │ │ │ └── user_guides │ │ │ └── 2_dataset_prepare.md │ └── mmseg │ │ └── datasets │ │ └── hsi_drive.py ├── hssn │ ├── README.md │ ├── configs │ │ ├── _base_ │ │ │ ├── datasets │ │ │ │ └── cityscapes.py │ │ │ ├── default_runtime.py │ │ │ ├── models │ │ │ │ └── deeplabv3plus_r50-d8_vd_contrast.py │ │ │ └── schedules │ │ │ │ └── schedule_80k.py │ │ └── hssn │ │ │ └── hieraseg_deeplabv3plus_r101-d8_4xb2-80l_cityscapes-512x1024.py │ ├── decode_head │ │ ├── __init__.py │ │ └── sep_aspp_contrast_head.py │ └── losses │ │ ├── __init__.py │ │ ├── hiera_triplet_loss_cityscape.py │ │ └── tree_triplet_loss.py ├── isnet │ ├── README.md │ ├── configs │ │ └── isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py │ └── decode_heads │ │ ├── __init__.py │ │ └── isnet_head.py ├── mapillary_dataset │ ├── README.md │ ├── configs │ │ ├── _base_ │ │ │ └── datasets │ │ │ │ ├── mapillary_v1.py │ │ │ │ ├── mapillary_v1_65.py │ │ │ │ └── mapillary_v2.py │ │ ├── deeplabv3plus_r101-d8_4xb2-240k_mapillay_v1-512x1024.py │ │ ├── deeplabv3plus_r101-d8_4xb2-240k_mapillay_v2-512x1024.py │ │ ├── pspnet_r101-d8_4xb2-240k_mapillay_v1-512x1024.py │ │ └── pspnet_r101-d8_4xb2-240k_mapillay_v2-512x1024.py │ ├── docs │ │ └── en │ │ │ └── user_guides │ │ │ └── 2_dataset_prepare.md │ └── mmseg │ │ └── datasets │ │ └── mapillary.py ├── medical │ └── 2d_image │ │ ├── ct │ │ └── cranium │ │ │ ├── README.md │ │ │ ├── configs │ │ │ ├── cranium_512x512.py │ │ │ ├── fcn-unet-s5-d16_unet-{use-sigmoid}_1xb16-0.01-20k_cranium-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_cranium-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_cranium-512x512.py │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_cranium-512x512.py │ │ │ ├── datasets │ │ │ └── cranium_dataset.py │ │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── dermoscopy │ │ ├── isic2016_task1 │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_isic2016-task1-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_isic2016-task1-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_isic2016-task1-512x512.py │ │ │ │ └── isic2016-task1_512x512.py │ │ │ ├── datasets │ │ │ │ └── isic2016-task1_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ └── isic2017_task1 │ │ │ ├── README.md │ │ │ ├── configs │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_isic2017-task1-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_isic2017-task1-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_isic2017-task1-512x512.py │ │ │ └── isic2017-task1_512x512.py │ │ │ ├── datasets │ │ │ └── isic2017-task1_dataset.py │ │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── endoscopy │ │ ├── kvasir_seg │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── fcn-unet-s5-d16_unet-{use-sigmoid}_1xb16-0.01-20k_kvasir-seg-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_kvasir-seg-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_kvasir-seg-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_kvasir-seg-512x512.py │ │ │ │ └── kvasir-seg_512x512.py │ │ │ ├── datasets │ │ │ │ └── kvasir-seg_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ └── kvasir_seg_aliyun │ │ │ ├── README.md │ │ │ ├── configs │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_kvasir-seg-aliyun-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_kvasir-seg-aliyun-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_kvasir-seg-aliyun-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01lr-sigmoid-20k_kvasir-seg-aliyun-512x512.py │ │ │ └── kvasir-seg-aliyun_512x512.py │ │ │ ├── datasets │ │ │ └── kvasir-seg-aliyun_dataset.py │ │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── fluorescein_angriogram │ │ └── vampire │ │ │ ├── README.md │ │ │ ├── configs │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_vampire-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_vampire-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_vampire-512x512.py │ │ │ └── vampire_512x512.py │ │ │ ├── datasets │ │ │ ├── __init__.py │ │ │ └── vampire_dataset.py │ │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── fundus_photography │ │ ├── dr_hagis │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── dr-hagis_512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_dr-hagis-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_dr-hagis-512x512.py │ │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_dr-hagis-512x512.py │ │ │ ├── datasets │ │ │ │ └── dr-hagis_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ ├── gamma3 │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_gamma3-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_gamma3-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_gamma3-512x512.py │ │ │ │ └── gamma3_512x512.py │ │ │ ├── datasets │ │ │ │ └── gamma3_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ ├── orvs │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_orvs-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_orvs-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_orvs-512x512.py │ │ │ │ └── orvs_512x512.py │ │ │ ├── datasets │ │ │ │ └── orvs_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ └── rite │ │ │ ├── README.md │ │ │ ├── configs │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_rite-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_rite-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_rite-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01lr-sigmoid-20k_rite-512x512.py │ │ │ └── rite_512x512.py │ │ │ ├── datasets │ │ │ └── rite_dataset.py │ │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── histopathology │ │ ├── breastCancerCellSegmentation │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── breastCancerCellSegmentation_512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_breastCancerCellSegmentation-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_breastCancerCellSegmentation-512x512.py │ │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_breastCancerCellSegmentation-512x512.py │ │ │ ├── datasets │ │ │ │ └── breastCancerCellSegmentation_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ ├── breast_cancer_cell_seg │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── breast-cancer-cell-seg_512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_breast-cancer-cell-seg-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_breast-cancer-cell-seg-512x512.py │ │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_breast-cancer-cell-seg-512x512.py │ │ │ ├── datasets │ │ │ │ └── breast-cancer-cell-seg_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ ├── conic2022_seg │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── conic2022-seg_512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_conic2022-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_conic2022-512x512.py │ │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_conic2022-512x512.py │ │ │ ├── conic2022_seg_dataset.png │ │ │ ├── datasets │ │ │ │ └── conic2022-seg_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ ├── consep │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── consep_512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_consep-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_consep-512x512.py │ │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_consep-512x512.py │ │ │ ├── datasets │ │ │ │ └── consep_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ ├── fusc2021 │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_fusc2021-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_fusc2021-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_fusc2021-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01lr-sigmoid-20k_fusc2021-512x512.py │ │ │ │ └── fusc2021_512x512.py │ │ │ ├── datasets │ │ │ │ └── fusc2021_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ ├── pannuke │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── fcn-unet-s5-d16_unet-{use-sigmoid}_1xb16-0.01-20k_bactteria-detection-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_pannuke-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_pannuke-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_pannuke-512x512.py │ │ │ │ └── pannuke_512x512.py │ │ │ ├── datasets │ │ │ │ └── pannuke_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ └── pcam │ │ │ ├── README.md │ │ │ ├── configs │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_pcam-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_pcam-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_pcam-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01lr-sigmoid-20k_pcam-512x512.py │ │ │ └── pcam_512x512.py │ │ │ ├── datasets │ │ │ └── pcam_dataset.py │ │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── infrared_reflectance_imaging │ │ └── ravir │ │ │ ├── README.md │ │ │ ├── configs │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_ravir-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_ravir-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_ravir-512x512.py │ │ │ └── ravir_512x512.py │ │ │ ├── datasets │ │ │ ├── __init__.py │ │ │ └── ravir_dataset.py │ │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── microscopy_images │ │ ├── 2pm_vessel │ │ │ ├── README.md │ │ │ ├── configs │ │ │ │ ├── 2pm-vessel_512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_2pm-vessel-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_2pm-vessel-512x512.py │ │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_2pm-vessel-512x512.py │ │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01lr-sigmoid-20k_bactteria-detection-512x512.py │ │ │ ├── datasets │ │ │ │ └── 2pm-vessel_dataset.py │ │ │ └── tools │ │ │ │ └── prepare_dataset.py │ │ └── bactteria_detection │ │ │ ├── README.md │ │ │ ├── configs │ │ │ ├── bactteria-detection_512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_bactteria-detection-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_bactteria-detection-512x512.py │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_bactteria-detection-512x512.py │ │ │ ├── datasets │ │ │ └── bactteria-detection_dataset.py │ │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── tools │ │ └── split_seg_dataset.py │ │ └── x_ray │ │ ├── chest_image_pneum │ │ ├── README.md │ │ ├── configs │ │ │ ├── chest-image-pneum_512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_chest-image-pneum-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_chest-image-pneum-512x512.py │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_chest-image-pneum-512x512.py │ │ ├── datasets │ │ │ └── chest-image-pneum_dataset.py │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── chest_x_ray_images_with_pneumothorax_masks │ │ ├── README.md │ │ ├── configs │ │ │ ├── chest-x-ray-images-with-pneumothorax-masks_512x512.py │ │ │ ├── fcn-unet-s5-d16_unet-{use-sigmoid}_1xb16-0.01-20k_chest-x-ray-images-with-pneumothorax-masks-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_chest-x-ray-images-with-pneumothorax-masks-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_chest-x-ray-images-with-pneumothorax-masks-512x512.py │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_chest-x-ray-images-with-pneumothorax-masks-512x512.py │ │ ├── datasets │ │ │ └── chest-x-ray-images-with-pneumothorax-masks_dataset.py │ │ └── tools │ │ │ └── prepare_dataset.py │ │ ├── covid_19_ct_cxr │ │ ├── README.md │ │ ├── configs │ │ │ ├── covid-19-ct-cxr_512x512.py │ │ │ ├── fcn-unet-s5-d16_unet-{use-sigmoid}_1xb16-0.01-20k_covid-19-ct-cxr-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_covid-19-ct-cxr-512x512.py │ │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_covid-19-ct-cxr-512x512.py │ │ │ └── fcn-unet-s5-d16_unet_1xb16-0.01-20k_covid-19-ct-cxr-512x512.py │ │ ├── datasets │ │ │ └── covid-19-ct-cxr_dataset.py │ │ └── tools │ │ │ └── prepare_dataset.py │ │ └── crass │ │ ├── README.md │ │ ├── configs │ │ ├── crass_512x512.py │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.0001-20k_crass-512x512.py │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.001-20k_crass-512x512.py │ │ ├── fcn-unet-s5-d16_unet_1xb16-0.01-20k_crass-512x512.py │ │ └── fcn-unet-s5-d16_unet_1xb16-lr0.01-sigmoid-20k_crass-512x512.py │ │ ├── datasets │ │ └── crass_dataset.py │ │ └── tools │ │ └── prepare_dataset.py ├── nvidia_jetson │ └── README.md ├── pp_mobileseg │ ├── README.md │ ├── backbones │ │ ├── __init__.py │ │ └── strideformer.py │ ├── configs │ │ ├── _base_ │ │ │ ├── datasets │ │ │ │ └── ade20k.py │ │ │ ├── default_runtime.py │ │ │ ├── models │ │ │ │ └── pp_mobile.py │ │ │ └── schedules │ │ │ │ └── schedule_80k.py │ │ └── pp_mobileseg │ │ │ ├── pp_mobileseg_mobilenetv3_2x16_80k_ade20k_512x512_base.py │ │ │ └── pp_mobileseg_mobilenetv3_2x16_80k_ade20k_512x512_tiny.py │ ├── decode_head │ │ ├── __init__.py │ │ └── pp_mobileseg_head.py │ └── inference_onnx.py ├── sam_inference_demo │ ├── README.md │ ├── sam │ │ ├── __init__.py │ │ ├── modeling │ │ │ ├── __init__.py │ │ │ ├── common.py │ │ │ ├── mask_decoder.py │ │ │ ├── prompt_encoder.py │ │ │ ├── sam.py │ │ │ └── transformer.py │ │ ├── sam_inferencer.py │ │ └── utils │ │ │ ├── __init__.py │ │ │ ├── amg.py │ │ │ └── transforms.py │ └── sam_image_demo.ipynb └── van │ ├── README.md │ ├── backbones │ ├── __init__.py │ └── van.py │ └── configs │ ├── _base_ │ ├── datasets │ │ └── ade20k.py │ └── models │ │ ├── van_fpn.py │ │ └── van_upernet.py │ └── van │ ├── van-b0_fpn_8xb4-40k_ade20k-512x512.py │ ├── van-b1_fpn_8xb4-40k_ade20k-512x512.py │ ├── van-b2_fpn_8xb4-40k_ade20k-512x512.py │ ├── van-b2_upernet_4xb2-160k_ade20k-512x512.py │ ├── van-b3_fpn_8xb4-40k_ade20k-512x512.py │ ├── van-b3_upernet_4xb2-160k_ade20k-512x512.py │ ├── van-b4-in22kpre_upernet_4xb4-160k_ade20k-512x512.py │ ├── van-b4_upernet_4xb4-160k_ade20k-512x512.py │ ├── van-b5-in22kpre_upernet_4xb2-160k_ade20k-512x512.py │ └── van-b6-in22kpre_upernet_4xb2-160k_ade20k-512x512.py ├── requirements.txt ├── requirements ├── albu.txt ├── docs.txt ├── mminstall.txt ├── multimodal.txt ├── optional.txt ├── readthedocs.txt ├── runtime.txt └── tests.txt ├── resources ├── 3dogs.jpg ├── 3dogs_mask.png ├── cascade_encoder_decoder_dataflow.png ├── encoder_decoder_dataflow.png ├── miaomiao_qrcode.jpg ├── mmseg-logo.png ├── seg_demo.gif ├── test_step.png └── train_step.png ├── setup.cfg ├── setup.py ├── tests ├── __init__.py ├── test_apis │ ├── test_inferencer.py │ ├── test_rs_inferencer.py │ └── utils.py ├── test_config.py ├── test_datasets │ ├── test_dataset.py │ ├── test_dataset_builder.py │ ├── test_formatting.py │ ├── test_loading.py │ ├── test_transform.py │ └── test_tta.py ├── test_digit_version.py ├── test_engine │ ├── test_layer_decay_optimizer_constructor.py │ ├── test_optimizer.py │ └── test_visualization_hook.py ├── test_evaluation │ └── test_metrics │ │ ├── test_citys_metric.py │ │ ├── test_depth_metric.py │ │ └── test_iou_metric.py ├── test_models │ ├── __init__.py │ ├── test_assigners │ │ └── test_hungarian_assigner.py │ ├── test_backbones │ │ ├── __init__.py │ │ ├── test_beit.py │ │ ├── test_bisenetv1.py │ │ ├── test_bisenetv2.py │ │ ├── test_blocks.py │ │ ├── test_cgnet.py │ │ ├── test_clip_text_encoder.py │ │ ├── test_erfnet.py │ │ ├── test_fast_scnn.py │ │ ├── test_hrnet.py │ │ ├── test_icnet.py │ │ ├── test_mae.py │ │ ├── test_mit.py │ │ ├── test_mobilenet_v3.py │ │ ├── test_mscan.py │ │ ├── test_pidnet.py │ │ ├── test_resnest.py │ │ ├── test_resnet.py │ │ ├── test_resnext.py │ │ ├── test_stdc.py │ │ ├── test_swin.py │ │ ├── test_timm_backbone.py │ │ ├── test_twins.py │ │ ├── test_unet.py │ │ ├── test_vit.py │ │ ├── test_vpd.py │ │ └── utils.py │ ├── test_data_preprocessor.py │ ├── test_forward.py │ ├── test_heads │ │ ├── __init__.py │ │ ├── test_ann_head.py │ │ ├── test_apc_head.py │ │ ├── test_aspp_head.py │ │ ├── test_cc_head.py │ │ ├── test_decode_head.py │ │ ├── test_dm_head.py │ │ ├── test_dnl_head.py │ │ ├── test_dpt_head.py │ │ ├── test_ema_head.py │ │ ├── test_fcn_head.py │ │ ├── test_gc_head.py │ │ ├── test_ham_head.py │ │ ├── test_isa_head.py │ │ ├── test_lraspp_head.py │ │ ├── test_mask2former_head.py │ │ ├── test_maskformer_head.py │ │ ├── test_nl_head.py │ │ ├── test_ocr_head.py │ │ ├── test_pidnet_head.py │ │ ├── test_psa_head.py │ │ ├── test_psp_head.py │ │ ├── test_san_head.py │ │ ├── test_segformer_head.py │ │ ├── test_segmenter_mask_head.py │ │ ├── test_setr_mla_head.py │ │ ├── test_setr_up_head.py │ │ ├── test_uper_head.py │ │ ├── test_vpd_depth_head.py │ │ └── utils.py │ ├── test_losses │ │ ├── test_cross_entropy_loss.py │ │ ├── test_dice_loss.py │ │ ├── test_huasdorff_distance_loss.py │ │ ├── test_kldiv_loss.py │ │ ├── test_silog_loss.py │ │ └── test_tversky_loss.py │ ├── test_necks │ │ ├── __init__.py │ │ ├── test_feature2pyramid.py │ │ ├── test_fpn.py │ │ ├── test_ic_neck.py │ │ ├── test_jpu.py │ │ ├── test_mla_neck.py │ │ └── test_multilevel_neck.py │ ├── test_segmentors │ │ ├── __init__.py │ │ ├── test_cascade_encoder_decoder.py │ │ ├── test_depth_estimator.py │ │ ├── test_encoder_decoder.py │ │ ├── test_multimodal_encoder_decoder.py │ │ ├── test_seg_tta_model.py │ │ └── utils.py │ └── test_utils │ │ ├── __init__.py │ │ ├── test_embed.py │ │ └── test_shape_convert.py ├── test_sampler.py ├── test_structures │ └── test_seg_data_sample.py ├── test_utils │ ├── test_io.py │ └── test_set_env.py └── test_visualization │ └── test_local_visualizer.py └── tools ├── analysis_tools ├── analyze_logs.py ├── benchmark.py ├── browse_dataset.py ├── confusion_matrix.py ├── get_flops.py └── visualization_cam.py ├── dataset_converters ├── chase_db1.py ├── cityscapes.py ├── coco_stuff10k.py ├── coco_stuff164k.py ├── drive.py ├── hrf.py ├── isaid.py ├── levircd.py ├── loveda.py ├── nyu.py ├── pascal_context.py ├── potsdam.py ├── refuge.py ├── stare.py ├── synapse.py ├── vaihingen.py └── voc_aug.py ├── deployment └── pytorch2torchscript.py ├── dist_test.sh ├── dist_train.sh ├── misc ├── browse_dataset.py ├── print_config.py └── publish_model.py ├── model_converters ├── beit2mmseg.py ├── clip2mmseg.py ├── mit2mmseg.py ├── san2mmseg.py ├── stdc2mmseg.py ├── swin2mmseg.py ├── twins2mmseg.py ├── vit2mmseg.py └── vitjax2mmseg.py ├── slurm_test.sh ├── slurm_train.sh ├── test.py ├── torchserve ├── mmseg2torchserve.py ├── mmseg_handler.py └── test_torchserve.py └── train.py /.dev_scripts/benchmark_options.py: -------------------------------------------------------------------------------- 1 | third_part_libs = [ 2 | 'pip install mmengine', 3 | 'pip install mmcv>=2.0.0', 4 | 'pip install mmcls==1.0.0rc6', 5 | 'pip install mmdet==3.0.0', 6 | 'pip install -r requirements.txt', 7 | 'pip install timm', 8 | ] 9 | 10 | default_floating_range = 0.5 11 | -------------------------------------------------------------------------------- /.github/ISSUE_TEMPLATE/config.yml: -------------------------------------------------------------------------------- 1 | blank_issues_enabled: false 2 | 3 | contact_links: 4 | - name: MMSegmentation Documentation 5 | url: https://mmsegmentation.readthedocs.io 6 | about: Check the docs and FAQ to see if you question is already answered. 7 | -------------------------------------------------------------------------------- /.github/ISSUE_TEMPLATE/general_questions.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: General questions 3 | about: Ask general questions to get help 4 | title: '' 5 | labels: '' 6 | assignees: '' 7 | --- 8 | -------------------------------------------------------------------------------- /.owners.yml: -------------------------------------------------------------------------------- 1 | assign: 2 | strategy: 3 | # random 4 | # round-robin 5 | daily-shift-based 6 | assignees: 7 | - xiexinch 8 | -------------------------------------------------------------------------------- /CITATION.cff: -------------------------------------------------------------------------------- 1 | cff-version: 1.2.0 2 | message: "If you use this software, please cite it as below." 3 | authors: 4 | - name: "MMSegmentation Contributors" 5 | title: "OpenMMLab Semantic Segmentation Toolbox and Benchmark" 6 | date-released: 2020-07-10 7 | url: "https://github.com/open-mmlab/mmsegmentation" 8 | license: Apache-2.0 9 | -------------------------------------------------------------------------------- /MANIFEST.in: -------------------------------------------------------------------------------- 1 | include requirements/*.txt 2 | include mmseg/.mim/model-index.yml 3 | include mmseg/utils/bpe_simple_vocab_16e6.txt.gz 4 | recursive-include mmseg/.mim/configs *.py *.yaml 5 | recursive-include mmseg/.mim/tools *.py *.sh 6 | -------------------------------------------------------------------------------- /configs/ann/ann_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './ann_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ann/ann_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './ann_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ann/ann_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './ann_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ann/ann_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './ann_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ann/ann_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ann_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ann/ann_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ann_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ann/ann_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ann_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ann/ann_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ann_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/ann/ann_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/ann/ann_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/ann/ann_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=21), 10 | auxiliary_head=dict(num_classes=21)) 11 | -------------------------------------------------------------------------------- /configs/ann/ann_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=21), 10 | auxiliary_head=dict(num_classes=21)) 11 | -------------------------------------------------------------------------------- /configs/ann/ann_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './apcnet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './apcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './apcnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './apcnet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './apcnet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/apcnet/apcnet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/bisenetv1/bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './bisenetv1_r101-d32_4xb4-160k_coco-stuff164k-512x512.py' 2 | model = dict( 3 | backbone=dict( 4 | backbone_cfg=dict( 5 | init_cfg=dict( 6 | type='Pretrained', checkpoint='open-mmlab://resnet101_v1c')))) 7 | -------------------------------------------------------------------------------- /configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py' 2 | crop_size = (512, 512) 3 | data_preprocessor = dict(size=crop_size) 4 | model = dict( 5 | data_preprocessor=data_preprocessor, 6 | backbone=dict( 7 | backbone_cfg=dict( 8 | init_cfg=dict( 9 | type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))), 10 | ) 11 | -------------------------------------------------------------------------------- /configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py' 2 | train_dataloader = dict(batch_size=8, num_workers=4) 3 | val_dataloader = dict(batch_size=1, num_workers=4) 4 | test_dataloader = val_dataloader 5 | -------------------------------------------------------------------------------- /configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py' 2 | model = dict( 3 | type='EncoderDecoder', 4 | backbone=dict( 5 | backbone_cfg=dict( 6 | init_cfg=dict( 7 | type='Pretrained', checkpoint='open-mmlab://resnet50_v1c')))) 8 | -------------------------------------------------------------------------------- /configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512.py' 2 | 3 | model = dict( 4 | backbone=dict( 5 | backbone_cfg=dict( 6 | init_cfg=dict( 7 | type='Pretrained', checkpoint='open-mmlab://resnet50_v1c')))) 8 | -------------------------------------------------------------------------------- /configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py' 2 | optim_wrapper = dict( 3 | _delete_=True, 4 | type='AmpOptimWrapper', 5 | optimizer=dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005), 6 | loss_scale=512.) 7 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './ccnet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './ccnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './ccnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ccnet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ccnet_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ccnet_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ccnet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ccnet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ccnet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/ccnet/ccnet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/danet/danet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './danet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/danet/danet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './danet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/danet/danet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './danet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/danet/danet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './danet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/danet/danet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './danet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/danet/danet_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './danet_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/danet/danet_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './danet_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/danet/danet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './danet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/danet/danet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/danet/danet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/danet/danet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/danet/danet_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/danet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/danet/danet_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/danet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/danet/danet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py' 2 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) 3 | optim_wrapper = dict( 4 | _delete_=True, 5 | type='AmpOptimWrapper', 6 | optimizer=optimizer, 7 | loss_scale=512.) 8 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_pascal-context-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_pascal-context-59-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-80k_pascal-context-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_pascal-context-59-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet18', 4 | backbone=dict(type='ResNet', depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet18', 4 | backbone=dict(type='ResNet', depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_r50-d8.py', 3 | '../_base_/datasets/coco-stuff10k.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=171), 11 | auxiliary_head=dict(num_classes=171)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_r50-d8.py', 3 | '../_base_/datasets/coco-stuff10k.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=171), 11 | auxiliary_head=dict(num_classes=171)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py' 2 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) 3 | optim_wrapper = dict( 4 | _delete_=True, 5 | type='AmpOptimWrapper', 6 | optimizer=optimizer, 7 | loss_scale=512.) 8 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-40k_pascal-context-59-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_pascal-context-59-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | c1_in_channels=64, 7 | c1_channels=12, 8 | in_channels=512, 9 | channels=128, 10 | ), 11 | auxiliary_head=dict(in_channels=256, channels=64)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | c1_in_channels=64, 7 | c1_channels=12, 8 | in_channels=512, 9 | channels=128, 10 | ), 11 | auxiliary_head=dict(in_channels=256, channels=64)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | c1_in_channels=64, 7 | c1_channels=12, 8 | in_channels=512, 9 | channels=128, 10 | ), 11 | auxiliary_head=dict(in_channels=256, channels=64)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | c1_in_channels=64, 7 | c1_channels=12, 8 | in_channels=512, 9 | channels=128, 10 | ), 11 | auxiliary_head=dict(in_channels=256, channels=64)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | c1_in_channels=64, 7 | c1_channels=12, 8 | in_channels=512, 9 | channels=128, 10 | ), 11 | auxiliary_head=dict(in_channels=256, channels=64)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | c1_in_channels=64, 7 | c1_channels=12, 8 | in_channels=512, 9 | channels=128, 10 | ), 11 | auxiliary_head=dict(in_channels=256, channels=64)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet18', 4 | backbone=dict(type='ResNet', depth=18), 5 | decode_head=dict( 6 | c1_in_channels=64, 7 | c1_channels=12, 8 | in_channels=512, 9 | channels=128, 10 | ), 11 | auxiliary_head=dict(in_channels=256, channels=64)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet18', 4 | backbone=dict(type='ResNet', depth=18), 5 | decode_head=dict( 6 | c1_in_channels=64, 7 | c1_channels=12, 8 | in_channels=512, 9 | channels=128, 10 | ), 11 | auxiliary_head=dict(in_channels=256, channels=64)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3plus_r50-d8.py', 3 | '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 1024) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict(data_preprocessor=data_preprocessor) 9 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3plus_r50-d8.py', 3 | '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_80k.py' 5 | ] 6 | crop_size = (512, 1024) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict(data_preprocessor=data_preprocessor) 9 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3plus_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3plus_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3plus_r50-d8.py', '../_base_/datasets/isaid.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (896, 896) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=16), 10 | auxiliary_head=dict(num_classes=16)) 11 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3plus_r50-d8.py', '../_base_/datasets/loveda.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=7), 10 | auxiliary_head=dict(num_classes=7)) 11 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3plus_r50-d8.py', 3 | '../_base_/datasets/potsdam.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_80k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=6), 11 | auxiliary_head=dict(num_classes=6)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3plus_r50-d8.py', 3 | '../_base_/datasets/vaihingen.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_80k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=6), 11 | auxiliary_head=dict(num_classes=6)) 12 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './dmnet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './dmnet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './dnl_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './dnl_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './dnl_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './dnl_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/dnlnet/dnl_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './emanet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './emanet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/emanet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './encnet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './encnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './encnet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './encnet_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './encnet_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './encnet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/encnet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/encnet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | # model settings 2 | _base_ = './fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py' 3 | train_dataloader = dict(batch_size=4, num_workers=4) 4 | val_dataloader = dict(batch_size=1, num_workers=4) 5 | test_dataloader = val_dataloader 6 | -------------------------------------------------------------------------------- /configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | # model settings 2 | _base_ = './fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py' 3 | train_dataloader = dict(batch_size=4, num_workers=4) 4 | val_dataloader = dict(batch_size=1, num_workers=4) 5 | test_dataloader = val_dataloader 6 | -------------------------------------------------------------------------------- /configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fastfcn_r50-d32_jpu_psp.py', 3 | '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_80k.py' 5 | ] 6 | crop_size = (512, 1024) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict(data_preprocessor=data_preprocessor) 9 | -------------------------------------------------------------------------------- /configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py' 2 | optim_wrapper = dict( 3 | _delete_=True, 4 | type='AmpOptimWrapper', 5 | optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005), 6 | loss_scale=512.) 7 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb4-40k_pascal-context-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb4-40k_pascal-context-59-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb4-40k_pascal-context-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb4-80k_pascal-context-59-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet18', 4 | backbone=dict(type='ResNet', depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet18', 4 | backbone=dict(type='ResNet', depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=21), 10 | auxiliary_head=dict(num_classes=21)) 11 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=21), 10 | auxiliary_head=dict(num_classes=21)) 11 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './gcnet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './gcnet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/gcnet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/gcnet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/gcnet/gcnet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=150)) 9 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_voc12_aug.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=21)) 9 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_voc12_aug.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=21)) 9 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=150)) 9 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/isaid.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (896, 896) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=16)) 9 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/loveda.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=7)) 9 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/potsdam.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=6)) 9 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/vaihingen.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=6)) 9 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb2-160k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-160k_ade20k-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-20k_voc12aug-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-40k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-40k_pascal-context-480x480.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-40k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-40k_pascal-context-59-480x480.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-40k_voc12aug-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-80k_ade20k-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-80k_isaid-896x896.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-80k_isaid-896x896.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-80k_loveda-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-80k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-80k_pascal-context-480x480.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-80k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-80k_pascal-context-59-480x480.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-80k_potsdam-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fcn_hr18_4xb4-80k_vaihingen-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py' 2 | model = dict( 3 | backbone=dict( 4 | backbone_cfg=dict( 5 | depth=101, 6 | init_cfg=dict( 7 | type='Pretrained', checkpoint='open-mmlab://resnet101_v1c')))) 8 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py' 2 | model = dict( 3 | backbone=dict( 4 | backbone_cfg=dict( 5 | depth=101, 6 | init_cfg=dict( 7 | type='Pretrained', checkpoint='open-mmlab://resnet101_v1c')))) 8 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py' 2 | model = dict(backbone=dict(backbone_cfg=dict(depth=101))) 3 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py' 2 | model = dict(backbone=dict(backbone_cfg=dict(depth=101))) 3 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py' 2 | model = dict( 3 | backbone=dict( 4 | layer_channels=(128, 512), 5 | backbone_cfg=dict( 6 | depth=18, 7 | init_cfg=dict( 8 | type='Pretrained', checkpoint='open-mmlab://resnet18_v1c')))) 9 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py' 2 | model = dict( 3 | backbone=dict( 4 | layer_channels=(128, 512), 5 | backbone_cfg=dict( 6 | depth=18, 7 | init_cfg=dict( 8 | type='Pretrained', checkpoint='open-mmlab://resnet18_v1c')))) 9 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py' 2 | model = dict( 3 | backbone=dict(layer_channels=(128, 512), backbone_cfg=dict(depth=18))) 4 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py' 2 | model = dict( 3 | backbone=dict(layer_channels=(128, 512), backbone_cfg=dict(depth=18))) 4 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py' 2 | model = dict( 3 | backbone=dict( 4 | backbone_cfg=dict( 5 | init_cfg=dict( 6 | type='Pretrained', checkpoint='open-mmlab://resnet50_v1c')))) 7 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py' 2 | model = dict( 3 | backbone=dict( 4 | backbone_cfg=dict( 5 | init_cfg=dict( 6 | type='Pretrained', checkpoint='open-mmlab://resnet50_v1c')))) 7 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/icnet_r50-d8.py', 3 | '../_base_/datasets/cityscapes_832x832.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_160k.py' 5 | ] 6 | crop_size = (832, 832) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict(data_preprocessor=data_preprocessor) 9 | -------------------------------------------------------------------------------- /configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/icnet_r50-d8.py', 3 | '../_base_/datasets/cityscapes_832x832.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_80k.py' 5 | ] 6 | crop_size = (832, 832) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict(data_preprocessor=data_preprocessor) 9 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './isanet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './isanet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './isanet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './isanet_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './isanet_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './isanet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/isanet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/isanet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/isanet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/isanet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/isanet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/isanet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = ['./mask2former_r50_8xb2-160k_ade20k-512x512.py'] 2 | 3 | model = dict( 4 | backbone=dict( 5 | depth=101, 6 | init_cfg=dict(type='Pretrained', 7 | checkpoint='torchvision://resnet101'))) 8 | -------------------------------------------------------------------------------- /configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = ['./mask2former_r50_8xb2-90k_cityscapes-512x1024.py'] 2 | 3 | model = dict( 4 | backbone=dict( 5 | depth=101, 6 | init_cfg=dict(type='Pretrained', 7 | checkpoint='torchvision://resnet101'))) 8 | -------------------------------------------------------------------------------- /configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py: -------------------------------------------------------------------------------- 1 | _base_ = ['./mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py'] 2 | 3 | pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window12_384_22k_20220317-e5c09f74.pth' # noqa 4 | model = dict( 5 | backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=pretrained))) 6 | -------------------------------------------------------------------------------- /configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './maskformer_r50-d32_8xb2-160k_ade20k-512x512.py' 2 | 3 | model = dict( 4 | backbone=dict( 5 | depth=101, 6 | init_cfg=dict(type='Pretrained', 7 | checkpoint='torchvision://resnet101'))) 8 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/nonlocal_net/nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18s_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ocrnet_hr18_4xb4-160k_ade20k-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ocrnet_hr18_4xb4-20k_voc12aug-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ocrnet_hr18_4xb4-40k_voc12aug-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './ocrnet_hr18_4xb4-80k_ade20k-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://msra/hrnetv2_w18_small', 4 | backbone=dict( 5 | extra=dict( 6 | stage1=dict(num_blocks=(2, )), 7 | stage2=dict(num_blocks=(2, 2)), 8 | stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), 9 | stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) 10 | -------------------------------------------------------------------------------- /configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/ocrnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | pretrained='open-mmlab://resnet101_v1c', 10 | backbone=dict(depth=101)) 11 | -------------------------------------------------------------------------------- /configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py: -------------------------------------------------------------------------------- 1 | _base_ = './pidnet-s_2xb6-120k_1024x1024-cityscapes.py' 2 | checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/pidnet/pidnet-m_imagenet1k_20230306-39893c52.pth' # noqa 3 | model = dict( 4 | backbone=dict(channels=64, init_cfg=dict(checkpoint=checkpoint_file)), 5 | decode_head=dict(in_channels=256)) 6 | -------------------------------------------------------------------------------- /configs/point_rend/pointrend_r101_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './pointrend_r50_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/point_rend/pointrend_r101_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pointrend_r50_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './psanet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './psanet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './psanet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './psanet_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './psanet_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './psanet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(mask_size=(66, 66), num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/psanet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/psanet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(mask_size=(66, 66), num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py' # noqa 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py' # noqa 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py' 2 | optim_wrapper = dict( 3 | _delete_=True, 4 | type='AmpOptimWrapper', 5 | optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005), 6 | loss_scale=512.) 7 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-40k_pascal-context-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-40k_pascal-context-59-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_loveda-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_pascal-context-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_pascal-context-59-480x480.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_potsdam-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py' # noqa 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py' # noqa 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet101', 4 | backbone=dict(type='ResNet', depth=101)) 5 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_isaid-896x896.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_loveda-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_potsdam-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='torchvision://resnet18', 4 | backbone=dict(type='ResNet', depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict( 3 | pretrained='torchvision://resnet18', 4 | backbone=dict(type='ResNet', depth=18), 5 | decode_head=dict( 6 | in_channels=512, 7 | channels=128, 8 | ), 9 | auxiliary_head=dict(in_channels=256, channels=64)) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d32_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | backbone=dict(dilations=(1, 1, 2, 4), strides=(1, 2, 2, 2))) 10 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', 3 | '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_160k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=171), 11 | auxiliary_head=dict(num_classes=171)) 12 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/coco-stuff10k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=171), 10 | auxiliary_head=dict(num_classes=171)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', 3 | '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_320k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=171), 11 | auxiliary_head=dict(num_classes=171)) 12 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/coco-stuff10k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=171), 10 | auxiliary_head=dict(num_classes=171)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', 3 | '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_80k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=171), 11 | auxiliary_head=dict(num_classes=171)) 12 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-80k_isaid-896x896.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/isaid.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (896, 896) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=16), 10 | auxiliary_head=dict(num_classes=16)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/loveda.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=7), 10 | auxiliary_head=dict(num_classes=7)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/potsdam.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=6), 10 | auxiliary_head=dict(num_classes=6)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/vaihingen.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=6), 10 | auxiliary_head=dict(num_classes=6)) 11 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) 3 | -------------------------------------------------------------------------------- /configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = '../deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnest101', 4 | backbone=dict( 5 | type='ResNeSt', 6 | stem_channels=128, 7 | radix=2, 8 | reduction_factor=4, 9 | avg_down_stride=True)) 10 | -------------------------------------------------------------------------------- /configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = '../deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnest101', 4 | backbone=dict( 5 | type='ResNeSt', 6 | stem_channels=128, 7 | radix=2, 8 | reduction_factor=4, 9 | avg_down_stride=True)) 10 | -------------------------------------------------------------------------------- /configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py' # noqa 2 | model = dict( 3 | pretrained='open-mmlab://resnest101', 4 | backbone=dict( 5 | type='ResNeSt', 6 | stem_channels=128, 7 | radix=2, 8 | reduction_factor=4, 9 | avg_down_stride=True)) 10 | -------------------------------------------------------------------------------- /configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnest101', 4 | backbone=dict( 5 | type='ResNeSt', 6 | stem_channels=128, 7 | radix=2, 8 | reduction_factor=4, 9 | avg_down_stride=True)) 10 | -------------------------------------------------------------------------------- /configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = '../fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnest101', 4 | backbone=dict( 5 | type='ResNeSt', 6 | stem_channels=128, 7 | radix=2, 8 | reduction_factor=4, 9 | avg_down_stride=True)) 10 | -------------------------------------------------------------------------------- /configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = '../fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnest101', 4 | backbone=dict( 5 | type='ResNeSt', 6 | stem_channels=128, 7 | radix=2, 8 | reduction_factor=4, 9 | avg_down_stride=True)) 10 | -------------------------------------------------------------------------------- /configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = '../pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnest101', 4 | backbone=dict( 5 | type='ResNeSt', 6 | stem_channels=128, 7 | radix=2, 8 | reduction_factor=4, 9 | avg_down_stride=True)) 10 | -------------------------------------------------------------------------------- /configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = '../pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnest101', 4 | backbone=dict( 5 | type='ResNeSt', 6 | stem_channels=128, 7 | radix=2, 8 | reduction_factor=4, 9 | avg_down_stride=True)) 10 | -------------------------------------------------------------------------------- /configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = ['./segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py'] 2 | 3 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b1_20220624-02e5a6a1.pth' # noqa 4 | 5 | model = dict( 6 | backbone=dict( 7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint), 8 | embed_dims=64), 9 | decode_head=dict(in_channels=[64, 128, 320, 512])) 10 | -------------------------------------------------------------------------------- /configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './fpn_r50_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './fpn_r50_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | crop_size = (512, 512) 4 | data_preprocessor = dict(size=crop_size) 5 | model = dict(data_preprocessor=data_preprocessor) 6 | -------------------------------------------------------------------------------- /configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fpn_r50.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fpn_r50.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=150)) 9 | -------------------------------------------------------------------------------- /configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = ['./setr_vit-l-mla_8xb1-160k_ade20k-512x512.py'] 2 | 3 | # num_gpus: 8 -> batch_size: 16 4 | train_dataloader = dict(batch_size=2) 5 | val_dataloader = dict(batch_size=1) 6 | test_dataloader = val_dataloader 7 | -------------------------------------------------------------------------------- /configs/stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/stdc/stdc1_20220308-5368626c.pth' # noqa 2 | _base_ = './stdc1_4xb12-80k_cityscapes-512x1024.py' 3 | model = dict( 4 | backbone=dict( 5 | backbone_cfg=dict( 6 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint)))) 7 | -------------------------------------------------------------------------------- /configs/stdc/stdc2_4xb12-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './stdc1_4xb12-80k_cityscapes-512x1024.py' 2 | model = dict(backbone=dict(backbone_cfg=dict(stdc_type='STDCNet2'))) 3 | -------------------------------------------------------------------------------- /configs/stdc/stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/stdc/stdc2_20220308-7dbd9127.pth' # noqa 2 | _base_ = './stdc2_4xb12-80k_cityscapes-512x1024.py' 3 | model = dict( 4 | backbone=dict( 5 | backbone_cfg=dict( 6 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint)))) 7 | -------------------------------------------------------------------------------- /configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | './swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py' # noqa 3 | ] 4 | checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window12_384_22k_20220317-e5c09f74.pth' # noqa 5 | model = dict( 6 | backbone=dict( 7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file))) 8 | -------------------------------------------------------------------------------- /configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | './swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py' 3 | ] 4 | checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth' # noqa 5 | model = dict( 6 | backbone=dict( 7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file))) 8 | -------------------------------------------------------------------------------- /configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = ['./twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py'] 2 | 3 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/pcpvt_base_20220308-0621964c.pth' # noqa 4 | 5 | model = dict( 6 | backbone=dict( 7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint), 8 | depths=[3, 4, 18, 3]), ) 9 | -------------------------------------------------------------------------------- /configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = ['./twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py'] 2 | 3 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/pcpvt_large_20220308-37579dc6.pth' # noqa 4 | 5 | model = dict( 6 | backbone=dict( 7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint), 8 | depths=[3, 8, 27, 3])) 9 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_unet_s5-d16.py', '../_base_/datasets/drive.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (64, 64) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(64, 64), stride=(42, 42))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_unet_s5-d16.py', '../_base_/datasets/hrf.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (256, 256) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(256, 256), stride=(170, 170))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_unet_s5-d16.py', '../_base_/datasets/stare.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (128, 128) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(128, 128), stride=(85, 85))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/chase_db1.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (128, 128) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(128, 128), stride=(85, 85))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/drive.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (64, 64) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(64, 64), stride=(42, 42))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/hrf.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (256, 256) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(256, 256), stride=(170, 170))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/stare.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (128, 128) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(128, 128), stride=(85, 85))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_fcn_4xb4-40k_drive-64x64.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_fcn_4xb4-40k_stare-128x128.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_unet_s5-d16.py', 3 | '../_base_/datasets/chase_db1.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (128, 128) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | test_cfg=dict(crop_size=(128, 128), stride=(85, 85))) 11 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_unet_s5-d16.py', '../_base_/datasets/drive.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (64, 64) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(64, 64), stride=(42, 42))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_unet_s5-d16.py', '../_base_/datasets/hrf.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (256, 256) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(256, 256), stride=(170, 170))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/pspnet_unet_s5-d16.py', '../_base_/datasets/stare.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (128, 128) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | test_cfg=dict(crop_size=(128, 128), stride=(85, 85))) 10 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = './unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py' 2 | model = dict( 3 | decode_head=dict(loss_decode=[ 4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), 5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0) 6 | ])) 7 | -------------------------------------------------------------------------------- /configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/deeplabv3_unet_s5-d16.py', 3 | '../_base_/datasets/chase_db1.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (128, 128) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | test_cfg=dict(crop_size=(128, 128), stride=(85, 85))) 11 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-769x769.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb4-160k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb4-20k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb4-40k_voc12aug-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb4-80k_ade20k-512x512.py' 2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) 3 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r18_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict(in_channels=[64, 128, 256, 512]), 6 | auxiliary_head=dict(in_channels=256)) 7 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r18_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-512x1024.py' 2 | model = dict( 3 | pretrained='open-mmlab://resnet18_v1c', 4 | backbone=dict(depth=18), 5 | decode_head=dict(in_channels=[64, 128, 256, 512]), 6 | auxiliary_head=dict(in_channels=256)) 7 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r18_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | model = dict( 6 | pretrained='open-mmlab://resnet18_v1c', 7 | backbone=dict(depth=18), 8 | decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=150), 9 | auxiliary_head=dict(in_channels=256, num_classes=150)) 10 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r18_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | model = dict( 6 | pretrained='open-mmlab://resnet18_v1c', 7 | backbone=dict(depth=18), 8 | decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=150), 9 | auxiliary_head=dict(in_channels=256, num_classes=150)) 10 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/cityscapes.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict(data_preprocessor=data_preprocessor) 8 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/upernet_r50.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_20k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/upernet_r50.py', 3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', 4 | '../_base_/schedules/schedule_40k.py' 5 | ] 6 | crop_size = (512, 512) 7 | data_preprocessor = dict(size=crop_size) 8 | model = dict( 9 | data_preprocessor=data_preprocessor, 10 | decode_head=dict(num_classes=21), 11 | auxiliary_head=dict(num_classes=21)) 12 | -------------------------------------------------------------------------------- /configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = [ 2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py', 3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' 4 | ] 5 | crop_size = (512, 512) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, 9 | decode_head=dict(num_classes=150), 10 | auxiliary_head=dict(num_classes=150)) 11 | -------------------------------------------------------------------------------- /configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py' 2 | 3 | model = dict( 4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth', 5 | backbone=dict(drop_path_rate=0.1, final_norm=True)) 6 | -------------------------------------------------------------------------------- /configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py' 2 | 3 | model = dict( 4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth', 5 | backbone=dict(drop_path_rate=0.1), 6 | ) 7 | -------------------------------------------------------------------------------- /configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py' 2 | 3 | model = dict( 4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth', 5 | backbone=dict(drop_path_rate=0.1), 6 | neck=None) 7 | -------------------------------------------------------------------------------- /configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py' 2 | 3 | model = dict( 4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth', 5 | backbone=dict(drop_path_rate=0.1), 6 | neck=None) 7 | -------------------------------------------------------------------------------- /configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py' 2 | 3 | model = dict( 4 | pretrained='pretrain/deit_small_patch16_224-cd65a155.pth', 5 | backbone=dict(num_heads=6, embed_dims=384, drop_path_rate=0.1), 6 | decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]), 7 | neck=None, 8 | auxiliary_head=dict(num_classes=150, in_channels=384)) 9 | -------------------------------------------------------------------------------- /configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py' 2 | 3 | model = dict( 4 | pretrained='pretrain/deit_small_patch16_224-cd65a155.pth', 5 | backbone=dict(num_heads=6, embed_dims=384, drop_path_rate=0.1), 6 | decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]), 7 | neck=None, 8 | auxiliary_head=dict(num_classes=150, in_channels=384)) 9 | -------------------------------------------------------------------------------- /demo/classroom__rgb_00283.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/demo/classroom__rgb_00283.jpg -------------------------------------------------------------------------------- /demo/demo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/demo/demo.png -------------------------------------------------------------------------------- /docker/serve/config.properties: -------------------------------------------------------------------------------- 1 | inference_address=http://0.0.0.0:8080 2 | management_address=http://0.0.0.0:8081 3 | metrics_address=http://0.0.0.0:8082 4 | model_store=/home/model-server/model-store 5 | load_models=all 6 | -------------------------------------------------------------------------------- /docker/serve/entrypoint.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | if [[ "$1" = "serve" ]]; then 5 | shift 1 6 | torchserve --start --ts-config /home/model-server/config.properties 7 | else 8 | eval "$@" 9 | fi 10 | 11 | # prevent docker exit 12 | tail -f /dev/null 13 | -------------------------------------------------------------------------------- /docs/en/.readthedocs.yaml: -------------------------------------------------------------------------------- 1 | version: 2 2 | 3 | build: 4 | os: ubuntu-22.04 5 | tools: 6 | python: "3.8" 7 | 8 | formats: 9 | - epub 10 | 11 | sphinx: 12 | configuration: docs/en/conf.py 13 | 14 | python: 15 | install: 16 | - requirements: requirements/docs.txt 17 | - requirements: requirements/readthedocs.txt 18 | -------------------------------------------------------------------------------- /docs/en/_static/css/readthedocs.css: -------------------------------------------------------------------------------- 1 | .header-logo { 2 | background-image: url("../images/mmsegmentation.png"); 3 | background-size: 201px 40px; 4 | height: 40px; 5 | width: 201px; 6 | } 7 | -------------------------------------------------------------------------------- /docs/en/_static/images/mmsegmentation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/docs/en/_static/images/mmsegmentation.png -------------------------------------------------------------------------------- /docs/en/migration/index.rst: -------------------------------------------------------------------------------- 1 | Migration 2 | *************** 3 | 4 | .. toctree:: 5 | :maxdepth: 1 6 | 7 | interface.md 8 | package.md 9 | -------------------------------------------------------------------------------- /docs/en/switch_language.md: -------------------------------------------------------------------------------- 1 | ## English 2 | 3 | ## 简体中文 4 | -------------------------------------------------------------------------------- /docs/en/user_guides/index.rst: -------------------------------------------------------------------------------- 1 | Train & Test 2 | ************** 3 | 4 | .. toctree:: 5 | :maxdepth: 1 6 | 7 | 1_config.md 8 | 2_dataset_prepare.md 9 | 3_inference.md 10 | 4_train_test.md 11 | 12 | Useful Tools 13 | ************* 14 | 15 | .. toctree:: 16 | :maxdepth: 2 17 | 18 | visualization.md 19 | useful_tools.md 20 | deployment.md 21 | visualization_feature_map.md 22 | -------------------------------------------------------------------------------- /docs/zh_cn/.readthedocs.yaml: -------------------------------------------------------------------------------- 1 | version: 2 2 | 3 | build: 4 | os: ubuntu-22.04 5 | tools: 6 | python: "3.8" 7 | 8 | formats: 9 | - epub 10 | 11 | sphinx: 12 | configuration: docs/zh_cn/conf.py 13 | 14 | python: 15 | install: 16 | - requirements: requirements/docs.txt 17 | - requirements: requirements/readthedocs.txt 18 | -------------------------------------------------------------------------------- /docs/zh_cn/_static/css/readthedocs.css: -------------------------------------------------------------------------------- 1 | .header-logo { 2 | background-image: url("../images/mmsegmentation.png"); 3 | background-size: 201px 40px; 4 | height: 40px; 5 | width: 201px; 6 | } 7 | -------------------------------------------------------------------------------- /docs/zh_cn/_static/images/mmsegmentation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/docs/zh_cn/_static/images/mmsegmentation.png -------------------------------------------------------------------------------- /docs/zh_cn/imgs/zhihu_qrcode.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/docs/zh_cn/imgs/zhihu_qrcode.jpg -------------------------------------------------------------------------------- /docs/zh_cn/migration/index.rst: -------------------------------------------------------------------------------- 1 | 迁移 2 | *************** 3 | 4 | .. toctree:: 5 | :maxdepth: 1 6 | 7 | interface.md 8 | package.md 9 | -------------------------------------------------------------------------------- /docs/zh_cn/switch_language.md: -------------------------------------------------------------------------------- 1 | ## English 2 | 3 | ## 简体中文 4 | -------------------------------------------------------------------------------- /docs/zh_cn/user_guides/index.rst: -------------------------------------------------------------------------------- 1 | 训练 & 测试 2 | ************** 3 | 4 | .. toctree:: 5 | :maxdepth: 1 6 | 7 | 1_config.md 8 | 2_dataset_prepare.md 9 | 3_inference.md 10 | 4_train_test.md 11 | 12 | 实用工具 13 | ************* 14 | 15 | .. toctree:: 16 | :maxdepth: 2 17 | 18 | visualization.md 19 | useful_tools.md 20 | deployment.md 21 | visualization_feature_map.md 22 | -------------------------------------------------------------------------------- /mmseg/apis/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .inference import inference_model, init_model, show_result_pyplot 3 | from .mmseg_inferencer import MMSegInferencer 4 | from .remote_sense_inferencer import RSImage, RSInferencer 5 | 6 | __all__ = [ 7 | 'init_model', 'inference_model', 'show_result_pyplot', 'MMSegInferencer', 8 | 'RSInferencer', 'RSImage' 9 | ] 10 | -------------------------------------------------------------------------------- /mmseg/engine/hooks/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .visualization_hook import SegVisualizationHook 3 | 4 | __all__ = ['SegVisualizationHook'] 5 | -------------------------------------------------------------------------------- /mmseg/engine/optimizers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .force_default_constructor import ForceDefaultOptimWrapperConstructor 3 | from .layer_decay_optimizer_constructor import ( 4 | LayerDecayOptimizerConstructor, LearningRateDecayOptimizerConstructor) 5 | 6 | __all__ = [ 7 | 'LearningRateDecayOptimizerConstructor', 'LayerDecayOptimizerConstructor', 8 | 'ForceDefaultOptimWrapperConstructor' 9 | ] 10 | -------------------------------------------------------------------------------- /mmseg/engine/schedulers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .poly_ratio_scheduler import PolyLRRatio 3 | 4 | __all__ = ['PolyLRRatio'] 5 | -------------------------------------------------------------------------------- /mmseg/evaluation/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .metrics import CityscapesMetric, DepthMetric, IoUMetric 3 | 4 | __all__ = ['IoUMetric', 'CityscapesMetric', 'DepthMetric'] 5 | -------------------------------------------------------------------------------- /mmseg/evaluation/metrics/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .citys_metric import CityscapesMetric 3 | from .depth_metric import DepthMetric 4 | from .iou_metric import IoUMetric 5 | 6 | __all__ = ['IoUMetric', 'CityscapesMetric', 'DepthMetric'] 7 | -------------------------------------------------------------------------------- /mmseg/models/assigners/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .base_assigner import BaseAssigner 3 | from .hungarian_assigner import HungarianAssigner 4 | from .match_cost import ClassificationCost, CrossEntropyLossCost, DiceCost 5 | 6 | __all__ = [ 7 | 'BaseAssigner', 8 | 'HungarianAssigner', 9 | 'ClassificationCost', 10 | 'CrossEntropyLossCost', 11 | 'DiceCost', 12 | ] 13 | -------------------------------------------------------------------------------- /mmseg/models/necks/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .featurepyramid import Feature2Pyramid 3 | from .fpn import FPN 4 | from .ic_neck import ICNeck 5 | from .jpu import JPU 6 | from .mla_neck import MLANeck 7 | from .multilevel_neck import MultiLevelNeck 8 | 9 | __all__ = [ 10 | 'FPN', 'MultiLevelNeck', 'MLANeck', 'ICNeck', 'JPU', 'Feature2Pyramid' 11 | ] 12 | -------------------------------------------------------------------------------- /mmseg/models/text_encoder/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .clip_text_encoder import CLIPTextEncoder 3 | 4 | __all__ = ['CLIPTextEncoder'] 5 | -------------------------------------------------------------------------------- /mmseg/structures/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .sampler import BasePixelSampler, OHEMPixelSampler, build_pixel_sampler 3 | from .seg_data_sample import SegDataSample 4 | 5 | __all__ = [ 6 | 'SegDataSample', 'BasePixelSampler', 'OHEMPixelSampler', 7 | 'build_pixel_sampler' 8 | ] 9 | -------------------------------------------------------------------------------- /mmseg/structures/sampler/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .base_pixel_sampler import BasePixelSampler 3 | from .builder import build_pixel_sampler 4 | from .ohem_pixel_sampler import OHEMPixelSampler 5 | 6 | __all__ = ['build_pixel_sampler', 'BasePixelSampler', 'OHEMPixelSampler'] 7 | -------------------------------------------------------------------------------- /mmseg/structures/sampler/base_pixel_sampler.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from abc import ABCMeta, abstractmethod 3 | 4 | 5 | class BasePixelSampler(metaclass=ABCMeta): 6 | """Base class of pixel sampler.""" 7 | 8 | def __init__(self, **kwargs): 9 | pass 10 | 11 | @abstractmethod 12 | def sample(self, seg_logit, seg_label): 13 | """Placeholder for sample function.""" 14 | -------------------------------------------------------------------------------- /mmseg/utils/bpe_simple_vocab_16e6.txt.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/mmseg/utils/bpe_simple_vocab_16e6.txt.gz -------------------------------------------------------------------------------- /mmseg/visualization/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .local_visualizer import SegLocalVisualizer 3 | 4 | __all__ = ['SegLocalVisualizer'] 5 | -------------------------------------------------------------------------------- /projects/Adabins/backbones/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .adabins_backbone import AdabinsBackbone 3 | 4 | __all__ = ['AdabinsBackbone'] 5 | -------------------------------------------------------------------------------- /projects/Adabins/decode_head/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .adabins_head import AdabinsHead 3 | 4 | __all__ = ['AdabinsHead'] 5 | -------------------------------------------------------------------------------- /projects/CAT-Seg/cat_seg/__init__.py: -------------------------------------------------------------------------------- 1 | from .models import * # noqa: F401,F403 2 | from .utils import * # noqa: F401,F403 3 | -------------------------------------------------------------------------------- /projects/CAT-Seg/cat_seg/models/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .cat_aggregator import (AggregatorLayer, CATSegAggregator, 3 | ClassAggregateLayer, SpatialAggregateLayer) 4 | from .cat_head import CATSegHead 5 | from .clip_ovseg import CLIPOVCATSeg 6 | 7 | __all__ = [ 8 | 'AggregatorLayer', 'CATSegAggregator', 'ClassAggregateLayer', 9 | 'SpatialAggregateLayer', 'CATSegHead', 'CLIPOVCATSeg' 10 | ] 11 | -------------------------------------------------------------------------------- /projects/CAT-Seg/cat_seg/utils/bpe_vocab/bpe_simple_vocab_16e6.txt.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/projects/CAT-Seg/cat_seg/utils/bpe_vocab/bpe_simple_vocab_16e6.txt.gz -------------------------------------------------------------------------------- /projects/CAT-Seg/utils/__init__.py: -------------------------------------------------------------------------------- 1 | from .clip_templates import (IMAGENET_TEMPLATES, IMAGENET_TEMPLATES_SELECT, 2 | IMAGENET_TEMPLATES_SELECT_CLIP, ViLD_templates) 3 | 4 | __all__ = [ 5 | 'IMAGENET_TEMPLATES', 'IMAGENET_TEMPLATES_SELECT', 6 | 'IMAGENET_TEMPLATES_SELECT_CLIP', 'ViLD_templates' 7 | ] 8 | -------------------------------------------------------------------------------- /projects/example_project/configs/fcn_dummy-r50-d8_4xb2-40k_cityscapes-512x1024.py: -------------------------------------------------------------------------------- 1 | _base_ = ['mmseg::fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py'] 2 | 3 | custom_imports = dict(imports=['dummy']) 4 | 5 | crop_size = (512, 1024) 6 | data_preprocessor = dict(size=crop_size) 7 | model = dict( 8 | data_preprocessor=data_preprocessor, backbone=dict(type='DummyResNet')) 9 | -------------------------------------------------------------------------------- /projects/example_project/dummy/__init__.py: -------------------------------------------------------------------------------- 1 | from .dummy_resnet import DummyResNet 2 | 3 | __all__ = ['DummyResNet'] 4 | -------------------------------------------------------------------------------- /projects/hssn/decode_head/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .sep_aspp_contrast_head import DepthwiseSeparableASPPContrastHead 3 | 4 | __all__ = ['DepthwiseSeparableASPPContrastHead'] 5 | -------------------------------------------------------------------------------- /projects/hssn/losses/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .hiera_triplet_loss_cityscape import HieraTripletLossCityscape 3 | 4 | __all__ = ['HieraTripletLossCityscape'] 5 | -------------------------------------------------------------------------------- /projects/isnet/decode_heads/__init__.py: -------------------------------------------------------------------------------- 1 | from .isnet_head import ISNetHead 2 | 3 | __all__ = ['ISNetHead'] 4 | -------------------------------------------------------------------------------- /projects/medical/2d_image/fluorescein_angriogram/vampire/datasets/__init__.py: -------------------------------------------------------------------------------- 1 | from .vampire_dataset import VampireDataset 2 | 3 | __all__ = ['VampireDataset'] 4 | -------------------------------------------------------------------------------- /projects/medical/2d_image/histopathology/conic2022_seg/conic2022_seg_dataset.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/projects/medical/2d_image/histopathology/conic2022_seg/conic2022_seg_dataset.png -------------------------------------------------------------------------------- /projects/medical/2d_image/infrared_reflectance_imaging/ravir/datasets/__init__.py: -------------------------------------------------------------------------------- 1 | from .ravir_dataset import RAVIRDataset 2 | 3 | __all__ = ['RAVIRDataset'] 4 | -------------------------------------------------------------------------------- /projects/pp_mobileseg/backbones/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .strideformer import StrideFormer 3 | 4 | __all__ = ['StrideFormer'] 5 | -------------------------------------------------------------------------------- /projects/pp_mobileseg/decode_head/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .pp_mobileseg_head import PPMobileSegHead 3 | 4 | __all__ = [ 5 | 'PPMobileSegHead', 6 | ] 7 | -------------------------------------------------------------------------------- /projects/sam_inference_demo/sam/__init__.py: -------------------------------------------------------------------------------- 1 | from .modeling import * # noqa 2 | from .utils import * # noqa 3 | -------------------------------------------------------------------------------- /projects/sam_inference_demo/sam/utils/__init__.py: -------------------------------------------------------------------------------- 1 | from .amg import * # noqa: F403 F401 2 | from .transforms import ResizeLongestSide # noqa: F403 F401 3 | -------------------------------------------------------------------------------- /projects/van/backbones/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | from .van import VAN 3 | 4 | __all__ = ['VAN'] 5 | -------------------------------------------------------------------------------- /projects/van/configs/van/van-b0_fpn_8xb4-40k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './van-b2_fpn_8xb4-40k_ade20k-512x512.py' 2 | ckpt_path = 'https://download.openmmlab.com/mmsegmentation/v0.5/van_3rdparty/van-b0_3rdparty_20230522-956f5e0d.pth' # noqa 3 | model = dict( 4 | backbone=dict( 5 | embed_dims=[32, 64, 160, 256], 6 | depths=[3, 3, 5, 2], 7 | init_cfg=dict(type='Pretrained', checkpoint=ckpt_path)), 8 | neck=dict(in_channels=[32, 64, 160, 256])) 9 | -------------------------------------------------------------------------------- /projects/van/configs/van/van-b1_fpn_8xb4-40k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './van-b2_fpn_8xb4-40k_ade20k-512x512.py' 2 | ckpt_path = 'https://download.openmmlab.com/mmsegmentation/v0.5/van_3rdparty/van-b1_3rdparty_20230522-3adb117f.pth' # noqa 3 | model = dict( 4 | backbone=dict( 5 | depths=[2, 2, 4, 2], 6 | init_cfg=dict(type='Pretrained', checkpoint=ckpt_path))) 7 | -------------------------------------------------------------------------------- /projects/van/configs/van/van-b3_upernet_4xb2-160k_ade20k-512x512.py: -------------------------------------------------------------------------------- 1 | _base_ = './van-b2_upernet_4xb2-160k_ade20k-512x512.py' 2 | ckpt_path = 'https://download.openmmlab.com/mmsegmentation/v0.5/van_3rdparty/van-b3_3rdparty_20230522-a184e051.pth' # noqa 3 | model = dict( 4 | type='EncoderDecoder', 5 | backbone=dict( 6 | depths=[3, 5, 27, 3], 7 | init_cfg=dict(type='Pretrained', checkpoint=ckpt_path), 8 | drop_path_rate=0.3)) 9 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | -r requirements/optional.txt 2 | -r requirements/runtime.txt 3 | -r requirements/tests.txt 4 | -r requirements/multimodal.txt 5 | -------------------------------------------------------------------------------- /requirements/albu.txt: -------------------------------------------------------------------------------- 1 | albumentations>=0.3.2 --no-binary qudida,albumentations 2 | -------------------------------------------------------------------------------- /requirements/docs.txt: -------------------------------------------------------------------------------- 1 | docutils==0.16.0 2 | myst-parser 3 | -e git+https://github.com/open-mmlab/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme 4 | sphinx==4.0.2 5 | sphinx_copybutton 6 | sphinx_markdown_tables 7 | urllib3<2.0.0 8 | -------------------------------------------------------------------------------- /requirements/mminstall.txt: -------------------------------------------------------------------------------- 1 | mmcv>=2.0.0rc4,<2.2.0 2 | mmengine>=0.5.0,<1.0.0 3 | -------------------------------------------------------------------------------- /requirements/multimodal.txt: -------------------------------------------------------------------------------- 1 | ftfy 2 | regex 3 | -------------------------------------------------------------------------------- /requirements/readthedocs.txt: -------------------------------------------------------------------------------- 1 | mmcv>=2.0.0rc1,<2.1.0 2 | mmengine>=0.4.0,<1.0.0 3 | prettytable 4 | scipy 5 | torch 6 | torchvision 7 | -------------------------------------------------------------------------------- /requirements/runtime.txt: -------------------------------------------------------------------------------- 1 | matplotlib 2 | numpy 3 | packaging 4 | prettytable 5 | scipy 6 | -------------------------------------------------------------------------------- /requirements/tests.txt: -------------------------------------------------------------------------------- 1 | codecov 2 | flake8 3 | ftfy 4 | interrogate 5 | pytest 6 | regex 7 | xdoctest>=0.10.0 8 | yapf 9 | -------------------------------------------------------------------------------- /resources/3dogs.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/3dogs.jpg -------------------------------------------------------------------------------- /resources/3dogs_mask.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/3dogs_mask.png -------------------------------------------------------------------------------- /resources/cascade_encoder_decoder_dataflow.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/cascade_encoder_decoder_dataflow.png -------------------------------------------------------------------------------- /resources/encoder_decoder_dataflow.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/encoder_decoder_dataflow.png -------------------------------------------------------------------------------- /resources/miaomiao_qrcode.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/miaomiao_qrcode.jpg -------------------------------------------------------------------------------- /resources/mmseg-logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/mmseg-logo.png -------------------------------------------------------------------------------- /resources/seg_demo.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/seg_demo.gif -------------------------------------------------------------------------------- /resources/test_step.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/test_step.png -------------------------------------------------------------------------------- /resources/train_step.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zhuqinfeng1999/Samba/229687b62ef4ddbda5835e5f3f0b1182e8ab4a49/resources/train_step.png -------------------------------------------------------------------------------- /tests/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | -------------------------------------------------------------------------------- /tests/test_models/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | -------------------------------------------------------------------------------- /tests/test_models/test_backbones/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | -------------------------------------------------------------------------------- /tests/test_models/test_heads/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | -------------------------------------------------------------------------------- /tests/test_models/test_necks/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | -------------------------------------------------------------------------------- /tests/test_models/test_segmentors/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | -------------------------------------------------------------------------------- /tests/test_models/test_utils/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) OpenMMLab. All rights reserved. 2 | --------------------------------------------------------------------------------