├── .gitignore ├── LICENSE ├── README.md ├── examples ├── C2H4-RCCT-cfour │ ├── MOLDEN_NAT │ └── test.inp ├── ECP │ ├── ecp.47 │ ├── ecp.mol │ ├── ecp.wfx │ ├── ecp2.mol │ └── readme.txt ├── EDF_by_denfit │ ├── Re68.dat │ ├── molpro.inp │ ├── readme.txt │ └── results.txt ├── Gabedit-Gaussian │ └── h2o.gab ├── H2O_MRCI-molpro │ ├── molpro.inp │ └── molpro.mol ├── HF-MRCI-NatOrb-columbus │ └── HF-Dal-CI-NatOrb.mol ├── HeCuF_RDFT-orca │ ├── test.inp │ └── test.molden └── NWChem6.8 │ ├── 01.molden │ ├── 01.nw │ ├── 02.molden │ ├── 02.nw │ └── readme.txt ├── m2a-logo.png ├── m2a-loop.png ├── src ├── edflib-pbe0.f90 ├── edflib.f90 └── molden2aim.f90 └── util ├── aces2-patch └── reorder.F ├── cfour-v2-patch └── reorderdf.f └── denfit.f90 /.gitignore: -------------------------------------------------------------------------------- 1 | # Compiled Object files 2 | *.slo 3 | *.lo 4 | *.o 5 | *.obj 6 | 7 | # Precompiled Headers 8 | *.gch 9 | *.pch 10 | 11 | # Compiled Dynamic libraries 12 | *.so 13 | *.dylib 14 | *.dll 15 | 16 | # Fortran module files 17 | *.mod 18 | 19 | # Compiled Static libraries 20 | *.lai 21 | *.la 22 | *.a 23 | *.lib 24 | 25 | # Executables 26 | *.exe 27 | *.out 28 | *.app 29 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | The MIT License (MIT) 2 | 3 | Copyright (c) 2015 zorkzou 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | 23 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | # Molden2AIM 4 | Molden2AIM is a utility program which can be used to create AIM-WFN, AIM-WFX, and NBO-47 files from a Molden file. 5 | 6 | ## Recent Changes 7 | Version 5.1.1 (03/09/2024). 8 | 9 | 1. The MOLDEN file generated by the latest version of [PSI4](http://www.psicode.org/) has been supported now, including spdfg spherical and spdf Cartesian functions. In the latter case, also add `[Program] psi4` in MOLDEN or `PROGRAM=7` in m2a.ini. 10 | 11 | Version 5.1.0 (08/29/2023). 12 | 13 | 1. The MOLDEN file generated by [Bagel](http://nubakery.org/), [CP2k](http://www.cp2k.org/), or [eT](https://etprogram.org/) (since Ver. 1.4) has been supported. 14 | 2. The `[Nval]` data block (suggested by [Multiwfn](http://sobereva.com/multiwfn/)) may be used for ECP basis sets. 15 | 3. Ghost atom in the `[Atoms]` block has been supported. 16 | 17 | Version 5.0.8 (07/01/2023). 18 | 19 | 1. Bug fix: xenon was identified as a dummy atom by mistake. 20 | 21 | Version 5.0.7 (04/23/2023). 22 | 23 | 1. A new option `ANSI` for colors in terminal. 24 | 2. For the Molden file generated by Molpro, energy is printed in the WFN and WFX files. 25 | 3. For the Molden file generated by BDF, energy and virial ratio are printed in the WFN and WFX files. 26 | 4. Bug fix for the option `ALLMO`: abs(occ) is checked now, which is important for natural orbitals. 27 | 28 | Version 5.0.6 (11/12/2021). 29 | 30 | 1. Bug fix for reading MO coefficients printed in scientific notation. 31 | 32 | Version 5.0.5 (07/23/2021). 33 | 34 | 1. In the title section of new-MOLDEN/WFN/WFX/47 files, print the hostname and the original MOLDEN file name with the full path by setting title=1 in m2a.ini. 35 | 2. Bug fix. A space between index and coefficient in the `[MO]` data block may be missing in some MOLDEN files, which is completed. 36 | 3. Bug fix. Negative `nosupp` in `m2a.ini` was omitted by mistake. 37 | 4. A command line parameter `-i` has been added. 38 | 39 | Version 5.0.4 (02/07/2021). 40 | 41 | 1. Bug fix. The `[CORE]`/`[PSEUDO]` data block was omitted by mistake in subroutine ROADrv. 42 | 2. Bug fix. In the new MOLDEN file, ZA instead of ZA-Ncore is printed now in the `[ATOMS]` data block. 43 | 44 | Version 5.0.3 (01/30/2021). 45 | 46 | 1. Improved compatibility with GNU gfortran 10. 47 | 48 | Version 5.0.2 (10/09/2020). 49 | 50 | 1. The MOLDEN file with H-functions has been supported if it is generated by [Dalton](http://daltonprogram.org/). 51 | 2. The utility `ReOrdAtm` has been merged into Molden2AIM and runs automatically. 52 | 3. For the MOLDEN file saved by [ORCA](https://orcaforum.kofo.mpg.de/), `[PROGRAM] orca` in MOLDEN and `program=1` in `m2a.ini` are not needed in the case of the default title `Molden file created by orca_2mkl for BaseName=...`. 53 | 54 | Version 5.0.0 (06/05/2020). 55 | 56 | 1. If possible, save a new MOLDEN file or NBO-47 file in spherical functions. `carsph=1` in `m2a.ini` is required. 57 | 2. The MOLDEN file with H-functions has been supported if it is generated by [Multiwfn](http://sobereva.com/multiwfn/), [ORCA](https://orcaforum.kofo.mpg.de/), or [CFour](http://www.cfour.de/) (Ver. 2.1). 58 | 3. If possible, the `$LCAOMO` and `$FOCK` blocks will be printed in the NBO-47 file (`nbopro=1` in `m2a.ini` is required), so the Second Order Perturbation Theory Analysis may be performed by [NBO](http://nbo7.chem.wisc.edu/) for the RHF, UHF, RKS, and UKS types of wavefunctions. 59 | 4. Orthogonality will be checked if the `$FOCK` block exists in the NBO-47 file. 60 | 5. Bug fix for modern Fortran compilers. 61 | 62 | Version 4.4.0 (05/27/2020). 63 | 64 | 1. A new X2C/PBE0 EDF library (by Chun Gao) can take core correlations into account, which may be requested by `edftyp=1` in `m2a.ini`. Some test calculations of noble gas atoms with 22 functionals showed that PBE0 can reproduce the core densities of CCSD(T,full) with the best agreements. 65 | 2. The initialization file `m2a.ini` may be generated automatically if it doesn't exist. 66 | 3. The fitting program denfit.f90 has been modified to improve the accuracy. 67 | 4. Bug fix: energies in the WFN file were wrong. 68 | 69 | Version 4.3.0 (02/09/2019). 70 | 71 | 1. The Molden file generated by StoBe has been supported. 72 | 2. The Molden file generated by Crystal (molecule only) has been supported through `[Program] crystal` in MOLDEN or `PROGRAM=10` in m2a.ini. 73 | 3. The number of core electrons may also be specified in the terminal. 74 | 75 | Version 4.2.1 (05/11/2018). 76 | 77 | 1. The EDF library has been updated for the following cores/elements: ncore = 2 (B), 10 (Na), 28 (Cu, Pd, I, Xe, Cs, Sm, Eu, Gd, Tb), 46 (Cd, Xe), 78 (Pa, Es, Fm), and 92 (Cn, Nh). It's found that these old EDFs may produce a local minimum at R = 0 and lead to a (3,+3) critical point wrongly. Thank Dr. Tian Lu for reporting the problem. 78 | 2. The fitting program denfit.f90 has been modified for the above problem. 79 | 80 | ## Features 81 | 82 | * It converts the data format from Molden to AIM's WFN. The latter format can be read by [AIMPAC](http://www.chemistry.mcmaster.ca/aimpac/imagemap/imagemap.htm), [AIMPAC2](http://www.beaconresearch.org/AIMPAC2/index.html), [AIM2000](http://www.aim2000.de/), [AIMALL](http://aim.tkgristmill.com/), [AIM-UC](http://alfa.facyt.uc.edu.ve/quimicomp/), [Critic2](http://schooner.chem.dal.ca/wiki/Critic2), [DensToolKit](https://sites.google.com/site/jmsolanoalt/software/denstoolkit), [DGrid](http://www.cpfs.mpg.de/~kohout/dgrid.html), [MORPHY98](http://morphy.mib.man.ac.uk/), [Multiwfn](http://sobereva.com/multiwfn/), [ORBKIT](https://orbkit.github.io/), [PAMoC](http://www.istm.cnr.it/~barz/pamoc/), [ProMolden](http://azufre.quimica.uniovi.es/d-DensEl/), [TopChem](http://www.lct.jussieu.fr/pagesperso/pilme/topchempage.html), [TopMoD](http://www.lct.jussieu.fr/pagesperso/silvi/topmod.html), [Xaim](http://www.quimica.urv.es/XAIM/), and so on. The GAB file of [Gabedit](http://gabedit.sourceforge.net/) is compatible. 83 | * It saves [NBO](http://nbo7.chem.wisc.edu/)'s *.47 data file. One can do NBO analysis using the stand-alone [GENNBO](http://nbo7.chem.wisc.edu/) program. In addition, the following loops can be performed using [NBO](http://nbo7.chem.wisc.edu/) or [NBO2Molden](https://github.com/zorkzou/NBO2Molden). However the results may be different since [NBO](http://nbo7.chem.wisc.edu/) saves natural bond orbitals (NBOs) into the MOLDEN file by default. 84 | 85 | 86 | 87 | * After the *.47 file being generated, it can calculate the generalized Wiberg bond order indices (GWBO) in MO (see I. Mayer, C.P.L. 97, 270, 1983). In the case of closed-shell system, they are the Mayer bond orders (MBO) in MO. 88 | * It saves AIM's [WFX data file](http://aim.tkgristmill.com/wfxformat.html), which can be read by [AIMALL](http://aim.tkgristmill.com/), [Critic2](http://schooner.chem.dal.ca/wiki/Critic2), [DensToolKit](https://sites.google.com/site/jmsolanoalt/software/denstoolkit), [GPView](http://life-tp.com/gpview/), [Multiwfn](http://sobereva.com/multiwfn/), or [ORBKIT](https://orbkit.github.io/). There are two versions of atomic EDF library for Z = 3-120 controlled by `edftyp` in `m2a.ini`: the default X2C/HF version by `edftyp=0` (see W. Zou, Z. Cai, J. Wang, K. Xin, An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials, J. Comput. Chem. 2018, 39, 1697-1706) and the X2C/PBE0 version by `edftyp=1`. 89 | 90 | ## Compilation 91 | 92 | > F90 -O3 edflib.f90 edflib-pbe0.f90 molden2aim.f90 -o molden2aim.exe 93 | 94 | where `F90` can be `gfortran`, `nvf90` (`pgf90`), `ifort`, or other Fortran90 compilers. 95 | 96 | ## Running Molden2AIM 97 | 98 | - Windows 99 | 100 | 1. Put `molden2aim.exe` and MOLDEN/Gabedit files into the same folder. 101 | 2. If necessary, insert a `[Program] program_name` line into the MOLDEN file, or edit the `program` parameter in `m2a.ini` (you can also setup other parameters there). 102 | 3. If ECP or MCP is used, insert a `[Core]` or `[Pseudo]` segment into the MOLDEN/Gabedit file. See below for the format and examples. 103 | 4. Double-click `molden2aim.exe`, and then type in the MOLDEN/Gabedit file name. 104 | 105 | - Unix/Linux/MacOS 106 | 107 | 1. Put `molden2aim.exe` and MOLDEN/Gabedit files into the same folder. 108 | 2. If necessary, insert a `[Program] program_name` line into the MOLDEN file, or edit the `program` parameter in `m2a.ini` (you can also setup other parameters there). 109 | 3. If ECP or MCP is used, insert a `[Core]` or `[Pseudo]` segment into the MOLDEN/Gabedit file. See below for the format and examples. 110 | 5. In the terminal, type in 111 | 112 | > ./molden2aim.exe 113 | 114 | and then type in the MOLDEN/Gabedit file name, or provide the MOLDEN/Gabedit file name in command line 115 | 116 | > ./molden2aim.exe -i MOLDEN_FILE_NAME 117 | 118 | ## ECP/MCP 119 | 120 | In the case of ECP or MCP, a data block of `[Core]` should be defined in the MOLDEN file. The format is 121 | 122 | [Core] 123 | Iatom : Ncore or Element: Ncore 124 | ... 125 | 126 | where Ncore is the number of core electrons replaced by ECP or MCP. Atom/element with Ncore=0 can be ignored. For example, for a cluster with the atoms N_1, N_2, N_3, Pt_4, and Pt_5, it can be 127 | 128 | [Core] 129 | Pt: 60 130 | N : 2 131 | 2 : 0 132 | 133 | This means that the numbers of core electron are 60 in Pt_4 and Pt_5 and 2 in N_1 and N_3. In N_2 the number of core electron is set to 2 but then reset to 0. It is equivalent to 134 | 135 | [Core] 136 | 1 : 2 137 | 3 : 2 138 | 4 : 60 139 | 5 : 60 140 | 141 | Another way is to define a data block of `[Pseudo]` in the MOLDEN file, which is supported by [Molden](https://www.theochem.ru.nl/molden/). The format is 142 | 143 | [Pseudo] 144 | Name1 IAtom1 ZA1-Ncore1 145 | Name2 IAtom2 ZA2-Ncore2 146 | ... 147 | 148 | Starting from Version 5.1.0, the `[Nval]` block suggested by [Multiwfn](http://sobereva.com/multiwfn/) may also be used. 149 | 150 | [Nval] 151 | Element1 nval1 (nval = ZA - Ncore) 152 | Element2 nval2 153 | ... 154 | 155 | ## Ghost atoms 156 | 157 | Ghost atoms in the MOLDEN file may be specified by a prefix `bq-`, a prefix `ghost-`, a suffix `-bq`, a suffix `-ghost` (case insensitive), or `atomic_number` = 0. In the following example, all the five carbon atoms are ghost ones. 158 | 159 | [Atoms] AU 160 | C 1 0 0.0000000 2.6361503 0.0000000 161 | C-bq 2 6 -2.2829731 1.3180752 0.0000000 162 | C-ghost 3 6 -2.2829731 -1.3180752 0.0000000 163 | bq-C 4 6 0.0000000 -2.6361503 0.0000000 164 | ghost-C 5 6 2.2829731 -1.3180752 0.0000000 165 | ... 166 | 167 | ## About the Molden file 168 | 169 | MOLDEN (or GAB) files generated by the the following programs are fully or partly supported by Molden2AIM at present. 170 | 171 | * [ACES-II](http://www.qtp.ufl.edu/ACES/), (> 2.9) 172 | * [Bagel](http://nubakery.org/) 173 | * [BDF-G](http://182.92.69.169:7226/) 174 | * [CADPAC](https://en.wikipedia.org/wiki/CADPAC) 175 | * [CFour](http://www.cfour.de/) 176 | * [Columbus](http://www.univie.ac.at/columbus/) 177 | * [CP2k](http://www.cp2k.org/), (molecule using GTFs only) 178 | * [Crystal](http://www.crystal.unito.it/), (molecule only) 179 | * [DALTON](http://daltonprogram.org/), (> 2013) 180 | * [deMon2k](http://www.demon-software.com/public_html/) 181 | * [eT](https://etprogram.org/), (>= Ver. 1.4) 182 | * [Firefly](http://classic.chem.msu.su/gran/gamess/), through the utility [Molden](https://www.theochem.ru.nl/molden/) or [Gabedit](http://gabedit.sourceforge.net/). See [molden_gabedit.jpg](https://raw.githubusercontent.com/zorkzou/Molden2AIM/master/molden_gabedit.jpg). 183 | * [Gaussian](http://www.gaussian.com/), through the utility [Molden](https://www.theochem.ru.nl/molden/) or [Gabedit](http://gabedit.sourceforge.net/). See [molden_gabedit.jpg](https://raw.githubusercontent.com/zorkzou/Molden2AIM/master/molden_gabedit.jpg). 184 | * [Gamess](http://www.msg.chem.iastate.edu/gamess/), through the utility [Molden](https://www.theochem.ru.nl/molden/) or [Gabedit](http://gabedit.sourceforge.net/). See [molden_gabedit.jpg](https://raw.githubusercontent.com/zorkzou/Molden2AIM/master/molden_gabedit.jpg). 185 | * [Gamess-UK](http://www.cfs.dl.ac.uk/), through the utility [Molden](https://www.theochem.ru.nl/molden/). See [molden_gabedit.jpg](https://raw.githubusercontent.com/zorkzou/Molden2AIM/master/molden_gabedit.jpg). 186 | * [Jaguar](http://www.schrodinger.com/) 187 | * [MOLCAS](http://www.molcas.org) 188 | * [MOLPRO](http://www.molpro.net/) 189 | * [MRCC](http://www.mrcc.hu/) 190 | * [Multiwfn](http://sobereva.com/multiwfn/) 191 | * [NBO](http://nbo7.chem.wisc.edu/), (> May.2014) 192 | * [NWChem](http://www.nwchem-sw.org/), (>= Ver. 6.8) by MOLDEN_NORM JANPA or NONE to generate a MOLDEN file. See the attached examples. 193 | * [ORCA](https://orcaforum.kofo.mpg.de/) 194 | * [Priroda](http://wt.knc.ru/wiki/index.php/Priroda_Documentation) 195 | * [PSI4](http://www.psicode.org/) 196 | * [PySCF](http://pyscf.org/) 197 | * [Q-Chem](http://www.q-chem.com/) 198 | * [StoBe](https://www.fhi.mpg.de/1022673/StoBe) 199 | * [TeraChem](http://www.petachem.com/) 200 | * [Turbomole](http://www.turbomole.com/) 201 | 202 | See [readme.html](https://zorkzou.github.io/Molden2AIM/readme.html) for details. 203 | 204 | Examples of applications can be found in W. Zou, D. Nori-Shargh, and J. E. Boggs, On the Covalent Character of Rare Gas Bonding Interactions: A New Kind of Weak Interaction, J. Phys. Chem. A 117, 207-212 (2013); Erratum: J. Phys. Chem. A 120, 2057-2057 (2016). 205 | 206 | The EDF library (X2C/HF version) was published in W. Zou, Z. Cai, J. Wang, and K. Xin, An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials, J. Comput. Chem. 39, 1697-1706 (2018). 207 | -------------------------------------------------------------------------------- /examples/C2H4-RCCT-cfour/test.inp: -------------------------------------------------------------------------------- 1 | Ethylene CCSD(T)/cc-pVTZ 2 | C 0.000000 0.000000 0.667477 3 | C 0.000000 0.000000 -0.667477 4 | H 0.000000 0.922919 1.237541 5 | H 0.000000 -0.922919 1.237541 6 | H 0.000000 0.922919 -1.237541 7 | H 0.000000 -0.922919 -1.237541 8 | 9 | *CFOUR(CALC=CCSD(T),BASIS=PVTZ,COORDINATES=1 10 | ABCDTYPE=0,CC_PROGRAM=ECC 11 | PRINT=5,PROPS=1,FROZEN_CORE=1 12 | MEM_UNIT=GB,MEMORY=2) 13 | 14 | 15 | 16 | -------------------------------------------------------------------------------- /examples/ECP/ecp.wfx: -------------------------------------------------------------------------------- 1 | 2 | Molden2AIM, Version 4.1.0 (03/18/2017) Time: Sat Mar 18 18:05:34 2017 3 | 4 | 5 | GTO 6 | 7 | 8 | 13 9 | 10 | 11 | 19 12 | 13 | 14 | 0 15 | 16 | 17 | 0 18 | 19 | 20 | 38 21 | 22 | 23 | 19 24 | 25 | 26 | 19 27 | 28 | 29 | 1 30 | 31 | 32 | 22 33 | 34 | 35 | Ar1 36 | C2 37 | C3 38 | C4 39 | C5 40 | C6 41 | C7 42 | H8 43 | H9 44 | H10 45 | H11 46 | H12 47 | H13 48 | 49 | 50 | 18 51 | 6 52 | 6 53 | 6 54 | 6 55 | 6 56 | 6 57 | 1 58 | 1 59 | 1 60 | 1 61 | 1 62 | 1 63 | 64 | 65 | 0.800000000000E+001 66 | 0.400000000000E+001 67 | 0.400000000000E+001 68 | 0.400000000000E+001 69 | 0.400000000000E+001 70 | 0.400000000000E+001 71 | 0.400000000000E+001 72 | 0.100000000000E+001 73 | 0.100000000000E+001 74 | 0.100000000000E+001 75 | 0.100000000000E+001 76 | 0.100000000000E+001 77 | 0.100000000000E+001 78 | 79 | 80 | 0.000000000000E+000 0.000000000000E+000 0.471121161144E+001 81 | 0.000000000000E+000 0.263621310749E+001 -0.201938386811E+001 82 | 0.000000000000E+000 -0.263621310749E+001 -0.201938386811E+001 83 | 0.228302898940E+001 0.131810655375E+001 -0.201938386811E+001 84 | 0.228302898940E+001 -0.131810655375E+001 -0.201938386811E+001 85 | -0.228302898940E+001 -0.131810655375E+001 -0.201938386811E+001 86 | -0.228302898940E+001 0.131810655375E+001 -0.201938386811E+001 87 | 0.000000000000E+000 0.469655867613E+001 -0.201733351541E+001 88 | 0.000000000000E+000 -0.469655867613E+001 -0.201733351541E+001 89 | 0.406733850344E+001 0.234827933806E+001 -0.201733351541E+001 90 | 0.406733850344E+001 -0.234827933806E+001 -0.201733351541E+001 91 | -0.406733850344E+001 -0.234827933806E+001 -0.201733351541E+001 92 | -0.406733850344E+001 0.234827933806E+001 -0.201733351541E+001 93 | 94 | 95 | 130 96 | 97 | 98 | 1 1 1 1 1 99 | 1 1 1 1 1 100 | 1 1 1 1 1 101 | 1 2 2 2 2 102 | 2 2 2 2 2 103 | 2 2 2 2 2 104 | 2 2 3 3 3 105 | 3 3 3 3 3 106 | 3 3 3 3 3 107 | 3 3 3 4 4 108 | 4 4 4 4 4 109 | 4 4 4 4 4 110 | 4 4 4 4 5 111 | 5 5 5 5 5 112 | 5 5 5 5 5 113 | 5 5 5 5 5 114 | 6 6 6 6 6 115 | 6 6 6 6 6 116 | 6 6 6 6 6 117 | 6 7 7 7 7 118 | 7 7 7 7 7 119 | 7 7 7 7 7 120 | 7 7 8 8 8 121 | 9 9 9 10 10 122 | 10 11 11 11 12 123 | 12 12 13 13 13 124 | 125 | 126 | 1 1 1 1 2 127 | 2 2 3 3 3 128 | 4 4 4 2 3 129 | 4 1 1 1 1 130 | 2 2 2 3 3 131 | 3 4 4 4 2 132 | 3 4 1 1 1 133 | 1 2 2 2 3 134 | 3 3 4 4 4 135 | 2 3 4 1 1 136 | 1 1 2 2 2 137 | 3 3 3 4 4 138 | 4 2 3 4 1 139 | 1 1 1 2 2 140 | 2 3 3 3 4 141 | 4 4 2 3 4 142 | 1 1 1 1 2 143 | 2 2 3 3 3 144 | 4 4 4 2 3 145 | 4 1 1 1 1 146 | 2 2 2 3 3 147 | 3 4 4 4 2 148 | 3 4 1 1 1 149 | 1 1 1 1 1 150 | 1 1 1 1 1 151 | 1 1 1 1 1 152 | 153 | 154 | 0.270600000000E+001 0.127800000000E+001 0.435400000000E+000 0.147600000000E+000 0.270600000000E+001 155 | 0.127800000000E+001 0.435400000000E+000 0.270600000000E+001 0.127800000000E+001 0.435400000000E+000 156 | 0.270600000000E+001 0.127800000000E+001 0.435400000000E+000 0.147600000000E+000 0.147600000000E+000 157 | 0.147600000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 158 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 159 | 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 160 | 0.112800000000E+000 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 161 | 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 162 | 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 163 | 0.112800000000E+000 0.112800000000E+000 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 164 | 0.344700000000E+000 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 165 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 166 | 0.344700000000E+000 0.112800000000E+000 0.112800000000E+000 0.112800000000E+000 0.428600000000E+001 167 | 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 168 | 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 169 | 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 0.112800000000E+000 0.112800000000E+000 170 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 0.428600000000E+001 171 | 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 172 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 0.112800000000E+000 173 | 0.112800000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 174 | 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 175 | 0.344700000000E+000 0.428600000000E+001 0.104600000000E+001 0.344700000000E+000 0.112800000000E+000 176 | 0.112800000000E+000 0.112800000000E+000 0.544717800000E+001 0.824547000000E+000 0.183192000000E+000 177 | 0.544717800000E+001 0.824547000000E+000 0.183192000000E+000 0.544717800000E+001 0.824547000000E+000 178 | 0.183192000000E+000 0.544717800000E+001 0.824547000000E+000 0.183192000000E+000 0.544717800000E+001 179 | 0.824547000000E+000 0.183192000000E+000 0.544717800000E+001 0.824547000000E+000 0.183192000000E+000 180 | 181 | 182 | 183 | 110 184 | 185 | 186 | 1 1 1 1 1 187 | 1 1 1 1 1 188 | 1 1 1 1 1 189 | 1 1 1 1 1 190 | 2 2 2 2 2 191 | 2 2 2 2 2 192 | 2 2 2 2 2 193 | 3 3 3 3 3 194 | 3 3 3 3 3 195 | 3 3 3 3 3 196 | 4 4 4 4 4 197 | 4 4 4 4 4 198 | 4 4 4 4 4 199 | 5 5 5 5 5 200 | 5 5 5 5 5 201 | 5 5 5 5 5 202 | 6 6 6 6 6 203 | 6 6 6 6 6 204 | 6 6 6 6 6 205 | 7 7 7 7 7 206 | 7 7 7 7 7 207 | 7 7 7 7 7 208 | 209 | 210 | 1 1 1 1 1 211 | 1 1 1 1 1 212 | 1 1 1 1 1 213 | 1 1 1 1 1 214 | 1 1 1 1 1 215 | 1 1 1 1 1 216 | 1 1 1 1 1 217 | 1 1 1 1 1 218 | 1 1 1 1 1 219 | 1 1 1 1 1 220 | 1 1 1 1 1 221 | 1 1 1 1 1 222 | 1 1 1 1 1 223 | 1 1 1 1 1 224 | 1 1 1 1 1 225 | 1 1 1 1 1 226 | 1 1 1 1 1 227 | 1 1 1 1 1 228 | 1 1 1 1 1 229 | 1 1 1 1 1 230 | 1 1 1 1 1 231 | 1 1 1 1 1 232 | 233 | 234 | 0.395537152567E+006 0.201995358824E+006 0.103156238855E+006 0.526804659115E+005 0.269031860743E+005 235 | 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004 0.934489134729E+003 236 | 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002 0.324597220759E+002 237 | 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001 0.112749685158E+001 238 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004 239 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002 240 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001 241 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004 242 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002 243 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001 244 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004 245 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002 246 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001 247 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004 248 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002 249 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001 250 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004 251 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002 252 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001 253 | 0.269031860743E+005 0.137390854167E+005 0.701636109438E+004 0.358315866841E+004 0.182986962477E+004 254 | 0.934489134729E+003 0.477230689612E+003 0.243715119463E+003 0.124461944187E+003 0.635609952513E+002 255 | 0.324597220759E+002 0.165767315801E+002 0.846550778330E+001 0.432321786011E+001 0.220780762884E+001 256 | 257 | 258 | 0.118857505367E+004 -0.511356794494E+003 0.396433576177E+003 0.249016613330E+003 0.195235501650E+003 259 | 0.369522503075E+003 0.334676713157E+003 0.488178725914E+003 0.537137371026E+003 0.638675294714E+003 260 | 0.603846607359E+003 0.441446932761E+003 0.157130578643E+003 -0.635089030843E+001 -0.369952993041E+001 261 | 0.338240451127E+002 0.195664514821E+002 0.190240733713E+001 0.282705507159E-002 0.105398442292E-002 262 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001 263 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002 264 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003 265 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001 266 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002 267 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003 268 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001 269 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002 270 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003 271 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001 272 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002 273 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003 274 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001 275 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002 276 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003 277 | 0.331576296169E+002 -0.207147185927E+002 0.132015078578E+002 0.274596363581E+001 0.701063788567E+001 278 | 0.923001690937E+001 0.117219668973E+002 0.155485552081E+002 0.183002494451E+002 0.193535056722E+002 279 | 0.157314999957E+002 0.838908204003E+001 0.198205369819E+001 0.109023869198E+000 0.610309309193E-003 280 | 281 | 282 | 283 | 0.200000000000E+001 284 | 0.200000000000E+001 285 | 0.200000000000E+001 286 | 0.200000000000E+001 287 | 0.200000000000E+001 288 | 0.200000000000E+001 289 | 0.200000000000E+001 290 | 0.200000000000E+001 291 | 0.200000000000E+001 292 | 0.200000000000E+001 293 | 0.200000000000E+001 294 | 0.200000000000E+001 295 | 0.200000000000E+001 296 | 0.200000000000E+001 297 | 0.200000000000E+001 298 | 0.200000000000E+001 299 | 0.200000000000E+001 300 | 0.200000000000E+001 301 | 0.200000000000E+001 302 | 303 | 304 | -0.126500000000E+001 305 | -0.116300000000E+001 306 | -0.102550000000E+001 307 | -0.102550000000E+001 308 | -0.827100000000E+000 309 | -0.827100000000E+000 310 | -0.710600000000E+000 311 | -0.638700000000E+000 312 | -0.616800000000E+000 313 | -0.586600000000E+000 314 | -0.586600000000E+000 315 | -0.580100000000E+000 316 | -0.578900000000E+000 317 | -0.578900000000E+000 318 | -0.499200000000E+000 319 | -0.486500000000E+000 320 | -0.486500000000E+000 321 | -0.335900000000E+000 322 | -0.335900000000E+000 323 | 324 | 325 | Alpha and Beta 326 | Alpha and Beta 327 | Alpha and Beta 328 | Alpha and Beta 329 | Alpha and Beta 330 | Alpha and Beta 331 | Alpha and Beta 332 | Alpha and Beta 333 | Alpha and Beta 334 | Alpha and Beta 335 | Alpha and Beta 336 | Alpha and Beta 337 | Alpha and Beta 338 | Alpha and Beta 339 | Alpha and Beta 340 | Alpha and Beta 341 | Alpha and Beta 342 | Alpha and Beta 343 | Alpha and Beta 344 | 345 | 346 | 347 | 1 348 | 349 | -0.470302887425E+000 0.101235799664E+000 0.331434528159E+000 0.378183759517E-001 -0.000000000000E+000 350 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 351 | -0.185983174092E-002 0.217248837361E-002 0.100517558515E-002 0.000000000000E+000 0.000000000000E+000 352 | 0.121615991243E-003 -0.130599786860E-002 0.250269924739E-003 0.956031790035E-003 -0.361883685094E-004 353 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.913733098415E-003 -0.504070427021E-003 354 | -0.183946083242E-003 0.618238882163E-003 0.341057949934E-003 0.124459342754E-003 0.000000000000E+000 355 | -0.860583904432E-005 -0.603637061417E-005 -0.130599786860E-002 0.250269924739E-003 0.956031790035E-003 356 | -0.361883685094E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.913733098415E-003 357 | 0.504070427021E-003 0.183946083242E-003 0.618238882163E-003 0.341057949934E-003 0.124459342754E-003 358 | 0.000000000000E+000 0.860583904432E-005 -0.603637061417E-005 -0.130599843835E-002 0.250270033921E-003 359 | 0.956032207111E-003 -0.361915199816E-004 -0.791315450264E-003 -0.436537450175E-003 -0.159301855145E-003 360 | -0.456867623877E-003 -0.252035806363E-003 -0.919732579654E-004 0.618240318616E-003 0.341058742369E-003 361 | 0.124459631931E-003 -0.745203402949E-005 -0.430266005443E-005 -0.603649931550E-005 -0.130599843835E-002 362 | 0.250270033921E-003 0.956032207111E-003 -0.361915199816E-004 -0.791315450264E-003 -0.436537450175E-003 363 | -0.159301855145E-003 0.456867623877E-003 0.252035806363E-003 0.919732579654E-004 0.618240318616E-003 364 | 0.341058742369E-003 0.124459631931E-003 -0.745203402949E-005 0.430266005443E-005 -0.603649931550E-005 365 | -0.130599843835E-002 0.250270033921E-003 0.956032207111E-003 -0.361915199816E-004 0.791315450264E-003 366 | 0.436537450175E-003 0.159301855145E-003 0.456867623877E-003 0.252035806363E-003 0.919732579654E-004 367 | 0.618240318616E-003 0.341058742369E-003 0.124459631931E-003 0.745203402949E-005 0.430266005443E-005 368 | -0.603649931550E-005 -0.130599843835E-002 0.250270033921E-003 0.956032207111E-003 -0.361915199816E-004 369 | 0.791315450264E-003 0.436537450175E-003 0.159301855145E-003 -0.456867623877E-003 -0.252035806363E-003 370 | -0.919732579654E-004 0.618240318616E-003 0.341058742369E-003 0.124459631931E-003 0.745203402949E-005 371 | -0.430266005443E-005 -0.603649931550E-005 0.103921268999E-003 0.145989056106E-003 0.105143704683E-003 372 | 0.103921268999E-003 0.145989056106E-003 0.105143704683E-003 0.103921537777E-003 0.145989433687E-003 373 | 0.105143481563E-003 0.103921537777E-003 0.145989433687E-003 0.105143481563E-003 0.103921537777E-003 374 | 0.145989433687E-003 0.105143481563E-003 0.103921537777E-003 0.145989433687E-003 0.105143481563E-003 375 | 376 | 2 377 | 378 | 0.775998183157E-002 -0.167038729104E-002 -0.546865857226E-002 0.100389686606E-003 -0.000000000000E+000 379 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 380 | -0.178703442300E-002 0.208745308609E-002 0.965831119173E-003 0.000000000000E+000 0.000000000000E+000 381 | -0.154634480571E-002 -0.115085957602E+000 0.220540589231E-001 0.842465647912E-001 0.164555242373E-002 382 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.808874578325E-001 -0.446224126946E-001 383 | -0.162836730742E-001 0.763653746814E-003 0.421277581955E-003 0.153733202751E-003 0.000000000000E+000 384 | 0.571186505544E-003 -0.723892828678E-004 -0.115085957602E+000 0.220540589231E-001 0.842465647912E-001 385 | 0.164555242373E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.808874578325E-001 386 | 0.446224126946E-001 0.162836730742E-001 0.763653746814E-003 0.421277581955E-003 0.153733202751E-003 387 | 0.000000000000E+000 -0.571186505544E-003 -0.723892828678E-004 -0.115086033389E+000 0.220540734463E-001 388 | 0.842466202696E-001 0.164544741603E-002 -0.700504910419E-001 -0.386440865431E-001 -0.141020539572E-001 389 | -0.404438519181E-001 -0.223112742026E-001 -0.814186129893E-002 0.763742571329E-003 0.421326582928E-003 390 | 0.153751084255E-003 0.494739987051E-003 0.285644789711E-003 -0.723885217280E-004 -0.115086033389E+000 391 | 0.220540734463E-001 0.842466202696E-001 0.164544741603E-002 -0.700504910419E-001 -0.386440865431E-001 392 | -0.141020539572E-001 0.404438519181E-001 0.223112742026E-001 0.814186129893E-002 0.763742571329E-003 393 | 0.421326582928E-003 0.153751084255E-003 0.494739987051E-003 -0.285644789711E-003 -0.723885217280E-004 394 | -0.115086033389E+000 0.220540734463E-001 0.842466202696E-001 0.164544741603E-002 0.700504910419E-001 395 | 0.386440865431E-001 0.141020539572E-001 0.404438519181E-001 0.223112742026E-001 0.814186129893E-002 396 | 0.763742571329E-003 0.421326582928E-003 0.153751084255E-003 -0.494739987051E-003 -0.285644789711E-003 397 | -0.723885217280E-004 -0.115086033389E+000 0.220540734463E-001 0.842466202696E-001 0.164544741603E-002 398 | 0.700504910419E-001 0.386440865431E-001 0.141020539572E-001 -0.404438519181E-001 -0.223112742026E-001 399 | -0.814186129893E-002 0.763742571329E-003 0.421326582928E-003 0.153751084255E-003 -0.494739987051E-003 400 | 0.285644789711E-003 -0.723885217280E-004 0.126259365081E-001 0.177369711805E-001 0.273525337242E-002 401 | 0.126259365081E-001 0.177369711805E-001 0.273525337242E-002 0.126259820476E-001 0.177370351546E-001 402 | 0.273516222135E-002 0.126259820476E-001 0.177370351546E-001 0.273516222135E-002 0.126259820476E-001 403 | 0.177370351546E-001 0.273516222135E-002 0.126259820476E-001 0.177370351546E-001 0.273516222135E-002 404 | 405 | 3 406 | 407 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.206724472370E-003 408 | -0.241476958846E-003 -0.111727522391E-003 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 409 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.521073085030E-003 0.000000000000E+000 410 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 411 | 0.146120270368E+000 0.806087764670E-001 0.294158671312E-001 0.000000000000E+000 0.000000000000E+000 412 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.521912025520E-002 413 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 414 | 0.000000000000E+000 0.146120270368E+000 0.806087764670E-001 0.294158671312E-001 0.000000000000E+000 415 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 416 | -0.521912025520E-002 0.000000000000E+000 0.000000000000E+000 -0.146517905955E+000 0.280774005672E-001 417 | 0.107255746178E+000 0.110692016552E-001 0.412129316799E-002 0.227355451025E-002 0.829668682744E-003 418 | -0.819832444316E-001 -0.452269148407E-001 -0.165042688404E-001 0.340593229707E-003 0.187891819872E-003 419 | 0.685657449554E-004 0.404776583365E-002 0.535024516357E-002 -0.151668539887E-004 -0.146517905955E+000 420 | 0.280774005672E-001 0.107255746178E+000 0.110692016552E-001 0.412129316799E-002 0.227355451025E-002 421 | 0.829668682744E-003 0.819832444316E-001 0.452269148407E-001 0.165042688404E-001 0.340593229707E-003 422 | 0.187891819872E-003 0.685657449554E-004 0.404776583365E-002 -0.535024516357E-002 -0.151668539887E-004 423 | 0.146517905955E+000 -0.280774005672E-001 -0.107255746178E+000 -0.110692016552E-001 0.412129316799E-002 424 | 0.227355451025E-002 0.829668682744E-003 -0.819832444316E-001 -0.452269148407E-001 -0.165042688404E-001 425 | -0.340593229707E-003 -0.187891819872E-003 -0.685657449554E-004 0.404776583365E-002 0.535024516357E-002 426 | 0.151668539887E-004 0.146517905955E+000 -0.280774005672E-001 -0.107255746178E+000 -0.110692016552E-001 427 | 0.412129316799E-002 0.227355451025E-002 0.829668682744E-003 0.819832444316E-001 0.452269148407E-001 428 | 0.165042688404E-001 -0.340593229707E-003 -0.187891819872E-003 -0.685657449554E-004 0.404776583365E-002 429 | -0.535024516357E-002 0.151668539887E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 430 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.242854384686E-001 0.341162908546E-001 431 | -0.296707267612E-002 0.242854384686E-001 0.341162908546E-001 -0.296707267612E-002 -0.242854384686E-001 432 | -0.341162908546E-001 0.296707267612E-002 -0.242854384686E-001 -0.341162908546E-001 0.296707267612E-002 433 | 434 | 4 435 | 436 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 437 | 0.000000000000E+000 0.000000000000E+000 -0.206720149427E-003 0.241471909172E-003 0.111725185988E-003 438 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.521072153451E-003 439 | 0.000000000000E+000 0.169184301673E+000 -0.324209889349E-001 -0.123848265501E+000 -0.127816170757E-001 440 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.432116967582E-001 0.238381847773E-001 441 | 0.869906363541E-002 -0.393226263891E-003 -0.216927384046E-003 -0.791614435287E-004 0.000000000000E+000 442 | -0.713670963523E-002 0.175142198090E-004 -0.169184301673E+000 0.324209889349E-001 0.123848265501E+000 443 | 0.127816170757E-001 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.432116967582E-001 444 | 0.238381847773E-001 0.869906363541E-002 0.393226263891E-003 0.216927384046E-003 0.791614435287E-004 445 | 0.000000000000E+000 -0.713670963523E-002 -0.175142198090E-004 0.845921459146E-001 -0.162104935243E-001 446 | -0.619241291478E-001 -0.639075767751E-002 0.819830590028E-001 0.452268125470E-001 0.165042315112E-001 447 | -0.987873134952E-001 -0.544970554138E-001 -0.198871414672E-001 -0.196711121664E-003 -0.108517749077E-003 448 | -0.396004483399E-004 -0.535023784381E-002 0.213013744559E-002 0.875659402926E-005 -0.845921459146E-001 449 | 0.162104935243E-001 0.619241291478E-001 0.639075767751E-002 -0.819830590028E-001 -0.452268125470E-001 450 | -0.165042315112E-001 -0.987873134952E-001 -0.544970554138E-001 -0.198871414672E-001 0.196711121664E-003 451 | 0.108517749077E-003 0.396004483399E-004 0.535023784381E-002 0.213013744559E-002 -0.875659402926E-005 452 | -0.845921459146E-001 0.162104935243E-001 0.619241291478E-001 0.639075767751E-002 0.819830590028E-001 453 | 0.452268125470E-001 0.165042315112E-001 -0.987873134952E-001 -0.544970554138E-001 -0.198871414672E-001 454 | 0.196711121664E-003 0.108517749077E-003 0.396004483399E-004 -0.535023784381E-002 0.213013744559E-002 455 | -0.875659402926E-005 0.845921459146E-001 -0.162104935243E-001 -0.619241291478E-001 -0.639075767751E-002 456 | -0.819830590028E-001 -0.452268125470E-001 -0.165042315112E-001 -0.987873134952E-001 -0.544970554138E-001 457 | -0.198871414672E-001 -0.196711121664E-003 -0.108517749077E-003 -0.396004483399E-004 0.535023784381E-002 458 | 0.213013744559E-002 0.875659402926E-005 -0.280423763041E-001 -0.393940536624E-001 0.342603377297E-002 459 | 0.280423763041E-001 0.393940536624E-001 -0.342603377297E-002 -0.140212216405E-001 -0.196970738759E-001 460 | 0.171302951675E-002 0.140212216405E-001 0.196970738759E-001 -0.171302951675E-002 0.140212216405E-001 461 | 0.196970738759E-001 -0.171302951675E-002 -0.140212216405E-001 -0.196970738759E-001 0.171302951675E-002 462 | 463 | 5 464 | 465 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 466 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 467 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 468 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 469 | 0.270457778912E+000 0.149200864392E+000 0.544465875204E-001 0.000000000000E+000 0.000000000000E+000 470 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.105542332009E-002 471 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 472 | 0.000000000000E+000 -0.270457778912E+000 -0.149200864392E+000 -0.544465875204E-001 0.000000000000E+000 473 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 474 | -0.105542332009E-002 0.000000000000E+000 0.000000000000E+000 -0.118631308044E+000 0.227334586447E-001 475 | 0.868418735669E-001 -0.130673013168E-001 -0.421398600921E-002 -0.232468948625E-002 -0.848328929503E-003 476 | 0.153715873785E+000 0.847989705892E-001 0.309449586142E-001 0.205575337337E-003 0.113407786427E-003 477 | 0.413849275897E-004 0.982864221027E-002 0.628389916106E-002 0.153495383287E-004 0.118631308044E+000 478 | -0.227334586447E-001 -0.868418735669E-001 0.130673013168E-001 0.421398600921E-002 0.232468948625E-002 479 | 0.848328929503E-003 0.153715873785E+000 0.847989705892E-001 0.309449586142E-001 -0.205575337337E-003 480 | -0.113407786427E-003 -0.413849275897E-004 -0.982864221027E-002 0.628389916106E-002 -0.153495383287E-004 481 | -0.118631308044E+000 0.227334586447E-001 0.868418735669E-001 -0.130673013168E-001 0.421398600921E-002 482 | 0.232468948625E-002 0.848328929503E-003 -0.153715873785E+000 -0.847989705892E-001 -0.309449586142E-001 483 | 0.205575337337E-003 0.113407786427E-003 0.413849275897E-004 -0.982864221027E-002 -0.628389916106E-002 484 | 0.153495383287E-004 0.118631308044E+000 -0.227334586447E-001 -0.868418735669E-001 0.130673013168E-001 485 | -0.421398600921E-002 -0.232468948625E-002 -0.848328929503E-003 -0.153715873785E+000 -0.847989705892E-001 486 | -0.309449586142E-001 -0.205575337337E-003 -0.113407786427E-003 -0.413849275897E-004 0.982864221027E-002 487 | -0.628389916106E-002 -0.153495383287E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 488 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.358167045513E-001 0.503154642034E-001 489 | 0.406031246397E-002 -0.358167045513E-001 -0.503154642034E-001 -0.406031246397E-002 0.358167045513E-001 490 | 0.503154642034E-001 0.406031246397E-002 -0.358167045513E-001 -0.503154642034E-001 -0.406031246397E-002 491 | 492 | 6 493 | 494 | 0.252159395093E-008 -0.542789735880E-009 -0.177703204399E-008 -0.242314363594E-009 -0.000000000000E+000 495 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 496 | 0.102944780121E-007 -0.120250844748E-007 -0.556381404395E-008 0.000000000000E+000 0.000000000000E+000 497 | -0.845625776836E-009 -0.136983703288E+000 0.262503499713E-001 0.100276407955E+000 -0.150887722844E-001 498 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.845333994441E-001 0.466337345437E-001 499 | 0.170176474485E-001 0.237265707920E-003 0.130890111036E-003 0.477646018680E-004 0.000000000000E+000 500 | 0.134566531437E-001 0.177211530878E-004 -0.136983703288E+000 0.262503499713E-001 0.100276407955E+000 501 | -0.150887722844E-001 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.845333994441E-001 502 | -0.466337345437E-001 -0.170176474485E-001 0.237265707920E-003 0.130890111036E-003 0.477646018680E-004 503 | 0.000000000000E+000 -0.134566531437E-001 0.177211530878E-004 0.684918365258E-001 -0.131251720885E-001 504 | -0.501381929107E-001 0.754438483943E-002 -0.153716050233E+000 -0.847990679285E-001 -0.309449941354E-001 505 | 0.181709810284E+000 0.100242118648E+000 0.365804937420E-001 -0.118553682991E-003 -0.654013800244E-004 506 | -0.238663628120E-004 -0.628390915082E-002 -0.257262005972E-002 -0.886181348690E-005 0.684918365258E-001 507 | -0.131251720885E-001 -0.501381929107E-001 0.754438483943E-002 -0.153716050233E+000 -0.847990679285E-001 508 | -0.309449941354E-001 -0.181709810284E+000 -0.100242118648E+000 -0.365804937420E-001 -0.118553682991E-003 509 | -0.654013800244E-004 -0.238663628120E-004 -0.628390915082E-002 0.257262005972E-002 -0.886181348690E-005 510 | 0.684918365258E-001 -0.131251720885E-001 -0.501381929107E-001 0.754438483943E-002 0.153716050233E+000 511 | 0.847990679285E-001 0.309449941354E-001 -0.181709810284E+000 -0.100242118648E+000 -0.365804937420E-001 512 | -0.118553682991E-003 -0.654013800244E-004 -0.238663628120E-004 0.628390915082E-002 0.257262005972E-002 513 | -0.886181348690E-005 0.684918365258E-001 -0.131251720885E-001 -0.501381929107E-001 0.754438483943E-002 514 | 0.153716050233E+000 0.847990679285E-001 0.309449941354E-001 0.181709810284E+000 0.100242118648E+000 515 | 0.365804937420E-001 -0.118553682991E-003 -0.654013800244E-004 -0.238663628120E-004 0.628390915082E-002 516 | -0.257262005972E-002 -0.886181348690E-005 0.413574710197E-001 0.580991573262E-001 0.468844164519E-002 517 | 0.413574710197E-001 0.580991573262E-001 0.468844164519E-002 -0.206787940842E-001 -0.290496609486E-001 518 | -0.234421453685E-002 -0.206787940842E-001 -0.290496609486E-001 -0.234421453685E-002 -0.206787940842E-001 519 | -0.290496609486E-001 -0.234421453685E-002 -0.206787940842E-001 -0.290496609486E-001 -0.234421453685E-002 520 | 521 | 7 522 | 523 | 0.246719337876E-003 -0.531079653777E-004 -0.173869456308E-003 -0.503665155326E-004 -0.000000000000E+000 524 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 525 | 0.213030844663E-002 -0.248843496467E-002 -0.115135901397E-002 0.000000000000E+000 0.000000000000E+000 526 | -0.293307295833E-003 0.127797491570E-001 -0.244899852949E-002 -0.935518101257E-002 -0.316208602275E-002 527 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.260779811262E+000 -0.143861912247E+000 528 | -0.524982896575E-001 -0.884168445548E-004 -0.487760776838E-004 -0.177994342950E-004 0.000000000000E+000 529 | -0.222634013027E-002 -0.389298039857E-005 0.127797491570E-001 -0.244899852949E-002 -0.935518101257E-002 530 | -0.316208602275E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.260779811262E+000 531 | 0.143861912247E+000 0.524982896575E-001 -0.884168445548E-004 -0.487760776838E-004 -0.177994342950E-004 532 | 0.000000000000E+000 0.222634013027E-002 -0.389298039857E-005 0.127796195946E-001 -0.244897370129E-002 533 | -0.935508616880E-002 -0.316213891826E-002 -0.225841935004E+000 -0.124588067144E+000 -0.454648512217E-001 534 | -0.130390492044E+000 -0.719312796242E-001 -0.262492628811E-001 -0.881611850150E-004 -0.486350404229E-004 535 | -0.177479667811E-004 -0.192803578011E-002 -0.111315221513E-002 -0.388973492750E-005 0.127796195946E-001 536 | -0.244897370129E-002 -0.935508616880E-002 -0.316213891826E-002 -0.225841935004E+000 -0.124588067144E+000 537 | -0.454648512217E-001 0.130390492044E+000 0.719312796242E-001 0.262492628811E-001 -0.881611850150E-004 538 | -0.486350404229E-004 -0.177479667811E-004 -0.192803578011E-002 0.111315221513E-002 -0.388973492750E-005 539 | 0.127796195946E-001 -0.244897370129E-002 -0.935508616880E-002 -0.316213891826E-002 0.225841935004E+000 540 | 0.124588067144E+000 0.454648512217E-001 0.130390492044E+000 0.719312796242E-001 0.262492628811E-001 541 | -0.881611850150E-004 -0.486350404229E-004 -0.177479667811E-004 0.192803578011E-002 0.111315221513E-002 542 | -0.388973492750E-005 0.127796195946E-001 -0.244897370129E-002 -0.935508616880E-002 -0.316213891826E-002 543 | 0.225841935004E+000 0.124588067144E+000 0.454648512217E-001 -0.130390492044E+000 -0.719312796242E-001 544 | -0.262492628811E-001 -0.881611850150E-004 -0.486350404229E-004 -0.177479667811E-004 0.192803578011E-002 545 | -0.111315221513E-002 -0.388973492750E-005 -0.386338955394E-001 -0.542730665034E-001 -0.156980786731E-001 546 | -0.386338955394E-001 -0.542730665034E-001 -0.156980786731E-001 -0.386339172533E-001 -0.542730970073E-001 547 | -0.156980805008E-001 -0.386339172533E-001 -0.542730970073E-001 -0.156980805008E-001 -0.386339172533E-001 548 | -0.542730970073E-001 -0.156980805008E-001 -0.386339172533E-001 -0.542730970073E-001 -0.156980805008E-001 549 | 550 | 8 551 | 552 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 553 | 0.000000000000E+000 0.000000000000E+000 -0.161111644877E-007 0.188196151107E-007 0.870753457689E-008 554 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.707665341237E-009 555 | 0.000000000000E+000 -0.792050285914E-001 0.151781538249E-001 0.579805887014E-001 -0.218606977215E-002 556 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.180442718090E+000 0.995431139773E-001 557 | 0.363254119827E-001 0.214043940018E-003 0.118079579730E-003 0.430897649174E-004 0.000000000000E+000 558 | 0.516382827740E-002 0.225843090624E-004 0.792050285914E-001 -0.151781538249E-001 -0.579805887014E-001 559 | 0.218606977215E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.180442718090E+000 560 | 0.995431139773E-001 0.363254119827E-001 -0.214043940018E-003 -0.118079579730E-003 -0.430897649174E-004 561 | 0.000000000000E+000 0.516382827740E-002 -0.225843090624E-004 0.792048619664E-001 -0.151781218944E-001 562 | -0.579804667267E-001 0.218609217050E-002 -0.156269930790E+000 -0.862079428667E-001 -0.314591227428E-001 563 | -0.902221936098E-001 -0.497720173851E-001 -0.181628739998E-001 -0.213895374108E-003 -0.117997621791E-003 564 | -0.430598567119E-004 -0.447200990165E-002 -0.258191750509E-002 -0.225842133571E-004 -0.792048619664E-001 565 | 0.151781218944E-001 0.579804667267E-001 -0.218609217050E-002 0.156269930790E+000 0.862079428667E-001 566 | 0.314591227428E-001 -0.902221936098E-001 -0.497720173851E-001 -0.181628739998E-001 0.213895374108E-003 567 | 0.117997621791E-003 0.430598567119E-004 0.447200990165E-002 -0.258191750509E-002 0.225842133571E-004 568 | -0.792048619664E-001 0.151781218944E-001 0.579804667267E-001 -0.218609217050E-002 -0.156269930790E+000 569 | -0.862079428667E-001 -0.314591227428E-001 -0.902221936098E-001 -0.497720173851E-001 -0.181628739998E-001 570 | 0.213895374108E-003 0.117997621791E-003 0.430598567119E-004 -0.447200990165E-002 -0.258191750509E-002 571 | 0.225842133571E-004 0.792048619664E-001 -0.151781218944E-001 -0.579804667267E-001 0.218609217050E-002 572 | 0.156269930790E+000 0.862079428667E-001 0.314591227428E-001 -0.902221936098E-001 -0.497720173851E-001 573 | -0.181628739998E-001 -0.213895374108E-003 -0.117997621791E-003 -0.430598567119E-004 0.447200990165E-002 574 | -0.258191750509E-002 -0.225842133571E-004 0.502470750312E-001 0.705873121697E-001 0.219990605704E-001 575 | -0.502470750312E-001 -0.705873121697E-001 -0.219990605704E-001 -0.502473864462E-001 -0.705877496469E-001 576 | -0.219991883551E-001 0.502473864462E-001 0.705877496469E-001 0.219991883551E-001 0.502473864462E-001 577 | 0.705877496469E-001 0.219991883551E-001 -0.502473864462E-001 -0.705877496469E-001 -0.219991883551E-001 578 | 579 | 9 580 | 581 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.313897784812E-007 582 | 0.366667195210E-007 0.169651040243E-007 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 583 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.172741865291E-008 0.000000000000E+000 584 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 585 | 0.358010806734E+000 0.197500408534E+000 0.720721245308E-001 0.000000000000E+000 0.000000000000E+000 586 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.286477510134E-002 587 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 588 | 0.000000000000E+000 0.358010806734E+000 0.197500408534E+000 0.720721245308E-001 0.000000000000E+000 589 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 590 | 0.286477510134E-002 0.000000000000E+000 0.000000000000E+000 0.517934662076E-007 -0.992524352562E-008 591 | -0.379144571375E-007 -0.423341848496E-007 -0.179004990068E+000 -0.987499762664E-001 -0.360359790631E-001 592 | 0.310046637533E+000 0.171040472594E+000 0.624163278045E-001 0.166743021653E-006 0.919855330546E-007 593 | 0.335674890120E-007 -0.143236388673E-002 0.248092708255E-002 -0.997578240425E-009 0.517934662076E-007 594 | -0.992524352562E-008 -0.379144571375E-007 -0.423341848496E-007 -0.179004990068E+000 -0.987499762664E-001 595 | -0.360359790631E-001 -0.310046637533E+000 -0.171040472594E+000 -0.624163278045E-001 0.166743021653E-006 596 | 0.919855330546E-007 0.335674890120E-007 -0.143236388673E-002 -0.248092708255E-002 -0.997578240425E-009 597 | -0.517934662076E-007 0.992524352562E-008 0.379144571375E-007 0.423341848496E-007 -0.179004990068E+000 598 | -0.987499762664E-001 -0.360359790631E-001 0.310046637533E+000 0.171040472594E+000 0.624163278045E-001 599 | -0.166743021653E-006 -0.919855330546E-007 -0.335674890120E-007 -0.143236388673E-002 0.248092708255E-002 600 | 0.997578240425E-009 -0.517934662076E-007 0.992524352562E-008 0.379144571375E-007 0.423341848496E-007 601 | -0.179004990068E+000 -0.987499762664E-001 -0.360359790631E-001 -0.310046637533E+000 -0.171040472594E+000 602 | -0.624163278045E-001 -0.166743021653E-006 -0.919855330546E-007 -0.335674890120E-007 -0.143236388673E-002 603 | -0.248092708255E-002 0.997578240425E-009 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 604 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.728314158211E-007 0.102313893518E-006 605 | 0.409854180603E-007 0.728314158211E-007 0.102313893518E-006 0.409854180603E-007 -0.728314158211E-007 606 | -0.102313893518E-006 -0.409854180603E-007 -0.728314158211E-007 -0.102313893518E-006 -0.409854180603E-007 607 | 608 | 10 609 | 610 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.143467045392E-003 611 | 0.167585314979E-003 0.775390419079E-004 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 612 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.766526658633E-004 0.000000000000E+000 613 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 614 | 0.108595848148E+000 0.599080362126E-001 0.218617241268E-001 0.000000000000E+000 0.000000000000E+000 615 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.487634310644E-002 616 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 617 | 0.000000000000E+000 0.108595848148E+000 0.599080362126E-001 0.218617241268E-001 0.000000000000E+000 618 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 619 | -0.487634310644E-002 0.000000000000E+000 0.000000000000E+000 -0.231561201843E-001 0.443743484974E-002 620 | 0.169510131390E-001 0.894339090028E-002 -0.272773793063E+000 -0.150478517838E+000 -0.549128305977E-001 621 | -0.220183163040E+000 -0.121466346364E+000 -0.443256685209E-001 -0.199384721351E-003 -0.109992668326E-003 622 | -0.401386779295E-004 -0.392982728418E-002 0.546485334832E-003 -0.102332178855E-005 -0.231561201843E-001 623 | 0.443743484974E-002 0.169510131390E-001 0.894339090028E-002 -0.272773793063E+000 -0.150478517838E+000 624 | -0.549128305977E-001 0.220183163040E+000 0.121466346364E+000 0.443256685209E-001 -0.199384721351E-003 625 | -0.109992668326E-003 -0.401386779295E-004 -0.392982728418E-002 -0.546485334832E-003 -0.102332178855E-005 626 | 0.231561201843E-001 -0.443743484974E-002 -0.169510131390E-001 -0.894339090028E-002 -0.272773793063E+000 627 | -0.150478517838E+000 -0.549128305977E-001 -0.220183163040E+000 -0.121466346364E+000 -0.443256685209E-001 628 | 0.199384721351E-003 0.109992668326E-003 0.401386779295E-004 -0.392982728418E-002 0.546485334832E-003 629 | 0.102332178855E-005 0.231561201843E-001 -0.443743484974E-002 -0.169510131390E-001 -0.894339090028E-002 630 | -0.272773793063E+000 -0.150478517838E+000 -0.549128305977E-001 0.220183163040E+000 0.121466346364E+000 631 | 0.443256685209E-001 0.199384721351E-003 0.109992668326E-003 0.401386779295E-004 -0.392982728418E-002 632 | -0.546485334832E-003 0.102332178855E-005 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 633 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.508834659956E-001 -0.714813169976E-001 634 | -0.276667990059E-001 -0.508834659956E-001 -0.714813169976E-001 -0.276667990059E-001 0.508834659956E-001 635 | 0.714813169976E-001 0.276667990059E-001 0.508834659956E-001 0.714813169976E-001 0.276667990059E-001 636 | 637 | 11 638 | 639 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 640 | 0.000000000000E+000 0.000000000000E+000 0.143420727593E-003 -0.167531210687E-003 -0.775140087184E-004 641 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.766578830904E-004 642 | 0.000000000000E+000 0.267382819946E-001 -0.512388877759E-002 -0.195732690018E-001 -0.103268975773E-001 643 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.399897092510E+000 0.220607416471E+000 644 | 0.805043660939E-001 0.230615629943E-003 0.127221525919E-003 0.464258566707E-004 0.000000000000E+000 645 | 0.361435626729E-002 0.119219082278E-005 -0.267382819946E-001 0.512388877759E-002 0.195732690018E-001 646 | 0.103268975773E-001 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.399897092510E+000 647 | 0.220607416471E+000 0.805043660939E-001 -0.230615629943E-003 -0.127221525919E-003 -0.464258566707E-004 648 | 0.000000000000E+000 0.361435626729E-002 -0.119219082278E-005 0.133694684291E-001 -0.256200713494E-002 649 | -0.978687419133E-002 -0.516348427161E-002 0.220182902668E+000 0.121466202727E+000 0.443256161047E-001 650 | 0.185273755402E-001 0.102208206273E-001 0.372979611801E-002 0.115000758992E-003 0.634413723148E-004 651 | 0.231511140651E-004 -0.546457499458E-003 0.456082382823E-002 0.578223543677E-006 -0.133694684291E-001 652 | 0.256200713494E-002 0.978687419133E-002 0.516348427161E-002 -0.220182902668E+000 -0.121466202727E+000 653 | -0.443256161047E-001 0.185273755402E-001 0.102208206273E-001 0.372979611801E-002 -0.115000758992E-003 654 | -0.634413723148E-004 -0.231511140651E-004 0.546457499458E-003 0.456082382823E-002 -0.578223543677E-006 655 | -0.133694684291E-001 0.256200713494E-002 0.978687419133E-002 0.516348427161E-002 0.220182902668E+000 656 | 0.121466202727E+000 0.443256161047E-001 0.185273755402E-001 0.102208206273E-001 0.372979611801E-002 657 | -0.115000758992E-003 -0.634413723148E-004 -0.231511140651E-004 -0.546457499458E-003 0.456082382823E-002 658 | -0.578223543677E-006 0.133694684291E-001 -0.256200713494E-002 -0.978687419133E-002 -0.516348427161E-002 659 | -0.220182902668E+000 -0.121466202727E+000 -0.443256161047E-001 0.185273755402E-001 0.102208206273E-001 660 | 0.372979611801E-002 0.115000758992E-003 0.634413723148E-004 0.231511140651E-004 0.546457499458E-003 661 | 0.456082382823E-002 0.578223543677E-006 0.587553241209E-001 0.825397379406E-001 0.319469842488E-001 662 | -0.587553241209E-001 -0.825397379406E-001 -0.319469842488E-001 0.293774193509E-001 0.412695280108E-001 663 | 0.159733412681E-001 -0.293774193509E-001 -0.412695280108E-001 -0.159733412681E-001 -0.293774193509E-001 664 | -0.412695280108E-001 -0.159733412681E-001 0.293774193509E-001 0.412695280108E-001 0.159733412681E-001 665 | 666 | 12 667 | 668 | 0.102135199526E-002 -0.219852756050E-003 -0.719772992440E-003 0.224065674012E-003 -0.000000000000E+000 669 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 670 | -0.533329909634E+000 0.622988092139E+000 0.288246615108E+000 0.000000000000E+000 0.000000000000E+000 671 | 0.388699140517E-001 -0.186485340520E-002 0.357364075848E-003 0.136513173719E-002 -0.215715526593E-003 672 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.287184378859E-002 -0.158428268316E-002 673 | -0.578138646294E-003 -0.393856032308E-001 -0.217274802385E-001 -0.792882239134E-002 0.000000000000E+000 674 | -0.101086970923E-003 -0.918693360180E-003 -0.186485340520E-002 0.357364075848E-003 0.136513173719E-002 675 | -0.215715526593E-003 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.287184378859E-002 676 | 0.158428268316E-002 0.578138646294E-003 -0.393856032308E-001 -0.217274802385E-001 -0.792882239134E-002 677 | 0.000000000000E+000 0.101086970923E-003 -0.918693360180E-003 -0.186484140887E-002 0.357361776977E-003 678 | 0.136512295550E-002 -0.215720318190E-003 -0.248708084963E-002 -0.137202418089E-002 -0.500680977616E-003 679 | -0.143592908992E-002 -0.792145311124E-003 -0.289070771719E-003 -0.393856648793E-001 -0.217275142475E-001 680 | -0.792883480197E-002 -0.875446176743E-004 -0.505437204851E-004 -0.918695370987E-003 -0.186484140887E-002 681 | 0.357361776977E-003 0.136512295550E-002 -0.215720318190E-003 -0.248708084963E-002 -0.137202418089E-002 682 | -0.500680977616E-003 0.143592908992E-002 0.792145311124E-003 0.289070771719E-003 -0.393856648793E-001 683 | -0.217275142475E-001 -0.792883480197E-002 -0.875446176743E-004 0.505437204851E-004 -0.918695370987E-003 684 | -0.186484140887E-002 0.357361776977E-003 0.136512295550E-002 -0.215720318190E-003 0.248708084963E-002 685 | 0.137202418089E-002 0.500680977616E-003 0.143592908992E-002 0.792145311124E-003 0.289070771719E-003 686 | -0.393856648793E-001 -0.217275142475E-001 -0.792883480197E-002 0.875446176743E-004 0.505437204851E-004 687 | -0.918695370987E-003 -0.186484140887E-002 0.357361776977E-003 0.136512295550E-002 -0.215720318190E-003 688 | 0.248708084963E-002 0.137202418089E-002 0.500680977616E-003 -0.143592908992E-002 -0.792145311124E-003 689 | -0.289070771719E-003 -0.393856648793E-001 -0.217275142475E-001 -0.792883480197E-002 0.875446176743E-004 690 | -0.505437204851E-004 -0.918695370987E-003 0.122824997238E-004 0.172545096742E-004 0.275573525615E-003 691 | 0.122824997238E-004 0.172545096742E-004 0.275573525615E-003 0.122794807947E-004 0.172502686693E-004 692 | 0.275573779475E-003 0.122794807947E-004 0.172502686693E-004 0.275573779475E-003 0.122794807947E-004 693 | 0.172502686693E-004 0.275573779475E-003 0.122794807947E-004 0.172502686693E-004 0.275573779475E-003 694 | 695 | 13 696 | 697 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.539893253152E+000 698 | 0.630654800461E+000 0.291793878292E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 699 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.396481058975E-001 0.000000000000E+000 700 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 701 | -0.114597931003E-002 -0.632191480383E-003 -0.230700196721E-003 0.000000000000E+000 0.000000000000E+000 702 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.531856428199E-003 703 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 704 | 0.000000000000E+000 -0.114597931003E-002 -0.632191480383E-003 -0.230700196721E-003 0.000000000000E+000 705 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 706 | -0.531856428199E-003 0.000000000000E+000 0.000000000000E+000 0.912679219249E-003 -0.174897804204E-003 707 | -0.668110085543E-003 0.100400997785E-002 -0.382109581712E-003 -0.210794749973E-003 -0.769235141498E-004 708 | 0.440984139785E-003 0.243273516124E-003 0.887757107911E-004 0.582838584971E-002 0.321529005483E-002 709 | 0.117332813109E-002 0.115022317722E-003 0.373475158354E-003 0.236281317448E-003 0.912679219249E-003 710 | -0.174897804204E-003 -0.668110085543E-003 0.100400997785E-002 -0.382109581712E-003 -0.210794749973E-003 711 | -0.769235141498E-004 -0.440984139785E-003 -0.243273516124E-003 -0.887757107911E-004 0.582838584971E-002 712 | 0.321529005483E-002 0.117332813109E-002 0.115022317722E-003 -0.373475158354E-003 0.236281317448E-003 713 | -0.912679219249E-003 0.174897804204E-003 0.668110085543E-003 -0.100400997785E-002 -0.382109581712E-003 714 | -0.210794749973E-003 -0.769235141498E-004 0.440984139785E-003 0.243273516124E-003 0.887757107911E-004 715 | -0.582838584971E-002 -0.321529005483E-002 -0.117332813109E-002 0.115022317722E-003 0.373475158354E-003 716 | -0.236281317448E-003 -0.912679219249E-003 0.174897804204E-003 0.668110085543E-003 -0.100400997785E-002 717 | -0.382109581712E-003 -0.210794749973E-003 -0.769235141498E-004 -0.440984139785E-003 -0.243273516124E-003 718 | -0.887757107911E-004 -0.582838584971E-002 -0.321529005483E-002 -0.117332813109E-002 0.115022317722E-003 719 | -0.373475158354E-003 -0.236281317448E-003 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 720 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.181937504507E-003 -0.255586607141E-003 721 | -0.704492320641E-003 -0.181937504507E-003 -0.255586607141E-003 -0.704492320641E-003 0.181937504507E-003 722 | 0.255586607141E-003 0.704492320641E-003 0.181937504507E-003 0.255586607141E-003 0.704492320641E-003 723 | 724 | 14 725 | 726 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 727 | 0.000000000000E+000 0.000000000000E+000 -0.539893230854E+000 0.630654774413E+000 0.291793866240E+000 728 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.396481111296E-001 729 | 0.000000000000E+000 0.105387268183E-002 -0.201954875354E-003 -0.771468170586E-003 0.115931928197E-002 730 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.127548079914E-003 -0.703632332235E-004 731 | -0.256770492016E-004 0.673002605162E-002 0.371268930893E-002 0.135483976060E-002 0.000000000000E+000 732 | 0.330652277844E-003 0.272833953790E-003 -0.105387268183E-002 0.201954875354E-003 0.771468170586E-003 733 | -0.115931928197E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.127548079914E-003 734 | -0.703632332235E-004 -0.256770492016E-004 -0.673002605162E-002 -0.371268930893E-002 -0.135483976060E-002 735 | 0.000000000000E+000 0.330652277844E-003 -0.272833953790E-003 0.526932145607E-003 -0.100976633726E-003 736 | -0.385731014197E-003 0.579678792048E-003 0.440984070366E-003 0.243273477829E-003 0.887756968162E-004 737 | -0.891343606479E-003 -0.491719029462E-003 -0.179438794018E-003 0.336501440046E-002 0.185634541281E-002 738 | 0.677420157036E-003 0.373472230966E-003 -0.316232734805E-003 0.136417392856E-003 -0.526932145607E-003 739 | 0.100976633726E-003 0.385731014197E-003 -0.579678792048E-003 -0.440984070366E-003 -0.243273477829E-003 740 | -0.887756968162E-004 -0.891343606479E-003 -0.491719029462E-003 -0.179438794018E-003 -0.336501440046E-002 741 | -0.185634541281E-002 -0.677420157036E-003 -0.373472230966E-003 -0.316232734805E-003 -0.136417392856E-003 742 | -0.526932145607E-003 0.100976633726E-003 0.385731014197E-003 -0.579678792048E-003 0.440984070366E-003 743 | 0.243273477829E-003 0.887756968162E-004 -0.891343606479E-003 -0.491719029462E-003 -0.179438794018E-003 744 | -0.336501440046E-002 -0.185634541281E-002 -0.677420157036E-003 0.373472230966E-003 -0.316232734805E-003 745 | -0.136417392856E-003 0.526932145607E-003 -0.100976633726E-003 -0.385731014197E-003 0.579678792048E-003 746 | -0.440984070366E-003 -0.243273477829E-003 -0.887756968162E-004 -0.891343606479E-003 -0.491719029462E-003 747 | -0.179438794018E-003 0.336501440046E-002 0.185634541281E-002 0.677420157036E-003 -0.373472230966E-003 748 | -0.316232734805E-003 0.136417392856E-003 -0.210090369745E-003 -0.295135876144E-003 -0.813483295487E-003 749 | 0.210090369745E-003 0.295135876144E-003 0.813483295487E-003 -0.105043255032E-003 -0.147565227024E-003 750 | -0.406737582004E-003 0.105043255032E-003 0.147565227024E-003 0.406737582004E-003 0.105043255032E-003 751 | 0.147565227024E-003 0.406737582004E-003 -0.105043255032E-003 -0.147565227024E-003 -0.406737582004E-003 752 | 753 | 15 754 | 755 | 0.904802098915E-002 -0.194764621843E-002 -0.637637285992E-002 -0.149470946139E-002 -0.000000000000E+000 756 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 757 | -0.915582088973E-001 0.106950075085E+000 0.494840872850E-001 0.000000000000E+000 0.000000000000E+000 758 | 0.790985923615E-002 -0.227180191577E-003 0.435348102898E-004 0.166303093164E-003 -0.645652029791E-004 759 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.384556276428E-003 -0.212144494720E-003 760 | -0.774160648855E-004 0.290992997128E+000 0.160529332446E+000 0.585805878820E-001 0.000000000000E+000 761 | -0.533008668779E-004 0.735023418222E-002 -0.227180191577E-003 0.435348102898E-004 0.166303093164E-003 762 | -0.645652029791E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.384556276428E-003 763 | 0.212144494720E-003 0.774160648855E-004 0.290992997128E+000 0.160529332446E+000 0.585805878820E-001 764 | 0.000000000000E+000 0.533008668779E-004 0.735023418222E-002 -0.227238033151E-003 0.435458945394E-004 765 | 0.166345435028E-003 -0.645112101843E-004 -0.333356803326E-003 -0.183899769522E-003 -0.671089603739E-004 766 | -0.192617578137E-003 -0.106259502946E-003 -0.387763660125E-004 0.290993545612E+000 0.160529635023E+000 767 | 0.585806982989E-001 -0.461613175284E-004 -0.266521749520E-004 0.735025645878E-002 -0.227238033151E-003 768 | 0.435458945394E-004 0.166345435028E-003 -0.645112101843E-004 -0.333356803326E-003 -0.183899769522E-003 769 | -0.671089603739E-004 0.192617578137E-003 0.106259502946E-003 0.387763660125E-004 0.290993545612E+000 770 | 0.160529635023E+000 0.585806982989E-001 -0.461613175284E-004 0.266521749520E-004 0.735025645878E-002 771 | -0.227238033151E-003 0.435458945394E-004 0.166345435028E-003 -0.645112101843E-004 0.333356803326E-003 772 | 0.183899769522E-003 0.671089603739E-004 0.192617578137E-003 0.106259502946E-003 0.387763660125E-004 773 | 0.290993545612E+000 0.160529635023E+000 0.585806982989E-001 0.461613175284E-004 0.266521749520E-004 774 | 0.735025645878E-002 -0.227238033151E-003 0.435458945394E-004 0.166345435028E-003 -0.645112101843E-004 775 | 0.333356803326E-003 0.183899769522E-003 0.671089603739E-004 -0.192617578137E-003 -0.106259502946E-003 776 | -0.387763660125E-004 0.290993545612E+000 0.160529635023E+000 0.585806982989E-001 0.461613175284E-004 777 | -0.266521749520E-004 0.735025645878E-002 0.211047372068E-004 0.296480277220E-004 0.957442547311E-004 778 | 0.211047372068E-004 0.296480277220E-004 0.957442547311E-004 0.210461403413E-004 0.295657105874E-004 779 | 0.956978167441E-004 0.210461403413E-004 0.295657105874E-004 0.956978167441E-004 0.210461403413E-004 780 | 0.295657105874E-004 0.956978167441E-004 0.210461403413E-004 0.295657105874E-004 0.956978167441E-004 781 | 782 | 16 783 | 784 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 785 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 786 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 787 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 788 | -0.348124540617E+000 -0.192046546360E+000 -0.700818935397E-001 0.000000000000E+000 0.000000000000E+000 789 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.426358196240E-002 790 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 791 | 0.000000000000E+000 0.348124540617E+000 0.192046546360E+000 0.700818935397E-001 0.000000000000E+000 792 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 793 | 0.426358196240E-002 0.000000000000E+000 0.000000000000E+000 0.479371908718E-002 -0.918626089689E-003 794 | -0.350915414952E-002 0.392987834644E-002 0.318962251271E+000 0.175958864225E+000 0.642111541379E-001 795 | -0.168365629457E-001 -0.928806616320E-002 -0.338941405809E-002 0.182822730853E-003 0.100856072928E-003 796 | 0.368045387940E-004 0.399216850372E-002 -0.156704889675E-003 0.855030851366E-005 -0.479371908718E-002 797 | 0.918626089689E-003 0.350915414952E-002 -0.392987834644E-002 -0.318962251271E+000 -0.175958864225E+000 798 | -0.642111541379E-001 -0.168365629457E-001 -0.928806616320E-002 -0.338941405809E-002 -0.182822730853E-003 799 | -0.100856072928E-003 -0.368045387940E-004 -0.399216850372E-002 -0.156704889675E-003 -0.855030851366E-005 800 | 0.479371908718E-002 -0.918626089689E-003 -0.350915414952E-002 0.392987834644E-002 -0.318962251271E+000 801 | -0.175958864225E+000 -0.642111541379E-001 0.168365629457E-001 0.928806616320E-002 0.338941405809E-002 802 | 0.182822730853E-003 0.100856072928E-003 0.368045387940E-004 -0.399216850372E-002 0.156704889675E-003 803 | 0.855030851366E-005 -0.479371908718E-002 0.918626089689E-003 0.350915414952E-002 -0.392987834644E-002 804 | 0.318962251271E+000 0.175958864225E+000 0.642111541379E-001 0.168365629457E-001 0.928806616320E-002 805 | 0.338941405809E-002 -0.182822730853E-003 -0.100856072928E-003 -0.368045387940E-004 0.399216850372E-002 806 | 0.156704889675E-003 -0.855030851366E-005 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 807 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.520943478227E-001 0.731823691181E-001 808 | 0.306630902289E-001 -0.520943478227E-001 -0.731823691181E-001 -0.306630902289E-001 0.520943478227E-001 809 | 0.731823691181E-001 0.306630902289E-001 -0.520943478227E-001 -0.731823691181E-001 -0.306630902289E-001 810 | 811 | 17 812 | 813 | 0.825868031378E-008 -0.177773542984E-008 -0.582010420562E-008 -0.194460265073E-008 -0.000000000000E+000 814 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 815 | -0.728853268576E-007 0.851380916459E-007 0.393920317954E-007 0.000000000000E+000 0.000000000000E+000 816 | 0.790032818474E-008 -0.553532997325E-002 0.106074186576E-002 0.405203679884E-002 -0.453768863653E-002 817 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.309241760111E+000 -0.170596453540E+000 818 | -0.622542957520E-001 -0.211766949453E-003 -0.116823454053E-003 -0.426313777837E-004 0.000000000000E+000 819 | -0.390173429003E-002 -0.991537129164E-005 -0.553532997325E-002 0.106074186576E-002 0.405203679884E-002 820 | -0.453768863653E-002 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.309241760111E+000 821 | 0.170596453540E+000 0.622542957520E-001 -0.211766949453E-003 -0.116823454053E-003 -0.426313777837E-004 822 | 0.000000000000E+000 0.390173429003E-002 -0.991537129164E-005 0.276767742640E-002 -0.530373316728E-003 823 | -0.202602750573E-002 0.226884317889E-002 -0.168367487201E-001 -0.928816864761E-002 -0.338945145684E-002 824 | 0.338403494145E+000 0.186683829331E+000 0.681249233624E-001 0.106154537988E-003 0.585612619116E-004 825 | 0.213702573706E-004 -0.156681653112E-003 0.417308987870E-002 0.496539558467E-005 0.276767742640E-002 826 | -0.530373316728E-003 -0.202602750573E-002 0.226884317889E-002 -0.168367487201E-001 -0.928816864761E-002 827 | -0.338945145684E-002 -0.338403494145E+000 -0.186683829331E+000 -0.681249233624E-001 0.106154537988E-003 828 | 0.585612619116E-004 0.213702573706E-004 -0.156681653112E-003 -0.417308987870E-002 0.496539558467E-005 829 | 0.276767742640E-002 -0.530373316728E-003 -0.202602750573E-002 0.226884317889E-002 0.168367487201E-001 830 | 0.928816864761E-002 0.338945145684E-002 -0.338403494145E+000 -0.186683829331E+000 -0.681249233624E-001 831 | 0.106154537988E-003 0.585612619116E-004 0.213702573706E-004 0.156681653112E-003 -0.417308987870E-002 832 | 0.496539558467E-005 0.276767742640E-002 -0.530373316728E-003 -0.202602750573E-002 0.226884317889E-002 833 | 0.168367487201E-001 0.928816864761E-002 0.338945145684E-002 0.338403494145E+000 0.186683829331E+000 834 | 0.681249233624E-001 0.106154537988E-003 0.585612619116E-004 0.213702573706E-004 0.156681653112E-003 835 | 0.417308987870E-002 0.496539558467E-005 -0.601534018702E-001 -0.845037637166E-001 -0.354067484192E-001 836 | -0.601534018702E-001 -0.845037637166E-001 -0.354067484192E-001 0.300766760530E-001 0.422518469038E-001 837 | 0.177033360463E-001 0.300766760530E-001 0.422518469038E-001 0.177033360463E-001 0.300766760530E-001 838 | 0.422518469038E-001 0.177033360463E-001 0.300766760530E-001 0.422518469038E-001 0.177033360463E-001 839 | 840 | 18 841 | 842 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.201180029131E-001 843 | -0.235000438304E-001 -0.108730940037E-001 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 844 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.177002830101E-002 0.000000000000E+000 845 | 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 846 | -0.185719979937E-003 -0.102454370708E-003 -0.373877918490E-004 0.000000000000E+000 0.000000000000E+000 847 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.205677707264E-004 848 | 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 849 | 0.000000000000E+000 -0.185719979937E-003 -0.102454370708E-003 -0.373877918490E-004 0.000000000000E+000 850 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 851 | -0.205677707264E-004 0.000000000000E+000 0.000000000000E+000 0.857170087147E-004 -0.164260523204E-004 852 | -0.627475643326E-004 0.657875666901E-004 -0.184283004130E-003 -0.101661647964E-003 -0.370985103598E-004 853 | 0.731876899633E-006 0.403747551626E-006 0.147336119635E-006 0.387029492700E+000 0.213508870362E+000 854 | 0.779139547475E-001 -0.524344281451E-004 -0.184153369616E-004 0.159368281563E-001 0.857170087147E-004 855 | -0.164260523204E-004 -0.627475643326E-004 0.657875666901E-004 -0.184283004130E-003 -0.101661647964E-003 856 | -0.370985103598E-004 -0.731876899633E-006 -0.403747551626E-006 -0.147336119635E-006 0.387029492700E+000 857 | 0.213508870362E+000 0.779139547475E-001 -0.524344281451E-004 0.184153369616E-004 0.159368281563E-001 858 | -0.857170087147E-004 0.164260523204E-004 0.627475643326E-004 -0.657875666901E-004 -0.184283004130E-003 859 | -0.101661647964E-003 -0.370985103598E-004 0.731876899633E-006 0.403747551626E-006 0.147336119635E-006 860 | -0.387029492700E+000 -0.213508870362E+000 -0.779139547475E-001 -0.524344281451E-004 -0.184153369616E-004 861 | -0.159368281563E-001 -0.857170087147E-004 0.164260523204E-004 0.627475643326E-004 -0.657875666901E-004 862 | -0.184283004130E-003 -0.101661647964E-003 -0.370985103598E-004 -0.731876899633E-006 -0.403747551626E-006 863 | -0.147336119635E-006 -0.387029492700E+000 -0.213508870362E+000 -0.779139547475E-001 -0.524344281451E-004 864 | 0.184153369616E-004 -0.159368281563E-001 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 865 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.139689422437E-005 0.196236315492E-005 866 | 0.571435025762E-005 0.139689422437E-005 0.196236315492E-005 0.571435025762E-005 -0.139689422437E-005 867 | -0.196236315492E-005 -0.571435025762E-005 -0.139689422437E-005 -0.196236315492E-005 -0.571435025762E-005 868 | 869 | 19 870 | 871 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.000000000000E+000 872 | 0.000000000000E+000 0.000000000000E+000 0.201180065941E-001 -0.235000481303E-001 -0.108730959932E-001 873 | -0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.177002726214E-002 874 | 0.000000000000E+000 0.990055214737E-004 -0.189725458240E-004 -0.724751764102E-004 0.757998358460E-004 875 | 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.183770832301E-003 -0.101379103015E-003 876 | -0.369954036628E-004 0.446902947423E+000 0.246538688305E+000 0.899672419771E-001 0.000000000000E+000 877 | -0.630658407785E-004 0.184022804466E-001 -0.990055214737E-004 0.189725458240E-004 0.724751764102E-004 878 | -0.757998358460E-004 0.000000000000E+000 0.000000000000E+000 0.000000000000E+000 -0.183770832301E-003 879 | -0.101379103015E-003 -0.369954036628E-004 -0.446902947423E+000 -0.246538688305E+000 -0.899672419771E-001 880 | 0.000000000000E+000 -0.630658407785E-004 -0.184022804466E-001 0.494466744323E-004 -0.947552502677E-005 881 | -0.361965312544E-004 0.380528212400E-004 0.637624107008E-006 0.351752012109E-006 0.128361834838E-006 882 | -0.185091405566E-003 -0.102107611077E-003 -0.372612518411E-004 0.223451613315E+000 0.123269421166E+000 883 | 0.449836490925E-001 -0.184400594523E-004 -0.311755218560E-004 0.920115869547E-002 -0.494466744323E-004 884 | 0.947552502677E-005 0.361965312544E-004 -0.380528212400E-004 -0.637624107008E-006 -0.351752012109E-006 885 | -0.128361834838E-006 -0.185091405566E-003 -0.102107611077E-003 -0.372612518411E-004 -0.223451613315E+000 886 | -0.123269421166E+000 -0.449836490925E-001 0.184400594523E-004 -0.311755218560E-004 -0.920115869547E-002 887 | -0.494466744323E-004 0.947552502677E-005 0.361965312544E-004 -0.380528212400E-004 0.637624107008E-006 888 | 0.351752012109E-006 0.128361834838E-006 -0.185091405566E-003 -0.102107611077E-003 -0.372612518411E-004 889 | -0.223451613315E+000 -0.123269421166E+000 -0.449836490925E-001 -0.184400594523E-004 -0.311755218560E-004 890 | -0.920115869547E-002 0.494466744323E-004 -0.947552502677E-005 -0.361965312544E-004 0.380528212400E-004 891 | -0.637624107008E-006 -0.351752012109E-006 -0.128361834838E-006 -0.185091405566E-003 -0.102107611077E-003 892 | -0.372612518411E-004 0.223451613315E+000 0.123269421166E+000 0.449836490925E-001 0.184400594523E-004 893 | -0.311755218560E-004 0.920115869547E-002 0.159328661481E-005 0.223825604944E-005 0.660854014882E-005 894 | -0.159328661481E-005 -0.223825604944E-005 -0.660854014882E-005 0.799137697689E-006 0.112263215517E-005 895 | 0.330228438457E-005 -0.799137697689E-006 -0.112263215517E-005 -0.330228438457E-005 -0.799137697689E-006 896 | -0.112263215517E-005 -0.330228438457E-005 0.799137697689E-006 0.112263215517E-005 0.330228438457E-005 897 | 898 | # The total energy of the molecule. 899 | # For HF and KSDFT, this is the SCF energy. 900 | # For MP2, this is the MP2 total energy. 901 | # For CCSD, this is the CCSD total energy. 902 | # etc. 903 | 904 | 0.000000000000E+000 905 | 906 | 907 | 0.200000000000E+001 908 | 909 | -------------------------------------------------------------------------------- /examples/ECP/readme.txt: -------------------------------------------------------------------------------- 1 | AIM anamysis may require the values in and at the end of the wfx file. In this case you have to correct them manually. -------------------------------------------------------------------------------- /examples/EDF_by_denfit/molpro.inp: -------------------------------------------------------------------------------- 1 | ***,test,Re by SA-CASSCF 2 | memory,2000,m 3 | 4 | basis={ 5 | ! Dyall-CV4Z(-h,-i) 6 | s,Ta,6.46385144E+07,1.71916595E+07,5.88214532E+06,2.23869723E+06,9.31099859E+05,4.08823719E+05,1.87647550E+05,8.88730822E+04,4.32192700E+04,2.14669285E+04,1.08634210E+04,5.59608167E+03,2.93735610E+03,1.57266245E+03,8.58892974E+02,4.78700858E+02,2.75744481E+02,1.69644659E+02,1.12619616E+02,7.23711811E+01,4.23258981E+01,2.65784338E+01,1.62117991E+01,9.74288796E+00,5.69276856E+00,3.29667556E+00,1.91103368E+00,1.12477953E+00,6.36222297E-01,3.62301733E-01,1.66672325E-01,8.67249502E-02,4.43398765E-02,2.24035067E-02 7 | p,Ta,5.24198487E+07,1.42853500E+07,4.31271182E+06,1.41630092E+06,4.97328186E+05,1.84880539E+05,7.23019947E+04,2.96640239E+04,1.27643852E+04,5.76082521E+03,2.72231461E+03,1.34165997E+03,6.85970856E+02,3.61453081E+02,1.95273960E+02,1.07353356E+02,5.97242734E+01,3.39134522E+01,1.95292677E+01,1.12013657E+01,6.29264213E+00,3.51302307E+00,1.90272035E+00,1.02035646E+00,5.42902096E-01,2.84977375E-01,1.34193668E-01,6.50965584E-02,3.16364891E-02,1.52903935E-02 8 | d,Ta,5.04097355E+04,1.22218895E+04,4.11633386E+03,1.65598548E+03,7.47180486E+02,3.64595958E+02,1.87729409E+02,1.00594304E+02,5.52136661E+01,3.08857660E+01,1.73431087E+01,9.60733626E+00,5.23559956E+00,2.78559585E+00,1.41349213E+00,6.79755650E-01,3.12990645E-01,1.37174441E-01,5.62470701E-02 9 | f,Ta,1.08692115E+03,3.70925027E+02,1.58358121E+02,7.59840923E+01,3.86126124E+01,2.03372624E+01,1.08120567E+01,5.62620014E+00,2.78973557E+00,1.26379058E+00,4.91405599E-01,1.84086491E-01,6.89610290E-02 10 | g,Ta,2.20235480E+01,7.91606910E+00,2.80884600E+00,1.65976290E+00,9.80763241E-01,3.20686438E-01,1.04856900E-01 11 | } 12 | 13 | geometry={ 14 | Ta 15 | } 16 | 17 | ! sf-X2C 18 | SET,DKHO=101 19 | 20 | {hf; 21 | occ,9,6,6,2,6,2,2,1;wf,68,1,0;} 22 | 23 | {multi; ! N_core=68 24 | frozen,0;closed,9,6,6,2,6,2,2,1;occ,12,6,6,3,6,3,3,1; 25 | wf,73,1,3;state,1; ! Ta: 4F 26 | wf,73,4,3;state,2; 27 | wf,73,6,3;state,2; 28 | wf,73,7,3;state,2; 29 | } 30 | put,molden,4F.molden; 31 | --- 32 | -------------------------------------------------------------------------------- /examples/EDF_by_denfit/readme.txt: -------------------------------------------------------------------------------- 1 | This example shows how to generate EDF for atomic core densities. 2 | 3 | 1. Do an atomic all-electron quantum chemistry calculation (HF/DFT/MCSCF), and generate a molden/fchk file. 4 | 5 | 2. Edit the molden/fchk file, and delete all the valence orbitals (or setup their Occup = 0). 6 | 7 | 3. Open the molden/fchk file using MultiWFN, and save radial density into a data file: 8 | 9 | 3/1/2/ 10 | 0 0 0 0 0 5 11 | 2 12 | 13 | 3000 points will be generated by default. Increase num1Dpoints in settings.ini for more points and num1Dpoints 14 | > 10000 is suggested for better accuracy. 15 | 16 | 4. Do fitting by denfit. An input file should be prepared (Re68.dat in this example). 17 | 18 | denfit.exe < Re68.dat > results.txt 19 | 20 | -------------------------------------------------------------------------------- /examples/EDF_by_denfit/results.txt: -------------------------------------------------------------------------------- 1 | 2 | 3 | ========================================= 4 | ========== Results of DenFit ========== 5 | ========================================= 6 | 7 | 8 | Type of functions: 4 9 | Even-tempered universal Gaussian exponents 10 | Alpha_i = 0.001 * 1.65^(i-1) 11 | ~ exp[a + b * (i - 1)], a=-6.907755, b=0.500775 12 | Reference: 13 | M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004). 14 | 15 | 16 | Starting #S-Fun = 60 17 | 18 | R0 = 0.16667D-02, Rho0 = 0.64683428797000D+06 19 | 20 | Integrated Ncore: 67.9977631708 21 | Delete the first 21 redundant functions with min[dRho0] = 0.24710153849593D+04 22 | Redundant function found! Delete function- 39 with alpha = 0.10000000000000D-02 23 | Redundant function found! Delete function- 38 with alpha = 0.16500000000000D-02 24 | Redundant function found! Delete function- 37 with alpha = 0.27225000000000D-02 25 | Redundant function found! Delete function- 36 with alpha = 0.44921250000000D-02 26 | Redundant function found! Delete function- 35 with alpha = 0.74120062500000D-02 27 | Redundant function found! Delete function- 34 with alpha = 0.12229810312500D-01 28 | Redundant function found! Delete function- 33 with alpha = 0.20179187015625D-01 29 | Redundant function found! Delete function- 32 with alpha = 0.33295658575781D-01 30 | Redundant function found! Delete function- 31 with alpha = 0.54937836650039D-01 31 | 32 | Fitting finished successfully with 33 | Ncore(analytic) = 68.0000000000 and dRho0 = 0.16656801430118D+04 34 | 35 | 36 | Final results: 37 | 38 | Element= 73 39 | Ncore = 68 40 | #S-Fun = 30 41 | 42 | Alpha Coefficient 43 | 44 | 0.18381878031797E+06 0.56556859649690E+06 45 | 0.11140532140483E+06 -0.29192035175114E+06 46 | 0.67518376608988E+05 0.35922334594210E+06 47 | 0.40920228247872E+05 -0.71539098922451E+05 48 | 0.24800138332043E+05 0.16284181824038E+06 49 | 0.15030386867905E+05 0.11683205954136E+05 50 | 0.91093253744880E+04 0.76639474514726E+05 51 | 0.55208032572654E+04 0.16205139200697E+05 52 | 0.33459413680397E+04 0.24633746254181E+05 53 | 0.20278432533574E+04 -0.23681157856714E+04 54 | 0.12289959111257E+04 0.43063586361962E+03 55 | 0.74484600674283E+03 -0.76666991370152E+03 56 | 0.45142182226838E+03 0.68224420124322E+04 57 | 0.27358898319296E+03 0.39277688499730E+04 58 | 0.16581150496543E+03 -0.99770628416642E+03 59 | 0.10049182119117E+03 -0.14112541763455E+04 60 | 0.60904134055255E+02 0.18494572868126E+04 61 | 0.36911596397124E+02 0.48508903183865E+03 62 | 0.22370664483105E+02 -0.40902360378207E+03 63 | 0.13557978474609E+02 0.69654637186257E+02 64 | 0.82169566512784E+01 0.10492042805017E+03 65 | 0.49799737280475E+01 0.11773358423183E+02 66 | 0.30181658957864E+01 0.82493670494827E+00 67 | 0.18291914519917E+01 0.34728439729939E+01 68 | 0.11086008799950E+01 0.14513997551898E+01 69 | 0.67187932120909E+00 0.16645656482475E+00 70 | 0.40719958861157E+00 0.95757568415410E-02 71 | 0.24678762946156E+00 -0.47195179600405E-03 72 | 0.14956826027973E+00 0.22462921777080E-03 73 | 0.90647430472564E-01 -0.25225307819009E-04 74 | -------------------------------------------------------------------------------- /examples/H2O_MRCI-molpro/molpro.inp: -------------------------------------------------------------------------------- 1 | ***, MR-CI for H2O 2 | 3 | r=0.957 angstrom 4 | theta=104.6 degree 5 | 6 | geometry={ 7 | O; 8 | H1,O,r; 9 | H2,O,r,H1,theta} 10 | 11 | basis=cc-pvdz 12 | 13 | {hf;wf,10,1;} 14 | 15 | {multi; 16 | occ,4,1,2;closed,2;frozen,1; 17 | wf,10,1,0;} 18 | 19 | {ci; 20 | occ,4,1,2;closed,2;core,1; 21 | wf,10,1,0; 22 | natorb,2352.2;dm,2352.2; 23 | } 24 | 25 | put,molden,molpro.mol;orb,2352.2; 26 | 27 | --- 28 | 29 | -------------------------------------------------------------------------------- /examples/H2O_MRCI-molpro/molpro.mol: -------------------------------------------------------------------------------- 1 | [Molden Format] 2 | [Molpro variables] 3 | NUMVAR= 527.0000000000000000 4 | PATCHLEVEL= 52.0000000000000000 5 | EV= 0.0367493088676916 6 | KJOULE= 0.0003808798324129 7 | KJOULE/MOL= 0.0003808798324129 8 | CM= 0.0000045563352673 9 | CM-1= 0.0000045563352673 10 | KCAL= 0.0015936011178156 11 | KCAL/MOL= 0.0015936011178156 12 | KELVIN= 0.0000031668288611 13 | HERTZ= 0.0000000000000002 14 | HZ= 0.0000000000000002 15 | TOA= 0.5291772490000000 16 | TOANG= 0.5291772490000000 17 | TORAD= 0.0174532925199433 18 | TOCM= 219474.6306700000131968 19 | TODEBYE= 2.5415800000000002 20 | TOEV= 27.2113961000000018 21 | TOHERTZ= 6579683899900000.0000000000000000 22 | TOHZ= 6579683899900000.0000000000000000 23 | TOK= 315773.2999999999883585 24 | TOKCAL= 627.5095999999999776 25 | TOKELVIN= 315773.2999999999883585 26 | TOKJ= 2625.5000000000000000 27 | TOKJOULE= 2625.5000000000000000 28 | ANG= 1.8897259885789233 29 | ANGSTROM= 1.8897259885789233 30 | IGNORE_UNDEF= 2.0000000000000000 31 | STRICTCHECK= 0.0000000000000000 32 | SEW_ONEEL= 0.0000000000000000 33 | CPPDONE=FALSE 34 | DKROLL_DONE= 0.0000000000000000 35 | FOCKDONE= 0.0000000000000000 36 | GRADONE=FALSE 37 | HESSDONE=FALSE 38 | INTDONE=TRUE 39 | SCFDONE=TRUE 40 | MODUL_LCCSD=TRUE 41 | MODUL_COSMO=TRUE 42 | MODUL_VSCF=FALSE 43 | MODUL_CFIT=TRUE 44 | MODUL_MRCC=FALSE 45 | MODUL_CIDFT=FALSE 46 | MODUL_CC2=FALSE 47 | MRCC_EXEC= 48 | FITC_AO_SAVED=FALSE 49 | FITC_MO_SAVED=FALSE 50 | LSTYP=SEWARD 51 | INTYP=INTS 52 | GEOMTYP=ZMAT 53 | GRADTYP=ALASKA 54 | DIRECT=FALSE 55 | DKROLL=FALSE 56 | SYNCM= 0.0000000000000000 57 | DFTNAME= 0.0000000000000000 58 | DFTFUNC= 0.0000000000000000 59 | BASIS=CC-PVDZ 60 | BASISSETS= 61 | ZSIGNX= 62 | ZSIGNY= 63 | ZSIGNZ= 64 | CHARGE= 65 | SCFCHARGE= 66 | MCCHARGE= 67 | CICHARGE= 68 | CCCHARGE= 69 | NELEC= 10.0000000000000000 70 | SCFNELEC= 10.0000000000000000 71 | MCNELEC= 10.0000000000000000 72 | CINELEC= 10.0000000000000000 73 | CCNELEC= 10.0000000000000000 74 | SPIN= 0.0000000000000000 75 | SCFSPIN= 0.0000000000000000 76 | MCSPIN= 0.0000000000000000 77 | CISPIN= 0.0000000000000000 78 | CCSPIN= 0.0000000000000000 79 | STATE= 0.0000000000000000 80 | SCFSTATE= 0.0000000000000000 81 | MCSTATE= 0.0000000000000000 82 | CISTATE= 0.0000000000000000 83 | SYMMETRY= 0.0000000000000000 84 | SCFSYMMETRY= 0.0000000000000000 85 | MCSYMMETRY= 0.0000000000000000 86 | CISYMMETRY= 0.0000000000000000 87 | CCSYMMETRY= 0.0000000000000000 88 | SCFSYMM= 0.0000000000000000 89 | MCSYMM= 0.0000000000000000 90 | CISYMM= 0.0000000000000000 91 | CCSYMM= 0.0000000000000000 92 | SCFSYM= 0.0000000000000000 93 | MCSYM= 0.0000000000000000 94 | CISYM= 0.0000000000000000 95 | CCSYM= 0.0000000000000000 96 | ZSYMEL= 0.0000000000000000 97 | WEIGHT= 0.0000000000000000 98 | MCWEIGHT= 0.0000000000000000 99 | LQUANT= 0.0000000000000000 100 | MCLQUANT= 0.0000000000000000 101 | OPTCONV= 0.0000000000000000 102 | QSDSTEP= 0.0000000000000000 103 | QSDIRC= 0.0000000000000000 104 | PROGRAM=CI 105 | CPUSTEP= 0.1500000000000000 106 | SYSSTEP= 0.0500000000000000 107 | WALLSTEP= 0.2300000000000000 108 | !PERT= 0.2300000000000000 109 | !DFMP2= 0.0000000000000000 110 | !DFSCF= 0.0000000000000000 111 | !DFHFENERG= 0.0000000000000000 112 | !SCSGRD= 0.0000000000000000 113 | ATCHARGE= 0.0000000000000000 114 | BASINP= 610.0000000000000000 115 | CARTESIAN= 610.0000000000000000 116 | CFIT= 610.0000000000000000 117 | CFIT_FRED= 610.0000000000000000 118 | CFIT_FRED_THR= 610.0000000000000000 119 | CHII2= 610.0000000000000000 120 | CHIRS= 610.0000000000000000 121 | COEFF= 610.0000000000000000 122 | CPU2IDX_CFIT= 610.0000000000000000 123 | CPU3IDX_CFIT= 610.0000000000000000 124 | CPUASMBL_CFIT= 610.0000000000000000 125 | CPUBLAS1= 610.0000000000000000 126 | CPUBLAS2= 610.0000000000000000 127 | CPUBLAS3= 610.0000000000000000 128 | CPUINT_DTRAF= 610.0000000000000000 129 | CPUSOLVE_CFIT= 610.0000000000000000 130 | CPUTOT= 0.3500000000000000 131 | CPUTR1_CFIT= 0.3500000000000000 132 | CPUTR2_CFIT= 0.3500000000000000 133 | CPUINV_CFIT= 0.3500000000000000 134 | CPUFIT_CFIT= 0.3500000000000000 135 | CPUTRANS_CFIT= 0.3500000000000000 136 | CPUSCREEN_CFIT= 0.3500000000000000 137 | CPUTRANS_DTRAF= 0.3500000000000000 138 | CPUTRA_DTRAF= 0.3500000000000000 139 | DALTON= 0.3500000000000000 140 | DARW= 0.3500000000000000 141 | DECAY= 0.3500000000000000 142 | DELE_CFIT= 0.3500000000000000 143 | DELG_CFIT= 0.3500000000000000 144 | DELTA= 0.3500000000000000 145 | DFTEXFAC= 0.3500000000000000 146 | DFTFAC= 0.3500000000000000 147 | DFTFUN= 0.3500000000000000 148 | DFTFUNS= 0.3500000000000000 149 | DMEX= 0.3500000000000000 150 | DMEY= 0.3500000000000000 151 | DMEZ= 0.3500000000000000 152 | DMNX= 0.3500000000000000 153 | DMNY= 0.3500000000000000 154 | DMNZ= 0.3500000000000000 155 | DMSCF= 0.3500000000000000 156 | DMSCF_Efield= 0.3500000000000000 157 | DMSCF_I= 0.3500000000000000 158 | DMSCF_J= 0.3500000000000000 159 | DMSCF_K= 0.3500000000000000 160 | DMSCF_N1= 0.3500000000000000 161 | DMSCF_N2= 0.3500000000000000 162 | DMSCF_NUC= 0.3500000000000000 163 | DMSCF_T= 0.3500000000000000 164 | DMSCF_V= 0.3500000000000000 165 | DMX= 0.0000000000000000 166 | DMY= 0.0000000000000000 167 | DMZ= 0.7619365390389903 168 | DMZCOR= 0.7619365390389903 169 | DM_RHO1= 0.7619365390389903 170 | DM_RVAL= 0.7619365390389903 171 | DUMMYATOMS= 0.7619365390389903 172 | FREQUENCIES= 0.7619365390389903 173 | EDISP= 0.7619365390389903 174 | EEDISP= 0.7619365390389903 175 | EINTRA= 0.7619365390389903 176 | EIONIC= 0.7619365390389903 177 | EMP2= 0.7619365390389903 178 | EMP2_SING= 0.7619365390389903 179 | EMP2_TRIP= 0.7619365390389903 180 | EMP2_SCS= 0.7619365390389903 181 | ECSING= 0.7619365390389903 182 | ECTRIP= 0.7619365390389903 183 | EMP2_R12= 0.7619365390389903 184 | EMP2_R12A= 0.7619365390389903 185 | EMP2R12_2AD= 0.7619365390389903 186 | EMP2R12_2A= 0.7619365390389903 187 | EMP2R12_2AP= 0.7619365390389903 188 | EMP2R12_2SAD= 0.7619365390389903 189 | EMP2R12_2SA= 0.7619365390389903 190 | EMP2R12_2SAP= 0.7619365390389903 191 | EMP2_R12_DIAG= 0.7619365390389903 192 | EMP2_R12_STRONG= 0.7619365390389903 193 | EMP2_R12_CLOSE= 0.7619365390389903 194 | EMP2_R12_WEAK= 0.7619365390389903 195 | EMP2_R12_DIST= 0.7619365390389903 196 | EMP2R= 0.7619365390389903 197 | EMP3= 0.7619365390389903 198 | EMP3R= 0.7619365390389903 199 | EMP4= 0.7619365390389903 200 | ENERGC= 0.7619365390389903 201 | ENERGD= -76.2421911837620172 202 | ENERGP= -76.2407631511479735 203 | ENERGR= -76.0783435563409967 204 | ENERGRR= -76.0783435563409967 205 | ENERGS= -76.0783435563409967 206 | ENERGT= -76.0783435563409967 207 | ENERGU= -76.0783435563409967 208 | ENERGW= -76.0783435563409967 209 | ENERGY= -76.2361280644091153 210 | ENERGY_MP= -76.2361280644091153 211 | ENUC= 9.1966984075524536 212 | EPDIST= 9.1966984075524536 213 | EPDIST_R12= 9.1966984075524536 214 | EPSUM= 9.1966984075524536 215 | EPSUM_R12= 9.1966984075524536 216 | EPS1= 9.1966984075524536 217 | EPS2= 9.1966984075524536 218 | EPS3= 9.1966984075524536 219 | EPS4= 9.1966984075524536 220 | EPS5= 9.1966984075524536 221 | EPS6= 9.1966984075524536 222 | EPS7= 9.1966984075524536 223 | EPS8= 9.1966984075524536 224 | EREL= 9.1966984075524536 225 | FLOPBLAS1= 9.1966984075524536 226 | FLOPBLAS2= 9.1966984075524536 227 | FLOPBLAS3= 9.1966984075524536 228 | FLOPDGM= 9.1966984075524536 229 | FLOPDGV= 9.1966984075524536 230 | FLOPMXM= 9.1966984075524536 231 | FLOPMXV= 9.1966984075524536 232 | FREQSTEP= 9.1966984075524536 233 | !RS2GRSTATE= 9.1966984075524536 234 | !RS2GRSYM= 9.1966984075524536 235 | GRADENERG= 9.1966984075524536 236 | GRADEXFAC= 9999.0000000000000000 237 | GRADMETHOD=FALSE 238 | GRADRECORD=FALSE 239 | GRADX=FALSE 240 | GRADY=FALSE 241 | GRADZ=FALSE 242 | GRADVAR=FALSE 243 | GRID=FALSE 244 | GRID_FREEZE=FALSE 245 | !GRID_FREEZE= -1.0000000000000000 246 | GRID_WEIGHT_CUT= -1.0000000000000000 247 | GRID_BLOCKSIZE= -1.0000000000000000 248 | GRID_SPARSITY= -1.0000000000000000 249 | GRID_RMAX= -1.0000000000000000 250 | GTOTAL= -1.0000000000000000 251 | HDIA= -1.0000000000000000 252 | HDIACI= -1.0000000000000000 253 | HEAT= -1.0000000000000000 254 | HTOTAL= -1.0000000000000000 255 | INCR_CORR= -1.0000000000000000 256 | INCR_COUNT= -1.0000000000000000 257 | INCR_READY= -1.0000000000000000 258 | ISCHI= -1.0000000000000000 259 | ITERATIONS= 6.0000000000000000 260 | KFIT= 6.0000000000000000 261 | LASTNELEC= 6.0000000000000000 262 | LASTSPIN= 0.0000000000000000 263 | LASTSYM= 1.0000000000000000 264 | LL= 1.0000000000000000 265 | MASSV= 1.0000000000000000 266 | MIN_ITER= 1.0000000000000000 267 | MIXANG= 1.0000000000000000 268 | MIXANGCI= 1.0000000000000000 269 | MPP_PROG= 1.0000000000000000 270 | MSENERGY= 1.0000000000000000 271 | NACME= 1.0000000000000000 272 | NBAS_CFIT= 1.0000000000000000 273 | NEWREC= 1.0000000000000000 274 | NGRID= 1.0000000000000000 275 | NPROC_MPP= 1.0000000000000000 276 | NPROC_SMP= 1.0000000000000000 277 | NUMSTEP= 0.0000000000000000 278 | OPNUC= 0.0000000000000000 279 | OPTCONVMX= 0.0000000000000000 280 | OPTCONVRMS= 0.0000000000000000 281 | OPTGRAD= 0.0000000000000000 282 | OPTGRADMX= 0.0000000000000000 283 | OPTGRADRMS= 0.0000000000000000 284 | OPTRMSMAX= 0.0000000000000000 285 | OPTSTEP= 0.0000000000000000 286 | ORBITAL= 2140.1999999999998181 287 | PAOINT_CFIT= 2140.1999999999998181 288 | PENALTY= 2140.1999999999998181 289 | PH1INT_CFIT= 2140.1999999999998181 290 | PH1VEC_CFIT= 2140.1999999999998181 291 | PH2INT_CFIT= 2140.1999999999998181 292 | PHASE= 2140.1999999999998181 293 | PI= 3.1415926535897931 294 | PMOINT_CFIT= 3.1415926535897931 295 | PMOVEC_CFIT= 3.1415926535897931 296 | POISSON_ECORR= 3.1415926535897931 297 | POISSON_ERROR= 3.1415926535897931 298 | POLXX= 3.1415926535897931 299 | POLXY= 3.1415926535897931 300 | POLXZ= 3.1415926535897931 301 | POLYY= 3.1415926535897931 302 | POLYZ= 3.1415926535897931 303 | POLZZ= 3.1415926535897931 304 | POLYX= 3.1415926535897931 305 | POLZX= 3.1415926535897931 306 | POLZY= 3.1415926535897931 307 | POVINT_CFIT= 3.1415926535897931 308 | ROOT= 3.1415926535897931 309 | RPDIST= 3.1415926535897931 310 | RPMIN= 3.1415926535897931 311 | RPMAX= 3.1415926535897931 312 | EPCON= 3.1415926535897931 313 | EPDIAG= 3.1415926535897931 314 | !MCACT= 2.0000000000000000 315 | !MCCLOSED= 1.0000000000000000 316 | !MCFREEZE= 1.0000000000000000 317 | !MCMS2= 0.0000000000000000 318 | !MCNEL= 6.0000000000000000 319 | !MCNSTSYM= 1.0000000000000000 320 | !MCSTATE= 1.0000000000000000 321 | !MCSYM= 1.0000000000000000 322 | !MCWEIGHT= 1.0000000000000000 323 | SEIG_MIN= 0.0176129552567141 324 | SEWPROP= 1.0000000000000000 325 | SMAT= 1.0000000000000000 326 | SMATCI= 1.0000000000000000 327 | STATUS= 1.0000000000000000 328 | SYSBLAS1= 1.0000000000000000 329 | SYSBLAS2= 1.0000000000000000 330 | SYSBLAS3= 1.0000000000000000 331 | SYSTEM_RC= 1.0000000000000000 332 | SYSTOT= 0.1100000000000000 333 | T1DIAG= 0.1100000000000000 334 | D1DIAG= 0.1100000000000000 335 | TASK= 0.1100000000000000 336 | TROV= 0.1100000000000000 337 | HMAT= 0.1100000000000000 338 | UMAT= 0.1100000000000000 339 | UMATCI= 0.1100000000000000 340 | VERSION= 2006001.0000000000000000 341 | WALLBLAS1= 2006001.0000000000000000 342 | WALLBLAS2= 2006001.0000000000000000 343 | WALLBLAS3= 2006001.0000000000000000 344 | WALLTOT= 0.4900000000000000 345 | ZPE= 0.4900000000000000 346 | !DFBASIS_COUL= 0.4900000000000000 347 | !DFBASIS_EXCH= 0.4900000000000000 348 | !DFBASIS_MP2= 0.4900000000000000 349 | !DFBASIS_CCSD= 0.4900000000000000 350 | !RIBASIS_MP2= 0.4900000000000000 351 | MODULE_ALMLOF= 0.4900000000000000 352 | MODULE_BENCH= 0.4900000000000000 353 | MODULE_CFIT= 0.4900000000000000 354 | MODULE_DEVELOP= 0.4900000000000000 355 | MODULE_DIRECT= 0.4900000000000000 356 | MODULE_DMSCF= 0.4900000000000000 357 | MODULE_DOC= 0.4900000000000000 358 | MODULE_DOCDEV= 0.4900000000000000 359 | MODULE_LCCSD= 0.4900000000000000 360 | MODULE_LOCAL= 0.4900000000000000 361 | MODULE_LX= 0.4900000000000000 362 | MODULE_MPP= 0.4900000000000000 363 | MODULE_COSMO= 0.4900000000000000 364 | MODULE_DFIT= 0.4900000000000000 365 | MODULE_EXPLICIT= 0.4900000000000000 366 | MODULE_VSCF= 0.4900000000000000 367 | MODULE_MRCC= 0.4900000000000000 368 | MODULE_CIDFT= 0.4900000000000000 369 | MODULE_CC2= 0.4900000000000000 370 | MODULE_SLATER= 0.4900000000000000 371 | MODULE_GCC= 0.4900000000000000 372 | DATE= 29-Dec-08 373 | LASTORB=MCSCF 374 | MACHINE=Linux-2.6.20-1.2948.fc6/elrond.cm.utexas.edu(x86_64) 64 bit mpp version (ifort9.1) 375 | METHODC= 376 | METHODT= 377 | OUTPUT=/home/zouwl/molpro/molpro.out 378 | PGROUP=C2v 379 | SEMI= 380 | TIME=11:54:35 381 | VDIAG= 382 | UDIAG= 383 | !AOINTADDSC= 384 | TRANSFORM_FORCE= 385 | SOLVE_ITER= 386 | VSCF_FREQ= 387 | VCI_FREQ= 388 | !SURFREC= 0.0000000000000000 389 | !VSCFREC= 0.0000000000000000 390 | !VCIREC= 0.0000000000000000 391 | !SCFORB= 21002.0000000000000000 392 | !CIOCC= 4.0000000000000000 393 | !CICORE= 1.0000000000000000 394 | !CICLOS= 2.0000000000000000 395 | !UNO_OCC= 2.0000000000000000 396 | !UNO_CLOSED= 2.0000000000000000 397 | !CINSTSYM= 2.0000000000000000 398 | !CIISTSYM= 1.0000000000000000 399 | !CIISTMS2= 0.0000000000000000 400 | !CIISTNEL= 8.0000000000000000 401 | !CIMS2= 8.0000000000000000 402 | !NEWMOL= -1.0000000000000000 403 | !NEWSYM= -1.0000000000000000 404 | !NEWORIENT= -1.0000000000000000 405 | SLFILES=slscratch 406 | NGSSTO= 9.0000000000000000 407 | SIN=SIN 408 | COS=COS 409 | TAN=TAN 410 | ACOS=ACOS 411 | ASIN=ASIN 412 | ATAN=ATAN 413 | COSH=COSH 414 | SINH=SINH 415 | TANH=TANH 416 | ABS=ABS 417 | MOD=MOD 418 | ERF=ERF 419 | REFC=REFC 420 | ERFC=ERFC 421 | HYPOT=HYPOT 422 | J0=J0 423 | J1=J1 424 | JN=JN 425 | GAMMA=GAMMA 426 | LGAMMA=LGAMMA 427 | Y0=Y0 428 | Y1=Y1 429 | YN=YN 430 | EXP=EXP 431 | LOG=LOG 432 | LOG10=LOG10 433 | SQRT=SQRT 434 | INT=INT 435 | NINT=NINT 436 | MAX=MAX 437 | MIN=MIN 438 | COSMO= 0.0000000000000000 439 | COSMOIT= 0.0000000000000000 440 | COSMOES= 0.0000000000000000 441 | COSMOEDS= 0.0000000000000000 442 | COSMOEC= 0.0000000000000000 443 | COSMOEDCORR= 0.0000000000000000 444 | FEPSI= 1.0000000000000000 445 | SL_NSYM= 4.0000000000000000 446 | SL_System_BitSwi= 32.0000000000000000 447 | SL_Unique_atoms= 2.0000000000000000 448 | SL_Last_energy= 2.0000000000000000 449 | SL_GRAD= 0.0000000000000000 450 | SL_MAXUPD_Hessia= 5.0000000000000000 451 | SL_N_PRINT_CODES= 5.0000000000000000 452 | SL_PRINT_CODES= 0.0000000000000000 453 | SL_BasType= 0.0000000000000000 454 | SL_Energy_Pred= 0.0000000000000000 455 | SL_New_Coords= 0.0000000000000000 456 | SL_Total_Nuclear= 0.0000000000000000 457 | SL_Highest_Mltpl= 1.0000000000000000 458 | SCFOCC= 1.0000000000000000 459 | SCFCLOSED= 1.0000000000000000 460 | SCFCORE= 1.0000000000000000 461 | MCOCC= 1.0000000000000000 462 | MCCLOSED= 1.0000000000000000 463 | MCFROZEN= 1.0000000000000000 464 | MCCORE= 1.0000000000000000 465 | CIOCC= 1.0000000000000000 466 | CICLOSED= 1.0000000000000000 467 | CICORE= 1.0000000000000000 468 | CCOCC= 1.0000000000000000 469 | CCCLOSED= 1.0000000000000000 470 | CCCORE= 1.0000000000000000 471 | SRXC= 1.0000000000000000 472 | SRC= 1.0000000000000000 473 | SRX= 1.0000000000000000 474 | SRH= 1.0000000000000000 475 | E_EXCHANGE= 1.0000000000000000 476 | !LATTICE= -1.0000000000000000 477 | !NEWLATTICE= 0.0000000000000000 478 | !LATGRAD_VAR=FALSE 479 | !SEW_LATTICE= 1.0000000000000000 480 | LATGRADX= 1.0000000000000000 481 | LATGRADY= 1.0000000000000000 482 | LATGRADZ= 1.0000000000000000 483 | !SCALTABINIT= 1.0000000000000000 484 | !LOCAL= 0.0000000000000000 485 | !SAVEOCC= 0.0000000000000000 486 | !SAVEDOM= -1.0000000000000000 487 | !RESTDOM= -1.0000000000000000 488 | !SAVEDOM_HF= -1.0000000000000000 489 | !RESTDOM_HF= -1.0000000000000000 490 | !HESSREC= 0.0000000000000000 491 | !FREQREC= 0.0000000000000000 492 | !NMODREC= 0.0000000000000000 493 | !GTASKS= 0.0000000000000000 494 | !HTASKS= 0.0000000000000000 495 | !THRCHG= 0.1000000000000000 496 | !DEBUG= -1.0000000000000000 497 | !CFIT_CPHF= 0.0000000000000000 498 | !RDOMAUX_CPHF= 3.0000000000000000 499 | !THRAO_CPHF= 0.0000000100000000 500 | !THRMO_CPHF= 0.0000000100000000 501 | !THROV_CPHF= 0.0000000001000000 502 | !THRSW_CPHF= 0.0000000001000000 503 | !THRPROD_CPHF= 0.0000000100000000 504 | !THRAOPR_CPHF= 0.0000000000010000 505 | !CFIT_SCFGRD= 0.0000000000000000 506 | !RDOMAUX_SCFGRD= 5.0000000000000000 507 | !THRAO_SCFGRD= 0.0000000100000000 508 | !THRMO_SCFGRD= 0.0000000100000000 509 | !THROV_SCFGRD= 0.0000000001000000 510 | !THRSW_SCFGRD= 0.0000000001000000 511 | !THRPROD_SCFGRD= 0.0000000100000000 512 | !THRAOPR_SCFGRD= 0.0000000000010000 513 | !LOCFIT_SCF= 0.0000000000000000 514 | !LOCFIT_MP2= -1.0000000000000000 515 | RIDOM= 0.0000000000000000 516 | FCI_METHOD= 0.0000000000000000 517 | !CC2_METHOD= 0.0000000000000000 518 | BASIS2006=FALSE 519 | R= 0.9570000000000000 520 | THETA= 104.5999999999999943 521 | GX1= 0.0000000000000000 522 | GY1= 0.0000000000000000 523 | GZ1= -0.1237513936218405 524 | GX2= 0.0000000000000000 525 | GY2= 1.4309022590838707 526 | GZ2= 0.9821755496920821 527 | GX3= 0.0000000000000000 528 | GY3= -1.4309022590838705 529 | GZ3= 0.9821755496920822 530 | [Atoms] Angs 531 | O 1 8 0.0000000000 0.0000000000 -0.0654864220 532 | H 2 1 0.0000000000 0.7572009210 0.5197449554 533 | H 3 1 0.0000000000 -0.7572009210 0.5197449554 534 | [GTO] 535 | 1 0 536 | s 9 1.00 537 | 0.1172000000D+05 0.7100002503D-03 538 | 0.1759000000D+04 0.5470001928D-02 539 | 0.4008000000D+03 0.2783700981D-01 540 | 0.1137000000D+03 0.1048000369D+00 541 | 0.3703000000D+02 0.2830620998D+00 542 | 0.1327000000D+02 0.4487191582D+00 543 | 0.5025000000D+01 0.2709520955D+00 544 | 0.1013000000D+01 0.1545800545D-01 545 | 0.3023000000D+00 -0.2585000911D-02 546 | s 9 1.00 547 | 0.1172000000D+05 -0.1600000154D-03 548 | 0.1759000000D+04 -0.1263000121D-02 549 | 0.4008000000D+03 -0.6267000602D-02 550 | 0.1137000000D+03 -0.2571600247D-01 551 | 0.3703000000D+02 -0.7092400682D-01 552 | 0.1327000000D+02 -0.1654110159D+00 553 | 0.5025000000D+01 -0.1169550112D+00 554 | 0.1013000000D+01 0.5573680536D+00 555 | 0.3023000000D+00 0.5727590551D+00 556 | s 9 1.00 557 | 0.1172000000D+05 0.0000000000D+00 558 | 0.1759000000D+04 0.0000000000D+00 559 | 0.4008000000D+03 0.0000000000D+00 560 | 0.1137000000D+03 0.0000000000D+00 561 | 0.3703000000D+02 0.0000000000D+00 562 | 0.1327000000D+02 0.0000000000D+00 563 | 0.5025000000D+01 0.0000000000D+00 564 | 0.1013000000D+01 0.0000000000D+00 565 | 0.3023000000D+00 0.1000000000D+01 566 | p 4 1.00 567 | 0.1770000000D+02 0.4301799242D-01 568 | 0.3854000000D+01 0.2289129597D+00 569 | 0.1046000000D+01 0.5087279104D+00 570 | 0.2753000000D+00 0.4605309189D+00 571 | p 4 1.00 572 | 0.1770000000D+02 0.0000000000D+00 573 | 0.3854000000D+01 0.0000000000D+00 574 | 0.1046000000D+01 0.0000000000D+00 575 | 0.2753000000D+00 0.1000000000D+01 576 | d 1 1.00 577 | 0.1185000000D+01 0.1000000000D+01 578 | 579 | 2 0 580 | s 4 1.00 581 | 0.1301000000D+02 0.1968498999D-01 582 | 0.1962000000D+01 0.1379769298D+00 583 | 0.4446000000D+00 0.4781477569D+00 584 | 0.1220000000D+00 0.5012397451D+00 585 | s 4 1.00 586 | 0.1301000000D+02 0.0000000000D+00 587 | 0.1962000000D+01 0.0000000000D+00 588 | 0.4446000000D+00 0.0000000000D+00 589 | 0.1220000000D+00 0.1000000000D+01 590 | p 1 1.00 591 | 0.7270000000D+00 0.1000000000D+01 592 | 593 | 3 0 594 | s 4 1.00 595 | 0.1301000000D+02 0.1968498999D-01 596 | 0.1962000000D+01 0.1379769298D+00 597 | 0.4446000000D+00 0.4781477569D+00 598 | 0.1220000000D+00 0.5012397451D+00 599 | s 4 1.00 600 | 0.1301000000D+02 0.0000000000D+00 601 | 0.1962000000D+01 0.0000000000D+00 602 | 0.4446000000D+00 0.0000000000D+00 603 | 0.1220000000D+00 0.1000000000D+01 604 | p 1 1.00 605 | 0.7270000000D+00 0.1000000000D+01 606 | 607 | 608 | [MO] 609 | Ene= 0.0000 610 | Spin= Alpha 611 | Occup= 2.000000 612 | 1 1.00040110607 613 | 2 0.00231460527 614 | 3 -0.00140375111 615 | 4 0.00000000000 616 | 5 0.00000000000 617 | 6 0.00256870134 618 | 7 0.00000000000 619 | 8 0.00000000000 620 | 9 -0.00166567639 621 | 10 -0.00012612809 622 | 11 0.00011545875 623 | 12 0.00001066935 624 | 13 0.00000000000 625 | 14 0.00000000000 626 | 15 0.00000000000 627 | 16 -0.00041425544 628 | 17 0.00062912355 629 | 18 0.00000000000 630 | 19 0.00057299943 631 | 20 0.00048231923 632 | 21 -0.00041425544 633 | 22 0.00062912355 634 | 23 0.00000000000 635 | 24 -0.00057299943 636 | 25 0.00048231923 637 | Ene= 0.0000 638 | Spin= Alpha 639 | Occup= 1.985451 640 | 1 -0.00748999660 641 | 2 0.92302529914 642 | 3 -0.05983877132 643 | 4 0.00000000000 644 | 5 0.00000000000 645 | 6 -0.15923061273 646 | 7 0.00000000000 647 | 8 0.00000000000 648 | 9 -0.06821767881 649 | 10 0.00072593866 650 | 11 0.00431788983 651 | 12 -0.00504382849 652 | 13 0.00000000000 653 | 14 0.00000000000 654 | 15 0.00000000000 655 | 16 0.18930430434 656 | 17 -0.09756906236 657 | 18 0.00000000000 658 | 19 -0.02391449122 659 | 20 -0.02209703184 660 | 21 0.18930430434 661 | 22 -0.09756906236 662 | 23 0.00000000000 663 | 24 0.02391449122 664 | 25 -0.02209703184 665 | Ene= 0.0000 666 | Spin= Alpha 667 | Occup= 1.974396 668 | 1 0.00000000000 669 | 2 0.00000000000 670 | 3 0.00000000000 671 | 4 0.91593842394 672 | 5 0.00000000000 673 | 6 0.00000000000 674 | 7 0.07486857618 675 | 8 0.00000000000 676 | 9 0.00000000000 677 | 10 0.00000000000 678 | 11 0.00000000000 679 | 12 0.00000000000 680 | 13 0.00000000000 681 | 14 0.01846776688 682 | 15 0.00000000000 683 | 16 0.00000000000 684 | 17 0.00000000000 685 | 18 0.03302355512 686 | 19 0.00000000000 687 | 20 0.00000000000 688 | 21 0.00000000000 689 | 22 0.00000000000 690 | 23 0.03302355512 691 | 24 0.00000000000 692 | 25 0.00000000000 693 | Ene= 0.0000 694 | Spin= Alpha 695 | Occup= 1.966833 696 | 1 0.00152103038 697 | 2 0.02765323376 698 | 3 -0.22317487362 699 | 4 0.00000000000 700 | 5 0.00000000000 701 | 6 0.78917157568 702 | 7 0.00000000000 703 | 8 0.00000000000 704 | 9 -0.03120363905 705 | 10 -0.01291047839 706 | 11 -0.00458465321 707 | 12 0.01749513160 708 | 13 0.00000000000 709 | 14 0.00000000000 710 | 15 0.00000000000 711 | 16 0.44851421521 712 | 17 -0.17953533076 713 | 18 0.00000000000 714 | 19 -0.03955771330 715 | 20 0.00374537935 716 | 21 0.44851421521 717 | 22 -0.17953533076 718 | 23 0.00000000000 719 | 24 0.03955771330 720 | 25 0.00374537935 721 | Ene= 0.0000 722 | Spin= Alpha 723 | Occup= 1.964062 724 | 1 0.00000000000 725 | 2 0.00000000000 726 | 3 0.00000000000 727 | 4 0.00000000000 728 | 5 0.72320327446 729 | 6 0.00000000000 730 | 7 0.00000000000 731 | 8 -0.12242358152 732 | 9 0.00000000000 733 | 10 0.00000000000 734 | 11 0.00000000000 735 | 12 0.00000000000 736 | 13 0.00000000000 737 | 14 0.00000000000 738 | 15 0.02593370962 739 | 16 0.56196347435 740 | 17 -0.18544541772 741 | 18 0.00000000000 742 | 19 -0.01954390621 743 | 20 -0.03006749536 744 | 21 -0.56196347435 745 | 22 0.18544541772 746 | 23 0.00000000000 747 | 24 -0.01954390621 748 | 25 0.03006749536 749 | Ene= 0.0000 750 | Spin= Alpha 751 | Occup= 0.027164 752 | 1 0.00000000000 753 | 2 0.00000000000 754 | 3 0.00000000000 755 | 4 0.00000000000 756 | 5 -1.26881998486 757 | 6 0.00000000000 758 | 7 0.00000000000 759 | 8 0.52629021692 760 | 9 0.00000000000 761 | 10 0.00000000000 762 | 11 0.00000000000 763 | 12 0.00000000000 764 | 13 0.00000000000 765 | 14 0.00000000000 766 | 15 0.04812767427 767 | 16 0.98596219503 768 | 17 -0.31287733877 769 | 18 0.00000000000 770 | 19 -0.02455895885 771 | 20 -0.00430023340 772 | 21 -0.98596219503 773 | 22 0.31287733877 774 | 23 0.00000000000 775 | 24 -0.02455895885 776 | 25 0.00430023340 777 | Ene= 0.0000 778 | Spin= Alpha 779 | Occup= 0.025330 780 | 1 -0.10286370135 781 | 2 -0.81014480544 782 | 3 0.13697090956 783 | 4 0.00000000000 784 | 5 0.00000000000 785 | 6 -1.17249714400 786 | 7 0.00000000000 787 | 8 0.00000000000 788 | 9 0.69110903233 789 | 10 -0.04873442265 790 | 11 0.03940126361 791 | 12 0.00933315904 792 | 13 0.00000000000 793 | 14 0.00000000000 794 | 15 0.00000000000 795 | 16 0.94187270561 796 | 17 -0.36750956193 797 | 18 0.00000000000 798 | 19 -0.03484811669 799 | 20 0.01113794914 800 | 21 0.94187270561 801 | 22 -0.36750956193 802 | 23 0.00000000000 803 | 24 0.03484811669 804 | 25 0.01113794914 805 | Ene= 0.0000 806 | Spin= Alpha 807 | Occup= 0.015872 808 | 1 0.00000000000 809 | 2 0.00000000000 810 | 3 0.00000000000 811 | 4 -1.40686079438 812 | 5 0.00000000000 813 | 6 0.00000000000 814 | 7 1.59925448397 815 | 8 0.00000000000 816 | 9 0.00000000000 817 | 10 0.00000000000 818 | 11 0.00000000000 819 | 12 0.00000000000 820 | 13 0.00000000000 821 | 14 0.03951902589 822 | 15 0.00000000000 823 | 16 0.00000000000 824 | 17 0.00000000000 825 | 18 0.08662327605 826 | 19 0.00000000000 827 | 20 0.00000000000 828 | 21 0.00000000000 829 | 22 0.00000000000 830 | 23 0.08662327605 831 | 24 0.00000000000 832 | 25 0.00000000000 833 | Ene= 0.0000 834 | Spin= Alpha 835 | Occup= 0.010626 836 | 1 0.44327726751 837 | 2 2.25237869902 838 | 3 -2.17634060333 839 | 4 0.00000000000 840 | 5 0.00000000000 841 | 6 -0.74925355807 842 | 7 0.00000000000 843 | 8 0.00000000000 844 | 9 1.09106911521 845 | 10 0.08155617740 846 | 11 -0.13193212357 847 | 12 0.05037594617 848 | 13 0.00000000000 849 | 14 0.00000000000 850 | 15 0.00000000000 851 | 16 -0.37652445479 852 | 17 0.23785822644 853 | 18 0.00000000000 854 | 19 -0.01912655317 855 | 20 0.08928580047 856 | 21 -0.37652445479 857 | 22 0.23785822644 858 | 23 0.00000000000 859 | 24 0.01912655317 860 | 25 0.08928580047 861 | Ene= 0.0000 862 | Spin= Alpha 863 | Occup= 0.005573 864 | 1 0.00000000000 865 | 2 0.00000000000 866 | 3 0.00000000000 867 | 4 0.00000000000 868 | 5 -0.45891359399 869 | 6 0.00000000000 870 | 7 0.00000000000 871 | 8 1.00476844650 872 | 9 0.00000000000 873 | 10 0.00000000000 874 | 11 0.00000000000 875 | 12 0.00000000000 876 | 13 0.00000000000 877 | 14 0.00000000000 878 | 15 -0.60494182079 879 | 16 -0.69364171777 880 | 17 0.55084513122 881 | 18 0.00000000000 882 | 19 0.12505196237 883 | 20 -0.01695520373 884 | 21 0.69364171777 885 | 22 -0.55084513122 886 | 23 0.00000000000 887 | 24 0.12505196237 888 | 25 0.01695520373 889 | Ene= 0.0000 890 | Spin= Alpha 891 | Occup= 0.005350 892 | 1 -0.30169922002 893 | 2 -1.33830462160 894 | 3 1.85809515810 895 | 4 0.00000000000 896 | 5 0.00000000000 897 | 6 0.00151629869 898 | 7 0.00000000000 899 | 8 0.00000000000 900 | 9 0.19828823486 901 | 10 0.29413707416 902 | 11 -0.60694157754 903 | 12 0.31280450338 904 | 13 0.00000000000 905 | 14 0.00000000000 906 | 15 0.00000000000 907 | 16 -0.70886876926 908 | 17 0.42149967787 909 | 18 0.00000000000 910 | 19 -0.06362741399 911 | 20 0.23063292454 912 | 21 -0.70886876926 913 | 22 0.42149967787 914 | 23 0.00000000000 915 | 24 0.06362741399 916 | 25 0.23063292454 917 | Ene= 0.0000 918 | Spin= Alpha 919 | Occup= 0.004891 920 | 1 0.00000000000 921 | 2 0.00000000000 922 | 3 0.00000000000 923 | 4 0.00000000000 924 | 5 0.00000000000 925 | 6 0.00000000000 926 | 7 0.00000000000 927 | 8 0.00000000000 928 | 9 0.00000000000 929 | 10 0.00000000000 930 | 11 0.00000000000 931 | 12 0.00000000000 932 | 13 0.79447498467 933 | 14 0.00000000000 934 | 15 0.00000000000 935 | 16 0.00000000000 936 | 17 0.00000000000 937 | 18 0.27770027549 938 | 19 0.00000000000 939 | 20 0.00000000000 940 | 21 0.00000000000 941 | 22 0.00000000000 942 | 23 -0.27770027549 943 | 24 0.00000000000 944 | 25 0.00000000000 945 | Ene= 0.0000 946 | Spin= Alpha 947 | Occup= 0.004303 948 | 1 -0.11237987789 949 | 2 -0.46763981062 950 | 3 0.80291856932 951 | 4 0.00000000000 952 | 5 0.00000000000 953 | 6 -0.08272876756 954 | 7 0.00000000000 955 | 8 0.00000000000 956 | 9 0.50015141989 957 | 10 0.72546665754 958 | 11 0.00840131923 959 | 12 -0.73386797677 960 | 13 0.00000000000 961 | 14 0.00000000000 962 | 15 0.00000000000 963 | 16 -0.47349829654 964 | 17 0.28216551865 965 | 18 0.00000000000 966 | 19 0.17725505121 967 | 20 -0.09217546969 968 | 21 -0.47349829654 969 | 22 0.28216551865 970 | 23 0.00000000000 971 | 24 -0.17725505121 972 | 25 -0.09217546969 973 | Ene= 0.0000 974 | Spin= Alpha 975 | Occup= 0.004206 976 | 1 0.00000000000 977 | 2 0.00000000000 978 | 3 0.00000000000 979 | 4 0.09886215438 980 | 5 0.00000000000 981 | 6 0.00000000000 982 | 7 -0.32425788290 983 | 8 0.00000000000 984 | 9 0.00000000000 985 | 10 0.00000000000 986 | 11 0.00000000000 987 | 12 0.00000000000 988 | 13 0.00000000000 989 | 14 0.88690419998 990 | 15 0.00000000000 991 | 16 0.00000000000 992 | 17 0.00000000000 993 | 18 0.20389590860 994 | 19 0.00000000000 995 | 20 0.00000000000 996 | 21 0.00000000000 997 | 22 0.00000000000 998 | 23 0.20389590860 999 | 24 0.00000000000 1000 | 25 0.00000000000 1001 | Ene= 0.0000 1002 | Spin= Alpha 1003 | Occup= 0.001170 1004 | 1 0.00000000000 1005 | 2 0.00000000000 1006 | 3 0.00000000000 1007 | 4 0.00000000000 1008 | 5 0.67588962941 1009 | 6 0.00000000000 1010 | 7 0.00000000000 1011 | 8 -1.33830898299 1012 | 9 0.00000000000 1013 | 10 0.00000000000 1014 | 11 0.00000000000 1015 | 12 0.00000000000 1016 | 13 0.00000000000 1017 | 14 0.00000000000 1018 | 15 -0.70645508974 1019 | 16 1.13668245737 1020 | 17 -0.48653721382 1021 | 18 0.00000000000 1022 | 19 0.00237812717 1023 | 20 0.31651995151 1024 | 21 -1.13668245737 1025 | 22 0.48653721382 1026 | 23 0.00000000000 1027 | 24 0.00237812717 1028 | 25 -0.31651995151 1029 | Ene= 0.0000 1030 | Spin= Alpha 1031 | Occup= 0.001121 1032 | 1 0.36278002182 1033 | 2 1.39601894283 1034 | 3 -2.60096773538 1035 | 4 0.00000000000 1036 | 5 0.00000000000 1037 | 6 0.17616766760 1038 | 7 0.00000000000 1039 | 8 0.00000000000 1040 | 9 -1.13621063265 1041 | 10 0.64717357400 1042 | 11 -0.76417487516 1043 | 12 0.11700130116 1044 | 13 0.00000000000 1045 | 14 0.00000000000 1046 | 15 0.00000000000 1047 | 16 2.12500473919 1048 | 17 -1.21396844440 1049 | 18 0.00000000000 1050 | 19 -0.03653290230 1051 | 20 -0.13580019838 1052 | 21 2.12500473919 1053 | 22 -1.21396844440 1054 | 23 0.00000000000 1055 | 24 0.03653290230 1056 | 25 -0.13580019838 1057 | Ene= 0.0000 1058 | Spin= Alpha 1059 | Occup= 0.000731 1060 | 1 0.00000000000 1061 | 2 0.00000000000 1062 | 3 0.00000000000 1063 | 4 0.00000000000 1064 | 5 0.00000000000 1065 | 6 0.00000000000 1066 | 7 0.00000000000 1067 | 8 0.00000000000 1068 | 9 0.00000000000 1069 | 10 0.00000000000 1070 | 11 0.00000000000 1071 | 12 0.00000000000 1072 | 13 0.72344801826 1073 | 14 0.00000000000 1074 | 15 0.00000000000 1075 | 16 0.00000000000 1076 | 17 0.00000000000 1077 | 18 -0.72880299228 1078 | 19 0.00000000000 1079 | 20 0.00000000000 1080 | 21 0.00000000000 1081 | 22 0.00000000000 1082 | 23 0.72880299228 1083 | 24 0.00000000000 1084 | 25 0.00000000000 1085 | Ene= 0.0000 1086 | Spin= Alpha 1087 | Occup= 0.000684 1088 | 1 0.00000000000 1089 | 2 0.00000000000 1090 | 3 0.00000000000 1091 | 4 0.00000000000 1092 | 5 0.92358123964 1093 | 6 0.00000000000 1094 | 7 0.00000000000 1095 | 8 -0.11317887312 1096 | 9 0.00000000000 1097 | 10 0.00000000000 1098 | 11 0.00000000000 1099 | 12 0.00000000000 1100 | 13 0.00000000000 1101 | 14 0.00000000000 1102 | 15 0.76143007693 1103 | 16 -1.72821785885 1104 | 17 1.71622755052 1105 | 18 0.00000000000 1106 | 19 0.50893627017 1107 | 20 0.51736113129 1108 | 21 1.72821785885 1109 | 22 -1.71622755052 1110 | 23 0.00000000000 1111 | 24 0.50893627017 1112 | 25 -0.51736113129 1113 | Ene= 0.0000 1114 | Spin= Alpha 1115 | Occup= 0.000632 1116 | 1 0.31813482896 1117 | 2 1.47386112094 1118 | 3 -0.55697591803 1119 | 4 0.00000000000 1120 | 5 0.00000000000 1121 | 6 0.86725359802 1122 | 7 0.00000000000 1123 | 8 0.00000000000 1124 | 9 -0.27119166680 1125 | 10 -0.36853460060 1126 | 11 0.26700049557 1127 | 12 0.10153410503 1128 | 13 0.00000000000 1129 | 14 0.00000000000 1130 | 15 0.00000000000 1131 | 16 -1.26802971396 1132 | 17 1.03657899591 1133 | 18 0.00000000000 1134 | 19 0.70682513489 1135 | 20 0.48346553109 1136 | 21 -1.26802971396 1137 | 22 1.03657899591 1138 | 23 0.00000000000 1139 | 24 -0.70682513489 1140 | 25 0.48346553109 1141 | Ene= 0.0000 1142 | Spin= Alpha 1143 | Occup= 0.000536 1144 | 1 0.00000000000 1145 | 2 0.00000000000 1146 | 3 0.00000000000 1147 | 4 0.08649481710 1148 | 5 0.00000000000 1149 | 6 0.00000000000 1150 | 7 -0.79240641457 1151 | 8 0.00000000000 1152 | 9 0.00000000000 1153 | 10 0.00000000000 1154 | 11 0.00000000000 1155 | 12 0.00000000000 1156 | 13 0.00000000000 1157 | 14 -0.57019841781 1158 | 15 0.00000000000 1159 | 16 0.00000000000 1160 | 17 0.00000000000 1161 | 18 0.83570407867 1162 | 19 0.00000000000 1163 | 20 0.00000000000 1164 | 21 0.00000000000 1165 | 22 0.00000000000 1166 | 23 0.83570407867 1167 | 24 0.00000000000 1168 | 25 0.00000000000 1169 | Ene= 0.0000 1170 | Spin= Alpha 1171 | Occup= 0.000489 1172 | 1 -0.16781020174 1173 | 2 -0.62807251179 1174 | 3 1.18807880227 1175 | 4 0.00000000000 1176 | 5 0.00000000000 1177 | 6 -0.13488939532 1178 | 7 0.00000000000 1179 | 8 0.00000000000 1180 | 9 1.10189451741 1181 | 10 -0.23214976883 1182 | 11 -0.51283887729 1183 | 12 0.74498864611 1184 | 13 0.00000000000 1185 | 14 0.00000000000 1186 | 15 0.00000000000 1187 | 16 -0.97292601177 1188 | 17 0.51418134819 1189 | 18 0.00000000000 1190 | 19 0.49260008404 1191 | 20 -0.61241786272 1192 | 21 -0.97292601177 1193 | 22 0.51418134819 1194 | 23 0.00000000000 1195 | 24 -0.49260008404 1196 | 25 -0.61241786272 1197 | Ene= 0.0000 1198 | Spin= Alpha 1199 | Occup= 0.000487 1200 | 1 0.00000000000 1201 | 2 0.00000000000 1202 | 3 0.00000000000 1203 | 4 0.00000000000 1204 | 5 -0.39137771041 1205 | 6 0.00000000000 1206 | 7 0.00000000000 1207 | 8 1.23495089996 1208 | 9 0.00000000000 1209 | 10 0.00000000000 1210 | 11 0.00000000000 1211 | 12 0.00000000000 1212 | 13 0.00000000000 1213 | 14 0.00000000000 1214 | 15 0.00817278750 1215 | 16 -0.69870762442 1216 | 17 0.27474927998 1217 | 18 0.00000000000 1218 | 19 -0.62259204150 1219 | 20 0.51518842368 1220 | 21 0.69870762442 1221 | 22 -0.27474927998 1222 | 23 0.00000000000 1223 | 24 -0.62259204150 1224 | 25 -0.51518842368 1225 | Ene= 0.0000 1226 | Spin= Alpha 1227 | Occup= 0.000055 1228 | 1 0.32387011914 1229 | 2 1.09916558547 1230 | 3 -3.92197533570 1231 | 4 0.00000000000 1232 | 5 0.00000000000 1233 | 6 -0.36318566997 1234 | 7 0.00000000000 1235 | 8 0.00000000000 1236 | 9 -0.99964088574 1237 | 10 0.38945779723 1238 | 11 -0.31053285995 1239 | 12 -0.07892493728 1240 | 13 0.00000000000 1241 | 14 0.00000000000 1242 | 15 0.00000000000 1243 | 16 1.24037069697 1244 | 17 0.40548065484 1245 | 18 0.00000000000 1246 | 19 -0.79284765135 1247 | 20 -0.54691461087 1248 | 21 1.24037069697 1249 | 22 0.40548065484 1250 | 23 0.00000000000 1251 | 24 0.79284765135 1252 | 25 -0.54691461087 1253 | Ene= 0.0000 1254 | Spin= Alpha 1255 | Occup= 0.000038 1256 | 1 0.00000000000 1257 | 2 0.00000000000 1258 | 3 0.00000000000 1259 | 4 0.00000000000 1260 | 5 -0.36919646356 1261 | 6 0.00000000000 1262 | 7 0.00000000000 1263 | 8 -1.57331793911 1264 | 9 0.00000000000 1265 | 10 0.00000000000 1266 | 11 0.00000000000 1267 | 12 0.00000000000 1268 | 13 0.00000000000 1269 | 14 0.00000000000 1270 | 15 -0.58724066213 1271 | 16 0.94856493951 1272 | 17 1.14570322360 1273 | 18 0.00000000000 1274 | 19 -0.74196016995 1275 | 20 -0.67604243051 1276 | 21 -0.94856493951 1277 | 22 -1.14570322360 1278 | 23 0.00000000000 1279 | 24 -0.74196016995 1280 | 25 0.67604243051 1281 | -------------------------------------------------------------------------------- /examples/HeCuF_RDFT-orca/test.inp: -------------------------------------------------------------------------------- 1 | ! RKS B3LYP/G 6-31g** 2 | * xyz 0 1 3 | CU 0.0 0.0 -0.3035456403 4 | F 0.0 0.0 1.4288489797 5 | HE 0.0 0.0 -1.9629084803 6 | * 7 | 8 | -------------------------------------------------------------------------------- /examples/NWChem6.8/01.nw: -------------------------------------------------------------------------------- 1 | START dft 2 | 3 | geometry noautosym 4 | O 0. 0. 0. 5 | C 0. 0. 1.2 6 | end 7 | 8 | BASIS SPHERICAL 9 | * library aug-cc-pvqz 10 | END 11 | 12 | dft 13 | xc pbe0 14 | end 15 | 16 | property 17 | moldenfile 18 | molden_norm none 19 | end 20 | 21 | task scf property 22 | 23 | -------------------------------------------------------------------------------- /examples/NWChem6.8/02.molden: -------------------------------------------------------------------------------- 1 | [Molden Format] 2 | [Atoms] AU 3 | H 1 1 0.0000000000 0.0000000000 -1.5306780507 4 | F 2 9 0.0000000000 0.0000000000 0.1700753390 5 | [GTO] 6 | 1 0 7 | s 3 0 8 | 3.4252509100 0.1543289707 9 | 0.6239137300 0.5353281424 10 | 0.1688554000 0.4446345420 11 | 12 | 2 0 13 | s 3 0 14 | 166.6791300000 0.1543289701 15 | 30.3608120000 0.5353281404 16 | 8.2168207000 0.4446345403 17 | s 3 0 18 | 6.4648032000 -0.0999672291 19 | 1.5022812000 0.3995128265 20 | 0.4885885000 0.7001154638 21 | p 3 0 22 | 6.4648032000 0.1559162698 23 | 1.5022812000 0.6076837191 24 | 0.4885885000 0.3919573894 25 | 26 | [MO] 27 | Sym= a1 28 | Ene= -0.23667231693452E+02 29 | Spin= Alpha 30 | Occup= 2.0000000000 31 | 1 -0.008004428194 32 | 2 0.993492086156 33 | 3 0.027842000907 34 | 4 -0.000000000000 35 | 5 0.000000000000 36 | 6 -0.003729385400 37 | Sym= a1 38 | Ene= -0.94258221948269E+00 39 | Spin= Alpha 40 | Occup= 2.0000000000 41 | 1 0.220972819700 42 | 2 -0.239980955107 43 | 3 0.871393846536 44 | 4 0.000000000000 45 | 5 -0.000000000000 46 | 6 -0.182541926793 47 | Sym= a1 48 | Ene= -0.28904760951063E+00 49 | Spin= Alpha 50 | Occup= 2.0000000000 51 | 1 -0.498236845497 52 | 2 -0.116467395992 53 | 3 0.558694105068 54 | 4 -0.000000000000 55 | 5 0.000000000000 56 | 6 0.682546829440 57 | Sym= e 58 | Ene= -0.80911695169312E-01 59 | Spin= Alpha 60 | Occup= 2.0000000000 61 | 1 0.000000000000 62 | 2 -0.000000000000 63 | 3 0.000000000000 64 | 4 0.955425579223 65 | 5 0.295232048678 66 | 6 -0.000000000000 67 | Sym= e 68 | Ene= -0.80911695169312E-01 69 | Spin= Alpha 70 | Occup= 2.0000000000 71 | 1 0.000000000000 72 | 2 -0.000000000000 73 | 3 0.000000000000 74 | 4 -0.295232048678 75 | 5 0.955425579223 76 | 6 -0.000000000000 77 | Sym= a1 78 | Ene= 0.34482791334051E+00 79 | Spin= Alpha 80 | Occup= 0.0000000000 81 | 1 1.105256301569 82 | 2 0.087226059266 83 | 3 -0.574862611619 84 | 4 0.000000000000 85 | 5 -0.000000000000 86 | 6 0.832002831025 87 | -------------------------------------------------------------------------------- /examples/NWChem6.8/02.nw: -------------------------------------------------------------------------------- 1 | START test 2 | 3 | geometry 4 | H 0. 0. 0. 5 | F 0. 0. 0.9 6 | end 7 | 8 | BASIS 9 | * library sto-3g 10 | END 11 | 12 | dft 13 | molden 14 | end 15 | 16 | set molden:do_norm_janpa t 17 | task dft 18 | 19 | -------------------------------------------------------------------------------- /examples/NWChem6.8/readme.txt: -------------------------------------------------------------------------------- 1 | MOLDEN_NORM JANPA or NONE has to be specified. Use 2 instead 1 if there are symmetries. -------------------------------------------------------------------------------- /m2a-logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zorkzou/Molden2AIM/f6161cc7f61135a421f11293f053f9c7356cd147/m2a-logo.png -------------------------------------------------------------------------------- /m2a-loop.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/zorkzou/Molden2AIM/f6161cc7f61135a421f11293f053f9c7356cd147/m2a-loop.png -------------------------------------------------------------------------------- /util/aces2-patch/reorder.F: -------------------------------------------------------------------------------- 1 | Subroutine reorder(Vecin, Vecout, Iang, nao) 2 | 3 | Implicit Double Precision (A-H, O-Z) 4 | Double Precision Vecin(nao), Vecout(nao) 5 | Integer Iang(nao) 6 | c 7 | Call Dcopy(nao, Vecin, 1, Vecout, 1) 8 | 9 | index = 1 10 | Do while (index .lt. nao) 11 | If (iang(index) .Le. 1) then 12 | C 13 | c handle s and p functions (ie, do nothing) 14 | C 15 | index = index + 1 16 | 17 | Else if (iang(index) .eq. 2) Then 18 | c 19 | c handle d functions 20 | C 21 | vecout(index) = Vecin(index) 22 | vecout(index+1) = Vecin(index+3) 23 | vecout(index+2) = Vecin(index+5) 24 | vecout(index+3) = Vecin(index+1) 25 | c<<< 26 | vecout(index+4) = Vecin(index+2) 27 | vecout(index+5) = Vecin(index+4) 28 | c>>> 29 | index = index + 6 30 | 31 | Else if (iang(index) .EQ. 3) Then 32 | c 33 | c handle f functions 34 | 35 | vecout(index) = Vecin(index) 36 | vecout(index+1) = Vecin(index+6) 37 | vecout(index+2) = Vecin(index+9) 38 | vecout(index+3) = Vecin(index+3) 39 | vecout(index+4) = Vecin(index+1) 40 | vecout(index+5) = Vecin(index+2) 41 | vecout(index+6) = Vecin(index+5) 42 | vecout(index+7) = Vecin(index+8) 43 | vecout(index+8) = Vecin(index+7) 44 | vecout(index+9) = Vecin(index+4) 45 | Index = Index + 10 46 | c<<< 47 | Else if (iang(index) .EQ. 4) Then 48 | c 49 | c handle g functions 50 | 51 | vecout(index) = Vecin(index) 52 | vecout(index+1) = Vecin(index+10) 53 | vecout(index+2) = Vecin(index+14) 54 | vecout(index+3) = Vecin(index+1) 55 | vecout(index+4) = Vecin(index+2) 56 | vecout(index+5) = Vecin(index+6) 57 | vecout(index+6) = Vecin(index+11) 58 | vecout(index+7) = Vecin(index+9) 59 | vecout(index+8) = Vecin(index+13) 60 | vecout(index+9) = Vecin(index+3) 61 | vecout(index+10)= Vecin(index+5) 62 | vecout(index+11)= Vecin(index+12) 63 | vecout(index+12)= Vecin(index+4) 64 | vecout(index+13)= Vecin(index+7) 65 | vecout(index+14)= Vecin(index+8) 66 | Index = Index + 15 67 | 68 | Else if (iang(index) .gt. 4) Then 69 | Write(6, "(a,a,a)") " MOLDEN display of orbitals for", 70 | & " angluar momentum higher", 71 | & " than g functions are incorrect." 72 | c>>> 73 | Return 74 | Endif 75 | C 76 | Enddo 77 | 78 | Return 79 | End 80 | -------------------------------------------------------------------------------- /util/cfour-v2-patch/reorderdf.f: -------------------------------------------------------------------------------- 1 | SUBROUTINE REORDERDF(VECIN,VECOUT,IANG,NBASX) 2 | IMPLICIT DOUBLE PRECISION (A-H,O-Z) 3 | DIMENSION VECIN(NBASX),VECOUT(NBASX),IANG(NBASX) 4 | CALL SCOPY(NBASX,VECIN,1,VECOUT,1) 5 | I=0 6 | 1 I=I+1 7 | IF(I.GT.NBASX)RETURN 8 | IF(IANG(I).LT.2.AND.I.LE.NBASX)GOTO 1 9 | IF(IANG(I).EQ.2)THEN 10 | CALL REORDERD(VECIN(I),VECOUT(I)) 11 | I=I+5 12 | GOTO 1 13 | ELSEIF(IANG(I).EQ.3)THEN 14 | CALL REORDERF(VECIN(I),VECOUT(I)) 15 | I=I+9 16 | GOTO 1 17 | c<<< 18 | ELSEIF(IANG(I).EQ.4)THEN 19 | CALL REORDERG(VECIN(I),VECOUT(I)) 20 | I=I+14 21 | GOTO 1 22 | c>>> 23 | ENDIF 24 | RETURN 25 | END 26 | c<<< 27 | SUBROUTINE REORDERG(DIN,DOUT) 28 | IMPLICIT DOUBLE PRECISION (A-H,O-Z) 29 | DIMENSION DIN(15),DOUT(15) 30 | DOUT(1) =DIN( 1) 31 | DOUT(2) =DIN(11) 32 | DOUT(3) =DIN(15) 33 | DOUT(4) =DIN( 2) 34 | DOUT(5) =DIN( 3) 35 | DOUT(6) =DIN( 7) 36 | DOUT(7) =DIN(12) 37 | DOUT(8) =DIN(10) 38 | DOUT(9) =DIN(14) 39 | DOUT(10)=DIN( 4) 40 | DOUT(11)=DIN( 6) 41 | DOUT(12)=DIN(13) 42 | DOUT(13)=DIN( 5) 43 | DOUT(14)=DIN( 8) 44 | DOUT(15)=DIN( 9) 45 | RETURN 46 | END 47 | c>>> 48 | -------------------------------------------------------------------------------- /util/denfit.f90: -------------------------------------------------------------------------------- 1 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 | !%%% 3 | !%%% DenFit: a program to fit atomic density using Gaussian s-functions. (2019.04.02) 4 | !%%% 5 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 | !%%% 7 | !%%% Reference 8 | !%%% 9 | !%%% [1] E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys. 2, 41 (1973). 10 | !%%% 11 | !%%% [2] B. I. Dunlap, J. W. D. Connolly, J. R. Sabin, J. Chem. Phys. 71, 3396 (1979). 12 | !%%% 13 | !%%% [3] C. Fonseca Guerra, O. Visser, J. G. Snijders, G. te Velde, E. J. Baerends, in Methods and 14 | !%%% Techniques in Computational Chemistry , (Eds.: E. Clementi, G. Corongiu), STEF, Cagliari, 15 | !%%% 1995, p. 305-395 16 | !%%% 17 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 18 | !%%% 19 | !%%% Parameters are defined in the namelist $control. For example: 20 | !%%% $control 21 | !%%% nz=4 nc=2 npt=59000 igtf=3 22 | !%%% $end 23 | !%%% Then the density data are provided. 24 | !%%% 25 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 26 | !%%% 27 | !%%% Parameters: 28 | !%%% nz = nuclear charge number of the element. For example, nz=30 for Zn 29 | !%%% nc = number of core electrons. 1 < nc < nz 30 | !%%% npt = number of 1D-density points 31 | !%%% igtf = formula to generate Gaussian exponents (1~4; default: 4) 32 | !%%% dr = step size (optional; it also defines the format of density data) 33 | !%%% iunit = (0/1, i.e. in Bohr or Angstrom) unit of dr and the r(:) array (optional; default: 0) 34 | !%%% 35 | !%%% 36 | !%%% Density data (dr <=0 or dr is not set): 37 | !%%% r(1), rho(1) 38 | !%%% r(2), rho(2) 39 | !%%% ... 40 | !%%% 41 | !%%% Density data (dr > 0): 42 | !%%% rho(1), rho(2), ... 43 | !%%% 44 | !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 45 | program DenFit 46 | implicit real(kind=8) (a-h,o-z) 47 | parameter(MaxGau = 60,au2ang=0.5291772086d0) 48 | real(kind=8) :: alf(MaxGau) 49 | real(kind=8),allocatable :: r(:), rho(:) 50 | real(kind=8),allocatable :: qn(:), as(:,:), ax(:,:), al(:), an(:), coef(:), scr(:) 51 | real(kind=8),allocatable :: alf0(:), as0(:,:), al0(:), an0(:), qn0(:) 52 | character(8) logo 53 | logical ifnrm 54 | 55 | ! normalized (.T.) s-functions or not(.F.) 56 | !ifnrm =.false. 57 | ifnrm =.true. 58 | 59 | iinp = 5 60 | iedf = 8 61 | write(*,"(//,1x,41('='),/,1x,10('='),' Results of DenFit ',10('='),/,1x,41('='))") 62 | 63 | ! read parameters 64 | call rdpara(iinp,IGTF,NZ,NC,Npt,drval,iunit) 65 | if(iunit == 1) drval=drval/au2ang 66 | 67 | logo="E000C000" 68 | write(logo(2:4),"(i3.3)")NZ 69 | write(logo(6:8),"(i3.3)")NC 70 | 71 | ! Gaussian s-functions alpha for fitting 72 | call GenGau(IGTF,NGau,alf) 73 | if (NGau > MaxGau) then 74 | write(*,"(//,' NGau > MaxGau!')") 75 | stop 76 | else 77 | write(*,"(//,' Starting #S-Fun =',i8)") NGau 78 | end if 79 | 80 | ! sort alpha in descending order 81 | call ShellSort(NGau,alf,1) 82 | 83 | ! read density data 84 | allocate(r(Npt), rho(Npt)) 85 | call rddata(iinp,Npt,iunit,drval,r,rho,Info) 86 | if (Info == 0) then 87 | write(*,"(' ### Error when reading density data!')") 88 | stop 89 | end if 90 | 91 | ! r0 ~ 1.0d-5 92 | r0=0.d0 93 | rho0=0.d0 94 | drho=1.0d5 95 | do i=1, Npt 96 | if(drho >= abs(r(i) - 1.0d-5) ) then 97 | drho=abs(r(i) - 1.0d-5) 98 | cycle 99 | else 100 | j = i -1 101 | if(r(j) < 0.5d0 * 1.0d-5) j = i 102 | r0 = r(j) 103 | rho0=rho(j) 104 | exit 105 | end if 106 | end do 107 | rr0 = r0 * r0 108 | 109 | ! There may be an artificial peak after r = 1.8 a.u. 110 | i18=0 111 | do i=1, Npt 112 | if(r(i) >= 1.8d0) then 113 | i18 = i 114 | exit 115 | end if 116 | if(i .eq. Npt) then 117 | write(*,"(' r(Npt) is too small!')") 118 | stop 119 | end if 120 | end do 121 | 122 | write(*,"(/,' R0 = ',d12.5,', Rho0 = ',d20.14)") r0, rho0 123 | 124 | allocate(qn(NGau), as(NGau,NGau), ax(NGau,NGau), al(NGau), an(NGau), coef(NGau), scr(NGau)) 125 | allocate(alf0(NGau), as0(NGau,NGau), al0(NGau), an0(NGau), qn0(NGau)) 126 | 127 | ! normalization factors of s-ARDF functions 128 | call norms(NGau,ifnrm,alf,qn) 129 | 130 | ! Calculate the matrices/arrays for fitting 131 | call EqFit(NGau,alf,qn,Npt,r,rho,as,al,an,Acore,scr) 132 | write(*,"(/,' Integrated Ncore: ',f16.10)") Acore 133 | if(abs(Acore-dble(NC)) > 1.d-2) then 134 | write(*,"(' Accuracy is too low!')") 135 | stop 136 | end if 137 | 138 | ! Optimize NGau; get rid of the redundant steepest functions (alpha > 1.0d4) 139 | NGau0 = NGau 140 | call acopy(NGau,alf,alf0) 141 | call acopy(NGau*NGau,as,as0) 142 | call acopy(NGau,al,al0) 143 | call acopy(NGau,an,an0) 144 | call acopy(NGau,qn,qn0) 145 | do I = 1, NGau0 146 | if (alf0(1) < 1.0d4) exit 147 | 148 | call GauFit(NGau0,as0,ax,al0,an0,qn0,coef,NC,Acore,Info,scr) 149 | if (Info == 0) then 150 | write(*,"(' Inverse calculation fails.')") 151 | stop 152 | end if 153 | 154 | ! delta_rho at the first point 155 | call DltRho(NGau0,I,alf0,coef,rr0,rho0,idxneg,drho) 156 | 157 | ! delete the first function 158 | call GauRm(NGau0,1,alf0,as0,al0,an0,qn0) 159 | end do 160 | 161 | ! the first idxneg-1 functions are redundant and should be deleted 162 | if (idxneg > 1) then 163 | write(*,"(' Delete the first ',i3,' redundant functions with min[dRho0] = ',d20.14)") idxneg-1, drho 164 | call GauRm(NGau,-(idxneg-1),alf,as,al,an,qn) 165 | end if 166 | 167 | ! Do fitting 168 | do while(.true.) 169 | 170 | call GauFit(NGau,as,ax,al,an,qn,coef,NC,Acore,Info,scr) 171 | if (Info == 0) then 172 | write(*,"(' Inverse calculation fails.')") 173 | exit 174 | end if 175 | 176 | ! check 177 | if(nint(Acore) /= NC) then 178 | write(*,"(' The fitted Ncore is wrong!')") 179 | exit 180 | end if 181 | if( (NC >= 10 .and. NGau < 10) .or. (NC < 10 .and. NGau < 5) ) then 182 | write(*,"(' The fitting fails!')") 183 | exit 184 | end if 185 | call ChkPos(NGau,Npt,r,alf,coef,idxneg) 186 | if(idxneg > 0) then 187 | write(*,"(' Negative density found! Delete function-',i3,' with alpha = ',d20.14)") idxneg, alf(idxneg) 188 | call GauRm(NGau,idxneg,alf,as,al,an,qn) 189 | cycle 190 | end if 191 | call ChkRed(NGau,alf,coef,idxneg) 192 | if(idxneg > 0) then 193 | write(*,"(' Redundant function found! Delete function-',i3,' with alpha = ',d20.14)") idxneg, alf(idxneg) 194 | call GauRm(NGau,idxneg,alf,as,al,an,qn) 195 | cycle 196 | end if 197 | call ChkAPk(NGau,Npt,i18,r,alf,coef,idxneg) 198 | if(idxneg > 0) then 199 | write(*,"(' Artificial peak found! Delete function-',i3,' with alpha = ',d20.14)") idxneg, alf(idxneg) 200 | call GauRm(NGau,idxneg,alf,as,al,an,qn) 201 | cycle 202 | end if 203 | ! to get a smaller error at dRho(1), ChkHss must be done at the last step 204 | call ChkHss(NGau,alf,coef,idxneg) 205 | if(idxneg > 0) then 206 | write(*,"(' Hessian(r=0) > 0 found! Delete function-',i3,' with alpha = ',d20.14)") idxneg, alf(idxneg) 207 | call GauRm(NGau,idxneg,alf,as,al,an,qn) 208 | cycle 209 | end if 210 | 211 | !================================================= Fitting finished 212 | 213 | ! delta(rho) at the first point 214 | call DltRho(NGau,1,alf,coef,rr0,rho0,idxneg,drho) 215 | write(*,"(/,' Fitting finished successfully with',/,5x,'Ncore(analytic) =',f16.10,' and dRho0 = ',d20.14)") Acore, drho 216 | 217 | ! print results 218 | write(*,"(//,' Final results:',//,' Element=',i8,/,' Ncore =',i8,/,' #S-Fun =',i8, //,19x,'Alpha',13x,'Coefficient',/)") & 219 | NZ, NC, NGau 220 | do i = 1, NGau 221 | write(*,"(2e24.14)") alf(i), coef(i) 222 | end do 223 | 224 | open(iedf,file="EDF",iostat=Info) 225 | if (Info > 0) then 226 | write(*,"(' ### Error when creating EDF file!')") 227 | exit 228 | end if 229 | rewind(iedf) 230 | ! write(iedf,"('**',a8)")logo 231 | ! write(iedf,"(i4)") NGau 232 | ! write(iedf,"(5e22.14)") (alf(i), i=1,NGau) 233 | ! write(iedf,"(5e22.14)") (coef(i), i=1,NGau) 234 | 235 | write(iedf,"(//,2x,'EDF in FORTRAN90',/,2x,'NZA = ',i4,/,2x,'NCore = ',i4)") NZ, NC 236 | write(iedf,"(/,4x,'nfun =',i3)") NGau 237 | Nline=(NGau+3)/4 238 | Nlast=mod(NGau,4) 239 | ! alf 240 | write(iedf,"(4x,'alf(1:nfun)=(/',4(d22.14,','),'&')") (alf(j),j=1,4) 241 | do i = 2, Nline-1 242 | write(iedf,"(18x,4(d22.14,','),'&')")(alf(j),j=4*i-3,4*i) 243 | end do 244 | if(Nlast .eq. 0) then 245 | write(iedf,"(18x,3(d22.14,','),d22.14,'/)')") (alf(j),j=NGau-3,NGau) 246 | else if(Nlast .eq. 3) then 247 | write(iedf,"(18x,2(d22.14,','),d22.14,'/)')") (alf(j),j=NGau-2,NGau) 248 | else if(Nlast .eq. 2) then 249 | write(iedf,"(18x,d22.14,',',d22.14,'/)')") (alf(j),j=NGau-1,NGau) 250 | else 251 | write(iedf,"(18x,d22.14,'/)')") alf(NGau) 252 | end if 253 | ! coe 254 | write(iedf,"(4x,'coe(1:nfun)=(/',4(d22.14,','),'&')") (coef(j),j=1,4) 255 | do i = 2, Nline-1 256 | write(iedf,"(18x,4(d22.14,','),'&')")(coef(j),j=4*i-3,4*i) 257 | end do 258 | if(Nlast .eq. 0) then 259 | write(iedf,"(18x,3(d22.14,','),d22.14,'/)')") (coef(j),j=NGau-3,NGau) 260 | else if(Nlast .eq. 3) then 261 | write(iedf,"(18x,2(d22.14,','),d22.14,'/)')") (coef(j),j=NGau-2,NGau) 262 | else if(Nlast .eq. 2) then 263 | write(iedf,"(18x,d22.14,',',d22.14,'/)')") (coef(j),j=NGau-1,NGau) 264 | else 265 | write(iedf,"(18x,d22.14,'/)')") coef(NGau) 266 | end if 267 | 268 | exit 269 | 270 | end do 271 | 272 | deallocate(r, rho) 273 | deallocate(qn, as, ax, al, an, coef, scr) 274 | deallocate(alf0, as0, al0, an0, qn0) 275 | 276 | end 277 | 278 | 279 | !%%% 280 | !%%% read parameters from input 281 | !%%% 282 | subroutine rdpara(iinp,IGTF,NZ,NC,Npt,dr,iunit) 283 | implicit real(kind=8) (a-h,o-z) 284 | namelist/control/NZ,NC,Npt,IGTF,dr,iunit 285 | 286 | NZ=0 287 | NC=0 288 | Npt=0 289 | IGTF=4 290 | dr=-1.d0 291 | 292 | rewind(iinp) 293 | read(iinp,control,err=100,end=200) 294 | 295 | ! default: 4 296 | if (IGTF < 1 .or. IGTF > 4) IGTF = 4 297 | 298 | if (NZ < 2 .or. NZ > 120) then 299 | write(*,"(' NZ is out of range!')") 300 | stop 301 | end if 302 | if (NC < 0 .or. NC >= NZ) then 303 | write(*,"(' NC is out of range!')") 304 | stop 305 | end if 306 | if (Npt < 50) then 307 | write(*,"(' Npt is too small!')") 308 | stop 309 | end if 310 | if (dr > 0.02d0) then 311 | write(*,"(' dR is too big!')") 312 | stop 313 | end if 314 | if(iunit /= 1) iunit = 0 315 | 316 | Return 317 | 318 | 100 write(*,"(//,' Unknown parameters found!')") 319 | stop 320 | 200 write(*,"(//,' No parameters defined!')") 321 | stop 322 | End 323 | 324 | 325 | !%%% 326 | !%%% read density data 327 | !%%% 328 | subroutine rddata(iinp,Npt,iunit,drval,r,rho,l) 329 | implicit real(kind=8) (a-h,o-z) 330 | parameter(au2ang=0.5291772086d0) 331 | real(kind=8) :: r(Npt), rho(Npt) 332 | 333 | l=1 334 | if(drval > 0) then 335 | read(iinp,*,err=100) (rho(i), i=1,Npt) 336 | r(1) = 0.d0 337 | do i=2,Npt 338 | r(i) = r(i-1) + drval 339 | end do 340 | else 341 | do i=1,Npt 342 | read(iinp,*,err=100) r(i), rho(i) 343 | end do 344 | if(iunit == 1) r = r/au2ang 345 | end if 346 | Return 347 | 348 | 100 l=0 349 | Return 350 | End 351 | 352 | 353 | !%%% 354 | !%%% delete redundant functions 355 | !%%% 356 | subroutine ChkRed(NGau,alf,coef,idxneg) 357 | implicit real(kind=8) (a-h,o-z) 358 | real(kind=8) :: alf(NGau), coef(NGau) 359 | 360 | idxneg = 0 361 | 362 | Nhalf=NGau/2 363 | 364 | ! for steep functions with alpha > 1.0d5 365 | do i=1,Nhalf 366 | if(alf(i) > 1.0d5) then 367 | if(abs(coef(i)) < 5.0d0) then 368 | idxneg = i 369 | goto 1000 370 | end if 371 | else 372 | exit 373 | end if 374 | end do 375 | 376 | ! for flat functions with alpha < 3 377 | do i=NGau, Nhalf+1, -1 378 | if(alf(i) < 3.0d0) then 379 | if(abs(coef(i)) < 1.0d-5) then 380 | idxneg = i 381 | goto 1000 382 | end if 383 | else 384 | exit 385 | end if 386 | end do 387 | 388 | 1000 return 389 | end 390 | 391 | 392 | !%%% 393 | !%%% check artificial peak in ARDF for r>1.8 394 | !%%% 395 | subroutine ChkAPk(NGau,Npt,i18,r,alf,coef,idxneg) 396 | implicit real(kind=8) (a-h,o-z) 397 | real(kind=8) :: r(Npt), alf(NGau), coef(NGau) 398 | 399 | idxneg = 0 400 | ! alf(idxneg) should be < 1 401 | if(alf(NGau) > 1.d0) return 402 | 403 | ardfold = 0.d0 404 | do i= i18, Npt, 10 405 | ! ardf/(4pi) 406 | rr = r(i)*r(i) 407 | ardf = 0.d0 408 | do j=1,NGau 409 | ardf = ardf + coef(j)*rr*exp(-alf(j)*rr) 410 | end do 411 | if(i == i18 .or. ardf <= ardfold) then 412 | ardfold = ardf 413 | cycle 414 | else 415 | idxneg = NGau 416 | exit 417 | end if 418 | end do 419 | 420 | return 421 | end 422 | 423 | 424 | !%%% 425 | !%%% Check Hessian at r=0, which should be negative, i.e. there is a maximum at r=0. 426 | !%%% 427 | !%%% Hessian(0) = -2 * hess, where hess = sum[coe(i)*alf(i)] 428 | !%%% 429 | subroutine ChkHss(NGau,alf,coef,idxneg) 430 | implicit real(kind=8) (a-h,o-z) 431 | real(kind=8) :: alf(NGau), coef(NGau) 432 | 433 | idxneg = 0 434 | hess = 0.0d0 435 | do i= 1, NGau 436 | hess = hess + coef(i)*alf(i) 437 | end do 438 | if(hess <= 0.0d0) idxneg = 1 439 | 440 | return 441 | end 442 | 443 | 444 | !%%% 445 | !%%% check positive definiteness of rho 446 | !%%% 447 | subroutine ChkPos(NGau,Npt,r,alf,coef,idxneg) 448 | implicit real(kind=8) (a-h,o-z) 449 | real(kind=8) :: r(Npt), alf(NGau), coef(NGau) 450 | 451 | rhomin = 1.d-10 452 | idxneg = 0 453 | do i=1,Npt 454 | rho=0.d0 455 | do j=1,NGau 456 | rho = rho + coef(j) * exp(-alf(j) * r(i) * r(i)) 457 | end do 458 | if(i == 1 .and. rho < 0.0d0) then 459 | rhomin = rho 460 | idxneg = 1 461 | exit 462 | end if 463 | ! if(i < 5) write(*,"(d24.12)") rho 464 | if(rhomin > rho) then 465 | rhomin = rho 466 | idxneg = i 467 | end if 468 | end do 469 | 470 | if(rhomin < 0.d0)then 471 | r0 = r(idxneg) 472 | rhomin = 1.d-10 473 | idxneg = 0 474 | do i=1,NGau 475 | rho = coef(i) * exp(-alf(i) * r0 * r0) 476 | if(rhomin > rho) then 477 | rhomin = rho 478 | idxneg = i 479 | end if 480 | end do 481 | else 482 | idxneg = 0 483 | end if 484 | 485 | return 486 | end 487 | 488 | 489 | !%%% 490 | !%%% Irm > 0: Remove the Irm-th row/column in an array/matrix 491 | !%%% Irm < 0: Remove the first |Irm| rows/columns in an array/matrix 492 | !%%% 493 | Subroutine GauRm(NGau,Irm,alf,as,al,an,qn) 494 | implicit real(kind=8) (a-h,o-z) 495 | real(kind=8) :: alf(NGau), as(NGau,NGau), al(NGau), an(NGau), qn(NGau) 496 | logical Lmod 497 | 498 | Iab = abs(Irm) 499 | 500 | if (Iab == 0) return 501 | 502 | J = 0 503 | Do I = 1, NGau 504 | if (Irm > 0) then 505 | Lmod = (I == Iab) 506 | else 507 | Lmod = (I <= Iab) 508 | end if 509 | if (Lmod) cycle 510 | J = J + 1 511 | alf(J) = alf(I) 512 | al(J) = al(I) 513 | an(J) = an(I) 514 | qn(J) = qn(I) 515 | end do 516 | 517 | call DelRC(NGau,Irm,as,as) 518 | 519 | if (Irm > 0) then 520 | NGau = NGau - 1 521 | else 522 | NGau = NGau - Iab 523 | end if 524 | 525 | Return 526 | End 527 | 528 | 529 | !%%% 530 | !%%% Irm > 0: Remove the Irm-th row & column in a matrix 531 | !%%% Irm < 0: Remove the first |Irm| rows & columns in a matrix 532 | !%%% 533 | Subroutine DelRC(N,Irm,a,b) 534 | implicit real(kind=8) (a-h,o-z) 535 | real(kind=8) :: a(N,N), b(*) 536 | logical Imod, Jmod 537 | 538 | Iab = abs(Irm) 539 | 540 | if (Iab == 0) return 541 | 542 | K = 0 543 | Do I = 1, N 544 | if (Irm > 0) then 545 | Imod = (I == Iab) 546 | else 547 | Imod = (I <= Iab) 548 | end if 549 | if (Imod) cycle 550 | Do J = 1, N 551 | if (Irm > 0) then 552 | Jmod = (J == Iab) 553 | else 554 | Jmod = (J <= Iab) 555 | end if 556 | if (Jmod) cycle 557 | K = K + 1 558 | b(K) = a(J,I) 559 | end do 560 | end do 561 | 562 | Return 563 | End 564 | 565 | 566 | !%%% 567 | !%%% Calculate the matrices/arrays for fitting 568 | !%%% 569 | subroutine EqFit(NGau,alf,qn,Npt,r,rho,as,al,an,Acore,scr) 570 | implicit real(kind=8) (a-h,o-z) 571 | real(kind=8) :: alf(NGau), qn(NGau), r(Npt), rho(Npt), as(NGau,NGau), al(NGau), an(NGau), scr(NGau) 572 | 573 | ! For normalized s-ARDF functions, the overlap matrix element 574 | ! as(j,i) 575 | ! = N(i) * N(j) * Int{(4*pi*r*r)^3 * [exp(-a_i*r*r)] * [exp(-a_j*r*r)]} dr 576 | ! = N(i) * N(j) * 60 * (pi/(a_i+a_j))^3.5 577 | ! 578 | ! an(i) 579 | ! = Int{[4*pi*r*r*exp(-a_i*r*r)]} dr 580 | ! = (pi/a_i)^1.5 581 | pi=acos(-1.d0) 582 | cons1 = power(sqrt(pi),3) 583 | cons2 = pi * 4.d0 584 | cons3 = cons2*cons2*cons2 585 | do i=1,NGau 586 | do j=1,i 587 | as(j,i) = pi / (alf(i) + alf(j)) 588 | as(j,i) = qn(i) * qn(j) * 60.d0 * as(j,i)**3.5d0 589 | if(j < i) as(i,j) = as(j,i) 590 | end do 591 | an(i) = sqrt(alf(i)) 592 | an(i) = cons1 / power(an(i),3) 593 | end do 594 | 595 | ! calculate Ncore and al numerically 596 | Acore=0.d0 597 | al=0.d0 598 | do i=1,Npt-1 599 | dr=r(i+1)-r(i) 600 | rr=r(i)*r(i) 601 | dc=rr*rho(i) 602 | d6=rr*rr*dc 603 | do j=1,NGau 604 | scr(j) = d6 * exp(-alf(j) * rr) 605 | end do 606 | Acore = Acore + dc * dr 607 | call AccAB(NGau,dr,scr,al,al) 608 | end do 609 | Acore=Acore*cons2 610 | al=al*cons3 611 | 612 | return 613 | end 614 | 615 | 616 | !%%% 617 | !%%% Do fitting 618 | !%%% 619 | subroutine GauFit(NGau,as,ax,al,an,qn,coef,NC,Acore,Info,scr) 620 | implicit real(kind=8) (a-h,o-z) 621 | real(kind=8) :: as(NGau,NGau), ax(NGau,NGau), al(NGau), an(NGau), qn(NGau), coef(NGau), scr(NGau) 622 | 623 | ! as^-1 --> ax 624 | call acopy(NGau*NGau,as,ax) 625 | call bssgj(NGau,Info,ax,scr) 626 | if (Info == 0) return 627 | 628 | ! mat(qn) * ax * mat(qn) --> ax 629 | call dmd(NGau,qn,ax) 630 | 631 | ! lambda = (Ncore-an'*ax*al)/(an'*ax*an) 632 | call MatxL(NGau,ax,an,scr) 633 | alam = (dble(NC) - dotx(NGau,scr,al)) / dotx(NGau,scr,an) 634 | 635 | ! coefficients: ax * (al + lambda*an) 636 | call AccAB(NGau,alam,an,al,scr) 637 | call MatxL(NGau,ax,scr,coef) 638 | 639 | ! recalculate Ncore analytically 640 | Acore=0.d0 641 | do i=1,NGau 642 | Acore=Acore+an(i)*coef(i) 643 | end do 644 | 645 | return 646 | end 647 | 648 | 649 | !%%% 650 | !%%% Inverse of a symmetric positive definite matrix a 651 | !%%% Taken from Shiliang Xu's Fortran77 book, SS2.5 652 | !%%% 653 | subroutine bssgj(n,l,a,b) 654 | implicit real(kind=8) (a-h,o-z) 655 | real(kind=8) :: a(n,n), b(n) 656 | 657 | l=1 658 | do k=1,n 659 | m=n-k+1 660 | w=a(1,1) 661 | if (w+1.d0 == 1.d0) then 662 | l=0 663 | return 664 | end if 665 | do i=2,n 666 | g=a(i,1) 667 | b(i)=g/w 668 | if (i <= m) b(i)=-b(i) 669 | do j=2,i 670 | a(i-1,j-1)=a(i,j)+g*b(j) 671 | end do 672 | end do 673 | a(n,n)=1.d0/w 674 | do i=2,n 675 | a(n,i-1)=b(i) 676 | end do 677 | end do 678 | 679 | do i=1,n-1 680 | do j=i+1,n 681 | a(i,j)=a(j,i) 682 | end do 683 | end do 684 | 685 | return 686 | end 687 | 688 | 689 | !%%% 690 | !%%% delta_rho at the first point 691 | !%%% 692 | !%%% rr0 = r0*r0 693 | !%%% 694 | subroutine DltRho(N,Iter,a,c,rr0,rho0,imin,dmin) 695 | implicit real(kind=8) (a-h,o-z) 696 | real(kind=8) :: a(*), c(*) 697 | 698 | x = 0.d0 699 | do i = 1, N 700 | x = x + c(i) * exp(-a(i) * rr0) 701 | end do 702 | 703 | ! delta_rho 704 | x = abs(x - rho0) 705 | 706 | if(Iter == 1) then 707 | imin = 1 708 | dmin = x 709 | else 710 | if(dmin > x) then 711 | imin = Iter 712 | dmin = x 713 | end if 714 | end if 715 | 716 | return 717 | end 718 | 719 | 720 | !%%% 721 | !%%% D(N,N) * A(N,N) * D(N,N) --> A(N,N) 722 | !%%% where D is a diagonal matrix with elements in d(N) 723 | !%%% 724 | subroutine dmd(N,d,a) 725 | implicit real(kind=8) (a-h,o-z) 726 | real(kind=8) :: d(N), a(N,N) 727 | 728 | do i = 1, N 729 | do j = 1, i 730 | a(j,i) = a(j,i) * d(i) * d(j) 731 | if(j < i) a(i,j) = a(j,i) 732 | end do 733 | end do 734 | 735 | return 736 | end 737 | 738 | 739 | !%%% 740 | !%%% B(*) = A(*) 741 | !%%% 742 | subroutine acopy(n,a,b) 743 | implicit real(kind=8) (a-h,o-z) 744 | real(kind=8) :: a(*), b(*) 745 | 746 | do i = 1, n 747 | b(i) = a(i) 748 | end do 749 | 750 | return 751 | end 752 | 753 | 754 | !%%% 755 | !%%% a**N 756 | !%%% 757 | function power(a,N) 758 | implicit real(kind=8) (a-h,o-z) 759 | 760 | if (N == 0) then 761 | power = 1.d0 762 | return 763 | end if 764 | 765 | power = a 766 | Do I = 2, abs(N) 767 | power = power * a 768 | end do 769 | if (N < 0) power = 1.d0 / power 770 | 771 | Return 772 | End 773 | 774 | 775 | !%%% 776 | !%%% normalization factors of s-ARDF functions: q_i = (2*a_i/pi)^(7/4) / sqrt(60) 777 | !%%% 778 | Subroutine norms(N,ifnrm,a,q) 779 | implicit real(kind=8) (a-h,o-z) 780 | real(kind=8) :: a(N), q(N) 781 | logical ifnrm 782 | 783 | q = 1.d0 784 | if(ifnrm) then 785 | pi=acos(-1.d0) 786 | Do I = 1, N 787 | q(I) = ((a(I)+a(I))/pi)**1.75d0 788 | end do 789 | end if 790 | 791 | q=q/sqrt(60.d0) 792 | 793 | Return 794 | End 795 | 796 | 797 | !%%% 798 | !%%% A(N,N) * B(N) = C(N) 799 | !%%% 800 | Subroutine MatxL(N,A,B,C) 801 | implicit real(kind=8) (a-h,o-z) 802 | real(kind=8) :: A(N,N), B(N), C(*) 803 | 804 | Do I = 1,N 805 | C(I) = dotx(N,A(1,I),B) 806 | end do 807 | 808 | Return 809 | End 810 | 811 | 812 | !%%% 813 | !%%% vector A dot_product vector B 814 | !%%% 815 | function dotx(N,A,B) 816 | implicit real(kind=8) (a-h,o-z) 817 | real(kind=8) :: A(N), B(N) 818 | 819 | dotx = 0.d0 820 | 821 | Do I = 1,N 822 | dotx = dotx + A(I)*B(I) 823 | end do 824 | 825 | Return 826 | End 827 | 828 | 829 | !%%% 830 | !%%% C(*) = c0 * A(*) + B(*) 831 | !%%% 832 | Subroutine AccAB(N,c0,A,B,C) 833 | implicit real(kind=8) (a-h,o-z) 834 | real(kind=8) :: A(N), B(N), C(N) 835 | 836 | Do I = 1, N 837 | C(I) = B(I) + c0*A(I) 838 | end do 839 | 840 | Return 841 | End 842 | 843 | 844 | !%%% 845 | !%%% sort a in ascending (Mode = 0) or descending (Mode /= 0) order using D. L. Shell's method 846 | !%%% 847 | subroutine ShellSort(N,a,Mode) 848 | implicit real(kind=8) (a-h,o-z) 849 | real(kind=8) :: a(N) 850 | logical :: AD 851 | 852 | K = N /2 853 | 854 | do while (K > 0) 855 | do I = K + 1, N 856 | J = I - K 857 | do while (J > 0) 858 | if (Mode == 0) then 859 | AD = a(J) > a(J+K) 860 | else 861 | AD = a(J) < a(J+K) 862 | end if 863 | if (AD) then 864 | t = a(J) 865 | a(J) = a(J + K) 866 | a(J + K) = t 867 | J = J - K 868 | else 869 | exit 870 | end if 871 | end do 872 | end do 873 | K = K / 2 874 | end do 875 | 876 | Return 877 | End 878 | 879 | 880 | !%%% 881 | !%%% Gaussian s-functions 882 | !%%% 883 | subroutine GenGau(icase,NGau,alf) 884 | implicit real(kind=8) (a-h,o-z) 885 | real(kind=8) :: alf(*) 886 | 887 | write(*,"(//,' Type of functions: ',i6)") icase 888 | 889 | select case(icase) 890 | 891 | case(1) 892 | ! Alpha_i = exp[a + b * (i - 1)], a=-3.21885281944033, b=0.672 893 | ! Parameters used by G09 894 | NGau = 40 895 | a =-3.21885281944033d0 896 | b = 0.672d0 897 | do i = 1, NGau 898 | j = i - 1 899 | alf(i) = exp(a + b * j) 900 | end do 901 | write(*,"(& 902 | ' Alpha_i = exp[a + b * (i - 1)], a=-3.21885281944033, b=0.672',/,& 903 | ' Reference:',/,& 904 | ' E. V. R. de Castro and F. E. Jorge, J. Chem. Phys. 108 5225 (1998).',/,& 905 | ' and modified in',/,& 906 | ' T. A. Keith and M. J. Frisch, J. Phys. Chem. A 115, 12879 (2011).')") 907 | 908 | case(2) 909 | ! Alpha_i = exp[a + b * (i - 1)], a=-4.584, b=0.672 910 | ! Ref. 911 | ! E. V. R. de Castro and F. E. Jorge, J. Chem. Phys. 108 5225 (1998). 912 | NGau = 40 913 | a =-4.584d0 914 | b = 0.672d0 915 | do i = 1, NGau 916 | j = i - 1 917 | alf(i) = exp(a + b * j) 918 | end do 919 | write(*,"(& 920 | ' Alpha_i = exp[a + b * (i - 1)], a=-4.584, b=0.672',/,& 921 | ' Reference:',/,& 922 | ' E. V. R. de Castro and F. E. Jorge, J. Chem. Phys. 108 5225 (1998).')") 923 | 924 | case(3) 925 | ! Alpha_i = exp[a + b * (i - 1)], a=-3.84, b=0.72 926 | ! Ref. 927 | ! G. L. Malli, A. B. F. DaSilva, and Y. Ishikawa, Phys. Rev. A 47, 143 (1993). 928 | ! A. Wolf, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 9215 (2002). 929 | NGau = 38 930 | a =-3.84d0 931 | b = 0.72d0 932 | do i = 1, NGau 933 | j = i - 1 934 | alf(i) = exp(a + b * j) 935 | end do 936 | write(*,"(& 937 | ' Alpha_i = exp[a + b * (i - 1)], a=-3.84, b=0.72',/,& 938 | ' Reference:',/,& 939 | ' G. L. Malli, A. B. F. DaSilva, and Y. Ishikawa, Phys. Rev. A 47, 143 (1993).',/,& 940 | ' A. Wolf, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 9215 (2002).')") 941 | 942 | ! case(4) 943 | case default 944 | ! Even-tempered universal Gaussian exponents 945 | ! Alpha_i = 0.001 * 1.65^(i-1) 946 | ! ~ exp[a + b * (i - 1)], a=-6.907755, b=0.500775 947 | ! Ref. 948 | ! M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004). 949 | NGau = 60 950 | a = 1.0d-3 951 | b = 1.65d0 952 | alf(1) = a; 953 | do i=2,NGau 954 | alf(i) = alf(i-1) * b 955 | end do 956 | write(*,"(& 957 | ' Even-tempered universal Gaussian exponents',/,& 958 | ' Alpha_i = 0.001 * 1.65^(i-1)',/,& 959 | ' ~ exp[a + b * (i - 1)], a=-6.907755, b=0.500775',/,& 960 | ' Reference:',/,& 961 | ' M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004).')") 962 | 963 | end select 964 | 965 | return 966 | end 967 | 968 | --------------------------------------------------------------------------------