├── .gitignore
├── LICENSE
├── README.md
├── examples
├── C2H4-RCCT-cfour
│ ├── MOLDEN_NAT
│ └── test.inp
├── ECP
│ ├── ecp.47
│ ├── ecp.mol
│ ├── ecp.wfx
│ ├── ecp2.mol
│ └── readme.txt
├── EDF_by_denfit
│ ├── Re68.dat
│ ├── molpro.inp
│ ├── readme.txt
│ └── results.txt
├── Gabedit-Gaussian
│ └── h2o.gab
├── H2O_MRCI-molpro
│ ├── molpro.inp
│ └── molpro.mol
├── HF-MRCI-NatOrb-columbus
│ └── HF-Dal-CI-NatOrb.mol
├── HeCuF_RDFT-orca
│ ├── test.inp
│ └── test.molden
└── NWChem6.8
│ ├── 01.molden
│ ├── 01.nw
│ ├── 02.molden
│ ├── 02.nw
│ └── readme.txt
├── m2a-logo.png
├── m2a-loop.png
├── src
├── edflib-pbe0.f90
├── edflib.f90
└── molden2aim.f90
└── util
├── aces2-patch
└── reorder.F
├── cfour-v2-patch
└── reorderdf.f
└── denfit.f90
/.gitignore:
--------------------------------------------------------------------------------
1 | # Compiled Object files
2 | *.slo
3 | *.lo
4 | *.o
5 | *.obj
6 |
7 | # Precompiled Headers
8 | *.gch
9 | *.pch
10 |
11 | # Compiled Dynamic libraries
12 | *.so
13 | *.dylib
14 | *.dll
15 |
16 | # Fortran module files
17 | *.mod
18 |
19 | # Compiled Static libraries
20 | *.lai
21 | *.la
22 | *.a
23 | *.lib
24 |
25 | # Executables
26 | *.exe
27 | *.out
28 | *.app
29 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | The MIT License (MIT)
2 |
3 | Copyright (c) 2015 zorkzou
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
23 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | # Molden2AIM
4 | Molden2AIM is a utility program which can be used to create AIM-WFN, AIM-WFX, and NBO-47 files from a Molden file.
5 |
6 | ## Recent Changes
7 | Version 5.1.1 (03/09/2024).
8 |
9 | 1. The MOLDEN file generated by the latest version of [PSI4](http://www.psicode.org/) has been supported now, including spdfg spherical and spdf Cartesian functions. In the latter case, also add `[Program] psi4` in MOLDEN or `PROGRAM=7` in m2a.ini.
10 |
11 | Version 5.1.0 (08/29/2023).
12 |
13 | 1. The MOLDEN file generated by [Bagel](http://nubakery.org/), [CP2k](http://www.cp2k.org/), or [eT](https://etprogram.org/) (since Ver. 1.4) has been supported.
14 | 2. The `[Nval]` data block (suggested by [Multiwfn](http://sobereva.com/multiwfn/)) may be used for ECP basis sets.
15 | 3. Ghost atom in the `[Atoms]` block has been supported.
16 |
17 | Version 5.0.8 (07/01/2023).
18 |
19 | 1. Bug fix: xenon was identified as a dummy atom by mistake.
20 |
21 | Version 5.0.7 (04/23/2023).
22 |
23 | 1. A new option `ANSI` for colors in terminal.
24 | 2. For the Molden file generated by Molpro, energy is printed in the WFN and WFX files.
25 | 3. For the Molden file generated by BDF, energy and virial ratio are printed in the WFN and WFX files.
26 | 4. Bug fix for the option `ALLMO`: abs(occ) is checked now, which is important for natural orbitals.
27 |
28 | Version 5.0.6 (11/12/2021).
29 |
30 | 1. Bug fix for reading MO coefficients printed in scientific notation.
31 |
32 | Version 5.0.5 (07/23/2021).
33 |
34 | 1. In the title section of new-MOLDEN/WFN/WFX/47 files, print the hostname and the original MOLDEN file name with the full path by setting title=1 in m2a.ini.
35 | 2. Bug fix. A space between index and coefficient in the `[MO]` data block may be missing in some MOLDEN files, which is completed.
36 | 3. Bug fix. Negative `nosupp` in `m2a.ini` was omitted by mistake.
37 | 4. A command line parameter `-i` has been added.
38 |
39 | Version 5.0.4 (02/07/2021).
40 |
41 | 1. Bug fix. The `[CORE]`/`[PSEUDO]` data block was omitted by mistake in subroutine ROADrv.
42 | 2. Bug fix. In the new MOLDEN file, ZA instead of ZA-Ncore is printed now in the `[ATOMS]` data block.
43 |
44 | Version 5.0.3 (01/30/2021).
45 |
46 | 1. Improved compatibility with GNU gfortran 10.
47 |
48 | Version 5.0.2 (10/09/2020).
49 |
50 | 1. The MOLDEN file with H-functions has been supported if it is generated by [Dalton](http://daltonprogram.org/).
51 | 2. The utility `ReOrdAtm` has been merged into Molden2AIM and runs automatically.
52 | 3. For the MOLDEN file saved by [ORCA](https://orcaforum.kofo.mpg.de/), `[PROGRAM] orca` in MOLDEN and `program=1` in `m2a.ini` are not needed in the case of the default title `Molden file created by orca_2mkl for BaseName=...`.
53 |
54 | Version 5.0.0 (06/05/2020).
55 |
56 | 1. If possible, save a new MOLDEN file or NBO-47 file in spherical functions. `carsph=1` in `m2a.ini` is required.
57 | 2. The MOLDEN file with H-functions has been supported if it is generated by [Multiwfn](http://sobereva.com/multiwfn/), [ORCA](https://orcaforum.kofo.mpg.de/), or [CFour](http://www.cfour.de/) (Ver. 2.1).
58 | 3. If possible, the `$LCAOMO` and `$FOCK` blocks will be printed in the NBO-47 file (`nbopro=1` in `m2a.ini` is required), so the Second Order Perturbation Theory Analysis may be performed by [NBO](http://nbo7.chem.wisc.edu/) for the RHF, UHF, RKS, and UKS types of wavefunctions.
59 | 4. Orthogonality will be checked if the `$FOCK` block exists in the NBO-47 file.
60 | 5. Bug fix for modern Fortran compilers.
61 |
62 | Version 4.4.0 (05/27/2020).
63 |
64 | 1. A new X2C/PBE0 EDF library (by Chun Gao) can take core correlations into account, which may be requested by `edftyp=1` in `m2a.ini`. Some test calculations of noble gas atoms with 22 functionals showed that PBE0 can reproduce the core densities of CCSD(T,full) with the best agreements.
65 | 2. The initialization file `m2a.ini` may be generated automatically if it doesn't exist.
66 | 3. The fitting program denfit.f90 has been modified to improve the accuracy.
67 | 4. Bug fix: energies in the WFN file were wrong.
68 |
69 | Version 4.3.0 (02/09/2019).
70 |
71 | 1. The Molden file generated by StoBe has been supported.
72 | 2. The Molden file generated by Crystal (molecule only) has been supported through `[Program] crystal` in MOLDEN or `PROGRAM=10` in m2a.ini.
73 | 3. The number of core electrons may also be specified in the terminal.
74 |
75 | Version 4.2.1 (05/11/2018).
76 |
77 | 1. The EDF library has been updated for the following cores/elements: ncore = 2 (B), 10 (Na), 28 (Cu, Pd, I, Xe, Cs, Sm, Eu, Gd, Tb), 46 (Cd, Xe), 78 (Pa, Es, Fm), and 92 (Cn, Nh). It's found that these old EDFs may produce a local minimum at R = 0 and lead to a (3,+3) critical point wrongly. Thank Dr. Tian Lu for reporting the problem.
78 | 2. The fitting program denfit.f90 has been modified for the above problem.
79 |
80 | ## Features
81 |
82 | * It converts the data format from Molden to AIM's WFN. The latter format can be read by [AIMPAC](http://www.chemistry.mcmaster.ca/aimpac/imagemap/imagemap.htm), [AIMPAC2](http://www.beaconresearch.org/AIMPAC2/index.html), [AIM2000](http://www.aim2000.de/), [AIMALL](http://aim.tkgristmill.com/), [AIM-UC](http://alfa.facyt.uc.edu.ve/quimicomp/), [Critic2](http://schooner.chem.dal.ca/wiki/Critic2), [DensToolKit](https://sites.google.com/site/jmsolanoalt/software/denstoolkit), [DGrid](http://www.cpfs.mpg.de/~kohout/dgrid.html), [MORPHY98](http://morphy.mib.man.ac.uk/), [Multiwfn](http://sobereva.com/multiwfn/), [ORBKIT](https://orbkit.github.io/), [PAMoC](http://www.istm.cnr.it/~barz/pamoc/), [ProMolden](http://azufre.quimica.uniovi.es/d-DensEl/), [TopChem](http://www.lct.jussieu.fr/pagesperso/pilme/topchempage.html), [TopMoD](http://www.lct.jussieu.fr/pagesperso/silvi/topmod.html), [Xaim](http://www.quimica.urv.es/XAIM/), and so on. The GAB file of [Gabedit](http://gabedit.sourceforge.net/) is compatible.
83 | * It saves [NBO](http://nbo7.chem.wisc.edu/)'s *.47 data file. One can do NBO analysis using the stand-alone [GENNBO](http://nbo7.chem.wisc.edu/) program. In addition, the following loops can be performed using [NBO](http://nbo7.chem.wisc.edu/) or [NBO2Molden](https://github.com/zorkzou/NBO2Molden). However the results may be different since [NBO](http://nbo7.chem.wisc.edu/) saves natural bond orbitals (NBOs) into the MOLDEN file by default.
84 |
85 |
86 |
87 | * After the *.47 file being generated, it can calculate the generalized Wiberg bond order indices (GWBO) in MO (see I. Mayer, C.P.L. 97, 270, 1983). In the case of closed-shell system, they are the Mayer bond orders (MBO) in MO.
88 | * It saves AIM's [WFX data file](http://aim.tkgristmill.com/wfxformat.html), which can be read by [AIMALL](http://aim.tkgristmill.com/), [Critic2](http://schooner.chem.dal.ca/wiki/Critic2), [DensToolKit](https://sites.google.com/site/jmsolanoalt/software/denstoolkit), [GPView](http://life-tp.com/gpview/), [Multiwfn](http://sobereva.com/multiwfn/), or [ORBKIT](https://orbkit.github.io/). There are two versions of atomic EDF library for Z = 3-120 controlled by `edftyp` in `m2a.ini`: the default X2C/HF version by `edftyp=0` (see W. Zou, Z. Cai, J. Wang, K. Xin, An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials, J. Comput. Chem. 2018, 39, 1697-1706) and the X2C/PBE0 version by `edftyp=1`.
89 |
90 | ## Compilation
91 |
92 | > F90 -O3 edflib.f90 edflib-pbe0.f90 molden2aim.f90 -o molden2aim.exe
93 |
94 | where `F90` can be `gfortran`, `nvf90` (`pgf90`), `ifort`, or other Fortran90 compilers.
95 |
96 | ## Running Molden2AIM
97 |
98 | - Windows
99 |
100 | 1. Put `molden2aim.exe` and MOLDEN/Gabedit files into the same folder.
101 | 2. If necessary, insert a `[Program] program_name` line into the MOLDEN file, or edit the `program` parameter in `m2a.ini` (you can also setup other parameters there).
102 | 3. If ECP or MCP is used, insert a `[Core]` or `[Pseudo]` segment into the MOLDEN/Gabedit file. See below for the format and examples.
103 | 4. Double-click `molden2aim.exe`, and then type in the MOLDEN/Gabedit file name.
104 |
105 | - Unix/Linux/MacOS
106 |
107 | 1. Put `molden2aim.exe` and MOLDEN/Gabedit files into the same folder.
108 | 2. If necessary, insert a `[Program] program_name` line into the MOLDEN file, or edit the `program` parameter in `m2a.ini` (you can also setup other parameters there).
109 | 3. If ECP or MCP is used, insert a `[Core]` or `[Pseudo]` segment into the MOLDEN/Gabedit file. See below for the format and examples.
110 | 5. In the terminal, type in
111 |
112 | > ./molden2aim.exe
113 |
114 | and then type in the MOLDEN/Gabedit file name, or provide the MOLDEN/Gabedit file name in command line
115 |
116 | > ./molden2aim.exe -i MOLDEN_FILE_NAME
117 |
118 | ## ECP/MCP
119 |
120 | In the case of ECP or MCP, a data block of `[Core]` should be defined in the MOLDEN file. The format is
121 |
122 | [Core]
123 | Iatom : Ncore or Element: Ncore
124 | ...
125 |
126 | where Ncore is the number of core electrons replaced by ECP or MCP. Atom/element with Ncore=0 can be ignored. For example, for a cluster with the atoms N_1, N_2, N_3, Pt_4, and Pt_5, it can be
127 |
128 | [Core]
129 | Pt: 60
130 | N : 2
131 | 2 : 0
132 |
133 | This means that the numbers of core electron are 60 in Pt_4 and Pt_5 and 2 in N_1 and N_3. In N_2 the number of core electron is set to 2 but then reset to 0. It is equivalent to
134 |
135 | [Core]
136 | 1 : 2
137 | 3 : 2
138 | 4 : 60
139 | 5 : 60
140 |
141 | Another way is to define a data block of `[Pseudo]` in the MOLDEN file, which is supported by [Molden](https://www.theochem.ru.nl/molden/). The format is
142 |
143 | [Pseudo]
144 | Name1 IAtom1 ZA1-Ncore1
145 | Name2 IAtom2 ZA2-Ncore2
146 | ...
147 |
148 | Starting from Version 5.1.0, the `[Nval]` block suggested by [Multiwfn](http://sobereva.com/multiwfn/) may also be used.
149 |
150 | [Nval]
151 | Element1 nval1 (nval = ZA - Ncore)
152 | Element2 nval2
153 | ...
154 |
155 | ## Ghost atoms
156 |
157 | Ghost atoms in the MOLDEN file may be specified by a prefix `bq-`, a prefix `ghost-`, a suffix `-bq`, a suffix `-ghost` (case insensitive), or `atomic_number` = 0. In the following example, all the five carbon atoms are ghost ones.
158 |
159 | [Atoms] AU
160 | C 1 0 0.0000000 2.6361503 0.0000000
161 | C-bq 2 6 -2.2829731 1.3180752 0.0000000
162 | C-ghost 3 6 -2.2829731 -1.3180752 0.0000000
163 | bq-C 4 6 0.0000000 -2.6361503 0.0000000
164 | ghost-C 5 6 2.2829731 -1.3180752 0.0000000
165 | ...
166 |
167 | ## About the Molden file
168 |
169 | MOLDEN (or GAB) files generated by the the following programs are fully or partly supported by Molden2AIM at present.
170 |
171 | * [ACES-II](http://www.qtp.ufl.edu/ACES/), (> 2.9)
172 | * [Bagel](http://nubakery.org/)
173 | * [BDF-G](http://182.92.69.169:7226/)
174 | * [CADPAC](https://en.wikipedia.org/wiki/CADPAC)
175 | * [CFour](http://www.cfour.de/)
176 | * [Columbus](http://www.univie.ac.at/columbus/)
177 | * [CP2k](http://www.cp2k.org/), (molecule using GTFs only)
178 | * [Crystal](http://www.crystal.unito.it/), (molecule only)
179 | * [DALTON](http://daltonprogram.org/), (> 2013)
180 | * [deMon2k](http://www.demon-software.com/public_html/)
181 | * [eT](https://etprogram.org/), (>= Ver. 1.4)
182 | * [Firefly](http://classic.chem.msu.su/gran/gamess/), through the utility [Molden](https://www.theochem.ru.nl/molden/) or [Gabedit](http://gabedit.sourceforge.net/). See [molden_gabedit.jpg](https://raw.githubusercontent.com/zorkzou/Molden2AIM/master/molden_gabedit.jpg).
183 | * [Gaussian](http://www.gaussian.com/), through the utility [Molden](https://www.theochem.ru.nl/molden/) or [Gabedit](http://gabedit.sourceforge.net/). See [molden_gabedit.jpg](https://raw.githubusercontent.com/zorkzou/Molden2AIM/master/molden_gabedit.jpg).
184 | * [Gamess](http://www.msg.chem.iastate.edu/gamess/), through the utility [Molden](https://www.theochem.ru.nl/molden/) or [Gabedit](http://gabedit.sourceforge.net/). See [molden_gabedit.jpg](https://raw.githubusercontent.com/zorkzou/Molden2AIM/master/molden_gabedit.jpg).
185 | * [Gamess-UK](http://www.cfs.dl.ac.uk/), through the utility [Molden](https://www.theochem.ru.nl/molden/). See [molden_gabedit.jpg](https://raw.githubusercontent.com/zorkzou/Molden2AIM/master/molden_gabedit.jpg).
186 | * [Jaguar](http://www.schrodinger.com/)
187 | * [MOLCAS](http://www.molcas.org)
188 | * [MOLPRO](http://www.molpro.net/)
189 | * [MRCC](http://www.mrcc.hu/)
190 | * [Multiwfn](http://sobereva.com/multiwfn/)
191 | * [NBO](http://nbo7.chem.wisc.edu/), (> May.2014)
192 | * [NWChem](http://www.nwchem-sw.org/), (>= Ver. 6.8) by MOLDEN_NORM JANPA or NONE to generate a MOLDEN file. See the attached examples.
193 | * [ORCA](https://orcaforum.kofo.mpg.de/)
194 | * [Priroda](http://wt.knc.ru/wiki/index.php/Priroda_Documentation)
195 | * [PSI4](http://www.psicode.org/)
196 | * [PySCF](http://pyscf.org/)
197 | * [Q-Chem](http://www.q-chem.com/)
198 | * [StoBe](https://www.fhi.mpg.de/1022673/StoBe)
199 | * [TeraChem](http://www.petachem.com/)
200 | * [Turbomole](http://www.turbomole.com/)
201 |
202 | See [readme.html](https://zorkzou.github.io/Molden2AIM/readme.html) for details.
203 |
204 | Examples of applications can be found in W. Zou, D. Nori-Shargh, and J. E. Boggs, On the Covalent Character of Rare Gas Bonding Interactions: A New Kind of Weak Interaction, J. Phys. Chem. A 117, 207-212 (2013); Erratum: J. Phys. Chem. A 120, 2057-2057 (2016).
205 |
206 | The EDF library (X2C/HF version) was published in W. Zou, Z. Cai, J. Wang, and K. Xin, An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials, J. Comput. Chem. 39, 1697-1706 (2018).
207 |
--------------------------------------------------------------------------------
/examples/C2H4-RCCT-cfour/test.inp:
--------------------------------------------------------------------------------
1 | Ethylene CCSD(T)/cc-pVTZ
2 | C 0.000000 0.000000 0.667477
3 | C 0.000000 0.000000 -0.667477
4 | H 0.000000 0.922919 1.237541
5 | H 0.000000 -0.922919 1.237541
6 | H 0.000000 0.922919 -1.237541
7 | H 0.000000 -0.922919 -1.237541
8 |
9 | *CFOUR(CALC=CCSD(T),BASIS=PVTZ,COORDINATES=1
10 | ABCDTYPE=0,CC_PROGRAM=ECC
11 | PRINT=5,PROPS=1,FROZEN_CORE=1
12 | MEM_UNIT=GB,MEMORY=2)
13 |
14 |
15 |
16 |
--------------------------------------------------------------------------------
/examples/ECP/ecp.wfx:
--------------------------------------------------------------------------------
1 |
2 | Molden2AIM, Version 4.1.0 (03/18/2017) Time: Sat Mar 18 18:05:34 2017
3 |
4 |
5 | GTO
6 |
7 |
8 | 13
9 |
10 |
11 | 19
12 |
13 |
14 | 0
15 |
16 |
17 | 0
18 |
19 |
20 | 38
21 |
22 |
23 | 19
24 |
25 |
26 | 19
27 |
28 |
29 | 1
30 |
31 |
32 | 22
33 |
34 |
35 | Ar1
36 | C2
37 | C3
38 | C4
39 | C5
40 | C6
41 | C7
42 | H8
43 | H9
44 | H10
45 | H11
46 | H12
47 | H13
48 |
49 |
50 | 18
51 | 6
52 | 6
53 | 6
54 | 6
55 | 6
56 | 6
57 | 1
58 | 1
59 | 1
60 | 1
61 | 1
62 | 1
63 |
64 |
65 | 0.800000000000E+001
66 | 0.400000000000E+001
67 | 0.400000000000E+001
68 | 0.400000000000E+001
69 | 0.400000000000E+001
70 | 0.400000000000E+001
71 | 0.400000000000E+001
72 | 0.100000000000E+001
73 | 0.100000000000E+001
74 | 0.100000000000E+001
75 | 0.100000000000E+001
76 | 0.100000000000E+001
77 | 0.100000000000E+001
78 |
79 |
80 | 0.000000000000E+000 0.000000000000E+000 0.471121161144E+001
81 | 0.000000000000E+000 0.263621310749E+001 -0.201938386811E+001
82 | 0.000000000000E+000 -0.263621310749E+001 -0.201938386811E+001
83 | 0.228302898940E+001 0.131810655375E+001 -0.201938386811E+001
84 | 0.228302898940E+001 -0.131810655375E+001 -0.201938386811E+001
85 | -0.228302898940E+001 -0.131810655375E+001 -0.201938386811E+001
86 | -0.228302898940E+001 0.131810655375E+001 -0.201938386811E+001
87 | 0.000000000000E+000 0.469655867613E+001 -0.201733351541E+001
88 | 0.000000000000E+000 -0.469655867613E+001 -0.201733351541E+001
89 | 0.406733850344E+001 0.234827933806E+001 -0.201733351541E+001
90 | 0.406733850344E+001 -0.234827933806E+001 -0.201733351541E+001
91 | -0.406733850344E+001 -0.234827933806E+001 -0.201733351541E+001
92 | -0.406733850344E+001 0.234827933806E+001 -0.201733351541E+001
93 |
94 |
95 | 130
96 |
97 |
98 | 1 1 1 1 1
99 | 1 1 1 1 1
100 | 1 1 1 1 1
101 | 1 2 2 2 2
102 | 2 2 2 2 2
103 | 2 2 2 2 2
104 | 2 2 3 3 3
105 | 3 3 3 3 3
106 | 3 3 3 3 3
107 | 3 3 3 4 4
108 | 4 4 4 4 4
109 | 4 4 4 4 4
110 | 4 4 4 4 5
111 | 5 5 5 5 5
112 | 5 5 5 5 5
113 | 5 5 5 5 5
114 | 6 6 6 6 6
115 | 6 6 6 6 6
116 | 6 6 6 6 6
117 | 6 7 7 7 7
118 | 7 7 7 7 7
119 | 7 7 7 7 7
120 | 7 7 8 8 8
121 | 9 9 9 10 10
122 | 10 11 11 11 12
123 | 12 12 13 13 13
124 |
125 |
126 | 1 1 1 1 2
127 | 2 2 3 3 3
128 | 4 4 4 2 3
129 | 4 1 1 1 1
130 | 2 2 2 3 3
131 | 3 4 4 4 2
132 | 3 4 1 1 1
133 | 1 2 2 2 3
134 | 3 3 4 4 4
135 | 2 3 4 1 1
136 | 1 1 2 2 2
137 | 3 3 3 4 4
138 | 4 2 3 4 1
139 | 1 1 1 2 2
140 | 2 3 3 3 4
141 | 4 4 2 3 4
142 | 1 1 1 1 2
143 | 2 2 3 3 3
144 | 4 4 4 2 3
145 | 4 1 1 1 1
146 | 2 2 2 3 3
147 | 3 4 4 4 2
148 | 3 4 1 1 1
149 | 1 1 1 1 1
150 | 1 1 1 1 1
151 | 1 1 1 1 1
152 |
153 |
154 | 0.270600000000E+001 0.127800000000E+001 0.435400000000E+000 0.147600000000E+000 0.270600000000E+001
155 | 0.127800000000E+001 0.435400000000E+000 0.270600000000E+001 0.127800000000E+001 0.435400000000E+000
156 | 0.270600000000E+001 0.127800000000E+001 0.435400000000E+000 0.147600000000E+000 0.147600000000E+000
157 | 0.147600000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000
158 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001
159 | 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000
160 | 0.112800000000E+000 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000
161 | 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001
162 | 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000
163 | 0.112800000000E+000 0.112800000000E+000 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001
164 | 0.344700000000E+000 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000
165 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001
166 | 0.344700000000E+000 0.112800000000E+000 0.112800000000E+000 0.112800000000E+000 0.428600000000E+001
167 | 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001
168 | 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001
169 | 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 0.112800000000E+000 0.112800000000E+000
170 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 0.428600000000E+001
171 | 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000
172 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 0.112800000000E+000
173 | 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000
174 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001
175 | 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000
176 | 0.112800000000E+000 0.112800000000E+000 0.544717800000E+001 0.824547000000E+000 0.183192000000E+000
177 | 0.544717800000E+001 0.824547000000E+000 0.183192000000E+000 0.544717800000E+001 0.824547000000E+000
178 | 0.183192000000E+000 0.544717800000E+001 0.824547000000E+000 0.183192000000E+000 0.544717800000E+001
179 | 0.824547000000E+000 0.183192000000E+000 0.544717800000E+001 0.824547000000E+000 0.183192000000E+000
180 |
181 |
182 |
183 | 110
184 |
185 |
186 | 1 1 1 1 1
187 | 1 1 1 1 1
188 | 1 1 1 1 1
189 | 1 1 1 1 1
190 | 2 2 2 2 2
191 | 2 2 2 2 2
192 | 2 2 2 2 2
193 | 3 3 3 3 3
194 | 3 3 3 3 3
195 | 3 3 3 3 3
196 | 4 4 4 4 4
197 | 4 4 4 4 4
198 | 4 4 4 4 4
199 | 5 5 5 5 5
200 | 5 5 5 5 5
201 | 5 5 5 5 5
202 | 6 6 6 6 6
203 | 6 6 6 6 6
204 | 6 6 6 6 6
205 | 7 7 7 7 7
206 | 7 7 7 7 7
207 | 7 7 7 7 7
208 |
209 |
210 | 1 1 1 1 1
211 | 1 1 1 1 1
212 | 1 1 1 1 1
213 | 1 1 1 1 1
214 | 1 1 1 1 1
215 | 1 1 1 1 1
216 | 1 1 1 1 1
217 | 1 1 1 1 1
218 | 1 1 1 1 1
219 | 1 1 1 1 1
220 | 1 1 1 1 1
221 | 1 1 1 1 1
222 | 1 1 1 1 1
223 | 1 1 1 1 1
224 | 1 1 1 1 1
225 | 1 1 1 1 1
226 | 1 1 1 1 1
227 | 1 1 1 1 1
228 | 1 1 1 1 1
229 | 1 1 1 1 1
230 | 1 1 1 1 1
231 | 1 1 1 1 1
232 |
233 |
234 | 0.395537152567E+006 0.201995358824E+006 0.103156238855E+006 0.526804659115E+005 0.269031860743E+005
235 | 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004 0.934489134729E+003
236 | 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002 0.324597220759E+002
237 | 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001 0.112749685158E+001
238 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004
239 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002
240 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001
241 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004
242 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002
243 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001
244 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004
245 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002
246 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001
247 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004
248 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002
249 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001
250 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004
251 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002
252 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001
253 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004
254 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002
255 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001
256 |
257 |
258 | 0.118857505367E+004 -0.511356794494E+003 0.396433576177E+003 0.249016613330E+003 0.195235501650E+003
259 | 0.369522503075E+003 0.334676713157E+003 0.488178725914E+003 0.537137371026E+003 0.638675294714E+003
260 | 0.603846607359E+003 0.441446932761E+003 0.157130578643E+003 -0.635089030843E+001 -0.369952993041E+001
261 | 0.338240451127E+002 0.195664514821E+002 0.190240733713E+001 0.282705507159E-002 0.105398442292E-002
262 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001
263 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002
264 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003
265 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001
266 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002
267 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003
268 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001
269 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002
270 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003
271 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001
272 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002
273 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003
274 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001
275 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002
276 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003
277 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001
278 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002
279 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003
280 |
281 |
282 |
283 | 0.200000000000E+001
284 | 0.200000000000E+001
285 | 0.200000000000E+001
286 | 0.200000000000E+001
287 | 0.200000000000E+001
288 | 0.200000000000E+001
289 | 0.200000000000E+001
290 | 0.200000000000E+001
291 | 0.200000000000E+001
292 | 0.200000000000E+001
293 | 0.200000000000E+001
294 | 0.200000000000E+001
295 | 0.200000000000E+001
296 | 0.200000000000E+001
297 | 0.200000000000E+001
298 | 0.200000000000E+001
299 | 0.200000000000E+001
300 | 0.200000000000E+001
301 | 0.200000000000E+001
302 |
303 |
304 | -0.126500000000E+001
305 | -0.116300000000E+001
306 | -0.102550000000E+001
307 | -0.102550000000E+001
308 | -0.827100000000E+000
309 | -0.827100000000E+000
310 | -0.710600000000E+000
311 | -0.638700000000E+000
312 | -0.616800000000E+000
313 | -0.586600000000E+000
314 | -0.586600000000E+000
315 | -0.580100000000E+000
316 | -0.578900000000E+000
317 | -0.578900000000E+000
318 | -0.499200000000E+000
319 | -0.486500000000E+000
320 | -0.486500000000E+000
321 | -0.335900000000E+000
322 | -0.335900000000E+000
323 |
324 |
325 | Alpha and Beta
326 | Alpha and Beta
327 | Alpha and Beta
328 | Alpha and Beta
329 | Alpha and Beta
330 | Alpha and Beta
331 | Alpha and Beta
332 | Alpha and Beta
333 | Alpha and Beta
334 | Alpha and Beta
335 | Alpha and Beta
336 | Alpha and Beta
337 | Alpha and Beta
338 | Alpha and Beta
339 | Alpha and Beta
340 | Alpha and Beta
341 | Alpha and Beta
342 | Alpha and Beta
343 | Alpha and Beta
344 |
345 |
346 |
347 | 1
348 |
349 | -0.470302887425E+000 0.101235799664E+000 0.331434528159E+000 0.378183759517E-001 -0.000000000000E+000
350 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
351 | -0.185983174092E-002 0.217248837361E-002 0.100517558515E-002 0.000000000000E+000 0.000000000000E+000
352 | 0.121615991243E-003 -0.130599786860E-002 0.250269924739E-003 0.956031790035E-003 -0.361883685094E-004
353 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.913733098415E-003 -0.504070427021E-003
354 | -0.183946083242E-003 0.618238882163E-003 0.341057949934E-003 0.124459342754E-003 0.000000000000E+000
355 | -0.860583904432E-005 -0.603637061417E-005 -0.130599786860E-002 0.250269924739E-003 0.956031790035E-003
356 | -0.361883685094E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.913733098415E-003
357 | 0.504070427021E-003 0.183946083242E-003 0.618238882163E-003 0.341057949934E-003 0.124459342754E-003
358 | 0.000000000000E+000 0.860583904432E-005 -0.603637061417E-005 -0.130599843835E-002 0.250270033921E-003
359 | 0.956032207111E-003 -0.361915199816E-004 -0.791315450264E-003 -0.436537450175E-003 -0.159301855145E-003
360 | -0.456867623877E-003 -0.252035806363E-003 -0.919732579654E-004 0.618240318616E-003 0.341058742369E-003
361 | 0.124459631931E-003 -0.745203402949E-005 -0.430266005443E-005 -0.603649931550E-005 -0.130599843835E-002
362 | 0.250270033921E-003 0.956032207111E-003 -0.361915199816E-004 -0.791315450264E-003 -0.436537450175E-003
363 | -0.159301855145E-003 0.456867623877E-003 0.252035806363E-003 0.919732579654E-004 0.618240318616E-003
364 | 0.341058742369E-003 0.124459631931E-003 -0.745203402949E-005 0.430266005443E-005 -0.603649931550E-005
365 | -0.130599843835E-002 0.250270033921E-003 0.956032207111E-003 -0.361915199816E-004 0.791315450264E-003
366 | 0.436537450175E-003 0.159301855145E-003 0.456867623877E-003 0.252035806363E-003 0.919732579654E-004
367 | 0.618240318616E-003 0.341058742369E-003 0.124459631931E-003 0.745203402949E-005 0.430266005443E-005
368 | -0.603649931550E-005 -0.130599843835E-002 0.250270033921E-003 0.956032207111E-003 -0.361915199816E-004
369 | 0.791315450264E-003 0.436537450175E-003 0.159301855145E-003 -0.456867623877E-003 -0.252035806363E-003
370 | -0.919732579654E-004 0.618240318616E-003 0.341058742369E-003 0.124459631931E-003 0.745203402949E-005
371 | -0.430266005443E-005 -0.603649931550E-005 0.103921268999E-003 0.145989056106E-003 0.105143704683E-003
372 | 0.103921268999E-003 0.145989056106E-003 0.105143704683E-003 0.103921537777E-003 0.145989433687E-003
373 | 0.105143481563E-003 0.103921537777E-003 0.145989433687E-003 0.105143481563E-003 0.103921537777E-003
374 | 0.145989433687E-003 0.105143481563E-003 0.103921537777E-003 0.145989433687E-003 0.105143481563E-003
375 |
376 | 2
377 |
378 | 0.775998183157E-002 -0.167038729104E-002 -0.546865857226E-002 0.100389686606E-003 -0.000000000000E+000
379 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
380 | -0.178703442300E-002 0.208745308609E-002 0.965831119173E-003 0.000000000000E+000 0.000000000000E+000
381 | -0.154634480571E-002 -0.115085957602E+000 0.220540589231E-001 0.842465647912E-001 0.164555242373E-002
382 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.808874578325E-001 -0.446224126946E-001
383 | -0.162836730742E-001 0.763653746814E-003 0.421277581955E-003 0.153733202751E-003 0.000000000000E+000
384 | 0.571186505544E-003 -0.723892828678E-004 -0.115085957602E+000 0.220540589231E-001 0.842465647912E-001
385 | 0.164555242373E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.808874578325E-001
386 | 0.446224126946E-001 0.162836730742E-001 0.763653746814E-003 0.421277581955E-003 0.153733202751E-003
387 | 0.000000000000E+000 -0.571186505544E-003 -0.723892828678E-004 -0.115086033389E+000 0.220540734463E-001
388 | 0.842466202696E-001 0.164544741603E-002 -0.700504910419E-001 -0.386440865431E-001 -0.141020539572E-001
389 | -0.404438519181E-001 -0.223112742026E-001 -0.814186129893E-002 0.763742571329E-003 0.421326582928E-003
390 | 0.153751084255E-003 0.494739987051E-003 0.285644789711E-003 -0.723885217280E-004 -0.115086033389E+000
391 | 0.220540734463E-001 0.842466202696E-001 0.164544741603E-002 -0.700504910419E-001 -0.386440865431E-001
392 | -0.141020539572E-001 0.404438519181E-001 0.223112742026E-001 0.814186129893E-002 0.763742571329E-003
393 | 0.421326582928E-003 0.153751084255E-003 0.494739987051E-003 -0.285644789711E-003 -0.723885217280E-004
394 | -0.115086033389E+000 0.220540734463E-001 0.842466202696E-001 0.164544741603E-002 0.700504910419E-001
395 | 0.386440865431E-001 0.141020539572E-001 0.404438519181E-001 0.223112742026E-001 0.814186129893E-002
396 | 0.763742571329E-003 0.421326582928E-003 0.153751084255E-003 -0.494739987051E-003 -0.285644789711E-003
397 | -0.723885217280E-004 -0.115086033389E+000 0.220540734463E-001 0.842466202696E-001 0.164544741603E-002
398 | 0.700504910419E-001 0.386440865431E-001 0.141020539572E-001 -0.404438519181E-001 -0.223112742026E-001
399 | -0.814186129893E-002 0.763742571329E-003 0.421326582928E-003 0.153751084255E-003 -0.494739987051E-003
400 | 0.285644789711E-003 -0.723885217280E-004 0.126259365081E-001 0.177369711805E-001 0.273525337242E-002
401 | 0.126259365081E-001 0.177369711805E-001 0.273525337242E-002 0.126259820476E-001 0.177370351546E-001
402 | 0.273516222135E-002 0.126259820476E-001 0.177370351546E-001 0.273516222135E-002 0.126259820476E-001
403 | 0.177370351546E-001 0.273516222135E-002 0.126259820476E-001 0.177370351546E-001 0.273516222135E-002
404 |
405 | 3
406 |
407 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.206724472370E-003
408 | -0.241476958846E-003 -0.111727522391E-003 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
409 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.521073085030E-003 0.000000000000E+000
410 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
411 | 0.146120270368E+000 0.806087764670E-001 0.294158671312E-001 0.000000000000E+000 0.000000000000E+000
412 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.521912025520E-002
413 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
414 | 0.000000000000E+000 0.146120270368E+000 0.806087764670E-001 0.294158671312E-001 0.000000000000E+000
415 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
416 | -0.521912025520E-002 0.000000000000E+000 0.000000000000E+000 -0.146517905955E+000 0.280774005672E-001
417 | 0.107255746178E+000 0.110692016552E-001 0.412129316799E-002 0.227355451025E-002 0.829668682744E-003
418 | -0.819832444316E-001 -0.452269148407E-001 -0.165042688404E-001 0.340593229707E-003 0.187891819872E-003
419 | 0.685657449554E-004 0.404776583365E-002 0.535024516357E-002 -0.151668539887E-004 -0.146517905955E+000
420 | 0.280774005672E-001 0.107255746178E+000 0.110692016552E-001 0.412129316799E-002 0.227355451025E-002
421 | 0.829668682744E-003 0.819832444316E-001 0.452269148407E-001 0.165042688404E-001 0.340593229707E-003
422 | 0.187891819872E-003 0.685657449554E-004 0.404776583365E-002 -0.535024516357E-002 -0.151668539887E-004
423 | 0.146517905955E+000 -0.280774005672E-001 -0.107255746178E+000 -0.110692016552E-001 0.412129316799E-002
424 | 0.227355451025E-002 0.829668682744E-003 -0.819832444316E-001 -0.452269148407E-001 -0.165042688404E-001
425 | -0.340593229707E-003 -0.187891819872E-003 -0.685657449554E-004 0.404776583365E-002 0.535024516357E-002
426 | 0.151668539887E-004 0.146517905955E+000 -0.280774005672E-001 -0.107255746178E+000 -0.110692016552E-001
427 | 0.412129316799E-002 0.227355451025E-002 0.829668682744E-003 0.819832444316E-001 0.452269148407E-001
428 | 0.165042688404E-001 -0.340593229707E-003 -0.187891819872E-003 -0.685657449554E-004 0.404776583365E-002
429 | -0.535024516357E-002 0.151668539887E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
430 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.242854384686E-001 0.341162908546E-001
431 | -0.296707267612E-002 0.242854384686E-001 0.341162908546E-001 -0.296707267612E-002 -0.242854384686E-001
432 | -0.341162908546E-001 0.296707267612E-002 -0.242854384686E-001 -0.341162908546E-001 0.296707267612E-002
433 |
434 | 4
435 |
436 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000
437 | 0.000000000000E+000 0.000000000000E+000 -0.206720149427E-003 0.241471909172E-003 0.111725185988E-003
438 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.521072153451E-003
439 | 0.000000000000E+000 0.169184301673E+000 -0.324209889349E-001 -0.123848265501E+000 -0.127816170757E-001
440 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.432116967582E-001 0.238381847773E-001
441 | 0.869906363541E-002 -0.393226263891E-003 -0.216927384046E-003 -0.791614435287E-004 0.000000000000E+000
442 | -0.713670963523E-002 0.175142198090E-004 -0.169184301673E+000 0.324209889349E-001 0.123848265501E+000
443 | 0.127816170757E-001 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.432116967582E-001
444 | 0.238381847773E-001 0.869906363541E-002 0.393226263891E-003 0.216927384046E-003 0.791614435287E-004
445 | 0.000000000000E+000 -0.713670963523E-002 -0.175142198090E-004 0.845921459146E-001 -0.162104935243E-001
446 | -0.619241291478E-001 -0.639075767751E-002 0.819830590028E-001 0.452268125470E-001 0.165042315112E-001
447 | -0.987873134952E-001 -0.544970554138E-001 -0.198871414672E-001 -0.196711121664E-003 -0.108517749077E-003
448 | -0.396004483399E-004 -0.535023784381E-002 0.213013744559E-002 0.875659402926E-005 -0.845921459146E-001
449 | 0.162104935243E-001 0.619241291478E-001 0.639075767751E-002 -0.819830590028E-001 -0.452268125470E-001
450 | -0.165042315112E-001 -0.987873134952E-001 -0.544970554138E-001 -0.198871414672E-001 0.196711121664E-003
451 | 0.108517749077E-003 0.396004483399E-004 0.535023784381E-002 0.213013744559E-002 -0.875659402926E-005
452 | -0.845921459146E-001 0.162104935243E-001 0.619241291478E-001 0.639075767751E-002 0.819830590028E-001
453 | 0.452268125470E-001 0.165042315112E-001 -0.987873134952E-001 -0.544970554138E-001 -0.198871414672E-001
454 | 0.196711121664E-003 0.108517749077E-003 0.396004483399E-004 -0.535023784381E-002 0.213013744559E-002
455 | -0.875659402926E-005 0.845921459146E-001 -0.162104935243E-001 -0.619241291478E-001 -0.639075767751E-002
456 | -0.819830590028E-001 -0.452268125470E-001 -0.165042315112E-001 -0.987873134952E-001 -0.544970554138E-001
457 | -0.198871414672E-001 -0.196711121664E-003 -0.108517749077E-003 -0.396004483399E-004 0.535023784381E-002
458 | 0.213013744559E-002 0.875659402926E-005 -0.280423763041E-001 -0.393940536624E-001 0.342603377297E-002
459 | 0.280423763041E-001 0.393940536624E-001 -0.342603377297E-002 -0.140212216405E-001 -0.196970738759E-001
460 | 0.171302951675E-002 0.140212216405E-001 0.196970738759E-001 -0.171302951675E-002 0.140212216405E-001
461 | 0.196970738759E-001 -0.171302951675E-002 -0.140212216405E-001 -0.196970738759E-001 0.171302951675E-002
462 |
463 | 5
464 |
465 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000
466 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
467 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
468 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
469 | 0.270457778912E+000 0.149200864392E+000 0.544465875204E-001 0.000000000000E+000 0.000000000000E+000
470 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.105542332009E-002
471 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
472 | 0.000000000000E+000 -0.270457778912E+000 -0.149200864392E+000 -0.544465875204E-001 0.000000000000E+000
473 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
474 | -0.105542332009E-002 0.000000000000E+000 0.000000000000E+000 -0.118631308044E+000 0.227334586447E-001
475 | 0.868418735669E-001 -0.130673013168E-001 -0.421398600921E-002 -0.232468948625E-002 -0.848328929503E-003
476 | 0.153715873785E+000 0.847989705892E-001 0.309449586142E-001 0.205575337337E-003 0.113407786427E-003
477 | 0.413849275897E-004 0.982864221027E-002 0.628389916106E-002 0.153495383287E-004 0.118631308044E+000
478 | -0.227334586447E-001 -0.868418735669E-001 0.130673013168E-001 0.421398600921E-002 0.232468948625E-002
479 | 0.848328929503E-003 0.153715873785E+000 0.847989705892E-001 0.309449586142E-001 -0.205575337337E-003
480 | -0.113407786427E-003 -0.413849275897E-004 -0.982864221027E-002 0.628389916106E-002 -0.153495383287E-004
481 | -0.118631308044E+000 0.227334586447E-001 0.868418735669E-001 -0.130673013168E-001 0.421398600921E-002
482 | 0.232468948625E-002 0.848328929503E-003 -0.153715873785E+000 -0.847989705892E-001 -0.309449586142E-001
483 | 0.205575337337E-003 0.113407786427E-003 0.413849275897E-004 -0.982864221027E-002 -0.628389916106E-002
484 | 0.153495383287E-004 0.118631308044E+000 -0.227334586447E-001 -0.868418735669E-001 0.130673013168E-001
485 | -0.421398600921E-002 -0.232468948625E-002 -0.848328929503E-003 -0.153715873785E+000 -0.847989705892E-001
486 | -0.309449586142E-001 -0.205575337337E-003 -0.113407786427E-003 -0.413849275897E-004 0.982864221027E-002
487 | -0.628389916106E-002 -0.153495383287E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
488 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.358167045513E-001 0.503154642034E-001
489 | 0.406031246397E-002 -0.358167045513E-001 -0.503154642034E-001 -0.406031246397E-002 0.358167045513E-001
490 | 0.503154642034E-001 0.406031246397E-002 -0.358167045513E-001 -0.503154642034E-001 -0.406031246397E-002
491 |
492 | 6
493 |
494 | 0.252159395093E-008 -0.542789735880E-009 -0.177703204399E-008 -0.242314363594E-009 -0.000000000000E+000
495 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
496 | 0.102944780121E-007 -0.120250844748E-007 -0.556381404395E-008 0.000000000000E+000 0.000000000000E+000
497 | -0.845625776836E-009 -0.136983703288E+000 0.262503499713E-001 0.100276407955E+000 -0.150887722844E-001
498 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.845333994441E-001 0.466337345437E-001
499 | 0.170176474485E-001 0.237265707920E-003 0.130890111036E-003 0.477646018680E-004 0.000000000000E+000
500 | 0.134566531437E-001 0.177211530878E-004 -0.136983703288E+000 0.262503499713E-001 0.100276407955E+000
501 | -0.150887722844E-001 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.845333994441E-001
502 | -0.466337345437E-001 -0.170176474485E-001 0.237265707920E-003 0.130890111036E-003 0.477646018680E-004
503 | 0.000000000000E+000 -0.134566531437E-001 0.177211530878E-004 0.684918365258E-001 -0.131251720885E-001
504 | -0.501381929107E-001 0.754438483943E-002 -0.153716050233E+000 -0.847990679285E-001 -0.309449941354E-001
505 | 0.181709810284E+000 0.100242118648E+000 0.365804937420E-001 -0.118553682991E-003 -0.654013800244E-004
506 | -0.238663628120E-004 -0.628390915082E-002 -0.257262005972E-002 -0.886181348690E-005 0.684918365258E-001
507 | -0.131251720885E-001 -0.501381929107E-001 0.754438483943E-002 -0.153716050233E+000 -0.847990679285E-001
508 | -0.309449941354E-001 -0.181709810284E+000 -0.100242118648E+000 -0.365804937420E-001 -0.118553682991E-003
509 | -0.654013800244E-004 -0.238663628120E-004 -0.628390915082E-002 0.257262005972E-002 -0.886181348690E-005
510 | 0.684918365258E-001 -0.131251720885E-001 -0.501381929107E-001 0.754438483943E-002 0.153716050233E+000
511 | 0.847990679285E-001 0.309449941354E-001 -0.181709810284E+000 -0.100242118648E+000 -0.365804937420E-001
512 | -0.118553682991E-003 -0.654013800244E-004 -0.238663628120E-004 0.628390915082E-002 0.257262005972E-002
513 | -0.886181348690E-005 0.684918365258E-001 -0.131251720885E-001 -0.501381929107E-001 0.754438483943E-002
514 | 0.153716050233E+000 0.847990679285E-001 0.309449941354E-001 0.181709810284E+000 0.100242118648E+000
515 | 0.365804937420E-001 -0.118553682991E-003 -0.654013800244E-004 -0.238663628120E-004 0.628390915082E-002
516 | -0.257262005972E-002 -0.886181348690E-005 0.413574710197E-001 0.580991573262E-001 0.468844164519E-002
517 | 0.413574710197E-001 0.580991573262E-001 0.468844164519E-002 -0.206787940842E-001 -0.290496609486E-001
518 | -0.234421453685E-002 -0.206787940842E-001 -0.290496609486E-001 -0.234421453685E-002 -0.206787940842E-001
519 | -0.290496609486E-001 -0.234421453685E-002 -0.206787940842E-001 -0.290496609486E-001 -0.234421453685E-002
520 |
521 | 7
522 |
523 | 0.246719337876E-003 -0.531079653777E-004 -0.173869456308E-003 -0.503665155326E-004 -0.000000000000E+000
524 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
525 | 0.213030844663E-002 -0.248843496467E-002 -0.115135901397E-002 0.000000000000E+000 0.000000000000E+000
526 | -0.293307295833E-003 0.127797491570E-001 -0.244899852949E-002 -0.935518101257E-002 -0.316208602275E-002
527 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.260779811262E+000 -0.143861912247E+000
528 | -0.524982896575E-001 -0.884168445548E-004 -0.487760776838E-004 -0.177994342950E-004 0.000000000000E+000
529 | -0.222634013027E-002 -0.389298039857E-005 0.127797491570E-001 -0.244899852949E-002 -0.935518101257E-002
530 | -0.316208602275E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.260779811262E+000
531 | 0.143861912247E+000 0.524982896575E-001 -0.884168445548E-004 -0.487760776838E-004 -0.177994342950E-004
532 | 0.000000000000E+000 0.222634013027E-002 -0.389298039857E-005 0.127796195946E-001 -0.244897370129E-002
533 | -0.935508616880E-002 -0.316213891826E-002 -0.225841935004E+000 -0.124588067144E+000 -0.454648512217E-001
534 | -0.130390492044E+000 -0.719312796242E-001 -0.262492628811E-001 -0.881611850150E-004 -0.486350404229E-004
535 | -0.177479667811E-004 -0.192803578011E-002 -0.111315221513E-002 -0.388973492750E-005 0.127796195946E-001
536 | -0.244897370129E-002 -0.935508616880E-002 -0.316213891826E-002 -0.225841935004E+000 -0.124588067144E+000
537 | -0.454648512217E-001 0.130390492044E+000 0.719312796242E-001 0.262492628811E-001 -0.881611850150E-004
538 | -0.486350404229E-004 -0.177479667811E-004 -0.192803578011E-002 0.111315221513E-002 -0.388973492750E-005
539 | 0.127796195946E-001 -0.244897370129E-002 -0.935508616880E-002 -0.316213891826E-002 0.225841935004E+000
540 | 0.124588067144E+000 0.454648512217E-001 0.130390492044E+000 0.719312796242E-001 0.262492628811E-001
541 | -0.881611850150E-004 -0.486350404229E-004 -0.177479667811E-004 0.192803578011E-002 0.111315221513E-002
542 | -0.388973492750E-005 0.127796195946E-001 -0.244897370129E-002 -0.935508616880E-002 -0.316213891826E-002
543 | 0.225841935004E+000 0.124588067144E+000 0.454648512217E-001 -0.130390492044E+000 -0.719312796242E-001
544 | -0.262492628811E-001 -0.881611850150E-004 -0.486350404229E-004 -0.177479667811E-004 0.192803578011E-002
545 | -0.111315221513E-002 -0.388973492750E-005 -0.386338955394E-001 -0.542730665034E-001 -0.156980786731E-001
546 | -0.386338955394E-001 -0.542730665034E-001 -0.156980786731E-001 -0.386339172533E-001 -0.542730970073E-001
547 | -0.156980805008E-001 -0.386339172533E-001 -0.542730970073E-001 -0.156980805008E-001 -0.386339172533E-001
548 | -0.542730970073E-001 -0.156980805008E-001 -0.386339172533E-001 -0.542730970073E-001 -0.156980805008E-001
549 |
550 | 8
551 |
552 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000
553 | 0.000000000000E+000 0.000000000000E+000 -0.161111644877E-007 0.188196151107E-007 0.870753457689E-008
554 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.707665341237E-009
555 | 0.000000000000E+000 -0.792050285914E-001 0.151781538249E-001 0.579805887014E-001 -0.218606977215E-002
556 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.180442718090E+000 0.995431139773E-001
557 | 0.363254119827E-001 0.214043940018E-003 0.118079579730E-003 0.430897649174E-004 0.000000000000E+000
558 | 0.516382827740E-002 0.225843090624E-004 0.792050285914E-001 -0.151781538249E-001 -0.579805887014E-001
559 | 0.218606977215E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.180442718090E+000
560 | 0.995431139773E-001 0.363254119827E-001 -0.214043940018E-003 -0.118079579730E-003 -0.430897649174E-004
561 | 0.000000000000E+000 0.516382827740E-002 -0.225843090624E-004 0.792048619664E-001 -0.151781218944E-001
562 | -0.579804667267E-001 0.218609217050E-002 -0.156269930790E+000 -0.862079428667E-001 -0.314591227428E-001
563 | -0.902221936098E-001 -0.497720173851E-001 -0.181628739998E-001 -0.213895374108E-003 -0.117997621791E-003
564 | -0.430598567119E-004 -0.447200990165E-002 -0.258191750509E-002 -0.225842133571E-004 -0.792048619664E-001
565 | 0.151781218944E-001 0.579804667267E-001 -0.218609217050E-002 0.156269930790E+000 0.862079428667E-001
566 | 0.314591227428E-001 -0.902221936098E-001 -0.497720173851E-001 -0.181628739998E-001 0.213895374108E-003
567 | 0.117997621791E-003 0.430598567119E-004 0.447200990165E-002 -0.258191750509E-002 0.225842133571E-004
568 | -0.792048619664E-001 0.151781218944E-001 0.579804667267E-001 -0.218609217050E-002 -0.156269930790E+000
569 | -0.862079428667E-001 -0.314591227428E-001 -0.902221936098E-001 -0.497720173851E-001 -0.181628739998E-001
570 | 0.213895374108E-003 0.117997621791E-003 0.430598567119E-004 -0.447200990165E-002 -0.258191750509E-002
571 | 0.225842133571E-004 0.792048619664E-001 -0.151781218944E-001 -0.579804667267E-001 0.218609217050E-002
572 | 0.156269930790E+000 0.862079428667E-001 0.314591227428E-001 -0.902221936098E-001 -0.497720173851E-001
573 | -0.181628739998E-001 -0.213895374108E-003 -0.117997621791E-003 -0.430598567119E-004 0.447200990165E-002
574 | -0.258191750509E-002 -0.225842133571E-004 0.502470750312E-001 0.705873121697E-001 0.219990605704E-001
575 | -0.502470750312E-001 -0.705873121697E-001 -0.219990605704E-001 -0.502473864462E-001 -0.705877496469E-001
576 | -0.219991883551E-001 0.502473864462E-001 0.705877496469E-001 0.219991883551E-001 0.502473864462E-001
577 | 0.705877496469E-001 0.219991883551E-001 -0.502473864462E-001 -0.705877496469E-001 -0.219991883551E-001
578 |
579 | 9
580 |
581 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.313897784812E-007
582 | 0.366667195210E-007 0.169651040243E-007 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
583 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.172741865291E-008 0.000000000000E+000
584 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
585 | 0.358010806734E+000 0.197500408534E+000 0.720721245308E-001 0.000000000000E+000 0.000000000000E+000
586 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.286477510134E-002
587 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
588 | 0.000000000000E+000 0.358010806734E+000 0.197500408534E+000 0.720721245308E-001 0.000000000000E+000
589 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
590 | 0.286477510134E-002 0.000000000000E+000 0.000000000000E+000 0.517934662076E-007 -0.992524352562E-008
591 | -0.379144571375E-007 -0.423341848496E-007 -0.179004990068E+000 -0.987499762664E-001 -0.360359790631E-001
592 | 0.310046637533E+000 0.171040472594E+000 0.624163278045E-001 0.166743021653E-006 0.919855330546E-007
593 | 0.335674890120E-007 -0.143236388673E-002 0.248092708255E-002 -0.997578240425E-009 0.517934662076E-007
594 | -0.992524352562E-008 -0.379144571375E-007 -0.423341848496E-007 -0.179004990068E+000 -0.987499762664E-001
595 | -0.360359790631E-001 -0.310046637533E+000 -0.171040472594E+000 -0.624163278045E-001 0.166743021653E-006
596 | 0.919855330546E-007 0.335674890120E-007 -0.143236388673E-002 -0.248092708255E-002 -0.997578240425E-009
597 | -0.517934662076E-007 0.992524352562E-008 0.379144571375E-007 0.423341848496E-007 -0.179004990068E+000
598 | -0.987499762664E-001 -0.360359790631E-001 0.310046637533E+000 0.171040472594E+000 0.624163278045E-001
599 | -0.166743021653E-006 -0.919855330546E-007 -0.335674890120E-007 -0.143236388673E-002 0.248092708255E-002
600 | 0.997578240425E-009 -0.517934662076E-007 0.992524352562E-008 0.379144571375E-007 0.423341848496E-007
601 | -0.179004990068E+000 -0.987499762664E-001 -0.360359790631E-001 -0.310046637533E+000 -0.171040472594E+000
602 | -0.624163278045E-001 -0.166743021653E-006 -0.919855330546E-007 -0.335674890120E-007 -0.143236388673E-002
603 | -0.248092708255E-002 0.997578240425E-009 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
604 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.728314158211E-007 0.102313893518E-006
605 | 0.409854180603E-007 0.728314158211E-007 0.102313893518E-006 0.409854180603E-007 -0.728314158211E-007
606 | -0.102313893518E-006 -0.409854180603E-007 -0.728314158211E-007 -0.102313893518E-006 -0.409854180603E-007
607 |
608 | 10
609 |
610 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.143467045392E-003
611 | 0.167585314979E-003 0.775390419079E-004 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
612 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.766526658633E-004 0.000000000000E+000
613 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
614 | 0.108595848148E+000 0.599080362126E-001 0.218617241268E-001 0.000000000000E+000 0.000000000000E+000
615 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.487634310644E-002
616 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
617 | 0.000000000000E+000 0.108595848148E+000 0.599080362126E-001 0.218617241268E-001 0.000000000000E+000
618 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
619 | -0.487634310644E-002 0.000000000000E+000 0.000000000000E+000 -0.231561201843E-001 0.443743484974E-002
620 | 0.169510131390E-001 0.894339090028E-002 -0.272773793063E+000 -0.150478517838E+000 -0.549128305977E-001
621 | -0.220183163040E+000 -0.121466346364E+000 -0.443256685209E-001 -0.199384721351E-003 -0.109992668326E-003
622 | -0.401386779295E-004 -0.392982728418E-002 0.546485334832E-003 -0.102332178855E-005 -0.231561201843E-001
623 | 0.443743484974E-002 0.169510131390E-001 0.894339090028E-002 -0.272773793063E+000 -0.150478517838E+000
624 | -0.549128305977E-001 0.220183163040E+000 0.121466346364E+000 0.443256685209E-001 -0.199384721351E-003
625 | -0.109992668326E-003 -0.401386779295E-004 -0.392982728418E-002 -0.546485334832E-003 -0.102332178855E-005
626 | 0.231561201843E-001 -0.443743484974E-002 -0.169510131390E-001 -0.894339090028E-002 -0.272773793063E+000
627 | -0.150478517838E+000 -0.549128305977E-001 -0.220183163040E+000 -0.121466346364E+000 -0.443256685209E-001
628 | 0.199384721351E-003 0.109992668326E-003 0.401386779295E-004 -0.392982728418E-002 0.546485334832E-003
629 | 0.102332178855E-005 0.231561201843E-001 -0.443743484974E-002 -0.169510131390E-001 -0.894339090028E-002
630 | -0.272773793063E+000 -0.150478517838E+000 -0.549128305977E-001 0.220183163040E+000 0.121466346364E+000
631 | 0.443256685209E-001 0.199384721351E-003 0.109992668326E-003 0.401386779295E-004 -0.392982728418E-002
632 | -0.546485334832E-003 0.102332178855E-005 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
633 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.508834659956E-001 -0.714813169976E-001
634 | -0.276667990059E-001 -0.508834659956E-001 -0.714813169976E-001 -0.276667990059E-001 0.508834659956E-001
635 | 0.714813169976E-001 0.276667990059E-001 0.508834659956E-001 0.714813169976E-001 0.276667990059E-001
636 |
637 | 11
638 |
639 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000
640 | 0.000000000000E+000 0.000000000000E+000 0.143420727593E-003 -0.167531210687E-003 -0.775140087184E-004
641 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.766578830904E-004
642 | 0.000000000000E+000 0.267382819946E-001 -0.512388877759E-002 -0.195732690018E-001 -0.103268975773E-001
643 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.399897092510E+000 0.220607416471E+000
644 | 0.805043660939E-001 0.230615629943E-003 0.127221525919E-003 0.464258566707E-004 0.000000000000E+000
645 | 0.361435626729E-002 0.119219082278E-005 -0.267382819946E-001 0.512388877759E-002 0.195732690018E-001
646 | 0.103268975773E-001 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.399897092510E+000
647 | 0.220607416471E+000 0.805043660939E-001 -0.230615629943E-003 -0.127221525919E-003 -0.464258566707E-004
648 | 0.000000000000E+000 0.361435626729E-002 -0.119219082278E-005 0.133694684291E-001 -0.256200713494E-002
649 | -0.978687419133E-002 -0.516348427161E-002 0.220182902668E+000 0.121466202727E+000 0.443256161047E-001
650 | 0.185273755402E-001 0.102208206273E-001 0.372979611801E-002 0.115000758992E-003 0.634413723148E-004
651 | 0.231511140651E-004 -0.546457499458E-003 0.456082382823E-002 0.578223543677E-006 -0.133694684291E-001
652 | 0.256200713494E-002 0.978687419133E-002 0.516348427161E-002 -0.220182902668E+000 -0.121466202727E+000
653 | -0.443256161047E-001 0.185273755402E-001 0.102208206273E-001 0.372979611801E-002 -0.115000758992E-003
654 | -0.634413723148E-004 -0.231511140651E-004 0.546457499458E-003 0.456082382823E-002 -0.578223543677E-006
655 | -0.133694684291E-001 0.256200713494E-002 0.978687419133E-002 0.516348427161E-002 0.220182902668E+000
656 | 0.121466202727E+000 0.443256161047E-001 0.185273755402E-001 0.102208206273E-001 0.372979611801E-002
657 | -0.115000758992E-003 -0.634413723148E-004 -0.231511140651E-004 -0.546457499458E-003 0.456082382823E-002
658 | -0.578223543677E-006 0.133694684291E-001 -0.256200713494E-002 -0.978687419133E-002 -0.516348427161E-002
659 | -0.220182902668E+000 -0.121466202727E+000 -0.443256161047E-001 0.185273755402E-001 0.102208206273E-001
660 | 0.372979611801E-002 0.115000758992E-003 0.634413723148E-004 0.231511140651E-004 0.546457499458E-003
661 | 0.456082382823E-002 0.578223543677E-006 0.587553241209E-001 0.825397379406E-001 0.319469842488E-001
662 | -0.587553241209E-001 -0.825397379406E-001 -0.319469842488E-001 0.293774193509E-001 0.412695280108E-001
663 | 0.159733412681E-001 -0.293774193509E-001 -0.412695280108E-001 -0.159733412681E-001 -0.293774193509E-001
664 | -0.412695280108E-001 -0.159733412681E-001 0.293774193509E-001 0.412695280108E-001 0.159733412681E-001
665 |
666 | 12
667 |
668 | 0.102135199526E-002 -0.219852756050E-003 -0.719772992440E-003 0.224065674012E-003 -0.000000000000E+000
669 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
670 | -0.533329909634E+000 0.622988092139E+000 0.288246615108E+000 0.000000000000E+000 0.000000000000E+000
671 | 0.388699140517E-001 -0.186485340520E-002 0.357364075848E-003 0.136513173719E-002 -0.215715526593E-003
672 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.287184378859E-002 -0.158428268316E-002
673 | -0.578138646294E-003 -0.393856032308E-001 -0.217274802385E-001 -0.792882239134E-002 0.000000000000E+000
674 | -0.101086970923E-003 -0.918693360180E-003 -0.186485340520E-002 0.357364075848E-003 0.136513173719E-002
675 | -0.215715526593E-003 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.287184378859E-002
676 | 0.158428268316E-002 0.578138646294E-003 -0.393856032308E-001 -0.217274802385E-001 -0.792882239134E-002
677 | 0.000000000000E+000 0.101086970923E-003 -0.918693360180E-003 -0.186484140887E-002 0.357361776977E-003
678 | 0.136512295550E-002 -0.215720318190E-003 -0.248708084963E-002 -0.137202418089E-002 -0.500680977616E-003
679 | -0.143592908992E-002 -0.792145311124E-003 -0.289070771719E-003 -0.393856648793E-001 -0.217275142475E-001
680 | -0.792883480197E-002 -0.875446176743E-004 -0.505437204851E-004 -0.918695370987E-003 -0.186484140887E-002
681 | 0.357361776977E-003 0.136512295550E-002 -0.215720318190E-003 -0.248708084963E-002 -0.137202418089E-002
682 | -0.500680977616E-003 0.143592908992E-002 0.792145311124E-003 0.289070771719E-003 -0.393856648793E-001
683 | -0.217275142475E-001 -0.792883480197E-002 -0.875446176743E-004 0.505437204851E-004 -0.918695370987E-003
684 | -0.186484140887E-002 0.357361776977E-003 0.136512295550E-002 -0.215720318190E-003 0.248708084963E-002
685 | 0.137202418089E-002 0.500680977616E-003 0.143592908992E-002 0.792145311124E-003 0.289070771719E-003
686 | -0.393856648793E-001 -0.217275142475E-001 -0.792883480197E-002 0.875446176743E-004 0.505437204851E-004
687 | -0.918695370987E-003 -0.186484140887E-002 0.357361776977E-003 0.136512295550E-002 -0.215720318190E-003
688 | 0.248708084963E-002 0.137202418089E-002 0.500680977616E-003 -0.143592908992E-002 -0.792145311124E-003
689 | -0.289070771719E-003 -0.393856648793E-001 -0.217275142475E-001 -0.792883480197E-002 0.875446176743E-004
690 | -0.505437204851E-004 -0.918695370987E-003 0.122824997238E-004 0.172545096742E-004 0.275573525615E-003
691 | 0.122824997238E-004 0.172545096742E-004 0.275573525615E-003 0.122794807947E-004 0.172502686693E-004
692 | 0.275573779475E-003 0.122794807947E-004 0.172502686693E-004 0.275573779475E-003 0.122794807947E-004
693 | 0.172502686693E-004 0.275573779475E-003 0.122794807947E-004 0.172502686693E-004 0.275573779475E-003
694 |
695 | 13
696 |
697 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.539893253152E+000
698 | 0.630654800461E+000 0.291793878292E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
699 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.396481058975E-001 0.000000000000E+000
700 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
701 | -0.114597931003E-002 -0.632191480383E-003 -0.230700196721E-003 0.000000000000E+000 0.000000000000E+000
702 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.531856428199E-003
703 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
704 | 0.000000000000E+000 -0.114597931003E-002 -0.632191480383E-003 -0.230700196721E-003 0.000000000000E+000
705 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
706 | -0.531856428199E-003 0.000000000000E+000 0.000000000000E+000 0.912679219249E-003 -0.174897804204E-003
707 | -0.668110085543E-003 0.100400997785E-002 -0.382109581712E-003 -0.210794749973E-003 -0.769235141498E-004
708 | 0.440984139785E-003 0.243273516124E-003 0.887757107911E-004 0.582838584971E-002 0.321529005483E-002
709 | 0.117332813109E-002 0.115022317722E-003 0.373475158354E-003 0.236281317448E-003 0.912679219249E-003
710 | -0.174897804204E-003 -0.668110085543E-003 0.100400997785E-002 -0.382109581712E-003 -0.210794749973E-003
711 | -0.769235141498E-004 -0.440984139785E-003 -0.243273516124E-003 -0.887757107911E-004 0.582838584971E-002
712 | 0.321529005483E-002 0.117332813109E-002 0.115022317722E-003 -0.373475158354E-003 0.236281317448E-003
713 | -0.912679219249E-003 0.174897804204E-003 0.668110085543E-003 -0.100400997785E-002 -0.382109581712E-003
714 | -0.210794749973E-003 -0.769235141498E-004 0.440984139785E-003 0.243273516124E-003 0.887757107911E-004
715 | -0.582838584971E-002 -0.321529005483E-002 -0.117332813109E-002 0.115022317722E-003 0.373475158354E-003
716 | -0.236281317448E-003 -0.912679219249E-003 0.174897804204E-003 0.668110085543E-003 -0.100400997785E-002
717 | -0.382109581712E-003 -0.210794749973E-003 -0.769235141498E-004 -0.440984139785E-003 -0.243273516124E-003
718 | -0.887757107911E-004 -0.582838584971E-002 -0.321529005483E-002 -0.117332813109E-002 0.115022317722E-003
719 | -0.373475158354E-003 -0.236281317448E-003 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
720 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.181937504507E-003 -0.255586607141E-003
721 | -0.704492320641E-003 -0.181937504507E-003 -0.255586607141E-003 -0.704492320641E-003 0.181937504507E-003
722 | 0.255586607141E-003 0.704492320641E-003 0.181937504507E-003 0.255586607141E-003 0.704492320641E-003
723 |
724 | 14
725 |
726 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000
727 | 0.000000000000E+000 0.000000000000E+000 -0.539893230854E+000 0.630654774413E+000 0.291793866240E+000
728 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.396481111296E-001
729 | 0.000000000000E+000 0.105387268183E-002 -0.201954875354E-003 -0.771468170586E-003 0.115931928197E-002
730 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.127548079914E-003 -0.703632332235E-004
731 | -0.256770492016E-004 0.673002605162E-002 0.371268930893E-002 0.135483976060E-002 0.000000000000E+000
732 | 0.330652277844E-003 0.272833953790E-003 -0.105387268183E-002 0.201954875354E-003 0.771468170586E-003
733 | -0.115931928197E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.127548079914E-003
734 | -0.703632332235E-004 -0.256770492016E-004 -0.673002605162E-002 -0.371268930893E-002 -0.135483976060E-002
735 | 0.000000000000E+000 0.330652277844E-003 -0.272833953790E-003 0.526932145607E-003 -0.100976633726E-003
736 | -0.385731014197E-003 0.579678792048E-003 0.440984070366E-003 0.243273477829E-003 0.887756968162E-004
737 | -0.891343606479E-003 -0.491719029462E-003 -0.179438794018E-003 0.336501440046E-002 0.185634541281E-002
738 | 0.677420157036E-003 0.373472230966E-003 -0.316232734805E-003 0.136417392856E-003 -0.526932145607E-003
739 | 0.100976633726E-003 0.385731014197E-003 -0.579678792048E-003 -0.440984070366E-003 -0.243273477829E-003
740 | -0.887756968162E-004 -0.891343606479E-003 -0.491719029462E-003 -0.179438794018E-003 -0.336501440046E-002
741 | -0.185634541281E-002 -0.677420157036E-003 -0.373472230966E-003 -0.316232734805E-003 -0.136417392856E-003
742 | -0.526932145607E-003 0.100976633726E-003 0.385731014197E-003 -0.579678792048E-003 0.440984070366E-003
743 | 0.243273477829E-003 0.887756968162E-004 -0.891343606479E-003 -0.491719029462E-003 -0.179438794018E-003
744 | -0.336501440046E-002 -0.185634541281E-002 -0.677420157036E-003 0.373472230966E-003 -0.316232734805E-003
745 | -0.136417392856E-003 0.526932145607E-003 -0.100976633726E-003 -0.385731014197E-003 0.579678792048E-003
746 | -0.440984070366E-003 -0.243273477829E-003 -0.887756968162E-004 -0.891343606479E-003 -0.491719029462E-003
747 | -0.179438794018E-003 0.336501440046E-002 0.185634541281E-002 0.677420157036E-003 -0.373472230966E-003
748 | -0.316232734805E-003 0.136417392856E-003 -0.210090369745E-003 -0.295135876144E-003 -0.813483295487E-003
749 | 0.210090369745E-003 0.295135876144E-003 0.813483295487E-003 -0.105043255032E-003 -0.147565227024E-003
750 | -0.406737582004E-003 0.105043255032E-003 0.147565227024E-003 0.406737582004E-003 0.105043255032E-003
751 | 0.147565227024E-003 0.406737582004E-003 -0.105043255032E-003 -0.147565227024E-003 -0.406737582004E-003
752 |
753 | 15
754 |
755 | 0.904802098915E-002 -0.194764621843E-002 -0.637637285992E-002 -0.149470946139E-002 -0.000000000000E+000
756 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
757 | -0.915582088973E-001 0.106950075085E+000 0.494840872850E-001 0.000000000000E+000 0.000000000000E+000
758 | 0.790985923615E-002 -0.227180191577E-003 0.435348102898E-004 0.166303093164E-003 -0.645652029791E-004
759 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.384556276428E-003 -0.212144494720E-003
760 | -0.774160648855E-004 0.290992997128E+000 0.160529332446E+000 0.585805878820E-001 0.000000000000E+000
761 | -0.533008668779E-004 0.735023418222E-002 -0.227180191577E-003 0.435348102898E-004 0.166303093164E-003
762 | -0.645652029791E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.384556276428E-003
763 | 0.212144494720E-003 0.774160648855E-004 0.290992997128E+000 0.160529332446E+000 0.585805878820E-001
764 | 0.000000000000E+000 0.533008668779E-004 0.735023418222E-002 -0.227238033151E-003 0.435458945394E-004
765 | 0.166345435028E-003 -0.645112101843E-004 -0.333356803326E-003 -0.183899769522E-003 -0.671089603739E-004
766 | -0.192617578137E-003 -0.106259502946E-003 -0.387763660125E-004 0.290993545612E+000 0.160529635023E+000
767 | 0.585806982989E-001 -0.461613175284E-004 -0.266521749520E-004 0.735025645878E-002 -0.227238033151E-003
768 | 0.435458945394E-004 0.166345435028E-003 -0.645112101843E-004 -0.333356803326E-003 -0.183899769522E-003
769 | -0.671089603739E-004 0.192617578137E-003 0.106259502946E-003 0.387763660125E-004 0.290993545612E+000
770 | 0.160529635023E+000 0.585806982989E-001 -0.461613175284E-004 0.266521749520E-004 0.735025645878E-002
771 | -0.227238033151E-003 0.435458945394E-004 0.166345435028E-003 -0.645112101843E-004 0.333356803326E-003
772 | 0.183899769522E-003 0.671089603739E-004 0.192617578137E-003 0.106259502946E-003 0.387763660125E-004
773 | 0.290993545612E+000 0.160529635023E+000 0.585806982989E-001 0.461613175284E-004 0.266521749520E-004
774 | 0.735025645878E-002 -0.227238033151E-003 0.435458945394E-004 0.166345435028E-003 -0.645112101843E-004
775 | 0.333356803326E-003 0.183899769522E-003 0.671089603739E-004 -0.192617578137E-003 -0.106259502946E-003
776 | -0.387763660125E-004 0.290993545612E+000 0.160529635023E+000 0.585806982989E-001 0.461613175284E-004
777 | -0.266521749520E-004 0.735025645878E-002 0.211047372068E-004 0.296480277220E-004 0.957442547311E-004
778 | 0.211047372068E-004 0.296480277220E-004 0.957442547311E-004 0.210461403413E-004 0.295657105874E-004
779 | 0.956978167441E-004 0.210461403413E-004 0.295657105874E-004 0.956978167441E-004 0.210461403413E-004
780 | 0.295657105874E-004 0.956978167441E-004 0.210461403413E-004 0.295657105874E-004 0.956978167441E-004
781 |
782 | 16
783 |
784 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000
785 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
786 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
787 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
788 | -0.348124540617E+000 -0.192046546360E+000 -0.700818935397E-001 0.000000000000E+000 0.000000000000E+000
789 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.426358196240E-002
790 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
791 | 0.000000000000E+000 0.348124540617E+000 0.192046546360E+000 0.700818935397E-001 0.000000000000E+000
792 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
793 | 0.426358196240E-002 0.000000000000E+000 0.000000000000E+000 0.479371908718E-002 -0.918626089689E-003
794 | -0.350915414952E-002 0.392987834644E-002 0.318962251271E+000 0.175958864225E+000 0.642111541379E-001
795 | -0.168365629457E-001 -0.928806616320E-002 -0.338941405809E-002 0.182822730853E-003 0.100856072928E-003
796 | 0.368045387940E-004 0.399216850372E-002 -0.156704889675E-003 0.855030851366E-005 -0.479371908718E-002
797 | 0.918626089689E-003 0.350915414952E-002 -0.392987834644E-002 -0.318962251271E+000 -0.175958864225E+000
798 | -0.642111541379E-001 -0.168365629457E-001 -0.928806616320E-002 -0.338941405809E-002 -0.182822730853E-003
799 | -0.100856072928E-003 -0.368045387940E-004 -0.399216850372E-002 -0.156704889675E-003 -0.855030851366E-005
800 | 0.479371908718E-002 -0.918626089689E-003 -0.350915414952E-002 0.392987834644E-002 -0.318962251271E+000
801 | -0.175958864225E+000 -0.642111541379E-001 0.168365629457E-001 0.928806616320E-002 0.338941405809E-002
802 | 0.182822730853E-003 0.100856072928E-003 0.368045387940E-004 -0.399216850372E-002 0.156704889675E-003
803 | 0.855030851366E-005 -0.479371908718E-002 0.918626089689E-003 0.350915414952E-002 -0.392987834644E-002
804 | 0.318962251271E+000 0.175958864225E+000 0.642111541379E-001 0.168365629457E-001 0.928806616320E-002
805 | 0.338941405809E-002 -0.182822730853E-003 -0.100856072928E-003 -0.368045387940E-004 0.399216850372E-002
806 | 0.156704889675E-003 -0.855030851366E-005 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
807 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.520943478227E-001 0.731823691181E-001
808 | 0.306630902289E-001 -0.520943478227E-001 -0.731823691181E-001 -0.306630902289E-001 0.520943478227E-001
809 | 0.731823691181E-001 0.306630902289E-001 -0.520943478227E-001 -0.731823691181E-001 -0.306630902289E-001
810 |
811 | 17
812 |
813 | 0.825868031378E-008 -0.177773542984E-008 -0.582010420562E-008 -0.194460265073E-008 -0.000000000000E+000
814 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
815 | -0.728853268576E-007 0.851380916459E-007 0.393920317954E-007 0.000000000000E+000 0.000000000000E+000
816 | 0.790032818474E-008 -0.553532997325E-002 0.106074186576E-002 0.405203679884E-002 -0.453768863653E-002
817 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.309241760111E+000 -0.170596453540E+000
818 | -0.622542957520E-001 -0.211766949453E-003 -0.116823454053E-003 -0.426313777837E-004 0.000000000000E+000
819 | -0.390173429003E-002 -0.991537129164E-005 -0.553532997325E-002 0.106074186576E-002 0.405203679884E-002
820 | -0.453768863653E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.309241760111E+000
821 | 0.170596453540E+000 0.622542957520E-001 -0.211766949453E-003 -0.116823454053E-003 -0.426313777837E-004
822 | 0.000000000000E+000 0.390173429003E-002 -0.991537129164E-005 0.276767742640E-002 -0.530373316728E-003
823 | -0.202602750573E-002 0.226884317889E-002 -0.168367487201E-001 -0.928816864761E-002 -0.338945145684E-002
824 | 0.338403494145E+000 0.186683829331E+000 0.681249233624E-001 0.106154537988E-003 0.585612619116E-004
825 | 0.213702573706E-004 -0.156681653112E-003 0.417308987870E-002 0.496539558467E-005 0.276767742640E-002
826 | -0.530373316728E-003 -0.202602750573E-002 0.226884317889E-002 -0.168367487201E-001 -0.928816864761E-002
827 | -0.338945145684E-002 -0.338403494145E+000 -0.186683829331E+000 -0.681249233624E-001 0.106154537988E-003
828 | 0.585612619116E-004 0.213702573706E-004 -0.156681653112E-003 -0.417308987870E-002 0.496539558467E-005
829 | 0.276767742640E-002 -0.530373316728E-003 -0.202602750573E-002 0.226884317889E-002 0.168367487201E-001
830 | 0.928816864761E-002 0.338945145684E-002 -0.338403494145E+000 -0.186683829331E+000 -0.681249233624E-001
831 | 0.106154537988E-003 0.585612619116E-004 0.213702573706E-004 0.156681653112E-003 -0.417308987870E-002
832 | 0.496539558467E-005 0.276767742640E-002 -0.530373316728E-003 -0.202602750573E-002 0.226884317889E-002
833 | 0.168367487201E-001 0.928816864761E-002 0.338945145684E-002 0.338403494145E+000 0.186683829331E+000
834 | 0.681249233624E-001 0.106154537988E-003 0.585612619116E-004 0.213702573706E-004 0.156681653112E-003
835 | 0.417308987870E-002 0.496539558467E-005 -0.601534018702E-001 -0.845037637166E-001 -0.354067484192E-001
836 | -0.601534018702E-001 -0.845037637166E-001 -0.354067484192E-001 0.300766760530E-001 0.422518469038E-001
837 | 0.177033360463E-001 0.300766760530E-001 0.422518469038E-001 0.177033360463E-001 0.300766760530E-001
838 | 0.422518469038E-001 0.177033360463E-001 0.300766760530E-001 0.422518469038E-001 0.177033360463E-001
839 |
840 | 18
841 |
842 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.201180029131E-001
843 | -0.235000438304E-001 -0.108730940037E-001 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
844 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.177002830101E-002 0.000000000000E+000
845 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
846 | -0.185719979937E-003 -0.102454370708E-003 -0.373877918490E-004 0.000000000000E+000 0.000000000000E+000
847 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.205677707264E-004
848 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
849 | 0.000000000000E+000 -0.185719979937E-003 -0.102454370708E-003 -0.373877918490E-004 0.000000000000E+000
850 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
851 | -0.205677707264E-004 0.000000000000E+000 0.000000000000E+000 0.857170087147E-004 -0.164260523204E-004
852 | -0.627475643326E-004 0.657875666901E-004 -0.184283004130E-003 -0.101661647964E-003 -0.370985103598E-004
853 | 0.731876899633E-006 0.403747551626E-006 0.147336119635E-006 0.387029492700E+000 0.213508870362E+000
854 | 0.779139547475E-001 -0.524344281451E-004 -0.184153369616E-004 0.159368281563E-001 0.857170087147E-004
855 | -0.164260523204E-004 -0.627475643326E-004 0.657875666901E-004 -0.184283004130E-003 -0.101661647964E-003
856 | -0.370985103598E-004 -0.731876899633E-006 -0.403747551626E-006 -0.147336119635E-006 0.387029492700E+000
857 | 0.213508870362E+000 0.779139547475E-001 -0.524344281451E-004 0.184153369616E-004 0.159368281563E-001
858 | -0.857170087147E-004 0.164260523204E-004 0.627475643326E-004 -0.657875666901E-004 -0.184283004130E-003
859 | -0.101661647964E-003 -0.370985103598E-004 0.731876899633E-006 0.403747551626E-006 0.147336119635E-006
860 | -0.387029492700E+000 -0.213508870362E+000 -0.779139547475E-001 -0.524344281451E-004 -0.184153369616E-004
861 | -0.159368281563E-001 -0.857170087147E-004 0.164260523204E-004 0.627475643326E-004 -0.657875666901E-004
862 | -0.184283004130E-003 -0.101661647964E-003 -0.370985103598E-004 -0.731876899633E-006 -0.403747551626E-006
863 | -0.147336119635E-006 -0.387029492700E+000 -0.213508870362E+000 -0.779139547475E-001 -0.524344281451E-004
864 | 0.184153369616E-004 -0.159368281563E-001 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000
865 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.139689422437E-005 0.196236315492E-005
866 | 0.571435025762E-005 0.139689422437E-005 0.196236315492E-005 0.571435025762E-005 -0.139689422437E-005
867 | -0.196236315492E-005 -0.571435025762E-005 -0.139689422437E-005 -0.196236315492E-005 -0.571435025762E-005
868 |
869 | 19
870 |
871 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000
872 | 0.000000000000E+000 0.000000000000E+000 0.201180065941E-001 -0.235000481303E-001 -0.108730959932E-001
873 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.177002726214E-002
874 | 0.000000000000E+000 0.990055214737E-004 -0.189725458240E-004 -0.724751764102E-004 0.757998358460E-004
875 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.183770832301E-003 -0.101379103015E-003
876 | -0.369954036628E-004 0.446902947423E+000 0.246538688305E+000 0.899672419771E-001 0.000000000000E+000
877 | -0.630658407785E-004 0.184022804466E-001 -0.990055214737E-004 0.189725458240E-004 0.724751764102E-004
878 | -0.757998358460E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.183770832301E-003
879 | -0.101379103015E-003 -0.369954036628E-004 -0.446902947423E+000 -0.246538688305E+000 -0.899672419771E-001
880 | 0.000000000000E+000 -0.630658407785E-004 -0.184022804466E-001 0.494466744323E-004 -0.947552502677E-005
881 | -0.361965312544E-004 0.380528212400E-004 0.637624107008E-006 0.351752012109E-006 0.128361834838E-006
882 | -0.185091405566E-003 -0.102107611077E-003 -0.372612518411E-004 0.223451613315E+000 0.123269421166E+000
883 | 0.449836490925E-001 -0.184400594523E-004 -0.311755218560E-004 0.920115869547E-002 -0.494466744323E-004
884 | 0.947552502677E-005 0.361965312544E-004 -0.380528212400E-004 -0.637624107008E-006 -0.351752012109E-006
885 | -0.128361834838E-006 -0.185091405566E-003 -0.102107611077E-003 -0.372612518411E-004 -0.223451613315E+000
886 | -0.123269421166E+000 -0.449836490925E-001 0.184400594523E-004 -0.311755218560E-004 -0.920115869547E-002
887 | -0.494466744323E-004 0.947552502677E-005 0.361965312544E-004 -0.380528212400E-004 0.637624107008E-006
888 | 0.351752012109E-006 0.128361834838E-006 -0.185091405566E-003 -0.102107611077E-003 -0.372612518411E-004
889 | -0.223451613315E+000 -0.123269421166E+000 -0.449836490925E-001 -0.184400594523E-004 -0.311755218560E-004
890 | -0.920115869547E-002 0.494466744323E-004 -0.947552502677E-005 -0.361965312544E-004 0.380528212400E-004
891 | -0.637624107008E-006 -0.351752012109E-006 -0.128361834838E-006 -0.185091405566E-003 -0.102107611077E-003
892 | -0.372612518411E-004 0.223451613315E+000 0.123269421166E+000 0.449836490925E-001 0.184400594523E-004
893 | -0.311755218560E-004 0.920115869547E-002 0.159328661481E-005 0.223825604944E-005 0.660854014882E-005
894 | -0.159328661481E-005 -0.223825604944E-005 -0.660854014882E-005 0.799137697689E-006 0.112263215517E-005
895 | 0.330228438457E-005 -0.799137697689E-006 -0.112263215517E-005 -0.330228438457E-005 -0.799137697689E-006
896 | -0.112263215517E-005 -0.330228438457E-005 0.799137697689E-006 0.112263215517E-005 0.330228438457E-005
897 |
898 | # The total energy of the molecule.
899 | # For HF and KSDFT, this is the SCF energy.
900 | # For MP2, this is the MP2 total energy.
901 | # For CCSD, this is the CCSD total energy.
902 | # etc.
903 |
904 | 0.000000000000E+000
905 |
906 |
907 | 0.200000000000E+001
908 |
909 |
--------------------------------------------------------------------------------
/examples/ECP/readme.txt:
--------------------------------------------------------------------------------
1 | AIM anamysis may require the values in and at the end of the wfx file. In this case you have to correct them manually.
--------------------------------------------------------------------------------
/examples/EDF_by_denfit/molpro.inp:
--------------------------------------------------------------------------------
1 | ***,test,Re by SA-CASSCF
2 | memory,2000,m
3 |
4 | basis={
5 | ! Dyall-CV4Z(-h,-i)
6 | s,Ta,6.46385144E+07,1.71916595E+07,5.88214532E+06,2.23869723E+06,9.31099859E+05,4.08823719E+05,1.87647550E+05,8.88730822E+04,4.32192700E+04,2.14669285E+04,1.08634210E+04,5.59608167E+03,2.93735610E+03,1.57266245E+03,8.58892974E+02,4.78700858E+02,2.75744481E+02,1.69644659E+02,1.12619616E+02,7.23711811E+01,4.23258981E+01,2.65784338E+01,1.62117991E+01,9.74288796E+00,5.69276856E+00,3.29667556E+00,1.91103368E+00,1.12477953E+00,6.36222297E-01,3.62301733E-01,1.66672325E-01,8.67249502E-02,4.43398765E-02,2.24035067E-02
7 | p,Ta,5.24198487E+07,1.42853500E+07,4.31271182E+06,1.41630092E+06,4.97328186E+05,1.84880539E+05,7.23019947E+04,2.96640239E+04,1.27643852E+04,5.76082521E+03,2.72231461E+03,1.34165997E+03,6.85970856E+02,3.61453081E+02,1.95273960E+02,1.07353356E+02,5.97242734E+01,3.39134522E+01,1.95292677E+01,1.12013657E+01,6.29264213E+00,3.51302307E+00,1.90272035E+00,1.02035646E+00,5.42902096E-01,2.84977375E-01,1.34193668E-01,6.50965584E-02,3.16364891E-02,1.52903935E-02
8 | d,Ta,5.04097355E+04,1.22218895E+04,4.11633386E+03,1.65598548E+03,7.47180486E+02,3.64595958E+02,1.87729409E+02,1.00594304E+02,5.52136661E+01,3.08857660E+01,1.73431087E+01,9.60733626E+00,5.23559956E+00,2.78559585E+00,1.41349213E+00,6.79755650E-01,3.12990645E-01,1.37174441E-01,5.62470701E-02
9 | f,Ta,1.08692115E+03,3.70925027E+02,1.58358121E+02,7.59840923E+01,3.86126124E+01,2.03372624E+01,1.08120567E+01,5.62620014E+00,2.78973557E+00,1.26379058E+00,4.91405599E-01,1.84086491E-01,6.89610290E-02
10 | g,Ta,2.20235480E+01,7.91606910E+00,2.80884600E+00,1.65976290E+00,9.80763241E-01,3.20686438E-01,1.04856900E-01
11 | }
12 |
13 | geometry={
14 | Ta
15 | }
16 |
17 | ! sf-X2C
18 | SET,DKHO=101
19 |
20 | {hf;
21 | occ,9,6,6,2,6,2,2,1;wf,68,1,0;}
22 |
23 | {multi; ! N_core=68
24 | frozen,0;closed,9,6,6,2,6,2,2,1;occ,12,6,6,3,6,3,3,1;
25 | wf,73,1,3;state,1; ! Ta: 4F
26 | wf,73,4,3;state,2;
27 | wf,73,6,3;state,2;
28 | wf,73,7,3;state,2;
29 | }
30 | put,molden,4F.molden;
31 | ---
32 |
--------------------------------------------------------------------------------
/examples/EDF_by_denfit/readme.txt:
--------------------------------------------------------------------------------
1 | This example shows how to generate EDF for atomic core densities.
2 |
3 | 1. Do an atomic all-electron quantum chemistry calculation (HF/DFT/MCSCF), and generate a molden/fchk file.
4 |
5 | 2. Edit the molden/fchk file, and delete all the valence orbitals (or setup their Occup = 0).
6 |
7 | 3. Open the molden/fchk file using MultiWFN, and save radial density into a data file:
8 |
9 | 3/1/2/
10 | 0 0 0 0 0 5
11 | 2
12 |
13 | 3000 points will be generated by default. Increase num1Dpoints in settings.ini for more points and num1Dpoints
14 | > 10000 is suggested for better accuracy.
15 |
16 | 4. Do fitting by denfit. An input file should be prepared (Re68.dat in this example).
17 |
18 | denfit.exe < Re68.dat > results.txt
19 |
20 |
--------------------------------------------------------------------------------
/examples/EDF_by_denfit/results.txt:
--------------------------------------------------------------------------------
1 |
2 |
3 | =========================================
4 | ========== Results of DenFit ==========
5 | =========================================
6 |
7 |
8 | Type of functions: 4
9 | Even-tempered universal Gaussian exponents
10 | Alpha_i = 0.001 * 1.65^(i-1)
11 | ~ exp[a + b * (i - 1)], a=-6.907755, b=0.500775
12 | Reference:
13 | M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004).
14 |
15 |
16 | Starting #S-Fun = 60
17 |
18 | R0 = 0.16667D-02, Rho0 = 0.64683428797000D+06
19 |
20 | Integrated Ncore: 67.9977631708
21 | Delete the first 21 redundant functions with min[dRho0] = 0.24710153849593D+04
22 | Redundant function found! Delete function- 39 with alpha = 0.10000000000000D-02
23 | Redundant function found! Delete function- 38 with alpha = 0.16500000000000D-02
24 | Redundant function found! Delete function- 37 with alpha = 0.27225000000000D-02
25 | Redundant function found! Delete function- 36 with alpha = 0.44921250000000D-02
26 | Redundant function found! Delete function- 35 with alpha = 0.74120062500000D-02
27 | Redundant function found! Delete function- 34 with alpha = 0.12229810312500D-01
28 | Redundant function found! Delete function- 33 with alpha = 0.20179187015625D-01
29 | Redundant function found! Delete function- 32 with alpha = 0.33295658575781D-01
30 | Redundant function found! Delete function- 31 with alpha = 0.54937836650039D-01
31 |
32 | Fitting finished successfully with
33 | Ncore(analytic) = 68.0000000000 and dRho0 = 0.16656801430118D+04
34 |
35 |
36 | Final results:
37 |
38 | Element= 73
39 | Ncore = 68
40 | #S-Fun = 30
41 |
42 | Alpha Coefficient
43 |
44 | 0.18381878031797E+06 0.56556859649690E+06
45 | 0.11140532140483E+06 -0.29192035175114E+06
46 | 0.67518376608988E+05 0.35922334594210E+06
47 | 0.40920228247872E+05 -0.71539098922451E+05
48 | 0.24800138332043E+05 0.16284181824038E+06
49 | 0.15030386867905E+05 0.11683205954136E+05
50 | 0.91093253744880E+04 0.76639474514726E+05
51 | 0.55208032572654E+04 0.16205139200697E+05
52 | 0.33459413680397E+04 0.24633746254181E+05
53 | 0.20278432533574E+04 -0.23681157856714E+04
54 | 0.12289959111257E+04 0.43063586361962E+03
55 | 0.74484600674283E+03 -0.76666991370152E+03
56 | 0.45142182226838E+03 0.68224420124322E+04
57 | 0.27358898319296E+03 0.39277688499730E+04
58 | 0.16581150496543E+03 -0.99770628416642E+03
59 | 0.10049182119117E+03 -0.14112541763455E+04
60 | 0.60904134055255E+02 0.18494572868126E+04
61 | 0.36911596397124E+02 0.48508903183865E+03
62 | 0.22370664483105E+02 -0.40902360378207E+03
63 | 0.13557978474609E+02 0.69654637186257E+02
64 | 0.82169566512784E+01 0.10492042805017E+03
65 | 0.49799737280475E+01 0.11773358423183E+02
66 | 0.30181658957864E+01 0.82493670494827E+00
67 | 0.18291914519917E+01 0.34728439729939E+01
68 | 0.11086008799950E+01 0.14513997551898E+01
69 | 0.67187932120909E+00 0.16645656482475E+00
70 | 0.40719958861157E+00 0.95757568415410E-02
71 | 0.24678762946156E+00 -0.47195179600405E-03
72 | 0.14956826027973E+00 0.22462921777080E-03
73 | 0.90647430472564E-01 -0.25225307819009E-04
74 |
--------------------------------------------------------------------------------
/examples/H2O_MRCI-molpro/molpro.inp:
--------------------------------------------------------------------------------
1 | ***, MR-CI for H2O
2 |
3 | r=0.957 angstrom
4 | theta=104.6 degree
5 |
6 | geometry={
7 | O;
8 | H1,O,r;
9 | H2,O,r,H1,theta}
10 |
11 | basis=cc-pvdz
12 |
13 | {hf;wf,10,1;}
14 |
15 | {multi;
16 | occ,4,1,2;closed,2;frozen,1;
17 | wf,10,1,0;}
18 |
19 | {ci;
20 | occ,4,1,2;closed,2;core,1;
21 | wf,10,1,0;
22 | natorb,2352.2;dm,2352.2;
23 | }
24 |
25 | put,molden,molpro.mol;orb,2352.2;
26 |
27 | ---
28 |
29 |
--------------------------------------------------------------------------------
/examples/H2O_MRCI-molpro/molpro.mol:
--------------------------------------------------------------------------------
1 | [Molden Format]
2 | [Molpro variables]
3 | NUMVAR= 527.0000000000000000
4 | PATCHLEVEL= 52.0000000000000000
5 | EV= 0.0367493088676916
6 | KJOULE= 0.0003808798324129
7 | KJOULE/MOL= 0.0003808798324129
8 | CM= 0.0000045563352673
9 | CM-1= 0.0000045563352673
10 | KCAL= 0.0015936011178156
11 | KCAL/MOL= 0.0015936011178156
12 | KELVIN= 0.0000031668288611
13 | HERTZ= 0.0000000000000002
14 | HZ= 0.0000000000000002
15 | TOA= 0.5291772490000000
16 | TOANG= 0.5291772490000000
17 | TORAD= 0.0174532925199433
18 | TOCM= 219474.6306700000131968
19 | TODEBYE= 2.5415800000000002
20 | TOEV= 27.2113961000000018
21 | TOHERTZ= 6579683899900000.0000000000000000
22 | TOHZ= 6579683899900000.0000000000000000
23 | TOK= 315773.2999999999883585
24 | TOKCAL= 627.5095999999999776
25 | TOKELVIN= 315773.2999999999883585
26 | TOKJ= 2625.5000000000000000
27 | TOKJOULE= 2625.5000000000000000
28 | ANG= 1.8897259885789233
29 | ANGSTROM= 1.8897259885789233
30 | IGNORE_UNDEF= 2.0000000000000000
31 | STRICTCHECK= 0.0000000000000000
32 | SEW_ONEEL= 0.0000000000000000
33 | CPPDONE=FALSE
34 | DKROLL_DONE= 0.0000000000000000
35 | FOCKDONE= 0.0000000000000000
36 | GRADONE=FALSE
37 | HESSDONE=FALSE
38 | INTDONE=TRUE
39 | SCFDONE=TRUE
40 | MODUL_LCCSD=TRUE
41 | MODUL_COSMO=TRUE
42 | MODUL_VSCF=FALSE
43 | MODUL_CFIT=TRUE
44 | MODUL_MRCC=FALSE
45 | MODUL_CIDFT=FALSE
46 | MODUL_CC2=FALSE
47 | MRCC_EXEC=
48 | FITC_AO_SAVED=FALSE
49 | FITC_MO_SAVED=FALSE
50 | LSTYP=SEWARD
51 | INTYP=INTS
52 | GEOMTYP=ZMAT
53 | GRADTYP=ALASKA
54 | DIRECT=FALSE
55 | DKROLL=FALSE
56 | SYNCM= 0.0000000000000000
57 | DFTNAME= 0.0000000000000000
58 | DFTFUNC= 0.0000000000000000
59 | BASIS=CC-PVDZ
60 | BASISSETS=
61 | ZSIGNX=
62 | ZSIGNY=
63 | ZSIGNZ=
64 | CHARGE=
65 | SCFCHARGE=
66 | MCCHARGE=
67 | CICHARGE=
68 | CCCHARGE=
69 | NELEC= 10.0000000000000000
70 | SCFNELEC= 10.0000000000000000
71 | MCNELEC= 10.0000000000000000
72 | CINELEC= 10.0000000000000000
73 | CCNELEC= 10.0000000000000000
74 | SPIN= 0.0000000000000000
75 | SCFSPIN= 0.0000000000000000
76 | MCSPIN= 0.0000000000000000
77 | CISPIN= 0.0000000000000000
78 | CCSPIN= 0.0000000000000000
79 | STATE= 0.0000000000000000
80 | SCFSTATE= 0.0000000000000000
81 | MCSTATE= 0.0000000000000000
82 | CISTATE= 0.0000000000000000
83 | SYMMETRY= 0.0000000000000000
84 | SCFSYMMETRY= 0.0000000000000000
85 | MCSYMMETRY= 0.0000000000000000
86 | CISYMMETRY= 0.0000000000000000
87 | CCSYMMETRY= 0.0000000000000000
88 | SCFSYMM= 0.0000000000000000
89 | MCSYMM= 0.0000000000000000
90 | CISYMM= 0.0000000000000000
91 | CCSYMM= 0.0000000000000000
92 | SCFSYM= 0.0000000000000000
93 | MCSYM= 0.0000000000000000
94 | CISYM= 0.0000000000000000
95 | CCSYM= 0.0000000000000000
96 | ZSYMEL= 0.0000000000000000
97 | WEIGHT= 0.0000000000000000
98 | MCWEIGHT= 0.0000000000000000
99 | LQUANT= 0.0000000000000000
100 | MCLQUANT= 0.0000000000000000
101 | OPTCONV= 0.0000000000000000
102 | QSDSTEP= 0.0000000000000000
103 | QSDIRC= 0.0000000000000000
104 | PROGRAM=CI
105 | CPUSTEP= 0.1500000000000000
106 | SYSSTEP= 0.0500000000000000
107 | WALLSTEP= 0.2300000000000000
108 | !PERT= 0.2300000000000000
109 | !DFMP2= 0.0000000000000000
110 | !DFSCF= 0.0000000000000000
111 | !DFHFENERG= 0.0000000000000000
112 | !SCSGRD= 0.0000000000000000
113 | ATCHARGE= 0.0000000000000000
114 | BASINP= 610.0000000000000000
115 | CARTESIAN= 610.0000000000000000
116 | CFIT= 610.0000000000000000
117 | CFIT_FRED= 610.0000000000000000
118 | CFIT_FRED_THR= 610.0000000000000000
119 | CHII2= 610.0000000000000000
120 | CHIRS= 610.0000000000000000
121 | COEFF= 610.0000000000000000
122 | CPU2IDX_CFIT= 610.0000000000000000
123 | CPU3IDX_CFIT= 610.0000000000000000
124 | CPUASMBL_CFIT= 610.0000000000000000
125 | CPUBLAS1= 610.0000000000000000
126 | CPUBLAS2= 610.0000000000000000
127 | CPUBLAS3= 610.0000000000000000
128 | CPUINT_DTRAF= 610.0000000000000000
129 | CPUSOLVE_CFIT= 610.0000000000000000
130 | CPUTOT= 0.3500000000000000
131 | CPUTR1_CFIT= 0.3500000000000000
132 | CPUTR2_CFIT= 0.3500000000000000
133 | CPUINV_CFIT= 0.3500000000000000
134 | CPUFIT_CFIT= 0.3500000000000000
135 | CPUTRANS_CFIT= 0.3500000000000000
136 | CPUSCREEN_CFIT= 0.3500000000000000
137 | CPUTRANS_DTRAF= 0.3500000000000000
138 | CPUTRA_DTRAF= 0.3500000000000000
139 | DALTON= 0.3500000000000000
140 | DARW= 0.3500000000000000
141 | DECAY= 0.3500000000000000
142 | DELE_CFIT= 0.3500000000000000
143 | DELG_CFIT= 0.3500000000000000
144 | DELTA= 0.3500000000000000
145 | DFTEXFAC= 0.3500000000000000
146 | DFTFAC= 0.3500000000000000
147 | DFTFUN= 0.3500000000000000
148 | DFTFUNS= 0.3500000000000000
149 | DMEX= 0.3500000000000000
150 | DMEY= 0.3500000000000000
151 | DMEZ= 0.3500000000000000
152 | DMNX= 0.3500000000000000
153 | DMNY= 0.3500000000000000
154 | DMNZ= 0.3500000000000000
155 | DMSCF= 0.3500000000000000
156 | DMSCF_Efield= 0.3500000000000000
157 | DMSCF_I= 0.3500000000000000
158 | DMSCF_J= 0.3500000000000000
159 | DMSCF_K= 0.3500000000000000
160 | DMSCF_N1= 0.3500000000000000
161 | DMSCF_N2= 0.3500000000000000
162 | DMSCF_NUC= 0.3500000000000000
163 | DMSCF_T= 0.3500000000000000
164 | DMSCF_V= 0.3500000000000000
165 | DMX= 0.0000000000000000
166 | DMY= 0.0000000000000000
167 | DMZ= 0.7619365390389903
168 | DMZCOR= 0.7619365390389903
169 | DM_RHO1= 0.7619365390389903
170 | DM_RVAL= 0.7619365390389903
171 | DUMMYATOMS= 0.7619365390389903
172 | FREQUENCIES= 0.7619365390389903
173 | EDISP= 0.7619365390389903
174 | EEDISP= 0.7619365390389903
175 | EINTRA= 0.7619365390389903
176 | EIONIC= 0.7619365390389903
177 | EMP2= 0.7619365390389903
178 | EMP2_SING= 0.7619365390389903
179 | EMP2_TRIP= 0.7619365390389903
180 | EMP2_SCS= 0.7619365390389903
181 | ECSING= 0.7619365390389903
182 | ECTRIP= 0.7619365390389903
183 | EMP2_R12= 0.7619365390389903
184 | EMP2_R12A= 0.7619365390389903
185 | EMP2R12_2AD= 0.7619365390389903
186 | EMP2R12_2A= 0.7619365390389903
187 | EMP2R12_2AP= 0.7619365390389903
188 | EMP2R12_2SAD= 0.7619365390389903
189 | EMP2R12_2SA= 0.7619365390389903
190 | EMP2R12_2SAP= 0.7619365390389903
191 | EMP2_R12_DIAG= 0.7619365390389903
192 | EMP2_R12_STRONG= 0.7619365390389903
193 | EMP2_R12_CLOSE= 0.7619365390389903
194 | EMP2_R12_WEAK= 0.7619365390389903
195 | EMP2_R12_DIST= 0.7619365390389903
196 | EMP2R= 0.7619365390389903
197 | EMP3= 0.7619365390389903
198 | EMP3R= 0.7619365390389903
199 | EMP4= 0.7619365390389903
200 | ENERGC= 0.7619365390389903
201 | ENERGD= -76.2421911837620172
202 | ENERGP= -76.2407631511479735
203 | ENERGR= -76.0783435563409967
204 | ENERGRR= -76.0783435563409967
205 | ENERGS= -76.0783435563409967
206 | ENERGT= -76.0783435563409967
207 | ENERGU= -76.0783435563409967
208 | ENERGW= -76.0783435563409967
209 | ENERGY= -76.2361280644091153
210 | ENERGY_MP= -76.2361280644091153
211 | ENUC= 9.1966984075524536
212 | EPDIST= 9.1966984075524536
213 | EPDIST_R12= 9.1966984075524536
214 | EPSUM= 9.1966984075524536
215 | EPSUM_R12= 9.1966984075524536
216 | EPS1= 9.1966984075524536
217 | EPS2= 9.1966984075524536
218 | EPS3= 9.1966984075524536
219 | EPS4= 9.1966984075524536
220 | EPS5= 9.1966984075524536
221 | EPS6= 9.1966984075524536
222 | EPS7= 9.1966984075524536
223 | EPS8= 9.1966984075524536
224 | EREL= 9.1966984075524536
225 | FLOPBLAS1= 9.1966984075524536
226 | FLOPBLAS2= 9.1966984075524536
227 | FLOPBLAS3= 9.1966984075524536
228 | FLOPDGM= 9.1966984075524536
229 | FLOPDGV= 9.1966984075524536
230 | FLOPMXM= 9.1966984075524536
231 | FLOPMXV= 9.1966984075524536
232 | FREQSTEP= 9.1966984075524536
233 | !RS2GRSTATE= 9.1966984075524536
234 | !RS2GRSYM= 9.1966984075524536
235 | GRADENERG= 9.1966984075524536
236 | GRADEXFAC= 9999.0000000000000000
237 | GRADMETHOD=FALSE
238 | GRADRECORD=FALSE
239 | GRADX=FALSE
240 | GRADY=FALSE
241 | GRADZ=FALSE
242 | GRADVAR=FALSE
243 | GRID=FALSE
244 | GRID_FREEZE=FALSE
245 | !GRID_FREEZE= -1.0000000000000000
246 | GRID_WEIGHT_CUT= -1.0000000000000000
247 | GRID_BLOCKSIZE= -1.0000000000000000
248 | GRID_SPARSITY= -1.0000000000000000
249 | GRID_RMAX= -1.0000000000000000
250 | GTOTAL= -1.0000000000000000
251 | HDIA= -1.0000000000000000
252 | HDIACI= -1.0000000000000000
253 | HEAT= -1.0000000000000000
254 | HTOTAL= -1.0000000000000000
255 | INCR_CORR= -1.0000000000000000
256 | INCR_COUNT= -1.0000000000000000
257 | INCR_READY= -1.0000000000000000
258 | ISCHI= -1.0000000000000000
259 | ITERATIONS= 6.0000000000000000
260 | KFIT= 6.0000000000000000
261 | LASTNELEC= 6.0000000000000000
262 | LASTSPIN= 0.0000000000000000
263 | LASTSYM= 1.0000000000000000
264 | LL= 1.0000000000000000
265 | MASSV= 1.0000000000000000
266 | MIN_ITER= 1.0000000000000000
267 | MIXANG= 1.0000000000000000
268 | MIXANGCI= 1.0000000000000000
269 | MPP_PROG= 1.0000000000000000
270 | MSENERGY= 1.0000000000000000
271 | NACME= 1.0000000000000000
272 | NBAS_CFIT= 1.0000000000000000
273 | NEWREC= 1.0000000000000000
274 | NGRID= 1.0000000000000000
275 | NPROC_MPP= 1.0000000000000000
276 | NPROC_SMP= 1.0000000000000000
277 | NUMSTEP= 0.0000000000000000
278 | OPNUC= 0.0000000000000000
279 | OPTCONVMX= 0.0000000000000000
280 | OPTCONVRMS= 0.0000000000000000
281 | OPTGRAD= 0.0000000000000000
282 | OPTGRADMX= 0.0000000000000000
283 | OPTGRADRMS= 0.0000000000000000
284 | OPTRMSMAX= 0.0000000000000000
285 | OPTSTEP= 0.0000000000000000
286 | ORBITAL= 2140.1999999999998181
287 | PAOINT_CFIT= 2140.1999999999998181
288 | PENALTY= 2140.1999999999998181
289 | PH1INT_CFIT= 2140.1999999999998181
290 | PH1VEC_CFIT= 2140.1999999999998181
291 | PH2INT_CFIT= 2140.1999999999998181
292 | PHASE= 2140.1999999999998181
293 | PI= 3.1415926535897931
294 | PMOINT_CFIT= 3.1415926535897931
295 | PMOVEC_CFIT= 3.1415926535897931
296 | POISSON_ECORR= 3.1415926535897931
297 | POISSON_ERROR= 3.1415926535897931
298 | POLXX= 3.1415926535897931
299 | POLXY= 3.1415926535897931
300 | POLXZ= 3.1415926535897931
301 | POLYY= 3.1415926535897931
302 | POLYZ= 3.1415926535897931
303 | POLZZ= 3.1415926535897931
304 | POLYX= 3.1415926535897931
305 | POLZX= 3.1415926535897931
306 | POLZY= 3.1415926535897931
307 | POVINT_CFIT= 3.1415926535897931
308 | ROOT= 3.1415926535897931
309 | RPDIST= 3.1415926535897931
310 | RPMIN= 3.1415926535897931
311 | RPMAX= 3.1415926535897931
312 | EPCON= 3.1415926535897931
313 | EPDIAG= 3.1415926535897931
314 | !MCACT= 2.0000000000000000
315 | !MCCLOSED= 1.0000000000000000
316 | !MCFREEZE= 1.0000000000000000
317 | !MCMS2= 0.0000000000000000
318 | !MCNEL= 6.0000000000000000
319 | !MCNSTSYM= 1.0000000000000000
320 | !MCSTATE= 1.0000000000000000
321 | !MCSYM= 1.0000000000000000
322 | !MCWEIGHT= 1.0000000000000000
323 | SEIG_MIN= 0.0176129552567141
324 | SEWPROP= 1.0000000000000000
325 | SMAT= 1.0000000000000000
326 | SMATCI= 1.0000000000000000
327 | STATUS= 1.0000000000000000
328 | SYSBLAS1= 1.0000000000000000
329 | SYSBLAS2= 1.0000000000000000
330 | SYSBLAS3= 1.0000000000000000
331 | SYSTEM_RC= 1.0000000000000000
332 | SYSTOT= 0.1100000000000000
333 | T1DIAG= 0.1100000000000000
334 | D1DIAG= 0.1100000000000000
335 | TASK= 0.1100000000000000
336 | TROV= 0.1100000000000000
337 | HMAT= 0.1100000000000000
338 | UMAT= 0.1100000000000000
339 | UMATCI= 0.1100000000000000
340 | VERSION= 2006001.0000000000000000
341 | WALLBLAS1= 2006001.0000000000000000
342 | WALLBLAS2= 2006001.0000000000000000
343 | WALLBLAS3= 2006001.0000000000000000
344 | WALLTOT= 0.4900000000000000
345 | ZPE= 0.4900000000000000
346 | !DFBASIS_COUL= 0.4900000000000000
347 | !DFBASIS_EXCH= 0.4900000000000000
348 | !DFBASIS_MP2= 0.4900000000000000
349 | !DFBASIS_CCSD= 0.4900000000000000
350 | !RIBASIS_MP2= 0.4900000000000000
351 | MODULE_ALMLOF= 0.4900000000000000
352 | MODULE_BENCH= 0.4900000000000000
353 | MODULE_CFIT= 0.4900000000000000
354 | MODULE_DEVELOP= 0.4900000000000000
355 | MODULE_DIRECT= 0.4900000000000000
356 | MODULE_DMSCF= 0.4900000000000000
357 | MODULE_DOC= 0.4900000000000000
358 | MODULE_DOCDEV= 0.4900000000000000
359 | MODULE_LCCSD= 0.4900000000000000
360 | MODULE_LOCAL= 0.4900000000000000
361 | MODULE_LX= 0.4900000000000000
362 | MODULE_MPP= 0.4900000000000000
363 | MODULE_COSMO= 0.4900000000000000
364 | MODULE_DFIT= 0.4900000000000000
365 | MODULE_EXPLICIT= 0.4900000000000000
366 | MODULE_VSCF= 0.4900000000000000
367 | MODULE_MRCC= 0.4900000000000000
368 | MODULE_CIDFT= 0.4900000000000000
369 | MODULE_CC2= 0.4900000000000000
370 | MODULE_SLATER= 0.4900000000000000
371 | MODULE_GCC= 0.4900000000000000
372 | DATE= 29-Dec-08
373 | LASTORB=MCSCF
374 | MACHINE=Linux-2.6.20-1.2948.fc6/elrond.cm.utexas.edu(x86_64) 64 bit mpp version (ifort9.1)
375 | METHODC=
376 | METHODT=
377 | OUTPUT=/home/zouwl/molpro/molpro.out
378 | PGROUP=C2v
379 | SEMI=
380 | TIME=11:54:35
381 | VDIAG=
382 | UDIAG=
383 | !AOINTADDSC=
384 | TRANSFORM_FORCE=
385 | SOLVE_ITER=
386 | VSCF_FREQ=
387 | VCI_FREQ=
388 | !SURFREC= 0.0000000000000000
389 | !VSCFREC= 0.0000000000000000
390 | !VCIREC= 0.0000000000000000
391 | !SCFORB= 21002.0000000000000000
392 | !CIOCC= 4.0000000000000000
393 | !CICORE= 1.0000000000000000
394 | !CICLOS= 2.0000000000000000
395 | !UNO_OCC= 2.0000000000000000
396 | !UNO_CLOSED= 2.0000000000000000
397 | !CINSTSYM= 2.0000000000000000
398 | !CIISTSYM= 1.0000000000000000
399 | !CIISTMS2= 0.0000000000000000
400 | !CIISTNEL= 8.0000000000000000
401 | !CIMS2= 8.0000000000000000
402 | !NEWMOL= -1.0000000000000000
403 | !NEWSYM= -1.0000000000000000
404 | !NEWORIENT= -1.0000000000000000
405 | SLFILES=slscratch
406 | NGSSTO= 9.0000000000000000
407 | SIN=SIN
408 | COS=COS
409 | TAN=TAN
410 | ACOS=ACOS
411 | ASIN=ASIN
412 | ATAN=ATAN
413 | COSH=COSH
414 | SINH=SINH
415 | TANH=TANH
416 | ABS=ABS
417 | MOD=MOD
418 | ERF=ERF
419 | REFC=REFC
420 | ERFC=ERFC
421 | HYPOT=HYPOT
422 | J0=J0
423 | J1=J1
424 | JN=JN
425 | GAMMA=GAMMA
426 | LGAMMA=LGAMMA
427 | Y0=Y0
428 | Y1=Y1
429 | YN=YN
430 | EXP=EXP
431 | LOG=LOG
432 | LOG10=LOG10
433 | SQRT=SQRT
434 | INT=INT
435 | NINT=NINT
436 | MAX=MAX
437 | MIN=MIN
438 | COSMO= 0.0000000000000000
439 | COSMOIT= 0.0000000000000000
440 | COSMOES= 0.0000000000000000
441 | COSMOEDS= 0.0000000000000000
442 | COSMOEC= 0.0000000000000000
443 | COSMOEDCORR= 0.0000000000000000
444 | FEPSI= 1.0000000000000000
445 | SL_NSYM= 4.0000000000000000
446 | SL_System_BitSwi= 32.0000000000000000
447 | SL_Unique_atoms= 2.0000000000000000
448 | SL_Last_energy= 2.0000000000000000
449 | SL_GRAD= 0.0000000000000000
450 | SL_MAXUPD_Hessia= 5.0000000000000000
451 | SL_N_PRINT_CODES= 5.0000000000000000
452 | SL_PRINT_CODES= 0.0000000000000000
453 | SL_BasType= 0.0000000000000000
454 | SL_Energy_Pred= 0.0000000000000000
455 | SL_New_Coords= 0.0000000000000000
456 | SL_Total_Nuclear= 0.0000000000000000
457 | SL_Highest_Mltpl= 1.0000000000000000
458 | SCFOCC= 1.0000000000000000
459 | SCFCLOSED= 1.0000000000000000
460 | SCFCORE= 1.0000000000000000
461 | MCOCC= 1.0000000000000000
462 | MCCLOSED= 1.0000000000000000
463 | MCFROZEN= 1.0000000000000000
464 | MCCORE= 1.0000000000000000
465 | CIOCC= 1.0000000000000000
466 | CICLOSED= 1.0000000000000000
467 | CICORE= 1.0000000000000000
468 | CCOCC= 1.0000000000000000
469 | CCCLOSED= 1.0000000000000000
470 | CCCORE= 1.0000000000000000
471 | SRXC= 1.0000000000000000
472 | SRC= 1.0000000000000000
473 | SRX= 1.0000000000000000
474 | SRH= 1.0000000000000000
475 | E_EXCHANGE= 1.0000000000000000
476 | !LATTICE= -1.0000000000000000
477 | !NEWLATTICE= 0.0000000000000000
478 | !LATGRAD_VAR=FALSE
479 | !SEW_LATTICE= 1.0000000000000000
480 | LATGRADX= 1.0000000000000000
481 | LATGRADY= 1.0000000000000000
482 | LATGRADZ= 1.0000000000000000
483 | !SCALTABINIT= 1.0000000000000000
484 | !LOCAL= 0.0000000000000000
485 | !SAVEOCC= 0.0000000000000000
486 | !SAVEDOM= -1.0000000000000000
487 | !RESTDOM= -1.0000000000000000
488 | !SAVEDOM_HF= -1.0000000000000000
489 | !RESTDOM_HF= -1.0000000000000000
490 | !HESSREC= 0.0000000000000000
491 | !FREQREC= 0.0000000000000000
492 | !NMODREC= 0.0000000000000000
493 | !GTASKS= 0.0000000000000000
494 | !HTASKS= 0.0000000000000000
495 | !THRCHG= 0.1000000000000000
496 | !DEBUG= -1.0000000000000000
497 | !CFIT_CPHF= 0.0000000000000000
498 | !RDOMAUX_CPHF= 3.0000000000000000
499 | !THRAO_CPHF= 0.0000000100000000
500 | !THRMO_CPHF= 0.0000000100000000
501 | !THROV_CPHF= 0.0000000001000000
502 | !THRSW_CPHF= 0.0000000001000000
503 | !THRPROD_CPHF= 0.0000000100000000
504 | !THRAOPR_CPHF= 0.0000000000010000
505 | !CFIT_SCFGRD= 0.0000000000000000
506 | !RDOMAUX_SCFGRD= 5.0000000000000000
507 | !THRAO_SCFGRD= 0.0000000100000000
508 | !THRMO_SCFGRD= 0.0000000100000000
509 | !THROV_SCFGRD= 0.0000000001000000
510 | !THRSW_SCFGRD= 0.0000000001000000
511 | !THRPROD_SCFGRD= 0.0000000100000000
512 | !THRAOPR_SCFGRD= 0.0000000000010000
513 | !LOCFIT_SCF= 0.0000000000000000
514 | !LOCFIT_MP2= -1.0000000000000000
515 | RIDOM= 0.0000000000000000
516 | FCI_METHOD= 0.0000000000000000
517 | !CC2_METHOD= 0.0000000000000000
518 | BASIS2006=FALSE
519 | R= 0.9570000000000000
520 | THETA= 104.5999999999999943
521 | GX1= 0.0000000000000000
522 | GY1= 0.0000000000000000
523 | GZ1= -0.1237513936218405
524 | GX2= 0.0000000000000000
525 | GY2= 1.4309022590838707
526 | GZ2= 0.9821755496920821
527 | GX3= 0.0000000000000000
528 | GY3= -1.4309022590838705
529 | GZ3= 0.9821755496920822
530 | [Atoms] Angs
531 | O 1 8 0.0000000000 0.0000000000 -0.0654864220
532 | H 2 1 0.0000000000 0.7572009210 0.5197449554
533 | H 3 1 0.0000000000 -0.7572009210 0.5197449554
534 | [GTO]
535 | 1 0
536 | s 9 1.00
537 | 0.1172000000D+05 0.7100002503D-03
538 | 0.1759000000D+04 0.5470001928D-02
539 | 0.4008000000D+03 0.2783700981D-01
540 | 0.1137000000D+03 0.1048000369D+00
541 | 0.3703000000D+02 0.2830620998D+00
542 | 0.1327000000D+02 0.4487191582D+00
543 | 0.5025000000D+01 0.2709520955D+00
544 | 0.1013000000D+01 0.1545800545D-01
545 | 0.3023000000D+00 -0.2585000911D-02
546 | s 9 1.00
547 | 0.1172000000D+05 -0.1600000154D-03
548 | 0.1759000000D+04 -0.1263000121D-02
549 | 0.4008000000D+03 -0.6267000602D-02
550 | 0.1137000000D+03 -0.2571600247D-01
551 | 0.3703000000D+02 -0.7092400682D-01
552 | 0.1327000000D+02 -0.1654110159D+00
553 | 0.5025000000D+01 -0.1169550112D+00
554 | 0.1013000000D+01 0.5573680536D+00
555 | 0.3023000000D+00 0.5727590551D+00
556 | s 9 1.00
557 | 0.1172000000D+05 0.0000000000D+00
558 | 0.1759000000D+04 0.0000000000D+00
559 | 0.4008000000D+03 0.0000000000D+00
560 | 0.1137000000D+03 0.0000000000D+00
561 | 0.3703000000D+02 0.0000000000D+00
562 | 0.1327000000D+02 0.0000000000D+00
563 | 0.5025000000D+01 0.0000000000D+00
564 | 0.1013000000D+01 0.0000000000D+00
565 | 0.3023000000D+00 0.1000000000D+01
566 | p 4 1.00
567 | 0.1770000000D+02 0.4301799242D-01
568 | 0.3854000000D+01 0.2289129597D+00
569 | 0.1046000000D+01 0.5087279104D+00
570 | 0.2753000000D+00 0.4605309189D+00
571 | p 4 1.00
572 | 0.1770000000D+02 0.0000000000D+00
573 | 0.3854000000D+01 0.0000000000D+00
574 | 0.1046000000D+01 0.0000000000D+00
575 | 0.2753000000D+00 0.1000000000D+01
576 | d 1 1.00
577 | 0.1185000000D+01 0.1000000000D+01
578 |
579 | 2 0
580 | s 4 1.00
581 | 0.1301000000D+02 0.1968498999D-01
582 | 0.1962000000D+01 0.1379769298D+00
583 | 0.4446000000D+00 0.4781477569D+00
584 | 0.1220000000D+00 0.5012397451D+00
585 | s 4 1.00
586 | 0.1301000000D+02 0.0000000000D+00
587 | 0.1962000000D+01 0.0000000000D+00
588 | 0.4446000000D+00 0.0000000000D+00
589 | 0.1220000000D+00 0.1000000000D+01
590 | p 1 1.00
591 | 0.7270000000D+00 0.1000000000D+01
592 |
593 | 3 0
594 | s 4 1.00
595 | 0.1301000000D+02 0.1968498999D-01
596 | 0.1962000000D+01 0.1379769298D+00
597 | 0.4446000000D+00 0.4781477569D+00
598 | 0.1220000000D+00 0.5012397451D+00
599 | s 4 1.00
600 | 0.1301000000D+02 0.0000000000D+00
601 | 0.1962000000D+01 0.0000000000D+00
602 | 0.4446000000D+00 0.0000000000D+00
603 | 0.1220000000D+00 0.1000000000D+01
604 | p 1 1.00
605 | 0.7270000000D+00 0.1000000000D+01
606 |
607 |
608 | [MO]
609 | Ene= 0.0000
610 | Spin= Alpha
611 | Occup= 2.000000
612 | 1 1.00040110607
613 | 2 0.00231460527
614 | 3 -0.00140375111
615 | 4 0.00000000000
616 | 5 0.00000000000
617 | 6 0.00256870134
618 | 7 0.00000000000
619 | 8 0.00000000000
620 | 9 -0.00166567639
621 | 10 -0.00012612809
622 | 11 0.00011545875
623 | 12 0.00001066935
624 | 13 0.00000000000
625 | 14 0.00000000000
626 | 15 0.00000000000
627 | 16 -0.00041425544
628 | 17 0.00062912355
629 | 18 0.00000000000
630 | 19 0.00057299943
631 | 20 0.00048231923
632 | 21 -0.00041425544
633 | 22 0.00062912355
634 | 23 0.00000000000
635 | 24 -0.00057299943
636 | 25 0.00048231923
637 | Ene= 0.0000
638 | Spin= Alpha
639 | Occup= 1.985451
640 | 1 -0.00748999660
641 | 2 0.92302529914
642 | 3 -0.05983877132
643 | 4 0.00000000000
644 | 5 0.00000000000
645 | 6 -0.15923061273
646 | 7 0.00000000000
647 | 8 0.00000000000
648 | 9 -0.06821767881
649 | 10 0.00072593866
650 | 11 0.00431788983
651 | 12 -0.00504382849
652 | 13 0.00000000000
653 | 14 0.00000000000
654 | 15 0.00000000000
655 | 16 0.18930430434
656 | 17 -0.09756906236
657 | 18 0.00000000000
658 | 19 -0.02391449122
659 | 20 -0.02209703184
660 | 21 0.18930430434
661 | 22 -0.09756906236
662 | 23 0.00000000000
663 | 24 0.02391449122
664 | 25 -0.02209703184
665 | Ene= 0.0000
666 | Spin= Alpha
667 | Occup= 1.974396
668 | 1 0.00000000000
669 | 2 0.00000000000
670 | 3 0.00000000000
671 | 4 0.91593842394
672 | 5 0.00000000000
673 | 6 0.00000000000
674 | 7 0.07486857618
675 | 8 0.00000000000
676 | 9 0.00000000000
677 | 10 0.00000000000
678 | 11 0.00000000000
679 | 12 0.00000000000
680 | 13 0.00000000000
681 | 14 0.01846776688
682 | 15 0.00000000000
683 | 16 0.00000000000
684 | 17 0.00000000000
685 | 18 0.03302355512
686 | 19 0.00000000000
687 | 20 0.00000000000
688 | 21 0.00000000000
689 | 22 0.00000000000
690 | 23 0.03302355512
691 | 24 0.00000000000
692 | 25 0.00000000000
693 | Ene= 0.0000
694 | Spin= Alpha
695 | Occup= 1.966833
696 | 1 0.00152103038
697 | 2 0.02765323376
698 | 3 -0.22317487362
699 | 4 0.00000000000
700 | 5 0.00000000000
701 | 6 0.78917157568
702 | 7 0.00000000000
703 | 8 0.00000000000
704 | 9 -0.03120363905
705 | 10 -0.01291047839
706 | 11 -0.00458465321
707 | 12 0.01749513160
708 | 13 0.00000000000
709 | 14 0.00000000000
710 | 15 0.00000000000
711 | 16 0.44851421521
712 | 17 -0.17953533076
713 | 18 0.00000000000
714 | 19 -0.03955771330
715 | 20 0.00374537935
716 | 21 0.44851421521
717 | 22 -0.17953533076
718 | 23 0.00000000000
719 | 24 0.03955771330
720 | 25 0.00374537935
721 | Ene= 0.0000
722 | Spin= Alpha
723 | Occup= 1.964062
724 | 1 0.00000000000
725 | 2 0.00000000000
726 | 3 0.00000000000
727 | 4 0.00000000000
728 | 5 0.72320327446
729 | 6 0.00000000000
730 | 7 0.00000000000
731 | 8 -0.12242358152
732 | 9 0.00000000000
733 | 10 0.00000000000
734 | 11 0.00000000000
735 | 12 0.00000000000
736 | 13 0.00000000000
737 | 14 0.00000000000
738 | 15 0.02593370962
739 | 16 0.56196347435
740 | 17 -0.18544541772
741 | 18 0.00000000000
742 | 19 -0.01954390621
743 | 20 -0.03006749536
744 | 21 -0.56196347435
745 | 22 0.18544541772
746 | 23 0.00000000000
747 | 24 -0.01954390621
748 | 25 0.03006749536
749 | Ene= 0.0000
750 | Spin= Alpha
751 | Occup= 0.027164
752 | 1 0.00000000000
753 | 2 0.00000000000
754 | 3 0.00000000000
755 | 4 0.00000000000
756 | 5 -1.26881998486
757 | 6 0.00000000000
758 | 7 0.00000000000
759 | 8 0.52629021692
760 | 9 0.00000000000
761 | 10 0.00000000000
762 | 11 0.00000000000
763 | 12 0.00000000000
764 | 13 0.00000000000
765 | 14 0.00000000000
766 | 15 0.04812767427
767 | 16 0.98596219503
768 | 17 -0.31287733877
769 | 18 0.00000000000
770 | 19 -0.02455895885
771 | 20 -0.00430023340
772 | 21 -0.98596219503
773 | 22 0.31287733877
774 | 23 0.00000000000
775 | 24 -0.02455895885
776 | 25 0.00430023340
777 | Ene= 0.0000
778 | Spin= Alpha
779 | Occup= 0.025330
780 | 1 -0.10286370135
781 | 2 -0.81014480544
782 | 3 0.13697090956
783 | 4 0.00000000000
784 | 5 0.00000000000
785 | 6 -1.17249714400
786 | 7 0.00000000000
787 | 8 0.00000000000
788 | 9 0.69110903233
789 | 10 -0.04873442265
790 | 11 0.03940126361
791 | 12 0.00933315904
792 | 13 0.00000000000
793 | 14 0.00000000000
794 | 15 0.00000000000
795 | 16 0.94187270561
796 | 17 -0.36750956193
797 | 18 0.00000000000
798 | 19 -0.03484811669
799 | 20 0.01113794914
800 | 21 0.94187270561
801 | 22 -0.36750956193
802 | 23 0.00000000000
803 | 24 0.03484811669
804 | 25 0.01113794914
805 | Ene= 0.0000
806 | Spin= Alpha
807 | Occup= 0.015872
808 | 1 0.00000000000
809 | 2 0.00000000000
810 | 3 0.00000000000
811 | 4 -1.40686079438
812 | 5 0.00000000000
813 | 6 0.00000000000
814 | 7 1.59925448397
815 | 8 0.00000000000
816 | 9 0.00000000000
817 | 10 0.00000000000
818 | 11 0.00000000000
819 | 12 0.00000000000
820 | 13 0.00000000000
821 | 14 0.03951902589
822 | 15 0.00000000000
823 | 16 0.00000000000
824 | 17 0.00000000000
825 | 18 0.08662327605
826 | 19 0.00000000000
827 | 20 0.00000000000
828 | 21 0.00000000000
829 | 22 0.00000000000
830 | 23 0.08662327605
831 | 24 0.00000000000
832 | 25 0.00000000000
833 | Ene= 0.0000
834 | Spin= Alpha
835 | Occup= 0.010626
836 | 1 0.44327726751
837 | 2 2.25237869902
838 | 3 -2.17634060333
839 | 4 0.00000000000
840 | 5 0.00000000000
841 | 6 -0.74925355807
842 | 7 0.00000000000
843 | 8 0.00000000000
844 | 9 1.09106911521
845 | 10 0.08155617740
846 | 11 -0.13193212357
847 | 12 0.05037594617
848 | 13 0.00000000000
849 | 14 0.00000000000
850 | 15 0.00000000000
851 | 16 -0.37652445479
852 | 17 0.23785822644
853 | 18 0.00000000000
854 | 19 -0.01912655317
855 | 20 0.08928580047
856 | 21 -0.37652445479
857 | 22 0.23785822644
858 | 23 0.00000000000
859 | 24 0.01912655317
860 | 25 0.08928580047
861 | Ene= 0.0000
862 | Spin= Alpha
863 | Occup= 0.005573
864 | 1 0.00000000000
865 | 2 0.00000000000
866 | 3 0.00000000000
867 | 4 0.00000000000
868 | 5 -0.45891359399
869 | 6 0.00000000000
870 | 7 0.00000000000
871 | 8 1.00476844650
872 | 9 0.00000000000
873 | 10 0.00000000000
874 | 11 0.00000000000
875 | 12 0.00000000000
876 | 13 0.00000000000
877 | 14 0.00000000000
878 | 15 -0.60494182079
879 | 16 -0.69364171777
880 | 17 0.55084513122
881 | 18 0.00000000000
882 | 19 0.12505196237
883 | 20 -0.01695520373
884 | 21 0.69364171777
885 | 22 -0.55084513122
886 | 23 0.00000000000
887 | 24 0.12505196237
888 | 25 0.01695520373
889 | Ene= 0.0000
890 | Spin= Alpha
891 | Occup= 0.005350
892 | 1 -0.30169922002
893 | 2 -1.33830462160
894 | 3 1.85809515810
895 | 4 0.00000000000
896 | 5 0.00000000000
897 | 6 0.00151629869
898 | 7 0.00000000000
899 | 8 0.00000000000
900 | 9 0.19828823486
901 | 10 0.29413707416
902 | 11 -0.60694157754
903 | 12 0.31280450338
904 | 13 0.00000000000
905 | 14 0.00000000000
906 | 15 0.00000000000
907 | 16 -0.70886876926
908 | 17 0.42149967787
909 | 18 0.00000000000
910 | 19 -0.06362741399
911 | 20 0.23063292454
912 | 21 -0.70886876926
913 | 22 0.42149967787
914 | 23 0.00000000000
915 | 24 0.06362741399
916 | 25 0.23063292454
917 | Ene= 0.0000
918 | Spin= Alpha
919 | Occup= 0.004891
920 | 1 0.00000000000
921 | 2 0.00000000000
922 | 3 0.00000000000
923 | 4 0.00000000000
924 | 5 0.00000000000
925 | 6 0.00000000000
926 | 7 0.00000000000
927 | 8 0.00000000000
928 | 9 0.00000000000
929 | 10 0.00000000000
930 | 11 0.00000000000
931 | 12 0.00000000000
932 | 13 0.79447498467
933 | 14 0.00000000000
934 | 15 0.00000000000
935 | 16 0.00000000000
936 | 17 0.00000000000
937 | 18 0.27770027549
938 | 19 0.00000000000
939 | 20 0.00000000000
940 | 21 0.00000000000
941 | 22 0.00000000000
942 | 23 -0.27770027549
943 | 24 0.00000000000
944 | 25 0.00000000000
945 | Ene= 0.0000
946 | Spin= Alpha
947 | Occup= 0.004303
948 | 1 -0.11237987789
949 | 2 -0.46763981062
950 | 3 0.80291856932
951 | 4 0.00000000000
952 | 5 0.00000000000
953 | 6 -0.08272876756
954 | 7 0.00000000000
955 | 8 0.00000000000
956 | 9 0.50015141989
957 | 10 0.72546665754
958 | 11 0.00840131923
959 | 12 -0.73386797677
960 | 13 0.00000000000
961 | 14 0.00000000000
962 | 15 0.00000000000
963 | 16 -0.47349829654
964 | 17 0.28216551865
965 | 18 0.00000000000
966 | 19 0.17725505121
967 | 20 -0.09217546969
968 | 21 -0.47349829654
969 | 22 0.28216551865
970 | 23 0.00000000000
971 | 24 -0.17725505121
972 | 25 -0.09217546969
973 | Ene= 0.0000
974 | Spin= Alpha
975 | Occup= 0.004206
976 | 1 0.00000000000
977 | 2 0.00000000000
978 | 3 0.00000000000
979 | 4 0.09886215438
980 | 5 0.00000000000
981 | 6 0.00000000000
982 | 7 -0.32425788290
983 | 8 0.00000000000
984 | 9 0.00000000000
985 | 10 0.00000000000
986 | 11 0.00000000000
987 | 12 0.00000000000
988 | 13 0.00000000000
989 | 14 0.88690419998
990 | 15 0.00000000000
991 | 16 0.00000000000
992 | 17 0.00000000000
993 | 18 0.20389590860
994 | 19 0.00000000000
995 | 20 0.00000000000
996 | 21 0.00000000000
997 | 22 0.00000000000
998 | 23 0.20389590860
999 | 24 0.00000000000
1000 | 25 0.00000000000
1001 | Ene= 0.0000
1002 | Spin= Alpha
1003 | Occup= 0.001170
1004 | 1 0.00000000000
1005 | 2 0.00000000000
1006 | 3 0.00000000000
1007 | 4 0.00000000000
1008 | 5 0.67588962941
1009 | 6 0.00000000000
1010 | 7 0.00000000000
1011 | 8 -1.33830898299
1012 | 9 0.00000000000
1013 | 10 0.00000000000
1014 | 11 0.00000000000
1015 | 12 0.00000000000
1016 | 13 0.00000000000
1017 | 14 0.00000000000
1018 | 15 -0.70645508974
1019 | 16 1.13668245737
1020 | 17 -0.48653721382
1021 | 18 0.00000000000
1022 | 19 0.00237812717
1023 | 20 0.31651995151
1024 | 21 -1.13668245737
1025 | 22 0.48653721382
1026 | 23 0.00000000000
1027 | 24 0.00237812717
1028 | 25 -0.31651995151
1029 | Ene= 0.0000
1030 | Spin= Alpha
1031 | Occup= 0.001121
1032 | 1 0.36278002182
1033 | 2 1.39601894283
1034 | 3 -2.60096773538
1035 | 4 0.00000000000
1036 | 5 0.00000000000
1037 | 6 0.17616766760
1038 | 7 0.00000000000
1039 | 8 0.00000000000
1040 | 9 -1.13621063265
1041 | 10 0.64717357400
1042 | 11 -0.76417487516
1043 | 12 0.11700130116
1044 | 13 0.00000000000
1045 | 14 0.00000000000
1046 | 15 0.00000000000
1047 | 16 2.12500473919
1048 | 17 -1.21396844440
1049 | 18 0.00000000000
1050 | 19 -0.03653290230
1051 | 20 -0.13580019838
1052 | 21 2.12500473919
1053 | 22 -1.21396844440
1054 | 23 0.00000000000
1055 | 24 0.03653290230
1056 | 25 -0.13580019838
1057 | Ene= 0.0000
1058 | Spin= Alpha
1059 | Occup= 0.000731
1060 | 1 0.00000000000
1061 | 2 0.00000000000
1062 | 3 0.00000000000
1063 | 4 0.00000000000
1064 | 5 0.00000000000
1065 | 6 0.00000000000
1066 | 7 0.00000000000
1067 | 8 0.00000000000
1068 | 9 0.00000000000
1069 | 10 0.00000000000
1070 | 11 0.00000000000
1071 | 12 0.00000000000
1072 | 13 0.72344801826
1073 | 14 0.00000000000
1074 | 15 0.00000000000
1075 | 16 0.00000000000
1076 | 17 0.00000000000
1077 | 18 -0.72880299228
1078 | 19 0.00000000000
1079 | 20 0.00000000000
1080 | 21 0.00000000000
1081 | 22 0.00000000000
1082 | 23 0.72880299228
1083 | 24 0.00000000000
1084 | 25 0.00000000000
1085 | Ene= 0.0000
1086 | Spin= Alpha
1087 | Occup= 0.000684
1088 | 1 0.00000000000
1089 | 2 0.00000000000
1090 | 3 0.00000000000
1091 | 4 0.00000000000
1092 | 5 0.92358123964
1093 | 6 0.00000000000
1094 | 7 0.00000000000
1095 | 8 -0.11317887312
1096 | 9 0.00000000000
1097 | 10 0.00000000000
1098 | 11 0.00000000000
1099 | 12 0.00000000000
1100 | 13 0.00000000000
1101 | 14 0.00000000000
1102 | 15 0.76143007693
1103 | 16 -1.72821785885
1104 | 17 1.71622755052
1105 | 18 0.00000000000
1106 | 19 0.50893627017
1107 | 20 0.51736113129
1108 | 21 1.72821785885
1109 | 22 -1.71622755052
1110 | 23 0.00000000000
1111 | 24 0.50893627017
1112 | 25 -0.51736113129
1113 | Ene= 0.0000
1114 | Spin= Alpha
1115 | Occup= 0.000632
1116 | 1 0.31813482896
1117 | 2 1.47386112094
1118 | 3 -0.55697591803
1119 | 4 0.00000000000
1120 | 5 0.00000000000
1121 | 6 0.86725359802
1122 | 7 0.00000000000
1123 | 8 0.00000000000
1124 | 9 -0.27119166680
1125 | 10 -0.36853460060
1126 | 11 0.26700049557
1127 | 12 0.10153410503
1128 | 13 0.00000000000
1129 | 14 0.00000000000
1130 | 15 0.00000000000
1131 | 16 -1.26802971396
1132 | 17 1.03657899591
1133 | 18 0.00000000000
1134 | 19 0.70682513489
1135 | 20 0.48346553109
1136 | 21 -1.26802971396
1137 | 22 1.03657899591
1138 | 23 0.00000000000
1139 | 24 -0.70682513489
1140 | 25 0.48346553109
1141 | Ene= 0.0000
1142 | Spin= Alpha
1143 | Occup= 0.000536
1144 | 1 0.00000000000
1145 | 2 0.00000000000
1146 | 3 0.00000000000
1147 | 4 0.08649481710
1148 | 5 0.00000000000
1149 | 6 0.00000000000
1150 | 7 -0.79240641457
1151 | 8 0.00000000000
1152 | 9 0.00000000000
1153 | 10 0.00000000000
1154 | 11 0.00000000000
1155 | 12 0.00000000000
1156 | 13 0.00000000000
1157 | 14 -0.57019841781
1158 | 15 0.00000000000
1159 | 16 0.00000000000
1160 | 17 0.00000000000
1161 | 18 0.83570407867
1162 | 19 0.00000000000
1163 | 20 0.00000000000
1164 | 21 0.00000000000
1165 | 22 0.00000000000
1166 | 23 0.83570407867
1167 | 24 0.00000000000
1168 | 25 0.00000000000
1169 | Ene= 0.0000
1170 | Spin= Alpha
1171 | Occup= 0.000489
1172 | 1 -0.16781020174
1173 | 2 -0.62807251179
1174 | 3 1.18807880227
1175 | 4 0.00000000000
1176 | 5 0.00000000000
1177 | 6 -0.13488939532
1178 | 7 0.00000000000
1179 | 8 0.00000000000
1180 | 9 1.10189451741
1181 | 10 -0.23214976883
1182 | 11 -0.51283887729
1183 | 12 0.74498864611
1184 | 13 0.00000000000
1185 | 14 0.00000000000
1186 | 15 0.00000000000
1187 | 16 -0.97292601177
1188 | 17 0.51418134819
1189 | 18 0.00000000000
1190 | 19 0.49260008404
1191 | 20 -0.61241786272
1192 | 21 -0.97292601177
1193 | 22 0.51418134819
1194 | 23 0.00000000000
1195 | 24 -0.49260008404
1196 | 25 -0.61241786272
1197 | Ene= 0.0000
1198 | Spin= Alpha
1199 | Occup= 0.000487
1200 | 1 0.00000000000
1201 | 2 0.00000000000
1202 | 3 0.00000000000
1203 | 4 0.00000000000
1204 | 5 -0.39137771041
1205 | 6 0.00000000000
1206 | 7 0.00000000000
1207 | 8 1.23495089996
1208 | 9 0.00000000000
1209 | 10 0.00000000000
1210 | 11 0.00000000000
1211 | 12 0.00000000000
1212 | 13 0.00000000000
1213 | 14 0.00000000000
1214 | 15 0.00817278750
1215 | 16 -0.69870762442
1216 | 17 0.27474927998
1217 | 18 0.00000000000
1218 | 19 -0.62259204150
1219 | 20 0.51518842368
1220 | 21 0.69870762442
1221 | 22 -0.27474927998
1222 | 23 0.00000000000
1223 | 24 -0.62259204150
1224 | 25 -0.51518842368
1225 | Ene= 0.0000
1226 | Spin= Alpha
1227 | Occup= 0.000055
1228 | 1 0.32387011914
1229 | 2 1.09916558547
1230 | 3 -3.92197533570
1231 | 4 0.00000000000
1232 | 5 0.00000000000
1233 | 6 -0.36318566997
1234 | 7 0.00000000000
1235 | 8 0.00000000000
1236 | 9 -0.99964088574
1237 | 10 0.38945779723
1238 | 11 -0.31053285995
1239 | 12 -0.07892493728
1240 | 13 0.00000000000
1241 | 14 0.00000000000
1242 | 15 0.00000000000
1243 | 16 1.24037069697
1244 | 17 0.40548065484
1245 | 18 0.00000000000
1246 | 19 -0.79284765135
1247 | 20 -0.54691461087
1248 | 21 1.24037069697
1249 | 22 0.40548065484
1250 | 23 0.00000000000
1251 | 24 0.79284765135
1252 | 25 -0.54691461087
1253 | Ene= 0.0000
1254 | Spin= Alpha
1255 | Occup= 0.000038
1256 | 1 0.00000000000
1257 | 2 0.00000000000
1258 | 3 0.00000000000
1259 | 4 0.00000000000
1260 | 5 -0.36919646356
1261 | 6 0.00000000000
1262 | 7 0.00000000000
1263 | 8 -1.57331793911
1264 | 9 0.00000000000
1265 | 10 0.00000000000
1266 | 11 0.00000000000
1267 | 12 0.00000000000
1268 | 13 0.00000000000
1269 | 14 0.00000000000
1270 | 15 -0.58724066213
1271 | 16 0.94856493951
1272 | 17 1.14570322360
1273 | 18 0.00000000000
1274 | 19 -0.74196016995
1275 | 20 -0.67604243051
1276 | 21 -0.94856493951
1277 | 22 -1.14570322360
1278 | 23 0.00000000000
1279 | 24 -0.74196016995
1280 | 25 0.67604243051
1281 |
--------------------------------------------------------------------------------
/examples/HeCuF_RDFT-orca/test.inp:
--------------------------------------------------------------------------------
1 | ! RKS B3LYP/G 6-31g**
2 | * xyz 0 1
3 | CU 0.0 0.0 -0.3035456403
4 | F 0.0 0.0 1.4288489797
5 | HE 0.0 0.0 -1.9629084803
6 | *
7 |
8 |
--------------------------------------------------------------------------------
/examples/NWChem6.8/01.nw:
--------------------------------------------------------------------------------
1 | START dft
2 |
3 | geometry noautosym
4 | O 0. 0. 0.
5 | C 0. 0. 1.2
6 | end
7 |
8 | BASIS SPHERICAL
9 | * library aug-cc-pvqz
10 | END
11 |
12 | dft
13 | xc pbe0
14 | end
15 |
16 | property
17 | moldenfile
18 | molden_norm none
19 | end
20 |
21 | task scf property
22 |
23 |
--------------------------------------------------------------------------------
/examples/NWChem6.8/02.molden:
--------------------------------------------------------------------------------
1 | [Molden Format]
2 | [Atoms] AU
3 | H 1 1 0.0000000000 0.0000000000 -1.5306780507
4 | F 2 9 0.0000000000 0.0000000000 0.1700753390
5 | [GTO]
6 | 1 0
7 | s 3 0
8 | 3.4252509100 0.1543289707
9 | 0.6239137300 0.5353281424
10 | 0.1688554000 0.4446345420
11 |
12 | 2 0
13 | s 3 0
14 | 166.6791300000 0.1543289701
15 | 30.3608120000 0.5353281404
16 | 8.2168207000 0.4446345403
17 | s 3 0
18 | 6.4648032000 -0.0999672291
19 | 1.5022812000 0.3995128265
20 | 0.4885885000 0.7001154638
21 | p 3 0
22 | 6.4648032000 0.1559162698
23 | 1.5022812000 0.6076837191
24 | 0.4885885000 0.3919573894
25 |
26 | [MO]
27 | Sym= a1
28 | Ene= -0.23667231693452E+02
29 | Spin= Alpha
30 | Occup= 2.0000000000
31 | 1 -0.008004428194
32 | 2 0.993492086156
33 | 3 0.027842000907
34 | 4 -0.000000000000
35 | 5 0.000000000000
36 | 6 -0.003729385400
37 | Sym= a1
38 | Ene= -0.94258221948269E+00
39 | Spin= Alpha
40 | Occup= 2.0000000000
41 | 1 0.220972819700
42 | 2 -0.239980955107
43 | 3 0.871393846536
44 | 4 0.000000000000
45 | 5 -0.000000000000
46 | 6 -0.182541926793
47 | Sym= a1
48 | Ene= -0.28904760951063E+00
49 | Spin= Alpha
50 | Occup= 2.0000000000
51 | 1 -0.498236845497
52 | 2 -0.116467395992
53 | 3 0.558694105068
54 | 4 -0.000000000000
55 | 5 0.000000000000
56 | 6 0.682546829440
57 | Sym= e
58 | Ene= -0.80911695169312E-01
59 | Spin= Alpha
60 | Occup= 2.0000000000
61 | 1 0.000000000000
62 | 2 -0.000000000000
63 | 3 0.000000000000
64 | 4 0.955425579223
65 | 5 0.295232048678
66 | 6 -0.000000000000
67 | Sym= e
68 | Ene= -0.80911695169312E-01
69 | Spin= Alpha
70 | Occup= 2.0000000000
71 | 1 0.000000000000
72 | 2 -0.000000000000
73 | 3 0.000000000000
74 | 4 -0.295232048678
75 | 5 0.955425579223
76 | 6 -0.000000000000
77 | Sym= a1
78 | Ene= 0.34482791334051E+00
79 | Spin= Alpha
80 | Occup= 0.0000000000
81 | 1 1.105256301569
82 | 2 0.087226059266
83 | 3 -0.574862611619
84 | 4 0.000000000000
85 | 5 -0.000000000000
86 | 6 0.832002831025
87 |
--------------------------------------------------------------------------------
/examples/NWChem6.8/02.nw:
--------------------------------------------------------------------------------
1 | START test
2 |
3 | geometry
4 | H 0. 0. 0.
5 | F 0. 0. 0.9
6 | end
7 |
8 | BASIS
9 | * library sto-3g
10 | END
11 |
12 | dft
13 | molden
14 | end
15 |
16 | set molden:do_norm_janpa t
17 | task dft
18 |
19 |
--------------------------------------------------------------------------------
/examples/NWChem6.8/readme.txt:
--------------------------------------------------------------------------------
1 | MOLDEN_NORM JANPA or NONE has to be specified. Use 2 instead 1 if there are symmetries.
--------------------------------------------------------------------------------
/m2a-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/zorkzou/Molden2AIM/f6161cc7f61135a421f11293f053f9c7356cd147/m2a-logo.png
--------------------------------------------------------------------------------
/m2a-loop.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/zorkzou/Molden2AIM/f6161cc7f61135a421f11293f053f9c7356cd147/m2a-loop.png
--------------------------------------------------------------------------------
/util/aces2-patch/reorder.F:
--------------------------------------------------------------------------------
1 | Subroutine reorder(Vecin, Vecout, Iang, nao)
2 |
3 | Implicit Double Precision (A-H, O-Z)
4 | Double Precision Vecin(nao), Vecout(nao)
5 | Integer Iang(nao)
6 | c
7 | Call Dcopy(nao, Vecin, 1, Vecout, 1)
8 |
9 | index = 1
10 | Do while (index .lt. nao)
11 | If (iang(index) .Le. 1) then
12 | C
13 | c handle s and p functions (ie, do nothing)
14 | C
15 | index = index + 1
16 |
17 | Else if (iang(index) .eq. 2) Then
18 | c
19 | c handle d functions
20 | C
21 | vecout(index) = Vecin(index)
22 | vecout(index+1) = Vecin(index+3)
23 | vecout(index+2) = Vecin(index+5)
24 | vecout(index+3) = Vecin(index+1)
25 | c<<<
26 | vecout(index+4) = Vecin(index+2)
27 | vecout(index+5) = Vecin(index+4)
28 | c>>>
29 | index = index + 6
30 |
31 | Else if (iang(index) .EQ. 3) Then
32 | c
33 | c handle f functions
34 |
35 | vecout(index) = Vecin(index)
36 | vecout(index+1) = Vecin(index+6)
37 | vecout(index+2) = Vecin(index+9)
38 | vecout(index+3) = Vecin(index+3)
39 | vecout(index+4) = Vecin(index+1)
40 | vecout(index+5) = Vecin(index+2)
41 | vecout(index+6) = Vecin(index+5)
42 | vecout(index+7) = Vecin(index+8)
43 | vecout(index+8) = Vecin(index+7)
44 | vecout(index+9) = Vecin(index+4)
45 | Index = Index + 10
46 | c<<<
47 | Else if (iang(index) .EQ. 4) Then
48 | c
49 | c handle g functions
50 |
51 | vecout(index) = Vecin(index)
52 | vecout(index+1) = Vecin(index+10)
53 | vecout(index+2) = Vecin(index+14)
54 | vecout(index+3) = Vecin(index+1)
55 | vecout(index+4) = Vecin(index+2)
56 | vecout(index+5) = Vecin(index+6)
57 | vecout(index+6) = Vecin(index+11)
58 | vecout(index+7) = Vecin(index+9)
59 | vecout(index+8) = Vecin(index+13)
60 | vecout(index+9) = Vecin(index+3)
61 | vecout(index+10)= Vecin(index+5)
62 | vecout(index+11)= Vecin(index+12)
63 | vecout(index+12)= Vecin(index+4)
64 | vecout(index+13)= Vecin(index+7)
65 | vecout(index+14)= Vecin(index+8)
66 | Index = Index + 15
67 |
68 | Else if (iang(index) .gt. 4) Then
69 | Write(6, "(a,a,a)") " MOLDEN display of orbitals for",
70 | & " angluar momentum higher",
71 | & " than g functions are incorrect."
72 | c>>>
73 | Return
74 | Endif
75 | C
76 | Enddo
77 |
78 | Return
79 | End
80 |
--------------------------------------------------------------------------------
/util/cfour-v2-patch/reorderdf.f:
--------------------------------------------------------------------------------
1 | SUBROUTINE REORDERDF(VECIN,VECOUT,IANG,NBASX)
2 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
3 | DIMENSION VECIN(NBASX),VECOUT(NBASX),IANG(NBASX)
4 | CALL SCOPY(NBASX,VECIN,1,VECOUT,1)
5 | I=0
6 | 1 I=I+1
7 | IF(I.GT.NBASX)RETURN
8 | IF(IANG(I).LT.2.AND.I.LE.NBASX)GOTO 1
9 | IF(IANG(I).EQ.2)THEN
10 | CALL REORDERD(VECIN(I),VECOUT(I))
11 | I=I+5
12 | GOTO 1
13 | ELSEIF(IANG(I).EQ.3)THEN
14 | CALL REORDERF(VECIN(I),VECOUT(I))
15 | I=I+9
16 | GOTO 1
17 | c<<<
18 | ELSEIF(IANG(I).EQ.4)THEN
19 | CALL REORDERG(VECIN(I),VECOUT(I))
20 | I=I+14
21 | GOTO 1
22 | c>>>
23 | ENDIF
24 | RETURN
25 | END
26 | c<<<
27 | SUBROUTINE REORDERG(DIN,DOUT)
28 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
29 | DIMENSION DIN(15),DOUT(15)
30 | DOUT(1) =DIN( 1)
31 | DOUT(2) =DIN(11)
32 | DOUT(3) =DIN(15)
33 | DOUT(4) =DIN( 2)
34 | DOUT(5) =DIN( 3)
35 | DOUT(6) =DIN( 7)
36 | DOUT(7) =DIN(12)
37 | DOUT(8) =DIN(10)
38 | DOUT(9) =DIN(14)
39 | DOUT(10)=DIN( 4)
40 | DOUT(11)=DIN( 6)
41 | DOUT(12)=DIN(13)
42 | DOUT(13)=DIN( 5)
43 | DOUT(14)=DIN( 8)
44 | DOUT(15)=DIN( 9)
45 | RETURN
46 | END
47 | c>>>
48 |
--------------------------------------------------------------------------------
/util/denfit.f90:
--------------------------------------------------------------------------------
1 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 | !%%%
3 | !%%% DenFit: a program to fit atomic density using Gaussian s-functions. (2019.04.02)
4 | !%%%
5 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 | !%%%
7 | !%%% Reference
8 | !%%%
9 | !%%% [1] E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 2, 41 (1973).
10 | !%%%
11 | !%%% [2] B. I. Dunlap, J. W. D. Connolly, J. R. Sabin, J. Chem. Phys. 71, 3396 (1979).
12 | !%%%
13 | !%%% [3] C. Fonseca Guerra, O. Visser, J. G. Snijders, G. te Velde, E. J. Baerends, in Methods and
14 | !%%% Techniques in Computational Chemistry , (Eds.: E. Clementi, G. Corongiu), STEF, Cagliari,
15 | !%%% 1995, p. 305-395
16 | !%%%
17 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 | !%%%
19 | !%%% Parameters are defined in the namelist $control. For example:
20 | !%%% $control
21 | !%%% nz=4 nc=2 npt=59000 igtf=3
22 | !%%% $end
23 | !%%% Then the density data are provided.
24 | !%%%
25 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 | !%%%
27 | !%%% Parameters:
28 | !%%% nz = nuclear charge number of the element. For example, nz=30 for Zn
29 | !%%% nc = number of core electrons. 1 < nc < nz
30 | !%%% npt = number of 1D-density points
31 | !%%% igtf = formula to generate Gaussian exponents (1~4; default: 4)
32 | !%%% dr = step size (optional; it also defines the format of density data)
33 | !%%% iunit = (0/1, i.e. in Bohr or Angstrom) unit of dr and the r(:) array (optional; default: 0)
34 | !%%%
35 | !%%%
36 | !%%% Density data (dr <=0 or dr is not set):
37 | !%%% r(1), rho(1)
38 | !%%% r(2), rho(2)
39 | !%%% ...
40 | !%%%
41 | !%%% Density data (dr > 0):
42 | !%%% rho(1), rho(2), ...
43 | !%%%
44 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45 | program DenFit
46 | implicit real(kind=8) (a-h,o-z)
47 | parameter(MaxGau = 60,au2ang=0.5291772086d0)
48 | real(kind=8) :: alf(MaxGau)
49 | real(kind=8),allocatable :: r(:), rho(:)
50 | real(kind=8),allocatable :: qn(:), as(:,:), ax(:,:), al(:), an(:), coef(:), scr(:)
51 | real(kind=8),allocatable :: alf0(:), as0(:,:), al0(:), an0(:), qn0(:)
52 | character(8) logo
53 | logical ifnrm
54 |
55 | ! normalized (.T.) s-functions or not(.F.)
56 | !ifnrm =.false.
57 | ifnrm =.true.
58 |
59 | iinp = 5
60 | iedf = 8
61 | write(*,"(//,1x,41('='),/,1x,10('='),' Results of DenFit ',10('='),/,1x,41('='))")
62 |
63 | ! read parameters
64 | call rdpara(iinp,IGTF,NZ,NC,Npt,drval,iunit)
65 | if(iunit == 1) drval=drval/au2ang
66 |
67 | logo="E000C000"
68 | write(logo(2:4),"(i3.3)")NZ
69 | write(logo(6:8),"(i3.3)")NC
70 |
71 | ! Gaussian s-functions alpha for fitting
72 | call GenGau(IGTF,NGau,alf)
73 | if (NGau > MaxGau) then
74 | write(*,"(//,' NGau > MaxGau!')")
75 | stop
76 | else
77 | write(*,"(//,' Starting #S-Fun =',i8)") NGau
78 | end if
79 |
80 | ! sort alpha in descending order
81 | call ShellSort(NGau,alf,1)
82 |
83 | ! read density data
84 | allocate(r(Npt), rho(Npt))
85 | call rddata(iinp,Npt,iunit,drval,r,rho,Info)
86 | if (Info == 0) then
87 | write(*,"(' ### Error when reading density data!')")
88 | stop
89 | end if
90 |
91 | ! r0 ~ 1.0d-5
92 | r0=0.d0
93 | rho0=0.d0
94 | drho=1.0d5
95 | do i=1, Npt
96 | if(drho >= abs(r(i) - 1.0d-5) ) then
97 | drho=abs(r(i) - 1.0d-5)
98 | cycle
99 | else
100 | j = i -1
101 | if(r(j) < 0.5d0 * 1.0d-5) j = i
102 | r0 = r(j)
103 | rho0=rho(j)
104 | exit
105 | end if
106 | end do
107 | rr0 = r0 * r0
108 |
109 | ! There may be an artificial peak after r = 1.8 a.u.
110 | i18=0
111 | do i=1, Npt
112 | if(r(i) >= 1.8d0) then
113 | i18 = i
114 | exit
115 | end if
116 | if(i .eq. Npt) then
117 | write(*,"(' r(Npt) is too small!')")
118 | stop
119 | end if
120 | end do
121 |
122 | write(*,"(/,' R0 = ',d12.5,', Rho0 = ',d20.14)") r0, rho0
123 |
124 | allocate(qn(NGau), as(NGau,NGau), ax(NGau,NGau), al(NGau), an(NGau), coef(NGau), scr(NGau))
125 | allocate(alf0(NGau), as0(NGau,NGau), al0(NGau), an0(NGau), qn0(NGau))
126 |
127 | ! normalization factors of s-ARDF functions
128 | call norms(NGau,ifnrm,alf,qn)
129 |
130 | ! Calculate the matrices/arrays for fitting
131 | call EqFit(NGau,alf,qn,Npt,r,rho,as,al,an,Acore,scr)
132 | write(*,"(/,' Integrated Ncore: ',f16.10)") Acore
133 | if(abs(Acore-dble(NC)) > 1.d-2) then
134 | write(*,"(' Accuracy is too low!')")
135 | stop
136 | end if
137 |
138 | ! Optimize NGau; get rid of the redundant steepest functions (alpha > 1.0d4)
139 | NGau0 = NGau
140 | call acopy(NGau,alf,alf0)
141 | call acopy(NGau*NGau,as,as0)
142 | call acopy(NGau,al,al0)
143 | call acopy(NGau,an,an0)
144 | call acopy(NGau,qn,qn0)
145 | do I = 1, NGau0
146 | if (alf0(1) < 1.0d4) exit
147 |
148 | call GauFit(NGau0,as0,ax,al0,an0,qn0,coef,NC,Acore,Info,scr)
149 | if (Info == 0) then
150 | write(*,"(' Inverse calculation fails.')")
151 | stop
152 | end if
153 |
154 | ! delta_rho at the first point
155 | call DltRho(NGau0,I,alf0,coef,rr0,rho0,idxneg,drho)
156 |
157 | ! delete the first function
158 | call GauRm(NGau0,1,alf0,as0,al0,an0,qn0)
159 | end do
160 |
161 | ! the first idxneg-1 functions are redundant and should be deleted
162 | if (idxneg > 1) then
163 | write(*,"(' Delete the first ',i3,' redundant functions with min[dRho0] = ',d20.14)") idxneg-1, drho
164 | call GauRm(NGau,-(idxneg-1),alf,as,al,an,qn)
165 | end if
166 |
167 | ! Do fitting
168 | do while(.true.)
169 |
170 | call GauFit(NGau,as,ax,al,an,qn,coef,NC,Acore,Info,scr)
171 | if (Info == 0) then
172 | write(*,"(' Inverse calculation fails.')")
173 | exit
174 | end if
175 |
176 | ! check
177 | if(nint(Acore) /= NC) then
178 | write(*,"(' The fitted Ncore is wrong!')")
179 | exit
180 | end if
181 | if( (NC >= 10 .and. NGau < 10) .or. (NC < 10 .and. NGau < 5) ) then
182 | write(*,"(' The fitting fails!')")
183 | exit
184 | end if
185 | call ChkPos(NGau,Npt,r,alf,coef,idxneg)
186 | if(idxneg > 0) then
187 | write(*,"(' Negative density found! Delete function-',i3,' with alpha = ',d20.14)") idxneg, alf(idxneg)
188 | call GauRm(NGau,idxneg,alf,as,al,an,qn)
189 | cycle
190 | end if
191 | call ChkRed(NGau,alf,coef,idxneg)
192 | if(idxneg > 0) then
193 | write(*,"(' Redundant function found! Delete function-',i3,' with alpha = ',d20.14)") idxneg, alf(idxneg)
194 | call GauRm(NGau,idxneg,alf,as,al,an,qn)
195 | cycle
196 | end if
197 | call ChkAPk(NGau,Npt,i18,r,alf,coef,idxneg)
198 | if(idxneg > 0) then
199 | write(*,"(' Artificial peak found! Delete function-',i3,' with alpha = ',d20.14)") idxneg, alf(idxneg)
200 | call GauRm(NGau,idxneg,alf,as,al,an,qn)
201 | cycle
202 | end if
203 | ! to get a smaller error at dRho(1), ChkHss must be done at the last step
204 | call ChkHss(NGau,alf,coef,idxneg)
205 | if(idxneg > 0) then
206 | write(*,"(' Hessian(r=0) > 0 found! Delete function-',i3,' with alpha = ',d20.14)") idxneg, alf(idxneg)
207 | call GauRm(NGau,idxneg,alf,as,al,an,qn)
208 | cycle
209 | end if
210 |
211 | !================================================= Fitting finished
212 |
213 | ! delta(rho) at the first point
214 | call DltRho(NGau,1,alf,coef,rr0,rho0,idxneg,drho)
215 | write(*,"(/,' Fitting finished successfully with',/,5x,'Ncore(analytic) =',f16.10,' and dRho0 = ',d20.14)") Acore, drho
216 |
217 | ! print results
218 | write(*,"(//,' Final results:',//,' Element=',i8,/,' Ncore =',i8,/,' #S-Fun =',i8, //,19x,'Alpha',13x,'Coefficient',/)") &
219 | NZ, NC, NGau
220 | do i = 1, NGau
221 | write(*,"(2e24.14)") alf(i), coef(i)
222 | end do
223 |
224 | open(iedf,file="EDF",iostat=Info)
225 | if (Info > 0) then
226 | write(*,"(' ### Error when creating EDF file!')")
227 | exit
228 | end if
229 | rewind(iedf)
230 | ! write(iedf,"('**',a8)")logo
231 | ! write(iedf,"(i4)") NGau
232 | ! write(iedf,"(5e22.14)") (alf(i), i=1,NGau)
233 | ! write(iedf,"(5e22.14)") (coef(i), i=1,NGau)
234 |
235 | write(iedf,"(//,2x,'EDF in FORTRAN90',/,2x,'NZA = ',i4,/,2x,'NCore = ',i4)") NZ, NC
236 | write(iedf,"(/,4x,'nfun =',i3)") NGau
237 | Nline=(NGau+3)/4
238 | Nlast=mod(NGau,4)
239 | ! alf
240 | write(iedf,"(4x,'alf(1:nfun)=(/',4(d22.14,','),'&')") (alf(j),j=1,4)
241 | do i = 2, Nline-1
242 | write(iedf,"(18x,4(d22.14,','),'&')")(alf(j),j=4*i-3,4*i)
243 | end do
244 | if(Nlast .eq. 0) then
245 | write(iedf,"(18x,3(d22.14,','),d22.14,'/)')") (alf(j),j=NGau-3,NGau)
246 | else if(Nlast .eq. 3) then
247 | write(iedf,"(18x,2(d22.14,','),d22.14,'/)')") (alf(j),j=NGau-2,NGau)
248 | else if(Nlast .eq. 2) then
249 | write(iedf,"(18x,d22.14,',',d22.14,'/)')") (alf(j),j=NGau-1,NGau)
250 | else
251 | write(iedf,"(18x,d22.14,'/)')") alf(NGau)
252 | end if
253 | ! coe
254 | write(iedf,"(4x,'coe(1:nfun)=(/',4(d22.14,','),'&')") (coef(j),j=1,4)
255 | do i = 2, Nline-1
256 | write(iedf,"(18x,4(d22.14,','),'&')")(coef(j),j=4*i-3,4*i)
257 | end do
258 | if(Nlast .eq. 0) then
259 | write(iedf,"(18x,3(d22.14,','),d22.14,'/)')") (coef(j),j=NGau-3,NGau)
260 | else if(Nlast .eq. 3) then
261 | write(iedf,"(18x,2(d22.14,','),d22.14,'/)')") (coef(j),j=NGau-2,NGau)
262 | else if(Nlast .eq. 2) then
263 | write(iedf,"(18x,d22.14,',',d22.14,'/)')") (coef(j),j=NGau-1,NGau)
264 | else
265 | write(iedf,"(18x,d22.14,'/)')") coef(NGau)
266 | end if
267 |
268 | exit
269 |
270 | end do
271 |
272 | deallocate(r, rho)
273 | deallocate(qn, as, ax, al, an, coef, scr)
274 | deallocate(alf0, as0, al0, an0, qn0)
275 |
276 | end
277 |
278 |
279 | !%%%
280 | !%%% read parameters from input
281 | !%%%
282 | subroutine rdpara(iinp,IGTF,NZ,NC,Npt,dr,iunit)
283 | implicit real(kind=8) (a-h,o-z)
284 | namelist/control/NZ,NC,Npt,IGTF,dr,iunit
285 |
286 | NZ=0
287 | NC=0
288 | Npt=0
289 | IGTF=4
290 | dr=-1.d0
291 |
292 | rewind(iinp)
293 | read(iinp,control,err=100,end=200)
294 |
295 | ! default: 4
296 | if (IGTF < 1 .or. IGTF > 4) IGTF = 4
297 |
298 | if (NZ < 2 .or. NZ > 120) then
299 | write(*,"(' NZ is out of range!')")
300 | stop
301 | end if
302 | if (NC < 0 .or. NC >= NZ) then
303 | write(*,"(' NC is out of range!')")
304 | stop
305 | end if
306 | if (Npt < 50) then
307 | write(*,"(' Npt is too small!')")
308 | stop
309 | end if
310 | if (dr > 0.02d0) then
311 | write(*,"(' dR is too big!')")
312 | stop
313 | end if
314 | if(iunit /= 1) iunit = 0
315 |
316 | Return
317 |
318 | 100 write(*,"(//,' Unknown parameters found!')")
319 | stop
320 | 200 write(*,"(//,' No parameters defined!')")
321 | stop
322 | End
323 |
324 |
325 | !%%%
326 | !%%% read density data
327 | !%%%
328 | subroutine rddata(iinp,Npt,iunit,drval,r,rho,l)
329 | implicit real(kind=8) (a-h,o-z)
330 | parameter(au2ang=0.5291772086d0)
331 | real(kind=8) :: r(Npt), rho(Npt)
332 |
333 | l=1
334 | if(drval > 0) then
335 | read(iinp,*,err=100) (rho(i), i=1,Npt)
336 | r(1) = 0.d0
337 | do i=2,Npt
338 | r(i) = r(i-1) + drval
339 | end do
340 | else
341 | do i=1,Npt
342 | read(iinp,*,err=100) r(i), rho(i)
343 | end do
344 | if(iunit == 1) r = r/au2ang
345 | end if
346 | Return
347 |
348 | 100 l=0
349 | Return
350 | End
351 |
352 |
353 | !%%%
354 | !%%% delete redundant functions
355 | !%%%
356 | subroutine ChkRed(NGau,alf,coef,idxneg)
357 | implicit real(kind=8) (a-h,o-z)
358 | real(kind=8) :: alf(NGau), coef(NGau)
359 |
360 | idxneg = 0
361 |
362 | Nhalf=NGau/2
363 |
364 | ! for steep functions with alpha > 1.0d5
365 | do i=1,Nhalf
366 | if(alf(i) > 1.0d5) then
367 | if(abs(coef(i)) < 5.0d0) then
368 | idxneg = i
369 | goto 1000
370 | end if
371 | else
372 | exit
373 | end if
374 | end do
375 |
376 | ! for flat functions with alpha < 3
377 | do i=NGau, Nhalf+1, -1
378 | if(alf(i) < 3.0d0) then
379 | if(abs(coef(i)) < 1.0d-5) then
380 | idxneg = i
381 | goto 1000
382 | end if
383 | else
384 | exit
385 | end if
386 | end do
387 |
388 | 1000 return
389 | end
390 |
391 |
392 | !%%%
393 | !%%% check artificial peak in ARDF for r>1.8
394 | !%%%
395 | subroutine ChkAPk(NGau,Npt,i18,r,alf,coef,idxneg)
396 | implicit real(kind=8) (a-h,o-z)
397 | real(kind=8) :: r(Npt), alf(NGau), coef(NGau)
398 |
399 | idxneg = 0
400 | ! alf(idxneg) should be < 1
401 | if(alf(NGau) > 1.d0) return
402 |
403 | ardfold = 0.d0
404 | do i= i18, Npt, 10
405 | ! ardf/(4pi)
406 | rr = r(i)*r(i)
407 | ardf = 0.d0
408 | do j=1,NGau
409 | ardf = ardf + coef(j)*rr*exp(-alf(j)*rr)
410 | end do
411 | if(i == i18 .or. ardf <= ardfold) then
412 | ardfold = ardf
413 | cycle
414 | else
415 | idxneg = NGau
416 | exit
417 | end if
418 | end do
419 |
420 | return
421 | end
422 |
423 |
424 | !%%%
425 | !%%% Check Hessian at r=0, which should be negative, i.e. there is a maximum at r=0.
426 | !%%%
427 | !%%% Hessian(0) = -2 * hess, where hess = sum[coe(i)*alf(i)]
428 | !%%%
429 | subroutine ChkHss(NGau,alf,coef,idxneg)
430 | implicit real(kind=8) (a-h,o-z)
431 | real(kind=8) :: alf(NGau), coef(NGau)
432 |
433 | idxneg = 0
434 | hess = 0.0d0
435 | do i= 1, NGau
436 | hess = hess + coef(i)*alf(i)
437 | end do
438 | if(hess <= 0.0d0) idxneg = 1
439 |
440 | return
441 | end
442 |
443 |
444 | !%%%
445 | !%%% check positive definiteness of rho
446 | !%%%
447 | subroutine ChkPos(NGau,Npt,r,alf,coef,idxneg)
448 | implicit real(kind=8) (a-h,o-z)
449 | real(kind=8) :: r(Npt), alf(NGau), coef(NGau)
450 |
451 | rhomin = 1.d-10
452 | idxneg = 0
453 | do i=1,Npt
454 | rho=0.d0
455 | do j=1,NGau
456 | rho = rho + coef(j) * exp(-alf(j) * r(i) * r(i))
457 | end do
458 | if(i == 1 .and. rho < 0.0d0) then
459 | rhomin = rho
460 | idxneg = 1
461 | exit
462 | end if
463 | ! if(i < 5) write(*,"(d24.12)") rho
464 | if(rhomin > rho) then
465 | rhomin = rho
466 | idxneg = i
467 | end if
468 | end do
469 |
470 | if(rhomin < 0.d0)then
471 | r0 = r(idxneg)
472 | rhomin = 1.d-10
473 | idxneg = 0
474 | do i=1,NGau
475 | rho = coef(i) * exp(-alf(i) * r0 * r0)
476 | if(rhomin > rho) then
477 | rhomin = rho
478 | idxneg = i
479 | end if
480 | end do
481 | else
482 | idxneg = 0
483 | end if
484 |
485 | return
486 | end
487 |
488 |
489 | !%%%
490 | !%%% Irm > 0: Remove the Irm-th row/column in an array/matrix
491 | !%%% Irm < 0: Remove the first |Irm| rows/columns in an array/matrix
492 | !%%%
493 | Subroutine GauRm(NGau,Irm,alf,as,al,an,qn)
494 | implicit real(kind=8) (a-h,o-z)
495 | real(kind=8) :: alf(NGau), as(NGau,NGau), al(NGau), an(NGau), qn(NGau)
496 | logical Lmod
497 |
498 | Iab = abs(Irm)
499 |
500 | if (Iab == 0) return
501 |
502 | J = 0
503 | Do I = 1, NGau
504 | if (Irm > 0) then
505 | Lmod = (I == Iab)
506 | else
507 | Lmod = (I <= Iab)
508 | end if
509 | if (Lmod) cycle
510 | J = J + 1
511 | alf(J) = alf(I)
512 | al(J) = al(I)
513 | an(J) = an(I)
514 | qn(J) = qn(I)
515 | end do
516 |
517 | call DelRC(NGau,Irm,as,as)
518 |
519 | if (Irm > 0) then
520 | NGau = NGau - 1
521 | else
522 | NGau = NGau - Iab
523 | end if
524 |
525 | Return
526 | End
527 |
528 |
529 | !%%%
530 | !%%% Irm > 0: Remove the Irm-th row & column in a matrix
531 | !%%% Irm < 0: Remove the first |Irm| rows & columns in a matrix
532 | !%%%
533 | Subroutine DelRC(N,Irm,a,b)
534 | implicit real(kind=8) (a-h,o-z)
535 | real(kind=8) :: a(N,N), b(*)
536 | logical Imod, Jmod
537 |
538 | Iab = abs(Irm)
539 |
540 | if (Iab == 0) return
541 |
542 | K = 0
543 | Do I = 1, N
544 | if (Irm > 0) then
545 | Imod = (I == Iab)
546 | else
547 | Imod = (I <= Iab)
548 | end if
549 | if (Imod) cycle
550 | Do J = 1, N
551 | if (Irm > 0) then
552 | Jmod = (J == Iab)
553 | else
554 | Jmod = (J <= Iab)
555 | end if
556 | if (Jmod) cycle
557 | K = K + 1
558 | b(K) = a(J,I)
559 | end do
560 | end do
561 |
562 | Return
563 | End
564 |
565 |
566 | !%%%
567 | !%%% Calculate the matrices/arrays for fitting
568 | !%%%
569 | subroutine EqFit(NGau,alf,qn,Npt,r,rho,as,al,an,Acore,scr)
570 | implicit real(kind=8) (a-h,o-z)
571 | real(kind=8) :: alf(NGau), qn(NGau), r(Npt), rho(Npt), as(NGau,NGau), al(NGau), an(NGau), scr(NGau)
572 |
573 | ! For normalized s-ARDF functions, the overlap matrix element
574 | ! as(j,i)
575 | ! = N(i) * N(j) * Int{(4*pi*r*r)^3 * [exp(-a_i*r*r)] * [exp(-a_j*r*r)]} dr
576 | ! = N(i) * N(j) * 60 * (pi/(a_i+a_j))^3.5
577 | !
578 | ! an(i)
579 | ! = Int{[4*pi*r*r*exp(-a_i*r*r)]} dr
580 | ! = (pi/a_i)^1.5
581 | pi=acos(-1.d0)
582 | cons1 = power(sqrt(pi),3)
583 | cons2 = pi * 4.d0
584 | cons3 = cons2*cons2*cons2
585 | do i=1,NGau
586 | do j=1,i
587 | as(j,i) = pi / (alf(i) + alf(j))
588 | as(j,i) = qn(i) * qn(j) * 60.d0 * as(j,i)**3.5d0
589 | if(j < i) as(i,j) = as(j,i)
590 | end do
591 | an(i) = sqrt(alf(i))
592 | an(i) = cons1 / power(an(i),3)
593 | end do
594 |
595 | ! calculate Ncore and al numerically
596 | Acore=0.d0
597 | al=0.d0
598 | do i=1,Npt-1
599 | dr=r(i+1)-r(i)
600 | rr=r(i)*r(i)
601 | dc=rr*rho(i)
602 | d6=rr*rr*dc
603 | do j=1,NGau
604 | scr(j) = d6 * exp(-alf(j) * rr)
605 | end do
606 | Acore = Acore + dc * dr
607 | call AccAB(NGau,dr,scr,al,al)
608 | end do
609 | Acore=Acore*cons2
610 | al=al*cons3
611 |
612 | return
613 | end
614 |
615 |
616 | !%%%
617 | !%%% Do fitting
618 | !%%%
619 | subroutine GauFit(NGau,as,ax,al,an,qn,coef,NC,Acore,Info,scr)
620 | implicit real(kind=8) (a-h,o-z)
621 | real(kind=8) :: as(NGau,NGau), ax(NGau,NGau), al(NGau), an(NGau), qn(NGau), coef(NGau), scr(NGau)
622 |
623 | ! as^-1 --> ax
624 | call acopy(NGau*NGau,as,ax)
625 | call bssgj(NGau,Info,ax,scr)
626 | if (Info == 0) return
627 |
628 | ! mat(qn) * ax * mat(qn) --> ax
629 | call dmd(NGau,qn,ax)
630 |
631 | ! lambda = (Ncore-an'*ax*al)/(an'*ax*an)
632 | call MatxL(NGau,ax,an,scr)
633 | alam = (dble(NC) - dotx(NGau,scr,al)) / dotx(NGau,scr,an)
634 |
635 | ! coefficients: ax * (al + lambda*an)
636 | call AccAB(NGau,alam,an,al,scr)
637 | call MatxL(NGau,ax,scr,coef)
638 |
639 | ! recalculate Ncore analytically
640 | Acore=0.d0
641 | do i=1,NGau
642 | Acore=Acore+an(i)*coef(i)
643 | end do
644 |
645 | return
646 | end
647 |
648 |
649 | !%%%
650 | !%%% Inverse of a symmetric positive definite matrix a
651 | !%%% Taken from Shiliang Xu's Fortran77 book, SS2.5
652 | !%%%
653 | subroutine bssgj(n,l,a,b)
654 | implicit real(kind=8) (a-h,o-z)
655 | real(kind=8) :: a(n,n), b(n)
656 |
657 | l=1
658 | do k=1,n
659 | m=n-k+1
660 | w=a(1,1)
661 | if (w+1.d0 == 1.d0) then
662 | l=0
663 | return
664 | end if
665 | do i=2,n
666 | g=a(i,1)
667 | b(i)=g/w
668 | if (i <= m) b(i)=-b(i)
669 | do j=2,i
670 | a(i-1,j-1)=a(i,j)+g*b(j)
671 | end do
672 | end do
673 | a(n,n)=1.d0/w
674 | do i=2,n
675 | a(n,i-1)=b(i)
676 | end do
677 | end do
678 |
679 | do i=1,n-1
680 | do j=i+1,n
681 | a(i,j)=a(j,i)
682 | end do
683 | end do
684 |
685 | return
686 | end
687 |
688 |
689 | !%%%
690 | !%%% delta_rho at the first point
691 | !%%%
692 | !%%% rr0 = r0*r0
693 | !%%%
694 | subroutine DltRho(N,Iter,a,c,rr0,rho0,imin,dmin)
695 | implicit real(kind=8) (a-h,o-z)
696 | real(kind=8) :: a(*), c(*)
697 |
698 | x = 0.d0
699 | do i = 1, N
700 | x = x + c(i) * exp(-a(i) * rr0)
701 | end do
702 |
703 | ! delta_rho
704 | x = abs(x - rho0)
705 |
706 | if(Iter == 1) then
707 | imin = 1
708 | dmin = x
709 | else
710 | if(dmin > x) then
711 | imin = Iter
712 | dmin = x
713 | end if
714 | end if
715 |
716 | return
717 | end
718 |
719 |
720 | !%%%
721 | !%%% D(N,N) * A(N,N) * D(N,N) --> A(N,N)
722 | !%%% where D is a diagonal matrix with elements in d(N)
723 | !%%%
724 | subroutine dmd(N,d,a)
725 | implicit real(kind=8) (a-h,o-z)
726 | real(kind=8) :: d(N), a(N,N)
727 |
728 | do i = 1, N
729 | do j = 1, i
730 | a(j,i) = a(j,i) * d(i) * d(j)
731 | if(j < i) a(i,j) = a(j,i)
732 | end do
733 | end do
734 |
735 | return
736 | end
737 |
738 |
739 | !%%%
740 | !%%% B(*) = A(*)
741 | !%%%
742 | subroutine acopy(n,a,b)
743 | implicit real(kind=8) (a-h,o-z)
744 | real(kind=8) :: a(*), b(*)
745 |
746 | do i = 1, n
747 | b(i) = a(i)
748 | end do
749 |
750 | return
751 | end
752 |
753 |
754 | !%%%
755 | !%%% a**N
756 | !%%%
757 | function power(a,N)
758 | implicit real(kind=8) (a-h,o-z)
759 |
760 | if (N == 0) then
761 | power = 1.d0
762 | return
763 | end if
764 |
765 | power = a
766 | Do I = 2, abs(N)
767 | power = power * a
768 | end do
769 | if (N < 0) power = 1.d0 / power
770 |
771 | Return
772 | End
773 |
774 |
775 | !%%%
776 | !%%% normalization factors of s-ARDF functions: q_i = (2*a_i/pi)^(7/4) / sqrt(60)
777 | !%%%
778 | Subroutine norms(N,ifnrm,a,q)
779 | implicit real(kind=8) (a-h,o-z)
780 | real(kind=8) :: a(N), q(N)
781 | logical ifnrm
782 |
783 | q = 1.d0
784 | if(ifnrm) then
785 | pi=acos(-1.d0)
786 | Do I = 1, N
787 | q(I) = ((a(I)+a(I))/pi)**1.75d0
788 | end do
789 | end if
790 |
791 | q=q/sqrt(60.d0)
792 |
793 | Return
794 | End
795 |
796 |
797 | !%%%
798 | !%%% A(N,N) * B(N) = C(N)
799 | !%%%
800 | Subroutine MatxL(N,A,B,C)
801 | implicit real(kind=8) (a-h,o-z)
802 | real(kind=8) :: A(N,N), B(N), C(*)
803 |
804 | Do I = 1,N
805 | C(I) = dotx(N,A(1,I),B)
806 | end do
807 |
808 | Return
809 | End
810 |
811 |
812 | !%%%
813 | !%%% vector A dot_product vector B
814 | !%%%
815 | function dotx(N,A,B)
816 | implicit real(kind=8) (a-h,o-z)
817 | real(kind=8) :: A(N), B(N)
818 |
819 | dotx = 0.d0
820 |
821 | Do I = 1,N
822 | dotx = dotx + A(I)*B(I)
823 | end do
824 |
825 | Return
826 | End
827 |
828 |
829 | !%%%
830 | !%%% C(*) = c0 * A(*) + B(*)
831 | !%%%
832 | Subroutine AccAB(N,c0,A,B,C)
833 | implicit real(kind=8) (a-h,o-z)
834 | real(kind=8) :: A(N), B(N), C(N)
835 |
836 | Do I = 1, N
837 | C(I) = B(I) + c0*A(I)
838 | end do
839 |
840 | Return
841 | End
842 |
843 |
844 | !%%%
845 | !%%% sort a in ascending (Mode = 0) or descending (Mode /= 0) order using D. L. Shell's method
846 | !%%%
847 | subroutine ShellSort(N,a,Mode)
848 | implicit real(kind=8) (a-h,o-z)
849 | real(kind=8) :: a(N)
850 | logical :: AD
851 |
852 | K = N /2
853 |
854 | do while (K > 0)
855 | do I = K + 1, N
856 | J = I - K
857 | do while (J > 0)
858 | if (Mode == 0) then
859 | AD = a(J) > a(J+K)
860 | else
861 | AD = a(J) < a(J+K)
862 | end if
863 | if (AD) then
864 | t = a(J)
865 | a(J) = a(J + K)
866 | a(J + K) = t
867 | J = J - K
868 | else
869 | exit
870 | end if
871 | end do
872 | end do
873 | K = K / 2
874 | end do
875 |
876 | Return
877 | End
878 |
879 |
880 | !%%%
881 | !%%% Gaussian s-functions
882 | !%%%
883 | subroutine GenGau(icase,NGau,alf)
884 | implicit real(kind=8) (a-h,o-z)
885 | real(kind=8) :: alf(*)
886 |
887 | write(*,"(//,' Type of functions: ',i6)") icase
888 |
889 | select case(icase)
890 |
891 | case(1)
892 | ! Alpha_i = exp[a + b * (i - 1)], a=-3.21885281944033, b=0.672
893 | ! Parameters used by G09
894 | NGau = 40
895 | a =-3.21885281944033d0
896 | b = 0.672d0
897 | do i = 1, NGau
898 | j = i - 1
899 | alf(i) = exp(a + b * j)
900 | end do
901 | write(*,"(&
902 | ' Alpha_i = exp[a + b * (i - 1)], a=-3.21885281944033, b=0.672',/,&
903 | ' Reference:',/,&
904 | ' E. V. R. de Castro and F. E. Jorge, J. Chem. Phys. 108 5225 (1998).',/,&
905 | ' and modified in',/,&
906 | ' T. A. Keith and M. J. Frisch, J. Phys. Chem. A 115, 12879 (2011).')")
907 |
908 | case(2)
909 | ! Alpha_i = exp[a + b * (i - 1)], a=-4.584, b=0.672
910 | ! Ref.
911 | ! E. V. R. de Castro and F. E. Jorge, J. Chem. Phys. 108 5225 (1998).
912 | NGau = 40
913 | a =-4.584d0
914 | b = 0.672d0
915 | do i = 1, NGau
916 | j = i - 1
917 | alf(i) = exp(a + b * j)
918 | end do
919 | write(*,"(&
920 | ' Alpha_i = exp[a + b * (i - 1)], a=-4.584, b=0.672',/,&
921 | ' Reference:',/,&
922 | ' E. V. R. de Castro and F. E. Jorge, J. Chem. Phys. 108 5225 (1998).')")
923 |
924 | case(3)
925 | ! Alpha_i = exp[a + b * (i - 1)], a=-3.84, b=0.72
926 | ! Ref.
927 | ! G. L. Malli, A. B. F. DaSilva, and Y. Ishikawa, Phys. Rev. A 47, 143 (1993).
928 | ! A. Wolf, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 9215 (2002).
929 | NGau = 38
930 | a =-3.84d0
931 | b = 0.72d0
932 | do i = 1, NGau
933 | j = i - 1
934 | alf(i) = exp(a + b * j)
935 | end do
936 | write(*,"(&
937 | ' Alpha_i = exp[a + b * (i - 1)], a=-3.84, b=0.72',/,&
938 | ' Reference:',/,&
939 | ' G. L. Malli, A. B. F. DaSilva, and Y. Ishikawa, Phys. Rev. A 47, 143 (1993).',/,&
940 | ' A. Wolf, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 9215 (2002).')")
941 |
942 | ! case(4)
943 | case default
944 | ! Even-tempered universal Gaussian exponents
945 | ! Alpha_i = 0.001 * 1.65^(i-1)
946 | ! ~ exp[a + b * (i - 1)], a=-6.907755, b=0.500775
947 | ! Ref.
948 | ! M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004).
949 | NGau = 60
950 | a = 1.0d-3
951 | b = 1.65d0
952 | alf(1) = a;
953 | do i=2,NGau
954 | alf(i) = alf(i-1) * b
955 | end do
956 | write(*,"(&
957 | ' Even-tempered universal Gaussian exponents',/,&
958 | ' Alpha_i = 0.001 * 1.65^(i-1)',/,&
959 | ' ~ exp[a + b * (i - 1)], a=-6.907755, b=0.500775',/,&
960 | ' Reference:',/,&
961 | ' M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004).')")
962 |
963 | end select
964 |
965 | return
966 | end
967 |
968 |
--------------------------------------------------------------------------------